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Chapter 1

Introduction

When applying modern Bayesian methods you can run into issues evaluating expec-

tations when fitting certain models to data sets due to computational constraints.

These could be time restrictions, hardware restrictions, or constraints on data shar-

ing that prevent the use of standard statistical techniques. One strategy to overcome

these restrictions is to make use of parallelisation. Divide-and-conquer strategies fo-

cus on developing techniques to allow Monte Carlo to be performed in a parallel

fashion by partitioning the data. Typically, once the data has been partitioned,

standard sampling methods can be applied to each partition. The main focus of the

divide-and-conquer literature has been to combine these samples generated from

each partition to estimate expectations of interest, losing as little accuracy as pos-

sible from partitioning the data. In this Thesis we introduce two new methods in

the ‘Divide-and-Conquer’ framework.
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This thesis comprises of the following

Chapter 2 - Background. In this section we introduce standard Monte Carlo

and give a full introduction to the divide-and-conquer framework. We cover ex-

pectations and how Monte Carlo methods can be used to approximate them. We

then introduce the divide-and-conquer framework, present a discussion on when you

might need these methods, and review some popular methods in the field.

Chapter 3 - Marginal Views (MarV). Marginal views is motivated by the

idea that often in statistical problems interest lies in low-dimensional summaries of

the parameter vector, such as individual components or one-dimensional functions

of the full vector. MarV provides a methodology that allows the use of kernel

density estimates for a low-dimensional summary of particular interest whilst taking

dependence between the summary and the rest of the parameter vector into account.

Chapter 4 - Subposteriors with Inflation, Scaling, and Shifting (SwISS).

SwISS was developed mainly as a competitor to a popular method in the divide-

and-conquer framework: Consensus Monte Carlo. Consensus Monte Carlo is easy to

implement and can be applied to a number of models. However, Consensus Monte

Carlo can struggle when posterior distributions exhibit certain behaviours, such as

non-Gaussian, or multi-modal posterior distributions. SwISS is easy to apply and of-

ten performs better or as well as Consensus, but we show it can be used successfully

with a wider range of models.
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Chapter 5 - Further Work. In this chapter, a brief overview of ideas for

future work is presented. The first is an improvement to SwISS to correct for bias

in the first moment. The second is a post combination correction step. Finally we

outline some issues that arise when the data on the partitions are dependent, and a

potential area to explore further.
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Chapter 2

Background

2.1 Monte Carlo Methods

Many statistical problems require evaluating, or estimating, expectations. Let m :

χ→ Rd be a measurable function, where χ is a measurable space and d ∈ N. Let ϑ

be a random variable with probability density function π, also known as the target

distribution. Often we are interested in

I := Eπ [m(ϑ)] =

∫
π(ϑ)m(ϑ)dϑ. (2.1)

If the integral in Equation 2.1 is tractable it can be evaluated analytically. However,

often in practice these expectations are not tractable. Monte Carlo methods provide

a way to use samples drawn from the target distribution to estimate the integral in

17



Equation 2.1.

Assume we have simulated independent identically distributed (iid) samples,{
ϑ(i)
}N
i=1

from π. Define the following as an estimator of the expectation in Equa-

tion 2.1:

Î :=
1

N

N∑
i=1

m(ϑ(i)). (2.2)

Using the law of large numbers it is possible to show that Î (Equation 2.2) is a

consistent estimator for I (Robert and Casella, 2005). Due to the large number of

sampling algorithms, many of them easily and generally applicable, Monte Carlo

integration is a popular method. For the remainder of this section we will cover

sampling schemes relevant to this thesis.

2.1.1 Markov Chain Monte Carlo - MCMC

Markov Chain Monte Carlo (MCMC) is a group of methods that can be used to

approximate integrals even when you cannot sample from the target distribution

directly. In this section we will describe how, when given a proposal distribution,

a sampler can be used to form a Markov chain, which has the target distribution

as the stationary distribution of the Markov Chain. We define a Markov chain as a

group of samples, {θ(i)}Ni=1, where the i-th sample is dependent only on the previous
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sample, i.e.,

P(ϑ(i)|ϑ(i−1)) = P(ϑ(i)|ϑ(i−1), . . . , ϑ(1)). (2.3)

Markov chain samples are not independent, however they can still be used to produce

consistent estimators of expectations as in Equation 2.2.

Metropolis-Hastings Algorithm

Metropolis et al. (1953) and Hastings (1970) developed the Metropolis-Hastings

algorithm. This algorithm samples ϑ∗ from a proposal distribution, denoted q(·|ϑ),

then accepts or rejects the proposed sample according to the an accept-reject step.

This accept-reject step is formulated in such a way that the samples generated are

approximately from π. This is repeated until the desired number of samples is

reached.

Assume ϑ is the current state of the Markov chain. We sample ϑ∗ ∼ q(·|ϑ), a

proposed sample. We then calculate the acceptance probability:

α (ϑ,ϑ∗) := min

{
1,
π(ϑ∗)q(ϑ|ϑ∗)
π(ϑ)q(ϑ∗|ϑ)

}
, (2.4)

known as the Metropolis-Hastings acceptance rate. ϑ∗ is accepted with probability

α (ϑ,ϑ∗). If ϑ∗ is rejected, the state of the Markov chain is unchanged. Algorithm 1

19



Algorithm 1 Metropolis-Hastings algorithm

1: procedure INPUT: ϑ(1)

2: ϑc ← ϑ(1)

3: for i ∈ {1, . . . , N} do
4: ϑ∗ ∼ q(·|ϑc)
5: α = α (ϑc,ϑ

∗) (Equation 2.4)
6: u ∼ Unif(0,1)
7: if α > u then
8: ϑ(i) = ϑ∗

9: else
10: ϑ(i) = ϑc
11: end if
12: ϑc = ϑ(i)

13: end for
14: RETURN:

{
ϑ(i)
}N
i=1

15: end procedure

gives pseudo-code for the general MCMC algorithm.

The choice of proposal distributions for MCMC methods is the focus of many

research papers,e.g. MALA Roberts and Tweedie (1996), HMC Neal et al. (2011),

and Gibbs Carter and Kohn (1994). Here we will only introduce the proposal

distributions relevant for the thesis as needed.

2.1.2 Importance Sampling

Importance sampling is similar to MCMC methods, evaluating expectations with

respect to a target distribution by simulating from a proposal distribution. However

you do not have to form a Markov chain. Typically it is used for lower dimensional

problems, and can struggle in higher dimensions.
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We reintroduce a proposal distribution with density denoted q with the same

support as π. Now we can produce a new estimator for I:

I = Eπ [m(ϑ)] ,

=

∫
ϑ

q(ϑ)
π(ϑ)

q(ϑ)
m(ϑ)dϑ,

= Eq
[
π(ϑ)

q(ϑ)
m(ϑ)

]
,

≈ 1

M

M∑
j=1

π(ϑ̃(j))

q(ϑ̃(j))
m(ϑ̃(j)), (2.5)

where
{
ϑ̃(j)

}M
j=1

are independent samples from a random variable with density q(.).

We define w(ϑ(j)) = π(ϑ(j))/q(ϑ(j)) to be our importance weight for sample j.

Importance sampling is unbiased for all choices of proposal q that have the same

support as π. However the choice of q affects the variance of the estimator of I. We

want to find the proposal that minimises the variance of the estimator, denoted q∗.

Define Γ as the set of all distributions with support equal to that of π and define

q∗(ϑ) := arg min
q(ϑ)∈Γ(ϑ)

Var

[
π(ϑ)m(ϑ)

q(ϑ)

]
. (2.6)

Robert and Casella (2005) (Theorem 3.12) showed that

q∗(ϑ) =
|m(ϑ)|π(ϑ)∫
π(ϑ∗)m(ϑ∗)dϑ∗

, (2.7)
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satisfies Equation 2.6. This is not usable directly since the denominator in Equa-

tion 2.7 is the exact integral we wish to evaluate. However, it gives an indication

of what a good proposal should be, Robert and Casella (2005) suggested that we

choose q such that |m|π/q is nearly constant. Hence a good choice for q is a Student-

t approximation to π, with a low number of degrees of freedom e.g., df = 5 with

first two moments equal to those estimated for π. A Student-t is suggest as the

distribution is heavy tailed, hence |m|π/q will be less likely to extremely large in

the tails.

Importance sampling is useful for expectations with a small parameter space,

but can struggle in higher dimensions (Au and Beck, 2003). It is usually faster

than MCMC algorithms, and can be parallelised, but can produce undesirable high-

variance estimators when a large number parameters are present.

Quasi-Importance sampling

Quasi-importance sampling can be used in place of standard importance sampling

to increase the convergence rate of our estimator for I. Asmussen and Glynn

(2007); Section 3 shows standard Monte Carlo integration has a convergence rate

of O
(

1/
√
M
)

whereas, under regularity conditions, Quasi-Monte Carlo integration

has a convergence rate of O
(
log(M)d/M

)
.

Here we will outline how to implement Quasi-importance sampling when the

22



● ●● ●● ●●● ●●●● ●● ● ●●● ●●●●● ●●●● ●● ●

● ●● ● ● ● ●● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●

● ●Quasi   Standard

Figure 2.1: A comparison of Quasi sampling compared to standard sampling for 30
samples from a uniform distribution.

target is one-dimensional. Assume our distribution q has an invertible cumulative

distribution function Q. Instead of sampling
{
ϑ̃(j)

}M
j=1

independently, from Q we

sample evenly between the quantiles of a random variable with density q, that is:

θ̃(j) = Q−1

(
j − uj
M

)
,

where {uj}Mj=1 are independently drawn from a (0,1) uniform distribution. Intu-

itively it would be expected that quasi-importance sampling should give a better

spread of samples, which can lead to lower variance estimates when compared to

standard importance sampling. The difference in spread is demonstrated in Fig-

ure 2.1 with a uniform distribution.

Randomised versions of Quasi Monte Carlo sampling, such as the one described

above, still produces unbiased estimates of expectations, as shown in Asmussen and
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Glynn (2007).

2.2 Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE) methods are used to produce non-parametric

estimators for target densities using samples drawn from that target density. As with

a lot of non-parametric methods they are most useful in estimating low-dimensional

distributions, when little is known or assumed about the parametric form of the

target density.

Here we define a kernel to be a function K(.) : Rd → R+
0 that satisfies:

arg min
x∈Rd

K(x|ρ) = 0,∫
R
K(x|ρ)dx = 1,

K(x|ρ) = K(−x|ρ),

where ρ is the tuning parameter of the kernel, which typically dictates how fast the

kernel tends to zero.

Let
{
ϑ(i)
}N
i=1

be samples drawn from a random variable with target density π.

We can approximate π using KDE methods:

π (ϑ) ≈ 1

N

N∑
i=1

K
(
ϑ− ϑ(i)|ρ

)
. (2.8)
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This centres a kernel around each sample, then for a given value of ϑ returns the

mean of each of the kernels.

Choices of Kernels

There are many choices of kernel functions such as Gaussian, quadratic, uniform

etc. The most popular choice of kernel is a Gaussian kernel which has the form:

KG(x|ρ) = KG(x) =
1

ρd
√

2π
exp

(
− 1

2ρ2
x>x

)
,

for ρ > 0. Here we have shown ρ to be a scalar, although this can be extended to

include a matrix ρ for a more generalisable approach, this is sufficient for this thesis.

The choice of bandwidth can largely affect the quality of the KDE; the larger ρ

is, the more weight is given to close samples, a smaller ρ means the kernel function

decays slower, giving a more even weight to samples. Figure 2.2 shows three kernel

density estimates. The issue with having a bandwidth too small can lead to an

un-smooth estimate, whereas a bandwidth too large can lead to a density that has

heavier tails than the target density.

If using the Gaussian kernel a wide range of methods exist to choose the band-

width. The Sheather-Jones bandwidth (Sheather and Jones, 1991) looks to minimise

integrated squared error and is of O (N2) in terms of computational cost. Sheather-

Jones is generally the preferred bandwidth selector and can produce desirable results
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Figure 2.2: Figure shows what effect the choice of bandwidth can have on the KDE
for a target distribution. From left to right the figures show: an appropriately tuned
bandwidth; an un-smooth estimate of the target distribution, which can happen if
the selected bandwidth is too small; the estimate of the target distribution is too
heavy tailed, as a result of the selected bandwidth being too large. Note the scales
on the x-axes are different. The y-axis is the estimated density.

in a multitude of examples. Silverman’s rule of thumb, defined as:

ρ̂ =

(
4× sd (ϑ)5

3N

)1/5

,

has a computational cost of O (N). It is optimal in terms of mean integrated squared

error if π is truly Gaussian, but can be undesirable in largely none-Gaussian cases

(Silverman, 1986).

2.3 Divide-and-Conquer Methods

When dealing with very large data a lot of the algorithms introduced in the previous

sections need to be altered due to computational limits. One way statisticians can
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adapt is to develop methods to run in parallel. An issue that presents itself when

parallelising methods is how to pool inferences about a set of model parameters

when those inferences have been drawn from distributed sources. Inference may

need to be distributed due to the following reasons:

• Computational - Due to time constraints, it may not be feasible to wait for

inference to be drawn. This could be due to a high number of observations

making up the data set, and therefore data may need to be split to be analysed

in time to meet deadlines.

• Memory - A memory bottle neck exists when the data and the processes

needed to produce inferences require more random-access memory (RAM)

than is available.

• Disk - A hardware limitation that arises when the size of data is larger than

the total available storage.

• Privacy - There are several data centres and sharing the raw data might

be restricted due to privacy concerns, for example with medical records. In

these cases, centres may be restricted to sharing top level information, such as

summary statistics, or Monte Carlo samples drawn from a target distribution.

The computational, memory, and disk bottle necks are often a result of ‘big data’

which, similar to Scott et al. (2016), will be defined here to be data that cannot
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be comfortably processed on a single machine. As in Bardenet et al. (2017), we

will define ‘tall data’ to be data that are considered to be big because of the large

number of observations, and will define ‘wide data’ to be data that are considered

to be big because of the large number of parameters. Data can be both tall and

wide.

Monte Carlo methods (Section 2.1.1) can be applied to a wide variety of target

distributions with ease, are often asymptotically exact, and there exists numer-

ous software packages to aid in implementation (Stan Development Team (2016),

Spiegelhalter et al. (2003)). For these reasons these methods are often used in

Bayesian inference. However they can often be impracticable in big-data settings,

due to the reasons listed above. When using MCMC methods the target distribution

needs to be evaluated at the proposed value for every sample drawn. Without doing

this, it is impossible to calculate the acceptance probability:

α(ϑ,ϑ∗) = min

{
1,
π(ϑ∗)q(ϑ|ϑ∗)
π(ϑ)q(ϑ∗|ϑ)

}
.

Coupled with big data this can introduce a computational bottle neck. Additionally,

if the data cannot fit on RAM or disk, the target distribution cannot be (easily)

calculated.

A natural approach from here would be to split the data across multiple servers

and perform inference seperately on these batches. For this thesis we will assume
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the inference drawn is in the form of samples drawn from target distributions on

each server. Divide-and-conquer (Neiswanger et al. (2013), Scott et al. (2016), Li

et al. (2017), Nemeth and Sherlock (2018)), also known as fork-and-merge, methods

describe how to unify these samples.

2.4 Divide-and-Conquer Framework

We will introduce the general divide-and-conquer framework. Some methods in

this field deviate from this framework in places, but for ease of reading we will explain

the most common structure here, and cover any discrepancies when reviewing the

individual methods.

We will assume our target distribution is a posterior distribution of the following

form:

π (ϑ|y) ∝ f (y|ϑ) π(ϑ),

where f denotes the likelihood, y is our data, ϑ are the parameters governing the

behaviour of the model and π(ϑ) describes our prior belief in the parameters.

If we can split our data into disjoint, independent partitions then we can write

y = (y1, . . . ,yB), where yb denotes the b-th independent batch up to B, our total
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number of batches. We can write the posterior distribution in the following way:

π(ϑ|y) ∝ π(ϑ)f(y|ϑ) =
B∏
b=1

π(ϑ)1/Bf(yb|ϑ) ∝
B∏
b=1

πb(ϑ|y), (2.9)

where we define

πb(ϑ|y) :=
π(ϑ)1/Bf(yb|ϑ)

m(yb)

to be our b-th subposterior distribution for each b ∈ {1, . . . , B}.

Inference can be drawn in parallel in the form of N samples from each subposte-

rior distribution. We define ϑb :=
{
ϑ

(i)
b

}N
i=1

to be the N samples drawn from ϑ|yb

using a chosen Monte Carlo method. N could vary across batches, i.e., we could

draw a different number of samples from each subposterior distribution, but for ease

of notation we assume we draw N samples from each batch.

The samples can be thought of as summaries from each of the subposterior

distributions. However we are not interested in inference or expectations about

the subposterior distributions but in the full-posterior distribution instead. So the

challenge lies in finding a mapping, Υ : χB → χ, from the samples from each

subposterior distribution to samples from an approximation to the full-posterior

distribution:

ϑ̃ := Υ (ϑ1, . . . ,ϑB) .

At this point ϑ̃ can be used to draw inference about ϑ|y, i.e., we can now an-
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swer questions about the system using the full data, by using ϑ̃ and Monte Carlo

integration:

Eπ(ϑ|y) [m(ϑ)] ≈ 1

N

N∑
i=1

m(ϑ̃).

