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Progressive Channel-Shrinking Network
Jianhong Pan, Siyuan Yang, Lin Geng Foo, Qiuhong Ke, Hossein Rahmani, Zhipeng Fan, Jun Liu

Abstract—Currently, salience-based channel pruning makes
continuous breakthroughs in network compression. In the re-
alization, the salience mechanism is used as a metric of channel
salience to guide pruning. Therefore, salience-based channel
pruning can dynamically adjust the channel width at run-time,
which provides a flexible pruning scheme. However, there are
two problems emerging: a gating function is often needed to
truncate the specific salience entries to zero, which destabilizes
the forward propagation; dynamic architecture brings more cost
for indexing in inference which bottlenecks the inference speed.
In this paper, we propose a Progressive Channel-Shrinking (PCS)
method to compress the selected salience entries at run-time
instead of roughly approximating them to zero. We also propose
a Running Shrinking Policy to provide a testing-static pruning
scheme that can reduce the memory access cost for filter indexing.
We evaluate our method on ImageNet and CIFAR10 datasets
over two prevalent networks: ResNet and VGG, and demonstrate
that our PCS outperforms all baselines and achieves state-of-the-
art in terms of compression-performance tradeoff. Moreover, we
observe a significant and practical acceleration of inference. The
code will be released upon acceptance.

Index Terms—Progressive, Network Shrinking.

I. INTRODUCTION

THE The performance of convolutional neural net-
works (CNNs) has been significantly improved along-

side the milestone architectures being proposed, including
AlexNet [27], VGG [43], GoogLeNet [46], ResNet [12],
DenseNet [23], ResNeXt [58], and SE-Net [20]. However, it
comes with a price that CNNs become massive and thus inef-
ficient, in which convolution operations contribute the major
computational complexity (Multiply-Add operations denoted
as MAdds). To reduce MAdds, the group convolution and its
variants [22], [45], [57], [58], [62], [53] split channels into
several parts as independent convolution branches and prune
the connection among them. Moreover, depth-wise separable
convolution [5], [19], [42], an extreme version of group
convolution, prunes all channel-wise connections. Besides,
shuffle operation [37], [63], [36], [54] is adopted as a low-cost
operation to link channels. However, these pruning schemes
are indiscriminate where both important and unimportant
connections can be pruned together.

To achieve efficient pruning, we need clues to decide which
channels should be pruned. Some works [30], [54], [36], [15],
[60], [33] evaluate channel salience measures such as the
magnitude of the weights or activation functions after training
and prune the relatively unimportant channels. To mitigate the
accuracy drop from pruning, the network is retrained. These
methods are called static pruning.
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Unlike static pruning approaches, the dynamic methods [4],
[21], [34], [1], [3], [8], [17], [10], [56], [44], [2], [47], [28],
[65], [39], [64], prune channels and fine tune the network
simultaneously. Salience-based pruning is a recent running-
time method that allows the network to learn the importance
of channels from the input and the whole network status.
In the realization, the salience reweighs the feature maps
and those that are assigned zero weights will be pruned as
the deactivated channels. Hence, salience-based pruning can
dynamically adjust the pruning scheme, where the channel
width is scaled elastically. Gating networks [4], [21], [34] and
attention [1], [3], [8], [17], [10], [56], [44], [2], [47], [29] are
often used to predict the importance of channels and decide
which channels should be dropped.

However, there are two issues in these dynamic channel-
wise pruning methods: First, the pruning operation is abrupt,
which harms the network performance: Because the salience
vector rarely contains zero entries, to deactivate the chan-
nels’ outputs (channels pruning), a gate or a step function
is often used to quantize/truncate some salience entries to
zero. Quantization abruptly deactivates the channels in service.
With various inputs, the pruning schemes are different during
training, hence the abrupt pruning occurs all the time, leading
to unstable training. Second, the inference becomes inefficient
because the pruning scheme is not fixed for different input
samples. The unfixed scheme means random channel indexing
in response to different inputs. Hence, massive indexing during
testing leads to a higher memory-access cost (MAC) and
bottlenecks the inference speed.

In this work, we propose a novel Progressive Channel-
Shrinking (PCS) method to address the above problems: 1)
We use a salience generator without truncation for continu-
ity and differentiability, avoiding the backward propagation
problem. Then, we generate zero entries by progressively
shrinking the salience entries associated with the relative
low-salience channels. 2) We propose a Running Shrinking
Policy to avoid massive weight indexing and significantly
promote inference speed. Running Shrinking Policy guarantees
an identical pruning scheme for all samples. After training, we
can directly remove the deactivated channels and the indexing
operation is no longer needed during inference. Besides, the
Running policy maintains a dynamic scheme in training and
achieves good performance. 3) We embed the PCS module
into popular deep CNN models, such as ResNet [12] and
VGG [43], and evaluate its effectiveness on ImageNet and
CIFAR10 datasets. The experimental results indicate our PCS
outperforms existing channel pruning methods.

II. RELATED WORK

Various channel pruning methods, including salience-based
[1], [3], [17], [10], [56], [44], [2], [47], [29] and gating-
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based [4], [21], [34] methods have been proposed recently.
Both the salience-based and gating-based channel pruning are
dynamic pruning methods because they respectively generate
channel-based salience and gating vectors using a module or
sub-network to prune unimportant channels according to the
inputs, i.e., different convolutional channels are activated in
response to various inputs. We remark that channel pruning
methods belong to a more general category of feature selection
methods (that include Principal Component Analysis and
Linear Discriminant Analysis) which aim to extract important
features from the data. More precisely, channel pruning can
be considered as a type of feature selection method that is
specifically developed for deep neural networks. where the
main purpose is to identify and preserve the most important
channels (while removing the less important ones) to improve
computational complexity of the deep neural network.

Gating-Based Channel Pruning. Gating network outputs
discrete one or zero as a switch to activate or deactivate a
channel [4], [21], [34]. Hua et al. [21] utilised a gating
network to manage the subset of channels. Lin et al. [34]
used RNN with a gating function to select important channels.
However, the non-differentiability of the gating network often
leads to some backward propagation problems [11]. To address
the backward propagation problem, Wang et al. [52] proposed
a hybrid reinforcement learning method; Veit et al. [50] and
Herrmann et al. [16] adopted Gumbel SoftMax [9], [25] to
probabilize the gate.

