
1

Flowboard: How Seamless, Live, Flow-Based Programming
Impacts Learning to Code for Embedded Electronics

ANKE BROCKER, RWTH Aachen University, Germany
RENÉ SCHÄFER, RWTH Aachen University, Germany
CHRISTIAN REMY, Lancaster University, United Kingdom
SIMON VOELKER, RWTH Aachen University, Germany
JAN BORCHERS, RWTH Aachen University, Germany

Fig. 1. Flowboard is a system to learn embedded coding based on the flow-based programming (FBP)
paradigm. Its hardware combines a large iPad Pro with an Arduino and switchboard circuit beneath it and
a breadboard on each side. The user develops her code using Flowboard’s visual FBP editor on the iPad.
Electronic components for sensing (input, left) and actuation (output, right) are plugged into the breadboards
and linked seamlessly to processing nodes on the screen via two duplicate rows of I/O pins next to the iPad.
Parallel processes are easy to code: Here, a physical button (top left) controls what is written to a serial OLED
display (bot. right), a force sensor (left center) dims an LED (right center), an on-screen slider (top center)
controls a servo, and a 3-axis accelerometer (bot. left) is connected just to see its sensor values live (bot. left).

Authors’ addresses: Anke Brocker, brocker@cs.rwth-aachen.de, RWTH Aachen University, Aachen, Germany, 52056; René
Schäfer, rschaefer@cs.rwth-aachen.de, RWTH Aachen University, Aachen, Germany, 52056; Christian Remy, remyc@
lancaster.ac.uk, Lancaster University, Lancaster, United Kingdom, LA1 4WA; Simon Voelker, voelker@cs.rwth-aachen.de,
RWTH Aachen University, Aachen, Germany, 52056; Jan Borchers, borchers@cs.rwth-aachen.de, RWTH Aachen University,
Aachen, Germany, 52056.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1073-0516/2022/1-ART1 $15.00
https://doi.org/10.1145/3533015

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3533015

1:2 Brocker et al.

Toolkits like the Arduino system have brought embedded programming to STEM education. However, learning
embedded programming is still hard, requiring an understanding of coding, electronics, and how both sides
interact. To investigate the opportunities of using a different programming paradigm than the imperative
approach to learning embedded coding, we developed Flowboard. Students code in a visual iPad editor
using flow-based programming, which is conceptually closer to circuit diagrams than imperative code. Two
breadboards with I/O pins mirrored on the iPad connect electronics and program graph more seamlessly
than existing IDEs. Program changes take effect immediately. This liveness reflects circuit behavior better
than edit-compile-run loops. A first study confirmed that students can solve basic embedded programming
tasks with Flowboard while highlighting important differences to a typical imperative IDE, Ardublock. A
second, in-depth study provided qualitative insights into Flowboard’s impact on students’ conceptual models
of electronics and embedded programming and exploring those.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); User studies;
Interactive systems and tools; • Applied computing→ Interactive learning environments.

Additional Key Words and Phrases: Embedded Development Environments, Visual Flow-Based Programming,
Arduino, Electronics, Young Learners, Learning Tools

ACM Reference Format:
Anke Brocker, René Schäfer, Christian Remy, Simon Voelker, and Jan Borchers. 2022. Flowboard: How Seamless,
Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics.ACMTrans. Comput.-Hum.
Interact. 1, 1, Article 1 (January 2022), 37 pages. https://doi.org/10.1145/3533015

1 INTRODUCTION
Beginner-friendly embedded development environments like the Arduino IDE (Integrated Develop-
ment Environment) have greatly lowered the threshold for makers to create interactive artifacts [14],
to integrate electronics into the physical world, and thus realize the idea of Physical Computing
[12]. They have become a main ingredient of Science, Technology, Engineering, and Mathematics
(STEM) education [40]. However, learning embedded development remains inherently challenging,
as it requires an understanding of (a) coding, (b) electronics, and (c) how code and electronics
connect and influence each other [34, 42].

While HCI research has a long tradition of improving the first aspect of the coding user experience
(see [38] for an overview), and several research projects [18, 53, 54] have tackled the second aspect
of helping learners with the electronics design side of their work, we set out to address the third
aspect: to help students better understand the interplay between the hardware and software sides
of their work and develop a more integrated understanding of embedded programming.
To provide us with new room to improve this aspect of the learner experience in embedded

development, we decided to use flow-based programming (FBP) instead of the traditional imperative
programming as the underlying programming paradigm (Fig. 1). The initial reason was that a
program graph of connected processing nodes in FBP resembles the concept of an electronic circuit
in hardware more closely than sequences of commands in imperative programming.
However, we quickly realized that FBP possesses properties that also allowed us to improve

learning embedded coding in other ways:
• It made it natural to create a live IDE. Liveness is defined as the property of an IDE that
lets program changes take effect immediately. This mirrors the experience of changing an
electronic circuit, and users of embedded programming IDEs expect them to be live [13].

• FBP also enabled a more seamless arrangement of electronics and code: We define seamlessness
in embedded programming as reducing the gap, both physically and conceptually, between the
software and hardware parts of a project, creating an integrated embedded coding experience.
For example, the physical Arduino pin connectors in our Flowboard prototype (Fig. 1) are

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3533015

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:3

right next to their virtual representations in the programming editor on the iPad screen (the
actual Arduino board is hidden inside the Flowboard case).

• Finally, coding parallel independent processes is trivial in FBP, even together with another
person, and again closely resembles building several parallel circuits in electronics (Fig. 1).

We created Flowboard, a flow-based embedded IDE using these concepts of liveness and seam-
lessness, to explore these opportunities. It is primarily aimed at children starting to learn embedded
programming in informal learning scenarios. We evaluated it in two studies with high school
students.

In the remainder of this article, we first review related work on simplifying embedded develop-
ment for learners, before describing the concept, design, and implementation of Flowboard. We
then report on two user studies. Study 1 evaluates basic Flowboard use and confirms that students
can solve embedded programming tasks with Flowboard, while highlighting important differences
to a typical imperative IDE for embedded programming, Ardublock. The second, in-depth study
provides qualitative insights into how using Flowboard impacts students’ conceptual models of
electronics and embedded programming. Finally, we conclude with a discussion of the limitations
of our work and suggestions for future research.

Our key contributions therefore are

• the Flowboard system concept and open-source functional hardware and software prototype
that offers flow-based programming for Arduino embedded development with the qualities of
seamlessness and liveness. We propose FBP as an alternative paradigm for learning embedded
programming that has received little attention so far.

• the results of two qualitative user studies, with the first showing Flowboard’s utility as a
learning tool for embedded development, highlighting differences to an imperative IDE, and
the second providingmore in-depth insights into how Flowboard and the flow-based paradigm
impacts students’ perception and learning of electronics and embedded programming.

Parts of the technical description of Flowboard were published as a nonarchival Interactivity
demonstration at the CHI 2019 conference [11]. All other content of the present article, including
the two user studies, is new. To enable replication, further research, and classroom use, all parts of
Flowboard are available as open-source1 (archive also provided as a supplement).

2 RELATEDWORK
We structure our review of related work according to the three areas for improvement identified
above: First, since Flowboard does not focus on supporting the hardware side of electronic circuit
design specifically, we provide only a brief overview of projects in that area, most of which could be
combined with Flowboard’s approach. Second, we take a closer look at the software side and review
projects employing flow-based programming, in particular in learning environments.We then discuss
projects that, like Flowboard, aim primarily at reducing the conceptual gap between hardware
and software in learning embedded programming. Finally, we look at research studying how
learning systems in physical computing, embedded programming, and electronics affect students’
perceptions. We distinguish between physical computing—the entire range of programming that
involves a variety of sensors and actuators rather than just a computer with (touch)screen, keyboard,
and mouse [12]—and embedded programming, in which code is always developed for and uploaded
to a separate microcontroller.

1https://hci.rwth-aachen.de/flowboard

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Brocker et al.

2.1 Software: From Blocks to Flow-Based Programming
Physical computing in general, and embedded programming in particular, come with additional
challenges regarding programming the circuits built [10], which underlines the importance of
developing usable and efficient tools for these development tasks. Consequently, on the software
side, various research approaches to improve the coding experience, especially for beginners and
children, have also been applied to embedded IDEs.

One of the first toolkits intended to lower the threshold to physical computing is Phidgets [20].
Its collection of sensor boards is connected to a (Windows) computer without the need for soldering
or breadboards. The code, however, is developed and runs on the connected PC, e.g., in Visual Basic,
which sets this project apart from embedded programming situations in which the resulting code
is uploaded to and executed on a standalone microcontroller.

An approach popularized by projects such as Scratch2 is to replace the text editor in an IDE with
a graphical editor that lets the learner assemble statements visually as blocks. This aids learners
by removing the need to know the vocabulary of programming language statements by heart
and by removing the issue of syntax errors, such as a missing semicolon after a statement. The
block-based approach has been carried over to embedded development by projects like the Scratch
extension Scratch for Arduino (S4A)3, the Java-based Ardublock4, and the ModKit5 IDE used in
robotics education. LAWRIS [3], a rule-based web learning platform for Arduino, uses the widely
adopted open-source visual block-based programming editor Blockly6 and limits itself to four
input and output devices to reduce complexity. Other Arduino-like platforms like the micro:bit7
or Calliope8 also use block-based editors and have been used to teach embedded programming in
schools [9].
However, the projects above rely on the traditional imperative programming paradigm. Under-

standing the sequentiality of statements in imperative programming is a major challenge [48],
especially for young learners. This has inspired environments that use the flow-based programming
(FBP) paradigm [36] instead. Johnston et al. [23] provide a comprehensive overview of advances in
FBP research. In FBP, programs are not sequences of commands but a network of processing nodes
connected via their inputs and outputs. Data flows through this network, each node changing the
data based on its type and parameters. This paradigm closely resembles many physical processes,
from biological signaling in neural networks to signal flow in analog and digital electronic circuits.
Unlike in imperative programming, expressing parallel processes within one program is straight-
forward [23]. In commercial IDEs, FBP has been used for decades across a broad range of domains,
from scientific experimentation (LabVIEW [52]) to interactive music and multimedia installations
(Max/MSP9) and mobile UI design (Facebook’s Origami Studio10). FlowHub11 uses FBP to create
distributed data processing systems and internet-connected artworks, while XOD12, Microflo13,
and iStuff [5] employ FBP for maker-friendly embedded development. However, these do not take
advantage of the opportunities of seamlessness or liveness we identified.
2https://scratch.mit.edu
3http://s4a.cat
4http://blog.ardublock.com
5https://www.modkit.com
6https://developers.google.com/blockly/
7https://microbit.org
8https://calliope.cc/en
9https://cycling74.com/products/max
10https://origami.design
11https://flowhub.io/ide/
12https://xod.io
13http://microflo.org

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://scratch.mit.edu
http://s4a.cat
http://blog.ardublock.com
https://www.modkit.com
https://developers.google.com/blockly/
https://microbit.org
https://calliope.cc/en
https://cycling74.com/products/max
https://origami.design
https://flowhub.io/ide/
https://xod.io
http://microflo.org

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:5

Liveness in an IDE describes its ability to provide immediate feedback of the effects of code
changes without the need to go through the edit-compile-run cycle explicitly, and has been shown
to help developers [25]. It is an especially good match for embedded development because basic
electronic components also process and react to incoming electric signals immediately. Hence, the
hardware side of such projects is naturally “live”. FBP is particularly suited to support liveness
by continuously evaluating the current program graph and available input data and updating the
output data of each node accordingly. With Quartz Composer14, Apple introduced a live visual FBP
editor to create graphics processing pipelines in its Xcode development environment. Facebook’s
Origami Studio, originally built on top of Quartz Composer, is a modern live flow-based IDE.
However, these live IDEs do not support embedded development.

