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Abstract

We propose and implement a Bayesian learning model for performance. The model implies a specific distribution
for performance / technical inefficiency which we exploit in the context of stochastic frontier models. As the
theoretical model is ambiguous with respect to what constitutes existing “experience”, we propose and implement
alternative specifications. The estimation and inference techniques are based on Bayesian analysis using Markov
Chain Monte Carlo methods. We apply the new techniques to a data set of large U.S. banks. Our findings
indicate that there is some learning in technical inefficiency although there is limited evidence, if at all, that
jumps in experience are related to productivity growth. However, this effect is distinctly pronounced for the
2007-2010 period but much less significant afterwards.
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1 Introduction

Despite the fact that performance measurement and estimation has received a great deal of attention in the literature
using both Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) an important question has
been left unanswered. Is it possible that decision makers over time may be able to learn the difficulties of the process,
build experience and, eventually, reduce technical inefficiency? There are, of course, models where inefficiency
depends on certain covariates or environmental variables and even models where inefficiency is persistent but these
models are effectively “reduced forms” that do not allow for a systematic examination of learning in the process of
generating efficiency of decision making units.
It is widely known that efficiency ultimately depends on managerial ability of managerial experience, a factor called
“X-inefficiency” by Leibenstein. In the banking sector, for example, numerous studies have been conducted to
measure or estimate technical or cost and profit efficiency using SFA and DEA.1 But if there is systematic learning,
of one form or another, and gradual building up of managerial experience, broadly defined, bank managers should
be credited for being in the intermediate stages of learning. This is all the more important because cost inefficiency
in banking has a dual role. First, it acts as a buffer stock which can be potentially reduced when non-performing
loans build up as in the recent subprime crisis. For example, according to Ding and Sickles (2018) [27] “more
efficient banks increase capital holdings and take on greater credit risk while reducing risk-weighted assets”.
Second, cost inefficiency may be related to waste of resources that, however, provide for the “quite life” of a near
monopolist (the term “quite life” is due to Hicks; see Koetter and Vins, 2008 [64]; Koetter et al., 2012 [63]). In
the first case, we would expect nearly immediate reductions in inefficiency as a response to higher non-performing
loans. In the second case, we would expect that in “normal times” no effort is made, on purpose, to reduce cost
inefficiency and, as a result, no learning or experience and efficiency improvements will take place.
These traditional views may be challenged on the grounds that inefficiency, seen as waste of valuable resources,
has an effect on several other performance indicators of a decision making unit (Delis et al., 2017 [24]). On these
grounds, the management may try to learn the complex internal processes of the unit to reduce inefficiency. Of
course, this process takes time and learning arises naturally in the form of learning about waste. 2 3

Learning or, more generally, entrepreneurial orientation and “ability” have been at the center of interest for analyzing
performance (Ge and Peng, 2012; Stamboulis and Barlas, 2014; Ambad and Damit, 2016; Barba-Sanchez and
Atienza-Sahuquillo, 2018). Especially, Moreno and Casillas (2008) and Rauch et al. (2009) focus on entrepreneurial
orientation and performance. Moreno and Casillas (2008) emphasize the complexity of the relationships between
entrepreneurial orientation, strategy, environment, resources and growth. This is not surprising, as learning involves
activities along many dimensions such as ability to network, ability to assimilate experience and opportunities,
ability to reflect on past experience, strategy and mistakes, ability to access resources and a component related to
“entrepreneurial ability” (Deakins and Freel, 1998). See also Tortorella et al. (2020) and Azadegan et al. (2019).
When explicit data on learning are not available, the problem becomes more convoluted and learning has to be
inferred indirectly from the data. For example, Xiao and Yang (2021) [98] propose a series of Bayesian learning and
pricing models to uncover the unknown demand parameter through a data driven process (see also Wang and Xiao,
2017 [95]). Our problem in this paper is different, in the sense that we allow for a flexible learning model to test
formally whether learning is Bayesian, when only (indirect) production data are available. The data is “indirect” in

1For bibliometric evidence on the use of SFA and DEA in banking see Lampe and Hilgers (2015) [65]. Papers that use DEA in
banking include, inter alia, Andrew et al. (2018), Camanho and Dyson (2005) [71], Casu et al. (2016) [86], Fukuyama and Matusek
(2017) [32], and Kevork et al. (2017) [62]. For papers that use SFA see Badunenko and Kumbhakar (2017) [85] and Tsionas et al. (2017
[88], 2020 [89]) as well as the references therein.

2Another factor is that learning may be costly see, for example, Ubï¿œe et al. (2017) [94] and Tsionas (2020) [89]. The issue is
related to rational inefficiency, see Bogetoft and Hougaard (2013) [84] in the sense that costly improvements of efficiency are related
to costly learning itself. This is formally examined in Tsionas and Mamatzakis (2017) [91] from a different perspective. Learning is,
naturally, gradual, and may not be continual. Indeed, for the most part, managers may not worry too much about inefficiency unless
it becomes a significant problem in some respects, in which case they may be forced to learn and improve their experience to reduce
inefficiency. In the final analysis, although one can argue in this or the other way, the issue is, clearly, an empirical question.

Simple views of the learning process imply or assume that learning is a continuous process (Arrow, 1962 [82]; Young, 1993 [?], but
see also Arrow, 2014 [83], 2016 [34]). Learning may depend on “intuition” or “mental models” (Johnson-Laird, 1983 [54], 10–11) or in
formal models which acknowledge, of course, that they are imperfect representations of reality, a point made by Kahneman (2011) [58]
and Mercier and Sperber (2017) [68] inter alia. Jaber et al. (2021) [53] suggest a learning curve that accounts “for the variable degree
of cognitive interference that occurs while learning when moving from one repetition to the next”. Learning curves are used widely
in operations research and production operations management, see Jaber (2004, 2006 [49]), Jaber and Bonney (1999) [50], Jaber and
Guifridda (2004) [51] Jaber and Khan (2010) [52], Fogliatto and Anzanello [30] (2011), Grosse et al. (2015) [45], Glock et al. (2019)
[40], and Pusic et al. (2015 [78], 2017 [79]).

3There are many important applications of learning curves, in workforce planning (Cavagnini et al., 2020 [19]), machine scheduling
(Anzanello et al., 2014 [23]), lot sizing (Jaber and Khan, 2010 [52]), Enterprise Resource Planning (ERP) implementations (Plaza and
Rohlf, 2008 [77]), or order picking (Grosse and Glock, 2015 [45]).
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the sense that learning is not directly (or even imperfectly) observed but has to be inferred from the available data.
Related to learning are, of course, performance and efficiency of operations which are themselves unobservable and
have to be estimated.
In this paper we adopt the view that the management applies Bayesian learning (which is quite natural for various
forms and types of agents4) to build up experience and learn something about inefficiency. We are able to compare
models where learning is gradual and we derive learning curves over time. Moreover, we allow and test for the
possibility that learning is not continual but consists instead of jumps of unknown sizes at unknown time periods.
The models are estimated using Bayesian techniques organized around Markov Chain Monte Carlo (MCMC) as
well as the Particle Filtering (PF) algorithm (also known as Sequential Monte Carlo, SMC) for the more complex
models with possible persistence and jumps in the learning process. The new techniques are applied to a data set
of large U.S. banks and several interesting findings related to experience and learning are provided and discussed.
We provide extensive “reality checks” related to the benchmark learning model. Specifically, we compare the bench-
mark model with non-parametric versions of inefficiency dynamics to find that the benchmark performs roughly the
same using as criteria both Bayes factors (also known as posterior odds ratios), dynamic behavior conditional on
the environmental or contextual variables, steady-state or long-run inefficiencies, as well as a decomposition that
splits inefficiency into learnable and non-learnable components. Moreover, we recognize explicitly that inefficiency
estimates delivered by the data depend on information sets, more specifically the types of dynamic conditioning
that we use. If we simply condition on the entire data set, the benchmark learning model delivers results that
are inconsistent with general non-parametric formulations. However, when we condition on bank-specific infor-
mation sets (possibly including summary statistics of information from other banks) the results are quite close.
We proceed along these lines as managers may repeatedly process information using non-Bayesian heuristics (see
Kahneman and Tversky, 1974 [59]; Camerer, 1998 [81]; Rabin, 1998 [80]). These studies contributed to advances
in non-Bayesian learning (Golub and Jackson, 2010 [41]; Gilboa et al., 2008 [36], 2009 [37]) so, it is important to
differentiate between different types of learning, if any, in the data. For example, there may be components in
performance that can be learned and other components that cannot (relatively speaking) be learned. Moreover,
when we process the data as a whole, it may not be possible to discriminate between the different types of learning
that take place–where by “type of learning” we mean a particular conditioning on information that, however, uses
Bayes’ rule to update information. Other types of learning should, of course, be allowed and tested given the data.
We distinguish between passive and active learning, given the importance of these types of learning in the recent
literature (e.g. Roy, Silvestre, and Singh, 2020) and we operationalize these concepts in models which are more
general compared to our benchmark learning model. For similar operationalizations but from a different point of
view, see Sabahi and Parast (2020). The basic implication is that, in the absence of direct data on learning, learning
can be estimated more accurately when, after estimation, we condition on “reasonable” information sets rather than
relying on mechanistic estimates of learning. The model passes successfully these different tests and, therefore, it
can be considered as a learning model that reflects the broad picture of learning in large U.S. banks. Additionally,
we consider decompositions of inefficiency into a component that is amenable to learning (and, therefore, potential
reductions in waste) and a “non-learnable” component. The “non-learnable” component does not rely on simple
residuals from a flexible model but rather, on post-processing which uses proper conditioning on the information
sets that are likely to be faced by most bank managerial teams. To the best of our knowledge, the way this decom-
position is implemented, as well as the decomposition itself, are novel, and show that, nearly, 20%-40% of observed
inefficiency is non-learnable and can be attributed to the realities and complexities of the environment in which
decisions are taken and learning takes place, while the remainder conforms to a relatively simple and, for the most
part, standard model of learning.