Salience-Based Channel Pruning. Salience mechanism
was first introduced for visual perception [6], [24], [41] and
then used to dynamically scale the values of feature maps [20],
[40], [49], [51], [55], [59]. Salience Mechanism can also be
used to predict the importance of channels in convolutional
networks. For example, Hu et al. [20] proposed squeeze-
and-excitation (SE) module to generate channel-wise salience
vector to reweigh the feature maps. Several other approaches
also use the attention mechanism to predict the salience of
channels as a guidance for pruning policy [1], [3], [8], [17],
[10], [56], [44], [2], [47], [29], i.e., the salience generator pre-
dicts salience of channels [20], [47] and generates a channel-
based salience vector to reweigh channels for pruning. In
practice, the salience vector is quantized to generate zero
entries to deactivate its corresponding unimportant channels.
For example, when an entry sc at the cth channel of the salience
vector s = (s1, s2, ..., sC) becomes zero, the corresponding
feature map at the cth channel will be reweighed to zero.
However, the salience generator is a continuous function, from
which the output salience vector hardly contains zero entries.
Hence, a truncation is often used to zero some relatively small
entries:

z =

{
z, z ≥ η
0, z < η

, (1)

where η is the threshold. However, truncation is abrupt and
leads to the values plummeting to the bottom once they are be-
low the threshold. During training, when an entry is truncated,
the corresponding channel will be deactivated immediately
when it is still on service and contributes information to the
next convolution layer as well as the network output. This

results in an abrupt increase of the loss, making the training
unstable and deteriorating the network performance.

A few other works [8], [44], [47] utilised LASSO [48] to
compress the attention entries in order to set some of the small-
value entries to zero. However, LASSO suppresses all the
channels simultaneously and indiscriminately and then directly
filters out low-saliency entries. During this process, the salient
channels will also be suppressed, affecting the performance
of the model. Moreover, the filtering process often involves
truncation of the low-salient entries, which might still be
active though less dominant. The truncation further introduces
discontinuity, leading to the fluctuation of convergence. To
address these issues, we propose Progressive Shrinking to
gradually suppress only the low-salience channels and finally
turn them off completely using hard sigmoid.

Furthermore, channel indexing is required for each input to
index out the selected channels during inference. This results
in high computational complexity (MAdds) as well as high
memory access cost (MAC), which bottleneck the inference
speed [37]. In this work, we propose a Running Shrinking
Policy, which allows the pruning to be static during testing
while remaining dynamic during training. Compared to the tra-
ditional dynamic pruning, our method significantly improves
the practical inference speed at no discernible performance
drop.

III. PROGRESSIVE CHANNEL-SHRINKING

Generally, the channel-wise pruning mechanism reweighs
each channel of the output feature maps of a convolutional
layer, as follows:

x′c = scxc, (2)

where xc ∈ RH×W denotes the output feature map of the
cth channel. H and W are the height and width of the output
feature map, respectively. x′c ∈ RH×W denotes the reweighed
feature map of the cth channel, and sc ∈ R denotes the
corresponding salience entry, which represents the importance
of the cth channel. Note that, once the salience entry becomes
zero, x′c will become zero accordingly, which indicates that
the cth channel is deactivated. Hence, pruning unimportant
channels can be achieved by zeroing low-salience entries.

However, as mentioned in Sec. II, many salience-based
channel-wise pruning models use truncation to generate zero-
valued entries, which leads to unstable training and limited
network performance (details in Sec. IV-C). Moreover, the
salience entries (e.g., sc) depend on individual inputs, and
thus the distributions of zero-value entries vary in response
to different inputs during inference. This leads to a massive
channel indexing cost for different inputs, which significantly
increases MAC [37] and slows down the inference speed.

To address these issues, we introduce a Progressive
Channel-Shrinking (PCS) method, which consists of a Pro-
gressive Shrinking strategy to progressively trim unimportant
channels to zero along the training instead of roughly truncat-
ing them, and a Running Shrinking Policy to force the selected
pruning channels stable for different inputs to avoid costly
channel-indexing in inference.
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Fig. 1. The demonstration of training and testing of our PCS. ∗ denotes the convolution operation. w(l), w′(l), x(l−1), and x(l) denote the convolutional
weights, the pruned weights, the input feature maps, and the output feature maps of the lth layer, respectively. s(l) denotes the salience vector which reweighs
the feature maps and s(l) denotes the moving average of s(l). During the training, s(l) is sorted based on the values of s(l) using the key-value mechanism.
Then, selection is performed on the sorted s′(l) for the construction of the Shrinking Loss R. During inference, the Boolean mask m(l) is generated from
the running salience vector s to mask and prune the weights. Masking (in green) is only operated once after training to prune the low-salience weights
permanently. The masks, weights, and feature maps in white denote their values are zero.

The overall framework of the proposed method is shown
in Fig. 1. More specially, the lth convolutional layer takes
the output feature maps from the previous layer x(l−1) as
its input feature maps. x(l−1) is used to generate a salience
vector s(l) = (s

(l)
1 , s

(l)
2 , ..., s

(l)
C ), which is progressively shrunk

to generate zero-value entries to reweigh the output feature
maps x(l) with C channels for channel pruning (Sec. III-A). To
construct an input agnostic pruning mask to reduce the MAC,
we further introduce a running salience vector s(l) based on
the history of s(l). In return, the running salience vector s(l)

further guides the updates of the salience vector s(l) and also
fine tunes the target model to adapt to the pruned weights
(Sec. III-B). Finally, s(l) is converted to a Boolean mask
m(l) to prune convolution weights w(l) before the convolution
operation to reduce the computation cost (Sec. III-C). With the
stable s(l) and m(l) that are irrelevant to individual inputs, the
channel-indexing operation can be done before deployment.
Hence, the practical inference speed is significantly improved
after training.

