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Abstract—The service management based on battery hetero-
geneity has become an increasingly important research problem
in battery swapping technology. In this paper, with the method
of bipartite matching, we first theoretically analyse the offline
optimization problem of battery swapping service under battery
heterogeneity. Nevertheless, the information of global view used in
offline optimization solution cannot be known in advance during
real-time operation. To address the disadvantage, an online
framework comprising several sub-procedures is proposed for
heterogeneous battery implementation. Firstly, by incorporating
battery swapping station (BSS) local status such as charging and
waiting queue of heterogeneous batteries, a charging slot allo-
cation mechanism is designed. Utilizing the proposed allocation
method, the charging priority is determined by the proportion
of heterogeneous batteries demand, so as to guarantee charging
fairness. Secondly, with the help of reservation information,
the proposed allocation method can further be improved by
predicting the future arrival distribution of heterogeneous types
of electric vehicles. Thirdly, according to the service demand
prediction based on long short-term memory neural network,
joint optimization of BSS-selection and charging cost can be
achieved by charging power adjustment. Simulation results indi-
cate the desirable performance of proposed scheme in balancing
the demands of multi-party participators.

Index Terms—Electric Vehicle, Battery Swapping, E-Mobility,
Coordinated Management.

I. INTRODUCTION

IN recent years, the increased utilization of Electric Vehicles
(EVs) has attracted much attention, among all solutions for

improving the sustainability of transportation systems. EVs are
increasingly becoming one of the most important transporta-
tion components due to their lower use-cost and elimination
of carbon emissions. Apart from individual users’ preferences,
many countries and governments have also proposed favorable
policies and regulations to encourage the development of EVs.
These benefits promote EV registrations to increase by 41% in
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2020, despite the pandemic-related worldwide downturn in car
sales in which global car sales dropped 16% [1]. Compared
to traditional internal combustion engine vehicles (ICEVs),
the limited battery capacity of EVs could lead to frequent
charging, lengthy charging time and range anxiety. Besides,
locating a charging station with immediate service is also
a primary concern of drivers when the EV needs energy
supplement. These issues inevitably impact the EV drivers’
experience and reduce acceptance for potential buyers.

It is thus necessary to improve the Quality of Experience
(QoE) for EV charging considering the long-term development
of EVs market. There has been substantial research on charg-
ing management considering the demands of EVs, charging
stations (CSs) and electrical networks [2]–[4]. One of the main
focuses related to charging management is “when/whether
to charge” [2]. In such a scenario, the optimal charging-
discharging planning is designed for the EVs parked at CSs
or buildings. These situations are usually modeled as an
optimization problem from the temporal dimension and EVs
are usually regarded as static loads.

Considering the mobility feature of EVs, there is increasing
concern over a more practical situation in locating the optimal
CS for EVs during the driving phase. Compared with the
“when/whether to charge” problem from temporal dimen-
sion, the above CS-selection problem is defined as “where
to charge” from the spatial dimension. To further promote
the QoE of charging, the EV reservations information has
been applied to the CS-selection service [5], [6]. With the
anticipated information, the service state of a certain CS
can be predicated in advance. Meanwhile, potential charging
hotspots can be effectively avoided. Furthermore, since EVs
can be regarded as a load-balancing tool and transfer energy
through EV charging activities, a novel CS-selection algorithm
is proposed in [7], so as to alleviate the peak-valley difference
in multi-microgrid systems.

Although many scheduling strategies have been integrated
into the plug-in charging service mode, it still suffers from
longer charging time, EV’s low sustainability due to battery
degradation and stress on the power grid during peak periods.
Battery swapping, an alternative energy supplement service of
plug-in charging mode, can efficiently cope with the above
concerns [8]–[10]. The depleted battery can be replaced with
a full battery at a battery swapping station (BSS) under 3-
5 minutes, which costs a similar time to ICEVs filling the
fuel tank. Then, depleted batteries removed from EVs are
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well managed by the BSS based on the power load and
the real-time electricity price. Considering these benefits of
battery swapping mode, researchers have recently focused
more attention on the charging scheduling on BSSs [11]–[15].
The existing literature on battery swapping services has been
becoming extensive, whereas the majority of them focus only
on one type of battery.

In real-world applications, battery standards among various
EVs are most likely heterogeneous. Besides, it is hard to
guarantee the same size, shape and capacity for different
types of batteries and EVs. Generally, each type of EV only
matches a certain type of battery. Therefore, an effective
battery swapping management scheme is important to meet
swapping demand on various types of batteries at the same
BSS. However, a few literature has focused on battery hetero-
geneity so far [15], [16].

The battery swapping service management based on hetero-
geneity is thus an important scheme but inadequately studied.
Apart from the mobility characteristic of EVs, the service
management scheme also incorporates the depleted battery
charging management from temporal dimension. To be spe-
cific, it mainly consists of three parts: i) From the perspective
of EV drivers, recommending the optimal BSS with minimal
service waiting time; ii) From the perspective of EV companies
and battery brands, allocating available charging slots for
multi-types of depleted batteries with reasonable scheduling
priority; iii) From the perspective of BSS operators, managing
the charging process of depleted batteries charging considering
time-of-use (TOU) electricity price. Our contributions thus can
be summarized as follows:

1) Allocating available charging slots for depleted batteries
based on battery heterogeneity: In our previous work [15], the
basic battery swapping service framework based on battery
heterogeneity is introduced. However, depleted batteries of all
types are sorted only according to the Shortest Time Charge
First (STCF) rule for recharging. This simplified charging
scheduling method causes EV brands with shorter charging
time to have higher priority than others, although their demand
is not urgent. The charging order is unfair and disadvantageous
to the long-term development of EV market. To address the
disadvantage, we design an available charging slot allocation
method, so as to ensure charging fairness and satisfy the fluc-
tuant demand among heterogeneous battery types. Specifically,
available charging slots are initially allocated according to
the proportion of each type of EV waiting for the service.
Then, the final allocation result is adjusted based on BSS local
status, including the number of depleted batteries and current
available charging slots. Moreover, by incorporating the EV
reservation information (i.e. selected BSS, battery type and
arrival time) to enable charging slot allocation process, the
performance of charging priority scheduling can be improved
based on the future arrival distribution of heterogeneous types
of EVs.

2) An integrated battery swapping service framework based
on battery heterogeneity: The offline solution is hard to deal
with real-time service requirements, which causes it may not
be suitable for practical applications. Considering the problem,
we propose an online service implementation framework.

Different from the work [15] only concerned with BSS-
selection from the perspective of EV drivers, the proposed
management scheme investigates the whole battery swapping
process from various stakeholders, including benefits of EV
drivers, EV/battery brands and the BSS operator. The service
proposed scheme is devoted to solving both problems of
BSS-selection (where to swap) and charging priority schedul-
ing (when/whether to swap). Moreover, we have proposed
a forecasting method based on LSTM (Long Short-Term
Memory) neural network to predict the service demand during
a particular time. Therefore, the operation cost of BSS can
further be reduced with the charging power adjustment based
on demand forecasting and real-time electricity price.

The remaining parts of this paper are organized as follows.
Section II briefly reviews some related work. We introduce
the system model of our scenario and give the problem
definition in Section III. The offline theoretical analysis is
presented in Section IV. In Section V, we propose the online
implementation framework. The simulation results are shown
in Section VI. Finally, we draw conclusions in Section VII.

II. RELATED WORK

A. Selection of BSS for EVs On-the-move

The BSS-selection problem is a typical “where to swap”
topic. In this case, if an EV on-the-move sends a swapping
requirement, the optimal BSS is selected where the driver can
complete battery replenishment. For EV drivers, the service
convenience is one of the most important factors that they
are concerned about. Therefore, the optimal BSS is usually
selected to minimize the waiting/traveling/delay time for the
sake of improving the battery swapping QoE.

Benefiting from the knowledge of convex optimization, both
centralized [17] and distributed [18] solutions were proposed.
In above works, the optimal BSS is determined to minimize
the weighted sum of EV traveling distance and electricity
cost. The difference is that global information is available
in the centralized approach, and a solution based on second-
order cone programming relaxation is accordingly proposed.
Meanwhile, two distributed solutions based on the alternating
direction method of multipliers and dual decomposition are
derived aiming at individual BSS entities.