2 Preliminaries

As noted in Minniti and Bygrave (2001): “[M]ost learning takes place by filtering signals obtained by experimenting
with different competing hypotheses, where some actions are reinforced and others weakened as new evidence is
obtained. Over time, we argue, individuals repeat only those actions that have generated better outcomes”.
A decision maker must make a decision z related to an unknown quantity y. When z = y then the decision maker
attains maximum efficiency in the task. Following Jovanovic and Nyarko (1995) [57] we assume ability or efficiency
(q) is given by

q = A
[
1− (y − z)2

]
. (1)

4For example, in game theory in it standard to assume that agents follow Bayesian learning procedures (see, inter alia, Jordan, 1991
[56] and Nachbar, 1997 [72], 2005 [73]). For Bayesian analysis in the context of human rational learning, see Oaksford and Chater(2007)
[74], and Kemp et al. (2007) [61].
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After multiple trials (say T ) the decision maker has

yt = θ + wt, t = 1, . . . , T, wt
iid∼ N (0, σ2

w) (2)

where θ is a parameter, for example, an optimal way of performing tasks, optimal speed, optimal way of performing
entrepreneurial-related activities etc. The entrepreneur has a prior on θ which is normal with a certain mean and
variance σ2

θ . It can be shown that Bayesian learning takes the following form

ET (qT ) = A(1− xT − σ2
w), (3)

where ET denotes conditional expectation after T “trials”, and

xT =
σ2
wσ

2
θ

σ2
w + Tσ2

θ

, (4)

is the posterior variance of θ, viz. ET (θ−ET θ)
2. The maximum value of (3) is A(1−σ2

w) so we can define a learning
curve by

QT =

(
1− xT − σ2

w

1− σ2
w

)
, (5)

where QT ≡ ET (qT )
A(1−σ2

w)N
. This curve will be S-shaped provided σ2

θ ≥
2(1−σ2

θ)
N+1 .

3 Model

Suppose xit ∈ RK is a vector of log inputs, yit is log output and production possibilities are given by

yit = x′itβ + vit − uit, i = 1, . . . , n, t = 1, . . . , T, (6)

where vit ∼ i.i.dN (0, σ2
v) represents measurement error, and uit is a non-negative random variable representing

technical inefficiency. Following the Bayesian learning model of Jovanonic and Nyarko (1996) [57] and Oikawa
(2016) [75], see also Tsionas (2017) [88], we denote uit = (θit − zit)2 where zit represents the manager’s decision
with respect to the inefficiency level, and θit is an unknown parameter. Therefore, the problem of the manager is
to maximize expected efficiency, viz. E(e−uit) = E

[
e−(θit−zit)

2
]

by choice of zit.
If the manager knows θit or sets θit = zit then production is fully efficient. So, “although a firm does not know how
to optimize the utility of its own technology at first, it gradually learns better usage through production experience”
(Oikawa, 2016 [75], p. 16). Suppose τit denotes firm experience, and

θit ∼ i.i.dN (θ̄, σ2
θ), i = 1, . . . , n, t = 1, . . . , T, (7)

is the prior of the critical parameter θit. Denote

σ(τ) =
σ2
v

σ2
v/σ

2
θ+τ

(8)

In turn, Oikawa (2016) [75] showed that the distribution of uit is gamma, viz. G
(
1
2 , 2σ(τ)

)
, with density

f(u) = u−1/2e−u/(2σ(τ))√
2πσ(τ)

, u ≥ 0, (9)

see Greene (1980a [42], b [43], 1990 [44]). The mean of inefficiency is σ(τ) and its standard deviation is
√
2σ(τ).

Defining λ =
σ2
v

σ2
θ

we have σ(τ) = λσ2
θ

λ+τ .
Suppose θ = [β′, σv, λ]

′, D denotes the data, and p(θ) is a prior on θ. The posterior distribution of the model is as
follows:

p(θ,u|D) ∝ σ−nT
v exp

{
− 1

2σ2
v

∑n
i=1

∑T
t=1 (yit + uit − x′itβ)

2 − 1
2

∑n
i=1

∑T
t=1 lnuit

}
·

exp
{
− 1

2

∑n
i=1

∑T
t=1

uit

σ(τit)
− 1

2

∑n
i=1

∑T
t=1 lnσ(τit)

}
· p(θ)

(10)

where u = [uit; i = 1, . . . , n, t = 1, . . . , T ], and σ(τit) =
λσ2

θ

λ+τit
Ideally, we would like to work with p(θ|D) =
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<nT
+
p(θ,u|D) du but the integral is not available in closed form. Experience τit may be set to a time trend that is,

τit = t. (11)

Our prior has the form
p(θ) ∝ σ−1

v λ−1. (12)

Writing out the prior in (12) explicitly, we obtain

p(θ,u|D) ∝ σ−(nT+1)
v λ−1 exp

{
− 1

2σ2
v

∑n
i=1

∑T
t=1 (yit + uit − x′itβ)

2 − 1
2

∑n
i=1

∑T
t=1 lnuit

}
·

exp
{
− 1

2

∑n
i=1

∑T
t=1

uit

σ(τit)
− 1

2

∑n
i=1

∑T
t=1 lnσ(τit)

} (13)

Access to the posterior is provided by Markov Chain Monte Carlo (MCMC) techniques described in part A.1 of the
Technical Appendix. We call this specification Model I.

4 Alternative models for experience

In the previous section, we assumed τit is a simple time trend, which involves the assumption that experience simply
accumulates with the passage of time. Although this may well be correct we would like, nevertheless, to test such
hypotheses, in the light of the data, using alternative specifications for experience. Our first alternative (which we
call Model II) is a latent variable autoregressive scheme for experience:

τit = αi + ρτi,t−1 + ξit, ξit ∼ i.i.dN (0, σ2
ξ ), (14)

where αi denotes individual effects, ρ is an autoregressive parameter, and ξit is an error term. For the firm effects
we assume αi ∼ i.i.dN (ᾱ, σ2

α). A more reasonable model, which we call Model III, contains a jump component to
allow for the possibility that experience possibly increases only at discrete time intervals:

τit = αi + ρτi,t−1 + Jit + ξit, ξit ∼ i.i.dN (0, σ2
ξ ), (15)

where Jit is zero with probability $it, otherwise it assumes an unknown value γit with probability 1 − $it. The
interpretation that experience possibly increases only at discrete time intervals involves the restriction ρ = 0
although we can have intermediate cases where ρ 6= 0 and there is a jump component, simultaneously.
Alternatively, we can write (15) as follows.

