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We show that non-Hermitian Ginibre random matrix behaviors emerge in spatially-extended
many-body quantum chaotic systems in the space direction, just as Hermitian random matrix be-
haviors emerge in chaotic systems in the time direction. Starting with translational invariant models,
which can be associated with dual transfer matrices with complex-valued spectra, we show that the
linear ramp of the spectral form factor necessitates that the dual spectra have non-trivial corre-
lations, which in fact fall under the universality class of the Ginibre ensemble, demonstrated by
computing the level spacing distribution and the dissipative spectral form factor. As a result of
this connection, the exact spectral form factor for the Ginibre ensemble can be used to universally
describe the spectral form factor for translational invariant many-body quantum chaotic systems
in the scaling limit where t and L are large, while the ratio between L and LTh, the many-body
Thouless length is fixed. With appropriate variations of Ginibre models, we analytically demon-
strate that our claim generalizes to models without translational invariance as well. The emergence
of the Ginibre ensemble is a genuine consequence of the strongly interacting and spatially extended
nature of the quantum chaotic systems we consider, unlike the traditional emergence of Hermitian
random matrix ensembles.

Introduction.– The discovery of the connection between
quantum chaos and random matrix theory (RMT) is of
great importance in theoretical physics because RMT
provides an approach that eliminates dependence on the
microscopic details and captures the universal charac-
teristics of an ensemble of statistically similar chaotic
systems, constrained only by symmetries [1, 2]. His-
torically, the spectral correlation of the Gaussian en-
sembles was discovered in chaotic mesoscopic systems
for sufficiently small energy scales or equivalently, suf-
ficiently late time scales [3, 4]. Recently, with the devel-
opments in random unitary circuits [5–18], particularly
in time periodic or Floquet circuits, analytic calculations
of random matrix behaviour in spectral correlations of
spatially-extended many-body quantum chaotic systems
have been achieved [19–27]. While Floquet circuits have
given access to the study of non-trivial spectral proper-
ties in extended many-body systems — like the onset of
RMT behaviour [20, 25, 27–29], spectral Lyapunov expo-
nents [26], and novel scaling forms and limits [23, 25] —
translational-invariant (TI) circuits give rise, via the so-
called space-time duality, to non-Hermitian dual transfer
matrix (Fig. 1 red) with complex eigenvalues, the dual
spectrum. The study of many-body quantum system us-
ing space-time duality began in the study of the kicked
Ising model at the self-dual point [22, 30–33] and con-
currently in the transfer matrix approach in Floquet cir-
cuits [20, 25, 26]. Subsequently, numerous works have
investigated the non-unitary “dynamics” in the space di-
rection [34–38]. The objective of this paper is to pro-
vide evidence of the emergence of non-Hermitian Gini-
bre (GinUE) RMT-behaviour [39] in many-body quan-

tum chaotic (MBQC) systems in the thermodynamic and
scaling limit, in contrast to the emergence of standard
Gaussian Hermitian RMT ensembles in late time, as il-
lustrated below.

Heuristics.– One of the simplest non-trivial and
analytically-tractable quantities to diagnose chaos is the
spectral form factor (SFF), defined as [2, 19–23, 25–
29, 31, 41–55]

K(t, L) =
〈
|TrH [W(t, L)]|2

〉
=
〈
|TrH̃ [V(t, L)]|2

〉
(1)

where W(t, L) =
∏t
t′=1W (t′, L) is a time evolution

operator acting on Hilbert space H, and V(t, L) =∏L
j=1 V (t, j) is the corresponding dual operator (Fig. 1

red) performing “evolution” in space on dual Hilbert
space H̃. t and L denote the numbers of repeated ac-
tions of W and V , and can be treated as effective time
and system size respectively [56] . For Floquet systems,
one has W (t′, L) = W (L), while V (t, j) = V (t) for TI
systems with transfer matrix V (t). We can generally di-
agonalise V (t) with the eigenvalues {zj} ≡ {ρjeıφj} with
ρj , φj ∈ R.

K(t, L) =

〈∑
i

ρ2Li +
∑
i6=j

[
ei(φi−φj)ρiρj

]L〉
(2)
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FIG. 1. Regime diagram of spectral form factor K(t, L) (Eq
1) for many body quantum chaotic systems with translational
invariance in space and time, with ‘Bump’, random matrix
‘Ramp’ (RMT) and ‘Plateau’ regimes. For fixed t and in-
creasing L (purple), the SFF exhibits an initial linear ramp
behavior (yellow) which necessarily requires non-trivial spec-
tral statistics of the dual spectra. Inset: Diagrammatical rep-
resentation of equality of the spectral form factor computed
using the dual transfer matrix (Eq 1) , with unitary 2-gate
(green), Floquet operator W (L) (blue), dual transfer matrix
V (t) (red).