In a realistic BSS-selection scheme, an online scheduling
strategy and service framework are necessary to deal with
EVs with real-time battery swapping demand. Literature [19]
proposed an online station assignment strategy achieving min-
imal service congestion and cost to EVs. Considering the BSS
status with the number of available batteries and the charging
time for depleted batteries, a communication framework was
proposed to enable the EV battery swapping service [20].
Then, the potential service availability for a certain BSS can
be further predicated based on the framework with the help of
EV reservation information [13], [15], [20], [21]. Among these
works, reservations and demand forecasting under battery
swapping service have initially been considered in [20]. Based
on mobile edge computing and vehicle-to-vehicle communi-
cation in a distributed manner, the optimal BSS is determined
to minimize average waiting time, as in [13]. The work in [21]
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proposed a charging management framework for electric taxis
(ETs) to select the best station where battery charging and
swapping operation are integrated. Literature [15] investigated
the impact of battery heterogeneity on BSS-selection, which
mainly focused on improving the QoE of EV drivers and
lacked coordinating service management. Besides, depleted
batteries are charged only according to the STCF order without
reasonable adjustment for various types. This causes the type
of batteries with low capacity always have a high charging
priority.

B. BSS Operation Scheduling

Considering the static load characteristic of batteries in the
power grid, the BSS operator can minimize electricity costs
and maximize operating revenues through an optimal operation
scheduling. Besides, the desirable scheduling can also satisfy
more EV service demands, which accords with the interest of
BSS operator.

Based on BSS status, the operator usually achieves an
optimal charging scheduling process by imposing different
charging rates on depleted batteries [22]. Besides, the charging
scheduling for depleted batteries at each time slot is also an
important operation strategy. With that in mind, a scheduling
scheme related to charging and discharging power for batteries
at each period is studied. The scheme can minimize the operat-
ing costs for a BSS [23]. Moreover, the service admission for
ETs and electric bus fleets is investigated based on the status
of BSSs and vehicles. It aims to maximize service capacity for
an integrated battery charging and swapping station [24]. Since
the BSSs consume huge amounts of electricity, renewable
energy sources (RESs) are of significant supplement to the
traditional power grid and they can also efficiently reduce
operating costs of BSSs [25]. Among RESs, photovoltaic (PV)
and wind power are two representative methods. Since wind
power is irregular and hard to capture, the joint consideration
of PV and EV has attracted increasing attention [26], so as
to optimize BSS operation. It should also be noticed that
existing research literature on BSS operations is mainly based
on a single type of battery where the battery heterogeneity is
ignored.

C. Motivation

With the growing development of battery swapping service
management, the research on service optimization is mainly
based on a single participator, e.g., the optimal BSS-selection
from the perspective of EV drivers and the BSS operation
optimization from the perspective of BSS operators. By con-
trast, the coordinated battery swapping service management
considering multi-party participators is an efficient significance
for realistic BSS operations. However, majority of works
related to coordinated battery swapping service management
are based on homogeneous battery types. In comparison, the
battery heterogeneity is with more practical application while
not being thoroughly investigated. Specifically, to ensure the
proper charging scheduling for heterogeneous batteries, it is
necessary to design a charging slot allocation method in BSS
management.

Therefore, this paper proposes a coordinated battery swap-
ping service management framework based on battery hetero-
geneity involving multi-party participators. The coordinated
managing scheme could improve the QoE of battery swapping
service for EVs, ensure proper charging for various EV types
and lower operating costs of BSSs.
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Fig. 1. An Illustration of Battery Swapping Service Management

III. SYSTEM MODEL

A. Network Entity

A battery swapping service under battery heterogeneity is
depicted in Fig. 1. Primary entities involved in the service
management are elaborated as follows:
• BSS: EVs complete the battery swapping operation at

BSS. There are a certain amount of available batteries
for battery swapping in the stock at each BSS. Based
on battery heterogeneity, batteries are accordingly clas-
sified into various types, defined as X = {type −
I, type−II, type−III, ..., type−X}. Depleted batteries
of heterogeneous types are recharged at the BSS to
meet the swapping demand from EVs concerning battery
compatibility. Meanwhile, the BSS manages the charging
scheduling for each type based on available charging slot
allocation and spot pricing of electricity.

• EV: Each type of EV can only be driven by a specific
type of battery. Besides, each EV has a SOC (State of
Charge) value to depict the energy status.

• CA (Central Aggregator): It is a centralized entity that
globally monitors the status of BSSs among the network.
The CA manages the BSS-selection process for battery
swapping service. Besides, it collects history service
information of each BSS and predicates the potential
demand during a particular period over the network.

• Power Grid: The power grid is connected with BSSs sup-
plying electric energy for depleted batteries recharging.
The BSS operator purchases electricity from the power
grid according to the TOU electricity price.
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B. Proposed Battery Swapping Service Management System

Moreover, the main procedures of battery swapping service
management are introduced as follows:

• Step 1 (Where to swap): EVs travel along a planned
course and monitor SOC constantly. When the SOC is
below the default threshold, EVs will negotiate with CA
to find a BSS for swapping a full recharged battery. Then,
the CA recommends the optimal BSS for those EVs.
EVs confirm the guidance by sending its reservation. The
reservation information consists of the vehicle identifica-
tion (evid), battery type (x ∈ X), the arrival time (T arrev )
and expected charging duration of the depleted battery,
etc. Finally, the EV drives to the optimal BSS to obtain
a refilled battery.

• Step 2 (Battery Swapping): When EVs arrive at the
selected BSS, the depleted battery will immediately be
replaced with a refilled one if the matched type of
battery is available. Otherwise, EVs have to wait until
the matched type of battery becomes available.

• Step 3 (How to Charge): Allocating available charging
slots for heterogeneous types of batteries is the key step
in our system. Although types of batteries serviced in
BSS are different, charging slots in BSS are homogeneous
and can be shared by heterogeneous types of batteries.
This is because the power of charging slots in BSSs
are adjustable, so as to satisfy charging demand of
heterogeneous battery. The similar charging mechanism
has also been applied in [27].

• Step 4 (Battery Charging): Depleted batteries will be
removed from EVs and added to the waiting queue. When
there is enough available charging slot allocated for a
certain type of battery, this type of depleted battery will
be added to the charging slot immediately. These batteries
are recharged at slots until they are full of capacity.

• Step 5 (Operation Optimization): Generally, the num-
ber of service demands at different periods can be pre-
dicted by the neural network. Thus, the BSS operator
can manage the charging process based on demand fore-
casting and TOU electricity price achieving operation
optimization.

C. Problem Formulation

To meet the benefits of participators in battery swapping
service, we propose a coordinated service management scheme
in this paper. It aims to: 1) minimize the service waiting
time for EV drivers, 2) balance charging priority among
heterogeneous types of batteries, 3) minimize the electric
power cost while ensuring the QoE of EV drivers. These
objectives can be formulated as the following optimization
sub-problems.

1) Minimize the Service Waiting Time for EV Drivers: This
problem is defined as the BSS-selection problem about “where
to swap” for on-the-move EVs. It aims to find the optimal
BSS with the minimum waiting time. The overall waiting time
is defined as W and the optimization problem can thus be
expressed as follows:

minimize W =
∑
l∈L
|Il| � W̄l (1)

where L:={1, 2, ..., l, ..., L} is the set of all BSSs over the
network. Il is the list of EVs under battery swapping service at
BSS l, and W̄l is the average service waiting time for swapping
at station l. W̄l is calculated as follows:

W̄l =

∑
i∈Il

(T arri − T leai )

|Il|
(2)

where T arri , T leai are arrival and departure time for EVi
respectively.

2) Minimize the Difference in Waiting Time for Various
Types of Batteries: The charging fairness for heterogeneous
types of batteries is important in battery swapping service
management. According to the STCF rule, some types of
batteries have a higher charging priority, e.g., the lower battery
capacity, the higher charging priority they are. These batteries
will be preferentially charged among all types. In that case,
potential buyers will inevitably show more interest in the
corresponding brands of EVs to obtain a higher charging pri-
ority. This causes vicious competition within the EV industry.
Therefore, it is important to balance charging priority. The aim
can be formulated as:

minimize D =

∑
x′∈(X\x)

∣∣∣W̄ x − W̄ x′
∣∣∣

|X|
(3)

where W̄ x is the average service waiting time for battery with
type x, x′ is each battery type except type x in set X and |X|
is the amount of battery types.

3) Operation optimization of the BSS operator: The electric
power cost is the main expense in BSS operation. Controlling
the electric expenditure can maximize the profit of BSS
operator. The electric power cost Pr can be described as:

Pr =

T∫
0

βtαtdt =

T∑
t=0

Pt∆tαt (4)

where T is the total running time for the system, βt is the
consumption of electric energy, Pt is the total charging power,
∆t is a uniform time interval during the running time and αt
is the real-time electric prices. As depicted in Eq. (4), the
total electric power cost can be calculated on a time span
summation.