τit = αi + ρτi,t−1 + γitJit + ξit, ξit ∼ i.i.dN (0, σ2
ξ ), (16)

where Jit is zero with probability $it, and equal to one with probability 1 − $it. We assume that jump sizes
come from a distribution N (γo, σ

2
γ) where γo and σγ are unknown parameters. For the prior parameters, we assume

γo ∼ N (0, s̄2) and q̄
σγ2
∼ χ2

n̄ , i.e. an inverted gamma distribution. This prior is minimally informative if we set
q̄ = 0.01, n̄ = 1 and s̄ = 2. Notice that the jump size can be positive or negative.
Allowing for jumps in experience is important in view of the evidence that unchanged environments do not provide
much opportunity for learning whereas diverse experiences contribute to solid increases in entrepreneurial orientation
(see, for example, Deakins and Freel, 1998, p. 151; Azadegan et al., 2019).
For the probabilities we assume the following process:

ln $it

1−$it
∼ i.i.dN (ro, σ

2
$), (17)

where ln $it

1−$it
is the log odds ratio, ro is its prior mean, and σ$ its prior standard deviation, both of which are

unknown parameters. For various parameterizations of the prior in (17) the resulting priors in terms of $ are
presented in Figure 1.

As σ$ increases the prior becomes more diffuse and ro mainly controls the probability density around the endpoints
(one and zero). From this evidence, it seems reasonable to select ro = 0 and σ$ = 10 to produce a relatively diffuse
prior for $. Nevertheless, we prefer to impose this prior information in a stochastic way to allow that ro and σ$
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Figure 1: Implied priors of probability parameter, $
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Table 1: Models
Model name equation

I Time trend model (11)
II Latent AR model (14)
III Latent AR model with jumps (15)

are unknown parameters, via the following form:

ro ∼ N (0, 1), p(σ$) ∝ σN̄−1
$ e−N̄Q̄/(2σ2

$), (18)

viz. ro follows a standard normal distribution, and σ$ follows a variant of the inverted gamma distribution (Zellner,
1971 [?], p. 371). If we set the shape parameter N̄ = 2 then the mode of the prior for σ$ is 10 if we set the scale
parameter Q̄ = 10

√
3
2 ' 12.2. Finally, as the prior could be important we undertake extensive sensitivity analysis

in part A.3 of the Technical Appendix. For Models II and III, the Gibbs sampler could be numerically inefficient
(for a precise notion see also part A.3 of the Technical Appendix) so, we apply a Particle Filtering (PF) approach
also known as Sequential Monte Carlo (for details see part A.2 of the Technical Appendix). In all cases, we use
250,000 iterations the first 50,000 of which are discarded in the interest of mitigating possible start up effects.
To summarize the models, see Table 1.

5 Data and empirical results

We have an unbalanced panel with 3,897 bank-year observations for 285 large U.S. commercial banks operating
in 2001-2019, whose total assets were in excess of one billion dollars (in 2005 U.S. dollars) in the first three years
of observation. The data come from Call Reports available from the Federal Reserve Bank of Chicago and they
have been used in Malikov et al. (2016) [67] but have been updated to include data for the period 2011-2019. For
detailed description of the data construction, see Section 5 of the paper.
The list of included variables is as follows: y1 Consumer Loans, y2 Real Estate Loans, y3 Commercial & Indus-
trial Loans, y4 Securities, y5 Off-Balance Sheet Activities Income, b Total Reported Nonperforming Loans, x1
Labor, number of full-time employees, x2 Physical Capital (Fixed Assets), x3 Purchased Funds, x4 Interest-Bearing
Transaction Accounts, x5 Non-Transaction Accounts, e (Quasi-Fixed) Equity Capital.5
Suppose xit = [xit,1, . . . , xit,K ]′ denotes the logs of inputs and yit = [yit,1, . . . , yit,M ]′ is the vector containing the
logs of outputs. To model the technology we use an output distance function (ODF). To this end, we define
ỹit,m = yit,m − yit,1 (m = 2, . . . ,M). The output distance frontier is as follows.

yit,1 = βo + β′
1zit +

1
2z

′
itBzit + vit − uit, (19)

where zit = [ỹ′it, x
′
it]

′ , ỹit = [yit,2, . . . , yit,M ]′, βo is a scalar, β1 is a vector and B is a symmetric matrix all
containing unknown parameters which we denote β = [βo, β

′
1, vech(B)]′ where vech is the operator that stacks

different elements of a matrix into a vector.6
Model comparison is facilitated by the use of marginal likelihoods and Bayes factors (Kass and Raftery, 1994 [60]).
For any model with parameters θj and data D, the marginal likelihood is the integrating constant of the posterior,
i.e.

M (D) = L (θ;D)p(θ)dθ, (20)

where L (θ;D), p(θ) denote, respectively, the likelihood and the prior. For any two models indexed by “j” the Bayes
factor in favor of model “j” and against model “1” is the ratio of marginal likelihoods:

BFj:1 =
Mj(D)
M1(D) , (21)

5Unless otherwise noted all variables are in thousands of U.S. dollars.
6The output distance function is non-increasing in outputs and non-decreasing in inputs. We impose these properties at the means

of the data and ten other randomly selected points. In turn, we check whether estimated (posterior mean) input and output elasticities
satisfy these properties. Equity over total assets and non-performing loans (b) are included in the 19. Non-performing-loans have
derivative properties similar to inputs while no restrictions are imposed on equity over total assets.
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Table 2: Bayes factors against Model I
Model II Model III

2005 26.71 4,755.2
2006 17.19 9.821.3
2007 22.71 12,781.4
2008 48.83 19,655.0
2009 57.20 22,455.7
2010 44.50 24,718.8

Figure 2: Aspects of the model
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(j = 2, 3, . . . , J) which is also known as posterior odds ratio when the prior odds ratio is 1:1.7 Here, J denotes the
number of models under consideration.
For Model I (time trend) the marginal likelihood can be computed using the Laplace approximation (DiCiccio et
al., 1997 [26]). For Models II and III it is standard output of the Particle Filtering (PF) approach. To compare the
different models, we introduce temporal observations in batches. First, we use all observations for 2000-2005, then
we introduce all observations for 2006, etc. Bayes factors reported in Table 2, show that the odds in favor of Model
III are overwhelming suggesting that, in the light of the data, this model receives the greatest support. The evidence
in favor of Model II is also significant (although not as overwhelming as in the case of Model III). Bayes factors
in favor of Model III and against Model II can be computed as BF3:2 = M3(D)

M3(D) = M3(D)/M1(D)
M2(D)/M1(D) . For example, in

2009, the Bayes factor in favor of Model III and against Model II is, approximately, 22,455.7/57.20=392.6, which
is substantial. Given the superiority of Model III all results (unless otherwise noted) refer to Model III.
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Figure 3: Marginal posterior densities of σθ, σv, στ , and ρ
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Figure 4: Posterior expectation of τit and 95% HPD intervals
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Notes: “HPD” stands for highest posterior density.

Figure 5: Normalized learning curves
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Notes: “HPD” stands for highest posterior density.

Finally, we report normalized learning curves in Figure 5. Normalized learning curves have been proposed by
Jovanovic and Nyarko (1996). The evidence suggests that learning is quite slow as moving from an efficiency level
of 0.6 to 0.7 would take, on the average, close to five years.

In Figure 6 we report the marginal posterior densities of $it in panel (a) and the jump parameter γit in panel (b).

The jump probability averages 0.188 (with posterior standard deviation 0.096) showing that the probability of
learning taking place is rather low. The posterior mean of the jump size, γit, is 0.285 (with posterior standard
deviation 0.036).
As the jump probability and size are time-varying and bank-specific, it is interesting to examine their relationship
(using the posterior means of $it and γit). For example, a positive (negative) relationship would indicate that higher
jump probabilities are associated with higher (lower) jump sizes. Aspects of the bivariate posterior distribution are
reported in panels (c) and (d) from which there exists a positive relationship (the correlation coefficient is 0.64 but
the relationship is unlikely to be linear as the bivariate posterior distribution is not unimodal).
An important assumption in the model is that the jump probability and size are not persistent, that is $it and γit
do not depend on their lagged values ($i,t−1 and γi,t−1). To test this assumption we provide, in Figure 7, aspects
of their bivariate posterior distributions.

From this evidence we have no reason to doubt that there is no persistent element in $it and γit. Moreover, from
the evidence in the bivariate posterior distributions in Figure 8, we fail to uncover a relationship between the jump
probability and jump size on the one hand, and posterior mean productivity growth on the other.

7It is relevant that marginal likelihoods and Bayes factors are not unimportant in discussions about causal structure. Fong and
Holmes (2020) [31], for example, showed that the marginal likelihood is formally equivalent to exhaustive leave-p-out cross-validation
averaged over all values of p and all held-out test sets when using the log posterior predictive probability as the scoring rule.” (Fong
and Holmes, 2020 [31], p. 489).
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Figure 6: Marginal posterior densities of $it and γit
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Figure 7: Aspects of the bivariate posterior distributions
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Figure 8: Aspects of the bivariate posterior distributions for productivity growth
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Therefore, jumps in experience do not seem to be related necessarily to low productivity growth per se. Some
further evidence is provided in Figure 9, where we report the marginal posterior distributions of jump sizes by year
(across all banks).

