
Multi-level bottleneck assignment problems:
complexity and sparsity-exploiting

formulations

Trivikram Dokka1 and Marc Goerigk∗2

1Advanced Analytics Group, Air Products Plc, United Kingdom
(trivikram.dokka@yahoo.co.uk)

2Network and Data Science Management, University of Siegen, Germany
(marc.goerigk@uni-siegen.de)

Abstract

We study the multi-level bottleneck assignment problem: given a weight matrix,
the task is to rearrange entries in each column such that the maximum sum of values
in each row is as small as possible. We analyze the complexity of this problem in a
generalized setting, where a graph models restrictions how values in columns can be
permuted. We present a lower bound on its approximability by giving a non-trivial
gap reduction from three-dimensional matching to the multi-level bottleneck assign-
ment problem. We present new integer programming formulations and consider the
impact of graph density on problem hardness in numerical experiments.

Keywords: combinatorial optimization; bottleneck assignment; approximation;
computational complexity

1 Introduction

1.1 Problem definition

The following axial assignment problem arises to scheduling, rostering and finance ap-
plications: Given are m pairwise disjoint sets S1, S2, . . . , Sm each of cardinality n, and
a weight w(s) ∈ N for each s ∈ S where S = ∪i∈[m]Si and [m] := {1, 2, . . . ,m}. The
set S can be seen as the node-set of an m-partite graph that has a given set of arcs
E =

⋃
i∈[m−1]Ei, where Ei = {(u, s)| u ∈ Si, s ∈ Si+1} connects nodes from Si with

nodes from Si+1. An m-tuple D = (s1, s2, . . . , sm) is feasible if si ∈ Si for i ∈ [m] and
(si, si+1) ∈ E. The weight of an m-tuple D equals w(D) =

∑
s∈D w(s). The problem is

∗Corresponding author.

1

to find a partition of S into n feasible m-tuples D1, D2, . . . , Dn such that maxj∈[n]w(Dj)
is as small as possible. We refer to this partition of S into {D1, D2, . . . , Dn} as a solution
M , and the weight w(M) of a solution M = {D1, D2, . . . , Dn} equals maxj∈[n]w(Dj).
This problem is known as the multi-level bottleneck assignment problem (MBAP). The
MBAP with m = 2 is a special case of the classical bottleneck assignment problem and
belongs to a class of high dimensional (axial) generalization of the well-known assign-
ment problem, see Burkard et al. (2009). Therefore, MBAP is a hypergraph version of
bottleneck assignment where the bottleneck weight is taken over all hyperedges. It is
often seen through the lens of permutations of entries within the columns of a matrix
(under constraints), such that the maximum row sum is minimized.

An example instance of the MBAP is illustrated in Figure 1. There are m = 3 layers,
containing n = 3 nodes each. Next to each node, we indicate its weight.

layer 1 layer 2 layer 3

3

5

4

8

5

4

3

6

4

S1 S2 S3

s11

s12

s13

s21

s22

s23

s31

s32

s33

Figure 1: Example MBAP instance.

Note that there are only two feasible solutions in this instance. The first solution
consists of the partition {(s11, s22, s31), (s12, s23, s33), (s13, s21, s32)} with weight

max{3 + 5 + 3, 5 + 4 + 4, 4 + 8 + 6} = max{11, 13, 18} = 18.

The second solution consists of the partition {(s11, s21, s32), (s12, s22, s31), (s13, s23, s33)}
with weight max{17, 13, 12} = 17, and is hence optimal.

1.2 Related literature

The MBAP has connections to many important problems in scheduling and finance. The
MBAP was first introduced and studied by Carraresi and Gallo (1984), motivated by
an application in bus driver scheduling. Special cases of the problem have been studied
even before Carraresi and Gallo (1984). A particularly important special case which
we call the complete-MBAP, as referred to in Dokka et al. (2012), is when each Ei is
complete. The approximability of this special case has been studied by Hsu (1984) and by

2

Coffman Jr and Yannakakis (1984). For the complete-MBAP, Hsu (1984) gave a (2− 1
n)-

approximation algorithm that runs in O(mnlogn), while Coffman Jr and Yannakakis
(1984) gave a (3

2 −
1

2n)-approximation algorithm that runs in O(n2m). For the case
where m = 3, Hsu (1984) gave a 3

2 -approximation algorithm that runs in O(nlogn), and
a 4

3 -approximation algorithm that runs in O(n3logn).

Another important problem that the MBAP contains as a special case is the bi-
criteria scheduling problem (BCSP) in which one tries to find a schedule of jobs on
parallel machines which has minimum makespan over all flow time optimal schedules on
identical parallel machines. Here makespan indicates completion time of last job and
flowtime indicates total time that jobs spend in the system. To see the connection, a
characteristic of BCSP is that jobs (after ordering according to non-increasing processing
times) can be grouped, referred to as rank groups of size at most equal to number of
machines, where jobs in a lower ranked group have higher processing time than any job
in any higher ranked group, see Ravi et al. (2016). A schedule is flow time optimal only
if on every machine for any two jobs s1 and s2, s1 precedes s2 if and only if group of s1

is lower than s2. This implies each rank group can be seen as equivalent to a set in S in
MBAP, with cardinality of largest rank group being equal to the number of machines.
Note that this leads to a special case of MBAP because this leads to an instance where
w(s1) ≥ w(s2) when s1 ∈ Si and s2 ∈ Sj with j > i. This problem was first studied
in 1976 by Coffman Jr and Sethi (1976), where a 5

4 -approximation algorithm is given.
Eck and Pinedo (1993) give a 28

27 -approximation for the two machine case. More recently
Ravi et al. (2016) proved the Coffman and Sethi conjecture on the performance of (a
natural extension) of the longest processing time algorithm to this bi-criteria scheduling
problem. We note that the greedy algorithm often used for the MBAP when applied to
the above special case of bi-criteria scheduling can be interpreted as an extension of the
longest processing time list scheduling algorithm.

The MBAP is an important special case of the parallel machine scheduling with con-
flicts (PMC) which has recently received attention due to its practical importance, see for
example the ROADEF challenge furnished by Google (ROADEF, 2011). We note that
the conflict graphs used in this stream of literature are the complements to the layered
graphs in our setting. In other words, conflict graphs capture the notion of incompatible
jobs whereas in our setting the graph captures the notion of compatible jobs. Indeed,
the associated conflict graph of layered graph in MBAP also will have layered structure.
To draw the parallel between MBAP and PMC, similar to BCSP, all jobs that are to-
gether in a m-tuple should be seen as being scheduled on same machine. Bodlaender
et al. (1994) studied hardness and approximation for specific conflict graphs. Integer
programming formulations and exact algorithms are still to receive good attention, see
Kowalczyk and Leus (2017). Our work both complements and extends the research on
PMC. The MBAP is also connected to yet another variant of PMC identified as parallel
machine scheduling with bags, see Das and Wiese (2017) and Page and Solis-Oba (2018).