Besides, the QoE of EV drivers is also an important impact
on BSS operation. Therefore, the goal of BSS operation
optimization can be formulated as follows:

minimize Pr + γW̄ (5)

where Pr is average electricity cost, γ is the coefficient
measuring the value of time and W̄ is the average service
waiting time for all EVs.

The above analysis shows that the battery swapping service
management involves key stakeholders including EV drivers,
EV industry and the BSS operator. The management scheme is
usually addressed as a multi-objective optimization problem.
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However, it is hard to solve for a large-scale and real-time
decision. Therefore, we attempt to solve the optimization
problem with a service framework manner [28], which will
be introduced detailedly in Section V.

IV. THE OFFLINE ANALYSIS OF BATTERY SWAPPING
SERVICE

A. Problem Statement

Consider the battery swapping service over a time horizon
T := [0, T ] and the set of EVs of type x with battery
swapping requirements is Ix:= { 1x, 2x, ..., ix,..., Ix } . We
notice that the service waiting time is highly related to the
available battery. If there is a matched type of available battery
when an EV arrives, the waiting time will be zero. Based on
this point, we define Nx

l (t) > 0 as the number of available
batteries for type x at BSS l at time t. Accordingly, when
there are non-available batteries, −Nx

l (t) is the number of
EVs waiting for batteries indicating BSS congestion. For all
EVs, the BSS selection variables is M := (Mix , i

x ∈ Ix),
where Mix := (Mixl, i ∈ I, l ∈ L) and Mixl represents the
matching between the certain station l and EV ix,

Mixl =

{
1, if EVi of type x selects BSS l ;
0, if otherwise. (6)

It is assumed that each EV only matches with one BSS during
a particular time horizon T, namely

Mixl ∈ {0, 1}, ix ∈ Ix, l ∈ L (7)∑
l∈L

Mixl = 1, ix ∈ Ix (8)

As for BSS congestion, Nx
l (t) will increase by one when

there is a newly available battery. Accordingly, it decreases by
one as an arrival EV finishes the battery swapping operation,
depicted as:

∆Nx
l (t) = Axl (t)−

∑
ix∈Ix

Mixl � 1(t = T arrixl ), l ∈ L, t ∈ T

(9)
where Axl (t) is the number of newly available batteries at
time t. 1(�) is an indicator function and T arrixl is the arrival
time for EV ix at BSS l. The second term of right-hand in
Eq. (9) reflects the influence of BSS-selection on the number
of available batteries. From this point, Nx

l (t) is updated with

Nx
l (t)

+
= Nx

l (t)
−

+ ∆Nx
l (t), l ∈ L, t ∈ T (10)

where Nx
l (t)

+ := lim
y→t+

Nx
l (y) and Nx

l (t)
− := lim

y→t−
Nx
l (y).

t+ is the time instant at the end of time slot t, and t− is the
time instant at the beginning of time slot t. Therefore, based on
above analyses, we can depict the change of available batteries
during time slot t.

If there are no available batteries when an EV arrives, the
EV will wait for depleted batteries to become available at
BSSs. Meanwhile, the shortage of available batteries causes
BSS congestion. Therefore, the problem of minimizing the ser-
vice waiting time for EV drivers can be converted to minimize
the total BSS congestion during a period. Accordingly, the

BSS congestion is < Nx
l (t)>+ and total congestion for BSS

l over T is
∫
t∈T< Nx

l (t)>+dt, where < y>+ = max{y, 0}.

B. Offline Analysis
Let us consider the offline optimization theoretically, where

global information, such as all service requirement during T,
is known. The offline optimization is formulated as

min
∑
l∈L

∫
t∈T

< −Nx
l (t)>+dt (11a)

s.t. (7)(8)(9)(10) (11b)

The problem is hard to solve with known optimization theory
concerning nonlinearity integrated with EV, BSS and time vari-
ables. However, we can alternatively analyze the solvability
based on a bipartite matching method.
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Fig. 2. A bipartite matching

We define a bipartite graph Gx=(Ix ∪ Bx,Ex) with the
bipartition of vertex set Ix and Bx. Ix is the set of EVs with
type x and Bx is the set of matched type of battery. Ex=Ix×Bx
is the set of edges between Ix and Bx with weight coefficients
cx := (cixbx , (i

x, bx) ∈ Ex), as shown in Fig. 2. The vertex in
Ix is matched with an unmatched vertex in Bx to depict the
matching process with EVs and batteries. The aim of match
is to minimize the summation of each weight coefficients.
Therefore, the matching optimization problem is defined as

min
∑

(ix,bx)∈E

cixbxaixbx (12a)

s.t.
∑
bx

aixbx = 1, ix ∈ Ix (12b)∑
ix

aixbx ≤ 1, bx ∈ Bx (12c)

aixbx ∈ {0, 1}, (ix, bx) ∈ Ex (12d)

where ax = (aixbx , (i
x, bx) ∈ Ex). aixbx = 1 if vertex ix

matches with bx, otherwise aixbx = 0.
Bx is the battery set of type x. It is derived from (Nx

l (0), l ∈
L) and (Axl (t), l ∈ L, t ∈ T). Define Bx := ∪l∈L(Bxl ∪

_

Bxl ).
bx in Bxl is a real available battery at BSS l. Whereas, bx in

_

B
x

l

is a dummy battery that an EV has to wait for a period until the
charging battery becomes available by the end of T, namely
Nx
l (T ) < 0. Besides, T finbx is the time when the certain type

of depleted battery becomes available and T finbx = 0 represents
batteries have already been available at first.
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Remark 1: Different from models in [17]–[19], we introduce
the battery heterogeneity into the optimization model, and the
characteristic is integrated into a matching problem. Besides,
we adjust the optimization objective aiming at congestion
management.

Remark 2: The construction of
_

B
x

l in optimization problem
(12) is to ensure consistency and feasibility with the optimiza-
tion BSS-selection problem Eq. (11).

_

B
x

l is the set of dummy
battery of type x, which means the difference between the
demand of swapping and the stock of real batteries. We can
thus obtain

∣∣∣_Bxl ∣∣∣ := max{|Ix| − |Bxl | , 0}.
Proposition: The dummy battery set is convex, and the

matching problem (12) is polynomial-time solvable.
Proof: According to the definition of dummy battery set∣∣∣_Bxl ∣∣∣ := max{|Ix| − |Bxl | , 0}, we can derive

∣∣∣_Bxl ∣∣∣ :=

max{|Ix|−|Bxl | , 0} ≤ max{|Ix|−|Bxl |}+max{0}. Therefore,
the dummy battery set is proven to be convex.

If an EV ix matches with a battery bx, the weight coefficient
cixbx is utilized to represent the system cost. Specifically, the
service waiting time for arrival EV causes BSS congestion,
which is defined as system cost in our scenario. We can obtain
cixbx := max{T finbx − T arrixbx , 0}, where T arrixbx is the arrival
time for EV ix matched with battery bx. From the definition
of cixbx , we can know the match between EVs and batteries
is to minimize the whole waiting time for all EVs requiring
battery swapping.

For a certain offline optimization problem (11), O(N2) time
is needed for the matching problem (12) to construct G and
c, where N := |Bx|. The optimal solution ȧx is the optimal
match between vertex ix and bx. Additionally, ix represents
the set of EV and bx is the set of batteries. Therefore, ȧx

means the optimal match for a type of x EV with the battery.
Since each battery belongs to a BSS, the optimal solution BSS-
selection Ṁ is obvious if the optimal solution ȧx is known.
That is to say, each EV only needs to select the BSS where
the matched battery exists:

Ṁixl =
∑

bx∈Bxl ∪
_
B
x

l

ȧixbx , i
x ∈ Ix, l ∈ L (13)

The above can be solved in O(N). Therefore, we have
theoretically proven the optimization problem is solvable in
polynomial-time.

V. THE ONLINE IMPLEMENTATION PROTOCOL
FRAMEWORK

In the above section, the optimization problem has been
proven with solvability in theory. However, the offline solution
may not be implementable in practical scenario, concerning
incomplete information and large scale demand. Therefore, it
is necessary to propose an online strategy.

The online implementation framework consists of four
functions: the BSS battery cycle, the allocation for available
charging slots, the BSS operation optimization and the recom-
mended BSS-Selection process. Fig. 3 illustrates the logic of
proposed coordinated battery swapping service management

scheme. Besides, a summarization of the computation logic is
provided to depict the sequence between different algorithms.