From the evidence in Figure 9, it turns out that during 2000-2006 there is very little evidence of jumps in experience
(panel (a)) although there is more evidence in favor of improvements in experience during the subprime crisis (2007-
2010, panel (b)). Results for the period 2011-2019 are reported in panel (c). From this evidence, it is clear, that
jump sizes are fewer and estimated to be between 0.015 and 0.02 with a median close to 0.018.
To investigate further these results, we examine the relationship between jump sizes and jump probabilities (as in
Figure 8) for the period 2007-2010. Our results are reported in Figure 10.

The evidence suggests a relatively strong positive relationship between jump probability and productivity growth

Figure 9: Marginal posteriors of jump size by period
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Figure 10: Aspects of the bivariate posterior distributions (2007-2010)

0
0.05

50

100

0 0.6

150

200

0.4-0.05

250

it

300

0.2-0.1

0-0.15
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

it

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0
0.05

1000

2000

0.040

3000

4000

0.03

it

5000

-0.05
0.02

-0.1 0.01
0.015 0.02 0.025 0.03 0.035 0.04

it

-0.08

-0.06

-0.04

-0.02

0

0.02

(panels (a) and (b)). The relationship between jump size and productivity growth (panels (c) and (d)) is also positive
although the evidence suggests that the bivariate posterior is bimodal and there may be different relationships around
the different modes or clusters in the data. The correlation coefficients between productivity growth and $it, γit
are close to –0.77 and –0.56, respectively. As the relationship is negative and much more pronounced, in effect, this
shows that lower productivity growth increases the probability of a jump and the jump size in experience itself.
Another important issue is whether non-performing loans (NPL) have a role in learning and experience. In principle,
mounting NPLs may force banks to adopt different risk management procedures (Boussemart et al., 2019 [39]) but
also to reduce inefficiencies to save on valuable resources. We examine this matter in Figure 11, for three subperiods,
2000-2007, 2007-2010, and 2011-2019, that is, roughly, before and after the subprime crisis. For visual clarity we
normalize logs of NPLs between zero and one. Marginal posteriors are reported in Figure 11. From the evidence
it turns out that before the subprime crisis, despite an overall positive relationship between NPLs and experience
there are, in fact, three clusters or business models in the data, and in all of them the relationship between the
two variables is rather weak (see panels (a) and (b)). After the financial crisis, there are still three clusters but the
relationship becomes positive suggesting reinforcement of learning or experience in view of the increase in NPLs.

6 Reality checks

Models and Bayesian learning rely on strong assumptions as it is well known. For the underlying issues, see Jones
and Love (2011). As they mention: “In the context of rational Bayesian modeling, existence proofs hide the fact that
there are generally many Bayesian models of any task, corresponding to different assumptions about the learner’s
goals and model of the environment. Comparison among alternative models would potentially reveal a great deal
about what people’s goals and mental models actually are. Such an approach would also facilitate comparison to
models within other frameworks, by separating the critical assumptions of any Bayesian model (e.g., those that
specify the learner’s generative model) from the contribution of Bayes’ Rule itself. This separation should ease
recognition of the logical relationships between assumptions of Bayesian models and of models cast within other
frameworks, so that theoretical development is not duplicated and so that the core differences between competing
theories can be identified and tested”.
For example, Hautsch and Hess (2007) [47] use measures of quality of released information in financial markets
and trading decisions. On the basis of precision proxy variables, they document significant evidence in favor of the
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Figure 11: Relationship between learning and NPLs
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hypothesis of Bayesian learning (viz. that the quality of information acts as a catalyst, i.e., prices respond stronger
to more precise news). Moreover, a series of experiments suggest that people may repeatedly process information
using non-Bayesian heuristics (see Kahneman and Tversky, 1974 [59]; Camerer, 1998 [81]; Rabin, 1998 [80]). These
experiments contributed to advances in non-Bayesian learning (Golub and Jackson, 2010 [41]; Gilboa et al., 2008
[36], 2009 [37]).
To compare the particular Bayesian learning model in this study with a general alternative model, the latter must
allow for arbitrary types of learning. Such a general model is based on insights from Paul and Shankar (2018)
[76] and Tsionas and Mamatzakis (2019) [92]. Since efficiency is rit = e−uit it follows that efficiency is bounded
between zero and one so, any distribution function can be used to parametrize explicitly efficiency as a function of
contextual or environmental variables. For example, if such variables are in vector wit ∈ Rdw one can assume

rit = F (wit; δ) , (22)

where F (·) is any distribution function (for example, the standard normal or logistic), and δ ∈ Rdδ is a vector of
parameters. From (22) it follows that:

uit = − logF (wit; δ) . (23)

Fundamental to every type of learning is, of course, the presence of dynamics in technical inefficiency so, we have
to modify the model as

uit = − logF (ui,t−1, wit; δ) , (24)

keeping the same notation for parameters δ in the interest of simplicity. To operationalize (24), we use a flexible
model:

uit = − log

G∑
g=1

δ(g),1Φ
(
δ(g),2ui,t−1 + w′

itδ(g),3
)
+ ξuit, (25)

where Φ(a) = 1
1+e−a (a ∈ R) is the logistic distribution function, and ξuit is an error term which is absent from Paul

and Shankar (2018) [76] and Tsionas and Mamatzakis (2019) [92]. This error term may be critical in capturing
the effects of omitted variables. The representation in (25) is, essentially, an artificial neural network (ANN) whose
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Table 3: Bayes factors and posterior model probabilities
Bayes factors PMP

G = 1 1.000 G = 6 12.43 G = 1 0.0012 G = 6 0.015
G = 2 144.21 G = 7 5.51 G = 2 0.178 G = 7 0.007
G = 3 255.30 G = 8 1.30 G = 3 0.316 G = 8 0.002
G = 4 212.423 G = 9 0.043 G = 4 0.263 G = 9 0.000
G = 5 175.83 G = 10 0.001 G = 5 0.218 G = 10 0.000

good approximation properties are well-known (White, 1989 [96], 1990; Hornik et al., 1989 [48]). In (25), δ(g),1 > 0

and δ(g),2 are scalar parameters, and δ(g),3 ∈ Rdw (for all g = 1, . . . , G).
We proceed under the assumption that

ξuit
iid∼ N (0, σ2

ξu). (26)

In turn, our purpose is to estimate jointly (19) and (25). Implementation of MCMC using SMC is based on 150,000
iterations omitting the first 50,000 in the interest of mitigating possible start up effects. Denoting

δ = [δ(g),1, δ(g),2, δ
′
(g),3]

′,

our prior for (25) is flat:
p(δ, σξu) ∝ σ−1

ξu . (27)

As marginal likelihood is standard output of SMC, we select the order GN by fitting models with different values
of G (ranging from 1 to 10). In turn, we can compute Bayes factors as in (21) and so-called posterior model
probabilities (PMP) defined as probabilities that a particular model is “correct” in the light of the data:

Pj(D) =
Mj(D)∑J

j′=1
Mj′ (D)

, j = 1, . . . , J. (28)

where marginal likelihoods, Mj(D), are defined in (20). For any function of the data and the parameters, say
q(θ,D), the BMA posterior expectation of this function of interest is

Eθ|D [q(θ,D)] =

J∑
j=1

Pj(D)q(θj , D), (29)

where q(θj , D) is the function of interest for a particular model j, and Eθ|D [·] denotes expectation with respect to
the parameters given the data. The results are reported in Table 3.

