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Abstract—Applications such as autonomous vehicles, virtual
reality, augmented reality, and heavy machine learning-based
applications are becoming popular and demanding more flex-
ible deployment environments. The computing continuum, a
hierarchical hybrid infrastructure comprehending user devices
(smartphones, sensors, laptops, etc.), edge data centers, and cloud
platforms, offers a wide range of deployment possibilities with a
full range of varying computing resources. To take full advantage
of such infrastructure, application development is faced with
many challenges, the most important being the implementation of
a transparent and generalized mechanism for code offloading and
mobility throughout the continuum. To tackle such issues, this
paper presents the Self-Distributing Systems (SDS) framework,
a self-distribution framework that supports generalized code-
offloading capabilities at the application level with a machine
learning agent for deciding where to place components and a
component-based model to enable seamless distribution of an
application’s components at runtime. We describe the framework,
show its applicability in different application scenarios, and
report our preliminary results. We conclude the paper with a
list of challenges and invite the systems community to join the
effort to further investigate them.

Index Terms—computing continuum, self-distributing systems,
reinforcement learning, energy-efficient computing

I. INTRODUCTION

Computing systems for data processing evolved from cen-
tralized, job-based cluster infrastructures to a service-oriented
paradigm, culminating in utility computing, nowadays repre-
sented by the widespread use of cloud computing [1]. The
cloud is able to fulfill a set of requirements for a wide range
of applications. However, its centralized nature imposes delays
introduced by networking equipment and signal propagation,
which can impact the quality of service (QoS) of applications.
Moreover, some applications have stringent delay, reliability,
and/or throughput requirements [2], constraining their pro-
cessing to occur geographically close to where the data are
needed. Fog and edge computing emerged to reduce latency
and improve response time, in which data processing is placed

closer to consumers, consequently also reducing network use
and contributing to reduce bottlenecks.

The integration of edge devices, the fog, and the cloud is a
challenging task: it involves the cooperation of stakeholders
with different, sometimes conflicting, objectives. Seamless
resource and application management to optimize an appli-
cation’s behavior and fulfill highly heterogeneous application
requirements is desirable to compose a single distributed in-
frastructure that is able to automatically and adaptively handle
a plethora of data and application components. The computing
continuum emerges from this integration of devices from the
edge to the cloud, encompassing sensors and actuators from
the Internet of Things (IoT), mobile devices and cellular
networks, industrial and agricultural infrastructures, vehicles,
networking equipment, and so on [3], as illustrated in Figure 1.
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Fig. 1: The computing continuum distributed infrastructure.

The complex management brought by the computing con-
tinuum demands new mechanisms to cope with a highly
dynamic and heterogeneous environment. Application and data
placement decision-making is core for keeping performance



at acceptable levels: where components execute and data
are located determines data transfer times and the execution
times of application components. Furthermore, the dynamic
nature of the problem requires applications to adapt to new
scenarios and changes in the environment. In this context, this
paper discusses how a self-distributing framework help address
decision-making problems in the computing continuum, along
with the challenges to achieving effective self-distribution.

The next section discusses related work, while Section III
introduces self-distributing systems concepts. Section IV-A
presents the use cases we studied for exploring self-distributed
systems, discussing results in real systems platforms. Chal-
lenges to effectively achieve self-distribution in the comput-
ing continuum are discussed in Section V, and Section VI
concludes the paper with the final remarks.

II. RELATED WORK

The investigation of techniques to better exploit distributed
infrastructures has a long history. In this section, we divide our
analysis into three groups: i) adaptation at the service level,
ii) runtime code distribution with state management, and iii)
approaches that exploit the computing continuum.

Microservices and serverless models are popular technolo-
gies that have been used for creating large-scale applications.
Breaking monolithic applications into small, highly reusable,
and stateless services helps applications exploit elastic plat-
forms such as cloud computing. Recent examples of these
technologies for scaling applications are presented in [4], [5],
and [6], [7]. In particular, Rossi et al. [4] describe hierarchical
control policies to control replication using horizontal auto-
scalers, while Coulson et al. [5] concentrate on the identifica-
tion of which microservices to scale. Boucher et al. [6] and
McGrath et al. [7], on the other hand, present an approach
for scaling function-as-a-service applications by performing
adaptation at the platform level (i.e., creating replicas of
the services). Our approach differs from the above as we
propose an intelligent agent that performs self-distribution
at the service level based on information collected from the
services themselves. Furthermore, services must purposefully
have a stateless design, with no explicit mechanisms to handle
state. Our approach works by distributing stateful components
throughout the infrastructure while transparently maintaining
state consistency across replicas.