Fig. 3. Computation logic of battery swapping service management

Algorithm A summarization of the computation logic be-
tween different algorithms
1: for each EV with the requirement of battery swapping do
2: move to the target BSS via Algorithm 6
3: end for
4: when EVs arrive at BSS
5: depleted batteries are swapped and battery status update via Algorithm

1
6: for each type of depleted batteries charging management at BSS do
7: if enabled with reservation then
8: charging slot is allocated via Algorithm 4 and Algorithm 2
9: else

10: charging slot is allocated via Algorithm 3 and Algorithm 2
11: end if
12: charging power is adjusted base on BSS operation optimization via

Algorithm 5
13: end for

A. BSS Battery Cycle

The BSS battery cycle includes two main service manage-
ment procedures: battery swapping for EVs parked at a BSS
and charging for depleted battery.

1) Battery Swapping: EVs requiring battery swapping are
serviced according to the following rules when arriving at a
BSS.
• EVs at the BSS are serviced based on the first come first

serve (FCFS). (line 1 in Algorithm 1).
• The serviced EV will be swapped with a fully charged

battery immediately if the required battery type x is avail-
able (Nx

l > 0). Otherwise, it will wait until a charging
battery becomes available (line 2 to 7 in Algorithm 1).

• After the EV completes the battery swapping operation
in a period τswapev , the number of available batteries Nx

l

of type x will reduce by one. Meanwhile, the removed
battery will be included into the depleted battery queue
Nx
l,D waiting for recharging. (line 8 to 11 in Algorithm

1).
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Algorithm 1 Battery Swapping and Charging at BSS
1: sort the EV service queue parked at a BSS l according to FCFS
2: for each EV of type x do
3: if (Nx

l > 0) then
4: swap the available battery of type x for the EV immediately
5: else
6: wait a depleted battery of type x accomplishes fully recharging
7: end if
8: if the EV complete swapping operation in duration τswapev then
9: Nx

l = Nx
l − 1

10: add the depleted battery into the queue of Nx
l,D

11: end if
12: end for
13: for each interval τ̇ do
14: for for each battery type x ∈ X do
15: while (Nl,C < θsl ) do
16: get the allocated slots θxl of type x from Algorithm 3 or

Algorithm 4 and θxl,fin = Nx
l,C + θxl

17: if (Nx
l,C < θxl,fin) then

18: sort the queue of Nx
l,D according to STCF

19: schedule a depleted battery from the queue of Nx
l,D

20: end if
21: end while
22: for

(
i = 1; i ≤ Nx

l,C ; i++
)

do

23: while
(
EcurB(i)

< EmaxB(i)

)
do

24: EcurB(i)
= EcurB(i)

+ Pxcha × τ̇
25: end while
26: remove this battery from the queue of Nx

l,D , Nx
l,C

27: Nx
l = Nx

l + 1
28: end for
29: end for
30: end for

2) Battery Charging: Depleted batteries are charged in
parallel with the constrain of charging slots, namely Nl,C < θsl
(line 15 in Algorithm 1). Especially, the allocation method for
available charging slots regarding a certain battery type will be
introduced in the next subsection. The depleted battery queue
Nx
l,D is sorted following the STCF order, which means the

depleted battery with a shorter recharging time will have a
higher priority. This charging scheduling order for depleted
batteries has been proven with the best performance [12].
Then, the battery in Nx

l,D will be scheduled into the recharging
queue Nx

l,C to recharge if Nx
l,C < θxl,fin satisfies (line 16 to

21 in Algorithm 1).
For each recharging battery of type x in the queue Nx

l,C ,
the battery energy will update per time interval τ̇ with the
real-time charging power P xcha. When the battery reaches the
rated capacity, it will be added to the available battery queue
and removed from the queue of Nx

l,C and Nx
l,D (line 22 to 30

in Algorithm 1).

B. Allocation For Available Charging Slots

Although a certain type of EV is only compatible with
the matched type of battery based on battery heterogeneity,
various types of depleted batteries can be charged in generic
charging slots at BSS. In our previous work [15], available
charging slots are preferentially assigned to depleted batteries
with shorter charging time. Whereas, a reasonable charging
scheduling based on priority balance is ignored. That is to say,
EVs with lower battery capacity will naturally have higher
charging priority. Considering the impact, EVs with large
capacity have to wait for available charging slots until all

low-capacity batteries complete recharging. This happens even
though there is no type of EV with low battery capacity
waiting for service. It is no doubt that this kind of allocation
method will influence the charging fairness of heterogeneous
types of batteries. Besides, considering charging priority, this
charging method may also further affect the brand choice of
potential buyers of EVs. Therefore, the allocation mechanism
for available charging slots should be carefully designed to
ensure the QoE for EV drivers and the charging fairness for
different EVs.

Algorithm 2 Charging slot allocation method
1: for each battery type k ∈ K do
2: θk = floor( Nk

NSum
� θ̂)

3: add (k, θk) into SAHash and Ntemp = Ntemp + θk

4: add ( Nk

NSum
− θk

θ̂
) into TArray

5: end for
6: diff = θ̂ −Ntemp, define count = 0
7: sort TArray according to descending order
8: for each battery type k ∈ K do
9: while (count <= diff) do

10: if ( Nk

NSum
− θk

θ̂
) >= TArray[diff ] then

11: θk = θk + 1, count++
12: update SAHash with (k, θk)
13: end if
14: end while
15: end for
16: return θk for each type of k

The allocation for available charging slots is defined as how
to charge depleted batteries considering fairness among het-
erogeneity. The charging slot allocation method is introduced
in Algorithm 2 as a basis in Fig. 3. The algorithm aims to
allocate the available charging slots proportionally, making
each value be an integer (as proportional as possible). Besides,
the summation of each value should be equal to the total
value of available slots. The primary idea is to keep integer
part of the initial allocation value and discard the fractional
part. Then, the round-down value will add back by one as
compensation if there is a huge difference from the expected
ratio. Next, we introduce Algorithm 2 in detail as follows.

Here, θ̂ is the number of allocated charging slots, Nk is
the queue length of a certain battery type x and NSum is
the summation of Nk for all types. These values are assigned
by Algorithm 3 and 4. The result of calculation is added to
the hash map SAHash and the number of initially allocated
charging slots N temp is recorded. Besides, the difference be-
tween the actual proportion θk

θ̂
and target allocation proportion

Nk

NSum
is added into the array TArray (line 1 to line 5). The

difference between the number of available charging slots and
the actual assignment is obtained (line 6). The array TArray
is sorted according to descending order (line 7). For each
type of battery, if the difference between the actual proportion
and target allocation proportion ranks in the top diff of all
batteries, we will add back allocated charging slots by one as
compensation. Then, the SAHash is updated with the new
value (line 8 to 15).

Considering the actual queue information at BSSs, we
further introduce two allocation methods in detail in Algorithm
3 as the basic mode (local BSS status concern only) and
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in Algorithm 4 as the advanced mode (global reservations
concern).

Algorithm 3 Allocation for available Charging Slots - Basic
Mode
1: obtain the number of current available charging slots θsl
2: define demandF lag = false, NSum

l,E = 0, NSum
l,D = 0

3: for each battery type x ∈ X do
4: obtain local status information at BSS l: the queue of Nx

l,D and Nx
l,E

5: NSum
l,D = NSum

l,D +Nx
l,D , NSum

l,E = NSum
l,E +Nx

l,E
6: if (Nx

l,E ! = 0) then
7: demandF lag = true
8: end if
9: end for

10: if (demandF lag == true) then
11: let K = X, Nk = Nx

l,E and θ̂ = θsl
12: get θxl of each type x return by Algorithm 2
13: else
14: let K = X, Nk = Nx

l,D and θ̂ = θsl
15: get θxl of each type x return by Algorithm 2
16: return θxl for each type of x
17: end if
18: define X′ = X and Ntemp = 0
19: for each battery type x ∈ X do
20: if (θxl > Nx

l,D) then
21: θxl = Nx

l,D , remove x from X′

22: Ntemp = Ntemp + θxl
23: end if
24: end for
25: define θre = θsl −N

temp

26: if (θre! = 0 & & Nl,D! = 0) then
27: let K = X′, Nk = Nx

l,D and θ̂ = θre

28: get θxl of each type x return by Algorithm 2
29: end if
30: return θxl for each type of x

1) Basic Mode for Slots Allocation: Algorithm 3 presents
the available charging slot allocation mode solely considering
the local status information at BSS: the depleted battery queue
with respect to each type of x (Nx

l,D) and the queue of EVs
at BSS waiting for service (Nx

l,E).
Algorithm 3 begins with the number of available charging

slots (line 1). The Boolean variable demandF lag, the current
number of EVs NSum

l,E and the total number of depleted
batteries NSum

l,D are defined for calculation (line 2). These
variables are updated with the queue information of each
battery type (line 3 to 9). demangF lag == true means
there are EVs waiting for battery swapping service at the BSS.
Accordingly, available charging slots are initially determined
by the proportion of each type of EV waiting for the service
(line 10 to 13). Otherwise, if there is no EVs waiting for the
service, available charging slots are allocated only based on the
depleted battery queue information NSum

l,D (line 14 to 17). For
each battery type x, if the number of allocated slots is larger
than the number of depleted batteries, the allocated slots for
this type will be revised to the number of depleted batteries.
Then, the type x will be removed from the temp set X′ and
the number of already allocated charging slots is recounted
with N temp (line 18 to 24). Accordingly, the subsequently
reallocated number of charging slots is derived (line 25). It is
assumed that both the number of reallocated charging slots and
the queue of depleted batteries are not empty. In that case, the
remaining battery type set X′ will be reallocated to charging
slots according to the proportion of depleted batteries (line 26