Normalizing the Bayes factor corresponding to G = 1 to unity, models with G =2, 3, 4, and 5 account, collectively,
for, nearly, 97.5% of posterior model probability. In this instance, it does not seem wise to select a particular model
(say, the model with the highest PMP, viz. G = 3) but rather to perform Bayesian Model Averaging (BMA) for
different orders of G in (25).
We are especially interested in the function of interest that represents the learning rate

qpassive(θ,D) =
∂Eθ|D(uit)

∂ui,t−1
, (30)

resulting from (25) and (29). We call this the passive learning approach as it is based on the entire data set,
and represents an ex post (or a posteriori) overall estimate of learning. The passive learning estimate, relies on data
from all banks and all time periods so, it is not unlike fitting learning curves to learning data.
The active learning approach is based on the idea that learning effects may be captured more accurately if we allow
for sequential processing of data which is what the analyst and the decision maker share in common when the
decision makers learns how to perform better. Suppose Ii,t−1 denotes the information set consisting of data up to
and including period t− 1 (i.e. the beginning of period t, in which decisions about inputs, outputs and results for
performance are not yet known both to the researcher and the decision maker). The active learning estimate that
is equivalent to (30) becomes
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qactive,1(θ,D) =
∂Eθ|Ii,t−1

(uit)

∂ui,t−1
. (31)

The conditional expectation Eθ|Ii,t−1
(·) relies on estimating (19) and (25) in a different way, as we do not condition

on the entire data set. Specifically, we are interested in posterior distributions of the form

p(θ|It−1), p(uit|It−1), t = to, . . . , T, (32)

where It−1 = {Ii,t−1, i = 1, . . . , n}, and to represents a starting date that we use to make sequential posterior
inferences as data for periods 0, –1, etc., are unavailable. Of course, parameter uncertainty is explicitly accounted
for in p(uit|It−1) = p(uit, θ|It−1) dθ in (32). The expression can be written further as

p(uit|It−1) = p(uit|θ, It−1)p(θ|It−1) dθ. (33)

If draws
{
θ(s), s = 1, . . . , S

}
are available from p(θ|It−1), then the expectation above can be accurately approxi-

mated (as S →∞) by

p(uit|It−1) = S−1
S∑

s=1

p(uit|θ(s), It−1). (34)

Of course, the computation is complicated by the fact that we have to condition on the history uto:t−1 as well which
contains latent inefficiencies for all firms from period to to t − 1. Using SMC, it is a simple matter to update the
posteriors and approximate accurately the learning elasticity

q̂active(θ,D) =
∂Eθ|It−1

(uit)

∂ui,t−1
. (35)

Although the active learning approach may provide a more realistic view of learning, it is evident from (35) that it
is not quite the same as (31) as the conditioning sets are different. Indeed, (35) conditions on the entire information
set It−1. Although, in principle, this is acceptable, it is more intuitive to condition in merely Ii,t−1 or Ii,t−1

and a summary of information, denoted Ĩ−i,t−1 which contains “summary statistics” of all other decision makers
(indicated by −i). This is not uncommon in the literature and lies at the cornerstone of modern learning theories,
see for example Molavi et al. (2018) [70]. In turn, we may be interested in two alternative active learning elasticities.
The first is (31) while the second is

qactive,2(θ,D) =
∂Eθ|Ii,t−1,I−i,t−1

(uit)

∂ui,t−1
, (36)

which conditions on own information and “summary statistics” for the rest of the sector up to date t − 1. To
compute these elasticities, for example the elasticity in (31), we notice that

p(uit|Ii,t−1) =
p(uit|Ii,t−1)
p(uit|It−1)

p(uit|It−1), (37)

which implies that if we have a draw from uit|It−1, then this draw is from uit|Ii,t−1 with the Metropolis-Hastings
acceptance probability min

{
1,

p(uit|Ii,t−1)
p(uit|It−1)

}
. Apparently, the same is the case with p(uit|Ii,t−1, I−i,t−1).

Since p(uit|It−1) = p(uit|θ, It−1)p(θ|It−1)dθ, if we have MCMC draws for θ|It−1we can simulate draws from
uit|θ, It−1 and, therefore, from uit|It−1. Therefore, we end up with four different learning models (LM):

1. The passive learning model in (30).

2. The active learning model in (31).

3. The active learning model in (35).

4. The active learning model in (36).

To implement LM4, we need to decide on the “summary statistics” in I−i,t−1. For each bank, we assume that
only the first two moments of inefficiency of all other banks are known to the decision maker i. Using to = 3 (so
that we start in 2004) we compare the different learning models in terms of recursive Bayes factors in panel (a) of
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Figure 12: Comparison of different learning models

The benchmark learning model is defined in (19) and (15).
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Figure 12. If the benchmark model is indeed “adequate” in the light of the data, its performance should not be too
different compared to LM2 and LM4. One piece of evidence is related, of course, to Bayes factors. More evidence
is provided by comparing efficiency estimates from LM2 and LM4 with the benchmark (panel (d) of Figure ) as
well as ρ (panel (e) of Figure 3) with the marginal effects in (31) and (36). Efficiency distributions are compared
in panel (b) of Figure 12 and the marginal effects are compared in panel (c).
The evidence in favor of the benchmark learning model (which is defined in (19) and (15)) is decisive against LM3
(the active learning that uses It−1) but considerably less so for LM2 and LM4.

The fact that LM2 and LM4 are “close” in terms of predictive performance to our benchmark model, implies that
the data do not favor a particular model (that conditions on Ii,t−1 or Ii,t−1 and Ĩi−,t−1) over the benchmark model
which is, admittedly, restrictive in terms of its assumptions, compared to the essentially non-parametric formulation
in (25).
In panel (b) of Figure we report densities of efficiency estimates for the different learning models. In panel (c)
we report densities of the (average) marginal effects with respect to ui,t−1. Of course, ρ in (15) is parameter so it
does not vary with ui,t−1. For the benchmark model, LM2 and LM4 inefficiency distributions are rather close and
marginal effects average 0.85 and ranging from 0.67 to nearly 1. The averages of marginal effects are close to 0.22
ranging from 0.15 to less than 0.30. The densities corresponding to LM2 are similar to the benchmark model. For
LM1 and LM3 these densities are quite different. For LM1 the marginal effect averages close to 0.3, which is in
the right tail of the benchmark model as well as LM2 and LM4, and ranges from 0.15 to about 0.47. For LM3 the
marginal effect is somewhat smaller on the average (0.28, median 0.26 and standard deviation 0.051). The standard
deviations corresponding to different models are 0.019 (for the benchmark), 0.042 for LM1, 0.019 for LM2, 0.052
for LM3, and 0.021 for LM4. Evidently, they are closer for the benchmark model, LM2, and LM4 but not so for
LM1 and LM3.
Overall, there is evidence that the benchmark learning model proposed in this study, LM2 and LM4 behave roughly
in the same way albeit this is not the case for LM1 and LM3. LM1 is the passive learning model and LM3 conditions
on It−1, which includes all data up to and including period t − 1. These differences, as we argued, arise from the
fact that the conditioning set matters and it more sensible to condition on a decision maker’s information set (plus
a few summaries from the other decision makers) rather than rely on marginal effects that assume that all decision
makers have full information about the performance of others in all time periods. It is important to point out that ρ
in (15) is a single parameter, whereas the marginal effects derived from (25) in their various versions (LM1 through
LM4) are much more general constructs that allow for variations of the marginal effect across different values of
ui,t−1, the conditioning variables, etc. The fact that the posterior density of ρ (conditioning on all the data) and
marginal effects from LM2 and LM4 are nearly the same deserves some attention. First, the benchmark learning
model, LM2 and LM4, despite the great flexibility of the last two, do not behave very differently based on recursive
Bayes factors reported in panel (a) of Figure 12. Second, in panels (b) and (c) of Figure 12 we consider only average
marginal effects in the sake of comparison with (15). Average marginal effects are computed by using the average
values of ui,t−1 and the other conditional variables but, in general, marginal effects depend on individual values
of these variables. Conditioning at other values, could potentially yield different results. We take up this issue in
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Figure 13: Comparison of marginal effects for benchmark learning model and LM2, LM4, conditioning on different
values of ui,t−1 and the conditioning variables.

In panel (a), we compare the marginal effects from the benchmark learning model (heavy line) and LM2. In panel (b) we compare the marginal
effects from the benchmark learning model and LM4. For LM2 and LM4 we consider 50 randomly chosen values from the support of ui,t−1 and
the conditioning variables.
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Figure 13, where we examine the effect of conditioning on other values.
In panel (a) of Figure 13, we compare the marginal effects from the benchmark learning model (heavy line) and
LM2. In panel (b) we compare the marginal effects from the benchmark learning model and LM4. For LM2 and
LM4 we consider 50 randomly chosen values from the support of ui,t−1 and the conditioning variables.

Clearly, conditioning on different values of the predictors in (25), provides distributions of marginal effects that are
different, although the differences are not so much in terms of location and spread. For example, bimodality of the
posterior density of ρ (near the modes 0.20 and 0.25) is shared by many of the distributions of marginal effects
when we condition not on the average but other values of the predictors in (25).
Based on the nonlinear representation in (25) we can also derive long-run or steady-state inefficiency. The sample
distributions of steady-state inefficiency for LM2 and LM4, are presented in panel (a) of Figure 14 where we also
present the steady-state distribution for the benchmark model. The steady-state densities turn out to be bimodal
having a major mode near 0.18 and another near 0.25. Average steady-state inefficiency is 0.186 with standard
deviation close to 0.030 (the medians of LM2 and LM4 are 0.176). So, we expect that, in the long-run, inefficiency
averages close to 18%. In panel (b) we report results for LM1 and LM3.