Another important part of SDS research and practice is
the exploration of mechanisms for code mobility throughout
the continuum. Code offloading [8] has been widely used in
mobile devices to better exploit computing resources. In the
context of the computing continuum, Wright et al. [9] describe
the application of code offloading in the edge-cloud infras-
tructure. Moreover, architectures based on Object Request
Brokers (ORB) also implement mechanisms for distributing
objects across infrastructures while handling state, as presented
in [10], [11]. Traditional code offloading techniques, such
as the above, differ from our approach as they are applica-
tion specific and are built to exploit particular tradeoffs in
specific operating environments. Our approach, on the hand,

is aimed at being generalized, considering applications built
using component-based models. Regarding state management,
SDS draws inspiration from the mechanisms employed by
ORB-based architectures.

Systems that are able to change their architecture to cope
with changes in their operating environment have been widely
used to exploit resources in distributed infrastructures. Catter-
mole et al. [12] and Ju et al. [13] describe relevant examples
of self-adaptive systems to exploit edge-cloud continuum re-
sources. The SDS approach aims at self-adaptive systems that
are able to make decisions about their distributed architecture
at runtime with minimum human interference. Our approach
aims to provide a framework to facilitate the development of
everyday software to exploit computing continuum infrastruc-
tures. In this sense, our work is aligned with other initiatives
in the literature, such as [14].

III. SELF-DISTRIBUTING SYSTEMS

Self-distributing systems (SDS) aim to create software sys-
tems able to autonomously (i.e.,, with minimum or no human
interference) learn a distributed software design at runtime
considering the dynamic operating conditions on which the
system is executing, with the goal of improving efficiency,
mitigating the likelihood of system errors, and adapting to
changing environments in real-time [15]–[17]. The distributed
software design decisions are pushed to the system itself at
runtime as it gathers performing metrics from the system and
its operating environment. The realization of SDS involves the
integration of two core concepts: a component-based model
and an intelligent agent.

The goal of the component-based model is to allow the
autonomous composition of software out of small and highly
reusable software components. The role of the intelligent
agent, on the other hand, is to learn which distributed design
(i.e., how to distribute local components to remote machines)
optimizes systems performance and efficiency when the sys-
tem is subjected to a given operating environment.

A. Component-based Model

One of the bedrock concepts of our approach is the
lightweight component-based model. These models are dis-
cussed and evaluated in the literature [18]–[20]. A lightweight
component-based model allows the construction of adaptive
systems by separating the logic of the components from the
way the components are connected. In the object-oriented pro-
gramming paradigm, this separation is not always reinforced,
and the logic of a class can determine to what other classes
the implementation depends. In the component-based model,
dependencies are explicitly determined by interfaces, and at
runtime, the connection between components is determined by
the components that require such interfaces with components
that provide the interfaces. This provide-require interface
policy is key to enabling runtime adaptation by replacing a
component with another that provides the same interface.

In the SDS, the component-based model allows the replace-
ment of a component to a Remote Procedure Call (RPC)



proxy, i.e., a component that implements the same interface as
the soon-to-be-replaced component, but each method only has
code that forwards the call from the proxy to a remote instance
of the component. By replacing a component with a proxy,
the original local component can be relocated and replicated
throughout the infrastructure. The proxy has the responsibility
for handling state management among the component replicas
to ensure consistency and to apply some load balancing
policy to split the incoming workload among the distributed
component replicas.

B. Intelligent Agent

An important part of the realization of SDS is the intel-
ligent agent, i.e., the agent that monitors the environment
and employs the component-based model runtime adaptation
mechanism to optimize the system performance taking into
account the different available distributed systems designs. For
this, we envision the application of reinforcement learning,
where the actions of the agent change the composition of
the executing software. The learning algorithm guides the
decision-making of the distributed software composition and
is responsible for deciding the software distributed design at
runtime with minimum human interference.

In detail, the agent receives a list of possible software
compositions as actions at runtime. The agent then selects an
action (i.e., changes the system to a particular composition),
observes the system executing for a predefined time frame
in the selected composition, and afterward collects metrics
from the system to establish the reward of the selected
action. The main problem consists of learning which action
yields maximum reward as the environment changes. Many
reinforcement learning algorithms could be used to guide the
system distributions decisions. In a later section, we describe
our baseline approach used to produce the results we present
in this paper.

C. State Management

Autonomous state management is crucial to the realization
of SDS. The development of applications using component-
based models requires the development of stateful components
as in any other programming paradigm.

State management is widely studied, and in our approach,
we envision the application of consistency models imple-
mented in the distributing proxy (the proxy responsible for
forwarding requests to remote components). The goal is to
keep the state consistent across replicas, using a consistency
model appropriate for the state type and application consis-
tency tolerance levels.