2.4.1 Inflated-Subposterior Distributions

Instead of sampling from the subposterior distributions, some methods (Srivastava

et al. (2018), Li et al. (2017), Entezari et al. (2018)) inflate the subposterior distri-

butions before sampling from them. We define the inflated-subposterior distribution

for a given batch b as:

π̃b(ϑ|yb) := πb(ϑ|yb)B =
π(ϑ)f(yb|ϑ)B

m(yb)B
. (2.10)

Note that the prior is not split in this case; this can be beneficial when sampling

where the prior is important for regularisation.

Sometimes the inflated-subposterior distribution is called a stochastic approxi-

mation to the full-posterior distribution, π(ϑ|y). Inflating the subposterior distri-

bution is done so that the inflated posterior approximates the full-data posterior

distribution, i.e.,

π̃(ϑ|yb) ≈ π(ϑ|y).
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If each of the subposterior distributions are receiving the same amount of data then

each of the inflated-subposterior distributions will have roughly equal variance to

the full-posterior distribution, a visual representation of this is shown in Figure 2.3.

Although these methods draw samples from the inflated-subposterior distributions,

they still look to map the batch samples to a set of samples from an approximation

to the full-posterior to perform Monte Carlo integration.

2.5 Existing Methods

In this section we will be outlining existing methods divide-and-conquer literature.

2.5.1 The Consensus Monte Carlo Algorithm

Scott et al. (2016) introduced the Consensus Monte Carlo algorithm, an algorithm

that combines the samples from subposterior distributions through averaging.

The Consensus Monte Carlo algorithm was introduced with a general weighting,

however, Scott et al. (2016) suggested, when averaging, to weight samples from each

of the subposterior distributions according to the inverse variance of that subposte-

rior distribution. This ensures that in the case that all the subposterior distributions

are Gaussian, the inverse-variance weighting produces ϑ̄ that are drawn exactly from

the full-posterior distribution, up to some Monte Carlo error. This Monte Carlo er-

ror arises due to having to estimate the variance for each subposterior distribution
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from the subposterior samples.

Let V̂b be the estimated variance matrix for the b-th subposterior distribution,

which is estimated from the subposterior distribution samples. Then we define the

Consensus Monte Carlo algorithm samples as follows:

ϑ̄ :=
1

B

(
B∑
b=1

V̂ −1
b

)−1 B∑
b=1

V̂ −1
b ϑb. (2.11)

Figure 2.4 shows a visual representation of the Consensus Monte Carlo algorithm.

The dashed black and blue lines represent the subposteior densities and approximate

posterior density. The points are averaged to obtain a point from the approximate

posterior distribution.

Consensus Monte Carlo is popular since Equation 2.11 is easily applied. Scott

et al. (2016) show the Consensus Monte Carlo algorithm can be applied in a vari-

ety of models: classification models such as Logistic regression, it can be used when

subposterior distributions have differing variances, and in mixed effect models. How-

ever, the samples from the approximation to the full-posterior distribution can be

unrepresentative of the full-posterior distribution. This can occur if the posterior or

subposterior distributions are multi-modal, or if the the posterior is overly skewed.
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Full MCMC
Subposterior
Inflated−Subposterior

Figure 2.3: Example to show the difference in shape between a inflated-subposterior
densities and subposterior densities. The density of the full-data posterior is given
for reference.
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Figure 2.4: A 2-dimensional visual representation of the Consensus Monte Carlo
algorithm. A sample from each of the subposterior distributions is chosen and
then they are averaged to generate a consensus sample. This sample is from an
approximation to the full-posterior distribution.
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2.5.2 Asymptotically exact, embarrassingly parallel MCMC

- Non-parametric and semi-parametric density esti-

mates

Neiswanger et al. (2013) introduced an asymptotically exact, embarrassingly parallel

MCMC algorithm. In this paper three merging methods were proposed:

• A full-Gaussian approximation to each subposterior distribution;

• A non-parametric kernel density estimator approach;

• A semi-parametric approach, which initially assumes a Gaussian approxima-

tion to the subposterior distributions, but then tends to a full kernel density

approach as the number of subposterior distribution samples tends to infinity.

Gaussian Approximation

The Gaussian approximation was not the focus of the paper. The Gaussian approx-

imation uses the samples from each subposterior distribution to estimate the mean

and variance of the full-posterior distribution, assuming each subposterior distribu-

tion was Gaussian. Let µ̂b and V̂b be Monte Carlo estimates from the subposterior

distribution samples for the the mean and variance, respectively. We define the
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global variance and mean to be

V̂ −1 :=
B∑
b=1

V̂ −1
b , and µ̂ :=

1

B

B∑
b=1

V̂ −1
b µ̂b,

respectively, then:

ϑ̄ ∼ Nd(µ̂, V̂ ).

Non-parametric density estimates

Assume N samples have been drawn from each d-dimensional subposterior distribu-

tion, denoted
{
ϑ

(ib)
b

}N
ib=1

. The non-parametric approach uses a kernel density esti-

mator to approximate each subposterior distribution. Given a kernel K : Rd → R+

Neiswanger et al. (2013) defined the following estimator for the b-th subposterior

distribution:

π̂b(ϑ|yb) =
1

N

N∑
i=1

KG
(
ϑ− ϑ(ib)

b

)
, (2.12)

where a Gaussian kernel is assumed as described in Section 2.2. Having this es-

timator for the subposterior distributions leads to the following estimator for the

full-posterior distribution, which takes the form of a mixture of Gaussian distribu-
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tions:

π̂(θ|y) =
1

NB

B∏
b=1

N∑
ib=1

Nd
(
ϑ|ϑ(ib)

b , ρ2Id

)
,

=
N∑
i1=1

· · ·
N∑

iB=1

wi∗Nd
(
ϑ

∣∣∣∣ϑ̃i∗ , ρ2

M
Id

)
, (2.13)

where ϑ̃i∗ is the mean of the i-th sample from each batch:

ϑ̃i∗ =
1

B

B∑
b=1

ϑ
(ib)
b ,

and wi∗ are unnormalised mixture weights defined as:

wi∗ =
B∏
b=1

Nd
(
ϑ

(ib)
b |ϑ̃i∗ , ρ

2Id

)
.

There are NB possible mixture components, so Neiswanger et al. (2013) proposed

a Gibbs sampler to sample from the distribution in Equation 2.13 to form
{
ϑ̄
}N
i=1

.

Semi-parametric density estimates

The first method proposed by Neiswanger et al. (2013) had quick convergence, but

had strict parametric assumptions. The second method was slower to converge,

but could be applied to a wider range of models. The final method suggested was

a semi-parametric approach. Let f̂b(ϑ) be a Gaussian approximation to the b-th
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subposterior distribution:

f̂b(ϑ) = Nd
(
ϑ|µ̂b, V̂b

)
.

Define a non-parametric correction function rb(ϑ) = πb(ϑ|yb)/fb(ϑ). KDE methods

are used to estimate the correction function. When there are a low number of

subposterior samples the estimate of the correction function, denoted r̂b(ϑ), is fairly

flat for each batch, and so the approximate subposterior distributions are close to

Gaussian. As the number of subposterior samples tend to infinity the subposterior

approximations, π̂b(ϑ|yb) = r̂b(ϑ)f̂b(ϑ), tend to full-kernel approximations. Again

this model is sampled from using a Gibbs sampler, see Neiswanger et al. (2013) for

details.

This semi-parametric approach allows the flexibility of KDE methods, but means

the approach can still produce low variance estimates in higher dimensional prob-

lems.

2.5.3 Wasserstein Posteriors approximations

The following algorithms, Wasserstein posteriors (WASP) (Srivastava et al., 2018)

and Posterior Interval Estimation (PIE) (Li et al. (2017)), use the ideas of Wasser-

stein distance and Wasserstein barycenters to form an approximation to the full-data

posterior distribution.

39



Wasserstein distance and barycenters

Assume χ ⊆ Rd and define ||ϑ1−ϑ2|| to be the Euclidean distance between ϑ1,ϑ2 ∈

χ. For any two measures ν1, ν2 on χ let Γ(ν1, ν2) be the set of all probability measures

on χ×χ with marginals ν1, ν2. We define the Wasserstein-2 distance between ν1, ν2

as

W2(ν1, ν2) =

{
inf

γ∈Γ(ν1,ν2)

∫
χ×χ
||ϑ1 − ϑ2||2dγ(ν1, ν2)

}1/2

.

We restrict the measures we consider so that ν1, ν2 ∈ P2(χ) =
{
ν :
∫
χ
||ϑ||2dν(ϑ) <∞

}
,

ensuring W2(ν1, ν2) is well defined. The Wasserstein-2 distance can be used to com-

pare how close two distributions are. If the measures ν1 and ν2 are equal, then the

Wasserstein distance will be zero. Another way to think of Wasserstein-2 distance

is the square-root of the expected squared distance between the first and second

coordinate of a sample from γ. γ is chosen to minimise that distance, whilst having

specific marginals.

Given a collection of measures {νb}Bb=1 the Wasserstein barycenter for the mea-

sures is defined as

ν̄ = arg min
µ∈P2(χ)

B∑
b=1

W 2
2 (µ, νb). (2.14)
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Wasserstein Posteriors

Assume we have drawn N samples from each inflated-subposterior distribution,{
ϑ

(i)
b

}N
i=1

for b ∈ {1, . . . , B}. Let Π̃b(ϑ|yb) be the distribution function associated

with the inflated-subposterior density π̃b(ϑ|yb) for each b ∈ {1, . . . , B}. Empirical

estimates of Π̃b(ϑ|yb) can be estimated from inflated-subposterior samples
{
ϑ

(i)
b

}N
i=1

.

We define the Wasserstein Posterior (WASP) to be the Wasserstein barycenter of{
Π̃(ϑ|yb)

}B
b=1

as in Equation 2.14

Π̄(ϑ|y) := arg min
µ∈P2(χ)

B∑
b=1

W 2
2

(
µ, Π̃b(ϑ|yb)

)
. (2.15)

The Wasserstein Barycenter is the measure that minimises the sum of the Wasser-

stein distance between a set of measures and itself. Cuturi and Doucet (2014) shows

how this can be estimated. WASP suggests using the Wasserstein Barycenter, using

the empirical measures obtained from the inflated-subposterior distributions, as an

approximation to full-posterior distribution.

Posterior interval estimation

In the one-dimensional case the estimation for WASP is tractable, and a linear

program is not needed. Assume ϑ ∈ R. Let F−1(u) = inf(ϑ : F (ϑ ≥ u)) be the

quantile function of a generic uniform distribution function F (ϑ). For F1, F2 ∈

P2(χ), with quantile functions F−1
1 (u) and F−1(u), for u ∈ (0, 1). (Li et al., 2017)
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showed that the W2 distance between F1 and F2 has the following form:

W2(F1, F2) =

{∫ 1

0

(
F−1

1 (u)− F−1
2 (u)

)2
du

}1/2

. (2.16)

Therefore, in the one-dimensional case the inverse of the distribution function asso-

ciated with the full-data posterior is exactly:

Π̄−1(u|y) =
1

B

B∑
b=1

Π̃−1(u|yb) (2.17)

As a corollary of Equation 2.17, given samples from each inflated-subposterior

distribution it is simple to estimate the quantile function associated with the full-

posterior distribution. Li et al. (2017) called this posterior interval estimation (PIE).

42



Chapter 3

Marginal Views (MarV) -

Approximating Marginal

Expectations within the

Divide-and-Conquer Framework

3.1 Introduction

This chapter presents Marginal Views (MarV), a divide-and-conquer method for

estimating marginal posterior expectations. What follows in this section is a brief

justification for why this method is needed. Section 3.2 outlines the details of the
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method and the theoretical justification for it. In Section 3.3 it is shown that MarV

performs well against other divide-and-conquer methods at estimating marginal-

posterior expectations.

In Section 2.4 we highlighted why divide-and-conquer approaches are needed.

Suppose we have a parameter vector ϑ and data y. When a posterior density

π(ϑ|y) is intractable, Monte Carlo methods are often used to produce samples that

are from, or approximately from, the target π. These samples are useful in ap-

proximating posterior expectations via Monte Carlo integration. When y contains

a large number of observations, N , repeated evaluations of π can be prohibitively

slow, or y may not even fit on a single computer. In these cases, standard Markov

Chain Monte Carlo (MCMC) algorithms are infeasible, and we can look to partition

data into B batches, denoted y1, . . . ,yB, then sample from the respective subposte-

riors (Section 2.4), π(ϑ|y1), . . . π(ϑ|yB), to produce subposterior samples that will

be denoted ϑ(1), . . . ,ϑ(B). A different motivation might be data privacy; different

data owners may want to combine the inference from each data set, but they may

be unwilling, or unable for legal reasons, to share their data. Using the divide-and-

conquer framework, they would be able to share their subposterior samples without

sharing data-level information. Regardless of the motivation, the aim is to collect

summaries, usually in the from of subposterior samples, onto a central computer, or

core, and then use the samples to estimate posterior expectations. In this chapter a

method is presented that, instead of focusing on producing samples from an approx-
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imation to the full-posterior, focuses on developing estimators of low-dimensional

posterior expectations.

Divide-and-conquer methods often focus on generating samples from an approx-

imation to the full-posterior distribution; any posterior expectations of interest are

evaluated using those samples. An exception to this is the Posterior Interval Esti-

mation (PIE) method (Li et al. (2017), Section 2.5.3). PIE is a method that works

with inflated subposteriors (Section 2.4.1) and by applying this method it can be

shown that, when interested in one-dimensional, marginal expectations, taking the

mean of the inflated subposterior quantiles gives the quantiles of the associated one-

dimensional Wasserstein barycenter. Sampling from this barycenter gives samples

from an approximation to a chosen one-dimensional marginal of the full-posterior

distribution. Previously Srivastava et al. (2014) had described a method, WASP,

that estimated the Wasserstein barycenter (see Section 2.5.3) for an arbitrary di-

mension. An issue facing this method was the computational complexity of having

to solve a linear program. By only considering one-dimensional marginals of the

posterior distribution, the computational complexity issues that faced WASP is sig-

nificantly reduced.

This chapter presents Marginal Views (MarV), a method for producing an es-

timate of a chosen posterior expectation that takes an input of subposterior sam-

ples. MarV obtains weighted samples from an approximation to a given marginal-

posterior distribution to produce estimates of posterior expectations. Although
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ϑ may be high dimensional, we are motivated by the same heuristic as the PIE

method, that individual posterior expectations of interest are typically of a much

lower dimension. When interested in low-dimensional expectations the MarV al-

gorithm is robust, computationally feasible, and scalable in both dimension of the

full-parameter space and number of observations. Once samples have been drawn

from each subposterior, MarV can be repeatedly applied to estimate as many low-

dimensional full-posterior expectations as needed.

When the target posterior is Gaussian or close to Gaussian, we find that MarV

is competitive with methods that have stricter parametric assumptions, such as the

Consensus Monte Carlo algorithm (Scott et al., 2016). However MarV differs, as

we illustrate in Section 3.3, in that it can capture non-Gaussian behaviour in the

target, for example, behaviours such as multi-modality.

3.2 Methodology

Assume our parameter vector ϑ ∈ χϑ ⊆ Rdϑ for dϑ ∈ N. We are interested in

evaluating the posterior expectation of θ := mθ(ϑ) ∈ χθ, the output of a vector

function, mθ, of our parameter θ; i.e., we would like to estimate I where

I := Eϑ|y [θ] , (3.1)
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Often in practice θ will be a subset of or a low-dimensional summary of ϑ. If the

dimension of ϑ, is greater than the dimension of θ, then there exists a non-unique

formulation for the parameters to describe the dimensions of ϑ not covered by θ.

We define ψ = mψ(ϑ) ∈ χψ to be the completion of θ in χθ, for some vector

function mψ(), i.e., there exists a bijection γ such that

ϑ = γ(θ,ψ).

For example:

• If θ = ϑ1, i.e., interest lies in a single parameter, then we could choose ψ =

ϑ−1;

• If θ = x>ϑ for some 1 × dϑ column vector x, i.e., we are interested in some

predictor, then we could choose ψ = ϑ−dϑ , provided the final element of x is

non-zero.

• If θ = (ϑ1, ϑ3), i.e., interest is in a small collection of transformations of the pa-

rameters, then we could chooseψ = (ϑ2,ϑ−1:3), or evenψ = (ϑ1ϑ2, ϑ3ϑ4,ϑ−1:4).

As long as there exits the one-to-one mapping, γ, such that γ(θ,ψ) = ϑ, as above,

we are flexible in our choice of ψ. For the remainder of this chapter, unless otherwise

stated, if θ = ϑi for some i ∈ Ndθ for dθ < dϑ, we will choose ψ := ϑ−i. In examples

where θ is not a subset of the components of ϑ we will explicitly state ψ.
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An initial approach could be to simply ignore ψ and approximate each π(θ|yb)

with KDE methods using the samples drawn from each subposterior, then combine

using the KDE methods described by Neiswanger et al. (2013) to obtain samples

from an approximation to π(θ|y). Since the dimension of θ is low the KDE combi-

nation would not suffer from the curse of dimensionality even when the dimension

of ϑ is high. This approach would not be correct in almost all cases; it would be

implicitly assuming independence between ψ|yb and θ|yb for each batch. Consider

the following:

π(θ|y) ∝
∫
ψ

B∏
b=1

{πb(θ|yb)πb(ψ|yb,θ)} dψ

=
B∏
b=1

{πb(θ|yb)}
∫
ψ

B∏
b=1

{πb(ψ|yb,θ)} dψ, (3.2)

6∝
B∏
b=1

{πb(θ|yb)} .