A. Progressive Shrinking

In this section, we propose a shrinking loss, which progres-
sively in every backward propagation, shrinks the K lowest-
salience entries of the salience vector at each layer to zero,
instead of roughly truncating them. Unlike LASSO-based
works [8], [44], [47] which suppress all the channels simul-
taneously and indiscriminately, our proposed shrinking loss
gradually suppresses only the low-salience channels leading
to stable training and better network performance.

To select the lowest-salience entries, we sort the salience
entries s in a monotonic increasing order to get s′ (here the
notion of layers is omitted to simplify representation). We then
define the shrinking loss as follows:

R =
∑
i≤K

s′i (3)

where si′ denotes the ith entry of s′. K is a pre-defined free
hyper-parameter, which determines the number of channels for
pruning. s is obtained by feeding the input feature maps of a

convolutional layer to a salience generator. Hence the entries
of s are non-negative and the shrinking will stop if the selected
entries become zero. In summary, the overall hybrid learning
objective is defined as:

arg min
θ,π

J (Fθ, Gπ) =

arg min
θ,π

Ex(0)

[
L(ŷ(x(0), Fθ, Gπ),y) + λR(x(0), Fθ, Gπ)

]
,

(4)
where x(0) denotes the network input, i.e., the input feature
maps of the first layer, θ and π are respectively the parameters
of the network Fθ and the salience generator Gπ , L is the task
loss of the network Fθ (e.g. cross-entropy loss to measure
network classification performance), R is the combined per-
layer shrinking loss in Eq. (3), ŷ is the estimate of the ground
truth y, and λ is the shrinking rate at each optimizing step.
To ensure that the salience entries corresponding to the low-
salience channels can be shrunk to zero, we gradually increase
λ (see details in Sec. IV). After training, a salience vector with
K zero-valued entries can be generated for each input sample.
Hence, we can prune the corresponding K channels to achieve
lower MAdds.

According to Eq. (4), we can get the final shrinkage of the
salience entry si in the lth layer as:

∇siJ (Fθ, Gπ) = Ex(0)∇si(L+ λR)

= Ex(0)∇siL+ λEx(0)∇si
∑
j≤K

s′j

=

{
Ex(0)∇siL+ λEx(0)

∂si
∂si
, si ∈ R,

Ex(0)∇siL, si /∈ R,

=

{
Ex(0)∇siL+ λ, si ∈ R,
Ex(0)∇siL, si /∈ R,

(5)
where R = {s′i|i ≤ K} contains all the selected lowest-
salience entries. Here, λ is very small at the beginning and
increases over training iterations. Hence, the task loss L
dominates the optimization of the network in the early stage
of training, where the top-K selection is dynamic and self-
adaptive. As λ increases, the shrinking loss starts to domi-
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nate the optimization where the network tends to select and
shrink the lowest-salience entries, and the selection gradually
becomes stable. For the K lowest-salience entries (si ∈ R),
the gradient is gradually increased with the increasing λ,
forcing the values of the entries to shrink. As the entries are
non-negative, at the end of training, the selected entries are
all shrunk to zero due to the shrinking rate λ of sufficient
magnitude. When the entries are shrunk to zero, the gradient
backpropagating to earlier layers of the saliency module will
be zero, and the shrinking will stop. Different to abruptly
pruning channels with truncation, progressive shrinking makes
the network gradually adapt to the unimportant channels’
degeneration and stabilizes the forward and backward prop-
agation. Hence, the network achieves higher performance as
demonstrated in Sec. IV-C.

B. Running Shrinking Policy

In existing dynamic channel pruning methods [7], [8], [21],
[47], [44], during forward inference, the networks can dynam-
ically select different parameters for different inputs. Thus, the
system has to spend extra time for filter indexing (to access
the parameters at different locations of the computer memory),
which can lead to higher latency despite a reduction in FLOPs.
In other words, it is cache unfriendly and causes massive
indexing costs. This is because (1) The activated channels do
not have spatial locality for every single sample: The activated
and deactivated channels are mixed up and thus are almost
randomly distributed on the memory page. (2) Furthermore,
when running in batch, the activated channels among all
samples within the batch are different and lack spatial locality,
which further increases the memory access overhead. We
would like to avoid such random access scenarios because
when accessing a certain memory, the entire blocks are loaded
and then the corresponding information is indexed. When the
data is scattered in multiple locations, relatively more blocks
are loaded and accessed, which leads to extra MAC occupying
memory bandwidth.

To address these issues, we seek to reduce the Memory
Access Cost for filter indexing by conducting dynamic pruning
in the training phase and selecting salient channels that can be
shared among the samples during testing, which can reduce the
cost of filter indexing and further improve latency. To select
the shared channels, we propose the Running Shrinking Policy
that accords to the statistics of the running average on salience
for each channel to generate a more stable sorting result for
the top-K selection, i.e., R in Eq. (5).

Firstly, we calculate the exponential moving average of s:

s = (1− α)× s + α× s, (6)

where s denotes the running salience vector, which is calcu-
lated over the mini-batches of all training iterations, α denotes
the decreasing weight of the exponential moving average and
we use the common setting of α = 0.1. Secondly, we perform
sorting on s based on the values of s in each optimization
step and select the top-K channels for shrinking.

According to the above, the Running Shrinking Policy
changes with the result of the sorting on the running average

salience (s). At the beginning of training, the policy is
dynamic because the statistics of the average is insufficient
(the average is dominated by the first few iterations). As the
training progresses, the final average is calculated on more
training samples, which means the average will accord to
global statistics more and the policy will become stabler at
the later stage of training. In the final stage of training, the
policy turns static and a fixed batch of channels will be shrunk.
As the result, the positions which can generate zero salience
will be static for different inputs. Hence we can remove the
deactivated channels after training to avoid indexing operation
and reduce memory access in testing. Note that, the Running
Shrinking Policy still retains the dynamic pruning scheme
during training so that the shrinking policy can automatically
adapt to the network status and remains flexible to reduce the
decrease of network performance.

We highlight that, as shown in Fig. 1, for each l-th layer,
the running salience vector s̄(l) is not directly inferred from
s(l) during testing, it is instead calculated based on s(l) during
training and fixed during testing thereafter, i.e., after training,
we fix the value of s̄(l).