The algorithm responsible for state management is imple-
mented in the RPC proxy. State has to be carefully handled
both during the component distribution process and after the
components are distributed. During the distribution process,
the soon-to-be relocated component is replaced by the RPC
proxy component. The proxy, in turn, interacts with the
Distributor layer running on other machines to load instances
of the relocated component remotely. It then carefully ships
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Fig. 2: Self-distributing Systems framework overview.

the state from the local machine to the remote machines and
finishes the distribution process. Note that to maintain the
state consistency, during the distribution process, incoming re-
quests to the relocated component are paused, preventing state
changes mid-distribution and maintaining state consistency.

After the distribution process is finished, the system is in
a new distributed composition. From this point on, the proxy
forwards the incoming requests to the remote instances of the
component. The request forwarding process has to take into
account the state consistency among the multiple component
replicas. Depending on the state type (e.g.,, a single integer
value, a list of strings, a hashmap, etc.) a different approach or
algorithm can be more appropriate. For instance, a list can be
sharded and each part of the list can be placed in a different
replica across the infrastructure and the incoming workload
can be split among the exiting replicas.

We discuss different strategies to maintain state consistency
in a later section, and discuss the challenges involved in
ensuring state consistency for a variety of RPC proxies.

D. Self-distributing Systems Architecture

This section presents the proposed Self-distributing Systems
architecture. We describe each one of the layers, their services,
and their interaction to realize SDS. We highlight the interac-
tion between the intelligent agent and the remaining layers of
the architecture, describing the services each layer offers and
how they are used to implement SDS for general applications.

An overview of the SDS architecture is depicted in Fig. 2.
On the right-hand side of the figure is a four-layer architecture
of the SDS concept. On the top, we have the intelligent agent
layer that implements the machine learning algorithm. The
agent uses the underlying layers to choose actions (i.e., system
compositions) and get metrics from the system (e.g., response
time) to calculate the selected action’s reward. The agent
makes distributed systems design decisions by interacting with
the system by choosing compositions, calculating their reward,
and deciding on the best-performing composition at runtime.

The second layer is the Distributor, which implements the
distribution process and provides an API (e.g., REST API)
for the agent to interact with the system. The distributor
provides functions that allow the agent to get a list of possible
distributed systems designs, a function that allows the agent to



change the system from one composition to another seamlessly
at runtime (with no systems downtime), and a function that
allows the agent to gather performing metrics from the system
and metrics to characterize the operating environment. The
distributor uses the layers below to implement the distribution
process and to gather live metrics from the executing system.

The Perception layer implements all mechanisms to ex-
tract metrics from the executing system and its operating
environment [21]. The main mechanism implemented by the
perception is the insertion of monitoring proxies into the
system architecture to extract metrics from a target executing
component. The monitoring proxy intercepts function calls
aimed at the target component and extracts performance met-
rics from it, and makes those extracted metrics available to
the upper layers. The perception also accommodates ways to
collect metrics from infrastructure by pulling metrics from
services (e.g., Prometheus1, or tailored services) and make
them available to the upper layers.

Finally, the Assembly is the bottom layer and is responsible
for composing the system using small components following
the applied component-based model [21]. It is responsible
for supporting both the Perception and Distributor layers
by providing a list of possible compositions for the system,
changing the system composition at runtime, and enabling
the insertion of proxy components (both monitoring and RPC
proxies) into the executing system. Note that the interaction
among the Distributor, Perception, and Assembly are
through local function calls, whereas the interaction between
the Agent and Distributor is done through a remote API.

Besides the SDS architecture, Fig. 2 also shows an executing
distributed composition of the system running on a distributed
infrastructure. To execute the system, we assume that each of
the machines is visible and accessible from M1, the entry-
point of the system and where the local version of the appli-
cation executes. Machines M2 and M3 are other nodes in the
infrastructure. We also assume that the Distributor, Perception,
and Assembly processes are running on all machines. The
distribution process starts on the Distributor running on M1
that replaces a component running on the local application
in M1 with an RPC proxy. The proxy in turn interacts with
the remote instance of a Distributor running in both M2
and M3 to load a version of the local component on the
remote machines. After the components are loaded, the proxy
running on M1 sends the component state to the component on
M2 and M3, concluding the distribution process. Afterward,
all incoming requests to the RPC proxy are then forwarded
to the M2 and M3 following an algorithm to ensure state
consistency among the replicas.