That is to say, in general the integral of a product does not equal the product of

integrals. This shows when combining the samples of θ|yb, the dependence structure

between ψ and θ within each batch needs to be accounted for. If ψ and θ are

independent then the dependence structure doesn’t need to be accounted for:

π(θ|y) ∝
B∏
b=1

{πb(θ|yb)}
∫
ψ

B∏
b=1

{πb(ψ|yb)} dψ,

∝
B∏
b=1

{πb(θ|yb)} .
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Additionally, if each of the ψ components are only relevant on one subposterior, as

can be the case in random-effects models where each subject has all their information

analysed by only one subposterior, then there is no need to account for dependency.

However, in general we can not assume independence, and therefore we develop a

method to account for this.

To marginalise out the product of conditionals in Equation 3.2 we need to ap-

proximate each batch’s subposterior conditional density, πb(ψ|θ,yb), with a density

that, when there is a product of these densities, produces a tractable integral over

ψ for each value of θ. We suggest making a Gaussian approximation of πb(ψ|θ,yb),

for each b ∈ {1, ..., B} with the density denoted by ĝb(ψ|θ). A product of Gaus-

sian densities is also a Gaussian density, hence the integral is tractable, as shown

in Proposition 3.1. Let Vb (θ) and µb (θ) be the conditional variance and mean of

ψ|θ,yb respectively of subposterior b, evaluated at θ.

Proposition 3.1.

J(θ) :=

∫
ψ

B∏
b=1

ĝb(ψ|θ)dψ ∝
exp

(
−1

2
µ̄>(θ)V̄ −1(θ)µ̄(θ)

)
exp

(
−1

2

B∑
b=1

µ>b (θ)V −1
b (θ)µb(θ)

) ,

where

V̄ (θ) =

(
B∑
b=1

V −1
b (θ)

)−1

µ̄(θ) = V̄ (θ)
∑B

b=1 V
−1
b (θ)µb(θ)
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Proof. see Appendix 3.C

To estimate µb(θ) and Vb(θ) for b ∈ {1, . . . , B}Monte Carlo samples drawn from

each subposterior distribution can be used. Specific details are given in Section 3.2.3.

Whilst we may be willing to account for the influence of dependence between θ

and ψ using a Gaussian approximation to the distribution of ψ|θ, we certainly wish

to capture the key non-Gaussian behaviours in the parameter of interest, θ. This is

similar to the aims of Rue et al. (2009), where the Integrated Nested Laplace Ap-

proximation (INLA) method was introduced. We approximate πb(θ|yb) by applying

KDE methods to the subposterior samples; denote this approximation by ĥb(θ) such

that:

ĥb(θ) ≈ πb(θ|yb) (3.3)

KDE methods typically suffer from the curse of dimensionality (Bellman, 1966),

however this will be less of a concern since the main focus of MarV is to estimate

expectations where the dimension of θ is low.

Given ĥb(θ) and ĝb(ψ|θ) for all b ∈ {1, . . . , B} we can evaluate an approximation

to π(θ|y), up to a constant of proportionality:

π̂(θ|y) ∼∝
B∏
b=1

{
ĥb(θ)

}∫
ψ

B∏
b=1

{ĝb(ψ|θ)} dψ. (3.4)
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With an appropriate importance proposal (Section 3.2.1) we can then approximate

the expectation I as defined in Equation 3.1.

To implement importance sampling using the approximation highlighted in Equa-

tion 3.4, we need to evaluate the integral in Equation 3.4. Evaluating this integral

for each importance proposal sample results in a large storage cost on a single com-

puter. For each importance proposal, of which there are M , the integral of a product

of Gaussian distributions needs to be evaluated. As seen in Proposition 3.1, to eval-

uate the integral of ψ conditional on a given θ, for each batch the conditional mean

and variance of ψ needs to be calculated and transferred to the central computer.

The covariance contains O
(
d2
ψ

)
real numbers, and so the evaluation of the integral

requires the central core to receive O
(
Bd2

ψM
)

real numbers, which can induce a

memory bottle neck. We do not pursue this approach, and instead make a further

assumption similar to the Laplace Method (Barndorff-Nielsen, 1989) to circumvent

the large memory cost.

Let g̃(ϑ) denote the probability density function (pdf) of a Gaussian approxi-

mation to π(ψ|θ,y), that is, an approximation to the full-data posterior density.

Like in Scott et al. (2016), given samples from each subposterior distribution we can

estimate mean and variance of g̃(ϑ):

V̄ϑ =

(
B∑
b=1

V̂ −1
ϑ,b

)−1

µ̄ϑ = V̄ϑ
∑B

b=1 V̂
−1
ϑ,b µ̂ϑ,b , (3.5)
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where µ̂ϑ,b and V̂ϑ,b are estimated using the Monte Carlo samples drawn from each

subposterior distribution for b ∈ {1, . . . , B}.

Let g̃(ψ|θ) denote the probability density function (pdf) of a conditional Gaus-

sian approximation to π(ψ|θ,y) with mean and variance estimated from fitting a

Gaussian approximation to the joint distribution of π(θ,ψ|y) (Appendix 3.A).

With the Gaussian approximation g̃(ψ|θ), and by applying Bayes Theorem, we

can avoid integration entirely with the following approximation:

π(θ|y) =
π(θ,ψ|y)

π(ψ|θ,y)
∼∝

B∏
b=1

ĥb(θ)ĝb(ψ|θ)

g̃(ψ|θ)
=: π̂(θ|y), (3.6)

up to a normalisation constant, for any ψ ∈ χψ. With this approximation the

central core only needs to receive MB scalars, the product of ĥb and ĝb for each

b ∈ {1, . . . , B}, evaluated at each importance sample. To use Equation 3.4 instead,

approximately MBd2
ψ/2 scalars would have to be transferred to the central core,

since we would have to pass back a variance-covariance matrix from each batch, for

each importance weight we would want to estimate.

Although the approximation in Equation 3.6 holds for all valuesψ∗ in the support

of ψ, Section 3.2.2 shows that some choices can result in lower variance approxi-

mations to ĥb and ĝb and hence a lower overall variance estimator. We suggest, for

a given θ, choosing ψ∗ to be the expectation of ψ|θ under the approximate global
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model g̃. That is, for a given importance sample θ̃:

ψ∗ = Eg̃

[
ψ|θ = θ̃

]
. (3.7)

Under the full Gaussian approximation with density g̃, we would expect the region

around ψ∗ to contain the highest density of samples of ψ. In regions with a large

number of samples the variance of our Monte Carlo estimators will be smaller. This

is because KDE methods are able to locally estimate the parameters of ĝb for a

given θ̃ and b, which produces a lower variance estimator of the density ĝb(ψ|θ)

when the number of samples in the region increase. See Section 3.2.2 for further

details. Choosing ψ∗ as in Equation 3.7 means g̃ is now independent of θ and hence

our approximation becomes:

π̂(θ|y) ∝
B∏
b=1

ĥb(θ)ĝb(ψ
∗|θ). (3.8)

Algorithm 2 gives details of the full MarV algorithm, which can be viewed as an

importance sampler (see Section 3.2.1 for details) targeting an approximation to the

marginal π(θ|y). In Algorithm 2 the algorithm is expressed in terms of subposterior

densities, however, to avoid numerical underflow it is best to use the log-subposterior

densities.
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Algorithm 2 MarV

With approximations ĝb(ψ|θ,yb) and ĥb(θ)

1: procedure
2: partition data into B batches: {y1, . . . ,yB}
3: parallel for b ∈ {1, . . . , B} do
4: ϑ(b) ← N Sample from πb(ϑ|yb)
5: end parallel for
6: for j ∈ {1, . . . ,M} do
7: θ̃j ∼ q(.) Equation 3.9

8: ψ∗j = EG̃
[
ψ|θ = θ̃j

]
Proposition 3.2

9: end for
10: parallel for b ∈ {1, . . . , B} do
11: for j ∈ {1, . . . ,M} do
12: π̂b,j = ĝb(ψ

∗|θ̃j)ĥb(θ̃j) Equation 3.15 and Equation 3.16
13: end for
14: end parallel for
15: for j ∈ {1, . . . ,M} do
16: Wj = (

∏B
b=1wb,j)/q(θ̃j)

17: end for
18: Wj = Wj/

∑M
j=1Wj

19: return
M∑
j=1

Wjθ̃j

20: end procedure

Section 3.2.3 shows how the parameters of ĝb and the value of ĥb(θ) for a given

θ can be estimated using kernel methods. Standard kernel methods have a compu-

tational cost that is O (MN), where M denotes the number of importance samples

and N denotes the number of samples taken from each batch. Other kernel meth-

ods, such as the nearest neighbour algorithm (Keller et al., 1985), could be used but

are not explored here. To reduce the computational cost Section 3.2.4 introduces a

novel kernel, that in one dimension has a cost of O (M +N log(N)), reducing the

overall cost of the MarV algorithm.
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Estimation of our parameters and densities using kernel methods offers flexi-

bility, but can lead to poor approximations in regions where samples are sparse.

Section 3.2.5 advises that in these regions ĥb should be replaced by a Gaussian ap-

proximation and the parameters of the ĝb, for all b ∈ {1, . . . , B}, be approximated

using the closest reasonable estimate, or linear interpolation between high density

regions.

3.2.1 Choice of Importance Proposal

In the previous section we let g̃ be a Gaussian approximation to the full-posterior

distribution, with mean and variance estimates described in Equation 3.5. Here we

will use this approximation to inform our importance proposal. In Section 2.1.2 we

looked at what to consider when choosing an importance proposal. A heavy tailed

proposal is needed to ensure that the importance weights are finite (Asmussen and

Glynn, 2007). For this reason, in one-dimensional cases, we choose a Student-

t5 proposal distribution with first two moments fixed to match those used in the

Gaussian approximation g̃.

Let µb,θ and σb,θ be the mean and standard deviation respectively for a chosen

θ parameter, for a given batch b ∈ {1, . . . , B}. The following importance proposal
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density is suggested:

q(θ) = t5(µ̄θ, σ̄θ), (3.9)

where

σ̄−2
θ =

B∑
b=1

σ−2
b,θ , and, µ̄θ = σ̄2

θ

B∑
b=1

σ−2
b,θµb,θ. (3.10)

The batch means and standard deviations can be estimated from the Monte Carlo

samples drawn from each subposterior distribution.

3.2.2 Choice of ψ∗

To use MarV to approximate expectations, as described in Algorithm 2, for each

θ̃j drawn from our importance proposal we need to choose ψ∗j := ψ∗j (θ) for each

j ∈ {1, . . . ,M}, that is the ψ value at which to evaluate Equation (3.6). We

recommend choosing

ψ∗j = Eg̃
[
ψ|θ = θ̃j

]
,

for each j ∈ {1, . . . ,M}. By evaluating our approximation at the conditional ex-

pectation we hope to be in the region with largest density of Monte Carlo samples.

This is important as there are parameters that need to be estimated for other steps

in the algorithm, and they will be approximated locally (Section 3.2.3). The higher
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the concentration of samples in these regions, the lower the variance will be on these

parameter estimates. In the remainder of this section we will derive ψ∗j .

Recall g̃(θ,ψ) is our full Gaussian approximation to π(θ,ψ|y) based on each

batch b ∈ {1, . . . , B}. Under this model, let µθ and µψ denote the marginal expec-

tations of θ and ψ, respectively. Additionally, let Vθ and Vψ denote the marginal

variances of θ and ψ, and define Vθ,ψ = V >ψ,θ be the dθ × dψ covariance matrix

between θ and ψ so that

Eg̃(·)

 θ

ψ

 =

 µθ

µψ

 , and Varg̃(·)

 θ

ψ

 =

 Vθ Vθ,ψ

Vψ,θ Vψ

 .

With this set up a well known result gives the conditional distribution of ψ|θ under

g̃(·).

Proposition 3.2.

ψ|θ ∼ N
(
µg̃(ψ|θ), Vg̃(ψ|θ)

)
,

where

Vg̃(ψ|θ) := Vψ − Vψ,θV −1
θ Vθ,ψ, (3.11)

µg̃(ψ|θ) := µψ + Vψ,θV
−1
θ (θ − µθ) , (3.12)
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under the assumption that ψ and θ are jointly Gaussian distributed with joint density

g̃(θ,ψ), for all θ in its support.

Proof. This is a standard result - see Eaton (1983). Proof in Appendix 3.A.

Following Proposition 3.2 we set our estimator for ψ∗j to be µg̃(ψ|θ), as in Equa-

tion 3.12. In Section 3.2.3 we will show how to use kernel methods to develop the

estimators for the other quantities needed to calculate this estimator.

3.2.3 Estimation of ĥb(θ̃) and ĝb(θ̃)

Both ĥb and ĝb can be estimated in an embarrassingly parallel fashion, so focus is

placed on how to estimate them in a single batch, b. Hence, for the remainder of this

subsection we will drop the subscript b from the parameters for ease of notation.

Let ϑ(1:N) := (ϑ1, . . . ,ϑN) be the N Monte Carlo samples drawn from ϑ|yb for

our current batch of interest. We define ψ(1:N) := (ψ1, . . . ,ψN) and θ(1:N) :=

(θ1, . . . ,θN) in a similar fashion.

For ease of notation we drop the bandwidth parameter from the kernel, that is

K(x|ρ) = K(x). Let s : Rdθ → Rd, for some d ∈ N. For any kernel K : Rdθ →
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R+ ∪ {0} with
∫
χθ
K(x)dx = 1, and values {θ̃i}I2i=I1 for any 1 ≤ I1 ≤ I2 ≤ N , define

sK(θ̃; I1 : I2) =

I2∑
i=I1

K(θ̃ − θi)s(θi), (3.13)

that is the sum between two indices I1 and I2 of the product of a function s and

kernel K, which is centred at θ̃, with both being evaluated at θi. We abbreviate

sK(θ̃; 1 : N) to sK(θ̃). Define 1(θ̃) = 1, so that the standard kernel estimate of the

density at θ̃ is:

1K(θ̃)/N =
1

N

N∑
i=1

K(θ̃ − θi) (3.14)

Similarly, the kernel estimate of s(θ̃) is sK/1K(θ̃). This notation is introduced to

make the following sections more concise. Let ψ(θi) = ψi and ψψ>(θi) = ψiψ
>
i for

all i ∈ {1, . . . , N}.

We set

ĥ(θ̃) = 1K(θ̃)/N, (3.15)

i.e., we use standard kernel estimation for ĥ. Recall that ĝb(ψ|θ̃) is the density of

a conditional Gaussian approximation to π(ψ|θ = θ̃,y). We want to estimate the
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mean and variance of ψ conditional on θ. Hence we set

µ̂ψ|θ̃ =
ψK(θ̃)

1K(θ̃)
and V̂ b

ψ|θ̃(θ̃) = T (θ̃)− µ̂µ̂>, (3.16)

where

T (θ̃) :=
[ψψ>]K(θ̃)

1K(θ̃)
,

and µ̂ = µ̂ψ|θ̃.
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Figure 3.1: θ plotted against ψ for a simple linear model.

Recall from Section 2.2 the Gaussian kernel:

KG (x) =
1

ρd
√

2π
exp

(
− 1

2ρ2
x>x

)
.

Using this kernel withN samples from our subposterior and evaluating ourM impor-
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tance samples leads to a computational cost of O (MN), since for each importance

sample θ̃j for j ∈ {1, . . . ,M} we would have to evaluate the chosen kernel at each

Monte Carlo sample:

1

N

N∑
i=1

KG(θi),

to obtain our estimate of ĥ(θ̃j). Due the variance estimate being a matrix of size

dψ × dψ, the total computational cost of evaluating ĝ(θ̃j) and ĥ(θ̃j) would be of

O
(
MNd2

ψ

)
using a Gaussian kernel. If this is not a computational issue, then a

Gaussian kernel can be implemented for MarV. However, for situations where this

is an issue, and θ is one-dimensional, we propose a computationally cheaper kernel.

3.2.4 The Exponential-Uniform Window Kernel (EUWoK)

The exponential-uniform window kernel (EUWoK) is a kernel function that can use

the information from previously evaluated points to reduce the overall computational

cost of estimating the parameters of ĝ from O
(
MNd2

ψ

)
to O

(
(M +N log(N))d2

ψ

)
.

This is done by calculating the KDE at one point, which has an initial computational

cost of O (N), then updating the original estimate for the remainder of {θ̃j}Mj=1, the

computational cost of which is of O (M +N). To avoid confusion with the Gaussian

bandwidth parameter ρ, we introduce λ, ε ∈ + as bandwidth parameters for EUWoK.
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The EUWoK kernel KW : R→ R+ ∪ {0}, for some ε, λ ∈ R+ and x ∈ R we define

KW (x) :=
1

2(λ+ ε)

(
λ · K−(x) + 2ε · KU(x) + λ · K+(x)

)
, (3.17)

where

K−(x) := 1/λ · exp((x+ ε)/λ) · I({x < −ε}), (3.18)

KU(x) := 1/2ε · I({−ε ≤ x ≤ ε}), (3.19)

K+(x) := 1/λ · exp((−x− ε)/λ) · I({x > ε}). (3.20)

To tune our kernel we resort to similar methods to tuning a Gaussian kernel.