Algorithm 4 Allocation for available Charging Slots - Ad-
vanced Mode
1: obtain the number of current available charging slots θsl
2: define K1, NSum

l,diff = 0, NSum
l,R = 0 and NSum

l,D = 0
3: for each battery type x ∈ X do
4: obtain local status and reservation information at BSS l: the queue of

Nx
l,C , Nx

l,D , Nx
l,B and Nx

l,R

5: define Nx
l,diff = Nx

l,R −N
x
l,C −N

x
l,B , NSum

l,R = NSum
l,R +Nx

l,R

and NSum
l,D = NSum

l,D +Nx
l,D

6: if (Nx
l,diff > 0) then

7: NSum
l,diff = NSum

l,diff +Nx
l,diff

8: include the type of x into K1

9: end if
10: end for
11: if (K1! = 0) then
12: let K = K1, Nk = Nx

l,diff , NSum = NSum
l,diff and θ̂ = θsl

13: get θxl of each type x return by Algorithm 2
14: else
15: if (NSum

l,R == 0) then
16: let K = X, Nk = Nx

l,D , NSum = NSum
l,D and θ̂ = θs

17: get θxl of each type x return by Algorithm 2
18: return θxl for each type of x
19: else
20: let K = X, Nk = Nx

l,R, NSum = NSum
l,R and θ̂ = θs

21: get θxl of each type x return by Algorithm 2
22: end if
23: end if
24: define X′ = X and Ntemp = 0
25: for each battery type x ∈ X do
26: if (θxl > Nx

l,D) then
27: θx = Nx

l,D , remove x from X′

28: Ntemp = Ntemp + θx

29: end if
30: end for
31: define θre = θxl −N

temp

32: if (θre! = 0 & & Nl,D! = 0) then
33: if (NSum

l,R == 0) then
34: let K = X′, Nk = Nx

l,D , NSum = NSum
l,D and θ̂ = θre

35: get θx of each type x return by Algorithm 2
36: else
37: let K = X′, Nk = Nx

l,R, NSum = NSum
l,R and θ̂ = θre

38: get θx of each type x return by Algorithm 2
39: for each battery type x ∈ X do
40: if (θxl > Nx

l,D) then
41: θxl = Nx

l,D , remove x from X′

42: Ntemp = Ntemp + θx

43: end if
44: end for
45: θre = θxl −N

temp

46: let K = X′, Nk = Nx
l,D , NSum = NSum

l,D and θ̂ = θre

47: get θx of each type x return by Algorithm 2
48: end if
49: end if
50: return θxl for each type of x

to 30).
2) Advanced Mode for Slots Allocation: Different from

Algorithm 3 that only considers local information, Algorithm
4 further considers the global reservation queue information
Nx
l,R. Under this design, the information of upcoming EVs can

be obtained in advance through reservation, so as to adjust the
allocation of charging slots depending on battery type.

Similar to Algorithm 3, Algorithm 4 firstly obtains the
number of available charging slots and then defines initial
parameter values for calculation. These variables are updated
according to the queue information with respect to each
battery type. Specifically, the charging battery queue (Nx

l,C),
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the depleted battery queue (Nx
l,D), the available battery queue

(Nx
l,B) and the reservation queue (Nx

l,R) at a certain BSS l
are obtained (line 1 to line 2). Then, based on the above
queue information, Nx

l,diff is defined as the reservation queue
subtracting the summation of available and charging battery
queue. Nsum

l,R and Nsum
l,D are the total number of reservation

information and depleted batteries for all types of battery,
respectively. If Nx

l,diff > 0, it means the demand battery of
type x is larger than the summation of charging and available
batteries. Then, these types are included into the temp set K1.
NSum
l,diff is the sum of Nx

l,diff that satisfies the above condition
(line 3 to 10).

If the set of K1 is not empty, the available charging slots
are allocated initially based on the set of K1 (line 11 to 13).
Otherwise, the charging slot allocation will be derived based
on the reservation queue (line 14 to 23):
• If the reservation queue is empty, charging slots are

ultimately allocated based on the proportion of depleted
batteries at the BSS.

• If the reservation queue is not empty, the charging slots
are initially allocated based on the proportions of hetero-
geneous battery types in the queue.

The initial allocation procedure for available charging slots
is presented from line 11 to 23 in Algorithm 4. However,
the initially allocated charging slots may exceed the number
of depleted batteries because the depleted battery queue is
ignored. Therefore, we will further adjust the allocation con-
sidering depleted battery queue information from line 24 to
50 in Algorithm 4.

If the initially allocated value for type x exceeds depleted
battery, the value will be reset to the amount of depleted
batteries. Accordingly, the number of above reset slots is
recorded in N temp and the corresponding battery type is
deleted from the temp type set X′ (line 24 to 30 in Algorithm
4). Moreover, the further reallocated number is calculated at
line 31. If both the number of reallocated charging slots and
the queue of depleted batteries are not empty, the allocation
will continue further combine the reservation information:
• Notice that the slots allocation is ultimately determined

according to the proportion of depleted batteries when
the entire reservation queue is empty (line 32 to 35).

• Otherwise, it will consider the battery type proportion in
the reservation queue and the number of depleted batter-
ies. Finally, the remained type of batteries is allocated
based on the proportion of depleted batteries (line 36 to
49).

C. BSS Operation Optimization Control

An effective BSS operation method based on network
demand forecasting is important in reducing power costs while
ensuring the QoE of EV drivers. Specifically, considering both
TOU electricity price and battery demand forecasting, the BSS
operator controls the battery charging through power on/off.
In this part, we give the forecasting method based on long
short-term memory (LSTM) neural network.

The LSTM structure included a memory cell is first pro-
posed by Hochreiter and Schmidhuber [29], and it is further

tanh
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× ×

tanh

1,xC
t -

1,xh
t -

,xdt

,xft ,xjt ,xC
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,xC
t
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Fig. 4. The structure of forecasting system based on LSTM

enhanced by Gers et al. [30] with an extra forget gate. It has
been proven the effectiveness on overcoming the disadvantage
of long-term dependencies and gradient vanishing/exploding in
recurrent neural networks (RNN). Then, we briefly introduce
the workflow. The forecasting system is with input of historical
service information sequence {d1,x, d2,x, ..., dτ,x}. dτ,x is the
demanded number of batteries with respect to each type x
during a given time segment τ over time horizon T. The
outcome hτ,x is the predicated battery demand. The LSTM
consists of the memory cell state Cτ,x and three gates, as
shown in Fig. 4. As the most characteristic part of LSTM, three
gates are composed of input jτ,x, output oτ,x and forgetting
gates fτ,x. These gates are utilized to control the update and
ignorance of information. The formulations of all nodes in the
model are expressed as follows:

fτ,x = σ (Wf,x [hτ−1,x, dτ,x] + bf,x) (14)

jτ,x = σ (Wj,x [hτ−1,x, dτ,x] + bj,x) (15)

C̃τ,x = tanh (WC [hτ−1,x, dτ,x] + bC,x) (16)

Cτ,x = fτ,x ∗ Cτ−1,x + jτ,x ∗ C̃τ,x (17)

oτ,x = σ (Wo,x [hτ−1,x, dτ,x] + bo,x) (18)

hτ,x = oτ,x ∗ tanh (Cτ,x) (19)

where Wf,x,Wj,x,WC,x and are weight coefficients;
bf,x, bj,x, bC,x, bo,x are residuals; σ (.) is sigmoid activation
function; tanh (.) is the hyperbolic tangent activation
function; ∗ represents element-wise multiplication. Based on
above analysis, the forecast output at the current time step
(hτ,x) can be eventually obtained.

Considering the predicted result, the BSS operator can
control the depleted battery charging process based on TOU
electricity price to achieve BSS operation optimization, pre-
sented in Algorithm 5.