Assuming we have access from M1 to the remaining nodes
in the infrastructure (M2 and M3) and the execution of
Distributor, Perception, and Assembly in all nodes, com-
ponents could execute anywhere in the cloud-edge computing
continuum. We demonstrate that in the next section in a series
of experiments using different use cases.

1Prometheus is an open-source monitoring tool (https://prometheus.io/).

E. Interfacing the Computing Continuum

We argue that the concept of SDS is ideal for exploiting
resources on the computing continuum at the service level. The
ability of SDS to relocate and replicate components running on
a process to different processes throughout an infrastructure al-
lows self-distributing systems to autonomously exploit service
mobility by placing them throughout the infrastructure, and
to exploit, for instance, the trade-off between network latency
and computing resources availability.

The interpretation of SDS and the computing contin-
uum infrastructure is realized through the interaction of the
Distributor layer with the API of a container-orchestrator.
We assume that the entire continuum infrastructure is managed
by a container-orchestrator (e.g., Kubernetes2 or Mesos3).
The Distributor is extended to interact with the container-
orchestrator’s API to deploy container images running the
Distributor, Perception, and Assembly images during the
distribution process.

In detail, when the Distributor layer receives requests to
change the system from a local to a distributed composition,
it receives a list of nodes addressed to which the components
will be relocated, the component to be relocated, and the
RPC proxy that will be used in the distribution process. The
Distributor then interacts with the container-orchestrator’s
API to deploy the container image of the Distributor,
Perception, and Assembly. Once the image is bootstrapped,
the Distributor proceeds to the next steps of the process. Dias
et al. [16] describe in detail the full integration of SDS and a
Kubernetes-managed cluster on the cloud. The same approach
could be used to run SDS across the entire continuum.

IV. USE-CASES AND EVALUATION

This section presents the main use cases that we have been
exploring to demonstrate the potential of SDS to exploit the
computing continuum resources. We describe different use
cases for applications that run on the cloud platform, on edge-
cloud platforms, and on a heterogeneous computer cluster.
Particularly, we explore SDS to provide horizontal scaling
mechanisms on cloud platforms; code offloading in edge-
cloud mixed platforms; a comparison between SDS and other
currently popular service models, showing the clear advantages
of SDS over the state-of-the-art technology; and the use of
different metrics for decision-making in optimizing SDS.

A. Web-based Stateful Application

We explored SDS in the computing continuum using a
web-based stateful application as the main use case. This
application was also explored in the context of previous work
that investigates SDS as a general mechanism for horizontal
scaling and code offloading [17]. In addition to revisiting
the results of previous work to explore horizontal scaling
and code-offloading, we use this use case to explore energy
consumption as a metric for optimizing SDS.

2https://kubernetes.io/
3https://mesos.apache.org/
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containers. Note that the depicted components can be executed
anywhere in the computing continuum.

The use case application illustrated in Fig. 3 consists
of a web-based application that offers services to post and
retrieve information on a list over HTTP. The application has
three main components: HTTPServer, Service, and List.
The HTTPServer component is responsible for handling
incoming HTTP 1.0 requests and handover the request to the
appropriate function defined in the Service component. The
Service component, in turn, implements the main logic of the
application, which basically enables users to add items to or
retrieve items from the list. The function that retrieves items
from the list has an extra processing time as it sorts the list
before returning information, and as the list size increases, it
demands more processing time.

Apart from the main illustrated components in Fig. 3,
we also have the RPC proxy component. In this particu-
lar use case, the RPC proxy implementation creates shards
(fragments) of the list during the distribution process and
inserts the different shards of the list into the different created
replicas. Given the number of replicas to be created, the proxy
iterates through the list’s items and applies a hash function
to uniformly distribute the items across the replicas. This
approach is inspired by Distributed Hash Tables (e.g., [22]).

After the distribution process ends, requests for the list’s
functions to add or search items are forwarded to the replicas
following the hash function. The main challenge is to choose
a good enough hash function to distribute items evenly across
the replicas. On the other hand, cross-sharding operations, i.e.,
operations that require more than one shard to execute (e.g.,
searching the smallest item on the entire list) requires coordi-
nation of the proxy with all shards to properly implement the
operation.

Note that for the functions that affect only one shard, this
implementation works as load balance, whereas the cross-
sharding operations have a high-performance cost as they
require interactions over the network with the existing replicas.

This use case is a fully functioning HTTP service that
handles requests from web browsers and other HTTP-based

clients and implements a stateful service with added process-
ing time as the list (i.e., the component’s state) becomes larger.
This enables the distribution of stateful services to exploit the
continuum of resources as client workload changes.