For a given bandwidth ρ for the Gaussian kernel KG, we set

λ = 0.8362ρ and ε = 0.3111ρ, (3.21)

to minimise the KL-divergence from KW to KG. Figure 3.2 compares EUWoK and a

Gaussian kernel, with setting λ and β as in (3.21), showing the kernels have similar

values over the kernel’s support.

EUWoK is a piecewise mixture of a uniform window and an exponential kernel

(sometimes referred to as a Laplace kernel). The idea behind combining kernels or

‘window ’ functions is not new. The Tukey Window (Bloomfield, 2004) and Planc-

Taper Window (Tu, 2010) are both piece-wise defined functions. These are both
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similar to EUWoK in that they are both piece-wise functions with a a uniform part

and then different tails. Tukey has cosine tails and Planc-Taper having tails similar

to that of a Planc distribution (McKechan et al., 2010). Neither of these solved our

computational issues, which led us to create EUWoK, a novel contribution developed

for this work.

The advantage of EUWoK is that it reduces the computational cost relative to

other kernels. If this was our only goal this could be achieved using a uniform kernel

or a Laplace kernel. However, often a Gaussian kernel is the first choice when using

KDE methods (Sheather and Jones, 1991), so we would also like a kernel that more

closely resembles the Gaussian shape.
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Figure 3.2: EUWoK compared to Gaussian Kernel with tuning parameters chosen
to minimise Kullback-Leibler divergence from the Gaussian kernel to EUWoK.
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Linear Sweep Algorithm

To gain the reduction in computational cost for one-dimensional θ, we need to

consider K−, KU , and K+ separately. To calculate sKW for a given function s, it is

sufficient to calculate sK− , sKU and sK+ separately since

sKW (θ̃) =
1

2(λ+ ε)

(
λ · sK−(θ̃) + 2ε · sKU (θ̃) + λ · sK+(θ̃)

)
.

Our approach is to sort, in ascending order, the Monte Carlo samples drawn from

the current subposterior of interest, denoted {θi}Ni=1 and the proposed importance

samples {θ̃j}Mj=1. This has, at worst, a cost of O (N logN) using the merge sort

algorithm (Knuth (1998)), we assume that Quasi-Monte Carlo was used to generate

{θ̃j}Mj=1, so these samples will have been sampled in ascending order. Given that

both the Monte Carlo subposterior and importance samples are ordered, we will

now show that {K−(θ̃j)}Mj=1, {KU(θ̃j)}Mj=1 and {K+(θ̃j)}Mj=1 can be calculated with

a computational cost of O (M +N). Let n−j := max{n : θn < θ̃j − ε} for j ∈

{1, . . . ,M}, that is the index of the largest MCMC sample that is less than the

j − th importance sample, when no such MCMC sample exists we define nj to be

0. Similarly we define n+
j := min{n : θn > θ̃j + ε} for j ∈ {1, . . . ,M}, and define n+

j
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to be N + 1 when θn > θ̃j + ε for all i ∈ {1, . . . , N}. For θ̃n < −ε:

sK−(θ̃j; 1 : n−j ) =

n−
j∑

i=1

exp[(θ̃j − θi)/λ]s(θi)

=

n−
j∑

i=1

exp[(θ̃j − θ̃j+1 + θ̃j+1 − θi)/λ]s(θi)

= exp[−(θ̃j+1 − θ̃j)/λ]

nj∑
i=1

exp[(θ̃j+1 − θi)/λ]s(θi)

= exp[−(θ̃j+1 − θ̃j)/λ]sK−(θ̃j+1; 1 : n−j )

Then for all nj < n−j+1:

sK−(θ̃j+1) = sK−(θ̃j+1; 1 : n−j+1),

= sK−(θ̃j+1; 1 : n−j ) + sK−(θ̃j+1; (n−j + 1) : n−j+1),

= exp[(θ̃j − θ̃j+1)/λ]sK−(θ̃j+1; 1 : n−j ) + sK−(θ̃j+1; (n−j + 1) : n−j+1),

= exp[(θ̃j − θ̃j+1)/λ]sK−(θ̃j+1) + sK−(θ̃j+1; (n−j + 1) : n−j+1).

When using these relationships to calculate {sK−(θ̃j)}Mj=1 we can calculate sK−(θ̃1)

with a computational cost of O
(
n−1 + 1

)
. Given sK−(θ̃j), we can calculate sK−(θ̃j+1)

with a computational cost of O
(
n−j+1 − n−j + 1

)
. Hence the entirety of {sK−(θ̃j)}Mj=1

can be calculated with a cost of O (N +M). Algorithm 3 gives pseudo code for the

linear sweep algorithm. An analogous argument holds for the cost of calculating

{sK+(θ̃j)}Mj=1.
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Algorithm 3 EUWoK; linear implementation of lower tail

1: procedure
2: A1 ← {θi : θi < θ̃1 − ε}
3: sK+ ←

∑
i∈A1

1/λ · exp(−((θ̃1 − ε− θi)λ)
4: for j ∈ {2, . . . ,M} do
5: Aj ← {θi : θ̃j−1 − ε < θi <= θ̃j − ε}
6: Dj ←

∑
i∈Aj 1/λ · exp(−((θ̃1 − ε− θi)λ)

7: Cj ← exp(−λ(θ̃j − θ̃j−1))× Sj−1

8: Sj ← Cj +Dj

9: end for
10: return S = {S1, . . . , SM}
11: end procedure

Showing {sKU (θ̃j)}Mj=1 can be calculated in O (M +N) is simpler. Again {θ̃}Mj=1

has to be sorted in ascending order, then for every j ∈ {1, . . . ,M − 1}:

sKU (θ̃j+1) = sKU (θ̃j) +
(n+

j+1 − n+
j )− (n−j+1 − n−j )

2ε
,

which simply put, is to count how many samples have entered and left the uniform

kernel, then adjust accordingly.

3.2.5 Tail Estimation

In the limit as the number of samples tends to infinity i.e., N →∞ the bandwidth

parameters (ρ for KG or λ and ε for KW ) tend to ∞ and the error in the KDE

method tends to zero. In practice, N is finite and the methods can produce large-

variance estimates in low density regions. This is demonstrated in Figure 3.3 and

highlights an issue that can arise when evaluating KDE approximations in the tails
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of a distribution. Since we are weighting our parameter estimates for ĝb using kernel

functions, this issue is not exclusive to ĥb.

Below we give a criterion for determining when KDE estimates can be poor, and

propose alternative approaches that can be taken in these situations. We provide

different solutions for approximating ĥb and ĝb in low density regions.
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Figure 3.3: A KDE to a standard Gaussian distribution with 50 samples, using
Sheather-Jones bandwidth selector, and where y is the log-density.

Suppose we wish to evaluate ĥb(θ
∗). We would like at least η of the N samples

to lie within the (α/2, 1 − α/2) quantiles of the symmetric kernel function centred
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at θ∗, for some tuning parameters α ∈ [0, 1/2] and η ∈ N, i.e.,

{
N∑
i=1

I (qK(α/2) < |θi − θ∗| < qK(1− α/2))

}
≥ η, (3.22)

where qK denotes the quantile function for a kernel K and I denotes the indicator

function as defined in Section 2.2. If the condition in Equation 3.22 holds, we use

the KDE approximation for πb(θ|yb), otherwise we use the density of a Gaussian of

θ estimated from the samples of the b-th subposterior distribution.

We choose α = 0.05 and η = 10 i.e., 10 samples contained within the 95%

highest density region of the kernel. We would like to use KDE methods as much

as possible, however, including estimates with next to no samples would lead to a

large variance, making our result highly unreliable.

When estimating ĝ, we have to estimate a variance-covariance matrix which has

a number of components proportional to d2
ψ, hence we alter Equation 3.22:

{
N∑
i=1

I (qK(α/2) < θi < qK(1− α/2))

}
≥ η1d

2
ψ. (3.23)

If the condition in Equation 3.23 holds then we estimate V (θ∗) and µ(θ∗) as in

Equation 3.12. When it does not hold we do not have a sufficient number of sam-

ples in a nearby region to estimate the variance, and an attempt to do so might

even produce a singular, or near singular matrix, causing the estimate of ĝb(θ
∗) to
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have high variance or be impossible to evaluate.We suggest taking our nearest good

estimate of the correlation and continue forward with that, whilst still estimating

the marginal variances and mean until the following condition does not hold:

{
N∑
i=1

I (qK(α/2) < θi < qK(1− α/2))

}
≥ η2dψ. (3.24)

At this point we deem that there is insufficient information to estimate the mean

and marginal variance, and instead the nearest estimate of ĝb(θ̃) is carried forward.

When the ‘low-density’ regions are between ‘high-density’ regions, instead of using

nearest observation carried forward, linear interpolation can be used.
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3.3 Experiments

We will be comparing MarV to the following methods. Each of them have been

described in detail in Chapter 1, however here is a brief reminder of the ones we will

be using in this chapter:

• The Consensus Algorithm (Cons) - an averaging method that is exact in the

Gaussian case, but that can struggle with certain non-Gaussian behaviour in

posteriors and subposteriors (Scott et al. (2016), Section 2.5.1 of the thesis).

• Semi-Parametric Kernel Density Estimation (SKDE) - Neiswanger et al. (2013)

introduced this method that allows the user generate samples from an approx-

imation to the full-posterior distribution, whilst making very few parametric

assumptions. The method initially assumes a Gaussian distribution then tends

to a full kernel approximation as the samples from each subposterior distribu-

tion tend to infinity. This method can capture all kinds of behaviour, but can

struggle with high-dimensional posteriors (Section 2.5.2).

• Posterior Interval estimation (PIE) - similar to MarV, PIE does not focus

on generating samples from a full-posterior approximation. PIE approximates

one-dimensional quantiles based on calculating the Wasserstein barycenter,

which can be thought of as an ‘average distribution’. It is a simplification of

Srivastava et al. (2014) and Srivastava et al. (2018)’s Wasserstein posteriors

(WASP) method. This method is fast, but can struggle when subposterior and
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inflated-subposterior distributions have differing variances. (Li et al. (2017),

Section 2.5.3).

• Gaussian Barycenter (GB) - a parametric version of WASP, this method as-

sumes each subposterior distribution is Gaussian and finds the barycenter

based on that assumption. In general this method is much easier to imple-

ment compared to the non-parametric WASP, but can only give samples from

a Gaussian-posterior distribution.

• Average re-centering (AR) - introduced by Robert et al. (2019) this method

re-centers the samples drawn from each inflated-subposterior distribution to

the global mean, which is estimated from the inflated-subposterior distribution

samples. This method is easy to apply, however it struggles when the higher

moments differ within each inflated-subposterior distribution.

Within each experiment we will be using Monte Carlo algorithms to sample from

the full-data posterior distribution, and both subposterior and inflated-subposterior

distributions. This is so we can compare our results with all the methods listed

above. Each sampling method will be described within each section. We will make

use of the following measures to assess the accuracy of the divide-and-conquer ap-

proximations, (a), against the full-data posterior distribution, (f):

• Standardised mean (SM):

|µ̂f − µ̂a|
σ̂f

,
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where µ̂f and σ̂f are the mean and variances estimates. These are obtained

using samples generated from an MCMC algorithm drawing from the full-

data posterior distribution. Similarly, µ̂a denotes the mean estimated from

samples generated from an approximation to the full-posterior distribution,

for example those generated from MarV. This gives a measure of how different

the locations of the divide-and-conquer and Monte Carlo approximations are,

relative to the spread observed in these approximations. This is also known

as one-dimensional Mahalanobis distance.

• Skewness (SK):

|γ̂f − γ̂a|.

where γ̂ is an approximation to the standardised third moment(skewness):

γ̂f = E

[(
(θf − µ̂f )

σ̂f

)3
]
,

where µ̂f and σ̂f are defined as above, and the expectation is estimated using

the MCMC samples from the full-data posterior distribution. γ̂a is defined is

a similar way, substituting µ̂a and σ̂a in place of µ̂f and σ̂f .

• Integrated absolute distance (IAD):

∫
|πa(θ)− πf (θ)|dθ ∈ [0, 1],
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where πf (θ) and πa(θ) denote the full-data posterior distribution and an approxi-

mation to the full-posterior distribution respectively. This metric is intractable, so

we use kernel methods to estimate both πf (θ) and πa(θ). This is achieved using

code from Chan et al. (2021). IAD is a measure of how little mass of two distribu-

tions overlap. An IAD value of one means the two distributions have no overlap, in

contrast a value of zero means the two distributions are equal.

3.3.1 Tri-variate Gaussian Posterior Distribution

One of the points of focus when designing MarV was to create an algorithm that

is competitive with the Consensus Monte Carlo algorithm in the Gaussian case.

We would like to be able to capture non-Gaussian behaviour, however if MarV can

not capture Gaussian behaviour its use would be limited. For this first example

the posterior distribution is a tri-variate Gaussian. Asymptotically, as the num-

ber of Monte Carlo samples drawn from each subposterior or inflated-subposterior

distribution tend to infinity, all the above methods are exact. However, typically

non-parametric methods, or methods with weaker distributional assumptions, con-

verge more slowly. This example exists to show that our method is competitive with

the Consensus algorithm even in the Gaussian case.

Another aim of this experiment is to highlight the effects of having batches of

data of different sizes, which can happen when dealing with privacy concerns or data
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centers with different data sizes. In these cases, the data are more likely to vary in

terms of variance structure; different data owners may have different amounts of data

leading to very different variances amongst the subposterior distributions. Some of

the methods, namely AR, GB, and PIE, struggle with the differing variances, which

will be reflected in the results.

Typically subposterior distributions are derived from a data-generating model.

Here, for ease of simulation, we define each subposterior distribution directly, this

is for ease of simulation. They are defined as follows:

πb(ϑ|µb,Σb) = N3(µb,Σb),

where µb and Σb have been sampled from:

µb
iid∼ N (0, I3), Σ−1

b ∼ W (5, I3/5) ,

for each b ∈ {1, . . . , B}, and where W (ν, S) denotes a Wishart distribution with

degrees of freedom ν and shape matrix S.

We simulated 2,000 samples from each subposterior and inflated-subposterior dis-

tribution. We applied the approximation methods to the relevant samples, setting

θ = ϑ1 and ψ = ϑ−1. This was repeated 5 times, with new µb and Σb simulated for

each repetition. Each subposterior and inflated-subposterior distribution was Gaus-
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Table 3.1: Mean (standard deviation) for each Gaussian experiment and each metric,
over 5 runs. The metrics are as follows: standardised mean (SM), Skewness (SK),
and Integrated absolute distance (IAD). The methods tested against are: Marginal
Views (MV), The Consensus Algorithm (Cons), Semi-Parametric Kernel Density Es-
timation (SKDE), Posterior Interval Estimation (PIE), Gaussian Barycenter (GB),
and Average Re-centering (AR).

SM SK IAD
MarV 0.06 (0.04) 0.05 (0.04) 0.05 (<0.01)
Cons 0.02 (0.02) 0.06 (0.04) 0.03 (0.01)
SKDE 0.26 (0.20) 0.18 (0.15) 0.16 (0.07)
PIE 0.32 (0.26) 0.08 (0.06) 0.74(0.02)
GB 0.33 (0.22) 0.07 (0.06) 0.70 (0.01)
AR 0.28 (0.15) 0.06 (0.05) 0.70 (0.01)

sian, with some variation between each subposterior distribution. For this reason,

the subposterior and inflated-subposterior distribution plots have been omitted.

We recorded the mean result with the standard deviation for each of the metrics

described in Section 3.3.1 displayed in Table 3.1 for all 5 runs. It can be seen that

MarV is competitive with the Consensus Algorithm. MarV’s mean discrepancy is

within 2 standard deviations of the Consensus Algorithm’s mean discrepancy for

each of three measures. This is clearly not true for the other methods, showing

MarV has close accuracy to the Consensus Algorithm in this Gaussian example.

Table 3.1 shows the PIE, GB, and AR algorithms generate samples that don’t

accurately approximate the full-posterior distribution when the subposterior distri-

butions have different variances. Both PIE and AR assume the variance is roughly

equal across batches, so the inaccuracy in the measures is not surprising. These

methods should not be applied when the subposterior distributions have different
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variance structures. Whilst the GB algorithm does account for different variances

it applies too much weight to samples associated with high-variance subposteriors

distributions, and not enough to samples associated with low-variance subposterior

distributions.

Table 3.1 shows the benefit of MarV over the SKDE approach when the true

subposterior distributions are close, or are, Gaussian. Since MarV only applies

the KDE approximation to a lower-dimensional parameter rather than the full pa-

rameter vector we are able to achieve a higher accuracy when the subposterior

distributions associated with the θ parameter are Gaussian.