C. Accelerating Inference Process

In this section, we optimize the architecture of PCS to
illustrate how it reduces computational complexity (MAdds)
and improves the inference speed. For simplicity, we denote
the convolution, normalization layer, activation function, and
salience generator module as one layer. Assume the lth layer
consists of K(l) × K(l) convolution F (l). Given the input
feature maps x(l−1), the output feature maps before pruning
x(l) can be computed as:

F (l)(x(l−1)) = σ(w(l) ∗ x(l−1) + b(l)) = x(l), (7)

where ∗ is the convolution operation, σ(·) indicates
the activation function such as ReLU, and w(l) ∈
RC(l)×C(l−1)×K(l)×K(l)

and b(l) ∈ RC(l)

are the weights and
the bias, respectively. C(l−1) and C(l) denote the number
of input and output channels of the lth layer. For better
presentation, batch normalization is not included in Eq. (7)
as its running mean and running std, scale γ and shift β can
be coupled with the weights of the convolution in inference.

To perform channel pruning, we multiply the salience
vector s(l) ∈ RC(l)

with the output feature maps x(l) ∈
RC(l)×H(l)×W (l)

and remove the zero-valued feature maps.
The pruned convolutional layer is formulated as:

x′(l) = s(l) ◦ x(l)\{0}
= s(l) ◦ σ(w(l) ∗ x(l−1) + b(l))\{0},

(8)

where ◦ denotes element-wise product, \{0} denotes re-
moving the channels that only contain zero entries. x′(l) ∈
RC′(l)×H(l)×W (l)

denotes the pruned feature maps, where
C(l) ≥ C ′(l), i.e., the output of the lth layer is compressed
and the complexity (MAdds) of the lth convolutional layer
decreases. As mentioned in Sec.III-B, the distribution of zero-
valued entries of current salience vector s(l) will be identical
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Fig. 2. The architecture of the Salience Generator. GAP denotes global
average pooling. FC denotes the fully connected layer. HS denotes hard
sigmoid.

to the running salience vector s(l) after training. Hence, Eq.
(8) can be written as:

x′(l) = s(l) ◦m(l) ◦ σ(w(l) ∗ x(l−1) + b(l))\{0}, (9)

where m(l) denotes the Boolean mask generated from the
running salience vector s(l) in testing as below:

m(l) = 1R6=0
(s(l)) (10)

where 1(·) denotes the indicator function and R 6=0 denotes
the set of non-zero real numbers. Due to the associativity of
convolution, Eq. (9) can be written as:

x′(l) =s(l)\{0}◦
σ((m(l) ◦w(l)\{0}) ∗ x(l−1) + m(l) ◦ b(l)\{0}),

(11)

where m(l) and w(l) are coupled, i.e., pruning is performed
on the weights of the convolution. Hence, we can use m(l) to
permanently prune the weights and bias after training.

Denote the pruned weights as w′(l) = m(l) ◦w(l)\{0}, the
pruned bias as b′(l) = m(l)◦b(l)\{0}, and the pruned salience
vector as s′6=0 = s(l)\{0}. Then the pruned convolution F ′(l)

can be represented as

F ′(l)(x(l−1)) = s
′(l)
6=0σ(w′(l) ∗ x(l−1) + b′(l)), (12)

where w′(l) ∈ RC′(l)×C(l−1)×K(l)×K(l)

. Hence, the complexity
of the lth layer decreases. Note that each pruning reduces
the complexity of both current and next layers. Finally,
the weights of the convolution in the lth layer is w′(l) ∈
RC′(l)×C′(l−1)×K(l)×K(l)

, and the complexity (MAdds) [19]
of the pruned convolution is:

C ′(l) × C ′(l−1) ×K(l) ×K(l) ×H(l) ×W (l), (13)

while the complexity of the original convolution is:

C(l) × C(l−1) ×K(l) ×K(l) ×H(l) ×W (l), (14)

where C ′(l) ≤ C(l) and C ′(l−1) ≤ C(l−1). After training, we
prune the channels based on the values of the corresponding
running salience vector entries, i.e., the convolutional filters
corresponding to the zero-valued entries are removed perma-
nently. This results in a compact model.

IV. EXPERIMENTS

Experimental Settings. To evaluate PCS, we perform ex-
periments on ImageNet dataset with VGG [43] and ResNet-
18/34 [12] on NVIDIA A100 GPUs. We further experiment
on CIFAR10 [26] using ResNet-20 and ResNet-34 following

the existing works [13], [14], [47]. The training settings of
different networks follow their original papers. We use 60
shrinking epochs for PCS and adopt the same step learning rate
policy as VGG and ResNet. We report 3 different shrinking
rate policy PCS-A, PCS-B and PCS-C, where we set λbase
in λ(Tcur) = λbase(

Tcur

Tmax
)2 to 4 × 10−6, 6 × 10−6, and

8 × 10−6 respectively. Tcur and Tmax denote the current
shrinking epoch and the maximum shrinking epoch.

Salience Generator. As shown in Figure 2, the archi-
tecture of our salience generator is as follows: GAP−→
FC−→ReLU−→FC−→HS, where GAP, FC, and HS denote
global average pooling, fully connected layer, and hard sig-
moid, respectively. The salience generator takes the input
feature maps of the convolutional layer as input and generates
the channel-based salience vector s. The channel width of each
fully connected layer is shown in Fig. 2. Following MobileNet
V3 [18] and ShuffleNet V2 [37], the hard sigmoid is used as
the activation to normalize the output vector.