B. Horizontal Scaling

This use case discusses the implementation of horizontal
scaling through SDS. The ability of SDS to replicate part of
their composing components allows these systems to exploit
the elasticity of cloud computing platforms at the service
level with stateful components. In current systems, however,
in order for applications to exploit the elasticity of cloud
platforms, they have to be built considering mobility and
replication and thus stateless services have become popular.

In this scenario, SDS is explored to replicate stateful compo-
nents throughout a cloud computing platform as the incoming
workload increases. In this set of experiments, we use the
web-based application described in Sec. IV-A. The application
starts in a local composition, i.e., all components are executing
on the same container on the cloud, and as the incoming
workload increases, the SDS autonomously distributes the
List component to exploit the cloud horizontal scale-out.

Rodrigues-Filho et al. [17] show the web-based application
described in Sec. IV-A performing horizontal scale-out on the
cloud as the size of the list increases, showing that a local
implementation of a web-based stateful service can exploit
the cloud elasticity at runtime, with no service downtime
and minimum service disruption. The paper only explored
the distribution mechanism supported by SDS but did not
implement or experimented with any decision-making. In a
later section, we explore horizontal scale-out on the cloud
with decision-making support and compare it with serverless
models, which are currently state-of-the-art service technology.

C. Code Offloading

SDS has also been used to demonstrate how code-offloading
can be performed in the cloud-edge continuum infrastructure.
Rodrigues-Filho et al. [17] demonstrate code-offloading using
the web-based application use case described in Sec. IV-A.

In the experiment, the web-based application was fully
executed on an edge node and served requests to a client
node in the same network. This first system composition was
ideal for performance because the list had a small number
of items, and thus processing time was low. Furthermore, the
edge node was in the same network as the client and presented
a very low network latency. However, as the number of items
is continuously added to the list, the processing time increases
and starts affecting the system’s performance to a point where
it is best to create shards of the list on the cloud and split
the workload among the list shards, suffering from the high
network latency than maintaining the entire system on the edge
node and suffering from the increasingly high processing time.
Fig. 4 illustrates the results of the experiment.

In detail, Fig. 4 shows a bar graph of three versions of the
executing system. The “Edge” label (blue bar) represents the
system statically executing on the edge node. The “Cloud”
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Fig. 4: Graph showing the performance of two static com-
positions (Edge and Cloud) of the system, and the SDS
performing code off-loading from the edge to the cloud. The
Edge and Cloud static compositions have optimal performance
depending on the size of the list. SDS adapts between the two
to better exploit the infrastructure.

label (red bar), on the other hand, shows the performance
of the system executing on the cloud with the list divided
into two shards. Finally, the “SDS” label shows the system
performance, switching the system composition from Edge
to Cloud as the list size increases and thus better exploiting
the infrastructure resources, maintaining good performance
throughout the entire experiment.

D. Energy-consumption as Optimization Criterion

In previous works [15]–[17], the main chosen metric to
decide the best composition for the executing SDS application
was performance based on response time. In this section,
we experiment with energy consumption as a different and
currently very important metric. The goal of this use case is
to show SDS works regardless of metrics and to demonstrate
a baseline algorithm that allows SDS to autonomously select
the distributed composition that yields minimum energy con-
sumption. To execute the experiments, we use a heterogeneous
cluster with machines with different power consumption specs.

For this use case, we also use the web-based application
described in Sec. IV-A and two laptops with different power
profile: Dell g15 and Dell XPS. We executed the application
on the g15 laptop and measured the energy consumption and
operation time (i.e., the time it takes to complete the client-
requested operation – sorting the list and returning the items).
Afterward, we executed the service on the XPS laptop and
also measured both energy consumption and operation time.
Based on the information collected in the measurements, we
found that g15 has the highest energy consumption but the
lowest operation time, whereas XPS is the opposite and has
the lowest energy consumption and the highest operation time.

After executing the measurements and profiling energy con-
sumption and operation time by executing the web application
on both machines, we executed the decision-making algorithm
twice, each time using a different metric for optimization.
We implemented a baseline algorithm that consists of two

phases: a fixed exploration and a fixed exploitation phase.
In the exploration phase, the algorithm iterates through all
available compositions, executing them for a predefined time
span (observation window). After sampling one metric from
each composition, the algorithm enters the exploitation phase
and changes the system components to the one that generated
the lowest metric, maintaining the same composition while it
continues to monitor the metric.

In this set of experiments, the SDS has two compositions.
The first is to execute the list component on the g15 laptop,
and the second is to distribute (relocate) the list component
and run it on XPS one. For the distributed composition, the
RPC proxy does not need to handle state consistency, as the
component is simply relocated to a different node along with
its entire state, having no other replica on the infrastructure.
SDS can, then, at runtime, and with no service disruption,
identify what composition yields the minimum value for the
observed metric.