2.2 Hardware: Electronic Circuit Building Support
Numerous researchers have looked at supporting electronics design and learning. Avilés and Cruz
[4] use a markerless Augmented Reality app on a smartphone to visualize otherwise invisible or
hard-to-see information, such as the current flow through a circuit or the resistance of a component.
Instead of adding an AR layer, Toastboard [18] instruments a breadboard to continuously sense
voltage levels on each row. When the user duplicates her circuit in a graphical desktop editor,
the system can detect errors and provide potential solutions, simplifying debugging the circuit.
CircuitSense [54] automates this process further by electrically sensing and identifying a core
collection of electronic components as they are plugged into a small breadboard. This lets the
system derive a virtual representation of the populated breadboard for the popular Fritzing [24]
circuit design software, which also helps share the circuit online.
TinkerCAD15 is a web-based design tool that can also simulate, among other things, Arduino

microcontroller boards. This enables makers to create and test circuits online, by programming the
virtual Arduino using regular code or using a block-based language similar to Ardublock16. Another
web-based simulator is Wokwi17 which can simulate various microcontrollers and provides code
for working examples. The editor provides suggestions when coding and is capable of including
external libraries. AutoFritz [27] supports users building virtual breadboard circuits using an auto-
completion approach to help avoid mistakes. Similarly, CurrentViz [53] measures and visualizes
current flow in the user’s circuit ubiquitously, and CircuitStack [50] replaces the cluttered and error-
prone jumper wiring on a breadboard with a custom inkjet-printed conductive sheet, with traces
derived from the schematic, to place beneath the breadboard. Lin et al. [26] used semi-structured
interviews with printed circuit board (PCB) designers to gain better insight into their work practice
and identify challenges and opportunities for future PCB design tools.

2.3 Bridging the Hardware-Software Gap
This third challenge of simplifying the understanding of code and electronics in embedded develop-
ment is what Flowboard also aims at. One way to address it is abstraction: TAC [2], for example, lets
the user specify the desired system response to particular inputs abstractly in a flow-based graphical
editor, then presents a set of possible circuit designs that implement that behavior, complete with
matching embedded textual source code, from which the user can choose based on criteria like
component cost, etc. The user then just needs to build the chosen physical circuit. While convenient,
this hides the actual electronics and embedded coding details from the user, making it unsuitable
for learning those concepts. Similarly, Scanalog [47] uses programmable analog hardware and a
14https://developer.apple.com/documentation/quartz
15https://www.tinkercad.com
16http://blog.ardublock.com
17https://wokwi.com/

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://developer.apple.com/documentation/quartz
https://www.tinkercad.com
http://blog.ardublock.com
https://wokwi.com/

1:6 Brocker et al.

flow-based desktop UI to let users interactively design and tune analog signal processing circuits,
supporting assertions alerting the user to conditions like exceeding a voltage limit. Here, the user
no longer creates a circuit from discrete hardware components, again limiting its use in learning.

Bifröst [33] instead combines an instrumented breadboard with code instrumentation to provide
a side-by-side view of electrical signal activity, Arduino source code lines, and variable values. While
it does not provide an easier way to enter source code, it positively affects the embedded debugging
process. Wifröst [34] successfully expands this approach also to integrate debugging support for
network code. Finally, without leaving the imperative programming paradigm, ElectroTutor [51]
provides support to follow a test-driven development approach across both software and hardware
development, with positive impact on users’ ability to complete introductory tutorials.

2.4 Studies of Learning Embedded Development
Improving the learning experience with a tool requires gathering knowledge of its impact through
studies with learners. Below, we highlight relevant related work that illustrates how to extract such
knowledge in the domain of learning to code, particularly for embedded development.
In the ‘Art’ of Programming project, Moskal et al. [37] requested study participants (first-year

students) to draw what they imagine when asked, “What does programming mean to you?” The

Fig. 2. A comparison of related projects that aim to help with embedded development. For each project, we
list its underlying programming paradigm, where its main focus for support lies, and whether it supports
liveness and seamlessness.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:7

authors found that there was only one person in the image in most drawings, suggesting that social
aspects were not essential and people mostly program on their own. The idea of pair programming
seemed not to be present, although working in groups is known to promote discussion about the
task. We adopted their drawing method for our second study.

With Physical Computing (building embedded systems with sensors and actuators that can sense
and influence their physical environment) [39] having become a part of STEM education, Przybylla
and Romeike [41] developed requirements for tools to explore this topic in schools. They found
that while students enjoy the experimental approach of Physical Computing to get in touch with
electronics, current practices may emphasize making and tinkering with electronics too much for a
structured learning experience.
Dasgupta et al. [15] focus on Remixing, the process of reusing and reworking existing artifacts.

They consider remixing important and powerful for learning, especially in social interactions. Their
results from a study using Scratch indicate that remixing programming code helps learners to
develop computational thinking concepts. Other research projects using Scratch [16, 31] also show
the importance of online communities and sharing knowledge with others for a better learning
curve. Based on Piaget’s learning theory [49], Bergner et al. emphasize the need of working actively
with a system to learn it properly [7], which supports the idea of integrating Physical Computing
into education. Maloney et al. [29] found that a live environment without run/edit loops such as
Scratch supports users exploring and tinkering while programming.
More recently, a study [13] investigated how programming physical computing devices is im-

pacted by live programming. It compared programming the BBC micro:bit18 device either with the
MicroBlocks19 live programming environment or the default MakeCode 20, The authors found that
non-live environments can become used less as users expect liveness while performing embedded
programming. Liveness impacts children who are programming embedded components, and the
authors emphasize the importance of understanding the impact of liveness on learning physical
computing in future studies.
In all, our review of related work indicates that the potential of flow-based programming to

support embedding programming in a more integrated, seamless, live, and possibly collaborative
manner has not been fully explored yet (Fig. 2). This motivated us to study this potential further by
designing, implementing, and studying the Flowboard system described in the following sections.

3 FLOWBOARD DESIGN AND IMPLEMENTATION
Below, we describe the conceptual design of Flowboard, its system architecture, implementation,
and a usage scenario. Full details for replication, such as source code and hardware design files, are
available in the open-source documentation21 (archive also provided as supplement).

3.1 Flowboard: Conceptual Design
Flowboard’s hardware and software design is based on the concept of flow-based programming. The
list for requirements defined that Flowboard should consist of simple and commercially available
materials, integrate live coding, link electronics and programming seamlessly, and be easy to
replicate. Our goal was to support learning in an explorative way, by enabling people to learn about
embedded programming without predefined tasks and steps [44].
Flowboard offers a visual, flow-based multitouch editor on a large iPad for coding. Program

graphs are created from a library of processing nodes that each process data depending on their
18https://microbit.org
19https://microblocks.fun/
20https://scratch.mit.edu
21https://hci.rwth-aachen.de/flowboard

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://microbit.org
https://microblocks.fun/
https://scratch.mit.edu

1:8 Brocker et al.

type. Nodes are connected by drawing virtual wires between node outputs and inputs, along which
data flows. Electronic components are plugged into two breadboards next to the iPad. The left
breadboard is used for buttons, sensors, and other input devices. The right breadboard is used for
LEDs and other actuators and output devices. This supports a unified left-to-right data flow from
the input electronics through the program graph to the output electronics, corresponding to the
established direction of signal flow in electronic circuit diagrams.
The program graph is evaluated constantly, and drives an Arduino Uno board hidden beneath

the iPad. The user does not need direct access to the Arduino board since its I/O pins are brought
out twice, once on each side of the iPad, so each pin can be used for input or output as needed to
keep an overall left-to-right signal flow. These hardware I/O pins are placed directly next to their
virtual counterparts in the visual editor, creating a more seamless view of the entire system, and
removing a frequent source of errors in embedded development. Changes in the program graph
take effect immediately, creating a live IDE to match the live behavior of the electronics hardware.

3.2 Flowboard: System Architecture
The Flowboard system consists of the editor running on an iPad, an Arduino board, two breadboards,
and the switchboard, a custom printed circuit board that ensures that each Arduino pin is only
connected to either the pin on the input or output row at any time using a series of solid-state
switches controlled by another microcontroller (Fig. 3). The iPad editor controls the Arduino and
the switchboard via Bluetooth.

The Arduino is running our modified version of the Firmata22 protocol sketch. With Firmata, the
iPad editor can set and read Arduino pins, and trigger more complex operations like controlling
a servo or reading an I2C device, through serial commands sent via Bluetooth. In addition, we
extended the protocol to cover additional electronic components. Similarly, the iPad editor also
controls the switchboard using Firmata. Using a real-time protocol like Firmata enables Flowboard
to become a live environment. Unlike in other embedded FBP environments, such as MicroFlo
or XOD, in Flowboard, there is no need to compile and upload the current program graph to the
Arduino each time the code is changed. Changes to the program graph are live immediately because
the iPad editor interprets the graph continuously, sending corresponding Firmata commands to
the Arduino to achieve the appropriate behavior. The device then computes the function the
corresponding node implements on the updated arguments. One or possibly more results of the
computation are forwarded to the node’s output in the process.

Of course, there are also downsides to this system design: The Arduino cannot be disconnected
from the iPad to run the program graph in standalone mode, as is possible with standard embedded
IDEs. There are also limits to the real-time performance that the Bluetooth connection supports. For
our use cases of learning and beginning development, these issues were not critical. However, we
discuss possible ways to also generate Arduino standalone code under Future Work. Flowboard aims
to facilitate exploration of embedded programming for learners, which usually revolve around small
and simple coding projects. Nevertheless, Flowboard’s conceptual design allows integrating any
other microcontroller that can provide pins to the user. The design and software (e.g., the Firmata
protocol) would just need to be adapted regarding the number of pins and their characteristics (like
analog or digital).
Flowboard is also not ‘Turing-complete’, but for its intended usage this was not our goal. Still,

the embedded system can be extended to commands and calculations the iPad can offer. Therefore,
the power is not limited by the Arduino but can be as complex as the iPad is capable of, using
its processing and memory resources. Of course, the output of Flowboard is limited to what the

22https://github.com/firmata/protocol/blob/master/protocol.md

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/firmata/protocol/blob/master/protocol.md

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:9

Fig. 3. Flowboard system architecture. The Arduino pins are brought out to the input and output side of
the Flowboard via the switchboard, which controls the connection to either side. The iPad runs the visual
flow-based editor, and communicates with both the Arduino and the switchboard via Bluetooth using the
Firmata protocol [11].

Arduino can control, but a complex command running on the iPad could be black-boxed again to
make the Arduino able to show the result, e.g., using a small screen.
Finally, Flowboard currently does not provide options for traditional troubleshooting of code,

but these could be adopted from other visual FBP enviroments.

3.3 Flowboard: Hardware Implementation
We chose to run our editor on a large tablet instead of a desktop because the resulting system lies
flat on the table when used. This allowed for a system design in which users place the electronics
directly adjacent to their program graph, creating a more seamless development space. Touch-based
interfaces have also been found to support more natural interactions that can support certain
learning activities [19, 22], and multitouch supports the collaboration of collocated users more
readily than a single-user desktop app [35].

3.4 Flowboard: Language, Visual Editor and Layout
Flowboard provides access to all digital and analog I/O pins on the Arduino except D0 and D1, which
are required for serial Bluetooth communication. However, most Arduino projects avoid using

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Brocker et al.