For each time segment τ , the service quantity of type x can
be predicated on the above LSTM-enabled forecasting system.
Besides, the number of totally serviced EVs of type x can
also be obtained with real-time monitoring BSSs (line 1 to
2 in Algorithm 5). If the current time segment τ is with a
peak price period and the number of serviced EVs of a certain
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Algorithm 5 BSS Operation Optimization Control Based on
Forecasting
1: for each time segment τ do
2: obtain the forecasting service number of type x (hτ,x) and total

serviced EV number of type x over networks from the beginning of
time segment (Nx

ser).
3: if (τ in peak price period & & Nx

ser ≥ hτ,x) then
4: Set current charging power Pxcha = 0
5: else if (τ in basic price period & & τ + 1 in valley price & &

Nx
ser ≥ hτ,x) then

6: Set current charging power Pxcha = 0
7: else
8: Set current charging power Pxcha = P0

9: end if
10: end for

type (Nx
ser) reaches the predicated number (hτ,x), the current

charging power of type x will be set to zero (line 3 to 4). In
addition to this, if the current time segment τ is with a peak
price period and the next time segment τ + 1 is with a valley
price period while Nx

ser ≥ hτ,x, the current charging power of
type x battery will also be set to zero (line 5 to 6). Otherwise,
the charging power will keep at the rated power P0 (line 7 to
8).

On the one hand, stopping charging will inevitably increase
the service waiting time and reduce the QoE of battery swap-
ping. On the other hand, depleted batteries charging without
planning will increase the cost of BSS operator. Therefore,
the proposed BSS operation optimization control strategy can
achieve a trade-off between charging QoE and electric power
cost.

Algorithm 6 Recommended BSS-Selection
1: for each BSS station in network do
2: for each battery type x do
3: obtain < Nx

l,C , N
x
l,D, N

x
l,B , N

x
l,R >

4: for each battery of type x under (and waiting for) charging do
5: add charge finish time to list ATSLISTx
6: if the reservations list Nx

l,R is not empty then
7: for each charing reservation earlier than Tarr

ev(ix)
do

8: refine list ATSLISTx
9: end for

10: end if
11: sort ATSLISTx with ascending order
12: obtain ATSx1 from list ATSLISTx
13: if (Nx

B > 0) then
14: EWTSxl = 0
15: else
16: EWTSxl = ATSx1 − Tarrev(ix)
17: end if
18: end for
19: end for
20: end for
21: if the charging list Nx

l,C or the available battery list Nx
l,B is not empty

then
22: loptbss ← argmin(EWTSxl )
23: else
24: loptbss ← argmin(dl)
25: end if
26: return

D. Recommended BSS-Selection process

Among all BSSs, the optimal BSS will be determined by
the CA (as shown in Algorithm 6). Thus, a desirable service
can be experienced for the EV driver from spatial dimension

with a carefully designed BSS-selection method. The expected
waiting time for swapping (EWTS) as the metric to measure
the QoE of EV drivers can be formulated as:

EWTSxl =

{
0, if Nx

B > 0;
ATSx1 − T arrev(ix), if Nx

B = 0.
(20)

where ATSx1 is the earliest time for the availability of a
battery with type x. The detailed derivation of ATSx1 has
been introduced in our previous work [15]. Then, we present
the recommended BSS-Selection process in Algorithm 6 as
follows:

Once receiving a battery swapping demand from EV (ix),
the CA would query the service status of each BSS about
the matched battery type x, including information such as <
Nx
l,C , N

x
l,D, N

x
l,B , N

x
l,R >, as shown at line 3 of Algorithm 6.

By aggregating the local status information (i.e., Nx
l,C , N

x
l,D)

from all BSSs, a list of ATSLISTx is initially calculated
for each BSS (line 4 to 5) to obtain the available time for
swapping (ATS). Moreover, we further consider reservation
information from EVs with the matched type (Nx

l,R) to refine
and update the list ATSLISTx. Therefore, the predicted time
of an available battery at each BSS can be eventually obtained
(line 6 to 10). Finally, EWTS is derived based on Eq. (20)
(line 13 to 17).

The above analysis is based on the assumption that the
charging list Nx

l,C and Nx
l,B are not empty. This means the

available charging slots and batteries are adequate compared
with the swapping demand. The optimal BSS is recommended
with the minimum EWTSxl , calculated according to the
information on swappable and charging batteries (line 21 to
22). However, considering the extreme case where there are
no available batteries and charging slots for the certain battery
type x, it is hard to estimate EWTSxl . Once facing such a
dilemma, EV drivers will choose the closest BSS (line 23 to
24).

The travel time on the road and the waiting time at BSS
are both important factors for the EV drivers’ QoE. Differing
from directly integrating the travel time into EV drivers’ QoE,
the proposed management scheme has investigated the impact
of travel time (calculated by summation of travel time and
current time in network), so as to improve EV drivers’ QoE.
To be specific, when an EV requires battery swapping service,
the travel time from current position to each BSS will be
calculated. Then, the arrival time of EV to each BSS can be
obtained. By comparing the arrival time and the time when
depleted batteries become available, the service waiting time
at each BSS can thus be predicated. Finally, the optimal BSS
with minimum service waiting time is recommended for EV
drivers. To sum up, we do not directly consider the travel time,
but we consider the arrival time related to travel time.

E. The theoretical analysis of optimization problem

Inspired by the classic work [6], [31], [32], we theoretically
analyze the performance of online implementation protocol
framework, so as to derive a performance upper bound for
solutions. It is different from the optimization algorithms that
obtain the optimal solution when the system reaches a steady
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state through iteration. By contrast, the online implementation
protocol framework is a classical one-shot decision optimiza-
tion problem.

The optimal BSS-selection aims to recommend the BSS for
EV drivers that can minimize the overall service waiting time.
To facilitate problem analysis, we mainly focus on one type
of battery to obtain performance bound. Actually, the service
waiting time of all types also consists of each type. Thus, the
simplification does not affect the effectiveness of theoretical
analysis. The system goal can be formulated as follows:
Objective:

Find Ω to minimize W =
∑
l∈L

Ψ (rl), (21)

where Ω = {ϕs,l|∀ (s, l) ∈ L2} is a swapping scheduling from
last BSS s to next BSS l, and ϕs,l is the arrival rate of EV
flow from the BSS s to the next service BSS l. We denote
Ψ (rl) = νl ·wl to reflect the service waiting time at BSS l. νl
is the expected number of EV that arrive at BSS l, and wl is the
expected service waiting time that an EV spends at BSS l for
battery swapping service. Through the summation of waiting
time at each BSS, the total service waiting time can thus
be derived. Moreover, considering the energy constraint over
network and queuing service capability, the optimal scheduling
is achieved based on following constraints:
s.t., ∑

l∈L

∑
s∈L

(ϕs,l · Es,l) = φ, (22)

rl =
λl
ρl

=

∑
s∈L

ϕs,l

P0
, (23)

Ψ (rl) =
θrθ+1
l

θ!(θ − rl)2 ·
(

θrθl
θ!(c−rl) +

θ−1∑
n=0

rnl
n!

) + rl, (24)

0 ≤ rl/θ < 1,∀l ∈ L, (25)

Eq. (22) is the constraint of electric energy over network, and
it means the energy consumed at all BSSs should be in accord
with the sum of charging demand input for depleted batteries
at all BSSs. The left-side of Eq. (22) indicates the electric
energy consumption for depleted batteries recharging over all
BSSs. For an EV on the vehicle flow from the BSS s to the
next service BSS l, the expected energy demand of depleted
battery charging can be expressed as:

Es,l = emax − P− · ds,l, (26)

where emax represents the full capacity of battery, P− is
the energy consumption per unit distance for an EV and
ds,l is the travel distance. For the right-side of Eq. (22),
φ ∈ Φ (λs,l,Ωs,l), and Φ is a function to reflect the charging
energy demand for depleted batteries from EV arrival with
respect to λs,l,Ωs,l.

In Eq. (23), λl =
∑
s∈L

ϕs,l denotes the arrival rate, ρl

represents the service rate and P0 is charging power. The
battery swapping service process can be modeled as a M/M/θ
queue, where θ is the number of allocated charging slots.

Based on above information, the service waiting time at BSS
l can be derived with queuing theory in Ref. [33], which is
given in Eq.(24). rl/θ is server utilization. Meanwhile, Eq.
(25) guarantees the queue length of BSSs will stay in a finite
range and not grow indefinitely.

Moreover, we conduct the theoretical performance with
respect to waiting time. It is assumed that all EVs run out
of the full energy of battery when they arrive at BSSs, the
maximum value φmin can thus be derived:

φmin =
∑

(s,l)∈L2

λs,l
[
P− · ds,l − emax

]
. (27)

Considering Ψ (rl) is monotonically increasing with respect to
rl and φmin is the minimum value, we can get Ψ

(
φ

|L|·P0

)
≥

Ψ
(
φmin
|L|·P0

)
. Then, we can get the upper of battery swapping

service waiting time for online implementation:

W ≥ |L| · Ψ
(

φmin
|L| · P0

)
, (28)

which is consequently a performance upper bound for the
optimization problem.