Fig. 5a and Fig. 5b show the results of executing the SDS
baseline decision-making algorithm for energy consumption
and operation time metric. The blue window in both graphs
shows the time the algorithm spends exploring. Due to the
fixed exploration phase, the system explores the available com-
position only once, so the exploration time depends only on
the observation window size and the number of compositions,
and hence they remain the same in both experiments.

The algorithm executes and explores both compositions
(local and relocated) for a time span (observation window)
and collects the system’s metrics after sampling the metric
exactly once. Next, the algorithm decides on the composi-
tion that yielded the minimum metric value. For the energy
consumption metric shown in Fig. 5a, SDS correctly selects
the least energy-consuming node to execute the service (XPS).
Also, when employing the operation time metric, as illustrated
in Fig. 5b, SDS converges towards the node that has the lowest
operation time (g15).

We conclude that our baseline algorithm works to demon-
strate the potential of SDS approach. By coding a single
stateful application and choosing a metric, our algorithm
is able to determine which composition best exploits the
available resources at runtime, with no predefined information
nor human involvement.

E. Comparing Against State-of-the-Art Service Technology

Finally, for our last discussed use case, we experiment
with a couple of service benchmark applications. We use two
popular applications to compare SDS performing horizontal
scale-out on the cloud against the application running on
serverless model platforms (e.g., Google Functions). The goal
of these experiments is to show how SDS differs from popular
service technology and the advantages of using SDS.

Serverless computing and microservices have been largely
adopted as architectural styles to create large-scale modern
applications. Serverless computing applications are composed
of interacting stateless functions running on top of an au-
tonomously managed infrastructure. In this model, developers
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Fig. 5: SDS decision-making algorithm exploring two compositions and deciding on each node to execute the service aiming
to minimize two different metrics.

focus on coding stateless and highly reusable functions. Then,
they define a workflow determining how the executing func-
tions interact amongst themselves to form an application. As
the Services handle the incoming requests, the platform deter-
mines when to scale them out by creating replicas and when
to kill the instances of idle functions, leaving all management
of the lifecycle of the function to the platform itself.

SDS, on the other hand, runs on container orchestrators-
managed platforms and has full control over the creation of
new containers on the platform and the choice of which local
component to relocate or replicate across the infrastructure.
The decision-making that determines the systems resulting
distributed design takes into consideration the system compo-
sition at the service level and metrics collected directly from
the executing application. As opposed to the decision-making
of when to scale out in serverless platforms, which do not
consider any service-specific metric or information.

Furthermore, SDS allows great flexibility to the system’s
composition, as it allows the rearrangement of local applica-
tion components to explore computing resources at runtime,
adding components to the same container and having them
interact with each other through local function calls, or re-
locating components to different containers and having them
interact via RPC over the network. Serverless functions, on
the other hand, often execute in isolated containers and always
interact through a REST API over the network, limiting the
composition flexibility to assemble the application in a way it
can best exploit the available computing resources.

For the comparison between SDS and serverless computing
models, we used two applications: a prime number calculating
application and an array sorting and searching application.
Both applications are CPU intensive, and we use response
time as our main metric for performance comparison. Next,
we describe how each of the applications is implemented both
using the SDS framework and following the serverless model.

The prime service application consists of a single function
that receives a number n that represents an interval from 0 to n

used by the function to calculate the number of prime numbers
that exist in the given range. The service then receives requests
from clients, which queries for the number of prime numbers
existing in a given range, and, as the range increases, the
processing time of the service also increases. For the serverless
platform, we created only one function that receives the range
and calculates the number of primes. For the SDS, on the
other hand, we have two components; one that implements
an HTTP server responsible for handling incoming HTTP
requests and forwarding them to the prime function component
that calculates the number of primes in the given range.

On the serverless platform, the prime service application is a
single stateless function, and the number of replicas is created
by the platform as the number range increases and the service
demands more CPU. We configured the platform to have a
minimum of one instance and a maximum of ten replicas and
leave the platform to coordinate replica creation as we increase
the range. The SDS version, on the other hand, starts with
all components (the HTTP server and the prime components)
running in the same container with only one replica. As we
increase the range, we create a composition with two replicas
of the prime service component and another with three replicas
of the prime component.