Fig. 4. Flowboard’s editor after launching. Virtual I/O pins are visible on the left and right. The bottom menu
is only visible while the user picks a node to add to his program [11].

these pins for precisely that reason. By default, the switchboard connects all I/O pins to the input
side, matching the behavior of the Arduino and its ATmega microcontroller. If a user connects to a
virtual output pin in the visual editor, the editor automatically instructs the switchboard via Firmata
to toggle the corresponding electronic switch. Green LEDs on each pin indicate which direction
is currently active. No explicit user action is required for this switching. The two breadboards
have their power rails connected to the Arduino to power the user’s circuits. For untethered use,
especially in the classroom, the Arduino, switchboard, and breadboard circuits can be powered
through a rechargeable power bank in the frame connected to the Arduino power jack. Alternatively,
the system can be powered via the Arduino USB connector. Since the iPad turned out to last long
enough for our sessions, it is not currently connected to the rest of the circuit electrically, although
charging it through the power bank is possible.
Below the screen, a hardware toggle switch lets the learner disconnect power from the bread-

boards while inserting or removing components, reducing the risk of short circuits. The Arduino
is not powered down by this switch to avoid disrupting the live processing of the Firmata sketch
running on it (an even safer design is discussed in Future Work). The Flowboard case is lasercut
from plywood and consists of three layers. Its bottom layer contains the custom switchboard circuit
board, cabling, and battery. The middle layer supports the iPad and breadboards. The top layer has
cavities for the breadboards, the external pin row connectors, a power switch, and the iPad itself.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:11

The three layers are held in place by the walls of the case. The rear wall has a connector for USB
power and a power switch to turn off the power bank after untethered use.

Our Flowboard programming language is most similar in scope to other existing embedded FBP
IDEs such as XOD23 and Microflo24. The UI layout differs from other tools but the basic concept
behind the nodes is similar. Besides standard nodes for basic mathematical and logical processing
functions, it includes nodes to work with more complex electronic components, such as RGB LED
strips using WS2812 controllers, servo motors, and serial OLED displays using I2C communication.
Initially, the editor displays an empty canvas to place nodes and connections on (Fig. 4). Virtual
representations of the I/O pins appear on both sides, aligned with the corresponding hardware
pins next to the iPad. A virtual pin is greyed out if the physical pin is currently connected to the
other side by the switchboard. Active pins are thus indicated both physically by their green LED
and virtually by not being greyed out on screen. Behind the scenes, the iPad does not program the
Arduino by uploading code as usual, but interacts with it by sending configuration commands and
receiving results over a wireless serial interface. To maximize screen space for the program graph,
the node menu on the bottom is visible only while adding a node. The menu contains shortcuts to
categories for experienced users, but scrolling sideways shows all available node types. The visual
editor was implemented in the Swift 4.2 programming language as an app for iPad tablets running
iOS 12 or later. The user can interact with the editor via touch, providing an easy way to arrange
nodes on screen and connect them with each other and the virtual pins. The editor space can be
zoomed out to have more space for nodes and zoomed in again to work on single nodes more easily.

3.5 Programming Primitives
Resnick and Silverman [43] stated that the programming primitives—the ‘black boxes’ chosen—have
to be designed carefully, as these determine what is visible to novices, and what they can explore
and understand with them. Flowboard’s primitives are block-shaped nodes consisting of predefined
input and output ports. These inputs and outputs have a name and type (typical data types such
as string, integer, etc., as used in traditional programming languages like Java), but the type is
hidden from the user. Each node is designed to fulfill a function, e.g., an if condition (Fig. 7), and
presents all elements (such as parameters) required to use the function. The user can configure
these elements via touch input. On the bottom, Flowboard’s editor provides a menu holding the
library of nodes that can be dragged onto the editor’s canvas (Fig. 4 and Fig. 5). The output values
of a node are the results of its internal logic: a computation that uses the node’s respective values
at the input ports. Nodes are immediately live when appearing on the canvas and are initialized
with default values.

The editor provides well-established programming primitives, such as an if statement and greater
than comparison, but also includes nodes designed specifically for talking to electronic components
such as a servo motor or buzzer (see Fig. 7). In total, Flowboard currently offers 25 node types in
five categories for programming. Users can connect node ports and pins by drawing lines either
between an input and output port, between an input pin and input port, or between an output port
and output pin (see Fig. 5). For this, both drawing directions are possible. A connection between two
components can be overwritten by drawing a new connection starting from an output port. When
these connections are established, data flows from the output to connected inputs. An output can
connect to multiple inputs, but inputs only accept one connection. Small triangles next to a node’s
port visualize the direction of the data flow. Flowboard provides a type-safe snapping mechanism,
i.e., only valid connections can be established. Flowboard’s editor provides explanations for node

23https://xod.io
24http://microflo.org

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://xod.io
http://microflo.org

1:12 Brocker et al.

Fig. 5. Flowboard’s editor for the programming task: make an LED shine weakly resp. brightly, depending on
whether a force sensor exceeds a threshold. In comparison to figure 4, pin 10 is greyed out as input pin on the
left as it is used as an output pin on the right [11].

functions via an ‘information’ button next to each node type in the menu. These buttons explain in
detail what the node type is capable of, including usage examples with sample input and output
values.

3.6 Flowboard: Usage Scenario
Michael and Anna, two 14-year old students, found an “electronic dice” circuit online that uses LEDs to
indicate a random number rolled. For their favorite board game, they would like to build their own
variant that can roll numbers from 1 to 10 instead of 1 to 6. They have had a basic programming class
at school but found the complex language and many syntax rules intimidating. They have heard of
Arduino boards and are interested in learning how to use one for their project.
To get acquainted with Flowboard, they first follow a “Getting Started” tutorial to create a circuit

that lights up an LED when pressing a force sensor hard enough. They plug a force sensor and resistor
in series into the left ‘input’ breadboard, creating a voltage divider, and use a jumper cable to connect
the center of that divider to a physical input pin marked with a tilde (∼) indicating that it can read
analog voltages (Fig. 6 and Fig. 8). Since Flowboard is a live IDE, the virtual input pin on the screen
edge immediately starts displaying the voltage applied to that physical pin as an integer.

Anna presses down on the sensor, watching the numbers on the virtual pin, and the friends determine
a value of 500 as a suitable threshold to turn on the LED. Next, they add a Greater-Than node in the

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:13

Fig. 6. Close-up of a force sensor connected as input to pin 14. Unlike the other analog pins (13, 15, 16), pin 14
is not floating anymore because it is connected to a defined voltage level. Pins 17 and 18 are currently hidden
by the menu in the editor. When the menu is closed, they become accessible again. This example is from a
programming task, and shows connections from pin 14 to two different nodes in the editor, as used in Fig. 5.

editor, drag a connection from the virtual input pin on the screen edge to the node’s input, then tap on
the node and set its threshold value to 500. Similarly, they connect the node’s output to a virtual output
pin on the right. Now, as soon as they connect an LED and resistor to that physical pin, their circuit is
complete and working. This encourages Michael and Anna to continue experimenting with Flowboard
to gather enough knowledge for their dice project.

Fig. 7. Three example nodes included in the library of the Flowboard IDE. The Condition node (left) currently
outputs 3.0 if the condition is true (represented by the checkmark) and 7.0 otherwise (then no checkmark
would be visible). The Greater node (center) compares two values (Fig. 10 explains the Greater node in detail).
The Buzzer node (right), when turned on (visualized by the checkmark), produces a square wave with a
frequency of 20 Hz at its output, which users could connect to a piezo speaker via a Flowboard output pin.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Brocker et al.

Fig. 8. Building the circuit from our scenario in Flowboard. The students have hooked up a force sensor and
an LED, and created a program graph to turn the LED on whenever the input force exceeds a threshold.

Fig. 9. The Ardublock IDE showing code for a pushbutton that controls an LED. In this program, the yellow
blocks represent controls (here the loop method and an if statement), the green blocks are used to define the
pins as input or output pins, and the red blocks serve to program the action of the pins. The blocks of the
Ardublock editor can snap into each other to assemble a program for the Arduino. Block shapes provide a
visual cue which other blocks they can be snapped into.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:15

4 STUDY 1: EXPLORING EMBEDDED FBP
With our first user study, we wanted to see whether FBP could be a viable paradigm to learn
basic embedded coding if an IDE made good use of its conceptual opportunities for seamlessness
and liveness. We also wanted to see how learning with such a tool differed from using an IDE
in the traditional imperative programming paradigm. For this reason, we used both Flowboard
and Ardublock (see Fig. 9), an imperative IDE for Arduino used in STEM education and a close
competitor in the field of learning embedded coding, in a between-groups user study. Ardublock
uses a block-based visual code editor similar to Scratch, which brings it closer to Flowboard’s
visual FBP editor than a text-based IDE would have. However, the goal of including Ardublock was
not to look for quantitative benchmark comparisons between both conditions but rather to have
Ardublock serve as a conceptual lens to frame FlowBoard’s usage.

4.1 First Study Design
To see if Flowboard was a viable option required avoiding learning effects, which led to a between-
groups study design. Both groups conducted 1-on-1 workshops with one of the authors (two
authors in total), one participant at a time, building and programming basic Arduino projects,
such as making an LED blink. The two authors conducted both conditions to assure the results
were not biased by only one author executing one condition. To ensure that our research followed
established ethical standards, we planned both studies taking the ACM guidelines as well as specific
lessons from the Interaction Design and Children (IDC) community into account, and consulted
with teachers and experienced researchers whose feedback informed the design of our studies.
Parents received a consent form beforehand, which they had to sign to let their child take part in

Fig. 10. Example of the explanation of nodes on the cheat-sheet from the Flowboard condition.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Brocker et al.

the user study. Children could take breaks at any time and were encouraged to tell us whenever
there were any problems or they felt like stopping the user study. Total session time was limited to
one hour. In the Flowboard setup, the complete Flowboard kit, cables, sensors, and other required
components were laid out on a table in front of the participant (Fig. 12). In the Ardublock condition,
the setup consisted of a standard tutorial kit with an Arduino Uno, a breadboard, and the same
sensors, components, and cables (Fig. 13). Participants were allowed to ask clarifying questions
at any time. We decided to let participants not only program but also build the electronic circuits.
For this, they received an instruction sheet with the circuit schematic. This user study design was
important since the goal of Flowboard is exploring the fusion of hardware design and programming.
While we focused on understanding the impact of FBP on the programming task, building the
circuits is an important part of the experience and was therefore considered essential to evaluate
Flowboard for embedded programming.

We walked participants through the three guided tasks: (1) mapping a push button directly to an
LED, (2) making an LED blink, and (3) making an LED blink while the pushbutton is held down. It
was a conscious decision that the second task only involves one electronic component, while the
first task involves two components. Our pre-studies showed that having no (hardware-based) input
for a component confuses people with no experience when working in an FBP context. This is
because, in such cases, the flow of action starts with a node in the editor and not on the breadboard
as usual. Because of this, we let them connect a button to an LED first so that they gained a basic
understanding of the workflow and got to know the editor and its node types first.

After the three guided tasks, they were asked to complete two assignment tasks on their own: (1)
make an LED shine weakly resp. brightly, depending on whether a force sensor exceeds a threshold;
and (2) buzzing a piezo speaker if the sum of all three outputs from an accelerometer exceeds a
threshold. They received one task and the matching cheat sheet at a time. The cheat sheet included
all nodes (Flowboard condition (see example in Fig. 10) or blocks (Ardublock condition (see example
in Fig. 11) that the participant needed for the current task, with a description of each node or block.
This way, participants knew which elements they needed to use, but not how many of each, or
where to put them in the program.

Fig. 11. Example of the explanation for the blocks on the cheat-sheet in the Ardublock condition.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:17

Participant Condition Age Gender Experience with Tools
P1 FlowBoard 15 Female Scratch
P2 Ardublock 13 Male No Experience
P3 FlowBoard 10 Male Lego Mindstorms
P4 Ardublock 11 Male No Experience
P5 FlowBoard 12 Female No Experience
P6 FlowBoard 12 Female S4A, Scratch
P7 FlowBoard 14 Male Scratch
P8 Ardublock 12 Female No Experience
P9 Ardublock 14 Male Cold Cadim, Scratch, Arduino IDE
P10 Ardublock 15 Male Scratch

Table 1. Overview of participants of the first user study.