The MBAP also finds application in estimating variance and VaR bounds by inferring
stochastic dependence between many random variables in quantitative finance, see Haus
(2015). Here, each set Si in MBAP is a sample from the known marginal distribution

3

of the underlying random variable and a solution to MBAP expresses the dependence
structure between random variables. The problem is inherent to the concepts of joint
and completely mixability of matrices, see Wang and Wang (2011, 2016). A number of
studies explored complete-MBAP to bound risk measures, see Puccetti and Ruschendorf
(2012), Boudt et al. (2017), Bernard et al. (2017) and Bernard et al. (2018a). More
recently problems closely related to MBAP have been explored within this literature
stream, see Bernard et al. (2021) and Bernard et al. (2018b).

More generally, bottleneck assignment problems have also been studied within other
applications, see Klinz and Woeginger (1996) and Goossens et al. (2010). A classification
of bottleneck problems into two classes is based on graph theoretical interpretation.
In the first class, problems are graph-based, while in the second class, the underlying
constraint is defined over a hypergraph. In graph-based problems a single edge plays the
role of the bottleneck, whereas in hypergraph-based problems it is a hyperedge. There
are many graph-based bottleneck problems studied including the bottleneck assignment
problem and p-center problems, see Çalık et al. (2019). Hypergraph-based problem
generalize the graph-based problems. This generalization makes these problems harder
to extend radius-type approaches that work well for graph-based bottleneck problems.

1.3 Contributions

While considerable work is dedicated to understanding the complexity of the MBAP
when all edge sets are complete, not much is known about the case when the edge sets
are arbitrary. The only known result is from Dokka et al. (2012), which gives a lower
bound of 2 ·OPT on approximability in the case when m = 3 and shows a simple greedy
approach to achieve a matching upper bound. The complete-MBAP is shown to admit
a PTAS, first shown in Dokka et al. (2012), while the simple greedy approach is already
known to yield a 2-approximation in Hsu (1984). Given that the greedy approach gives
a constant factor approximation in the complete case, it is tempting to believe a similar
approach may be used to construct a constant factor approximation for the general case.
As our first contribution we show that there is no polynomial-time algorithm which
approximates the MBAP to within a constant factor of the optimum objective value,
by giving a non-trivial gap reduction from three-dimensional matching (3DM). More
specifically, we prove that the existence of a polynomial-time ((u+1)−ε)-approximation
algorithm for the MBAP with m = 3u implies P = NP .

The hardness of MBAP is tightly linked with the sparsity of the underlying graph.
For example the complexity of the problem changes going from complete-MBAP to
partially complete case when m = 3. The instance constructed in Section 2 to prove the
inapproximability result will further establish that sparsity increases the hardness of the
problem. Graph sparsity is a natural aspect in problems with conflicts, as an example,
machine scheduling with conflicts. Naturally, as the sparsity increases the feasibility of
the instance may not be guaranteed. On the other hand very sparse instances may be
expected to be easy given that very few feasible solutions need to be explored, provided
they exist. This naturally gives rise to the idea of integer programming (IP) models
which explicitly make use of graph sparsity. It is conceivable that for different ranges

4

of graph sparsity different models are useful, with tighter relaxations and may even be
solvable using commercial solvers such as CPLEX. Although it is not uncommon for
combinatorial problems to have multiple IP formulations, however, we are not aware of
any studies which explore the connections to the underlying graph density.

As our second contribution we give a new integer programming formulation and show
that this formulation has inherent advantages manifested by graph sparsity. We illus-
trate using computational experiments that dense instances result in smaller IP gaps
than sparse instances. Furthermore, the new formulation offers significant benefits com-
pared to a standard formulation, which uses variables for nodes instead of edges. In
graph based bottleneck problems, an attractive feature is that the candidates for bottle-
neck value are at most equal to number of edges of graph. Therefore, the set of candidate
values can be pre-computed and can be used within a search framework or to construct
formulations such as radius-based formulations (see Çalık et al. (2019)). In hypergraph
bottleneck problems, like MBAP, computing such a candidate set is hard even for slightly
larger m > 2 as it amounts to calculating the weight of each hyperedge. Hence, radius-
based formulations are hard to extend to MBAP. On the other hand, both graph-based
and hypergraph-based problems can be modelled as set covering/partitioning type prob-
lems. A set partitioning formulation for MBAP can be seen as aggregate formulation,
as it explicitly models variables on hyperedges (m-tuples) as against dis-aggregate or
decomposed type formulations which are more compact owing to variables defined over
edges instead of hyperedges. However, aggregate formulations grow very large as the
dimension of the problem (m) increases from graphs to hypergraphs. Our new proposed
formulation can be seen as a semi-aggregate formulation which combines advantages
from both dis-aggregate and aggregate formulations.

The rest of the paper is structured as follows: We give the inapproximability result for
the general case in Section 2. In Section 3, we present integer programming formulations.
These methods are compared experimentally using random MBAP instances in Section 4.
Section 5 summarizes our findings and points out further research questions.

2 Inapproximability of the arbitrary case

In Hsu (1984) it is shown that for the complete-MBAP the natural sequential heuristic
achieves a 2-approximation. It is tempting to believe that this may be true even in the
arbitrary case. We show that the MBAP for a fixed m > 3 cannot be approximated
within a factor of bm3 c + 1 unless P = NP . To do so, we show that a YES-instance of
3-dimensional matching (3DM) corresponds to an instance of the MBAP with weight 1,
whereas a NO-instance corresponds to an instance of our problem with weight m

3 + 1.
Then, a polynomial-time approximation algorithm with a worst case ratio strictly less
than m

3 + 1 would be able to distinguish the YES-instances of 3DM from the NO-
instances, and this would imply P = NP .

Let us first recall the 3-dimensional matching problem:
Instance: three sets X = {x1, ..., xq}, Y = {y1, ..., yq}, and Z = {z1, ..., zq}, and a

subset of tuples T ⊆ X × Y × Z.

5

Question: Does there exist a subset T ′ of T such that each element of X ∪Y ∪Z is in
exactly one triple of T ′?

Let the number of triples be denoted by |T | = p. Further, let the number of triples in
which element y` occurs be denoted by #occ(y`), ` = 1, 2, . . . , q.

Starting from an arbitrary instance of 3DM, we now build a corresponding instance
of the MBAP by specifying sets Si, edges E, and the weights w. Before we explain
the construction we first explain the basic building blocks and gadgets which are pieced
together to form an MBAP instance.

Example 2.1. To illustrate our construction, we use the following example instance of
3DM:

X = {x1, x2}, Y = {y1, y2}, Z = {z1, z2}
T = {t1, t2, t3}
t1 = (x1, y1, z1), t2 = (x2, y2, z2), t3 = (x1, y2, z1)

q = 2, p = 3, d = p− q = 1

#occ(y1) = 1, #occ(y2) = 2

2.1 Building sub-blocks

There are two types of nodes in the resulting MBAP instance, which we call main and
dummy nodes.