Fig. 6 shows the ground truth of the prime number appli-
cation experiment. We executed three versions of the prime
application; the first is the serverless version of the application
running on the Google Functions platform. This version is
illustrated by the blue bar in the graph. The remaining two
versions of the application are executed on the Google Ku-
bernetes Engine (GKE) using SDS in two static compositions;
the red bar is the application running with two replicas of the
prime service, and the yellow bar is the application running
with three instances of the prime service. The graph shows
that as the range increases, the response time increases for all
compositions. It also shows that the serverless model has better
performance than the SDS with two replicas, but it performs
worse than the SDS with three replicas.
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Fig. 6: Graph showing the response time degradation of the
prime number application when receiving input ranges that
vary from 1000 to 2000. The blue bar shows the perfor-
mance degradation of the application running on the serverless
platform. The red and yellow bars show the performance
degradation of the application running as a SDS with two (red
bars) and three (yellow) replicas.

Fig. 7 shows the execution of serverless and SDS being
subjected to range [0:1000], i.e., n=1000. This experiment
applies the decision-making algorithm with fixed exploration
and exploitation phases used in the experiments in Sec. IV-D.
The serverless version runs on the serverless platform and has
its number of replicas determined by the platform, whereas
the SDS has two available compositions: the local one, where
all components run on the same container, and a distributed
composition where the prime service component has two
replicas. The SDS version starts on the local composition and
has a high response time. Then it changes its composition to
the distributed, collects the response time metric, and makes
a decision to continue exploiting the distributed composition
for the remainder of the experiment.
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Fig. 7: Prime application running on the serverless platform
(blue line) and as SDS (red line), both subjected to n=1000.
The SDS decision-making algorithm explores both local and
distributed compositions (with two replicas) and converges
toward a distributed composition with a low response time.

The prime application is a good example of an application
that has good performance in the serverless model, as the
creation of individual replicas improves the performance of
the system. We show that SDS has better control over the

resources in the infrastructure and can decide on the number of
replicas it creates by measuring the response time at the appli-
cation level. We do not claim that SDS has better performance
than serverless for this application. Rather, we demonstrate
that SDS takes a local application and can converge towards a
distributed composition similar to serverless. Moreover, SDS
can act on metrics collected at the service level and thus make
adaptation decisions to better use the available resources.

Next, we present another example of an application and
implement it using both serverless functions and a SDS to
explore the horizontal scale-out on cloud platforms. This
application implements sorting and searching on an array. The
application receives as input the name of the file and a number
to search. The service then proceeds to load the file content to
memory (in an array), sort the array, and search for the given
number in the sorted array, returning false when the number
is not in the file and true when it is.

The serverless implementation has three main functions: an
IO function responsible for fetching information from a file
to memory, a function that receives an array as input and
sorts the array, and a function that searches a number on
a sorted array. To execute this application on the serverless
platform, we define a workflow that determines the path among
the functions all incoming requests has to go through. Each
function runs on an independent container, and they are all
managed by the serverless platform.

The SDS application has four main components interacting
with each other through local function calls. The first compo-
nent is the HTTP server which allows the application to handle
incoming requests. The second component implements the IO
function that loads information from a file to an array on the
main memory. The third component receives the loaded array
and sorts its content. Finally, the fourth component receives
the sorted array and the number and searches for the number
in the array, returning true in case the number is found in the
array and false otherwise.

Fig. 8 shows the response time of the sorting and searching
application given the size of the array loaded to memory
(n). As the size of the array increases, the response time
of the service also increases. The graph shows a particular
disadvantage in terms of the response time in the serverless
application version as compared to the SDS version. This
significant difference occurs because the array has to be
transferred to the nodes executing the functions through the
network in the serverless platform, as in the SDS application
interacting components happen through local function calls,
and the array is passed as reference.

Note that the SDS performance shown in Fig. 8 creates
two replicas of the three main components (IO, sorting array,
and the searching components) grouped together in the same
container making local function calls. The serverless version,
on the other hand, can only scale the application by creating
replicas of the individual functions which continue to exchange
large data over the network. This is a scenario where SDS
has clear advantages over serverless as it can either divide
and run multiple replicas of individual components or group
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Fig. 8: Response time of the sorting and searching application
running both on the serverless platform (blue bars) and as SDS
(red bars).

components into the same container and allow them to interact
with each other through local function calls.

Fig. 9 shows the SDS running the decision-making algo-
rithm in the context of the sort and searching application. The
blue line is the application on the serverless platform subjected
to requests for n=1200. The SDS starts in a local composition,
i.e., where all components are executed on a single instance
of the application in a single container, and then it explores
the other alternative design, which is to create two replicas
of all three main components and have them execute in two
containers and split the incoming request load between the
two. As the distributed composition yields the lowest response
time, the algorithm decides to maintain the system on the
distributed composition for the remainder of the experiment.
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Fig. 9: Sorting and searching application running on the
serverless platform (blue line) and as SDS (red line), both
subjected to n=1200. The SDS decision-making algorithm
explores both local and distributed compositions and selects
the distributed composition with a low response time.