3.3.2 Logistic Regression

Simulated - Rare Data

In this example a simulated data set has been used as a proxy for online advertising

data, similar to the example shown in Section 4.3 in Scott et al. (2016). Often in

these models interest will lie in how parameters influence an action. For example,

does the presence of an advert result in a visit to the advertised website? This

example demonstrates how the methods perform when the different marginal sub-

posterior distributions for a single parameter have quite drastically different shapes,

variances and locations.

76



Table 3.2: Relative frequency of covariates being active with the values of the cor-
responding true generating parameters for a given subject i ∈ {1, . . . , N}.

j 1 2 3 4 5
P(xi,j = 1) 1 0.2 0.3 0.5 0.001
ϑT,j -3 1.2 -0.5 0.8 3

The likelihood function for this model takes the form:

p(y|X,ϑ) ∝
N∏
i=1

pyii (1− pi)1−yi , (3.25)

where ϑ are the parameters of the model, d denotes the dimension of ϑ, X is a

N × d matrix of known binary covariates, N denotes the number of observations, y

is a length N vector of binary indicators for success (1) or failure (0) and

pi = logit−1
(
x>i ϑ

)
,

where xi is the i-th row of X.

There are 5 binary covariates, meaning that any element in X can only take the

value 0 or 1. Table 3.2 shows the probability, for each subject i, of each covariate tak-

ing the value 1 and the corresponding true parameter values. The most interesting

parameter is ϑ5; it is rare but highly predictive when present. Weakly-informative,

independent Gaussian priors were chosen for ϑ so that

π(ϑ) ∝
d∏
j=1

N (ϑj|0, 1000)
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Figure 3.4: 20 subposteriors for the marginals of ϑ5|yb for each b ∈ {1 . . . , B}, each
receiving 4000 data points for the simulated rare-data Example.

When partitioning the data some batches will have very little information, or no

information pertaining to ϑ5, with only the partial prior information given to that

batch. Even if the batches do have information on ϑ5 there may still be issues if

the responses are all equal. For example, suppose that if whenever xi,5 = 1 for a

subject i assigned to a given batch b the corresponding response, yi is equal to 1.

The marginal of ϑ5|yb would have a distribution with large variance and would be

positively skewed. This means that even if our number of observation N is relatively

large, due to the low probability of P(xi,5 = 1), the marginals of πb(ϑ5|y) can differ

significantly. Figure 3.4 illustrates this, displaying subposterior distributions with

widely differing means, standard deviations and skew. For this reason we set θ = ϑ5

and ψ = ϑ−5.
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In the simulation study we generated a total of N = 100, 000 data points and

split across B = 25 batches, giving each batch an equal portion of the data i.e., nb =

5, 000. The priors were split evenly across the each subposterior. We drew 10, 000

MCMC samples from the full-data posterior distribution and from each subposterior

and inflated-subposterior distribution, all using HMC implemented in STAN (Stan

Development Team (2016)). For MarV and PIE 10, 000 samples were proposed and

obtained. With these parameters the data was simulated and partitioned five times.

Table 3.2 shows the results from the simulation study. The differing variances

affect AR and PIE’s estimates as they have no weighting to account for the differing

variances across subposteriors. Consensus, although only exact in the Gaussian

case, somewhat surprisingly accounts for the skewness displayed in the subposterior

distributions and captures the full-posterior distribution’s behaviour well. MarV

on average is slightly better than the Consensus Algorithm, but the difference is

negligible as each consensus estimate is within a few standard errors. The SKDE

method performs reasonably, but not quite as well as MarV or Consensus. The

Gaussian Barycenter method struggles, similarly to AR and PIE, likely due to it

struggling with subposterior distributions with differing variance structures.

Real Data - Hepmass

In the other experiments in this section MarV has been used to generate samples

from a marginal of the posterior. However, when presenting MarV we stated it
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Table 3.3: Mean (standard deviation) for the Rare-Data experiment, for each mea-
sure, over 5 runs. The metrics are as follows: standardised mean (SM), Skew-
ness (SK), and Integrated absolute distance (IAD). The methods tested against
are: Marginal Views (MV), The Consensus Algorithm (Cons), Semi-Parametric
Kernel Density Estimation (SKDE), Posterior Interval Estimation (PIE), Gaussian
Barycenter (GB), and Average Re-centering (AR).

SM SK IAD
Marv 0.38 (0.29) 0.17 (0.18) 0.18 (0.09)
Cons 0.47 (0.35) 0.05 (0.03) 0.19 (0.11)
SKDE 1.24 (1.12) 3.59 (1.65) 0.50 (0.27)
PIE 5.45 (3.83) 0.233 (0.09) 0.88 (0.03)
GB 5.43 (4.10) 0.02 (0.02) 0.90 (0.03)
AR 5.44 (3.91) 0.51 (0.37) 0.89 (0.16)

was possible to estimate expectations from a transformation of parameters. In this

example we will use MarV to generate samples from an approximation to the pre-

dictive distribution. This can be done without changing our sampling procedure for

each subposterior distribution, i.e., as long you have samples from each subposterior

distribution it is possible to transform the samples afterwards, on a single core, to

estimate expectations of transformations of the parameters.

This example uses the Hepmass (UCI Machine Learning repository, 2020) data-

set, which contains a binary response y and dϑ = 28 covariates acrossN = 1, 000, 000

entries. This dataset was used by Baldi et al. (2016), the response is an indicator

for whether a signal was indicative of an exotic particle being present as opposed to

background noise. The data set contains 27 features, which we augmented with an

intercept term for a total of dϑ = 28 parameters.

We used a logistic-regression model to classify whether a collision i is producing
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particles (yi = 1) or not (yi = 0), using the dϑ covariate information. Hence,

the same parametric form of the likelihood function as Section 3.3.2 was assumed,

explicitly stated in (3.25). Independent priors were fitted to each of the parameters

with the full prior being specified as follows:

π(ϑ) ∝
dϑ∏
j=1

N (ϑj|0, 1000).

To estimate the predictive distribution we set θ = x>i ϑ for some given covariate

information xi i.e., θ is the linear predictor for subject i. This demonstrates how

MarV can be applied to transformations, not just marginals. We set ψ = ϑ−1, we

have to drop one of the parameters of ϑ so that our parameters are identifiable. The

specific form of ψ is chosen for ease, and by no means is shown to be optimal; we

could have dropped any of the parameters, we were not limited to the intercept.

The data was uniformly spilt across B = 20 batches, meaning each batch re-

ceived nb = 50, 000 data points. We drew 10, 000 samples from each subposte-

rior and inflated-subposterior distribution. The data was partitioned randomly five

times, and then for each of the partitions one of the covariate subjects were cho-

sen to obtain our θ samples, for ease for run i the i-th subject was chosen. These

were compared with the corresponding predictive distributions calculated from the

samples generated from the full posterior.

Table 3.4 shows that all of the methods characterise each of the distributions
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Table 3.4: Hepmass measure results for the five partitions of the data. Mean results
for each measure with estimated standard error in brackets. The metrics are as
follows: standardised mean (SM), Skewness (SK), and Integrated absolute distance
(IAD). The methods tested against are: Marginal Views (MV), The Consensus
Algorithm (Cons), Semi-Parametric Kernel Density Estimation (SKDE), Posterior
Interval Estimation (PIE), Gaussian Barycenter (GB), and Average Re-centering
(AR).

SM SK IAD
Marv 0.04 (0.02) 0.10 (0.12) 0.06 (<0.01)
Cons 0.04 (0.02) 0.03 (0.02) 0.03 (< 0.01)
SKDE 0.05 (0.02) 0.02 (0.02) 0.03 (< 0.01)
PIE 0.07 (0.07) 0.02 (0.01) 0.03 (0.02)
GB 0.07 (0.08) 0.01 (0.01) 0.04 (0.02)
AR 0.07 (0.07) 0.02 (0.02) 0.03 (0.02)

well. Figure 3.5 is a typical plot for each of the partitions. Each method is likely

performing well due the large amount of data used to form each subposterior dis-

tribution. Each of the subposteriors are close to Gaussian with similar variance

structures. However this example successfully demonstrates MarV’s ability to be

used to estimate expectations of transformed parameters.
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Figure 3.5: Estimated density plots of θ for a single run for the predictive Hepmass
example. MarV has
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3.3.3 Hierarchical Model - Mixed Effects Models

We previously looked at a simple linear model in Section 3.3.1 and a GLM extension

in the form of a logistic-regression model in Section 3.3.2. Another natural extension

is to introduce random effects alongside fixed effects. These models are of particular

use when the data has a heirachical dependency structure, for example, to cluster

student test scores based on classroom.

Let yi,j ∈ Y ⊆ R (for i = 1, . . . , nj, and j = 1, . . . , n) be the response variable,

where nj is the number of observations for group j and n is the number of groups.

The fixed and random effects are xi,j ∈ X ⊆ Rdβ and zj ∈ Z ⊆ Rdα , respectively,

and are related to the response variable by

yi,j|β,αj, 1 ∼ Logistic (xi,jβ + zjαj, 1), αi ∼ Nr(0,Σ),

where β ∈ Rp and αi ∈ Rr are the fixed and random effect model coefficients and the

Logistic(a, 1) distribution has a cumulative distribution function of 1/(1+exp[−(x−

a)]). Our parameters of interest are then ϑ = (β,α,Σ), where Σ represents the

variance of the random effects. A priori we assume an inverse-Wishart distribution

for Σ, Σ ∼ W−1(ν, S), with ν = 5 and S = 5Ir, and a priori we assumed β ∼

Np(0, 1000Ip).

We simulated a dataset that contains 200, 000 observations. We set the number

of groups n = 2, 000 and the number observations for each group nj = 100, for
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j = 1, . . . , n. The number of parameters for the fixed effects were set to dβ = 10,

with β0,i = (−1)(i−1). The number of parameters for each random effect was set to

be dα = 2, and we set

Σ0 =

 1 0.2

0.2 1

 ,
then αi were simulated independently from a Ndα(0,Σ0) distribution. We included

an intercept term, that is xi,j,1 = 1 for all i, j, otherwise xi,j and zj were simulated

from independent Bernoulli(0.5) distributions.

The data were randomly partitioned into B = 10 batches by group, so that each

group only belonged to one batch. This chosen so that each batch had to only

estimate the 200 α parameters, rather than full 2,000. With a Gaussian observation

model for each yi,j, marginalisation over all of the random effects would be tractable.

The logistic observation model necessitates the use of a sampling scheme such as

MCMC.

We used the STAN software to sample from the full-posterior distribution and

subposterior distributions generating M = 5, 000 MCMC samples after an initial

1,000 sample burn in. Table 3.5 gives the discrepancy measures for each of the

merging algorithms, averaged over 5 random partitions of the data. For ease we set

θ = β1, the first non-intercept covariate coefficient and ψ = ϑ−1, where ϑ does not

include the α parameters. This is possible since for each group, only one batch has

information on that group. Therefore there is no need to pool information on the
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Table 3.5: Discrepancy measures for the linear mixed effects model on the sim-
ulated dataset. These measures were averaged over 5 random partitions of the
data. Estimated standard errors are given in brackets. The metrics are as follows:
standardised mean (SM), Skewness (SK), and Integrated absolute distance (IAD).
The methods tested against are: Marginal Views (MV), The Consensus Algorithm
(Cons), Semi-Parametric Kernel Density Estimation (SKDE), Posterior Interval Es-
timation (PIE), Gaussian Barycenter (GB), and Average Re-centering (AR).

Algorithm SM Skew IAD
MarV 0.29 (0.20) 0.28 (0.16) 0.17 (0.04)
Cons 0.08 (0.07) 0.08 (0.05) 0.04 (0.02)
SKDE 0.08 (0.06) 0.05 (0.03) 0.04 (0.02)
PIE 0.02 (0.01)) 0.05 (0.03) 0.03 (0.01)
GB 0.02 (0.01) 0.05 (0.03) 0.02 (<0.01)
AR 0.01 (0.01) 0.06 (0.01) 0.02 (<0.01)

α parameters.

The results in Table 3.5 show that MarV cannot characterise the posterior as

well as the other algorithms. Figure 3.6 shows the merged posterior density plots

for θ for a single partition. Although MarV is to the left of the others, it still shows

MarV has been able to capture the main characteristics of the full-data posterior

distribution.
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Figure 3.6: Marginal density plot for θ for a single run in the LME experiment.

3.3.4 Simulated data - Multi-modal distribution

In this Section we will show that MarV can be effective in a multi-modal setting.

Multi-modal targets are often difficult to characterise, and sometimes it can be

difficult to generate samples that represent the posterior. In previous sections we

showed MarV can capture Gaussian behaviour as well as the Consensus algorithm,

and here we will show it can capture multi-modal behaviour like methods that have

less-strict parametric assumptions.

Before using any of the divide-and-conquer methods, it is important to ensure

each sampler for each subposterior, or inflated-subposterior, distribution has fully
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converged, and explored each mode. None of the combination methods can account

for the MC algorithms not having converged to the correct target distribution. We

will explain how we sampled from the multi-modal distributions in this example, but

we will not be covering how to sample from multi-modal distributions in general.

For a given b ∈ {1, . . . , B = 10} and σ = 1/10 we define the following subposte-

rior:

πb(θ|yb) :=
1

2
N2(µ1,b, σ

2
θ) +

1

2
N2(µ2,b, σ

2),

where µ1,b ∼ N (0, 1/100) and µ2,b ∼ N2(1, 1/100). Each πb(θ|yb) subposterior

distribution is a mixture of two Gaussian distributions. We set

πb(ψ|yb) :∝
dϑ∏
i=2

N (ψi|µψ,i, σ),

where µψ,i = (−1)(i−1) for i ∈ {2, . . . , dϑ = 10}. Since the focus of this example is

multi-modal behaviour, for ease we assume independence between θ and ψ, so that:

π(ϑ|y) =
B∏
b=1

πb(θ|yb)πb(ψ|yb).

Since ψ and θ are independent, we can sample from the distributions for ψ and

θ independently. Sampling from the πb(ψ|yb) subposterior distributions are trivial

since they are Gaussian.
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Formulating a sampler for each marginal-subposterior distribution πb(θ|yb) was

done in two parts. For each sample draw u from a uniform(0,1) then:

• If u < 1/2 draw θ|yb from N (µ1,b, σ),

• If u ≥ 1/2 draw θ|yb from N (µ2,b, σ).

We used an MCMC algorithm with an independent proposal for the inflated-

subposterior distributions, πb(θ|yb)B, and the full-posterior distribution, π(θ|y).

Although both the inflated-subposterior distributions and full-posterior distribu-

tions are a mixture of Gaussian distributions, the inflated-subposteriors are each a

mixture of 11 unique Gaussian distributions (assuming µ1,b 6= µ2,b), and the full-

posterior distribution is a mixture of 211 unique Gaussian distributions. Hence, we

decided it was easier to formulate an MCMC sampler rather than calculating each

of the Gaussian mixture components.

The proposal sampler used for the MCMC algorithm was a mixture of t-distributions

with degrees of freedom 2 with proposal density, denoted qb(θ|µ1,b, µ2,b, σ), used for

each inflated-subposterior distribution:

qb(θ|µ1,b, µ2,b, σθ) =
1

2
t2(θ|µ1,b, σ/

√
(B)) +

1

2
t2(θ|µ2,b, σ/

√
(B)).

Sampling from the mixture qb was analogous to sampling from πb(ψ|yb), but a t-

distribution was sampled from instead of a Gaussian. Let µ̄i =
∑B

b=1 µi,b/B, for
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i ∈ {1, 2}, we set the proposal density for the full-posterior to be

q(θ|µ1,b, µ2,b, σθ) =
1

2
dt(θ|µ̄1, σθ) +

1

2
dt(θ|µ̄2, σθ/B).

For each inflated and non-inflated subposterior density, and the full-posterior

density 10,000 samples were drawn. For the subposterior distributions these samples

were exact. In contrast, we used an MCMC algorithm to sample from the inflated-

subposterior distributions and full-data posterior distribution. Therefore, for a fair

comparison when using the independence samplers 100,000 samples were drawn and

thinned to 10,000. Once these samples were obtained each of the merging methods

could be applied to obtain samples from an approximation to the full-data posterior

distribution. This experiment was repeated 5 times.

Figure 3.7 (a) shows full-posterior, subposterior, and inflated-subposterior den-

sities for θ plotted for comparison, for a single run. The θ densities look as we

expected; two modes centred at 0, 1 for each posterior, the variance of the inflated-

subposterior distributions are similar to the full-posterior distribution, and the sub-

posterior densities have a lower variance than the other posterior densities. Fig-

ure 3.7 (b) shows the full-posterior, subposterior, and inflated-subposterior densi-

ties plots for ψ1 for a single run, again this looks as expected. Both these plots are

typical of the plots for each of the runs.

The results for the 5 runs are recorded in Table 3.6, and a density plot showing
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(a) Density plots for θ for a single run of
the multi-modal experiment.
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(b) Density plots for ψ1 for a single run
of the multi-modal experiment.

Figure 3.7

the density estimates for each of the methods for a single run is given in Figure 3.8.

The results for SM and SKEW were omitted as they can be misleading; for each of

these measures a method can score quite well, but the relevant estimated densities

have almost no overlap with the estimated full-data posterior density.

Table 3.6 shows that MarV is middling. Figure 3.8 shows that MarV has correctly

identified the modes, as have the PIE, GB, and AR methods. This is in contrast

to the Consensus and SKDE methods, which incorrectly identity a single mode.