Metrics. To comprehensively evaluate the performance of
our proposed method, we report not only the accuracy and
computation cost but also the memory access cost (MAC) and
the actual latency. Following common practices, we adopt the
standard single-center crop to measure Top-1 error and use the
number of MAdds as the metric of computational complexity.
We calculate MAC according to [37]:

MAC = Cin ×Hin ×Win︸ ︷︷ ︸
input feature maps

+Cin × Cout ×K ×K︸ ︷︷ ︸
convolutional kernel

+Cout ×Hout ×Wout︸ ︷︷ ︸
output feature maps

,
(15)

which consists of the MAC of the input feature maps, the
MAC of the convolutional kernel, and the MAC of the output
feature maps, where Cin, Cout and K denote the number of
input channels, the number of output channels, and the kernel
size of the convolution, and Hin,Win, Hout and Wout denote
the height and the width of the input and output feature maps,
respectively. The MAC can be considered as the footprint of
the memory for the feature maps and convolutional kernels.
We do not calculate the MAC for the input feature maps in
Eq. 15 when adapting it to the whole network, because the
MAC of the input feature maps has been calculated as the
output feature maps in the previous layer. Hence, the MAC of
the whole network is calculated as:

MAC = Cin × Cout ×K ×K︸ ︷︷ ︸
convolutional kernel

+Cout ×Hout ×Wout︸ ︷︷ ︸
output feature maps

. (16)

We use Eq. 16 to calculate the MAC for all methods on
all datasets. Note that, the complete convolutional kernels of
other dynamic neural architectures are required to be indexed
online, and hence they still occupy the memory in testing
and the MAC cannot be compressed. Instead, as analysed in
Section III-C our method can offload the pruned channels
for the convolutional kernels after training based on our
Running Shrinking Policy, and therefore our PCS reduces
MAC significantly in testing.

For latency measurements, we report the measured elapsed
time on GPU (NVIDIA GTX 1080Ti) with batch size 32
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TABLE I
COMPARISON OF SOTA CHANNEL PRUNING MODELS BASED ON RESNET-18, RESNET-34 AND VGG16 ON IMAGENET 2012 VALIDATION DATASET.
MADDS AND MAC DENOTES THE NUMBER OF MULTIPLY-ADD OPERATIONS AND MEMORY ACCESS COST RESPECTIVELY. PARAMS REFERS TO THE
NUMBER OF PARAMETERS IN MILLIONS IN THE MODEL. WE ALSO REPORT LATENCY MEASURED ON GPU(1080TI) AND ARM BASED SOC. PLEASE

REFER TO THE METRIC IN SEC. IV FOR MORE DETAILS. PCS-RESNET18-A, PCS-RESNET18-B AND PCS-RESNET-C DENOTE PCS WITH DIFFERENT
SHRINKAGE λbeta . * ARE PROVIDED BY TORCHVISION. † DENOTES RE-IMPLEMENTATION. ↑ AND ↓ DENOTE INCREASING AND DECREASING. LOWER IS

BETTER FOR ALL METRICS.

Model Top-1 Err. Params MAdds MAC 1080Ti ARM ∆Top-1 Err. ∆MAdds ∆MAC
(%) (M) (G) (M) (ms) (ms) (%) (G) (M)

ResNet-18 [12] 30.2* 12 1.8 14.5 18.9 43.2 - - -
ResNet-18 [12] 29.6† 12 1.8 14.5 18.9 43.2 - - -
MIL [7] 33.7 - 1.2 - - - 4.1↑ 0.6↓ -
CGNet [21] 31.2 12 1.0 - - - 1.6↑ 0.8↓ -
ManiDP-A [47] 31.1 12 0.9 15.1 19.1 40.5 1.5↑ 0.9↓ -
ManiDP-B [47] 31.7 12 0.8 15.1 19.0 39.8 2.1↑ 1.0↓ -
FBS [8] 31.8 12 0.9 15.1 19.5† 40.2† 2.2↑ 0.9↓ 0.6↑
DGC [44] 31.2 12 0.9 15.1 19.3 92.5 1.6↑ 0.9↓ 0.6↑
PCS-ResNet18-C (Ours) 30.1 4 0.9 6.5 12.2 26.0 0.5↑ 0.9↓ 8.0↓
PCS-ResNet18-B (Ours) 29.8 4 1.0 6.9 13.8 26.6 0.2↑ 0.8↓ 7.6↓
PCS-ResNet18-A (Ours) 29.6 5 1.1 7.6 14.6 27.8 0 0.7↓ 6.9↓
ResNet-34 [12] 26.7* 22 3.6 26.9 44.0 71.0 - - -
MIL [7] 27.0 - 2.7 - - - 0.3↑ 0.9↓ -
CGNet [21] 28.7 22 1.8 - - - 2.0↑ 1.8↓ -
FBS [8] 28.3 23 1.8 28.2 29.8 77.9 1.6↑ 1.8↓ 1.3↑
ManiDP [47] 27.3 23 1.7 28.2 31.1 - 0.6↑ 1.9↓ 1.3↑
PCS-ResNet34-B (Ours) 26.8 8 1.6 11.0 21.9 46.2 0.1↑ 2.0↓ 5.9↓
VGG16 [43] 28.4* 138 15.5 155 83.4 190.4 - - -
FBS [8] 29.5 139 3.0 156 90.7 203.9 1.1↑ 12.5↓ 1.0↑
PCS-VGG16-B (Ours) 28.5 45 2.8 51.1 30.9 57.0 0.1↑ 12.7↓ 103.9↓
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Fig. 3. (a) and (b) show the average width ratios and MAdds of PCS-A and PCS-B on ImageNet 2012 validation dataset in each layer. Baseline denotes the
original ResNet-18. Layer denotes the layer index. Width Ratio denotes the channel width ratio of the pruned one to the original one, i.e., C′(l)

C(l) . (c) shows
the loss of PCS and truncation during training. Our PCS achieves lower loss and is more stable than the Truncation based method. (d) shows the complexity
and top-1 error tradeoff with different base shrinking rates λbase, which are used to construct the shrink rate policy following λ(Tcur) = λbase( Tcur

Tmax
)2.

The complexity moves inverse-proportionally to the shrinking rates. It shows our PCS achieves better complexity and performance than SOTA models.

and ARM CPU (Apple M1 APL1102) with batch size 1 to
evaluate the benefits brought by the MAC reduction. Note
that the actual latency is affected by both the computation
cost (MAdds) and memory access cost (MAC). Models with
lower MAdds could potentially have a larger latency due to
extensive irregular access.