We debugged our study design and the Flowboard user interface in a pilot study with this setup:
Three teenagers (two female, mean age 17, SD 1.0, two with Java or Python experience, one also
with Arduino) went through our study design using Flowboard. After a general introduction to
Flowboard and handing out a user manual with basic instructions and examples, we gave them
one task after the other, with increasing complexity, each with the cheat sheet listing the nodes
needed for that task. All three completed their session, including introduction, three guided tasks,
and two assignment tasks, within the limit of one hour. Based on the observations in this pilot, we
improved details of the Flowboard UI, such as highlighting matching inputs based on input type
when connecting nodes, and letting participants replace existing connections between nodes by
dragging a new connection, without having to delete the old one.
In the subsequent full study, ten participants (4 female, aged 10–15, mean 12.8, SD 1.68) took

part, five per condition. Five had experience with Scratch, one of them additionally with embedded
programming using the original Arduino IDE (see Table 1). Participants were assigned to the
conditions alternately. We tried to balance the level of programming expertise in both conditions,
but recruiting turned out to be rather challenging, and the resulting groups are not balanced
perfectly.

4.2 Measures
We measured whether participants successfully completed each task and how much time they
needed. We captured all sessions on video to later help us determine the cause of any problems
participants encountered (e.g., whether time was lost working on the hardware or in the visual
editor). After their session, we asked participants what they perceived as the main challenges.

4.3 Results and Implications
Complex cognitive tasks like the ones in this study tend to have high individual performance
differences, and our number of participants was comparatively small, so we did not seek statistically
significant numerical results, but were rather interested in initial trends and insights to help us
understand if FBP could be a viable paradigm to further explore for learning basic embedded coding.

All students in the Flowboard condition were able to finish the embedded programming tasks. In
the Ardublock condition, 2 students were not able to finish within the allotted hour. The adjusted
Wald Method [1] can be used to calculate confidence intervals for binary success tasks and is proven
to be a precise estimate even with very few participants [45]. For Flowboard, the 95% adjusted-Wald
binomial confidence interval is [0.599, 1.00], and for Ardublock [0.229, 0.884] respectively. The

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Brocker et al.

Fig. 12. User study in the Flowboard condition. The particiant is seen creating a program to control a piezo
buzzer with an acceleration sensor in task 2.

Fig. 13. User study in the Ardublock condition. The participant is currently connecting the force sensor and
LED in assignment task 1.

fastest Flowboard participant finished in only 30 minutes, the fastest Ardublock participant in a
little over 40 minutes. On average, Flowboard participants needed 6 minutes and 57 seconds for
assignment task 1 (see Fig. 14). This was 2 minutes and 8 seconds faster than in the Ardublock
condition. In assignment task 2, Flowboard participants were 18 seconds faster on average. In total,

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:19

Flowboard participants needed 14 minutes and 2 seconds on average to complete all tasks, which
made them 2 minutes and 16 seconds faster than our Ardublock participants. Summarized, we found
that Flowboard learners tended to complete their tasks in less time. This matches our observation
that Flowboard participants were able to transfer what they learned in the guided tasks to the
assignment tasks more easily. In both groups, we had participants (three in the Flowboard condition
and two in the Ardublock condition) with previous experience using Scratch, an imperative, block-
based programming environment extremely similar to Ardublock. Those participants were on
average 3 minutes and 24 seconds faster with Flowboard than the experienced ones with Ardublock,
while participants [P2, P4, P5, P8] without any programming experience in both groups took the
same time for finishing their condition. The results do not produce statistical significance but
encourage further research.
Additionally, this gave us confidence that visual flow-based programming could be a viable

alternative to block-based imperative programming for learning embedded coding. In the Ardublock
condition, we observed participants often snapping blocks together like puzzle pieces, based on
their visual shape rather than their actual function, thus limiting learning transfer. P2 stated that he
did not understand how the blocks of the Ardublock environment work, and that they should have
better explanations (see UI in Fig. 9). Two other participants [P4, P8] mentioned difficulties finding
blocks in the Ardublock menu. They tried to use the block color when searching, but the menu uses
colors for its block categories that do not match the colors of the blocks in each category. In both
groups, the participants struggled to build the electronic circuits correctly during the guided tasks.
This was still challenging in the non-guided tasks, and mistakes mainly included wrong plugging
of the cables and sensor legs into the breadboard. This is not an easy task when new to embedded
programming and electronics. As building electronic circuits correctly was not the primary goal of
the user study, the instructor helped the participants to build correct circuits.

Fig. 14. Time to complete assignment tasks 1 and 2, and sum for both tasks, in the two conditions. In each
case, using Flowboard tended to take less time than Ardublock, although individual differences between the
users are too high to claim significance.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Brocker et al.

We observed that all participants in the Ardublock condition regularly forgot to press the Upload
button in the IDE, each time waiting for a few moments until realizing it. P9 stated that “uploading
is an annoying task”. Flowboard’s live visual feedback supported participants to execute faster
iterations during exploration and coding. We learned that the direct link between physical and
virtual I/O pins gave participants the feeling that they could connect input and output components
with only one line. P7mentioned that he “likes the direct connections”.We observed that participants
were making use of these direct connections very quickly. On the other hand, certain programming
tasks, like creating a ‘heartbeat’ in FBP code to blink an LED, were challenging students more.
We reflect on this in the discussion at the end. We also noticed that some students misinterpreted
Flowboard’s seamlessness, thinking that actual electricity would be flowing through the program
graph from left to right. This suggested a potential downside of this seamless experience that a
teacher or instruction materials could address, warranting further research. In our study, learners
with prior programming knowledge, even outside embedded environment, tended to work faster
with flow-based programming than using the block-based imperative programming environment.
This suggests that transferring programming knowledge to a flow-based programming paradigm
is relatively easy, and can help shorten the time needed for learners wishing to learn embedded
programming. However, even for those with no prior coding experience, flow-based programming
appears to be as suitable as the established imperative programming paradigm.
After this study, we were missing detailed qualitative insights regarding the influence of Flow-

board. Therefore, we wanted to concentrate on qualitative aspects in the second user study. Overall,
our first study showed the viability of FBP for learning embedded coding but also raised questions
that we wanted to address in the follow-up study.

5 STUDY 2: STUDENT PERCEPTIONS USING FLOWBOARD
Our second qualitative study aimed at better understanding students’ opinions and perceptions of
Flowboard. Specifically, it was aimed at gathering insights about these questions:

(1) How do students picture electronics and embedded programming?
(2) How do the concepts of liveness and seamlessness help to facilitate the understanding of

what is happening inside electronics in Flowboard?
(3) How does Flowboard help as a tool to introduce students to electronics sensor values and

functionality of electronics?
(4) How does Flowboard encourage students to explore electronics and embedded programming

on their own?

Our first user study had been conducted with one participant at a time. However, since the
architecture and layout of Flowboard make it physically reachable from all sides, and since FBP
makes parallel programs a natural choice, we decided to include the aspect of working in pairs. We
assumed that working in pairs could support participants to be explorative when programming
electronics with Flowboard. We followed established ethical standards as in our first study. E.g.,
parents had to sign a consent form before the study, and children could stop the study at any time.
Our study comprised of four steps: In step 1, we wanted to gather information about students’

perceptions of the functional aspects of electronics and embedded programming. Therefore, we
asked them to visualize their thoughts on these topics in a drawing task inspired by and adapted
from previous research that investigated students’ perceptions when learning to program [37, 46].
Step 2 was an embedded programming session with Flowboard, starting with a short introduction to
the system, and finishing with letting participants code on their own to collect data about children
using Flowboard, and its suitability and functionality. Step 3 repeated the drawing task from step 1
to elicit if Flowboard changed their perception of electronics and embedded coding. Step 4 was

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:21

a semi-structured interview for deeper insights into the students’ thoughts. Those interviews
included a reflection on their drawings, their general perception of embedded programming, and
their experience using Flowboard.

5.1 Detailed Study Procedure
Our study lasted 50–60 minutes and was executed in groups of two participants. Only one and
always the same author was leading all groups in the second user study. At first, participants were
asked about their demographics, like age and experience with electronics and programming in
general. Afterwards, participants watched a one-minute video about setting up the electronic circuit
for an LED. An Arduino controlled the LED to blink, but the programming code was not shown
in the video. This served to level the playing field somewhat with respect to prior knowledge of
concepts such as an LED. Participants were invited to ask questions as needed. Then each of the
two participants received a blank sheet of paper and was asked to create drawings individually
about (a) electronics and (b) programming electronics, based on the following questions. They had
roughly 10 minutes for this task.
(1) How do you picture what happens inside the electronics to let the LED blink?
(2) What do you imagine programming the electronics looks like?
The middle part of the study consisted of an introduction and exploring Flowboard (step 2). After

the introduction to Flowboard’s functions and UI, participants solved three tasks using Flowboard:
(1) Button and LED: Turn the LED on with the button.
(2) Pressure sensor and piezo:Whenever the value of the pressure sensor is more than 500,

the buzzer should sound at a different frequency than below 500. The buzzer node provides
an input to adjust its frequency.

(3) Pressure sensor and LED stripe: Create different colors for the first three LEDs of the
stripe using the values the pressure sensor produces.

As Resnick and Silverman [43] already emphasized, it is crucial to follow principles such as ’Make
it as Simple as Possible – and Maybe Even Simpler’ when developing construction kits for children.
Therefore, we want to make clear why we chose these three tasks to understand what electronic
principles and programming principles Flowboard can make visible to the participants:
(1) Button and LED: True and False are a basic concept in most programming languages, used,

e.g., to evaluate conditions. Since this is a relatively simple construct, we used it for the first
task. We can recreate this concept in an electronics context, e.g., a button has two states,
circuit closed and circuit open (True and False). The participant decides via programming in
which state the LED is turned on.

(2) Pressure sensor and piezo: The concept behind this task builds on the previous task by
adding more states than just True and False. Programmatically speaking, we introduce the
concept of variables. In an electronics context, we can map this concept to analog sensors. In
comparison to the button, a pressure sensor has more output values. The participant maps
these values to a certain behaviour by programming. Flowboard encodes the pressure sensor
values into the range of 0 to 1023. We did not describe this range to the participants as we
wanted them to figure it out on their own. As Flowboard updates the pressure input value in
real time as participants apply pressure to it, they can feel which applied force corresponds
to which pressure values. E.g., participants can interpret the value 500 as a medium force
that the sensor can sense. This relates to the fact that Resnick et al. reported: “Kids generally
have little difficulty learning to use imperative (action-oriented) commands (like forward
and on), [...]”.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Brocker et al.

(3) Pressure sensor and LED stripe: The last task is about transferring the gained knowledge
from the previous tasks to a new context. This is important both in programming and circuit
building. Since RGB LEDs have three input channels, we decided to use them as the new
context. To ensure all participants understand how to create RGB colors, we explained that
they can choose a value between 0 and 255 for each of the three basic colors to create their
custom colors. We left it to the participants to figure out how to achieve full red, yellow or
blue. Unlike task 2, participants define three values instead of one in this task. Additionally,
the output generated was ten LEDs, not one, giving more room for creative visuals.

Basically, the tasks get more complex while displaying basic concepts for programming. They offer
more options one by one for the participant to explore electronics and embedded programming.

One researcher served as an instructor in our user study. Participants were able to build circuits
and program them as Flowboard aims to fuse hardware and programming for a complete experience.
For each task, participants received a schematic, and the instructor helped them to build the
electronic circuit, as Flowboard’s primary aim is not to facilitate that aspect but experiencing the
circuit building process is important for the overall experience. Helping included plugging cables
and electronic components into the breadboards and explaining the schematics to participants. The
instructor solved the first two tasks together with the participants to convey a feeling of success
and to explain how programming in the FBP paradigm works. Of course, helping the users with
the tasks can also influence their learning and hence also the analysis of the qualitative results.
Therefore, we made sure that the instructor explained programming, electronic components and
tasks always the same way. This established the same starting point for all users as far as possible
and minimized the instructor’s influence on the results. For the last task, the instructor gave the
participants 10 minutes to solve it on their own, such that they had a chance to explore Flowboard
independently. If they were faster than 10 minutes, they were allowed to program any component
they liked to.