Overall MarV is performing well, but is underestimating the variance relative to the

PIE and AR methods. This is likely due to the PIE and AR methods not having

to estimate the variance, coupled with the subposterior densities for this example

all having the same variance. Overall we have shown that MarV can correctly

characterise multi-modal densities in this example.
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Figure 3.8: Estimated density plots of θ. PIE, MarV, GB, and AR capture the multi-
modality of the posterior distribution, whilst the SKDE and Consensus methods
estimate the density to have a single mode.
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Table 3.6: IAD results for the multi-modal experiment. The Integrated absolute
distance (IAD) was averaged across 5 simulations of the data. Estimated stan-
dard errors are given in brackets. The methods tested against are: Marginal Views
(MV), The Consensus Algorithm (Cons), Semi-Parametric Kernel Density Estima-
tion (SKDE), Posterior Interval Estimation (PIE), Gaussian Barycenter (GB), and
Average Re-centering (AR).

Method IAD
MarV 0.08 (0.01)
Cons 0.89 (0.01)
SKDE 0.91 (0.01)
PIE 0.01 (< 0.01)
GB 0.66 (< 0.01)
AR 0.01 (< 0.01)

3.4 Conclusions

We have introduced MarV, an importance sampler with a strong theoretical backing

within the divide-and-conquer framework, used to obtain approximations to low-

dimensional posterior expectations.

We have shown that MarV can correctly characterise a wide array of distribu-

tions. In Section 3.3.1, the tri-variate Gaussian example, MarV was comparable

with Consensus Monte Carlo, the current gold standard for Gaussian experiments.

The rare-data example introduced in Section 3.3.2 demonstrated that MarV could

produce accurate estimates of expectations even when the subposterior distribu-

tions have different mean, variance, and skew. The real-world Hepmass data ex-

ample introduced in Section 3.3.2 showed that MarV could be used to accurately

estimate posterior expectations of transformed parameters. Section 3.3.3 showed

MarV, whilst weaker than the other methods, was still capturing the majority of
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the behaviour of the posterior distribution. Finally in Section 3.3.4 we demonstrated

that MarV could capture bimodal posterior distributions.

In all of these experiments MarV was able to capture the main features of the cho-

sen marginal distribution, demonstrating MarV’s robustness. This was not shown

by any of the other methods compared to.
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Appendix

3.A Conditional Gaussian Parameter Estimation

Define Id to be the identity matrix with dimension d×d and 0d1,d2 to be the d1×d2

dimensional matrix with all elements equal to zero.

Lemma 3.3. Woodbury Matrix Identity - Higham (2002). Let A and B denote

invertible matrices with dimensions dA × dA and dB × dB respectively. Let C be a

dA × dB dimensional matrix and D to be a dB × dA matrix then:

(A+ CBD)−1 = A−1 − A−1C
(
B−1 +DA−1C

)−1
DA−1,

provided that (
B−1 +DA−1C

)−1

is non singular.
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Proof.

(A+ CBD)
(
A−1 − A−1C

(
B−1 +DA−1C

)−1
DA−1

)
=IdA + CBDA−1 −

(
C + CBDA−1C

) (
B−1 +DA−1C

)−1
DA−1,

=IdA + CBDA−1 − CB
(
B−1 +DA−1C

) (
B−1 +DA−1C

)−1
DA−1,

=IdA + CBDA−1 − CBDA−1

=IdA

Define V be a d × d symmetric positive definite matrix with inverse τ . Let

d > d1, d2 > 0. We can partition V in the following way:

V =

 V1,1 V1,2

V2,1 V2,2

 ,

where V1,1 is a d1 × d1 dimensional matrix with elements equal to V[1:d1,1:d1], V2,2

is a d2 × d2 dimensional matrix with elements equal to V[(d1+1):(d1+d2),(d1+1):(d1+d2)],

V2,1 is a d2 × d1 dimensional matrix with elements equal to V[(d1+1):(d2+d1),1:d1] and

V1,2 = V >2,1. Partitioning τ we get:

τ =

 τ1,1 τ1,2

τ2,1 τ2,2

 ,
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where τ1,1, τ1,2, τ2,1 and τ2,2 are defined in a similar way to V1,1, V1,2, V2,1 and V2,2

respectively.

Lemma 3.4. Matrix block inversion - Bernstein (2009)

τ1,1 =
(
V1,1 − V1,2V

−1
2,2 V2,1

)−1

τ2,2 =
(
V2,2 − V2,1V

−1
1,1 V1,2

)−1

τ1,2 = −V −1
1,1 V1,2

(
V2,2 − V2,1V

−1
1,1 V1,2

)−1

τ2,1 = −V −1
2,2 V2,1

(
V1,1 − V1,2V

−1
2,2 V2,1

)−1
= τ>1,2

Proof. Since V is the inverse of τ we can write:

 Id1 0d1,d2

0d2,d1 Id2

 = Id = V τ =

 V1,1τ1,1 + V1,2τ2,1 V1,1τ1,2 + V1,2τ2,2

V2,1τ1,1 + V2,2τ2,1 V2,1τ1,2 + V2,2τ2,2

 . (3.26)

This gives the following four equalities:

Id1 = V1,1τ1,1 + V1,2τ2,1,

0d2,d1 = V2,2τ2,1 + V2,1τ1,1,

0d1,d2 = V1,1τ1,2 + V1,2τ2,2,

Id2 = V2,2τ2,2 + V2,1τ1,2.

Rearranging, and remembering that an inverse of a symmetric matrix is symmetric,
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gives the equalities:

τ1,1 = V −1
1,1 − V −1

1,1 V1,2τ
>
1,2, (3.27)

τ>1,2 = −V −1
2,2 V2,1τ1,1, (3.28)

τ1,2 = −V −1
1,1 V1,2τ2,2, (3.29)

τ2,2 = V −1
2,2 − V −1

2,2 V2,1τ1,2. (3.30)

Substituting (3.29) into (3.30) gives:

τ2,2 = V −1
2,2 + V −1

2,2 V2,1V
−1

1,1 V1,2τ2,2,

=⇒ τ2,2 =
(
Id2 − V −1

2,2 V2,1V
−1

1,1 V1,2

)−1
V −1

2,2 ,

applying the result of Lemma 3.3 we get

τ2,2 =
(
Id2 + Id2V

−1
2,2 V2,1 (V1,1 + V1,2Id2V2,2V2,1)−1 V −1

1,2 Id2
)
V −1

2,2 ,

= V −1
2,2 − V −1

2,2 V2,1

(
V1,1 + V1,2V

−1
2,2 V2,1

)−1
V −1

1,2 V
−1

2,2 .

Applying the result of Lemma 3.3 again gives the required result for τ2,2:

τ2,2 =
(
V2,2 − V2,1V

−1
1,1 V1,2

)−1
. (3.31)

Due to the symmetry between the τ1,1 and τ2,2, it is trivial to see substituting
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(3.28) into (3.27) and following similar steps as above gives the required result for

τ1,1:

τ1,1

(
V1,1 − V1,2V

−1
2,2 V2,1

)−1
. (3.32)

To see the required result for τ1,2 we substitute (3.31) into (3.29):

τ1,2 = −V −1
1,1 V1,2

(
V2,2 − V1,2V

−1
2,2 V2,1

)−1
,

and the required result for τ2,1 is seen by substituting (3.32) into (3.28):

τ2,1 = −V −1
2,2 V2,1

(
V1,1 − V2,1V

−1
1,1 V1,2

)−1
.

For a given value of θ, denoted θ∗, and by using Bayes Theorem we can write:

g̃(ψ|θ = θ∗) ∝ G(θ∗,ψ)

∝ exp

−
1

2

θ∗ − µθ
ψ − µψ


> τθ τθ,ψ

τψ,θ τψ


θ∗ − µθ
ψ − µψ


 .
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Let

Q(ψ) :=

θ∗ − µθ
ψ − µψ


> τθ τθ,ψ

τψ,θ τψ


θ∗ − µθ
ψ − µψ

 ,

so that

g̃(ψ|θ = θ∗) ∝ exp

{
−1

2
Q(ψ)

}
.

Expanding Q(ψ) gives:

Q(ψ) = (ψ − µψ)> τψ (ψ − µψ)

+ (ψ − µψ)> τψ,θ (θ − µθ)

+ (θ − µθ)> τθ,ψ (ψ − µψ)

+ (θ − µθ)> τθ (θ − µθ) ,

=ψ>τψψ

−ψ>
(
τψµψ − τ>θ,ψ (θ − µθ)

)
−
(
τψµψ − τ>θ,ψ (θ − µθ)

)>
ψ

+ C,
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Using Lemma 3.5 we know

τψ =
(
Vψ − Vψ,θV −1

θ Vθ,ψ
)−1

,

τθ,ψ = −V −1
θ Vθ,ψ

(
Vψ − Vψ,θV −1

θ Vθ,ψ
)−1

= V −1
ψ Vψ,θτψ,

hence

τ>θ,ψ = τψVθ,ψV
−1
ψ .

Let

µψ|θ := µψ + Vθ,ψV
−1
ψ (θ − µθ)

Now we can factorise Q(ψ), only taking note of terms including ψ.

Q(ψ) =ψ>τψψ

−ψ>τψ
(
µψ + Vθ,ψV

−1
ψ (θ − µθ)

)
−
(
µ>ψ + (θ − µθ)V −1

ψ Vψ,θ
)
τψψ

+ C,

=
(
ψ − µψ|θ

)>
τψ
(
ψ − µψ|θ

)
− µ>ψ|θτψµψ|θ + C.
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We substitute this form for Q(ψ) back into g̃(ψ|θ = θ∗):

g̃(ψ|θ = θ∗) ∝ exp

{
−1

2
Q(ψ)

}
,

= exp

{
−1

2

((
ψ − µψ|θ

)>
τψ
(
ψ − µψ|θ

)
− µ>ψ|θτψµψ|θ + C

)}
,

∝ exp

{
−1

2

(
ψ − µψ|θ

)>
τψ
(
ψ − µψ|θ

)}
.

This is recognisable as a kernel of a Gaussian distribution with mean

µψ|θ = µψ + Vθ,ψV
−1
ψ (θ − µθ) ,

and variance

τ−1
ψ = Vψ − Vψ,θV −1

θ Vθ,ψ,

showing the result. Eaton (1983).

Define V to be a d × d symmetric positive-definite matrix. Let d > d1, d2 > 0.

We can partition V in the following way:

V =

 V1,1 V1,2

V2,1 V2,2

 ,

where V1,1 is a d1 × d1 dimensional matrix with elements equal to V[1:d1,1:d1], V2,2

is a d2 × d2 dimensional matrix with elements equal to V[(d1+1):(d1+d2),(d1+1):(d1+d2)],

V2,1 is a d2 × d1 dimensional matrix with elements equal to V[(d1+1):(d2+d1),1:d1] and
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V1,2 = V >2,1. With the same partitioning as for V , we define:

V −1 := τ =

 τ1,1 τ1,2

τ2,1 τ2,2

 ,

where τ1,1, τ1,2, τ2,1 and τ2,2 are defined in a similar way to V1,1, V1,2, V2,1 and V2,2

respectively.

Lemma 3.5.

τ1,1 =
(
V1,1 − V1,2V

−1
2,2 V2,1

)−1

τ1,2 = −V −1
1,1 V1,2

(
V2,2 − V2,1V

−1
1,1 V1,2

)−1

τ2,1 = −V −1
2,2 V2,1

(
V1,1 − V1,2V

−1
2,2 V2,1

)−1
= τ>1,2

µψ := EG [ψ] and Vψ := VarG [ψ] ,

and define µθ and Vθ in a similar fashion. Define

VG := VarG [θ,ψ] .
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Let Vψ,θ be the the dψ × dθ matrix that satisfies

VG(·) =

 Vθ V >ψ,θ

Vψ,θ Vψ

 ,

i.e., the covariance between ψ and θ under the Gaussian approximation charac-

terised by distribution g. Let Vθ,ψ := V >ψ,θ. Define τG := V −1
G . Now we partition

τG:

τG =

 τθ τθ,ψ

τψ,θ τψ

 ,

with the definitions for τθ, τθ,ψ, τψ,θ and τψ mirroring those for Vθ, Vθ,ψ, Vψ,θ and Vψ

respectively.

3.B Partitioning a Wishart Prior

Let θ ∼ Wd(S, ν).

log
(
π(θ)1/B

)
∝ (ν − d− 1) log |θ| − trace (S−1θ)

2B

=
(ν/B − d/B − 1/B) log |θ| − trace

(
S−1

B
θ
)

2

=

(
ν+(d+1)(B−1)

B

)
− d− 1) log |θ| − trace ((BS)−1θ)

2
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hence if π(θ) is the pdf of a Wishart distribution with scale matrix S and degrees

of freedom ν then π(θ)1/B is proportional to the pdf of a Wishart distribution with

scale matrix BS and degrees of freedom ν+(d+1)(B−1)
B

.

Restrictions: S is positive definite, no problems since BS will be positive definite.

ν > d− 1. Ensure ν+(d+1)(B−1)
B

> d− 1, which is always true when ν > d− 1

ν + (d+ 1)(B − 1)

B
>
d− 1 + (d+ 1)(B − 1)

B
,

= d− B − 2

B
,

> d− 1,

for B > 1/2. If specifying subposterior priors, ensure ν ≥ d+ 1

3.C Product of Gaussian Distributions

Assume the density for a parameter ψ ∈ Rdψ can be wrote as a product of B ∈ N

Gaussian distributions. Let the b-th density have mean and variance denoted µb

and Vb respectively for b ∈ {1, . . . , B}.
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π(ψ) =
B∏
b=1

Nd(ψ|µb, Vb),

∝
B∏
b=1

exp

{
−1

2
(ψ − µb)>V −1

b (ψ − µb)
}
,

= exp

{
−1

2

B∑
b=1

{
ψTV −1

b ψ − µ>b V −1
b ψ −ψ>V −1

b µb + µTb V
−1
b µb

}}
.

Let V̄ −1 =
∑B

b=1 V
−1
b , then:

π(ψ) ∝ exp

{
−1

2

(
ψ>
(
V̄ −1

)
ψ −

(
B∑
b=1

µ>b V
−1
b

)
ψ −ψ>

(
B∑
b=1

V −1
b µb

))}
,

∝ exp

{
−1

2
(ψ − µ̄)>V̄ −1(ψ − µ̄)

}
,

where µ̄ = V̄
∑B

b=1 V
−1
b µb. Therefore: ψ ∼ N(µ̄, V̄ ). Eaton (1983).
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Chapter 4

Subposteriors with Inflation,

Shifting, and Scaling - SwISS

4.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used within Bayesian

modelling to sample from the often intractable posterior distribution. These tech-

niques are widely applicable and only require point-wise evaluation of the posterior

density. One of the potential drawbacks of MCMC algorithms is their lack of scala-

bility. The computational cost of MCMC is typically, at best, linear in the amount

of data and can be prohibitive for large data sets, both in computational cost and

storage.
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In settings with large data sets, or where the model is computationally expensive,

evaluating the posterior at every iteration of the MCMC algorithm may be infeasi-

ble. Strategies to overcome this include data subsampling Welling and Teh (2011);

Baker et al. (2019a); Nemeth and Fearnhead (2021); Baker et al. (2019b), where

only a subset of the data is used at each MCMC iteration, or delayed acceptance

(Sherlock et al., 2017; Quiroz et al., 2018), where the Metropolis–Hastings accept-

reject probability is replaced with a cheaper approximation to the true posterior

and the full data posterior is evaluated less frequently.

In situations where it is possible to easily parallelise computation in a MapRe-

duce framework, or through cloud-computing infrastructure such as Amazon Web

Services, then statistical modelling becomes easily scalable to large data sets. How-

ever, applying this approach in practice using algorithms such as MCMC, which

are designed to work in serial rather than parallel, is challenging. In this chapter,

we consider the divide-and-conquer strategy to circumvent the computational bot-

tleneck of MCMC, where the data are partitioned into batches, and each batch is

stored on a separate computer core. MCMC is then applied independently on each

data batch and posterior samples from each computer are combined to form an ac-

curate approximation of the full posterior, i.e., the posterior that would have been

obtained using the full data set.

The main challenge with divide-and-conquer approaches for MCMC lies in the

merge step. A range of approaches has been considered in the literature such as:
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the use of weighted averages of the batch samples (Scott et al., 2016); kernel density

estimation (Neiswanger et al., 2013); Gaussian process approximations (Nemeth and

Sherlock, 2018); finding the Wasserstein barycenter of different measures Srivastava

et al. (2014), the geometric median of batch samples (Minsker et al., 2014), as well

as using a post-MCMC importance sample Entezari et al. (2018), to name a few.

One of the most popular algorithms in the literature is the consensus Monte Carlo

algorithm (Scott et al., 2016), which approximates the full posterior using a weighted

average of sub-posterior samples. The consensus approach is computationally cheap

to apply, does not require tuning and scales well to high-dimensional parameter

spaces. It is also analytically exact in the case of Gaussian sub-posteriors, but can

produce poor approximations when the sub-posteriors are non-Gaussian (see Section

4.4.1).