A. ImageNet Results

We present the experiment results on ImageNet as well as
the comparisons with SOTA in Table I. All PCS-A, PCS-
B, and PCS-C reduce the computational complexity (MAdds)
and remain a lower Top-1 error than other methods. Under
similar MAdds, our PCS-ResNet18-B significantly reduces the
network performance drop and achieves higher accuracy than
other methods. It should be noted that the Top-1 error of
our PCS is nearly equivalent to the ResNet baseline while
reducing the MAdds by half. Compared to the recent SOTA
methods, DGC and ManiDP-A, our PCS-ResNet18-C reduces
the reduction of performance by 1.1% and 1.0% under the
same MAdds, respectively.

Moreover, our PCS decreases MAC by half while other
methods slightly increase the MAC, which often bottlenecks
the inference speed [37]. As the result, we can observe that
our PCS reduces the latency significantly on both GPU and
ARM. Due to Running Shrinking Policy, the pruning scheme
is identical for all input samples. Hence, we can prune the de-
activated channels before deployment to avoid extra indexing
operations during inference. Note that ManiDP and FBS are
slower than the baseline (ResNet-18) on 1080Ti because input-
related pruning scheme results in multiple indexing operations
for every sample in a mini-batch and introduces latency.

Besides, we further adopt PCS-B with ResNet-34 and VGG-
16. As shown in Table I, both of them outperform the existing
methods on complexity-performance tradeoff. Compared with
the SOTA models, our PCS-ResNet34-B further reduces the
MAdds with no degradation of network performance. Based on
VGG-16, our PCS-VGG16-B is only one-fifth computational
complexity of the baseline under the similar network perfor-
mance and increases accuracy by 1% with a lower complexity
compared to FBS.
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After training, the channel width of PCS-ResNet18 is fixed.
Figure 3 (a) visualizes the width ratio of PCS to Baseline
ResNet-18 on ImageNet 2012 validation dataset, where our
PCS prunes more channels for even layers and relatively
less for the odd layer. This is due to the odd layers are
coupled with the residual connection. The residual connection
is the key for gradient passing through the layer, and the
larger channel width allows the weight behind obtaining higher
bypass gradients for the update. This might be conducive
to network performance and also is the result of the joint
optimization. Figure 3 (b) illustrates that the shrinkage is more
significant for the wider layer where there are more redundant
channels than the thinner places.

TABLE II
COMPARISON OF SOTA CHANNEL PRUNING MODELS BASED ON

RESNET-20 AND RESNET-32 ON CIFAR-10 VALIDATION DATASET. ↑ AND
↓ DENOTE INCREASING AND DECREASING.

Model Method Top-1 Err. MAdds ∆Top-1 Err. ∆MAdds
(%) (M) (%) (M)

ResNet-20

Baseline [12] 7.8 41.4 - -
SFP [13] 9.2 23.9 1.4↑ 17.5↓
FPGM [14] 9.6 19.0 1.8↑ 22.4↓
DSA [38] 8.6 20.6 0.8↑ 20.8↓
Hinge [31] 8.2 22.6 0.4↑ 18.8↓
DHP [32] 8.5 20.0 0.7↑ 21.4↓
FBS [8] 9.0 19.2 1.2↑ 22.0↓
ManiDP [47] 8.0 19.0 0.2↑ 22.4↓
PCS (Ours) 8.0 17.6 0.2↑ 23.8↓

ResNet-32

Baseline [12] 7.3 70.1 - -
MIL [7] 9.3 48.2 2.0↑ 21.9↓
SFP [13] 9.2 41.0 1.4↑ 29.1↓
FPGM [14] 8.1 32.8 0.8↑ 37.3↓
FBS [8] 8.0 31.1 0.7↑ 39.0↓
ManiDP [47] 7.9 25.8 0.6↑ 44.3↓
PCS (Ours) 7.6 24.9 0.3↑ 45.2↓

B. CIFAR10 Results

We adopt the proposed PCS model with ResNet-20/32 and
evaluate on CIFAR10 dataset. As shown in Table II, the
proposed PCS model reduces the computational complexity
(MAdds), and its performance is also on par with the baseline
models, if not better. Under similar Top-1 errors, our PCS
module requires less MAdds, showing that our proposed PCS
module can achieve a better tradeoff between computation
complexity and performance, compared with the SOTA chan-
nel pruning methods.

C. Ablation Study

To validate the introduction of our Progressive Shrinking
approach as well as the Running Shrinking Policy, we conduct
extensive ablation studies. Furthermore, we investigate the
trade-off between complexity and performance by ablating the
shrinking rate λ. We also conduct experiments on different
values of the exponential moving average factor α when
aggregating the running salience vector s(l).

1) Progressive Shrinking v.s. Truncation.: Our method dy-
namically selects and progressively shrinks the low-salience
channels to zero during training, hence the network can
gradually adapt to the degeneration of those pruned channels.
On the contrary, truncating the low-salience channels is so
abrupt that the network performance is harmed during training.

TABLE III
COMPARISON OF USING PROGRESSIVE CHANNEL-SHRINKING AND USING
TRUNCATION ON PCS-RESNET18-B. BASELINE DENOTES RESNET-18. ↑

AND ↓ DENOTE INCREASING AND DECREASING, RESPECTIVELY.

Model Top-1 Err. MAdds MAC 1080Ti ARM ∆Top-1 Err. ∆MAdds ∆MAC
(%) (G) (M) (ms) (ms) (%)) (G) (M)

Baseline [12] 29.6 1.8 14.5 18.9 43.2 - - -
Truncation 35.9 1.0 15.0 19.4 40.1 6.3↑ 0.8↓ 0.5↑
PCS 29.8 1.0 6.9 13.8 26.6 0.2↑ 0.8↓ 7.5↓

TABLE IV
COMPARISON OF USING RUNNING SHRINKING POLICY AND USING

INPUT-DEPENDENT SHRINKING POLICY ON PCS-RESNET18-B. BASELINE
DENOTES RESNET-18. ↑ AND ↓ DENOTE INCREASING AND DECREASING,

RESPECTIVELY.