We are denoting as 〈. . .〉 the ensemble average over sta-
tistically similar systems. In the absence of extra sym-
metries, RMT predicts K(t, L) ∼ tL for TI Floquet sys-
tems. This can be understood as the spectrum of W (L)
splits in L momentum sectors which emerges because of
TI. If correlations between sectors vanish, the spectral
form factor results from the sum of the usual linear-
in-t behavior within each momentum sector [23]. For
many-body systems, this RMT behavior emerges when-
ever t > tTh(L) or equivalently L < LTh(t), where tTh(t),
LTh(L) are respectively the many-body SFF Thouless
time and length, related by LTh(tTh(L)) = L. The Thou-
less time is a system-dependent quantity which charac-
terises the time scale for the onset of chaos in the two-
point level correlation and in general is expected to grow
with system size L [23] (with the relevant exception of
the dual–unitary circuits [22, 31, 36, 41, 57–59]). It is
insightful to re-interpret these considerations in terms of
the spectrum of V (t). From Eq. (2), we see that if phase
correlations could be neglected, K(t, L) & eλ(t)L, with
λ(t) = maxi ln ρi for L � LTh(t). We label this regime
as the “Exponential bump” region in Fig. 1. Thus, the
existence of the “Ramp” regime, characteristic of RMT,
for L . LTh(t) implies that the off-diagonal term in (2)
necessarily display non-trivial correlation, such that the

exponential behaviour of the diagonal term in (2) could
be compensated. We emphasize that this heuristic ar-
gument applies to generic translational invariant MBQC
systems. The characterisation of the spectral statistics
of V (t) will be the main objective of this letter. As we
show below, such dual spectral statistics falls under the
universality class of Ginibre ensemble, which can be seen
as the most generic rotation invariant Gaussian ensem-
ble, once all relevant symmetries have been taken into
account (e.g. space-time translational invariance).
Models. – We consider three one-dimensional random

unitary circuits as models of MBQC, namely the brick-
wall model, the random phase model, and the kicked
Ising model. All three models can be written as the oper-
ator W(t, L) =

∏t
t′=1W (t′, L) =

∏L
r=1 V (t, r) = V(t, L)

where W (t′, L) and V (t, r) refer respectively to the time
and space transfer matrix shown in blue and red in
Fig. 1, acting on the Hilbert space with dimensions
qL and qt respectively, with q being the on-site dimen-
sion [56]. The circuit is composed of unitary two-gates
u(t′, r) and one can define the space-time dual of u via
ucdab(t

′, r) = vdbca(t′, r). The precise definitions of the gates
u(t′, r) are given in the supplementary material [40], and
are not crucial for our discussion as long as the models are
chaotic and have no conserved quantities. We define four
setups resulting from the combination of translational in-
variance in space and time: (a) Temporally and spatially
random unitary circuits, where all u-s are drawn inde-
pendently. In this case, spectral correlations are trivial
in both space and time directions, with K(t, L) ∼ 1 for all
t, L [23]; (b) Temporally periodic, i.e. Floquet, and spa-
tially random (Floquet) circuits, where u(t′, r) = u(t′′, r)
for all t′, t′′ and r; (c) Temporally random and spatially
TI random circuits, where u(t′, r) = u(t′, r′) for all t′, r
and r′; and (d) Floquet and spatially TI (TIF) circuits,
where u(t′, r) = u(t′′, r′) for all t′, t′′, r and r′.
Dual spectral statistics.– We start by focusing on TI

(temporal random) models (case c), where the transfer
matrix V (t) has a well-defined spectrum and exhibits no
additional symmetries since the model is temporarily dis-
ordered. As the spectrum is complex, in order to anal-
yse its correlations, we resort to a) level spacing distri-
bution and b) a natural generalization of SFF, known
as the dissipative spectral form factor [47]. The SFF
of a generic complex spectrum is exponentially growing
or decaying due to the imaginary parts of the complex
eigenvalues. To circumvent this problem, dissipative SFF
instead treats the complex spectrum as a set of points in
the plane and assess the distribution of their euclidean
distances. Indeed, for a non-Hermitian operator with
spectrum {zn = xn + iyn : xn, yn ∈ R}, the connected
part is defined as