In this chapter we propose SwISS, an algorithm that is as fast as the consensus al-

gorithm, is exact in the Gaussian case, does not require tuning, and which scales well

to high-dimensional posterior distributions. However, in the case of non-Gaussian

sub-posteriors, it can produce more accurate posterior approximations than the con-

sensus algorithm. Unlike the consensus approach, SwISS does not merge samples but

instead applies a transformation to the posterior samples that are generated from a

stochastic approximation of the full posterior. As in Entezari et al. (2018), we refer

to this stochastic approximation as the inflated sub-posterior, which is the posterior

density, conditional on a subset of the data, raised to a positive power. Inflating the
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sub-posterior in this manner has the effect of approximately preserving the shape of

the posterior density conditional on the full data. Affine transformations (shift and

re-scale) are applied to each batch of sub-posterior samples to form an approximate

sample from the full posterior. This is a generalisation of the algorithm of Robert

et al. (2019) which simply shifts each sub-posterior, with no further correction and

hence performs poorly when the sub-posterior variances differ substantially. There

are many different affine transformations that produce a sample from the true pos-

terior when the sub-posteriors are Gaussian; we provide theoretical support for our

particular choice, showing that, in a natural sense, it is optimal amongst the set of

transformations that are exact in the Gaussian case.

The chapter is organised as follows: Section 4.2 provides an introduction to

divide-and-conquer MCMC, covering the notation for posterior and sub-posterior

densities. In Section 4.3 we introduce our proposed algorithm, SwISS, and pro-

vide supporting theoretical results and pseudo-code for implementation. Section 4.4

covers the numerical performance of SwISS and is compared against other popu-

lar divide-and-conquer algorithms from the literature. Finally, Section 4.5 gives a

summary of the contributions from the chapter.
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4.2 Preliminaries

Let f(y|ϑ) be the likelihood for a statistical model, parameterised by ϑ ∈ Rd, for a

data set y = {y1, y2, . . . , yn} of length n. Let π0(ϑ) denote the prior density for the

parameter vector ϑ, then our posterior density is, up to a constant of proportionality,

π(ϑ|y) ∝ π0(ϑ)f(y|ϑ). (4.1)

We assume that y can be partitioned into B batches, y1, . . . ,yB, such that the

likelihood for the full data is the product of the likelihoods for the individual batches,

i.e., f(y|ϑ) =
∏B

b=1 fb(yb|ϑ). This is the case, for example, when the individual data

points are independent. The posterior density for ϑ given y is, up to a constant of

proportionality,

π(ϑ|y) ∝ π0(ϑ)
B∏
b=1

fb(yb|ϑ). (4.2)

In the literature, there are generally two approaches to applying MCMC on batches

of data. In the first approach, MCMC is applied to target a sub-posterior density

for each batch b, of the form

πb(ϑ|yb) ∝ π0(ϑ)
1
B f(yb|ϑ), (4.3)

where b = 1, . . . , B, such that
∏B

b=1 πb(ϑ|yb) = π(ϑ|y) as defined in (4.2).
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If we assume that there are N sub-posterior samples from each of the B batches,

which we define as (ϑ
(j)
b ; j ∈ {1, . . . , N}, b ∈ {1, . . . , B}), then the consensus Monte

Carlo algorithm (Scott et al., 2016) gives a simple strategy for approximating the

full posterior (4.2) through a weighted average of the sub-posterior samples,

ϑ(j) =

(
B∑
b=1

wb

)−1 B∑
b=1

wbϑ
(j)
b ,

where the weights are typically chosen to be wb = Var [ϑ|yb]−1. If each πb(ϑ|yb)

is Gaussian, then the consensus algorithm produces exact samples from the full

posterior.

A second approach applies MCMC to each inflated sub-posterior, where the

target density for batch b = 1, . . . , B is

πBb (ϑ|yb) ∝ π0(ϑ)f(yb|ϑ)B. (4.4)

This is a stochastic (across partitions of the data) approximation to the full posterior

π(ϑ|y) ≈ πBb (ϑ|yb), and hence individual samples from it, in a sense, are already

on the same scale as samples from the full posterior.

If we assume that the data are partitioned equally across batches, then in the

limit, as the amount of data in each batch n∗ = n/B approaches infinity, the like-

lihood will typically dominate the prior, so that by the Bernstein von Mises the-
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Shift Scale Shift

Figure 4.3.1: A visual representation of the SwISS algorithm applied to a two-
dimensional Gaussian with three sub-posteriors (blue) approximating the full poste-
rior (black). First, the batch samples are shifted by their respective means (ϑb−µb),
then scaled by the matrix Ab before finally being shifted by the global mean µ.

orem, the bth inflated sub-posterior is ϑb ∼ N (ϑ̂b, I
−1
O,b(ϑ̂b)), where approximately,

ϑ̂b ∼ N (ϑ0, BI
−1
E (ϑ0)) and where IE and IO,b are the full-data expected information

and the observed information from the inflated likelihood for batch b, respectively,

and ϑ0 is the true parameter value. Hence, the difference between the expectations of

the inflated sub-posteriors areO(n
−1/2
∗ ) and, since limn→∞ ||I−1

E IO,b|| = 1+O(n
−1/2
∗ ),

the ratio of the variances of the sub-posteriors is 1+O(n
−1/2
∗ ). However, in practice,

both the location and scale of the inflated sub-posteriors can vary considerably if

the partitioned data sets are imbalanced (see examples in Section 4.4). Our pro-

posed algorithm, SwISS, provides a correction for the discrepancy in the variance

and location of the sub-posterior approximations.

113



4.3 SwISS Algorithm

Suppose that we have applied independent Monte Carlo algorithms, such as MCMC,

in parallel to sample from the inflated sub-posteriors (4.4), and denote the jth (of

N) sample from the bth (of B) batch by ϑ
(j)
b . The SwISS algorithm transforms

each sample from the inflated sub-posterior into a sample from an approximation

to the full posterior (4.2) using a batch-specific affine transformation. In the case

of Gaussian sub-posteriors, as we show below, these affine transformations produce

a set of samples from the correct Gaussian full posterior, and SwISS is exact in

this setting. In general, sub-posteriors are non-Gaussian; however under standard

regularity conditions and the Bernstein-von Mises theorem (Le Cam and Yang,

2000), as n∗ = n/B approaches infinity the sub-posteriors will be approximately

Gaussian and SwISS can be expected to produce samples from an approximation to

the full posterior.

Firstly, let us suppose that each inflated sub-posterior is Gaussian with expecta-

tion µb and invertible variance matrix Vb, so that the full posterior is ϑ|y ∼ Nd(µ,V)

where,

V =

(
1

B

B∑
b=1

V−1
b

)−1

and µ = V
1

B

B∑
b=1

V−1
b µb (4.5)

are the variance and mean of the full posterior.
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Since it is invertible, Vb is a positive-definite matrix and therefore it has a d×d,

invertible square root, Mb; i.e. Vb = MbM
>
b . Similarly, the full posterior variance

V has a square root, M, so that V = MM>. Let samples from the bth inflated sub-

posterior, ϑ
(1:N)
b , be (marginally) realisations from the random variable ϑb ∼ πBb

and define the transformed random variable:

θb := Ab (ϑb − µb) + µ. (4.6)

where Ab is any matrix satisfying AbVbA
>
b = V; for example, Ab = MM−1

b .

Clearly, E [θb] = µ and Var [θb] = V. Furthermore, an affine transformation of

a Gaussian random variable is Gaussian, and hence θ ∼ Nd(µ,V). Applying the

same transformation to individual samples from the bth batch, therefore provides a

sample from the full posterior. As discussed above, even when the sub-posteriors are

not Gaussian, we can still apply the same scaling and shifting to any sub-posterior

samples and produce samples from an approximation to the full posterior.

4.3.1 Choice of Matrix Square Roots

Matrix square roots are not unique; e.g. for a diagonal matrix, each element of

the diagonal square root could be negated; methods for finding a square root of a

positive-definite matrix include the Cholesky decomposition, or the simple symmet-

ric square root arising from the spectral decomposition. Moreover, for square roots
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M and Mb, Ab need not be simply MM−1
b , and indeed, this is not always the most

sensible choice.

For now, let M be any d× d square root of V and let

Ṽb := M−1Vb

(
M−1

)>
and Ab = MM̃−1

b M−1,

where M̃b is any d×d square root of Ṽb. Then, Var [M−1ϑb] = Ṽb, so Var
[
M̃−1

b M−1ϑb

]
=

I and hence Var [Abϑb] = MM> = V.

If Vb = V for all b = 1, . . . , B, then Ṽb = I, and provided M̃b is chosen

to be I, Ab becomes the identity transformation. To be clear, though, if some

diagonal elements of M̃b had been chosen to be −1 rather than 1 then Ab would not

be the identity and, unless the initial distribution of points ϑ
(1:N)
b was elliptically

symmetric, the transformation in (4.6) would not then lead to a set of points that

represented the true posterior at all.

Applying the same logic as above, the transformation M̃b should be the square

root of Ṽb that moves the individual points ϑ
(j)
b as little as possible. With this in

mind, we define a natural measure of the distance moved by N points, ϑ(1:N), to

which a linear transformation A is applied, as:

D
(
A;ϑ(1:N)

)
:=

1

N

N∑
j=1

∥∥ϑ(j) −Aϑ(j)
∥∥2
, (4.7)
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where ‖.‖2 denotes Euclidean distance. We wish to find the linear transformation

M̃b that minimises D(M̃−1
b ;ϑ(1:N)) subject to the constraint that M̃bM̃

>
b = Ṽb. In

Section 4.3.2 we show that, provided the points have expectation zero, as N ↑ ∞,

the best choice of M̃b is the positive-definite, symmetric square root of Ṽb; this is the

square root used by SwISS. The choice of square root, M, of V is less important,

since within the linear transformation Ab, the initial transformation by M−1 is

later inverted; however, with the general motivation of preventing excess movement,

SwISS sets M to be the positive-definite, symmetric square root of V. Finally, the

averaged re-centring algorithm of Robert et al. (2019) can be viewed as a special

case of SwISS where Ab = I.

4.3.2 The Positive-Definite, Symmetric Square Root and its

Optimality

We first define the positive-definite symmetric square root of a positive-definite

matrix and detail the sense in which it is optimal with respect to the distance

measure D (4.7).

Let V be a positive-definite matrix and let its spectral decomposition be

V = UΛΛU>. (4.8)

where Λ is a diagonal matrix with entries equal to the positive square roots of
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the eigenvalues of V, and U is a unitary matrix (i.e. the columns of U are the

orthonormal right eigenvectors of V, so UU> = I = U>U) and so

V1/2 := M = UΛU>. (4.9)

The natural interpretation of M is as a simple scaling transformation with different

scalings applied along each of the eigenvectors of V.

As explained previously, we require a matrix Ab such that the transformation

(4.6) leads to a sample with a variance of V; however, when inflated sub-posteriors

are non-Gaussian, we need a transformation that preserves the shape and orienta-

tion of the inflated sub-posterior as much as possible. Theorem 4.1 shows that for

large N , M−1 is not likely to cause more than the minimum discrepancy, given the

constraints. This is a novel result for this chapter.

Theorem 4.1. Let ϑ(j) ∈ Rd (j = 1, . . . , N) be a set of independent and identically

distributed realisations of a random variable ϑ with E [ϑ] = 0 and Var [ϑ] = V. Let

V have a spectral decomposition as in (4.8) and let M = UΛU>. Let A be any

other d× d matrix such that Var [Aϑ] = Id. Then

P
(

lim
N→∞

[
D
(
M−1;ϑ(1:N)

)
−D

(
A;ϑ(1:N)

)]
> 0
)

= 0,

where D(·; ·) is as defined in (4.7).
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Theorem 4.1 relies upon the following two results.

Proposition 4.2. Let Zi ∈ Rd (i = 1, . . . , n) be an independent and identically

distributed sequence of random variables with E [Z] = 0 and Var [Z] = Id, and let B

be any d× d matrix. Then, as n→∞, D(B;Z1:n)→ d+ trace
(
BBT

)
− 2trace (B),

almost surely.

Proof.

D(B;Z1:n) =
1

n

n∑
i=1

||(B − I)Z||2 → E
[
||(B − I)Z||2

]
= E

[
d∑

i,j,k=1

Zi(B − I)Ti,j(B − I)j,kZk

]

=
d∑

i,j=1

(B − I)Ti,j(B − I)j,i = trace
(
(B − I)T (B − I)

)
= trace

(
BTB

)
+ trace (I)− 2trace (B) ,

where the convergence is almost sure. But trace
(
BTB

)
= trace

(
BBT

)
, giving the

required result.

Lemma 4.3. Let V,Λ, and U be as defined in Theorem 4.1, and let and λi = Λi,i

(i = 1, . . . , d). Then

sup
M :MMT=V

trace (M) =
d∑
i=1

λi.

The supremum is achieved when M = UΛUT .

Proof. The rows of U form an orthonormal basis e1, . . . , ed, with eTi V ei = λ2
i (i =
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1, . . . , d). For any matrix M with MMT = V ,

λ2
i = eTi MMT ei = ||MT ei||2 = ||fi||2,

where fi = MT ei. Next, recall that for any unitary matrix, U , and square matrix

M , trace
(
UMUT

)
= trace (M). Thus, using the Cauchy-Schwarz inequality, and

since UT is also unitary,

trace (M) = trace
(
UTMU

)
=

d∑
i,j,k=1

(ei)j(ei)kMj,k

=
d∑
i=1

eTi Mei =
d∑
i=1

fTi ei ≤
d∑
i=1

||fi|| ||ei|| =
d∑
i=1

λi.

The final part of the Lemma follows as trace
(
UΛUT

)
= trace (Λ) =

∑d
i=1 λi.

To prove Theorem 4.1, let Zi = AXi, so E [Zi] = 0 and Var [Zi] = Id, and let

B = A−1 so BBT = V . Since D(A;X1:n) = D(B;Z1:n), by Proposition 4.2, and

then from Lemma 4.3, we have almost surely,

D(A;X1:n)−D(M−1;X1:n) = D(B;Z1:n)−D(M ;Z1:n)

→ 2trace (M)− 2trace (B) ≥ 0.

The affine transformation (4.6) of SwISS is easy to apply to each batch of inflated

sub-posterior samples, making the algorithm as fast and as simple to use as the
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Algorithm 4 SwISS Algorithm; here SPSQ(V) denotes the symmetric positive-
definite square root of the matrix V as described through (4.8) and (4.9).

Require: {ϑjb}Nj=1 - N Monte Carlo samples from each of the B inflated posteriors

Calculate the mean and variance for each of the inflated posteriors
for b ∈ {1, . . . , B} do

µb ← mean[ϑ
(1:N)
b ] and Vb ← var[ϑ

(1:N)
b ]

end for

Set the global mean µ and variance V and calculate the matrix square root,

V =
(

1
B

∑B
b=1 V−1

b

)−1

, µ = V 1
B

∑B
b=1 V−1

b µb, and M← SPSQ(V)

Apply the affine transformation to the inflated posterior samples
for b ∈ {1, . . . , B} do

Ṽb ←M−1VbM
−1

M̃b ← SPSQ(Ṽb)

Ab ←MM̃−1
b M−1

Set θ1:N
b ← Ab (ϑb − µb) + µ

end for

Concatenate the transformed samples θ1:N
b to give a Monte Carlo approximation

of the full posterior distribution π(ϑ|y)

return
{
θ

(1:N)
1 , . . . ,θ

(1:N)
B

}

consensus algorithm, with the guarantee of exactness in the Gaussian case. A visual

representation of SwISS is given in Figure 4.3.1 and pseudo-code for implementing

the algorithm is given in Algorithm 4.

4.4 Experiments

In this section we test the accuracy of the SwISS algorithm to merge batch posterior

samples drawn from a variety of posterior distributions. We consider various com-
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plex posterior geometries to highlight the difference between affine transformations

of posterior samples (i.e. SwISS) and averaging posterior samples (i.e. Consensus

Monte Carlo). We also investigate the efficiency of alternative merging algorithms

on popular statistical models with simulated and real data. We compare the SwISS

algorithm against the following popular competing algorithms from the literature:

• Consensus Monte Carlo (Cons) algorithm (Scott et al., 2016), as described

in Section 4.2.

• Semiparametric density estimation (SKDE)1 from Neiswanger et al. (2013),

where sub-posteriors are approximated semi-parametrically as described in

Hjort and Glad (1995).

• Average re-centring (AR) algorithm from Robert et al. (2019), which is a

special case of SwISS where Ab = I.

• Gaussian Barycenter (GB) algorithm (Srivastava et al., 2018), assuming a

Gaussian approximation for each inflated sub-posterior, the barycenter is the

geometric center of the inflated sub-posterior distributions.

We assess the accuracy of the above algorithms to combine batch posterior sam-

ples to form an approximation of the full posterior, comparing the merged approx-

imations against the full posterior, which is generated by sampling (in serial) from

the posterior conditional on the full data set. Accuracy of estimation of the poste-

1Implemented using the parallelMCMCcombine R package
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rior of the d-dimensional parameter, ϑ, is assessed with the following discrepancy

measures:

• Mahalanobis distance (Mah):

DMah :=
√

(µa − µf )>V−1
f (µa − µf ),

where Vf and µf are the variance and mean estimates of posterior samples

taken from the full data posterior using an MCMC algorithm. For a given pos-

terior approximation algorithm, e.g. SwISS, µa denotes the estimated mean.