After the programming session, participants were asked again to draw their perceptions regarding
(a) electronics and (b) programming electronics. The researcher then put the drawings produced at
the beginning of the study next to these, and asked both participants to elaborate on their drawings
and the differences between the two versions, if applicable. These reflections were important to
gather insights about students’ perceptions of embedded programming and how, if at all, Flowboard
changed those perceptions.

After the conclusion of the drawing exercise and the experiment with Flowboard, semi-structured
interviews (step 4) followed. We asked participants about their experience with Flowboard:

• What did/didn’t you like about Flowboard?
• What was particularly easy for you?
• What values did the sensors give you, what was difficult to find out, what was easier?
• What did you learn about electronics today that you didn’t know before?
• Would you also use Flowboard with friends?
• Is there anything you would like to build with Flowboard and what is it?
• What values did the electronics show?
• How did you find out what values they have?
• Was there anything you found to be rather complicated?
• Is there anything you would like to change about Flowboard?

At the end of the interview, students were given the chance to ask any questions they had about
Flowboard.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:23

Participant Group Age Gender Experience with Tools
P1 1 14 Female No Experience
P2 1 15 Male Arduino, Java, Python, Scratch
P3 2 15 Male Scratch, Python, Arduino
P4 2 15 Male Blender, little Arduino
P5 3 15 Female App Inventor
P6 3 15 Female No Experience
P7 4 12 Female Lego Mindstorms
P8 4 11 Female Scratch
P9 5 14 Female No Experience
P10 5 14 Female No Experience
P11 6 13 Female Scratch
P12 6 13 Female Scratch, BOB 3
P13 7 10 Female Roboter (Dash), Lego Mindstorms
P14 7 11 Female Roboter (Dash), Lego Mindstorms, Calliope
P15 8 10 Male Calliope
P16 8 11 Female Scratch, Calliope, Lego Mindstorms

Table 2. Overview of participants of second user study.

5.2 Pilot Study
We conducted a pilot study to test our study procedure and ensure participants would not become
fatigued or overwhelmed by the tasks requested. For the pilot, two male students, both aged 15,
who had experience with Arduino, Python, C, and Java, completed the study in 34 minutes.

5.3 Participants
Sixteen participants (twelve female, aged 9–15, mean 13, SD 1.9) took part in groups of two (see
Table 2). The pairs for the study were formed by chance, i.e., whenever we were able to find two
more children to participate in the user study, they were paired, and the study was executed. This
happened for three groups. Five of the eight study sessions were conducted in school classes during
the lessons. Each time, two volunteers were chosen randomly to execute the study together. Of
course, only those children could participate who had our consent form signed by their parents.
One group consisted of two males, five groups of two females, and two groups were mixed. They
had varying experience in programming: Four stated not to have done any programming before,
while three were quite experienced and had used various programming tools, including the Arduino
IDE. In group two, both participants were very experienced. Compared to all other participants,
they had the most experience. All other participants stated to have used tools such as Scratch, Bob3,
MIT App Inventor, or others before but did not describe themselves as experienced, especially not
with electronics.

5.4 Measures & Data Analysis
Drawings can help understand underlying mental models, especially children’s [6]. Data collected
by drawings has its limitations as it is dependent on the children’s drawings abilities. But research
of the last 25 years shows that children have “extraordinary skills in making meaning through
the affordances of drawing” [32]. Researchers have previously applied drawing as a technique for
investigating children’s thoughts and understanding of technology [46]. Therefore, we followed

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Brocker et al.

the methodology Selwyn et al. [46] applied in their research. We used open coding to analyze the
drawings and defined four categories for sorting the drawings:
(1) Electronics: electronic components such as sockets, LEDs, bulbs, cables.
(2) Basic Electronics Principles: units and electrical quantities such as power, force, resistance,

and electronic circuits, including symbols for components and current [8].
(3) Programming Artifacts: objects needed for programming represented in the drawings, such

as hardware that children picture to be needed to program, e.g., computers.
(4) Programming Principles: any drawing that depicts a programming command, such as letter

sequences, blocks or numbers. These commands, of course, can be of any abstraction as none
of the participants were experts in programming.

Some drawings were assigned to more than o/drawings
, P7 drew a circuit and a light bulb for the category Electronics. In addition to identifying their

general perception of programming, we aimed for finding aspects that students changed after using
Flowboard.
Interviews were recorded on video and fully transcribed afterwards for analysis. Since part

of our data was qualitative feedback and interviews, we analyzed our results using the coding
software MaxQDA25. After preparing the interview transcriptions, we defined a code system to
flag participant statements with summarising keywords. The four iterative coding cycles were
performed by one person, with feedback rounds from others. In total, 121 sections were marked as
valuable and were sorted and assigned to suitable categories. In the first two coding cycles, one
researcher combined the first 19 themes into 11 themes; e.g., ‘electronics placing hard’ and ‘nodes
hindering advanced circuits’ were joined to ‘building circuits’. Afterwards, two more iterations were
conducted with two other researchers to concretize and shape the categories into result themes:
e.g., problem statements regarding the breadboards were merged into ‘problems building circuits’,
statements referring to the fast system feedback were put together as ‘liveness of components’, and
so on. We report on the findings of this categorisation in the interview results section below by
aligning them with the focus questions we set out at the beginning of this study.

5.5 Findings of the Drawing Analysis
More than half of the participants (nine) changed their drawing describing their perception of elec-
tronics after the experiment. For the drawing concerning programming of electronic components,
all but four participants made changes. Below, we report on the insights gained from analysing the
drawings according to the four categories detailed in 5.4; examples of the drawings are shown in
Fig. 15.

5.5.1 Picturing Electronics. When asking participants to picture ‘electronics’, eight drew compo-
nents such as LEDs, cables, or electronic devices they knew from everyday life, like light bulbs or
sockets. After the instructor had demonstrated Flowboard, only three drawings still pictured only
electronic components. In the other drawings, parts of circuit and programming principles could
now be identified, e.g., connections between electronic components.

5.5.2 Basic Electronics Principles. Basic electronics principles, such as electricity, closed electric
circuits, or positive and negative terminals, were drawn by 11/16 participants. The total number of
drawings showing electronics principles did not change after using Flowboard.

5.5.3 Programming Artifacts. When asked to visualize the term ‘Programming Electronics’, 10/16
participants drew objects like laptops, screens, or desktop computers. After the Flowboard session,

25https://www.maxqda.com

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.maxqda.com

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:25

Fig. 15. Some drawings by participants [a.) and b.) were drawn for the question of how you picture electronics
inside; c.) and d.) for how do you imagine programming the electronics]: a) A closed electronic circuit. b)
Electronic components. c) Programming principle showing Flowboard. d) A laptop showing programming
with letter sequences.

this number went down from ten to six participants. Four participants changed their drawings
slightly, by focusing the drawing on the programming principle instead of the object to program
the electronics with.

5.5.4 Programming Principles. Three quarters of all participants drew programming principles,
e.g., programming commands or terms like ‘numbers’, ‘letters’ or any kind of letter sequences. This
number did not change after the exploration session with Flowboard.

5.5.5 Summary of Drawing Results. Overall, the drawing task revealed that participants were
unfamiliar with the flow-based programming concept prior to the study. For changing their draw-
ings, participants named reasons that highlighted at least a fleeting understanding of flow-based
programming:

“Before, I had no experience. Now I can imagine what happens inside, like, starting from the left
the signal goes through the programming and on the right side the action happens.” [P11]
“I also didn’t really know what was going on in it beforehand. Now that I’ve done it, you can imagine
what’s going on there.” [P12]

5.5.6 Interview Findings. The semi-structured interview took 10–15 minutes. We report on our
findings below, categorized in themes according to the focus questions two to four of our study
(see Table 3). Those are not questions we asked the participants verbatim, but research questions
that helped guide our analysis.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Brocker et al.

Theme Index Theme Name
1 Changes Pictures
2 Understandable
3 Liveness of Components
4 Beginner-friendly
5 Programming Alone
6 Programming Together
7 Support of Seamlessness
8 Improvements
9 Building Circuits
10 Connections of Nodes easy
11 Clear Arrangement

Table 3. Overview of the final themes.

5.5.7 How do the concepts of liveness and seamlessness help? One task in the study was to change
the buzzer frequency when the force sensor value exceeded 500. When asking participants how
they knew the value, fifteen commented along the lines of “you could see that” and explained that
obviously, they could see that value at the virtual pin in the iPad editor. This points to a feature of
Flowboard that can be attributed to its liveness and seamlessness:

“I liked that you can watch everything, also what is happening inside. And you can see changes
when you modify the components on the iPad.” [P3]
“You could see them [the sensor values] on the screen.” [P5]
“Down here at pin 16, because the sensor is plugged in at 16, and when you press the sensor, you always
see the value.” [P14]

The participants P3 and P4, who had experience with the Arduino IDE, gave a reason why Flow-
board is easy to use.

“With Arduino, you always need the serial monitor. Here I can see directly at the connection what is
happening.” [P3]
“To get started, you don’t have to know the exact commands like with the Arduino IDE, and you can’t
make stupid mistakes like syntax errors.” [P4]

5.5.8 How does Flowboard help as a tool? 10/16 participants stated in their interviews that Flow-
board is especially suitable for beginners:

“Flowboard is practical for beginners because it is clear and easy [to understand without any pro-
gramming experience].” [P9]
“Flowboard is great to achieve an overview of how everything works. [...] In a second step, you can build
something with an Arduino Nano [because users can learn about the textual Arduino commands from
the information dialogs of each programming node].” [P5]
“I think it is very simple. I myself have no prior knowledge, and if someone knows a little something, it
might be a little easier. It’s well-meant and as simple as possible.” [P6]
“[I] liked that you had so many options on the iPad [...]. Making the connections was clear.” [P5]
“Connecting [components] on the iPad with the yellow lines [was easy].” [P10]

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:27

Using an iPad made it easy to connect electronic components, and the use of the touchscreen was
regarded favorably. Concerns were brought forward regarding Flowboard’s case and usage within
projects:

“The wooden case looks a little fragile. Maybe consider one out of plastic.” [P8]
“Flowboard is too large to embed it somewhere.” [P3]

The three features that were listed as most helpful were connecting nodes, using nodes, and
the menu to find new nodes. The participants proposed improvements enabling students to use
Flowboard on their own without an introductory session and creating shortcuts for advanced users:

“I would add a starting page, where everything is explained... this way you can work freely.” [P14]
“For beginners, the nodes are handy, but for experienced users, it would waste time to look for each
block in the menu.” [P3]

Overall, 13/16 participants pointed out that the scenario of programming Flowboard together
with another person is advantageous to explore and help each other:

“When a person sits next to you, you tell her when seeing a mistake. You have four eyes.” [P5]
“[...] if the other [person] doesn’t understand something, one can help.” [P11]
“I like programming together as I am inexperienced and thus can ask the other person about things that
are unclear.” [P8]

Programming alone was preferred by only two participants, who found it easier to work alone, e.g.,
at home.

5.5.9 How does Flowboard encourage students to explore? Eleven participants stated that building
something with Flowboard is possible, but most had no specific project idea in mind. Two more
experienced participants (P2 and P5) remarked that Flowboard’s size can be an obstacle when
building integrated objects. However, Flowboard would be convenient for controlling electronics
such as an LED strip to decorate your room:

“[...] when the temperature rises, the color of the LED strip changes.” [P5]

Overall, participants found Flowboard suitable as a starting point to develop an idea, later switching
to another environment that fit their needs, i.e., using Flowboard as a mock-up tool to test an early
concept:

“Flowboard is great for getting an overview of how it all works exactly, and if you then want to
go a step further and you then know all the commands, then you can read exactly how you have to
write the commands and know where and how you use them to, like, in another step to build things
with an Arduino Nano.” [P2]

P1, P4, P12, and P13 mentioned they were unsure at first if they were able to solve any tasks
at all, but found that Flowboard took away some of their concerns, as they found that the system
provided clear arrangements and a good visual concept.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:28 Brocker et al.