Based on above analysis, the theoretical analysis of opti-
mization problem has been obtained.

F. The discussion of gap between the online solution and the
offline solution

The concept of competitive ratio, defined as rM :=
supCost(M

on)
Cost(M∗) is commonly adopted to measure the worst

possible ratio between online implementation and the offline
optimum over all input instances. To discuss the gap between
the online solution in Section V and the offline solution in
Section IV, a network of a line topology with L stations is
modelled, as shown in Fig. 5. We assume that there are L
battery swapping demand sorted by time-sequence. Each edge
represent the system cost for each assignment between an
EV and a BSS. We suppose EV ix1 at the node in between
BSSs l1 and lL, with closer to BSS l1 by µT

S , where S and µ
are constant. The online implementation is a greedy strategy,
which aims to assign an EV to the BSS with least cost locally,
i.e., BSS lk is assigned to EV ixk , k = 1, 2, . . . , L, as depicted

in Fig. 5. Therefore, the total system cost is (2L−1+µ)T
S . By

contrast, the offline solution is with optimal system cost of
(1+µ)T

S . Therefore, considering the specific case, the compet-
itive ratio is rM = Cost(Mon)

Cost(M∗) = 2L−1+µ
1+µ → 2L − 1 with

µ→ 0.
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Fig. 5. An analysis of online implementation and offline solution
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Fig. 6. Simulation scenario of Helsinki city

VI. PERFORMANCE EVALUATION

A. Simulation Configuration

The EV battery swapping system based on the Opportunistic
Network Environment (ONE) [34] is developed to evaluate the
performance of related algorithms. As presented in Fig. 6, the
default simulation scenario is established from the district of
Helsinki city in Finland with 8300×7300 m2 area. In this
simulation scenario, the main road information is abstracted
from the map to determine EV route.

There are an initial number of 300 EVs with a fluctuating
speed of [30 ∼ 50] km/h moving along the road in the
network. A target position is randomly selected from the map
for each EV trip. Then, the EV drives to the destination
with the shortest path considering the practical map road.
When the EV arrives at the destination, a new destination
emerges once again. The above procedure is repeated until the
EV reaches the SOC threshold and then a battery swapping
service will be required. All EVs are set according to the
charging specification {Maximum Capacity, Max Traveling
Distance, SOC threshold}. Considering battery heterogeneity,
three types of EVs (or batteries) are studied with the following
configuration [15]. Each type of EV has the same number of
entities.
• Type I: Coda Automotive [35] {33.8 kWh, 193 km, 30%}
• Type II: Wheego whip [36] {30 kWh, 161 km, 40%}
• Type III:Hyundai BlueOn [37] {16.4 kWh, 140 km, 50%}

When the battery level is below the set threshold value, the in-
telligent in-vehicle system will remind EV drivers to replenish
energy. On the one hand, EV drivers may immediately move
towards BSSs for battery swapping service. On the other hand,
EV drivers may postpone their demand of battery swapping
service and drive to BSSs at their convenience. Both two
situations are consistent with the actual drivers’ behavior.

Considering the behavior of human intervention without
following the system prompt in the latter service scenario,
we mainly focus on the former service scenario in this paper.
In this realistic service scenario, EV drivers will ensure
enough battery level so that they can arrive BSSs for energy
supplements. Compared with a small-capacity battery, EVs

with a larger battery capacity can move further at an identical
SOC threshold. This leads to EVs with larger battery capacity
having a lower SOC threshold value. In our research, the
setting of SOC threshold value can guarantee EVs arrive at any
BSSs over city map, but meanwhile reflect service congestion
caused by battery charging.

Besides, 7 BSSs are placed over the city map equipped
with the above three types of batteries X = {type− I, type−
II, type− III}. We consider another special scenario where
specific types of batteries are at a specific BSS. For example,
batteries with type I, II and III are serviced at BSS1, while
batteries with type IV, V, and VI are provided at BSS2.
Actually, although such scenario is a slight variation of our
research, the crucial problem is similar to what our paper
targets, by guiding EVs to swap batteries at those BSSs with
compatible batteries available. Also, such special scenario also
shares the same heterogeneous battery charging scheduling as
proposed in this paper.

Inspired by the classical distributed BSS model defined in
[38], the charging inside BSS have limited capacity. For each
type, the initial number of fully charged battery at BSSs is 10
(Nx

B = 10). There are θ = 15 charging slots that can charge
depleted batteries in parallel with a rated power P0 = 10kW .
The duration for battery swapping operation is τswapev = 5
minutes. The simulation depicts a period of 12 hours with τ̇ =
0.1 seconds network update interval. Besides, the charging
time is estimated based on proposed algorithms in this paper.

The following related schemes are all developed based on
battery heterogeneity and preformed for evaluation:

• Reservation battery swapping without slot allocation
(RBWS): The heterogeneous BSS-selection scheme with
EV reservations enabled, as presented in [15]. All de-
pleted batteries are directly sorted according to STCF
without slots allocation based on battery heterogeneity.

• Basic battery swapping with slot allocation (BBSA):
The proposed heterogeneous battery swapping scheme
without considering EV reservations. The available charg-
ing slots are allocated based on Algorithm 3.

• Reservation battery swapping based on slot allocation
(RBSA): The heterogeneous battery swapping service
framework based on reservation information. Available
charging slots are allocated considering battery hetero-
geneity according to the advanced mode in Algorithm 4.

• Reservation battery swapping based on native slot al-
location (RBNS): All charging slots are allocated evenly
according to the number of battery types. That is to say,
for each type of battery, the allocated charging slots is
the total of charging slots divided by the number of bat-
tery types. Then, the number of allocated charging slots
remains constant all the time. Besides, the heterogeneous
BSS-selection scheme is also driven by EV reservations.

The performance metrics are:

• Average waiting time for switch (AWTS): The average
time an EV spends at a BSS from the EV arrival until
leaving.

• Difference in waiting time for various types of bat-
teries (DW): The waiting time difference among various
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Fig. 7. Influence of charging slots at BSS

(a) AWTS (b) TSB (c) DW

Fig. 8. Influence of EVs density

(a) AWTS (b) TSB (c) DW

Fig. 9. Influence of charging power

(a) under different algorithms (b) heterogeneous battery distribution under
basic slots allocation mode

(c) heterogeneous battery distribution under
advanced slots allocation mode

Fig. 10. Distribution of TSB among BSSs
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types of batteries. The metric is calculated according to
Eq. (3).

• Totally swapped batteries (TSB): The total number of
serviced EVs at all BSSs.

B. Influence of charging slots at BSS

As shown in Fig. 7(a) and 7(b), the RBWS algorithm
is with desirable performance. The reason is it schedules
depleted batteries charging order only according to STCF
rule without considering battery types. That is to say, it
always accelerates the recycling of low-capacity batteries with
higher priority. The low-capacity battery is certainly with short
charging time and thus leads to shorter AWTS. Intuitively,
the number of TSB is improved with a short AWTS. Thus,
there is a correlation trend and performance gain between Fig.
7(a) and 7(b).Besides, Fig. 7(a) also shows the BSS-selection
scheme without EV reservation costing longer waiting time.
Additionally, if the number of charging slots at BSS increases,
the performance will be improved because more batteries can
be charged in parallel.

Another important metric we concerned is DW. As depicted
in Fig. 7(c), the proposed allocation schemes can significantly
reduce the difference in service waiting time of multi-type
EVs, especially facing the limited charging slots. Besides,
the proposed RBSA algorithm can always keep the minimum
DW despite of the variation in charging slots amount. In
comparison to Fig. 7(a), the RBSA algorithm can reduce the
DW with a slightly higher cost of AWTS.

We observe that the performance metrics under three
reservation-driven schemes are gradually close. Besides, these
algorithms eventually converge to a similar value with the
increment of charging slots. The reason is that each battery can
be added to the charging slots immediately without waiting
based on adequate charging slots. Therefore, the effect of
available charging slot allocation is not so remarkable.

C. Influence of EVs density

We herein vary the number of EVs to study the impact of
EVs density. As depicted in Fig. 8(a), the AWTS increases
with a higher EV density. Intuitively, the TSB grows with
more EVs requiring battery swapping service. Then, the result
in Fig. 8(b) verifies the deduction. Besides, EVs have to wait
for the depleted batteries becoming available due to the limited
charging ability at BSSs. Therefore, the TSB keeps slightly
stable with EVs increment when the number of EVs exceeds
a certain value. In Fig. 8(c), we observe that the charging slot
allocation schemes based on EVs reservation always exhibit
superiority in comparison of the RBWS scheme. Although
there is no EV reservation applied in the BBSA scheme, this
scheme can also allocate the charging slots with local status
information at BBSs. The reason is that the local waiting
queue with an increasing number of EVs can accurately reflect
the demand distribution of battery types. Thus, the BBSA
scheme can eventually achieve desirable performance in terms
of shorter DW.