Kc(t, s) :=

〈∣∣∣∣∣∑
n

eixnt+iyns

∣∣∣∣∣
2〉
−

∣∣∣∣∣
〈∑

n

eixnt+iyns

〉∣∣∣∣∣
2

,

(3)
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FIG. 2. Universal correlations for representative many body random quantum circuits [40], showing approach to corresponding
quantities computed for the Ginibre ensemble (green). (a): Dissipative spectral formm factor (3) of the dual spectra of the brick
wall model, for t = 3, 4, 5, 6 from light to dark red. (b): Nearest neighbour spacing distribution of the dual spectra of the brick
wall model (on site dimension q = 2, t = 6, purple), random phase model (q = 3, t = 8, burgundy), and zero momentum sectors
of translational invariant Floquet brick wall model (q = 2, t = 7, red) and random phase model (q = 3, t = 10, gold). Kicked
Ising model away from the self dual point at J = 0.75Jc (grey) shows the distribution corresponding to the symmetric Ginibre
ensemble (pink curve obtained from N = 2187) due to time reversal symmetry [40]. (c): Scaling collapse of the spectral form
factor κTI(x) for two models and κGin(x), for the Ginibre ensemble (8), against x = L/LTh or L/L∗ with excellent agreement,
where LTh is Thouless length, and L∗ is the inverse mean level spacing for Ginibre ensemble. (d): L/LTh (dots) and L∗ (dashed
line) against time t, used for the collapse in the main panel. For Ginibre, we define an effective time via N := qt. (e): Scaled
spectral form factor KTIF(t, L)/L for translational invariant Floquet brick wall model (q = 3, t = 2, 3, 4, red) and the numerical
fit of KTIF−Gin(t, L)/L (green) against L with darker colors for larger t. We fit KTIF−Gin(t, L) to KTIF(t, L) by tuning L∗F and
L∗TI in Eq. (12), which are plotted against time t as blue and red respectively in (f).

where t and s are two generalized time variables. We
organise them into the complex time τ ≡ t+ is ≡ |τ | eıθ,
and will abusively use the polar coordinate (|τ |, θ) to
parameterise the arguments of Kc. As a yardstick for
the generic behavior of Kc, we consider the GinUE, sam-
pled by taking N -by-N random matrices with indepen-
dent complex Gaussian matrix element with variance
σ2 = v/N . In other words, the probability density for
a matrix M is ∝ exp[−N/(2v) TrMM†], and is thus ro-
tational invariant. Therefore, the GinUE is expected to
capture the spectral correlations of sufficiently generic, or
“chaotic”, complex non-Hermitian matrices, in a similar
fashion to how the Gaussian and Circular unitary ensem-
ble are the universality class for unitary and hermitian
matrices respectively [47, 60]. The dissipative SFF can be
computed explicitly for GinUE [47]. Keeping the leading
contribution in N , Kc simplifies to

Kc,Gin(|τ |, θ) =
N

v

(
1− e−

v|τ|2
4N

)
. (4)

which is rotational symmetric and shows a (dip-)ramp-
plateau behaviour [61], analogous to the SFF for closed
quantum systems: At |τ | . ∆−1 ∼

√
N , it increases

quadratically ' |τ |2/4 in large N until it plateaus at
N at a time comparable to the inverse of the mean
level spacing ∆ in the complex plane. Remarkably,
the quadratic ramp of dissipative SFF for GinUE is
drastically different from the corresponding behaviour
for Gaussian unitary ensembles, which is linear in time.
The quadratic ramp is sensitive to the variation of

density of states across the complex plane, and thus
unfolding is required to uncover the true long-range
dual spectral correlations [40]. In Fig. 2a, we show for
TI random phase model, as a representative example,
a good collapse of Kc(|τ |, θ)/Kc(|τ | → ∞, θ) against
|τ |∆, approaching GinUE behaviour (4) as the dual
system size t increases, with a similar approach for other
models [40], demonstrating universality.

To provide further evidence of emergence of GinUE, we
probe the spectral correlation at the scale of mean level
spacing in the complex plane using the nearest-neighbour
spacing distribution in Fig. 2b, and complex spacing ra-
tio [62] in [40], for the three different TI models. We
find signatures of level repulsion consistent with the cor-
responding RMT universality classes (including the ones
with time reversal symmetry [40]), and with the dissipa-
tive SFF results around the ∆−1 region.