• Mean absolute skew deviation (Skew):

η :=
1

d

d∑
i=1

|γ̂ai − γ̂
f
i |,

where γi = E[{(ϑi − µi)/V
1/2
ii }3]; i.e. η is the sum over components of the

third standardised moments.

• Integrated absolute distance (IAD):

DIAD :=
1

2d

d∑
j=1

∫
|π̂aj (θj)− π̂

f
j (θj)|dθj ∈ [0, 1],

the average of the integrated absolute differences between two kernel density

estimates of the marginal posteriors for each component, j, of ϑ: π̂fj , obtained
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Figure 4.4.1: Density plots showing the posterior reconstructions using the SwISS
algorithm against the Consensus algorithm on a rare Bernoulli target (left), warped
Gaussian (also known as the banana-shaped target) (middle) and bi-modal target
(right). In all cases the x-axis is ϑ1; for the left plot the y-axis is density, and for
the other two plots it is ϑ2.

from samples from the true posterior, and π̂aj using one of the approximate

merging algorithms (Chan et al., 2021).

4.4.1 Complex Posterior Geometries

One of the main motivations for using MCMC to sample from a posterior distri-

bution, rather than using deterministic approximations (e.g. Laplace), is that the

posteriors are often non-Gaussian. We consider three artificially generated posterior

distributions of dimension one or two (see Figure 4.4.1) which reflect a range of po-

tential posterior shapes and we compare SwISS against the consensus Monte Carlo

algorithm in these settings. Here φ(µ) denotes the probability density function of a

standard Gaussian N (µ, 1), for some µ ∈ R
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• Rare Bernoulli density

πb(ϑ1|yb) ∝ ϑ1(1− ϑ1)999, for each b ∈ {1, . . . , B},

This corresponds to a posterior with 1000 Bernoulli observations with a single

positive response and a uniform prior on the success probability, ϑ, which gives

a skewed posterior density.

• Warped bivariate Gaussian density

πb(ϑ|yb) ∝ φ(ϑ1)φ(ϑ2 + ϑ2
1), for each b ∈ {1, . . . , B},

where ϑ = (ϑ1, ϑ2).

• Mixture of bivariate Gaussian densities

πb(ϑ|yb) ∝ φ(ϑ− µ1) + φ(ϑ− µ2), for each b ∈ {1, . . . , B},

where ϑ = (µ1, µ2).

Both the SwISS and the consensus algorithm are guaranteed to be exact in

the case of merging Gaussian posterior samples, but it can be shown that both

algorithms still work well for a variety of non-Gaussian posteriors. However, one

of the drawbacks of the consensus algorithm is that averaging across batches of

125



sub-posterior samples can remove posterior features such as skewness and multi-

modality, as illustrated in Figure 4.4.1.

Figure 4.4.1 shows posterior density plots for each of the three models, where

full MCMC has been utilised to provide a ground truth approximation for the full

data posterior. The consensus Monte Carlo and SwISS approximations are based on

combing samples from B = 10 sub-posterior and inflated sub-posterior approxima-

tions, respectively. The results from these three test cases show that the consensus

algorithm struggles to approximate the full data posterior when the target density

exhibits non-Gaussian behaviours. The SwISS algorithm, which utilises affine trans-

formations of the inflated sub-posterior samples, rather than averaging, can produce

reliable approximations when the posterior is significantly non-Gaussian.

4.4.2 Scalability with parameter dimension

Typically, divide-and-conquer methods are advertised for use with tall data, i.e. a

large number of observations and up to a moderate number of parameters. Here, we

test the accuracy and computational speed of the merging algorithms as the number

of parameters grows.

Let ϑ|yb ∼ Nd(µb,Vb) for b ∈ {1, . . . , B = 10}, where d is the dimension of the

parameter space and let µb ∼ Nd(0, Id) and Vb ∼ W−1(5d, Id). Each sub-posterior

is Gaussian, with expectation and variance drawn respectively from Gaussian and
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inverse-Wishart distributions. For each experiment N = 5, 000 samples were drawn

from each sub-posterior and inflated sub-posterior. Using this model, the full data

posterior is tractable:

ϑ|y ∼ Nd

(
V

B∑
b=1

V −1
b µb, V

)
,

where V −1 =
∑B

b=1 V
−1
b . The following set of dimensions were used: d ∈ {5, 10, 20, 40, 80}.

Figure 4.4.2 shows that both the consensus Monte Carlo algorithm and SwISS

perform well with increasing dimension (as measured by integrated absolute dis-

tance) and are both computationally efficient. The semi-parametric KDE approach,

Gaussian barycenter and average re-centering approaches display reduced accuracy

(as measured by integrated absolute distance). Only SwISS and consensus are robust

to increasing the dimension of the parameter space. In terms of the computational

cost required to merge the posterior samples, all approaches are generally fast, with

the exception of the semi-parametric KDE approach.

4.4.3 Linear Mixed Effects Model

A natural way to extend the simple linear model is to introduce both fixed and

random effects. This extension can be particularly useful when data exhibit a hier-

archical dependency structure, for example, to cluster student test scores based on

classroom. Let yi,j ∈ Y ⊆ R (for i, j = 1, . . . , nj, and j = 1, . . . , n) be the response

variable, where nj is the number of observations for group j. The fixed and random

127



20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

dimension

IA
D

Consensus
SwISS
SKDE
AR
GB

20 40 60 80

0
50

10
0

15
0

20
0

25
0

dimension

av
er

ag
e 

tim
e 

(s
)

Consensus
SwISS
SKDE
AR
GB

Figure 4.4.2: The left plot shows integrated absolute distance for each method
for a different number of parameters. The right plot shows the mean time each
combination method took to obtain the samples from an approximate posterior.

effects are xi,j ∈ X ⊆ Rp and zj ∈ Z ⊆ Rr, respectively, and are related to the

response variable by

yi,j|β,αj, 1 ∼ Logistic (xi,jβ + zjαj, 1), αi ∼ Nr(0,Σ),

where β ∈ Rp and αi ∈ Rr are the fixed and random effect model coefficients and the

Logistic(a, 1) distribution has a cumulative distribution function of 1/(1+exp[−(x−

a)]). Our parameters of interest are then ϑ = (β,α,Σ), where Σ represents the vari-

ance of the random effects. We assume an inverse-Wishart distribution for the prior

of Σ, Σ ∼ W−1(ν, S), with ν = 5 and S = 5Ir, and we assumed β ∼ Np(0, 1000Ip).

We simulated a dataset that contains 200, 000 observations. We set the number

of groups n = 2000 and the number observations for each group nj = 100, for
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j = 1, . . . , n. The number of parameters for the fixed effects were set to p = 10,

with β0,i = (−1)(i−1) set for the simulation. The number of parameters for each

random effect was set to be r = 2, and we set

Σ0 =

 1 0.2

0.2 1

 ,

then αi were simulated independently from a Nr(0,Σ0) distribution. We included

an intercept term, that is xi,j,1 = 1 for all i, j, otherwise xi,j and zj were simulated

from independent Bernoulli(0.5) distributions.

The data were randomly partitioned into B = 10 batches by group, so that each

group only belonged to one batch. This was necessary since divide and conquer

methods assume independence between the batches. With a Gaussian observation

model for the yi,j, marginalisation over all of the random effects would be tractable.

The logistic observation model necessitates the use of a sampling scheme such as

MCMC.

We used the STAN software to sample from the full posterior and sub-posteriors

generating N = 5, 000 MCMC samples after an initial 1,000 sample burn in. Table

4.4.1 gives the discrepancy measures for each of the merging algorithms, averaged

over 10 random partitions of the data. The results show that all algorithms perform

well, with the exception of AR and the Gaussian barycenter, both on the Maha-

lanobis metric. The SwISS and Consensus algorithms are robust across the range
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Table 4.4.1: Discrepancy measures for the linear mixed effects model on the simu-
lated dataset. These measures were averaged over 5 random partitions of the data.
Estimated standard errors are given in brackets.

Algorithm Mah Skew IAD
SwISS 0.69 (0.14) 0.02 (<0.01) 0.06 (0.01)
Consensus 0.39 (0.13) 0.03 (0.01) 0.04 (0.01)
Average Re-centring 2.20 (0.31) 0.02 (<0.01) 0.13 (0.01)
Semi-parametric KDE 0.39 (0.08) 0.04 (<0.01) 0.04 (0.01)
Gaussian Barycenter 2.19 (0.31) 0.05 (0.01) 0.13 ( 0.01)

of metrics.

4.4.4 Logistic Regression Model

Logistic regression is a popular technique for modelling binary data, i.e. yi ∈ {0, 1}.

Features xi ∈ Rd, also known as covariates, that can indicate the classification out-

come are mapped onto the binary observations using a logit transformation, where

the outcome probability P(yi = 1) = exp(x>i ϑ)/
(
1 + exp(x>i ϑ)

)
, is the success

probability of a Bernoulli random variable. Our parameter of interest ϑ ∈ Rd is the

vector of coefficients.

We consider two data sets, the first is a synthetic data set which is designed

to simulate a scenario with rare but highly informative features. This data set

is similar to the one given in Scott et al. (2016). We simulate N = 100, 000

data points with d = 5 binary features with relative frequencies of xi = 1 being

(1, 0.02, 0.03, 0.05, 0.001) and the corresponding true parameter values are ϑ0 =

(−3, 1.2,−0.5, 0.8, 3). Due to the rarely occurring final feature, this can lead to
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largely differing variances across the sub-posteriors. For our experiments, we spilt

the data equally across B = 25 batches.

We also consider a real-world data set; the Hepmass data set2 from high-energy

particle physics where the response is an indicator for whether a signal was indicative

of an exotic particle being present as opposed to background noise. The data set

contains 27 real features which we augmented with an intercept term to give d = 28

parameters. The full data set contains 10.5 million responses, in this experiment

we considered the first N = 100, 000 and split the data across B = 20 batches.

This subset was considered as we needed the full-data MCMC samples to compare

against.

In each of the our experiments, the data were repeatedly partitioned nruns =

5 times with a Monte Carlo average of the discrepancy metrics given in Table

4.4.2. The STAN (Stan Development Team, 2016) software, which implements an

automatically-tuned version of Hamiltonian Monte Carlo sampling, was used as the

MCMC sampler and applied to the full posterior and sub-posteriors for each exper-

iment. Each sampler drew N = 10, 000 samples after a burn in of 1, 000 iterations.

The results in Table 4.4.2 show that SwISS and the Consensus algorithm out-

perform all of the others on the simulated data, whereas for the real example all of

the methods work well. The AR algorithm performs especially poorly on the syn-

thetic data example as the variance of the sub-posteriors varies across subposteriors,

2http://archive.ics.uci.edu/ml/datasets/HEPMASS
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Table 4.4.2: Discrepancy measures for the logistic regression model with simulated
and Hepmass data sets. Each metric was averaged over 5 runs. Estimated standard
error are given in brackets.

Dataset Algorithm Mah Skew IAD

Simulated data

SwISS 0.46 (0.30) 0.04 (0.01) 0.05 (0.03)
Consensus 0.48 (0.35) 0.05 (0.01) 0.06 (0.03)
Average Re-centring 5.46 (3.92) 0.13 (0.07) 0.20 (0.03)
Semi-parametric KDE 1.25 (1.11) 0.76 (0.33) 0.12 (0.06)
Gaussian Barycenter 5.42 (3.75) 0.04 (0.01) 0.20 (0.01)

Hepmass

SwISS 0.56 (0.05) 0.03 (<0.01) 0.03 (<0.01)
Consensus 0.35 (0.05) 0.03 (<0.01) 0.03 (<0.01)
Average Re-centring 0.47 (0.04) 0.03(<0.01) 0.02 (<0.01)
Semi-parametric KDE 0.36 (0.05) 0.03(<0.01) 0.03 (<0.01)
Gaussian Barycenter 0.46 (0.05) 0.03(<0.01) 0.02 (<0.01)

and the AR algorithm does not correct for this when the sub-posterior samples are

merged. The similarity of eprformance on the Hepmass data could be due to the

sub-posteriors all being close to Gaussian. We would expect both Consensus and

SwISS to work well in this setting as they are exact for Gaussian sub-posteriors,

and much faster to apply than nonparametric methods such as SKDE.

4.5 Conclusions

We have introduced a new method to merge posterior samples generated in par-

allel on independent batches of data. Our algorithm, SwISS, is fast, scalable to

high-dimensional settings, and accurate on a variety of test cases. The SwISS al-

gorithm, like the consensus Monte Carlo algorithm, is simple to apply and com-

petitive against popular alternative divide-and-conquer algorithms. SwISS also has
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the advantage that it does not require hyper-parameter tuning and is faster to

apply than many of the alternative divide-and-conquer algorithms given in the lit-

erature. We have provided theoretical support for our choice of affine transfor-

mations and shown that SwISS is exact in the case of merging inflated Gaussian

sub-posteriors. Code to recreate this work is available through the Github link:

https://github.com/CJohnVyner/SwISS
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Chapter 5

Further Work

In this Chapter we introduce three potential ideas for further work.

5.1 SwISS Bias Correction

Small sample bias might not usually be considered in big-data settings, however,

it can cause problems when parallelisation methods are used. With standard non-

parallelised Monte Carlo the bias in the estimator tends to zero as the number of

observations tends to infinity. This is not necessarily the case in the divide-and-

conquer framework. If we assume the data in each batch tends to infinity then the

bias will tend to zero. However, this assumption seems at odds with the point of

the divide-and-conquer methods; if we could analyse endless amounts of data on a

single computer core we would not have a need for these methods. A more natural
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assumption, would be to assume the maximum amount of data able to be processed

on a single batch is fixed. Then, to account for the number of observations, N , we

increase the number of batches, B, that is as N →∞, B →∞, and Nb ≤ K, where

Nb is the number of observations per batch b ∈ {1, . . . , B} for some known fixed

constant K ∈ N. Under this assumption the bias for the estimators for the first and

second moments of each subposterior distribution will always be present in some

models no matter how many observations there are. Here we will outline a potential

jackknife correction for SwISS to account for this bias (Shao and Tu, 2012).

SwISS averages the estimates of the first two moments of each inflated subposte-

rior distribution to obtain an estimate of the first two moments of the full-data pos-

terior distribution. Let µ̂b and V̂b be the inflated-subposterior distribution estimates

for the mean and variance respectively for b ∈ {1, . . . , B}. Recall the estimators for

the full-data posterior distribution:

V̂ −1 =
1

B

B∑
b=1

V̂ −1
b , µ̂ =

1

B
V̂

B∑
b=1

V̂ −1
b µ̂b.

Assume Vj = Vi for all i, j ∈ {1, . . . , B} so that µ̂ = 1/B
∑B

b=1 µ̂b. This assumption

would be restrictive, it is only made to make presenting the bias correction easier.
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We assume

µ̂b ≈ µT,b +
β1(ϑ)

Nb

+
β2(ϑ)

N2
b

+ . . . ,

≈ µT,b +
β1(ϑ)

Nb

,

where βk(ϑ) is the k-th term in the Taylor expansion of the bias, for k ∈ N and

µT,b is the true mean under the data-generating model for batch b. If we run a

Monte Carlo algorithm on each batch with a subset of the data you could estimate

β1(ϑ). Figure 5.1.1 shows a visual representation of the bias assuming the inverse

relationship with Nb. Bias in the plot is referring to β1(ϑ)/Nb. The point estimates

could be obtained from each batch then once the red curve is estimated, you could

correct the bias to what it would have been had the all the observations been used.
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Figure 5.1.1: An example of bias decreasing as number of observations increase.
Assuming bias is inversely proportional to N , the number of observations, it is
possible to estimate the curve in red. Given the red curve you could estimate the
bias at any point, such as the blue line.
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5.2 Post Sampling Correction

Many of the divide-and-conquer methods typically partition the data, generate sam-

ples from the subposterior (or inflated-subposterior) distributions, collect the sam-

ples and then use those samples to obtain samples from an approximation to the

full-data posterior distribution. A considerable benefit of this approach is that there

is very little communication between the cores. If the cores have to communicate

often there can be latency issues, which can vastly increase the computational cost.

However, there could be some benefit to a single pass back after the samples have

been combined.

One idea could be to use importance sampling to re-weight your combined sam-

ples. To use this approach you would need to know your proposal density, so it

would not be appropriate for most of the methods, but could be applied to methods

in which the posterior and proposal densities could be calculated.

5.3 Data Dependency Issues

Standard divide-and-conquer methods assume conditional independence between

each partition of data. However, there are a wide variety of models that do not

assume independence in the data, for example for example time series and spatial
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models. Recall that typically we write our posterior density as

π(ϑ|y) =
B∏
b=1

π(ϑ|yb),

where the posterior is a product of the subposterior densities. This allows us to

partition data and then run the MCMC in an embarrassingly parallel fashion. If we

were to include models where the likelihood model had the following form:

f(yj|ϑ, yj−1, . . . , yj−k),

where k ∈ N and j ∈ {k+1, . . . , n}, then when partitioning the data you would also

have to include data from the other batches to account for the dependency structure

in the data. Generalising the divide-and-conquer framework to include these types

of models could be an interesting area of future research.
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