The main nodes in each set in the MBAP instance are partitioned into sub-blocks of
nodes. Each sub-block is of cardinality q, p, or d := p− q. We use the following types:

• X-sub-blocks, where each node corresponds to one element in X (cardinality q)

• Z-sub-blocks, where each node corresponds to one element in Z (cardinality q)

• Y -sub-blocks, where #occ(yi) − 1 many nodes correspond to one of each element
yi ∈ Y (cardinality d)

• T -sub-blocks, where each node corresponds to one triple in T (cardinality p)

In our construction, we may refer to two sub-blocks as being connected. When this is
the case, the corresponding edge set depends on the type of sub-blocks:

• X-sub-blocks are connected to T -sub-blocks by connecting a node in the X-sub-
block corresponding to an element xi ∈ X with those nodes in the T -sub-block
corresponding to tuples that contain xi

• Y - and Z-sub-blocks are connected to T -sub-blocks in the same way

• two T -sub-blocks are connected by connecting each two nodes corresponding to
the same tuple

6

The role of the dummy nodes and their exact number will be apparent when we explain
the connections between gadgets in the later sections.

Example 2.2 (continued). In our 3DM example, X- and Z- sub-blocks have 2 nodes
each. A Y -sub-block has only one node, corresponding to y2. T -sub-blocks have three
nodes. Figure 2 shows the different possibilities how these sub-blocks can be connected.

x1
x2

t1
t2
t3

(a) Connecting X- and T -
sub-blocks.

z1
z2

t1
t2
t3

(b) Connecting Z- and T -
sub-blocks.

y2

t1
t2
t3

(c) Connecting Y - and T -
sub-blocks.

t1
t2
t3

t1
t2
t3
(d) Connecting T - and T -

sub-blocks.

Figure 2: Connecting sub-blocks in the example.

2.2 Gadget construction

The construction is mainly based on two gadgets G0 and G1, which are both MBAP
instances with m = 3. Each gadget consists of multiple blocks j, where each block is
made up of three sets V #,j

1 , V #,j
2 , and V #,j

3 for G#, # ∈ {0, 1}.
Blocks and connections within blocks: Each block j of G#, # ∈ {0, 1}, has three times

2p nodes grouped as follows:

• in V #,j
1 , there is a Z-sub-block, a Y -sub-block, and a T -sub-block

• in both V #,j
2 and V #,j

3 , there are two T -sub-blocks

The head T -sub-block in V #,j
2 is connected to the Z-sub-block and Y -sub-block in V #,j

1 ,

and to the head T -sub-block in V #,j
3 . The tail T -sub-block in V #,j

2 is connected to the

tail T -sub-block in V #,j
1 , and to the head and tail T -sub-blocks in V #,j

3 .

Example 2.3 (continued). Figure 3a illustrates how blocks V #,j
1 , V #,j

2 , and V #,j
3 are

constructed.

7

Y

T

Z

T

T

T

T

V#j
1 2V#j

3V
#j

(a) Illustration of jth block
in G0 and G1. A sin-
gle connection represents
multiple edges as indi-
cated in Figure 2.

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

G0 G1
(b) Connections between blocks. The highlighted sub-

blocks have nodes with node weights equal to 1.

Figure 3: Illustration of block construction and connection.

8

Connections between blocks: We denote by height the number of blocks in a gadget.
For 1 ≤ j < height, the tail T -sub-block in V #,j

3 is connected to head T -sub-block of

V #,j+1
2 . Note that this way, only adjacent blocks are connected by edges.
Weights: Note that in the construction so far, gadgets G0 and G1 are identical. They

differ with respect to their weights. The head T -sub-block in V 0,j
3 and the Z-sub-block

in V 0,j
1 and V 1,j

1 have all nodes weight equal to 1 for all j. All other nodes are weighted
0.

Example 2.4 (continued). Figure 3b shows how blocks are connected. Sub-blocks with
weight 1 are highlighted with dashed lines.

2.3 Main construction

2.3.1 Overview

We intend to show that it is not possible to approximate the MBAP within bm3 c + 1
of optimum, for every fixed m. The exact structure of the MBAP instance constructed
from 3DM depends on m. We assume that m = 3u for an integer u. We put together
(u − 1) many G1 gadgets and one G0 gadget, each of different height, in that order to
create an MBAP instance. Since each gadget is itself an MBAP instance with three
columns, the resulting instance is an MBAP instance with m = 3u. For the ease of
explanation we refer to each triple (Si, Si+1, Si+2) as a layer, i = 1, 4, 7, . . . , 3u− 2. The
number of layers is equal to u. While we count the sets starting from left to right, we
count layers from right to left. That is, layer k + 1 is placed to the left of layer k. The
height of the gadget in layer k ∈ [u] is equal to qk−1pu−k blocks. Before we explain
how these gadgets are connected in sequence we need some additional blocks of nodes
as follows:

Example 2.5 (continued). In our example, we would like to use the 3DM instance to
construct an MBAP instance with m = 6. This means that u = 2. Hence, we have one
G1 gadget and one G0 gadget. The height of the first (G0) gadget is q0p1 = 3, and the
height of the second (G1) gadget is q1p0 = 2.

2.3.2 Non-gadget nodes

X-sub-blocks: We have one X-sub-block in every Si of each layer k. These are connected
as follows:

• the X-sub-block in S3k is connected to the head T -sub-block of V #,1
2 (first block

of G# in the kth layer) in S3k−1,

• the X-sub-block in S3k−1 is connected to the tail T -sub-block of V #,height
3 (in the

last block of G# in the kth layer) in S3k,

• the X-sub-block in S3k−2 is connected to the X-sub-block of S3k−1 element-wise,

9

where # takes a value 0 in layer u and 1 for all other layers.
Dummy blocks: Each Si has an additional set of nodes apart from gadget and non-

gadget sub-blocks. We refer to these nodes as dummy nodes. The number of dummy
nodes in layer k is equal to sum of non-dummy nodes in all other layers. The dummy
nodes in layer k are evenly distributed over the three columns S3k, S3k−1 and S3k−2. All
dummy nodes in S3k are connected to all dummy nodes in S3k−1, and all dummy nodes
in S3k−1 are connected to all dummy nodes in S3k−2. All dummy nodes have a weight
equal to 0.

2.4 Connecting gadgets

There are two types of edges connecting gadgets: edges to dummy nodes, and edges
between Z- and T -sub-blocks. Edges to dummy nodes in layer k are constructed as
follows:

• Every node from every Y - and T -sub-block in S3k−2 is connected to every dummy
node in S3(k+1) of the neighboring layer k + 1.

• Every node from every bottom T -sub-block in S3k is connected to every dummy
node in S3(k−1)−2 of the neighboring layer k − 1.

Nodes in Z-sub-blocks of layer k are connected to T -sub-blocks in S3(k+1) of next layer

k+ 1 in the following way. Blocks in layer k are grouped into pu−k groups of qk−1 blocks
each. In each group, there are thus qk−1 Z-sub-blocks with q nodes each.

Figure 4 provides an example with q = 2, p = 3, and u = 3. Layer k = 1 has 9 blocks
that are partitioned into 9 groups of one block each. Layer k = 2 has 6 blocks that are
partitioned into 3 groups of 2 blocks each. Finally, layer k = 3 has 4 blocks that form a
single group.