SFF of GinUE.– With the insight that dual-spectral
correlation falls under the universality class of GinUE, it
is natural to ask whether this information can be used
to understand the behavior of the SFF. As before, we
start by focusing on TI systems, where, in the absence of
extra symmetries, the correlation of the dual spectrum
are captured by the standard GinUE, whose joint prob-
ability distribution function of eigenvalues {zj} is known
exactly [63]. We model the SFF in (1), by replacing the
transfer matrix V (t) with VG drawn from the GinUE of
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size N , and obtain [40]

KGin(N,L) :=
〈∣∣Tr

[
V LG
]∣∣2〉

=N2δL,0 +
vL
(

(L+N)!− N !(N−1)!
(N−L−1)!

)
NL(L+ 1)(N − 1)!

.

(5)
In matching the predictions of (5) with many-body mod-
els, we encode t dependence in the matrix size N , whose
functional form will be specified later. In the limit
of large N at fixed large L, KGin(N,L) = vLL(1 +
O(L4/N2)). The crossover scale L∗TI =

√
N is related

to the inverse of mean level spacing ∆ in the complex
plane. This suggests a scaling limit where L and N are
sent to infinity with x = L/L∗TI fixed and one has

κGin(x) ≡ lim
L,N→∞
x=L/L∗TI

KGin

vLL
=

2 sinh
(
x2

2

)
x2

. (6)

In fact, the above scaling form of GinUE shares similar-
ities with the scaling forms proposed for TI (temporal
random) systems in [23], given by

κTI−MBQC(x) = lim
L,t→∞

x=L/LTh(t)

KTI−MBQC

L
, (7)

for TI systems, where instead of L∗TI in GinUE, the
system-dependent many-body Thouless length LTh(t) is
used to define the scaling limit. Now, given that (i) the
spectral correlation dual spectra of many body chaotic
systems falls under the GinUE universality class; (ii) a
linear ramp in L naturally emerges from (5) for L� L∗TI,
coinciding with the appearance of the linear-ramp in SFF
of chaotic systems; we conjecture that the scaling form of
GinUE describes the scaling form of TI chaotic systems
once L∗TI and LTh(t) are identified, i.e.

κTI−MBQC(x) = κGin(x) ≡ κTI−Gin(x) , (8)

To test this claim, we simulate both sides of (8), for TI
brick wall model, random phase model, and GinUE in
Fig. 2c and find an excellent collapse. We note that the
scaling limit in (7) differs from the infinite-q result ob-
tained for the random phase model in [23] which dis-
agreed with the finite-q numerical simulations. The uni-
versality of κ(x) implies that the microscopic details are
only reflected in the function LTh(t), and not in the
scaled function κ(x), as observed in [23]. Also, the va-
lidity of Eq. (8) indicates that the effective size N of
the equivalent GinUE matrix shall not be fixed from the
dual Hilbert space dimension (= q2t), but rather from the
emerging Thouless length, i.e. N = L∗2 ∼ LTh(t)2 � q2t

(Fig. 2d).
Beyond translational invariance.– We now extend the

previous considerations to Floquet systems. We first con-
sider with spatial randomness (case b) and then we in-
corporate TI (case d), and demonstrate the emergence of

GinUE–like behaviour with and without TI. To incorpo-
rate time periodicity, we first observe that the transfer
matrix becomes invariant under time translations, and
thus its spectrum can be split in time momentum or fre-
quency sectors. In the inset of Fig. 2b and [40], we respec-
tively compute the dissipative SFF and spacing distribu-
tion for the dual spectrum in each sector, and confirm
the emergence of Ginibre statistics. Time translation
implies V (t, r) = TV (t, r)T−1, where T shifts the dual
system over one period. For simplicity, we assume invari-
ance under one site translation, with T |s = s1s2 . . . st〉 =
|s2s3 . . . sts1〉, generalization to longer unit cells being
straightforward. For each configuration s, we define its
associated period as the minimal τ = 1, . . . , t such that
T τ |s〉 = |s〉. To formulate the statistical properties of
the ensemble, we restrict the Hilbert space to the set
of computational basis {|s〉} translational invariant with
only period t. Indeed, the fraction of configurations with
maximal period goes to 1 for large t (and/or obviously
for large q). Using No to denote the number of dis-
tinct orbits under the translation operation, we formally
have a dimension for the restricted dual Hilbert space
dim(H̃) = tNo. Then, we model the transfer matrix
V (t, r) by a random matrix VG with complex Gaussian
entries and covariance〈