D. Influence of charging power

Here, the impact of charging power on performance metrics
is shown in Fig. 9. If the charging power increases, the perfor-
mance is improved. It is obvious that depleted batteries can be
fully charged with shorter time under a higher charging power.
Therefore, the waiting time at BSSs for EVs is accordingly
reduced and the recycling of batteries is accelerated. Besides,
the shorter waiting time will further reduce the DW.

E. Distribution of TSB among BSSs

In Fig. 10(a), we compare the distribution of TSB (or
charged EVs) among each BSS for different algorithms. We
observe that the algorithms based on reservation information
can improve load balancing. In comparison, the algorithm only
utilizing local status information causes a skewed distribution.
According to the analysis on Eq. (1), the load balancing
leads to desirable QoE concerning waiting time. Fig. 10(a)
also explains why the reservation-enabled scheme is always
with better performance with the above conditions changing.
Heterogeneous battery distribution results under charging slot
allocation schemes proposed in this work are shown in Fig.
10(b) and 10(c), respectively. In basic mode, the local hotspot
at a certain BSS leads to congestion and eventually causes
degraded performance.

TABLE I
RETAIL ELECTRICITY PRICE (USD/KWH)

User type TOU price
Peak price Basic price Valley price

Commercial 0.17 0.13 0.05

F. Charging control based on real-time price

In this subsection, we investigate the effect of proposed BBS
operation optimization control scheme. In Table I, we provide
the TOU electricity price according to [39]. The coefficient
γ in Eq.(5) is set with 8.4 $/h according to the survey [40].
Apart from the RBSA method proposed in Algorithm 4, the
following variant schemes are also evaluated:
• Electricity cost greedy strategy (G-RBSA): The G-

RBSA scheme is derived from the proposed RBSA
scheme. However, the electric cost is the only factor the
G-RBSA scheme concerns. Therefore, it will only charge
depleted batteries at the basic and valley price periods.

• Electricity cost control strategy based on demand
forecasting (D-RBSA): The D-RBSA scheme is based
on the BSS operation optimization control strategy in
Algorithm 5. In this scheme, the electricity cost and the
QoE are both taken into account. For the predicting model
training process, the data set comes from the EV battery
swapping simulation system in Opportunistic Network
Environment (ONE). The simulation system generates
300 days of network operation data. Each record includes
the served number of multiple types of EVs with a 2
hours time segment. The data are split into three subsets
for different purposes, namely training set, validation set
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Fig. 11. The results of BSS operation optimization.

and testing set. Besides, the data split is 0.6/0.2/0.2.
During the training phase, the PyTorch framework is
adapted. Adam is served as the optimizer and the loss
is with mean-squared-error. The learning rate is 0.0002,
and the batch size is 5. The training process is executed
on NVIDIA GeForce RTX 2080Ti GPU.

The following performance metrics related to electricity cost
are conducted:

• Total electricity cost (TEC): The total electricity cost
is the summation of all BSSs purchasing electricity from
the power grid during the whole operation process.

• Average electricity cost (AEC): The average electricity
cost is obtained by TEC dividing the total electricity
consumption. It reflects the average cost per kWh of
electricity.

• Value of utility (VoU): The value of utility is the
summation of average electricity cost and average waiting
time, which is derived based on Eq. (5).

As shown in Fig. 11, we observe that the G-RBSA scheme
is with the longest AWTS due to ignoring the service require-
ments from EVs. Although the G-RBSA indeed reduces the
TEC and AEC than other schemes, the AWTS is tremendously
increased, causing undesirable QoE for EV drivers. Besides,
the D-RBSA can achieve better performance in other metrics
at the cost of a slightly longer AWTS. This is because the
D-RBSA can optimize the battery charging phase according
to demand forecasting results. Furthermore, as depicted in
Fig. 11(e), we can observe that the RBSA achieve similar
performance with D-RBSA on VoU.

G. The impact of congestion

The insightful literature [41] presents the impact of con-
gestion on the battery swapping service. Inspired by the
excellent work, we investigate the impact of congestion on
battery swapping service performance. The traffic congestion
is stochastically generated from every 300 s, and the radius is
300 m. That is to say, an EV will slow the moving speed when
the distance between its location and congestion is smaller than
300 m. Besides, the duration of congestion is set with 100 s.
Performance metrics are evaluated under different numbers of
traffic congestion. As shown in Fig. 12, AWTS and TSB are
reduced with the increasement of congestion. This is because
more EVs have to reduce speed and even stop under the
impact of congestion, when they are moving towards BSSs.
Furthermore, the decrease in AWTS will reduce the DW to an
extent.

H. The verification on larger test case

Based on the city map with an area of 8300 × 7300 m2,
we have further conducted a larger test case with more EVs,
charging slots and stock batteries, so as to verify the scalability
of the proposed framework. To be specific, the extended
experiments consider a much higher demand from EVs as well
as a higher service capability of BSSs. The number of EVs
increases from 300 to 450. For the default parameter setting of
BSS operation, the configuration of charging slots and stock
batteries is expanded to 21 and 45, respectively. As shown in
Fig. 13, the proposed RBSA scheme remarkably reduces DW,
even though it is at the cost of a subtle increment on AWTS.
Therefore, the proposed battery swapping service management
framework still exhibits superior performance on the large test
case.

I. The comparison between offline and online solutions on
service waiting time

Considering the solvability of offline algorithms, the simu-
lation is performed based on a test case that is more small-
scale than above practical simulation scenario. The test case is
based on 4500×3400 m2 downtown area of Helsinki city, and
3 BSSs are deployed over the area. The number of each type
of EV is 24. For the default configuration of BSS, there are 5
initial available batteries and 15 charging slots at each BSS.
Other configurations of EVs and BSSs are in accord with the
setting in Section VI.A.

Since the offline algorithms in [31], [42] mainly are de-
veloped based on service waiting time, we thus focus on the
same metric of offline and online solutions. The comparison
of service waiting time is presented in Fig. 14(a).

From Fig. 14(a), we can observe that the offline algorithm
achieves a 31.40% improvement in AWTS over the online
method in the situation, which is in accord with the theoretical
analysis in Subsection V.F. This is because the prior informa-
tion is necessary for the implementation of offline algorithm.
In other words, for the offline algorithm, the requirement of
battery swapping can be known in advance, so as to well match
EVs with BSSs in an optimized manner.
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(a) AWTS (b) TSB (c) DW

Fig. 12. Influence of traffic congestion.

(a) AWTS (b) TSB (c) DW

Fig. 13. The verification on larger test case.

The same conclusion can be drawn from Fig. 14(b). The of-
fline algorithm achieves a much balanced demand distribution
among BSSs, while the online method is with fluctuation.

(a) AWTS (b) TSB

Fig. 14. The performance comparison between offline and online solutions.

J. Future work

From the perspective of BSS operator, reducing the main-
tenance cost of heterogeneous batteries caused by degrada-
tion is significant. Whereas, based on different properties
of heterogeneous batteries, the same charging rate results
in different degradation. Therefore, for BSS operation under
battery heterogeneity, it is worthwhile to further investigate
the charging management based on battery degradation.

Also, considering the remarkable economic benefit brought
by RESs, the joint optimization of renewable energy and EV
should be taken into account for battery charging management.
Based on the characteristic of power generation in city sce-
nario, PV has been regarded as a promising method among
RESs. However, since solar power is with high uncertainty
due to weather, climate and district, the modeling about power
generation is of importance to recharge batteries at BSSs,
which is our future directions.

VII. CONCLUSION

In this paper, we develop a coordinated battery swapping
service management framework involving multi-party partic-
ipators. In order to balance the charging priority of various
types of batteries (or EVs), an available charging slot alloca-
tion scheme is proposed. The proposed scheme is with further
extension towards EV reservations for more efficient services.
The demand information about heterogeneous types of batter-
ies at a certain BSS can thus be predicated. Besides, a BSS
operation optimization control strategy based on the LSTM
neural network is introduced to balance the BSS operation
cost and QoE of EV drivers. Simulation experiments verify
the performance of proposed scheme in balancing the charging
priority compared with other benchmarks. Meanwhile, the
simulation result further validates the operation optimization
scheme’s viability concerning demands from EV drivers and
the BSS operator.
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