Using p groups at a time, we connect the `th z-node to all nodes of the `th top T -sub-
block in the neighboring layer. In Figure 4 we see that for the top p blocks of the first
layer, always the first node of each Z-block is connected to the top T -sub-block of the
first block. The second node of each Z-block is connected to the top T -sub-block of the
second block. In the first group of the middle layer, there are two Z-sub-blocks with
two nodes each. These four nodes are connected to the four blocks of the third layer.
In the same way, the four nodes of the second and the four nodes of the third group are
connected to the four blocks of the third layer.

Example 2.6 (continued). We show the fully constructed MBAP instance resulting from
the example 3DM instance in Figure 5. As there are two layers, Y - and T -sub-blocks on
the left of the right layer are connected to dummy nodes on the right of the left layer.
Bottom T -sub-blocks on the right of the left layer are connected to dummy nodes on the
left of the right layer. Z-sub-blocks of the right layer are connected to T -sub-blocks on
the right of the left layer as indicated.

10

layer 1layer 2layer 3

Figure 4: Connecting gadgets by edges between Z- and T -sub-blocks.

2.5 Instance analysis

We first note that the size of instance grows with m, but is bounded by a polynomial
when m is fixed.

Lemma 2.1. The number of nodes in the constructed instance is polynomial in p, q for
each fixed m.

Proof. The total number of nodes in layer k is

3q + 6pqk−1pu−k +
∑

k̄∈[u];k̄ 6=k

(3q + 6pqk̄pu−k̄) < u(3q + 6pu+1),

which is polynomial for constant u = m/3.

Lemma 2.2. Consider only the following construction: The first column contains a
Z- and Y -sub-block. These are connected to a T -sub-block in the second column. This
T -sub-block is connected to an X-sub-block in the third column, and also to a dummy
sub-block with the same size as the Y -sub-block. Then it holds that the corresponding
3DM instance is a YES instance if and only if it is possible to match all nodes of the
Z-sub-block through the T -sub-block with the X-sub-block.

11

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

X

XX

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

Y

T

Z

T

T

T

T

X

XX

D

D

D D

D D

S1 S2 S3 S4 S5 S6

layer k=2 layer k=1

Figure 5: Fully constructed MBAP instance. Dashed edges represent connections to
dummy blocks.

12

Proof. Let 3DM be a YES instance, and let T ′ ⊆ T be the choice of tuples in an optimal
solution. We can build a feasible solution to the corresponding MBAP by matching the
pairs of X and Z elements contained in T ′ through the respective T -sub-block nodes.
Remaining nodes in the Y -sub-block are matched with the remaining nodes in the T -
sub-block and the dummy-sub-block.

On the other hand, if the MBAP instance allows a feasible matching of all nodes of
the Z- and X-sub-block, then one can create a feasible solution to the 3DM instance by
only choosing the corresponding nodes of the T -sub-block that are traversed.

Example 2.7 (continued). Figure 6 shows the construction described in Lemma 2.2 for
our example 3DM instance.

x1
x2

z1
z2

y2

Figure 6: Construction in Lemma 2.2.

Note that the 3DM instance is indeed a YES instance, and it is possible to match the
Z- and X-sub-block using t1 and t2 in this example.

Lemma 2.3. In every layer the following is true for any feasible solution of the MBAP
instance: The matching between head T -sub-blocks in V #,j

2 and V #,j
3 ; and tail T -sub-

blocks in V #,j
2 and V #,j

3 is exactly identical in every block j of G#, where # is 0 in the
first layer, and 1 in every other layer.

Proof. First we observe that the degree of each node in V #,j
2 and V #,j

3 in the bipartite

graph with node-sets
⋃
j V

#,j
2 and

⋃
j V

#,j
3 is equal to 2. Since the X-sub-block in S3k

is only connected to the head T -sub-block of V #,1
2 and two T -sub-blocks are connected

node-wise, this implies that

• the head T -sub-block in V #,j
3 is connected to the tail T -sub-block of V #,j

2 in the
same way in every j,

• the tail T -sub-block in V #,j
3 is connected to the head T -sub-block of V #,j+1

2 in the
same way in every j < height(G#).

Proposition 2.1. If 3DM is a NO instance then in any solution of the resulting MBAP
instance the following is true: In every layer, there is an ` ∈ [q] such that the `th node

in the Z-sub-block in V #,j
1 in G# is matched with the head T -sub-block in V #,j

3 in G#,
for all j = 1, 2, . . . , height(G#).

13

Proof. Let Γ be the nodes in head T -sub-block in V #,j
3 which are matched with the head

T -sub-block in V #,j
2 . Lemma 2.3 shows that the sets Γ are the same in each j. Since

it is a NO instance there must exist a z ∈ Z such that all triple nodes intersecting z
are contained in Γ. If not, this implies that all nodes in the Z-sub-block in V #,1

1 can
be fully matched with the X-sub-block, which is contradiction by Lemma 2.2. Since
the node corresponding to z in the Z-sub-block of V #,j

1 is only connected to the head

T -sub-block in V #,j
2 and only to nodes of Γ, the statement follows.

We denote by ζj,`k the set of z-nodes in layer k over all groups, which are within block

j ∈ [qk−1] in position ` ∈ [q]. For example in Figure 4, the set ζ2,1
2 denotes those nodes

in the middle layer that are in the first position of the second block in each group.

Proposition 2.2. If 3DM is a NO instance then the following is true for the resulting
MBAP instance: In any partial solution in sets combining layers 1, 2, . . . , k, there is an
` ∈ [q] and j ∈ [qk−1], such that the weight of the 3k-tuples containing nodes of set ζj,`k
is equal to k + 1.

Proof. Following Proposition 2.1, there is an ` ∈ [q] such that in every j ≤ height(G#),

the `th node is connected to head T -sub-block of V #,j
3 . The proof is by induction.

Suppose that the statement is true up to layer k − 1, that is, there exists a block in the
lowest section of layer k− 1 with at least one element in Z-sub-block in a 3(k− 1)-tuple

with weight k. Since head T -sub-block of V #,j
3 is only connected to ζ sets constructed

from Z-sub-blocks in layer k− 1, one of which by construction has all nodes in 3(k− 1)

tuples with weight k; and weight of each node in Z-sub-blocks of V #,j
1 is 1, it follows

that at least one node in some block of lowest section of layer k will be in a 3k-tuple
with weight k + 1.

It remains to show that statement is true in the base case, that is, for layer 2. Since
the all nodes in Z- and head T -sub-blocks in each block of G0 have weight 1, from
Proposition 2.1, the `th node in Z-sub-block in each block of G0 is in a triple with
weight 2 and now the statement for base case follows by construction of ζ sets.

Proposition 2.3. If the instance of 3DM is a YES instance, then there exists a solution
in the corresponding MBAP instance with weight equal to 1.

If the instance of 3DM is a NO instance, then any solution in the corresponding MBAP
instance has weight equal to u+ 1.