“Flowboard holds a clear arrangement [as opposed to Arduino].” [P4]

Most difficulties arose when building the electronic circuits on the breadboards left and right.
Six participants reported that they either did not like this part or thought:

“The plugging in on the breadboard was hard.” [P9]

We noticed that some students needed extra encouragement to read the instructions on each
task sheet properly. With the low overall number of participants, this characteristic may not have
been balanced across conditions, causing the difference. Additionally, we observed that floating
analog input pin values confused participants as they did not understand whether the pin was
broken and why there was a floating value.

To summarize, our key findings from the second study are:

• Seamlessness and liveness of the system provide cues for participants to understand electronic
components.

• Perceiving sensor values on the iPad was easy and fast.
• Flowboard is suitable for beginners, and supports working in pairs, but is not considered
ideal for complex projects.

• Participants suggested improvements, such as a built-in tutorial to support independent
exploration and learning.

6 DISCUSSION & IMPLICATIONS
The above results indicate that Flowboard’s concept provides helpful cues to facilitate learning
about embedded programming. In the following sections, we will discuss the insights we gained
from the studies in detail.

6.1 Effect of Liveness and Seamlessness
We were interested in whether the presence of live feedback had a particular impact on the learning
experience. We learned that Flowboard’s live visual feedback, e.g., when nodes or components
like a pressure sensor were connected, supported much faster iterations during exploration and
debugging, as no edit-compile-run cycles like in the Arduino IDE are needed [P3, P12]. Users
found it easy to determine what data a sensor was delivering, and they immediately realized value
changes at the virtual pins. This indicates that they were able to understand Flowboard’s overall
interface, and that perceiving changes was intuitive. Our FBP setup gave the users the feeling that
the electronics were “alive”, which is very suitable as a concept. It matches the behavior of basic
electronic circuits, which also react to changes immediately. We consider this effect one reason to
recommend FBP for embedded programming learning environments.
Some of our users even thought that the yellow connections in the editor were indeed cables

carrying power, showing that the analogy was readily accepted, and could even be over-applied
by users. They developed misconceptions about how the system worked because of Flowboard’s
design that hides the Arduino and puts the input and output sides of the circuit next to the iPad in
a seamless manner. This effect, and ways to avoid such misconceptions, warrant further study.
Similarly, the live visualization of the floating voltage at an unconnected analog input pin

confused participants, as they could not interpret what it meant. Following design principles as
expressed by Resnick and Silverman [43], we suggest handling this as a “black box”: Floating pins
should be avoided in electronics, and they can be detected and flagged accordingly, as Toastboard

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:29

[18] demonstrates, which could remove the visual distraction and resolve this issue of “too much”
liveness.

We also looked at the impact of Flowboard’s seamless transition between hardware and software.
We learned that the direct link between physical and virtual I/O pins gave users the feeling that
they could connect input and output components with only one line [P14, P3]. Experienced users
also mentioned that Flowboard could be an easier and faster option to learn about a sensor’s value
range than the Arduino serial monitor [P4]. These comments confirm our assumption that reducing
the steps necessary to see live sensor data encourages exploration. Encouraging students to explore
supports building up knowledge through “learning by doing”.
Nevertheless, building the actual electronic circuits in hardware remained challenging. This

illustrates the ongoing need for projects such as CurrentViz [53], which displays current flow in
the user’s circuit ubiquitously to let them detect problems with their circuit.

6.2 Mental Model
We also wanted to understand our participants’ mental models of electronics and embedded
programming and how using Flowboard would change these models. To this end, we used an
established technique [21] of letting participants draw concepts of electronics and embedded
programming, before and after using Flowboard.
Flowboard did not change the mental model of participants who already had experience with

programming toolkits and whose model, not surprisingly, was quite specific already, e.g., under-
standing that LEDs can be turned on and off. Their perception of programming seems to have
become manifested already through prior experience. However, it provided us with interesting
opportunities to reflect on how their mental model differed from that of students with less or no
experience.

We found that especially among those participants that had no experience, the typical picture of
programming electronics was characterized by numbers and letter sequences. This indicates that
the general programming model seems to be the traditional programming paradigm using textual
commands, most likely informed by depictions of programming in the media. However, Flowboard
still provoked wrong mental models. For example, some participants thought that the data for the
output components came from the iPad and was not triggered by the connected input components.
After using Flowboard, participants added the nodes and lines that are used for programming

in Flowboard to their drawings. Participants that had been introduced to programming in school
previously drew block-based commands in addition to numbers and letters. This is likely due to
schools using tools like Scratch, which seems to be the state of the art to introduce programming,
based on our interviews and own experience in this area. Their reason for changing their pictures
after using Flowboard mainly was that they had not seen flow-based programming before, and
wanted to add it to their drawing for completeness.

Flowboard’s system design of feeding sensor values into output components no matter whether
they can be interpreted led participants to think about the meaning of those values. They wanted
constantly working output components, and were keen to understand how to achieve this. Flow-
board’s system design made the values visible, helping them to understand that sensor and actuator
value ranges can differ. It guided them to understand that values can be mapped to each other, and
that sensors and actuators can have different sensitivity.

Five participants added programming principles to their drawing after using Flowboard, such as
connections or cables between components or programming commands. This indicates that those
participants’ mental model consolidated electronics with programming, fusing both together. As
embedded systems are permeating today’s everyday environments, programming and electronics
are indeed in a process of fusing. Whether this view is valuable in teaching embedded programming

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:30 Brocker et al.

needs further investigation. However, since physical computing is a part of STEM education, and
since Flowboard seems to support bringing coding and hardware closer together—physically and
conceptually—, we believe that any system teaching embedded programming should link the
electronics very closely to their associated program code.
In some tasks, users had problems developing a correct mental model of the system. In study

1, we observed that tasks like using a ‘heartbeat’ node in the editor to let an LED blink without
an input component were more challenging to complete than controlling an LED with a button.
This is not surprising, as the FBP paradigm fits signal-processing tasks very well but is less suitable
for modeling state and state changes internally, something that imperative programming supports
more naturally through variables. Interestingly, some participants labeled Flowboard’s input side as
the ‘beginning’, the program as the ‘middle’ part, and the output side as the ‘end’. However, defining
a color for the LED strip without input in the third task was no problem, raising the question of
whether the problem was the ‘heartbeat’ issue or not having an input component. Investigating
this further, e.g., by conducting more tests with a wider variety of tasks, is one of our avenues for
future research.

In conclusion, it should have become clear that our work has just begun to investigate the mental
models of embedded programming that emerge while using a tool like Flowboard. We discuss some
aspects of future work to unearth more of the potential of this avenue of research in section 7.

6.3 Impact on Learning Programming and Electronics
As mentioned in section 6.1, our findings indicate that Flowboard encourages exploration, a key
element of approaching and learning a new subject matter [7, 28]. Our participants also deemed
Flowboard suitable for beginners in embedded programming, and they consider Flowboard’s layout
less confusing than other similar tools [P4, P9]. Various comments also pointed out that the editor
running on an iPad made it easy to connect electronic components, and the use of the touchscreen
was regarded favorably [P14].

On the other hand, Flowboard uses a visual programming editor, which is further away from
natural language than the blocks of text in textual imperative programs. However, we paid close
attention to following the recommendations by Resnick and Silverman [43] to mitigate the adverse
effects of a graphical representation. While we did not investigate the effects of visual vs. textual
programming languages in our studies in detail, we did observe some effects of this representation,
which we discussed above. For future work, we believe that a qualitative user study with that focus
would be beneficial in developing additional design recommendations for embedded programming
learning tools.

Some participants voiced concerns regarding Flowboard’s case and the constructed circuits being
fragile [P8] or not visually appealing [P12]. In contrast, the three features that were listed as most
helpful were the way how nodes were connected by simply drawing lines between them [P9], using
the nodes to program [P2, P3], and the menu to find new nodes [P5].

Compared to, e.g., an Arduino microcontroller, the Flowboard system can be too “bulky” to use
for complex projects or permanent installations [P4]. However, our studies and related research
projects [2, 33, 34, 47] indicate that it is the bar to enter embedded programming that needs to be
lowered, and here, the default textual programming of, e.g., an Arduino IDE can be complicated
for beginners. For example, Demetrescu et al. [17] combined procedural languages and dataflow,
taking care that the coding process for the programmer is simple. Many tools use language blocks
to address this challenge, but based on our findings, we recommend taking FBP into consideration
when developing tools to learn embedded programming. A suite of Flowboard-based tools in
various form factors for projects of different size and complexity could be a useful extension.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:31

Our studies indicate that Flowboard provides a good starting point to learn embedded program-
ming. However, the tool is currently tailored towards simple starter projects for learners. Slightly
more advanced users could be accommodated better by, e.g., providing appropriate shortcuts for
more efficient use [P3].
Our first study included FBP and imperative programming. The latter was not expressed in a

text file but in blocks of imperative commands to make both conditions use a similar means of
graphical manipulation instead of editing text. Our pilot tests confirmed that the same embedded
programming task can be of varying difficulty depending on the programming paradigm used. In
our case, FBP as used in Flowboard seemed to be easier for tasks with a physical electronic input,
as users considered the program to follow the signal flow, starting at the input component and
leading to an effect at the output component. Imperative programming seemed to be easier for
tasks without an input component, such as a blinking LED that required providing a trigger such
as a clock in software. We also observed that loops were a natural concept to code explicitly in
imperative programming. The implicit continuous sense-react loop that drives an FBP runtime
behind the scenes remains invisible to the user (as it probably should). Therefore, when developing
environments using FBP to teach embedded coding, we recommend starting with tasks that include
input and output components. This way, users can experience from the start what effects they
can trigger with input components and their programming code, learning the useful embedded
programming strategy of continuously reacting to changing input values early on. Our results
suggest that the programming primitives that Flowboard provides were suitable for the tasks we set
out. For example, the blackboxing of components helped students to fulfill the tasks (see Resnick
and Silverman [43]). However, the selection and design of the nodes available in the language needs
more careful review; nodes for more complex commands might lead to user mistakes. We observed
that for a well-functioning FBP editor, the black boxes that imply and hide programming details need
to be chosen even more carefully than in imperative programming (see also Resnick and Silverman
[43]). We believe the reason for this difference is that the syntax in imperative programming is closer
to natural language [30] than the graph structures in flow-based programming. We recommend
investigating how flow-based nodes can be designed to be closer to natural language while keeping
the language flow-based. While designing those, it is necessary to keep in mind how abstract the
nodes should be, what the goal of the node is and what the user should learn from it. We believe it
is more important for the user to be able to provoke action with their code than understanding
what the code commands are provoking exactly on a compiler level.

As discussed in section 3, Flowboard was originally designed as a tool to help novices explore
embedded programming, which could be considered an informal learning scenario. At the same
time, according to the definition by Rogers [44], Flowboard is not a purely informal learning tool
either, because it is not an everyday object that provides learning as a side effect of using it. We
recommend integrating Flowboard into formal STEM education as a tool with which children can
learn about the topic exploratively: The tasks children have to solve should be designed leaving
room for their own ideas, encouraging creativity and exploration.

6.4 Collaboration
In our second user study, we observed participants beginning to collaborate when building their
circuits. They helped each other with problems even before the instructor assisted them. During
the first two guided tasks, participants still asked the instructor for help frequently. In the third
task, six groups began to split the LEDs to create colors and to negotiate how to create different
colors. The concept of RGB was not clear to 11 participants, yet they created colors by feeding
sensor values into a color node in the Flowboard IDE. When participants wondered why the RGB
stripe did not show a color change when they applied very high pressure on the pressure sensor,

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:32 Brocker et al.

they started to ask each other whether all connections in the program were correct. When they
were still unsure, they turned to the instructor: “We cannot see any change. Why? Can you help
us?”. She then explained the mapping problem (RGB values ranging from 0 to 255, while sensor
values range from 0 to 1023, leading to sensor values of 256 to 1023 being mapped to the same
color). Participants then began to discuss how to change the program. Working together helped
participants overcome many challenges compared to the first user study, which had only single
participants. Participants mentioned that they felt more encouraged to first ask their partner before
turning to the instructor. This resonates with the findings of Matias et al. [31] and Dasgupta and
Hill [16], who found that sharing knowledge with others improves the learning curve. Since the
first study did not take place in pairs, we cannot currently say whether spontaneous collaboration
would also happen with ArduBlock. We hope to further explore this question in follow-up studies.