Model Top-1 Err. MAdds MAC 1080Ti ARM ∆Top-1 Err. ∆MAdds ∆MAC
(%) (G) (M) (ms) (ms) (%) (G) (M)

Baseline [12] 29.6 1.8 14.5 18.9 43.2 - - -
Input-dependent Shrinking 29.8 0.9 15.1 19.1 37.5 0.2↑ 0.9↓ 0.6↑
Running Shrinking 29.8 1.0 6.9 13.8 26.6 0.2↑ 0.8↓ 7.6↓

This is because the low-salience channels still contribute
information to a certain extent and suddenly truncating them
makes the forward propagation less stable. To evaluate the
effect of truncation on the network performance, we conduct
an ablation experiment with Progressive Channel-Shrinking
(PCS) and truncation-based model on PCS-ResNet18-B, where
we truncate 30% of channels to match the computational com-
plexity. As shown in Table III, the Top-1 error of truncation
increases significantly. It demonstrates that pruning the low-
salience channels by truncating brings negative effects to the
training and drops the network performance. Further, Fig. 3 (c)
shows the training progress of both progressive shrinking and
truncation, where we observe more fluctuations during training
the truncation based methods, indicating the less stable training
process brought by truncation.

2) The Performance Drop Brought by Running Shrinking
Policy.: In this work, we use the Running Shrinking Policy
during training. Unlike the input-related shrinking policy, it
can select and shrink the identical channels for different
input samples. After training, the proposed Running Shrinking
Policy will construct a static pruning scheme, which can avoid
indexing operation in inference but cannot adapt to the input
samples. Contrarily, the input-related shrinking leads to a
dynamic pruning scheme, and it has input-adaptive compu-
tational complexity. To evaluate the practical efficiency of the
Running Shrinking Policy, we conduct an ablation experiment
on these two shrinking policies. Table IV shows their effect
on the network performance, complexity, and inference speed.
Input-related pruning scheme achieves slightly lower MAdds
with the same Top-1 error. However, its latency is 40% higher
than the static pruning scheme due to more extensive memory
operations. In this case, the lower complexity becomes less
meaningful and does not directly relate to the inference speed
in practice.

3) The Performance-Complexity Tradeoff.: In this section,
we investigate the relationships between the performance of
the pruned models and their computation complexity using
ResNet18 on ImageNet. Figure 3 (d) plots the correlation
between performance and complexity under different base
shrinking rates λbase, which are used to construct the shrink
rate policy following λ(Tcur) = λbase(

Tcur

Tmax
)2. When raising
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TABLE V
ACCELERATION COMPARISON OF THE CURRENT SOTA MODELS AND OUR
PCS ON MOBILENETV2. Baseline IS THE MOBILENETV2. THEORETICAL
ACL. AND REALISTIC ACL. DENOTE THE ACCELERATION ON MADDS AND

LATENCY, RESPECTIVELY. ↑ AND ↓ DENOTE INCREASING AND
DECREASING, RESPECTIVELY.

Model Top-1 Err. MAdds Latency ∆ Top-1 Err. Theoretical Acl. Realistic Acl.
(%) (M) (ms) (%) (%) (%)

Baseline[12] 28.0 300 75 - - -
DGC[44] 29.3 245 - 1.3↑ 18 -
ManiDP[47] 30.4 147 - 2.4↑ 51 39
PCS (Ours) 28.6 147 39 0.6↑ 51 48

TABLE VI
COMPARISON OF DIFFERENT EXPONENTIAL MOVING AVERAGE RATE α

FOR OUR RUNNING SHRINKING POLICY. THE LATENCY IS MEASURED ON
NVIDIA GTX 1080TI WITH BATCH SIZE 32. ↑ AND ↓ DENOTE

INCREASING AND DECREASING, RESPECTIVELY.

Model α
Top-1 Err. MAdds Latency ∆Top-1 Err. ∆MAdds ∆Latency

(%) (G) (ms) (%) (G) (ms)
Baseline [12] - 29.6 1.8 18.9 - - -
PCS(Ours) 0.5 30.7 1.0 13.8 1.1↑ 0.8↓ 5.1↓
PCS(Ours) 0.1 29.8 1.0 13.8 0.2↑ 0.8↓ 5.1↓
PCS(Ours) 0.05 30.0 1.0 13.8 0.4↑ 0.8↓ 5.1↓

the shrinking rate, the computation complexity (MAdds) re-
duces inverse-proportionally. We further plot the performance
complexity tradeoff for SOTA models. Our proposed PCS
achieves better performance-complexity tradeoff compared to
the SOTA, indicating as both the lower MAdds and Top-1
Error.

4) Efficient Network Results: We further evaluate the gen-
eralization of our progressive shrinking policy on the efficient
network architectures. We adopt the proposed PCS model
on MobileNet V2 and evaluate on ImageNet. We use the
base shrinking rate as λbase = 6e − 5 to train our PCS
on MobileNet V2. The results are shown in Table V, where
the latency is measured on Google Pixel 1 Phone with batch
size 1 (following Sandler et al. [42]) to obtain the realistic
acceleration. The results of other methods are reported by the
corresponding original papers.

5) Evaluation of the Decreasing Weight of Exponential
Moving Average for our Running Shrinking Policy: We con-
duct experiments on different values of the decreasing weight
α. Table VI shows performance and computation complexity
of the PCS model with different decreasing weights. It can
be seen that our PCS model with α = 0.1 achieves better
performance-complexity tradeoff, compared to the PCS mod-
els with α = 0.5 and α = 0.05. We thus use α = 0.1 as the
decreasing weight of the exponential moving average in our
Running Shrinking Policy.

6) Visualization of Channel Shrinking: We visualize the
shrinking status of all the convolution layers of our PCS-
ResNet18-B during the training. As shown in Fig. 4, the
number of channels of every convolution layer is progres-
sively shrunk during training. The shrinking speeds among
various convolution layers are different in the same epoch. The
shrinking speeds are also different for the same convolution
layer in different epochs. This is because shrinking is a
dynamic process, and the salience of channels in each layer
is diverse. Hence, the task loss, which encourages the raise of
the salience value of important entries to contribute more to
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Fig. 4. Visualization of the width ratios of different convolution layers of
our PCS-Resnet18-B. Each curve illustrates the changing of width ratios for
one specific convolution layer. (Best viewed in color)

the task-related performance, overweighs the shrinking loss,
which facilitates the width shrinking among different layers.