Proof. YES case: To prove the statement we need to show that each 1 is not matched
with another 1 in the same 3k-tuple. By Lemma 2.2, in every layer the Z-sub-block in
V #,1

1 is fully matched with the X-sub-block. Recall that matching within gadgets is com-

pletely defined by the matching between the Z-sub-block in V #,1
1 and theX-sub-block by

construction. Using Lemma 2.2, we match

• the X-sub-block in S3k of layer k, for all k > 1, to the dummy block in S3(k−1)−2,

• all nodes in the tail T -sub-block in S3k of layer k, k > 1, to the dummy block in
S3(k−1)−2,

14

• all nodes except the Z-sub-block in S3k−2, k < u, to the dummy block in S3(k+1).

To complete the proof it is enough observe that each sub-block in G# is matched with
a matching sub-block in the adjacent layer and the X-sub-blocks are matched only with
dummy blocks in this matching.

NO case: From Proposition 2.2, it follows that there exists a 3u-tuple with weight
u+ 1.

Using the above (gap) reduction and Proposition 2.3, we can now state the following
result

Theorem 2.1. The MBAP with m = 3u cannot be approximated to within a ratio u+ 1
unless P=NP.

Remark 2.1. Note that, similar to Dokka et al. (2012), the MBAP instance constructed
here has weights only from {0, 1}. Clearly, this is the simplest possible weight set which
implies the hardness of the problem originates mainly from the edge-set of the underlying
graph. This observation was already made in Dokka et al. (2012) in the case when m = 3.
In fact it is easy to see that when weights are taken from {0, 1} then the PTAS for the
case when edge sets are complete can be used to construct a PTAS for the case when
every second edge set is complete. We conjecture that a similar approach can be used
with a general weight set. Since our interest in the paper is in the complexity of the
general case we leave out the study of these special cases for future study.

3 Integer programming models

3.1 Motivation

The construction in the proof of Theorem 2.1 is delicate and results in a sparse graph
structure. Recalling that the MBAP can be seen as a special case of parallel machine
scheduling with conflicts (PMC), our observation connecting the hardness to the sparsity
of the underlying graph contrasts with similar observations in the PMC literature. For
example, Kowalczyk and Leus (2017) observes that the PMC problem can be hard with a
dense conflict graph (recall that the conflict graph is the complement of the layered graph,
where an edge between nodes corresponding to jobs implies they are incompatible).
However, this increasing hardness mainly comes from the feasibility itself, whereas in
our case feasibility of a given instance is easy to check given the layered structure of
the graph. A second advantage of the layered structure is that symmetry of solutions,
which makes natural integer programming models impractical for the PMC problem, is
easier to handle in the case of the MBAP. This suggests that the special structure may
be used to design integer programming models which can make better use of sparsity.
This motivates the study in this section. More specifically, we present two IP models in
this section and illustrate using experiments that there exists a partition of the range of
graph sparsity where one formulation dominates the other.

15

Let G = (V,A) denote the layered graph underlying the MBAP. Without loss of
generality, we assume G to be directed from the first layer towards the last layer. We
denote by V j the nodes in layer j ∈ [m]. Every node v = (i, j) ∈ V can be represented
by its node number i ∈ [n] and layer number j ∈ [m]. Let δ+(v) ⊆ V j+1 contain the
successor nodes of v ∈ V j for j ∈ [m − 1]. Analogously, we denote by δ−(v) ⊆ V j−1

the predecessor nodes of v ∈ V j for j ∈ {2, 3, . . . ,m}. In the following, we refer to the
weights in sets as a weight matrix and denote it as wij for i ∈ [n], j ∈ [m]. That is, wij
refers to the weight of item number i in layer j. Note that while we use two indices, this
notation still refers to a single node.

3.2 Model 1

Our first model uses a binary variable xijk for each i, k ∈ [n] and j ∈ [m] that is equal to
one if and only if tuple k contains element i in level j. Let D be a variable modeling the
largest weight over all tuples. Then, the MBAP can be written as the following integer
programming model:

min D (3.1)

s.t.
∑
i∈[n]

xijk = 1 ∀j ∈ [m], k ∈ [n] (3.2)

∑
k∈[n]

xijk = 1 ∀i ∈ [n], j ∈ [m] (3.3)

∑
i∈[n]

∑
j∈[m]

wijxijk ≤ D ∀k ∈ [n] (3.4)

∑
(i′,j+1)∈δ+(i,j)

xi′,j+1,k ≥ xijk ∀i, k ∈ [n], j ∈ [m− 1] (3.5)

xi1i = 1 ∀i ∈ [n] (3.6)

xijk ∈ {0, 1} ∀i, k ∈ [n], j ∈ [m] (3.7)

Objective (3.1) is to minimize the largest weight. Constraints (3.2) and (3.3) ensure
that each tuple uses exactly one element from each set, and each element in each set is
used exactly once, respectively. By Constraint (3.4), we enforce D to become equal to
the largest weight over all tuples in an optimal solution. Constraint (3.5) models the
connectivity of the graph: If (i, j) is used, then it is only possible to use elements (i′, j+1)
that are in δ+(i, j). Finally, the purpose of Constraint (3.6) is to break the symmetry
in the solution variables. Notice that this is very similar to the formulation of the PMC
problem. However, there are key differences due to the special layered structure, due to
which the constraints usually referred to as symmetry breaking constraints often used
to strengthen the formulation for the PMC problem, see Kowalczyk and Leus (2017),
are not applicable to the MBAP.

Note that this model has O(n2m) many variables and constraints. In particular, its
size does not depend on the density of the graph G.

16

3.3 Model 2

The main focus of this paper are MBA problems where the edge sets of G are not
complete. As the theoretical analysis indicates, such problems are harder than their
complete counterparts. The model we present here takes advantages of the potential
sparsity of an instance.

For each e ∈ E, we define ce as the weight of the node that this edge points to, i.e.,
ce = wt(e) for e = (s(e), t(e)). We introduce binary variables xek modeling whether the
path number k ∈ [n] uses edge e ∈ E. The following mixed-integer programming model
can then be used to formulate the MBAP:

min D (3.8)

s.t wk1 +
∑
e∈E

cexek ≤ D ∀k ∈ [n] (3.9)∑
e∈δ+(v)

xei = 1 ∀v = (i, 1) ∈ V 1 (3.10)

∑
e∈δ+(v)

xek =
∑

e∈δ−(v)

xek ∀j ∈ {2, 3, . . . ,m− 1}, v ∈ V j , k ∈ [n] (3.11)

∑
k∈[n]

∑
e∈δ−(v)

xek = 1 ∀j ∈ {2, 3, . . . ,m}, v ∈ V j (3.12)

∑
k∈[n]

∑
e∈δ+(v)

xek = 1 ∀j ∈ {1, 2, . . . ,m− 1}, v ∈ V j (3.13)

xek ∈ {0, 1} ∀e ∈ E, k ∈ [n] (3.14)

As before, our objective is to minimize the largest path weight, denoted by the variable
D. By Constraint (3.9), we ensure that D equals the largest such weight in an optimal
solution (recall that wk1 refers to the weight of the kth item in the first layer). We
enforce that path k starts at node (k, 1) using Constraint (3.10). This is for the purpose
of symmetry breaking, but also allows us to formulate Constraint (3.9) using costs ce
that only depend on the node edge e points to. Constraint (3.11) is a classic network
flow constraint to ensure that the x-variables model paths. Finally, Constraints (3.12)
and (3.13) ensure that each node is visited by exactly one path. Note that only one
of the two constraints would be required; we use both constraints to strengthen the
formulation.