V. CHALLENGES IN SELF-DISTRIBUTION IN THE
COMPUTING CONTINUUM

Although our preliminary exploration of the concept of SDS
in the cloud continuum resources is promising, there are many
issues and challenges that need to be further investigated.

The intelligent agent is an important part of realizing
the concept of SDS. The presented baseline decision-making

algorithm (see Sec. IV) works in simple scenarios but does not
address the entire learning problem. The presented algorithm,
however, can still be used as a baseline for future comparison
with more elaborated approaches. Learning which distributed
composition the system must select to maximize the reward
(or minimize costs) of an executing system has many issues,
such as large search space, fluctuating rewards, classifying
operating environments, and distribution cost.

As a consequence of deciding how to distribute systems
throughout the continuum at runtime, the search space of
possible distributed designs becomes extremely large. In the
decision-making algorithm we experimented with in this paper,
we did not show how large the size of the search space can
become. The search space for SDS in the computing contin-
uum must take into consideration the number of components
a service/application has, consider how many RPC proxies for
each component are available for exploration, the number of
nodes in the entire infrastructure, and the performance of each
node when dealing with heterogeneous settings. As the cloud
continuum is a large infrastructure with the potential of having
millions of available nodes, the number of possible ways to
distribute components across the nodes is very large.

Another learning issue is the fluctuating rewards. This
means that subsequent measures of system-level metrics from
the same executing system composition are not static and may
fluctuate, impacting the calculated value of rewards. Therefore,
a decision-making algorithm like the one experimented with
in this paper may not be sufficient in some situations, as it
makes decisions after sampling metrics only once. It is not
uncommon that the effects of a certain composition take time
to stabilize and yield metrics that fluctuate in a small range.
Caching is a notable example, as the cache needs to warm up
(i.e., store items) before it can have a positive impact on the
system’s performance metrics. SDS requires decision-making
strategies that take these metric fluctuations into account.

The decision-making algorithm explored in the SDS agent
does not explicitly accounts for the operating environment
and thus can not remember past decisions. As a consequence,
every change in the environment triggers exploration in the
decision-making algorithm, requiring the algorithm to explore
the systems compositions, even when the system has been
exposed to the same environment. To solve this issue, strate-
gies for classifying the operating environment while learning
which distributed composition yields maximum rewards is an
important challenge to address in SDS.

Online decision-making requires the agent to frequently
explore the available compositions of the system. However,
changing the system composition at runtime currently has a
big impact on the system’s performance. This is illustrated
in Sec. IV, particularly in Fig. 7 and Fig. 9 in the form
of a peak in the SDS performance at the time distribution
takes place. The leading cause of performance degradation
occurs in maintaining state consistency during the distribution
process. The current implementation pauses incoming requests
while the state is copied to remote processes. Lazy strategies
to mitigate this performance impact could be explored and



implemented in RPC proxies.
State management is key to realizing SDS as a general

approach for exploiting the continuum. We believe transparent
state management when distributing components across infras-
tructure is one of the main advantages of SDS over state-of-
the-art service technology. However, generic strategies for state
consistency applied to all cases have a negative performance
impact on the system as state management is highly dependent
on the type of state and the way components interact with
their state. In our SDS framework, we address this issue
by having component developers write RPC proxy specific
to the application components’ needs to allow component
distribution at runtime. The component developer is also the
proxy developer; they carefully design the proxy to maintain
state consistency during adaptation. This adds a burden to the
system developers, that also have to create RPC proxy. Further
investigation to minimize the developers’ burden to developing
RPC proxy is also necessary.

VI. CONCLUSION

This paper discusses how a Self-distributing System frame-
work can explore code mobility and horizontal scaling of
stateful components in the computing continuum. We demon-
strate, with examples of previous work and new ones, the
potential of the proposed approach. Particularly, we showed
the potential of SDS to perform horizontal scaling of stateful
components in cloud platforms, the code offloading of state-
ful components between edge and cloud, and the ability of
SDS to autonomously explore the available space of possi-
ble distributed compositions and choose the one that yields
maximum performance. We demonstrate the potential of a
baseline decision-making algorithm using different metrics
like response time and energy consumption. We perform
preliminary experiments to compare SDS with state-of-the-
art popular serverless models to show that SDS supports more
flexibility in (re)arranging systems components through the
continuum. Finally, we listed further challenges and future
research directions to guide future work in this domain and
invite the research community to work on mechanisms to raise
abstraction to facilitate the development of applications for the
computing continuum.
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