[VG]ss′ [VG]∗pp′
〉

=
1

No

∑
τ,τ ′

δsT τ (p)δs′T τ′ (p′)J(τ − τ ′) ,

(9)
where J(τ − τ ′) controls the correlation between ma-
trix elements. As pointed out in [64] via a semiclas-
sical expansion, the emergence of SFF linear ramp us-
ing RMT K(t) = t in single-particle chaotic Floquet
systems can be associated to the pairing between two
periodic orbits, which can happen in t possible ways
(t being the discrete length of the orbit here). In ex-
tended chaotic systems, the factor of t corresponds to
the possible values of τ = 1, . . . , t for local pairing of or-
bits [20, 45]. The interaction between neighbouring local
degrees of freedom forces similar pairings between local
orbits, quantified here by the function J(τ − τ ′). A sim-

ple calculation gives KF−Gin(t, L) =
〈
|Tr[VG(t, L)]|2

〉
=∑

{τ}
∏L
i=1 J(τi−τi+1) =

∑
ω[Ĵ(ω)]L [40], with Ĵ(ω) the

Fourier transform of J(τ). We thus see that the SFF
behavior in the scaling limit depends on Ĵ(ω). For sim-
plicity, we suppose J(τ − τ ′) = δτ,τ ′ + f(t)h(τ − τ ′),
where f(t) decays to zero on the scale of the Thouless
time, and the function h(τ − τ ′) controls the correlation
between neighbouring pairings. Within this formulation,
the scaling limit depend on the details of the Fourier
transform ĥ(ω). However, the exact calculation in the
random phase model at infinite q [20, 23, 40] leads to

h(τ − τ ′) = 1 − δτ,τ ′ which implies ĥ(ω) = tδω,0 − 1.
Numerical evidence supports the claim that in general

ĥ(ω 6= 0)/ĥ(ω = 0)
t→∞→ 0. Under this assumption, one
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recovers the emergent Potts model of SFF [40] and the
universal result from [20, 23],

κF−Gin(x) = lim
L,t→∞

x=L/L∗F(t)

KF−Gin − t = ex − x− 1 , (10)

with L∗F(t) = [f(t)ĥ(0)]−1. Hence, we have for case b

κF−Gin(x) = κF−MBQC(x) . (11)

Translation invariant Floquet case. – For TI Floquet
systems (case d), we model the transfer matrix with (9),
except that TI is imposed, i.e. VG(t, r) = VG(t, r′) for all
r, r′. In practice, Eq. (9) implies that different frequency
sectors are statistically decoupled. We can thus evaluate
KTIF−Gin for this model, using Eq. (5) within each sector
and replacing the variance v/N → Ĵ(ω)/No. Using the
results in Eqs. (6,10), one obtains for L 6= 0,

KTIF−Gin(t, L) = KGin(No, L)KF−Gin(t, L)

∼ LκTI−Gin

(
L

L∗TI

)[
κF−Gin

(
L

L∗F

)
+ t

]
,

(12)

and sees that the emerging scaling form depends on the
ratio between the relevant length scales, namely L∗F and
L∗TI. For instance, if L∗TI � L∗F at large t, the appropriate
scaling limit has x = L/L∗TI fixed, giving the scaling form

κ
(TI)
TIF−MBQC(x) := lim

L,t→∞
x=L/L∗TI

KTIF−Gin

tL
= κTI−Gin(x)

(13)
On the contrary, if L∗F � L∗TI at large t, the appropriate
scaling limit has x = L/L∗F fixed leading to

κ
(F)
TIF−MBQC(x) := lim

L,t→∞
x=L/L∗F

KTIF−MBQC

L
− t = κF−Gin(x)

(14)
To test this, in Fig. 2e, we simulate the TI Floquet brick
wall model as a representative example, and show that
an excellent fit can be obtained using Eq. (12), with L∗F
and L∗TI as fitting parameters in Fig. 2f. While we cannot
determine the large-t behaviour of L∗TI L

∗
F from the finite

size data, we can extrapolate that L∗TI � L∗F for this
model, and obtain a consistent scaling collapse of (13) in
[40].