The advantage of this model is that it uses O(|E|n) many variables instead of O(n2m)
many variables as in the previous model. The number of constraints is O(n2m) as well.
In general, we have |E| ∈ O(n2m), i.e., this model requires more variables on dense
instances, but has the same asymptotic size for sparse instances, where |E| ∈ O(nm).
To the best of our knowledge such a formulation is also not investigated in the context
of the PMC problem. The variables in this model can be seen as inspired from the flow
formulation in Berghman et al. (2014), however, the constraint sets are different due to
different problem characteristics.

17

Remark 3.1. Another natural way to model MBAP is using variables built on paths
under the paradigm of set covering and partitioning problems, see our earlier working
paper Dokka and Goerigk (2020). Such models often suffer from too many variables even
with modest graph densities and form the basis of Branch and Price exact algorithms and
Price and Branch Heuristics. The formulation (3.8-3.14) can be seen as in-between the
extremes of node based and path (hyper-edge) based formulations. In the same vein, it
is possible to construct formulations, for example, with variables modeled on hyper-edges
smaller than paths, such as triples of nodes. However, we found that such formulations
become impractical and quickly lose the advantage gained by sparsity and hence omit
their presentation.

4 Computational experiments

4.1 Setup

We present two experiments to answer the question how graph density affects the hard-
ness of the MBAP. In the first experiment, we generate a set of sparse and a set of dense
random instances using different instance sizes n and m. In the second experiment, we
fix the instance size and only vary the instance density. In the following, we refer to
the triple-index formulation from Section 3.2 as M1, and to the edge-based formulation
from Section 3.3 as M2.

We generate random instances in the following way. Given n and m, a weight ma-
trix is generated by sampling each wij for i ∈ [n], j ∈ [m] uniformly randomly from
{1, 2, . . . , 100}. To create the graph structure, we first generate all horizontal arcs, i.e.,
arcs connecting (i, j) with (i, j + 1) to ensure that a feasible solution exists. We then
create tuples from the first to the last layer by choosing random nodes in each layer.
Arcs along these tuples are added to the graph, if they don’t already exist. For a density
parameter d ≥ 0, we create d such tuples.

Each instance is first solved heuristically using a greedy method that works analogously
to the complete case considered, e.g., in Hsu (1984). The resulting solution is then used
as a warmstart for M1 and M2. The greedy method has proved highly effective for the
complete-MBAP, and can be directly extended to the arbitrary case. We construct a
solution layer by layer, balancing the weights of the tuples in each iteration. The problem
solved in each iteration corresponds to a bottleneck assignment problem, which can be
solved in polynomial time.

For each model and instance, we allow a time limit of 10 minutes. We solve IPs using
CPLEX version 12.8. All experiments are conducted on a virtual Ubuntu server with
ten Xeon CPU E7-2850 processors at 2.00 GHz speed and 23.5 GB RAM. All processes
are restricted to one thread. All our code, including our instance generator as well as
further solution methods that were excluded in preliminary testing are available online
on GitHub1.

1https://github.com/goerigk/MLBA-code

18

4.2 Experiment 1

We consider all combinations of n ∈ {10, 15, 20, 25, 30} and m ∈ {5, 10, 15} with two
density parameters. For sparse instances, we set d = 2n (i.e., |E| ∈ O(nm)). For dense
instances, this is increased to d = 2n2 (i.e., |E| ∈ O(n2m)). For each combination of
parameters, we generate 50 random instances and solve each using models M1 and M2.
Contrasting our problem sizes with those used in the literature, our problem sizes are
similar or bigger than those reported in experiments with IP formulations, see Kowalczyk
and Leus (2017).

We first discuss the model size in Table 4.1 for sparse and dense instances, respectively.
Column |V | shows the number of nodes in the graph (being equal to nm), while column
|E| shows the average number of edges. In column Density we show the percentage of
possible edges that are present, i.e. the value |E|/(n2(m − 1)). Columns Vars1 and
Vars2 show the average number of variables for M1 and M2, respectively, while Cons1
and Cons2 show the number of constraints. Note that the number of variables in M1
and the number of constraints in both models do not depend on |E|. Recall that for
sparse instances, both models have the same asymptotic size. While M2 has slightly less
constraints, the number of variables is higher (roughly by factor 2 to 3 based on our
choice of edge density).

sparse dense sparse dense
n m |V | |E| Density |E| Density Vars1 Vars2 Vars2 Cons1 Cons2

10 5 50 105.3 26.3% 351.2 87.8% 501 1053.6 3512.6 520 390
15 5 75 164.8 18.3% 787.4 87.5% 1126 2472.7 11812.0 1080 810
20 5 100 224.4 14.0% 1391.1 86.9% 2001 4489.8 27823.4 1840 1380
25 5 125 284.0 11.4% 2175.7 87.0% 3126 7101.5 54393.0 2800 2100
30 5 150 345.3 9.6% 3127.7 86.9% 4501 10360.6 93830.8 3960 2970
10 10 100 238.0 26.4% 791.7 88.0% 1001 2381.2 7917.6 1120 990
15 10 150 371.4 18.3% 1770.7 87.4% 2251 5572.0 26561.2 2355 2085
20 10 200 504.4 14.0% 3134.7 87.1% 4001 10088.6 62694.2 4040 3580
25 10 250 639.2 11.4% 4897.3 87.1% 6251 15982.0 122434.5 6175 5475
30 10 300 774.7 9.6% 7036.9 86.9% 9001 23242.6 211106.8 8760 7770
10 15 150 368.9 26.4% 1231.9 88.0% 1501 3690.2 12319.8 1720 1590
15 15 225 576.7 18.3% 2754.0 87.4% 3376 8651.8 41311.3 3630 3360
20 15 300 785.4 14.0% 4880.2 87.1% 6001 15709.0 97604.2 6240 5780
25 15 375 994.8 11.4% 7613.6 87.0% 9376 24870.5 190342.0 9550 8850
30 15 450 1204.4 9.6% 10961.1 87.0% 13501 36133.6 328832.8 13560 12570

Table 4.1: Average instance and model size.

This is very different for dense instances, where the number of constraints remains the
same for both models, but the number of variables for M2 increases considerably.