Note that, although the width ratios of only a few layers
are decreased to below 50%, our PCS-ResNet18-B reduces
the overall computational complexity by around 50%. This
is because the computational complexity is quadratic with
respect to the channel width ratio of each layer, e.g., when
pruning all layers to 70% channels, there will be only 49%
complexity left following Eq. 13.

7) Visualization of Entries Shrinking: In our proposed
method, we adopt joint optimization to optimize the shrinking
loss and the task loss, and use the shrinking rate to achieve the
balance between compression ratio and network performance.
At the beginning of training, the shrinking rate is relatively
small, and it gradually increases alongside the training. Hence,
the task-related performance is the main objective to be solved
in the early stage of training. At this stage, the different
entries can freely switch between the top-K lowest salience
entries to be shrunk and the salient entries to be kept, which
allows the model to adapt to better convergence. As shown in
Fig. 5, the values of salience entries are influenced during
training by both the shrinking loss and the task loss, i.e.,
being compressed by shrinking loss to improve efficiency
and meanwhile being enhanced by the task loss to improve
accuracy. We observe that changing of salience entries can be
generally summarized into 4 cases: (1) “No Shrinking” where
salience values do not shrink to a low value throughout. (2)
“Shrinking” where salience values shrink to a low value since
the start. (3) “Shrinking → No Shrinking” where the salience
value is low at the early stage of training and but in the late
stage, increases to become outside of the K lowest salience
values (because they contribute to good model performance
and thus are increased in importance by the task loss), such
that they will not be shrunk and are not pruned away. (4) “No
Shrinking → Shrinking” where the salience value is high at
the early stage, but decreases at a later stage during training
due to the effects of the shrinking loss and thus are effectively
pruned away.

Hence the salience entry fluctuates to being higher or lower
than the top-K lowest entries, which leads to different sorting
results and makes the set of shrinking entries become dynamic.
With the design of gradually increased shrinking rate, the neu-
tral entries which are not high or low enough in salience could
explore different update directions during training, allowing
the model to converge to a better accuracy and cost tradeoff.
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Fig. 5. Visualization of the state of salience entries (being shrunk or not
being shrunk) during training of our PCS-Resnet18-B. Each curve illustrates
the value of the salience entry during training. (Best viewed in color)

Finally, at the subsequent epochs, the shrinking rate increases
to sufficient magnitude to shrink the less salient entries to zero
to actually prune the corresponding channels.

8) Evaluation of Different Settings of Top-K for Shrinking
Selection: We conduct experiments on different values of the
K for top-K selection in Sec.III A. Table VII shows perfor-
mance and computation complexity of the PCS model with
different K. We observe that our PCS model with K = 1

2Cout
achieves a good performance-complexity tradeoff, compared
to the PCS models with K = 1

4Cout and K = 3
4Cout. We

thus set K = 1
2Cout for the top-K selection in our Progressive

Shrinking.
9) Transformer Result : We further evaluate our PCS on

transformer-like architectures. We adopt the proposed PCS
model on T2T-ViT [61] and Swin [35] and evaluate on
ImageNet. As shown in Table VIII, our PCS can also be
effective for transformer architectures.

10) Evaluation of the Impact of Salience Generator : We
conduct an ablation experiment to evaluate the impact of the
Salience Generator as shown in Table IX, where the baseline
without Salience Generator denotes the original ResNet-18.
Results show that using the Salience Generator brings an
improvement to network performance with a slight increase
in latency.

TABLE VII
PERFORMANCE COMPARISON OF OUR PCS WITH DIFFERENT K VALUES

FOR THE PROGRESSIVE SHRINKING.

Model Top-1 Err. MAdds 1080Ti ∆Top-1 Err. ∆MAdds
(%) (G) (ms) (%) (G)

Baseline 29.6 1.8 18.9 - -
0 28.8 1.8 20.3 0.8↓ 0
1
4
Cout 29.2 1.4 16.0 0.4↓ 0.4↓

1
2
Cout 29.8 1.0 13.8 0.2↑ 0.8↓

3
4
Cout 30.3 0.5 11.4 0.7↑ 1.3↓

TABLE VIII
PERFORMANCE COMPARISON OF OUR PCS ON TWO NEW

TRANSFORMER-BASED ARCHITECTURES.

Model Top-1 Err. MAdds 2080Ti ∆Top-1 Err. ∆MAdds
(%) (G) (ms) (%) (G)

T2T-ViT 18.5 13.8 1.62 - -
T2T-ViT-PCS 18.5 3.9 1.18 0 6.9↓
Swin 18.7 4.5 1.32 - -
Swin-PCS 18.7 2.5 0.89 0 2.0↓

TABLE IX
PERFORMANCE COMPARISON WITH AND WITHOUT THE SALIENCE

GENERATOR ON BASELINE (RESNET-18).

Model Top-1 Err. MAdds 1080Ti ∆Top-1 Err.
(%) (G) (ms) (%)

Baseline without Salience Generator. 29.6 1.8 18.9 -
Baseline with Salience Generator 28.8 1.8 20.3 0.8↓

V. CONCLUSION

This work introduces Progressive Channel-Shrinking net-
work that selects and shrinks the lowest salience channels
according to inputs. Rather than direct truncation, it can make
the pruning operation ‘milder’ to stabilize training. We also
propose Running Shrinking Policy to reduce indexing for
network acceleration. Our proposed Running Shrinking Policy
makes the shrinking selection identical to all the inputs so
that it can generate a static pruning scheme in testing to
avoid extra indexing operations. Besides, the Running Shrink-
ing Policy is dynamic during training to adapt the network
parameters and the training status. The experiments show that
our proposed method achieves SOTA in terms of compression-
performance tradeoff and surpasses current SOTA methods
on theoretical improvement. Furthermore, our method reduces
both the FLOPs and MAC, which significantly accelerates
CNNs in practice. However, there is still potential for further
optimization by combining MAC and FLOPs through hybrid
optimization, and we plan to pursue this in our future research
efforts.
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