Discussion. The emergence of universal Ginibre be-
haviour complements the known emergence of Gaussian
unitary ensemble in such systems, and opens up a new av-
enue to characterize quantum chaos. We emphasize that
the emergence of GinUE is a many-body quantum phe-
nomenon: Firstly, the construction of spacetime duality
requires spatial structure. Secondly, the crossover be-
tween linear ramp to exponential behaviours around LTh

(or tTh) and the scaling collapse in the scaling limit is a
manifestation of many-body quantum effect — the (con-
nected) SFF of Gaussian and Circular ensembles have no
exponential regime at all.
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Supplementary Material

Many-body quantum chaos and emergence of Ginibre ensemble

Saumya Shivam, Andrea De Luca, David A. Huse, and Amos Chan

In this supplementary material we provide additional details about:

A. Models of MBQC

1. Two-site random unitary gate

2. Random phase model (RPM)

3. Brick-wall model (BWM)

4. Kicked Ising model (KIM)

B. Ginibre models of dual transfer matrices (DTM) of MBQC systems

C. SFF regime diagrams for MBQC systems with space-time translational invariance

D. Spectral properties of dual spectra

1. Distribution of dual eigenvalues and unfolding

2. Spectra of single realization

3. Dual spectra of non-interacting quantum circuits

E. Spectral correlation of dual spectra

1. Nearest neighbour spacing distribution

2. Complex spacing ratio

3. Dissipative spectral form factor (DSFF)

F. SFF for GinUE (TI GinUE model)

1. Exact evaluation of SFF for GinUE

2. Diagrammatical approach

G. SFF for Floquet GinUE model

1. Long-range J(τ)

2. Long-range J(τ) example: Emergent Potts model

3. Short-range J(τ)

4. Short-range J(τ) example with nearest-neighbour coupling

H. SFF for TI Floquet GinUE model

I. SFF: Numerical results

Appendix A: Models of MBQC

In this appendix, we explicitly write down the models studied in the main text, namely, the random phase model
(RPM), the brick wall model (BWM), and the kicked ising model (KIM). Additionally, we consider an ensemble of
two-site random unitary gates, which are the building blocks of random quantum circuits, and are the simplest objects
that admit the space-time duality. The time evolution of a translational invariant circuit with q degrees of freedom
per site can be defined by the operator W(t, L), which is constructed from layers of the circuit W (t, L), such that the
time evolution operator can be written as

W(t, L) =

t′=t∏
t′=1

W (t′, L) . (SA.1)
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For the case when the circuit is also periodic in time (Floquet or TIF models), we have W (t′, L) = W (L) for all values
of t′, i.e. the time evolution operator can be written as

W(t, L) = W (L)t . (SA.2)

The duality transformation described in Fig. 1 results in a dual evolution operator V(t, L), which for both TI and
TIF models are composed of DTM V (t, r) = V (t) for all values of r (Fig. 1 red) according to

V(t, L) = V (t)L . (SA.3)

Note that this implies that t, L denote the number of time W and V are multiplied, respectively, in order to obtain
W and V. The number of sites for either operator is related to t, L but depends on the model details so we provide
the explicit relation for each model in the following sections. With this general notation in mind, we now describe
V(t, L) for a two-site unitary gate and three circuit models known to show chaotic behavior, namely the RPM, the
BWM, and the KIM.

1. Two-site random unitary gate

FIG. S1. Top: Three ways of partitioning the four legs of a two-site gate into a pair of incoming (blue) and a pair of outgoing
(red) tensor legs: (a) a two-site gate acting in the time direction; (b) a two-site gate acting in the space direction; (c) a two-site
gate with the bottom left and top right legs as incoming legs and the rest of the legs as outgoing legs. Bottom: An alternative
representation of these two-site gates, with incoming legs in the bottom and outgoing legs at the top.

A single two-site Haar-random unitary gate ucdab (Fig. 1 green), having dimensions q2× q2, serves as a simple model
to study the correlations of the dual spectrum. In our notation, the two lower indices and upper two indices of ucdab
label the columns and rows of the matrix u respectively. The corresponding dual gate v is defined as vdbca = ucdab, where
the permutation of indices correspond to space-time rotation of the two-gate.