We now consider the efficiency of both models in Tables 4.2 and 4.3. In columns Time1
and Time2 we show the average computation times of each model in seconds (bounded by
600 seconds per instance), where the average is only taken over instances that were solved

19

to optimality. Columns Opt1 and Opt2 show the percentage of instances out of 50 that
could be solved to optimality within the time limit. Gap1 and Gap2 show the average
remaining MIP gap over all instances that were not solved to optimalty (i.e., the average
relative difference between best lower and upper bound). Finally, columns Greedy, Obj1
and Obj2 show the average objective value achieved by the Greedy warmstart solution,
and the average upper bounds found by M1 and M2, respectively.

sparse dense sparse dense
n m Time1 Time2 Time1 Time2 Opt1 Opt2 Opt1 Opt2

10 5 0.1 0.1 176.9 224.8 100% 100% 80% 48%
15 5 0.2 0.2 116.1 246.6 100% 100% 18% 12%
20 5 0.4 0.4 244.5 281.7 100% 100% 12% 12%
25 5 0.5 0.6 129.1 - 100% 100% 2% 0%
30 5 1.5 1.3 - - 100% 100% 0% 0%

10 10 31.3 18.2 40.7 282.0 100% 100% 94% 30%
15 10 140.4 52.7 168.1 - 68% 92% 50% 0%
20 10 175.2 107.7 307.9 - 22% 64% 32% 0%
25 10 147.2 149.1 502.7 - 6% 36% 2% 0%
30 10 250.2 161.3 512.9 - 12% 38% 2% 0%

10 15 179.6 186.8 27.8 242.2 18% 40% 100% 6%
15 15 297.7 47.2 144.9 - 2% 2% 76% 0%
20 15 - 7.3 305.9 - 0% 2% 32% 0%
25 15 - - - - 0% 0% 0% 0%
30 15 - - - - 0% 0% 0% 0%

Table 4.2: Average solution times and instances solved to optimality

The comparison shows that M2 clearly outperforms M1 on sparse instances. While
both models solve all instances to optimality for m = 5, these numbers drop for m = 10
and m = 15. While M2 can solve 64% of problems for n = 20 and m = 10, M1 only
achieves 22%. For the largest instances, where both models can solve only up to 2% of
instances to optimality, the remaining MIP gap is smaller for M2. While both models
can improve the solution provided by the warmstart, the solutions found by M2 perform
best, which shows that the improvement in MIP gap is at least in part because of a
better upper bound.

In Figure 7 shows additional details on the distribution of the percentage of instances
solved to optimality and the gap distribution for sparse instances. That is, the value
in Figure 7a at a specific time on the horizontal axis indicates the amount of instances
solved to optimality out of the 15 · 50 sparse instances considered for this experiment.
The value for a specific gap on the horizontal axis in Figure 7c shows how many instances
have reached an MIP gap that is at most this value. For a gap of 0%, this is equal to the
proportion of instances solved to optimality. These plots complement the results from
Tables 4.2 and 4.3, indicating the strong performance of M1 over M2.

20

sparse dense sparse dense
n m Gap1 Gap2 Gap1 Gap2 Greedy Obj1 Obj2 Greedy Obj1 Obj2

10 5 - - 0.41% 0.42% 328.3 308.3 308.3 269.5 247.3 247.6
15 5 - - 0.51% 0.60% 336.4 317.1 317.1 275.2 253.2 253.5
20 5 - - 0.73% 0.69% 344.2 319.4 319.4 275.7 253.2 253.1
25 5 - - 0.95% 2.14% 355.6 328.4 328.4 276.7 253.5 256.7
30 5 - - 1.10% 3.43% 362.7 333.1 333.1 276.3 254.6 260.7

10 10 - - 0.20% 0.23% 599.5 530.1 530.1 525.4 502.7 503.4
15 10 3.88% 3.07% 0.21% 1.06% 619.7 545.1 544.6 525.2 503.6 508.4
20 10 7.26% 4.19% 0.25% 3.64% 632.4 554.1 546.7 527.3 506.8 525.1
25 10 9.47% 5.96% 0.37% 3.67% 642.7 571.3 557.4 525.9 508.1 525.6
30 10 12.12% 7.57% 0.52% 6.95% 645.6 587.4 567.9 525.1 507.5 525.1

10 15 1.58% 1.28% - 0.21% 867.0 769.4 767.7 774.9 754.3 755.8
15 15 5.18% 3.09% 0.13% 1.70% 891.1 799.0 781.5 778.4 757.2 770.1
20 15 9.08% 4.50% 0.19% 2.70% 897.0 833.7 794.9 778.6 758.3 778.4
25 15 14.14% 7.32% 0.26% 11.24% 910.1 884.9 820.4 778.6 760.1 778.6
30 15 17.16% 15.26% 0.38% 87.54% 915.4 915.4 896.1 778.1 760.5 778.1

Table 4.3: Average gaps and objective values.

While M2 performs best for sparse instances, it is the other way around for dense
instances, as can be seen in the results tables and Figures 7b and 7d. For every instance
size except m = 5, n = 20, M1 solves more instances to optimality and has a lower
remaining MIP gap. For the largest instances, the MIP gap of M2 is at 87.54% on
average, which is due to weak lower bounds but also because the solution provided by
the Greedy warm start cannot be further improved.

4.3 Experiment 2

While the previous experiment already indicated that M1 performs best for dense in-
stances and M2 performs best for sparse instances, we now consider in more detail the
effect of instance density. To this end, we fix the instance size (in this case, to n = 15
and m = 10, being the smallest size for which not all sparse instances were solved to
optimality in the previous experiment) and vary the density parameter from 1.0n to
10.0n using a step size of 0.5n and from 11n to 30n using a step size of 1n. The average
number of edges thus increases from 257.4 for 1.0n to 1769.3 for 30.0n. We generate 100
instances for every density parameter.

In Figure 8, we present our results using the density on the horizontal axis. In Fig-
ure 8a, we present the average gap over all instances (including those that were solved to
optimality), while Figure 8b shows the proportion of instances that have been solved to
optimality. On the horizontal axis, we show the density |E|/n2(m−1), which is averaged
for each density parameter d.

Interestingly, instance hardness does not correspond linearly to instance density. For

21

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 100 200 300 400 500

S
o

lv
e

d
 I

n
s
ta

n
c
e

s

Time

M1

M2

(a) Distribution of solution times for sparse
instances.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

S
o

lv
e

d
 I

n
s
ta

n
c
e

s

Time

M1

M2

(b) Distribution solution times for dense in-
stances.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

In
s
ta

n
c
e

s

Gap in %

M1
M2

(c) Distribution of gaps for sparse in-
stances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

In
s
ta

n
c
e

s

Gap in %

M1
M2

(d) Distribution gaps for dense instances.

Figure 7: Performance plots for Experiment 1.

small density values, there are only few feasible solutions, and both models can solve all
instances to optimality. As the density increases, instances allow more feasible solutions
and cannot be solved to optimality anymore; at the same time, the reduction in MIP gap
indicates that instances become simpler with higher density. From a density of around
70% upwards, M1 can solve some instances to optimality again, while M2 fails to do so.

There is a peak in MIP gap for density values around 20%. The results show that
for those hardest instances, M2 performs best (with a smaller MIP gap and a larger
proportion of instances solved to optimality). For higher density values (around 30%
and upwards), M1 becomes the better model choice.