Results from LM1 and LM3, reported in panel (b), are quite different. For example, LM1 has steady-state inefficiency
which averages 0.124 (0.119 for LM3) with standard deviation 0.027 (0.015 for LM3). Therefore, the implications
of (LM2, LM4) on the one hand, and (LM1, LM3) are quite different in terms of steady-state inefficiency; the
second group, for example implies much lower steady-state inefficiencies and different distributions relative to the
first group. The distributions of steady-state inefficiency in models LM1 and LM3 are also not the same.

7 Can we attribute all dynamics to learning?

7.1 General

An important question when we compare the benchmark learning model to models in (25) is whether all dynamics
in (25) and, therefore, (30), (31), (35), and (36), can be attributed to learning. The fact that the benchmark,
LM2 and LM4 provide, roughly, the same implications is, of course, quite re-assuring in this direction. Additional
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Figure 14: Steady-state inefficiency densities
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evidence can be provided if we decompose inefficiency as

uit = uit + ũit, (38)

where uit represents the non-learnable component and ũit denotes the component that can be learned. Therefore,
we split efficiency in two parts, the first of which may be dynamic but is not part of learning (it is, for example,
persistent inefficiency), and the second is the component that managers and decision makers can actually learn.
Total efficiency, or uit, can be obtained from LM2 in (31) or LM4 in (36) as these models were found to be, in many
respects, similar to the benchmark. The ũit component, in principle, follows (9) whereas uit is obtained residually.8
If we proceed along this direction, we obtain estimates of uit or the ratio

ψit ≡ uit

uit
,

which represents the proportion of non-learnable inefficiency. The sample distributions of ψit are reported in Figure
15.

The evidence reported in Figure 15, suggests that the portion of inefficiency that cannot be learned is, in fact,
sizable, and averages 30% in both LM2 and LM4 (standard deviations close to 3% and 2.8%, respectively, and
values ranging between 20% and 49%). In turn, this suggests that in U.S. banking a large part of inefficiency (close
to 70%) can be learned and reduced. The fact that it is not reduced can be attributed to a number of reasons, the
most prominent of which is the “quiet life hypothesis”, first suggested by Hicks. According to this hypothesis, banks
with higher market power can have high profitability even though it could cause inefficiency. This can be expressed
equivalently by saying that managers in a non-competitive environment will avoid risky or difficult decisions, and
do not have the initiative or incentives to engage in projects that reduce waste and inefficiency (Koetter and Vins,
2008 [64]; Koetter et al., 2012 [63]). More importantly, perhaps, the fact that ψit is “small”, shows that, at least for
the most part, (31) and (36), are consistent with learning dynamics (as opposed to general inefficiency dynamics)
and, specifically, the dynamics consistent with our benchmark model in (9), (8), and (15).
7.2 What can we learn from the non-learnable component?

The components uit and ũit are, potentially, important in establishing more properties of the learning process.
First, an interesting question is whether the learnable component has, roughly, the same properties as in Section 4
and Figures (3)-(6). Second, from the non-learnable component we would like to know what exactly is it about it
that prevents learning. As to the first question, the empirical evidence (not reported here but available on request)
shows that the learnable component has the same properties as in Section 4 and Figures (3)-(6) where the presence
of uit has been ignored. This is surprising, as (15) shows that this component is not trivial. To understand the

8We follow the so-called corrected least squares approach, and use the estimates ũit−min
i,t

ũit to satisfy the non-negativity restriction.
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Figure 15: Sample densities of ψit
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Figure 16: Marginal effects of the non-learnable component, Part I
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properties of uit we consider the following model

uit = ϕ (ui,t−1, logEQi,t−1, logNPLi,t−1,Pi,t−1,Tit) + ξuit + ηui , (39)

where ϕ (·) is an unknown functional form, ui,t−1 represents the lagged value of the non-learnable component,
logEQi,t−1 is the lagged log value of equity, logNPLi,t−1 is the lagged log value of non-performing loans, Pi,t−1

represents the lagged value of the first principal component of inputs and outputs (separately), 9, Tit represents the
time trend, ξuit represents an error term, and ηui represent bank-specific effects, respectively. If the non-learnable
component does not depend on the specific set of variables then it can be interpreted as a non-causal part of
performance that cannot be learned objectively.
To estimate (39) we use an artificial neural network whose order is chosen by the data using the marginal likelihood
criterion. The details are explained in Appendix C.

In panels (a) and (b) of Figure 16, we present the distribution of marginal effects ∂ϕ(·)
∂ui,t−1

which appears to be

9The first principal components account for almost 80% of the total variation in logs of inputs and outputs.
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Figure 17: Marginal effects of the non-learnable component, Part II
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positive but multimodal (also shown on panel (b) is the 45◦ degrees line). This evidence shows that, in fact, uit, is
persistent so, this component is non-learnable not because it is random but because it is genuinely non-learnable.
As a function of equity and non-performing loans, the respective marginal effects are shown in panels (c), (d), and
(e) and (f), respectively.

As a function of the first principal components, the association is weaker but still, evidently, positive; see panels
(a)-(d) of Figure 17. The message that emerges from this evidence is that the non-learnable component is highly
persistent, depends positively on equity and NPLs, and it is not independent of inputs and outputs. High persistence
indicates that, ceteris paribus, uit, is, indeed, difficult to learn, particularly so in larger banks (notice the effect of
equity), with more NPLs (notice the positive relation with NPLs). The size effect is confirmed by the association
between inputs and outputs in Figure 17. Of course, banks with higher NPLs also show a size effect but NPLs
also reflect the effect of uncertainty so, in larger organizations, operating in more uncertain environments, the
relationships between the non-learnable component of performance (inefficiency) are highly complex (evidenced by
the multimodalities of the joint distributions in Figures 16 and 17), depend, on the main, positively on size and
uncertainty and they are heterogeneous (in the sense that multimodalities are compatible with different clusters
or groups in the data). As noted in Arbelo, Arbelo-Pérez and Pérez-Gómez (2021), “the relationship between
efficiency and size heavily depends on the internal properties and characteristics of the firm and environment in
which it operates and that there is heterogeneity among firms”
It is known from the neuroscience literature that, at a fundamental level, learning is about forming, removing, or
changing associations (Bassett and Mattar, 2017). Provided these associations are close to the ones predicted by the
neural network results in Figures 16 and 17 (Gadzinski and Castello, 2020), it turns out that the non-learnable com-
ponent has extensive grounding in the organizational structure as it depends on its observable outcomes. Although
this finding is in line with major points in the literature that learning depends on past experience (Minniti and
Bygrave, 2001), it is also a new contribution in the sense that the uncertainty in the environment can be quantified
more precisely and analyzed in a systematic manner, as in (39).10

10

Gadzinski and Castello (2020) decompose uncertainty into model-based and error-based. The first is due to deficiencies of the
benchmark model and the second is unavoidable. They assume the two errors are independent although this is not always the case in
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As the non-learnable performance component depends systematically on observable variables, one may be tempted
to use the associations provided by (39) and presented in Figures 16 and 17, to “learn” about the “non-learnable”
component or at least devise a policy that reduces its magnitude. Although this may be an interesting avenue for
future research, it must be emphasized that (i) one has to verify that the associations implied by (39) are causal, and
(ii) given that they are causal, develop a model of how the organizational structure is reflected at the macro level
associations provided by (39). This reflection will, undoubtedly, be compatible with multiple narratives or theories
about how underlying structures are reflected in performance; and, clearly, how such reflections are moderated or
mediated by other non-observables or practices in the organization.