To conclude, we observed that the live, seamless, flow-based programming approach increased
students’ understanding of the interaction between embedded hardware and software components.
Students used the liveness of the system to explore how different input values influence their
design. The importance of liveness has been investigated in imperative programming systems such
as by Krämer et al. [25] and Cabrera et al. [13], showing that liveness is essential for embedded
programming. The drawings generated indicate that Flowboard adds another layer to students’
mental model of what programming can look like, going beyond the traditional text-written
programming metaphor. Especially for electronics, which display output signals as soon as power
is turned on, developing a mental model of how single components work could be supported
by a live, flow-based environment. Liveness helps users see the changes of their modifications
directly. Flow-based programming supports users in developing a more clear mental model on how
data signals flow through the program from input to output components. Flowboard supported
pair programming in a satisfactory manner, indicating another potential advantage of FBP for
learning embedded coding. Further investigations are needed to identify which factors, e.g., FBP or
the physical design of Flowboard, are more advantageous for learning embedded programming
compared to existing approaches. Since enabling students to learn and explore in hands-on sessions
is of critical importance [7, 49], we believe that taking these characteristics into consideration when
designing such tools can advance and enrich the learning process.

7 LIMITATIONS AND FUTUREWORK
Our current prototype faces a few technical challenges. As discussed earlier, using a serial protocol
like Firmata on the Arduino limits embedded performance compared to native Arduino code,
making some advanced Arduino applications impossible with our approach. A more significant
limitation may be that Flowboard requires the iPad to remain connected to the Arduino board via
Bluetooth to run programs. This is different from standard embedded programming practice, in
which the embedded system, such as an Arduino board, can be disconnected from the computer after
the code has been uploaded. Being able to upload an FBP code graph to the Arduino microcontroller
and execute it there is possible, as MicroFlo26 illustrates. Flowboard is designed as a learning tool
and for simple projects. To help with transitioning from Flowboard to a standard environment like
the Arduino IDE, we are exploring how to generate native Arduino code from a given program
graph to reuse in the Arduino IDE. This would be a useful next step to allow Flowboard projects to
run standalone and could also help to address Firmata’s performance limitations.

As mentioned in section 6.1, the physical input pins currently “float” when not connected. While
this is technically the correct behavior, the constantly changing value displayed next to some pins
can become irritating. Detecting floating pins, similar to [18], could address this issue. Finally,

26http://microflo.org

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://microflo.org

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:33

the switch that currently disconnects only the power connections to both breadboards should
interrupt all connections between the breadboards and the rest of the system to reduce the danger
of damaging components while working on the electronics further. Participants also proposed that
Flowboard’s design can hinder advanced users due to size considerations for more complex tasks.
We hope to integrate the user feedback and these technical improvements in our next hardware
iterations.

We evaluated our approach only with young learners, not with adult beginners or more experi-
enced users. Our user studies not only revealed further opportunities to improve the Flowboard
user interface (such as preview animations explaining a node’s function, our participants’ biggest
challenge), but we also noticed a fairly clear difference between age groups in understanding
programming concepts, likely tied to their advancement in analytical thinking. We want to focus
future studies on groups with a smaller age spread, e.g., one group for 10–13 and another for
14–15 years, to investigate the applicability of Flowboard for those different age groups. Larger
studies with statistical power and more homogeneous user groups could help confirm and underline
our quantitative observations, and help us understand the conceptual “ceiling” of the visual FBP
approach in embedded development. Additionally, we would like to run studies to see if quantitative
measurements can demonstrate significant advantages of Flowboard over, e.g., Ardublock regarding
task performance and ease of use.

Our study 2 began investigating how collaboration helps to learn embedded programming using
FBP. Comparing this to the effects of collaboration in imperative programming environments for
embedded development would warrant further study. Furthermore, in the second user study, we
did not evaluate any gender effects in the collaborative pair programming task. We hope to learn
more about this through additional analysis of our existing study data, and in follow-up studies.
We initially set out to better understand the mental models of novices regarding embedded

programming when using FBP, and discussed our results in section 6. Based on the tendencies we
found in our second study, we hope to sharpen our understanding of how individual aspects of
Flowboard and FBP in general impact the user’s emerging mental model of embedded programming
in a future study.
Transferring knowledge is a key concept when learning. In future studies, we would like to

better understand what knowledge our Flowboard users are able to transfer over to, e.g., imperative
programming, or designing electronic circuits. Knowledge transfer also depends heavily on the
design of the programming language itself. At the moment, we are limited by the HCI research
lens, but beyond we would like to look at didactic concepts such as those described by Resnick and
Silverman [43] and see how they can be applied to FBP. Similarly, our recommendations for support
tools in section 6.1 could be expanded by considering additional didactic aspects and methods in the
design and study. We also did not test all the nodes of the Flowboard library in our studies. We plan
to collect additional feedback to gather a more complete understanding of the value of different
programming primitives in FBP for embedded coding. Finally, hybrid solutions that join FBP and
imperative programming constructs may offer a way to bridge the gap between both paradigms
that is worth exploring.

8 CONCLUSION
We have proposed switching from traditional imperative programming to the flow-based pro-
gramming paradigm as an intriguing new way to tackle the steep learning curve of embedded
programming. Our Flowboard prototype includes a touch-based visual FBP editor running on a
large iPad, and a hardware design that integrates the iPad with a hidden Arduino microcontroller
board and two breadboards with pin breakouts for input and output circuitry. Fitting the nature of
FBP, Flowboard is a live environment, with both program and sensor value changes taking effect

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:34 Brocker et al.

immediately and a more seamless environment, linking physical I/O pins directly to their virtual
counterparts in the IDE. The approach naturally supports coding independent parallel processes
and pair programming.

Many tasks in early embedded programming use a signal-processing structure that continuously
receives input from external hardware sensors and reacts to these, e.g., by driving hardware
actuators, in a tight run-loop (Arduino’s “loop()” program architecture reflects this). For such tasks,
a live environment is much more beneficial, as liveness allows one to instantly see the effect of code
changes without the need for the traditional edit-compile-upload loop of embedded programming.
FBP can provide this liveness.

Our first study testedwhether users can solve basic embedded programming taskswith Flowboard.
To focus our analysis, we compared it to Ardublock, a Scratch-like, similarly visual, but imperative
programming IDE. Our observations and user feedback showed that FBP is a promising approach
to learn embedded coding.

Our second study explored different programming tasks and what impact Flowboard has on high
school students learning embedded programming. We found that the seamlessness and liveness
of Flowboard provide cues to develop a mental model of electronic components and how to
program them. In addition, Flowboard encourages users to learn embedded programming through
exploration and collaboration.
We hope that our findings inspire others to further explore the concepts of FBP, liveness, and

seamlessness in order to further lower the bar for beginners and young learners to discover
embedded programming.

ACKNOWLEDGMENTS
We would like to thank all our participants for taking part in the user study. Additionally, we would
like to thank our external colleagues who helped us in setting up the experiment.

REFERENCES
[1] Alan Agresti and Brent A. Coull. 1998. Approximate is better than “exact” for interval estimation of binomial proportions.

The American Statistician 52, 2 (1998), 119–126.
[2] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging Generative

Design to Enable Novices to Design and Build Circuitry. In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York, NY, USA, 331–342.
https://doi.org/10.1145/3126594.3126637

[3] Stelios Arakliotis, Dimitris G. Nikolos, and Emmanouil Kalligeros. 2016. LAWRIS: A rule-based Arduino programming
system for young students. In 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST).
1–4. https://doi.org/10.1109/MOCAST.2016.7495150

[4] Fernando R. Avilés and Carlos A. Cruz. 2017. Mobile augmented reality on electric circuits. In 2017 Computing
Conference (Computing Conference ’17). 660–667. https://doi.org/10.1109/SAI.2017.8252166

[5] Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan Borchers. 2007. iStuff Mobile: Rapidly Prototyping New Mobile
Phone Interfaces for Ubiquitous Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY, USA, 1107–1116. https://doi.org/10.1145/1240624.
1240793

[6] Laura Barraza. 1999. Children’s Drawings About the Environment. Environmental Education Research - ENVIRON
EDUC RES 5 (02 1999), 49–66. https://doi.org/10.1080/1350462990050103

[7] Nadine Bergner and Ulrik Schroeder. 2015. Informatik Enlightened - Informatik (neu) beleuchtet dank Physical
Computing mit Arduino. In Informatik allgemeinbildend begreifen, Jens Gallenbacher (Ed.). Gesellschaft für Informatik
e.V., Bonn, Germany, 43–52.

[8] John Bird. 2017. Electrical and electronic principles and technology. Taylor & Francis.
[9] Tracey Booth and Simone Stumpf. 2013. End-User Experiences of Visual and Textual Programming Environments

for Arduino. In End-User Development, Yvonne Dittrich, Margaret Burnett, Anders Mørch, and David Redmiles (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, 25–39.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1109/MOCAST.2016.7495150
https://doi.org/10.1109/SAI.2017.8252166
https://doi.org/10.1145/1240624.1240793
https://doi.org/10.1145/1240624.1240793
https://doi.org/10.1080/1350462990050103

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:35

[10] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed Wires: Investigating the Problems of End-User
Developers in a Physical Computing Task. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 3485–3497.
https://doi.org/10.1145/2858036.2858533

[11] Anke Brocker, Simon Voelker, Tony Zelun Zhang, Mathis Müller, and Jan Borchers. 2019. Flowboard: A Visual
Flow-Based Programming Environment for Embedded Coding. In Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19). Association for Computing Machinery,
New York, NY, USA, 1–4. https://doi.org/10.1145/3290607.3313247

[12] Erik Brunvand. 2021. LED Paper: Physical Computing with Handmade Paper. In ACM SIGGRAPH 2021 Educators
Forum (Virtual Event, USA) (SIGGRAPH ’21). Association for Computing Machinery, New York, NY, USA, Article 6,
2 pages. https://doi.org/10.1145/3450549.3464418

[13] Lautaro Cabrera, John H. Maloney, and David Weintrop. 2019. Programs in the Palm of Your Hand: How Live
Programming Shapes Children’s Interactions with Physical Computing Devices. In Proceedings of the 18th ACM
International Conference on Interaction Design and Children (Boise, ID, USA) (IDC ’19). Association for Computing
Machinery, New York, NY, USA, 227–236. https://doi.org/10.1145/3311927.3323138

[14] Konstantinos Chorianopoulos, Letizia Jaccheri, and Alexander S. Nossum. 2012. Creative and Open Software En-
gineering Practices and Tools in Maker Community Projects. In Proceedings of the 4th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems (Copenhagen, Denmark) (EICS ’12). ACM, New York, NY, USA, 333–334.
https://doi.org/10.1145/2305484.2305545

[15] Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernández, and Benjamin M. Hill. 2016. Remixing As a Pathway
to Computational Thinking. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work
& Social Computing (San Francisco, California, USA) (CSCW ’16). ACM, New York, NY, USA, 1438–1449. https:
//doi.org/10.1145/2818048.2819984

[16] Sayamindu Dasgupta and Benjamin M. Hill. 2017. Scratch Community Blocks: Supporting Children As Data Scientists.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
ACM, New York, NY, USA, 3620–3631. https://doi.org/10.1145/3025453.3025847

[17] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. 2011. Reactive Imperative Programming with Dataflow
Constraints. SIGPLAN Not. 46, 10 (oct 2011), 407–426. https://doi.org/10.1145/2076021.2048100

[18] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David Mellis, and Björn Hartmann. 2016. The
Toastboard: Ubiquitous Instrumentation and Automated Checking of Breadboarded Circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA,
677–686. https://doi.org/10.1145/2984511.2984566