Recall that our theoretical analysis indicates that sparse instances are harder to solve
than dense instances. Overall, our experiments show differences in complexity depending
on the density of instances. For larger instances with m = 15, more sparse instances
remain unsolved within the time limit than dense instances. For such hardest instances,
model M2 is the best performing approach, while it does not perform well for dense
instances.

22

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 30 40 50 60 70 80

G
a

p
 i
n

 %

Density in %

M1
M2

(a) Average gap for different density values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80

O
p

ti
m

a
lit

y

Density in %

M1
M2

(b) Instances solved to optimality for different
density values.

Figure 8: Performance plots for Experiment 2.

5 Conclusions

We considered the multi-level bottleneck assignment problem, which has attracted con-
siderable attention in application areas such as finance and scheduling. While previous
models allowed that any element in one set can be paired with any other element in
the next set, we generalized this setting such that any bipartite graph can represent the
feasible pairings between two consecutive columns. We analyzed the complexity of this
problem, showing that it is not approximable better than (bm3 c+ 1) in polynomial time.

We presented two mixed-integer programming models for the MBAP, whose sizes scale
differently in the number of edges of the graph underlying the instance. In computational
experiments we applied these models to better understand the impact on graph density
on problem hardness. We found that dense instances result in smaller IP gaps overall.

Many opportunities for future research arise. With regards to the approximability
results, we have presented a lower bound, i.e., no algorithm can achieve an approximation
guarantee better than bm/3c + 1 unless P = NP for the MBAP. This means that in
particular the greedy heuristic is not a 2-approximation in this case. It remains open
whether there exists an approximation algorithm that matches our lower bound.

Within the scheduling context our work indicates more can be done algorithmically in
solving MBAP and hence also the PMC problem. However, this should specifically use
the underlying (sparsity) structure. Our results show that alternative tailored formula-
tions can lead to more promising results. As a further study it would be interesting to
explore similar ideas in the PMC context by considering special structures on conflict
graphs.

We believe our approach on different classes of IPs for different graph sparsity ranges
is an exciting idea and opens up similar questions for many other problems, such as
classical problems with conflicts, studied only recently such as maximum flow and linear
assignment with conflicts (see Şuvak et al. (2020)).

23

References

Berghman, L., Leus, R., and Spieksma, F. (2014). Optimal solutions for a dock assign-
ment problem with trailer transportation. Annals of Operations Research, 213:3–25.

Bernard, C., Bondarenko, O., and Vanduffel, S. (2018a). Rearrangement algorithm and
maximum entropy. Annals of Operations Research, 261:107–134.

Bernard, C., Bondarenko, O., and Vanduffel, S. (2021). A model-free approach to mul-
tivariate option pricing. Review of Derivatives Research, 24(2):135–155.

Bernard, C., Denuit, M., and Vanduffel, S. (2018b). Measuring portfolio risk under
partial dependence information. The Journal of Risk and Insurance, 85(3):843–863.

Bernard, C., Ruschendorf, L., and Vanduffel, S. (2017). Value-at-risk bounds with
variance constraints. Journal of Risk and Insurance, 84(3):923–959.

Bodlaender, H., Jansen, K., and Woeginger, G. (1994). Scheduling with incompatible
jobs. Discrete Applied Mathematics, 55:219–232.

Boudt, K., Vanduffel, S., and Verbeken, K. (2017). Block rearranging elements within
matrix columns to minimize the variability of the row sums. 4OR, 16:31–50.

Burkard, R., Dell’Amico, M., and Martello, S. (2009). Assignment Problems. SIAM,
Philadelphia.

Çalık, H., Labbé, M., and Yaman, H. (2019). p-center problems. In Location science,
pages 51–65. Springer.

Carraresi, P. and Gallo, G. (1984). A multi-level bottleneck assignment approach to the
bus drivers rostering problem. European Journal of Operational Research, 16:163–173.

Coffman Jr, E. and Sethi, R. (1976). Algorithms minimizing mean flow time: schedule-
length properties. Acta Informatica, 6:1–14.

Coffman Jr, E. and Yannakakis, M. (1984). Permuting elements within columns of a
matrix in order to minimize maximum row sum. Mathematics of Operations Research,
9:384–390.

Das, S. and Wiese, A. (2017). On minimizing the makespan when some jobs cannot be
assigned on the same machine. In Proceedings of the 25th Annual European Symposium
on Algorithms, pages 31:1–31:14.

Dokka, T. and Goerigk, M. (2020). The multi-level bottleneck assignment problem:
complexity and solution methods. ArXiv:1910.12504.

Dokka, T., Kouvela, A., and Spieksma, F. (2012). Approximating the multi-level bot-
tleneck assignment problem. Operations Research Letters, 40:282–286.

24

Eck, B. and Pinedo, M. (1993). On the minimization of the makespan subject to flowtime
optimality. Operations Research, 41(4):797–801.

Goossens, D., Polyakovskiy, S., Spieksma, F., and Woeginger, G. (2010). The approx-
imability of three-dimensional assignment problems with bottleneck objective. Opti-
mization Letters, 4:4–17.

Haus, U. (2015). Bounding stochastic dependence, joint mixability of matrices,and mul-
tidimensional bottleneck assignment problems. Operations Research Letters, 43:74–79.

Hsu, W. (1984). Approximation algorithms for the assembly line balancing crew schedul-
ing problem. Mathematics of Operations Research, 9:376–383.

Klinz, B. and Woeginger, G. (1996). A new efficiently solvable case of the three-
dimensional axial bottleneck assignment problem. Lecture Notes in Computer Science,
1120:150–162.

Kowalczyk, D. and Leus, R. (2017). An exact algorithm for parallel machine scheduling
with conflicts. Journal of Scheduling, 20:355–372.

Page, D. and Solis-Oba, R. (2018). Makespan minimization on unrelated parallel ma-
chines with a few bags. Lecture Notes in Computer Science, International Conference
on Algorithmic Applications in Management, 11343:24–35.

Puccetti, G. and Ruschendorf, L. (2012). Computation of sharp bounds on the dis-
tribution of a function of dependent risks. Journal of Computational and Applied
Mathematics, 236(7):1833–1840.

Ravi, P., Tuncel, L., and Huang, M. (2016). Worst case performance analysis of some
approximation algorithms for minimizing makespan and flow-time. Journal of Schedul-
ing, 19(5):547–561.

ROADEF (2011). Google ROADEF/EURO challenge 2012: Machine reassignment.
Available online at: http://challenge.roadef.org/2012/files/ problem definition v1.pdf.

Şuvak, Z., Altınel, İ. K., and Aras, N. (2020). Exact solution algorithms for the maximum
flow problem with additional conflict constraints. European Journal of Operational
Research, 287(2):410–437.

Wang, B. and Wang, R. (2011). The complete mixability and convex minimiza-
tion problems with monotone marginal densities. Journal of Multivariate Analysis,
102(10):1344–1360.

Wang, B. and Wang, R. (2016). Joint mixability. Mathematics of Operations Research,
41:808–826.

25