Concluding remarks

In this paper we have proposed and implemented a model of Bayesian learning for technical inefficiency in stochastic
frontier models. The model is estimated using Bayesian techniques organized around Markov Chain Monte Carlo
using data on large U.S. banks for the period 2000-2019. The evidence suggests that there is some learning in
terms of reducing inefficiency, although this effect is more pronounced during the subprime crisis. Jump sizes and
probabilities do not contain autoregressive elements so, they are not persistent, and for the entire sample there
seems to be no relationship between productivity growth, jump sizes and jump probabilities. During the subprime
crisis, however, the relationship is negative and much more pronounced showing that lower productivity growth
increases the probability of a jump and the jump size in experience itself.
We validate the model (which we call “benchmark learning model”) using a non-parametric neural network model
that allows arbitrary learning dynamics. Close to the average values of the predictors, dynamic marginal effects are
quite close suggesting that the proposed benchmark model is a good representation of the data. Globally, recursive
Bayes factors suggest that the benchmark and the non-parametric neural network model have similar predictive
ability. In the non-parametric neural network model we distinguish between three possible types of learning. First,
passive learning, in which all data is used to make statistical inferences about performance learning. Second, active
learning, where the decision maker learns based on his / her own experience. Third, when the decision maker
is allowed to learn based, additionally, on summary statistics from the performance distribution of other decision
makers. Critical in the performance of the benchmark learning model is the comparison with these different versions
that condition on different information sets. Passive learning is shown not to perform as well as the benchmark,
whereas versions of active learning models perform equally well and deliver results that are, qualitatively and
quantitatively, quite similar to the benchmark, despite the fact that the benchmark is simple.
In further investigations, we decompose performance into a component that can be learned and potentially reduced
and another part that can be, naturally, attributed to complexities of the environment, the realities of organiza-
tional structure, and how these are reflected at the non-learnable component and its underlying fundamental. The
underlying fundamental are shown to be related to observables such as equity, non-performing loans, inputs, and
outputs so, the non-learnable component reflects more the underlying organizational structure rather than compo-
nents which are beyond the reach of learning. These components can, in fact, be learned, as they are associated
with fundamentals in the organizational structure and observed variables at the macro level. Similarly, a large part
of overall inefficiency (close to 70%) can be learned and reduced. In the second case, the fact that it is not reduced
means that it is not efficient to reduce it (e.g. “quiet life hypothesis”). In the first case, it means that investing
time and resources to modify organizational structures, is not worth the effort. Therefore, our model, first, provides
a picture of performance and what type of learning is applied to improve it; and, second, it decomposes overall
performance into a component that can be learned (and reduced, if desired) and a component that reflects the
complexities of the environment and the organizational structure. Taking into account that average inefficiency is
close to 15% (panel (b) of (12)), the extent of non-learnable inefficiency is close to 4.5 percentage points, 15% times
the average 30% of the non-learnable component). This translates to, roughly, more than 45 million USD per bank
in constant 2005 prices. For the entire banking sector over the period 2000-2019, this cost translates to a lower
bound of 256,5 billion USD in constant 2005 prices. The inefficiency that can, in fact, be learned and reduced, has
a lower bound of 589.8 billion USD, giving a rough total of 885 billion. As several banks have total assets in excess
of a billion, this number is only a lower bound showing that there are incentives, for the regulatory authorities at
least, to restrict waste in the sector.
The finding that performance is, at least in the main, subject to learning and this finding is robust and reliable, is

practice if relevant explanatory variables have been omitted from the model becoming part of the error. As out focus here is performance,
part of uit, viz. ũit can be learned but another part, uit, cannot. The second component is part of the complexities characterizing
the environments provided it does not contain specification errors. We use the standard econometric diagnostics for autocorrelation,
heteroskedasticity, nonlinearity (RESET test) in the residuals produced from (39) at the posterior means of the parameters.
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important on its own and it is consistent with alternative theories, for example, the Hicksian “quiet life hypothesis”
(revealing the importance of market power in the U.S. banking sector). To our knowledge, the decomposition and
estimation of a “non-learnable” component is novel and so is the finding that it averages 30%, ranging, however,
between 20% and, nearly, 42% of total inefficiency in the U.S. banking sector. Similar decompositions can be
applied to other data sets which can, hopefully, lead to a better understanding of learning in organizations. The
non-learnable component, in the present study, is found to be highly persistent and associated with observed
variables such as equity, non-performing loans, as well as inputs and outputs. From this point of view, it is not
epistemically non-learnable but rather it reflects complexities and realities of the organizational structure that
are persistent and hard to change. The observed associations may well be non-causal, that is they may change
when the environment changes but this, again, reflects the deep complexities of what is the “environment” or the
“organizational structure” in themselves. Broad definitions of environment relate to “situations” or constellations
consisting of opportunities, relations, processes, etc.11

Although learnable and non-learnable performance components share a common environment, if we can document,
as in this study, that there is robust and reliable learning model, confined to appropriate information sets, then,
residually, the non-learnable component should not contain, at least in principle, no further information about the
learning process. The problem is that this “principle” although it may be true as a statistical construct (which is
predicated on orthogonality or independence between errors and the main components of the learning model) it
may fail to be true once we condition on more realistic information sets that reflect the actual learning capabilities
of organizations. In this study, we have shown that this conditioning makes a difference and results from different
conditionings or information sets, can not only be compared but also evaluated as in regular comparison of statistical
hypotheses. Conditioning in different information sets is operationalized using standard tools from the arsenal of
Sequential Monte Carlo, opening the way to more applications in diverse organizational domains.

Technical Appendix

A.1 Time trend model (Model I)

Bayesian analysis is facilitated using Markov Chain Monte Carlo (MCMC, Tsionas, 2000 [87]) to draw from the
posterior conditional distribution of uit|θ,D. We draw from the posterior conditional distribution of β and σv as
follows.

β|u, σv, λ, σθ, D ∼ NK (b, V ) , (A.1)
(y+u−Xβ)′(y+u−Xβ)

σ2
v

|β, λ, σθ,u, D ∼ χ2
nT , (A.2)

where b = (X′X)−1X′(y+ u), V = σ2
v(X

′X)−1 and y,X denote, respectively, the nT × 1 and nT ×K arrays of all
observations on the dependent variable and the regressors. The joint conditional posterior of λ, σθ is given by the
following expression.

p(λ, σθ|β,u, D) ∝ λ−(nT/2+1)σ
−(nT+1)
θ

n∏
i=1

T∏
t=1

[
(λ+ τit)

1/2
exp

{
−uit(λ+τit)

2λσ2
θ

}]
. (A.3)

The conditional posterior of σθ is inverted gamma, viz.
∑n

i=1

∑T
t=1(λ+τit)

λσ2
θ

|β,u, λ,D ∼ χ2
nT . The conditional posterior

of λ is not in a known family but we can use rejection sampling from an inverted gamma distribution of the form
q(λ;α) = (α/2)nT

Γ(nT ) λ
−(nT/2+1)e−(α/2)λ where the parameter α is determined to maximize the acceptance rate. The

optimal choice is α = nT
λ̂

and it is the value the solves the saddle point problem: min
α

max
λ

p(λ|β,σθ,u,D)
q(λ;α) ; where λ̂

11“[A] situation defines an abstract state of affairs that represents a particular scenario of interest and can consist of resources,
relations and processes. In other words, a situation is a combination of one or several resources, and / or one or sever allocations, or
one or more sensor measurements linked through spatial, temporal and / or spatio-temporal relationships.” (Schreiber et al., 2000; see
also Giustozzi et al., 2018, p. 683).
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solves the nonlinear equation
n∑

i=1

T∑
t=1

(
λ̂+ τit

)−1

+ nT
λ̂

=
∑n

i=1

∑T
t=1 uitτit
σ2
θ

. (A.4)

A.2 Particle Filtering (Models II and III)

We use the sequential PF of Chopin (2002). Given a target posterior p(θ|Y ) := p(θ|Y1:T ) a particle system is a
sequence {θj , wj} such that E(h(θ)|Y ) := h(θ)p(θ|Y )dθ ∼= limJ→∞

∑J
j=1 wjh(θj)∑J

j=1 wj
, almost surely, for any measurable

function h, provided the expectation exists. We consider the sequence of posterior distributions pt := p(θ|Yt). The
PF algorithm is as follows.
Step 1. Reweight: update the weights wj ← wj

pt+1(θj)
pt(θj)

, j = 1, . . . , J .
Step 2: Resampling: resample {θj , wjJ

H
j=1 → {θrj , 1}Jj=1.

Step 3. Move: draw θmj ∼ Kt+1(θ
r
j ), j = 1, . . . , J , where Kt+1 is any transition kernel whose stationary distribution

is pt+1.
Step 4. Loop: t← t+ 1, {θj , wj}Jj=1 ← {θmj , 1}Jj=1 and return to Step 1.
Chopin (2002) [66] recommends the independence Metropolis algorithm to select the kernel, which requires a source
distribution. A possible choice, if we sampled from pn (n < T ), with respect to pn+s is N (Ên+s, V̂n+s) where

Ên+s =

∑J
j=1 wjθj∑J
j=1 wj

, V̂n+s =

∑J
j=1 wj (θj − En+p) (θj − En+p)

′∑J
j=1 wj

.