[19] Clifton Forlines, Daniel Wigdor, Chia Shen, and Ravin Balakrishnan. 2007. Direct-touch vs. Mouse Input for Tabletop
Displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (San Jose, California, USA)
(CHI ’07). ACM, New York, NY, USA, 647–656. https://doi.org/10.1145/1240624.1240726

[20] Saul Greenberg and Chester Fitchett. 2001. Phidgets: Easy Development of Physical Interfaces through Physical
Widgets. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology (Orlando, Florida)
(UIST ’01). Association for Computing Machinery, New York, NY, USA, 209–218. https://doi.org/10.1145/502348.502388

[21] Linda J. Harrison, Leanne Clarke, and Judy A. Ungerer. 2007. Children’s drawings provide a new perspective on
teacher–child relationship quality and school adjustment. Early Childhood Research Quarterly 22, 1 (2007), 55–71.
https://doi.org/10.1016/j.ecresq.2006.10.003

[22] Eva Hornecker, Paul Marshall, Nick S. Dalton, and Yvonne Rogers. 2008. Collaboration and Interference: Awareness
with Mice or Touch Input. In Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work (San
Diego, CA, USA) (CSCW ’08). ACM, New York, NY, USA, 167–176. https://doi.org/10.1145/1460563.1460589

[23] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004. Advances in Dataflow Programming Languages.
ACM Comput. Surv. 36, 1 (March 2004), 1–34. https://doi.org/10.1145/1013208.1013209

[24] André Knörig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing: A Tool for Advancing Electronic Prototyping for
Designers. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction (Cambridge, United
Kingdom) (TEI ’09). ACM, New York, NY, USA, 351–358. https://doi.org/10.1145/1517664.1517735

[25] Jan P. Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2014. How live coding affects developers’ coding
behavior. In VL/HCC ’14: IEEE Symposium on Visual Languages and Human-Centric Computing. 5–8. https://doi.org/10.
1109/VLHCC.2014.6883013

[26] Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad Alon, and
Björn Hartmann. 2019. Beyond Schematic Capture: Meaningful Abstractions for Better Electronics Design Tools. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM,
New York, NY, USA, Article 283, 13 pages. https://doi.org/10.1145/3290605.3300513

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/3290607.3313247
https://doi.org/10.1145/3450549.3464418
https://doi.org/10.1145/3311927.3323138
https://doi.org/10.1145/2305484.2305545
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/3025453.3025847
https://doi.org/10.1145/2076021.2048100
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/1240624.1240726
https://doi.org/10.1145/502348.502388
https://doi.org/10.1016/j.ecresq.2006.10.003
https://doi.org/10.1145/1460563.1460589
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/3290605.3300513

1:36 Brocker et al.

[27] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang, and Bing-Yu
Chen. 2019. AutoFritz: Autocomplete for Prototyping Virtual Breadboard Circuits. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA,
Article 403, 13 pages. https://doi.org/10.1145/3290605.3300633

[28] Shareen Mahmud, Jessalyn Alvina, Parmit K. Chilana, Andrea Bunt, and Joanna McGrenere. 2020. Learning Through
Exploration: How Children, Adults, and Older Adults Interact with a New Feature-Rich Application. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376414

[29] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The Scratch Programming
Language and Environment. ACM Trans. Comput. Educ. 10, 4, Article 16 (Nov. 2010), 15 pages. https://doi.org/10.1145/
1868358.1868363

[30] Dino Mandrioli and Matteo Pradella. 2015. Programming Languages Shouldn’t Be "Too Natural". SIGSOFT Softw. Eng.
Notes 40, 1 (feb 2015), 1–4. https://doi.org/10.1145/2693208.2693232

[31] J. NathanMatias, Sayamindu Dasgupta, and BenjaminM. Hill. 2016. Skill Progression in Scratch Revisited. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New
York, NY, USA, 1486–1490. https://doi.org/10.1145/2858036.2858349

[32] Diane Mavers. 2003. Communicating Meanings through Image Composition, Spatial Arrangement and Links in
Primary School Student Mind Maps.

[33] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell Karchemsky, David Mellis, and Björn
Hartmann. 2017. Bifröst: Visualizing and Checking Behavior of Embedded Systems Across Hardware and Software. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (Québec City, QC, Canada)
(UIST ’17). ACM, New York, NY, USA, 299–310. https://doi.org/10.1145/3126594.3126658

[34] Will McGrath, Jeremy Warner, Mitchell Karchemsky, Andrew Head, Daniel Drew, and Björn Hartmann. 2018. Wifröst:
Bridging the Information Gap for Debugging of Networked Embedded Systems. In Proceedings of the 31th Annual ACM
Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). ACM, New York, NY, USA.

[35] Meredith R. Morris, Jarrod Lombardo, and Daniel Wigdor. 2010. WeSearch: Supporting Collaborative Search and
Sensemaking on a Tabletop Display. In Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work
(Savannah, Georgia, USA) (CSCW ’10). ACM, New York, NY, USA, 401–410. https://doi.org/10.1145/1718918.1718987

[36] John Paul Morrison. 1994. Flow-Based Programming: A New Approach to Application Development. Van Nostrand
Reinhold, New York, NY, United States.

[37] Adon Moskal, Joy Gasson, and Dale Parsons. 2017. The ‘Art’ of Programming: Exploring Student Conceptions of
Programming through the Use of Drawing Methodology. 39–46. https://doi.org/10.1145/3105726.3106170

[38] Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Programmers Are Users Too: Human-
Centered Methods for Improving Programming Tools. Computer 49, 7 (July 2016), 44–52. https://doi.org/10.1109/MC.
2016.200

[39] Dan O’Sullivan and Tom Igoe. 2004. Physical Computing: Sensing and Controlling the Physical World with Computers.
Course Technology Press, Boston, MA, United States.

[40] Sofia Papavlasopoulou, Michail Giannakos, and Maria L. Jaccheri. 2017. Empirical studies on the Maker Movement, a
promising approach to learning: A literature review. Entertainment Computing 18 (2017), 57 – 78. https://doi.org/10.
1016/j.entcom.2016.09.002

[41] Mareen Przybylla and Ralf Romeike. 2013. Physical Computing im Informatikunterricht. In INFOS 2013: Informatik
erweitert Horizonte - 15. GI-Fachtagung Informatik und Schule, Norbert Breier, Peer Stechert, and Thomas Wilke (Eds.).
Gesellschaft für Informatik e.V., Bonn, Germany, 137–146.

[42] Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli, Björn Hartmann, and Prabal Dutta.
2017. Turning Coders into Makers: The Promise of Embedded Design Generation. In Proceedings of the 1st Annual ACM
Symposium on Computational Fabrication (Cambridge, Massachusetts) (SCF ’17). ACM, New York, NY, USA, Article 4,
10 pages. https://doi.org/10.1145/3083157.3083159

[43] Mitchel Resnick and Brian Silverman. 2005. Some Reflections on Designing Construction Kits for Kids. In Proceedings
of the 2005 Conference on Interaction Design and Children (Boulder, Colorado) (IDC ’05). Association for Computing
Machinery, New York, NY, USA, 117–122. https://doi.org/10.1145/1109540.1109556

[44] Alan Rogers. 2014. The Classroom and the Everyday: The Importance of Informal Learning for Formal Learning 1. (01
2014).

[45] Jeff Sauro and James R. Lewis. 2005. Estimating completion rates from small samples using binomial confidence
intervals: comparisons and recommendations. In Proceedings of the human factors and ergonomics society annual
meeting, Vol. 49. SAGE Publications Sage CA: Los Angeles, CA, 2100–2103.

[46] Neil Selwyn, Daniela Boraschi, and Suay Özkula. 2009. Drawing digital pictures: An investigation of primary pupils’
representations of ICT and schools. British Educational Research Journal - BR EDUC RES J 35 (12 2009), 909–928.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3290605.3300633
https://doi.org/10.1145/3313831.3376414
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2693208.2693232
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/1718918.1718987
https://doi.org/10.1145/3105726.3106170
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1016/j.entcom.2016.09.002
https://doi.org/10.1016/j.entcom.2016.09.002
https://doi.org/10.1145/3083157.3083159
https://doi.org/10.1145/1109540.1109556

Flowboard: How Seamless, Live, Flow-Based Programming Impacts Learning to Code for Embedded Electronics 1:37

https://doi.org/10.1080/01411920902834282
[47] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scanalog: Interactive Design and Debugging of Analog

Circuits with Programmable Hardware. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York, NY, USA, 321–330. https://doi.org/10.1145/
3126594.3126618

[48] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming Misconceptions for School Students. In
Proceedings of the 2018 ACM Conference on International Computing Education Research (Espoo, Finland) (ICER ’18).
ACM, New York, NY, USA, 151–159. https://doi.org/10.1145/3230977.3230995

[49] Burkhard Vollmers. 1997. Learning by doing - Piagets konstruktivistische Lerntheorie und ihre Konsequenzen für die
pädagogische Praxis. International Review of Education 43, 1 (1997), 73–85.

[50] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y.
Chen. 2016. CircuitStack: Supporting Rapid Prototyping and Evolution of Electronic Circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA,
687–695. https://doi.org/10.1145/2984511.2984527

[51] Jeremy Warner, Ben Lafreniere, George Fitzmaurice, and Tovi Grossman. 2018. ElectroTutor: Test-Driven Physical
Computing Tutorials. In Proceedings of the 31th Annual ACM Symposium on User Interface Software and Technology
(Berlin, Germany) (UIST ’18). ACM, New York, NY, USA.

[52] Kirsten N. Whitley, Laura R. Novick, and Doug Fisher. 2006. Evidence in Favor of Visual Representation for the
Dataflow Paradigm: An Experiment Testing LabVIEW’s Comprehensibility. Int. J. Hum.-Comput. Stud. 64, 4 (April
2006), 281–303. https://doi.org/10.1016/j.ijhcs.2005.06.005

[53] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin,
and Mike Y. Chen. 2017. CurrentViz: Sensing and Visualizing Electric Current Flows of Breadboarded Circuits. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (Québec City, QC, Canada)
(UIST ’17). ACM, New York, NY, USA, 343–349. https://doi.org/10.1145/3126594.3126646

[54] Te-YenWu, BryanWang, Jiun-Yu Lee, Hao-Ping Shen, Yu-ChianWu, Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, Yu-Chih
Lin, and Mike Y. Chen. 2017. CircuitSense: Automatic Sensing of Physical Circuits and Generation of Virtual Circuits to
Support Software Tools.. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology
(Québec City, QC, Canada) (UIST ’17). ACM, New York, NY, USA, 311–319. https://doi.org/10.1145/3126594.3126634

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1080/01411920902834282
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/3126594.3126618
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1145/2984511.2984527
https://doi.org/10.1016/j.ijhcs.2005.06.005
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3126594.3126634

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software: From Blocks to Flow-Based Programming
	2.2 Hardware: Electronic Circuit Building Support
	2.3 Bridging the Hardware-Software Gap
	2.4 Studies of Learning Embedded Development

	3 Flowboard Design and Implementation
	3.1 Flowboard: Conceptual Design
	3.2 Flowboard: System Architecture
	3.3 Flowboard: Hardware Implementation
	3.4 Flowboard: Language, Visual Editor and Layout
	3.5 Programming Primitives
	3.6 Flowboard: Usage Scenario

	4 Study 1: Exploring Embedded FBP
	4.1 First Study Design
	4.2 Measures
	4.3 Results and Implications

	5 Study 2: Student Perceptions Using Flowboard
	5.1 Detailed Study Procedure
	5.2 Pilot Study
	5.3 Participants
	5.4 Measures & Data Analysis
	5.5 Findings of the Drawing Analysis

	6 Discussion & Implications
	6.1 Effect of Liveness and Seamlessness
	6.2 Mental Model
	6.3 Impact on Learning Programming and Electronics
	6.4 Collaboration

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