In fact, given any two-site unitary gate (Fig. S1) which is a tensor with four legs, there are three ways to pair-wise
partition the incoming and outgoing legs, namely (a) two-site gate acting in the time direction (Fig. S1a); (b) two-site
gate acting in the space direction (Fig. S1b); (c) two-site gate acting in the time direction after a partial transpose
(Fig. S1c). If the two-site unitary gate is drawn from the CUE (i.e. it is Haar-random), the ensemble (c) is equivalent
to (b) due to the property of CUE being invariant under a unitary transformation. More explicitly, (c) can be obtained
as the space-time dual of (a) after applying an additional swap gate, but since the swap gate can in fact be absorbed
into the CUE, (c) is in fact equivalent to (b) for the CUE. In short, this paper studies the spectral correlation of (b)
and (c) for a two-site Haar-random unitary gate, and show that they fall under the universality class of GinUE.

2. Random phase model (RPM)

The random phase model was first introduced as an analytically-tractable minimal model of many body quantum
chaos without any symmetries [10], with the Floquet operator W (L) consists of layers of W (L) = W2(L)W1(L), where
the layer W1 consists of on-site Haar random unitaries u of dimension q × q, and the layer W2 consists of two-site
diagonal phase gates with the phases chosen from a normal distribution with zero mean and variance ε. Specifically,
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taking b = (b1, . . . , bt) with bµ = 1, . . . , q to define the computational basis, we write

W1(t) =

L∏
r=1

u(t, r) , (SA.4a)

[W2]b,b′(t) = exp

(
ı

L∑
r=1

ϕbr,br+1
(t, r)

)
δb,b′ . (SA.4b)

such that W(t, L) is a qL × qL operator, and the number of sites is L. The TI version of the circuit, where the
r-dependence above is removed, was recently also shown to display chaotic behavior [23]. The layers of W (t, L) can be
random (TI-RPM) or repeating (TIF-RPM). Applying the duality transformation from Figure 1 on each gate leads
to the dual of the single-site gate becoming a diagonal two-site gate and vice-versa for the original two-site diagonal
gate. The DTM V (t) for both TI-RPM and TIF-RPM, can be constructed in the following way using the two layers
V1(t), V2(t) such that V (t) = V2(t)V1(t), where

[V1]b,b′(t) = exp

(
ı

t∑
t′=1

ϕbt′ ,b′t′ (t
′)

)
, (SA.5a)

[V2]b,b′(t) =
t∏

t′=1

u
bt′+1

bt′
(t′)δb,b′ , (SA.5b)

and where periodic boundary condition has been assumed. Note that the DTM V (t) inherits the same geometry as
the original circuit. This also implies that V(t, L) is a qt × qt operator, and the number of corresponding sites is t.
For the case of TIF-RPM, there are t momentum sectors with each block having the approximate size qt/t. We will
restrict ourselves to the zero momentum sector, which turns out to have the largest size, for the remainder of the
discussion. Moreover, we only consider q = 3, as the circuits are not fully chaotic behavior for q = 2 [20].

3. Brick-wall model (BWM)

The brick-wall model is constructed with two-site q2 × q2 Haar-random unitaries uklij (t
′, r, i) in the brick work

geometry (Fig. 1), Specifically, we have bi-layer W (t′, L) = W2(t′, L)W1(t′, L) consisting of two layers W1 and W2

defined by

Wi(t
′, L) = T

δi,2
2L

[⊗
r∈L

u(t′, r, i)

]
T
−δi,2
2L , (SA.6)

where, again, Tn is the translational operator in the Hilbert space,
⊗n

1 Cq, defined by its action on the computational
basis, Tn |s ≡ s1, s2, . . . , sn〉 = |T (s) ≡ sn, s1, . . . , sn−1〉. This means that the circuit has 2L sites and thereforeW acts
on a q2L dimensional Hilbert space. The dual Floquet operator V (t) = V2(t)V1(t), for TI-BWM, is then described by
the two layers V1(t) and V2(t), such that in the computational basis

Vi(t, r) = T
δ2,i
2t

[
t⊗

t′=1

v(t′, r, i)

]
T
−δ2,i
2t , (SA.7)

where v(t′, r, i) is the dual of the unitary gate u(t′, r, i) (with TI assumed without the r-dependence), defined by
vdbca = ucdab (see Fig. 1), such that V acts on a q2t dimensional Hilbert space.

Periodic boundary conditions have again been assumed. Note that for TIF-BWM, the unit cell in the time direction
contains two sites, leading to t momentum sectors, and we will restrict ourselves to the zero momentum sector.