The strategy can be parallelized easily. If K processors are available, we can partition the particle system into
K subsets, say Sk, k = 1, . . . ,K), and implement computations for particles of Sk in processor k. The algorithm
can deal with new data at a nearly geometric rate and therefore the frequency of exchanging information between
processors (after reweighting) decreases at a rate exponential to n, which is highly efficient.
Resampling according to θmj ∼ Kt(θ

r
j , .) reduces particle degeneracy (Gilks and Berzuini, 2001 [38]) since identical

replicates of a single particle are replaced by new ones without altering the stationary distribution. For this
application using J = 212 particles gave a mean squared error in posterior means of 10−5 over 100 runs.
Chopin (2004) [22] introduces a variation of MSC in which the observation dates at which each cycle terminates
(say t1, . . . , tL) and the parameters involved in specifying the Metropolis updates (say λ1, . . . , λL) are specified.
Therefore, 0 = t0 < t1 < · · · < tL = T and we have the following scheme (we rely heavily on Durham and Geweke,
2013 [29]).
Step 1. Initialize l = 0 and θ

(l)
jn ∼ p(θ), j ∈ J , n ∈ N .

Step 2. For l = 1, . . . , L:
(a) Correction phase:
(i) wjn(tl−1) = 1, j ∈ J , n ∈ N
(ii) For s = tl−1 + 1, . . . , tl

wjn(s) = wjn(s− 1)p(ys|y1:s−1, θ
(l−1)
jn ), j ∈ J , n ∈ N .

(iii) w(l−1)
jn := wjn(tl), j ∈ J , n ∈ N .

(b) Selection phase, applied independently to each group j ∈ J : Using multinomial or residual sampling based on{
w

(l)
jn , n ∈ N

}
, select

{θ(l,0)jn , n ∈ N}

from {θ(l−1)
jn , n ∈ N}.

(c) Mutation phase, applied independently across j ∈ J , n ∈ N :

θ
(l)
jn ∼ p(θ|y1:t, θ

(0)
jn , λl) (A.5)
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Figure 18: Prior sensitivity analysis
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where the drawings are independent and the pdf above satisfies the invariance condition:

Θ p(θ|y1:tl , θ∗, λl)p(θ∗|y1:tl)dν(θ∗) = p(θ|y1:tl). (A.6)

Step 3. θjn := θ
(l)
jn , j ∈ J , n ∈ N .

At the end of every cycle, the particles θ(l)jn have the same distribution p(θ|y1:tl). The amount of dependence within
each group depends upon the success of the Mutation phase which avoids degeneracy.

A.3 Prior sensitivity analysis and numerical performance of simulation
techniques

The critical prior parameters in our analysis are s̄, q̄, n̄, N̄ , Q̄ defined in section 3. We select 1,000 randomly chosen
values for these parameters. For s̄, q̄, Q̄ we generate values using a uniform distribution in the interval

(
10−5, 10

)
while for n̄ and N̄ we use a uniform distribution in the interval (1, 10). We use the Gibbs sampler for Model I and
the PF algorithm for Models II and III. To minimize computational burden, we use 15,000 iterations (starting from
the benchmark posterior means) omitting the first 5,000 in the burn-in period. Across the 1,000 different priors we
would like to see whether key aspects of the model like returns to scale, productivity growth, ρ, $it and γit are
sensitive to the prior.
MCMC can be seriously affected if the draws are highly autocorrelated. Of course, some autocorrelation is un-
avoidable but the empirical issue is whether it is so large as to prevent thorough exploration of the posterior.
Autocorrelation can be detected using the autocorrelation functions (acf) corresponding to MCMC draws. Addi-
tionally, one can look into relative numerical efficiency (RNE, Geweke, 1992 [35]) which is equal to one in the case
of i.i.d draws from the posterior. Finally, convergence can be tested using Geweke’s (1992) [35] z-diagnostic known
as Geweke Convergence Diagnostic (GCD).
As we have a large number of parameters, we report maximum autocorrelations across all parameters, minimum
RNE and maximum GCDs in Figure A.2.
Our results are reported in Figure A.1 and show differences of the posterior means corresponding to the new priors
relative to the posterior means obtained through the benchmark prior in Section 3. Evidently, the difference in
posterior means (panel(a)) and posterior standard deviations (panel (b)) are fairly small so, the impact of the prior
information is not excessive.

The acf’s are reported in panel (a) of Figure A.2, RNE densities in panel (b), and GCDs in panel (c). From this
evidence, although there is autocorrelation, this does not affect MCMC convergence (panel (c)) and, certainly,
autocorrelation is not destructively large.
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Figure 19: Simulation performance diagnostics
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Notes: “RTS” denotes returns to scale, and αis are bank effects in (15).

Appendix C

In this Appendix, we describe our decomposition of (39) into learnable and non-learnable components. The obvious
decomposition is to identify the learnable component with the fitted values of the model, and the non-learnable
component with the residuals from estimating (39). Although this decomposition is time honored (Barro, 1977,
1978, 1979; Lucas, 1973), we believe it is not appropriate because the residuals condition on the entire data set
and, therefore, (i) this does not allow a sequential interpretation which is closer to the realities of learning, and (ii)
it does not account for the fact that learning conditions on the realities and structures of a particular organization,
operating in a certain environment or “situation”.
We write (39) in a more general form as follows:

Yit = ϕ(Xit;β) + ηi + eit, (C.1)

where Yit is the dependent variable (inefficiency, in our case), Xit is a vector of regressors, ϕ(·;β) represents (39),
β is a parameter vector, ηi represents organization-specific effects, and eit is a statistical error term.
First, one should ensure that (C.1) is statistically acceptable in the sense that it passes certain diagnostic tests
for heteroskedasticity, autocorrelation, etc. Otherwise, specification errors become part of the error term and, as a
result, error decompositions become ambiguous.
Second, if the specification in (C.1) is statistically acceptable, we produce estimates of the learnable and non-
learnable components (that are organizational specific) as follows. The model provides an overall posterior distri-
bution p(β, η|D) where D is the entire data set on {Xit, Yit}. As a result, we can define the model errors

eit = Yit − ϕ(Xit;β)− ηi, (C.2)

where η is the vector of all individual effects (and possibly other nuisance parameters). Model errors in (C.2) are
no different compared to (C.1) so, (C.2) is not operational in itself. It becomes operational, once we define

ê
(s)
it = Yit − ϕ(Xit;β

(s))− η(s)i , 1 ≤ s ≤ S, (C.3)

where
{
β(s), η(s)

}
represent MCMC draws from the posterior p(β, η|D). Again, Bayesian residuals (Chaloner and

Brant, 1988) in (C.3) condition on the entire data set and, therefore, they do not reflect the realities of learning.
Rather, we are interested in the posterior

p(βi, ηi|Di,to:t−1), (C.4)
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where Di,t:t−1 denotes data for bank i for periods to through t− 1 (where to is the initial time period that we set
as in the discussion of (30)-(36)), βi, ηi are bank-specific parameters, and p(βi, ηi|Di,to:t−1) denotes the posterior of
parameters for the ith bank conditional on information of this bank from period to through t− 1. Suppose we have
a set of MCMC draws

{
β
(s)
i , η

(s)
i , 1 ≤ s ≤ S

}
from (C.4), then we can define the new residuals

ẽ
(s)
it = Yit − ϕ(Xit;β

(s)
i )− η(s)i , 1 ≤ s ≤ S. (C.5)

The constructions in (C.3) and (C.5) are quite different as (i) they condition on different information sets, and (ii)
they allow for heterogeneity in the form of bank-specific parameters that are obtained sequentially for each time
period in the sample. Our performance measures in (39) are related to these constructions as follows.

u
(s)
it := e

(s)
it , 1 ≤ s ≤ S,

ũ
(s)
it := ϕ(Xit;β

(s)
i )− η(s)i , 1 ≤ s ≤ S.

(C.6)

The only remaining problem is to obtain MCMC draws from (C.4) provided we have MCMC draws
{
β(s), η(s), 1 ≤ s ≤ S

}
and, therefore, access to the posterior p(β, η|D). This can be accomplished using the overall MCMC draws{
β(s), η(s), 1 ≤ s ≤ S

}
by accepting the candidate β(s), η(s) with the Metropolis-Hastings probability

min
{
1,

p(β(s),η(s)|Di,to:t−1)

p(β(s),η(s)|D)

}
. (C.7)
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