4. Kicked Ising model (KIM)

One of the ways in which duality of quantum circuits has been utilised is by studying a self-dual model, which arises
at special points in the parameter space of the kicked Ising model, and self duality imparts analytical tractability to
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proving emergence of random matrix theory through exact derivation of quantities like the spectral form factor[66–
68]. The model has the same geometry as the random phase model, and the time evolution operator (acting on qL

dimensional Hilbert space) are defined using the two layers

W1(t′, L) =

L∏
r=1

eıh(r,t
′)σzr eıb σ

x
r

W2(t′, L) =

L∏
r=1

eıJ σ
z
rσ
z
r+1

(SA.8)

where J and b are constants, while h(r, t) is drawn from a normal distribution with variance σ2. Note that the second
layer W2(t′, L) is diagonal. The DTM (acting on qt dimensional Hilbert space) is then given by the layers

[V1]b,b′(t, r) =

t∏
µ=1

eıJbµb
′
µ

[V2]b,b′(t, r) =

t∏
µ=1

eıh(r,µ) bµRbµ,bµ+1 δb,b′

(SA.9)

so that the DTM is given by V (t, r) = V2(t, r)V1(t, r), and R1,1 = R−1,−1 = cos(b) and R1,−1 = R1,−1 = −ı sin(b). At
|J | = |b| = π/4, the dual circuit V becomes unitary which is the origin of the term “dual-unitary” for such circuits.
The TI version of the model, TI-KIM, is obtained by removing the r-dependence in h(r, t).

We study the dual spectra as we moves away from the self dual point, by decreasing J from π/4 to 0, while keeping
b = π/4 fixed. When translational symmetry is not present, the dynamics undergo a transition when the interaction
strength is reduced away from the self dual point [69]. However, for TI circuits (hi same for each site), we don’t
expect the onset of many body localization, rather a transition to the non interacting integrable point at J = 0.

Owing to the time reversal symmetry of the original circuit, the dual circuit also has a generalized time reversal
symmetry, such that there exists a unitary operator C+ such that C+V

TC−1+ = V and C+C
∗
+ = 1. Here C+ can be

chosen to be 2t/2V ∗2 for b = π/4. Hence, instead of GinUE, the corresponding class AI† [65] (generated by choosing
the complex normal variables for each matrix element such that the matrix is symmetric) is more apt for comparison.
Given the lack of detailed analytic understanding of this class of non-Hermitian random matrices, we will only evaluate
and compare the level spacing distribution, and look at how the dual spectrum changes when moving away from the
self dual point.

Appendix B: Ginibre models of dual transfer matrices (DTM) of MBQC systems

In this appendix, we provide a summary of the variations of Ginibre ensembles as models of dual transfer matrix
(DTM) of MBQC systems with translational symmetries in space and in time in Fig. S2. For systems without any
symmetries, denoted as case (a) in Fig. S2, the DTM of the MBQC systems can be modelled as a sequence of matrices
independently-drawn from the Ginibre ensemble, and its SFF can be computed trivially as 1 for all L, as consistent
with the calculation of the MBQC circuit [23]. For Floquet systems without TI (case (b) in Fig. S2), the DTM of
MBQC systems is modelled by a sequence of independently-drawn matrices satisfying Eq. (9). For TI systems with
temporal randomness (case (c) in Fig. S2), the DTM of MBQC systems is modelled by the repeated action of a matrix
drawn from the Ginibre ensemble. Lastly, for TI Floquet systems (case (d) in Fig. S2), the DTM of MBQC systems
is modelled by the repeated action of a random matrix satisfying Eq. (9) .
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FIG. S2. Summary of variations of Ginibre ensembles as model of DTM of MBQC systems.

Appendix C: SFF regime diagrams for MBQC systems with space-time translational invariance

In this appendix, we present the regime diagrams for MBQC systems with translational invariance in space and
in time in Fig. S3. Note that we focus on unitary models, such that the density of states is flat, i.e. without edges,
and consequently there is not the so-called “dip” (see e.g. [28]). Note also that for temporal random MBQC systems,
namely case a and c, the Heisenberg time tHei lines are absent.

FIG. S3. SFF regime diagrams for (a) temporal and spatial random (TSR) MBQC systems; (b) temporal periodicity, i.e.
Floquet, and spatial random (Floquet) MBQC systems; (c) Floquet and translational invariant (TI) MBQC systems; and (d)
Floquet and translational invariant (TIF) MBQC systems.

Appendix D: Spectral properties of dual spectra

In this section, we show the distribution of eigenvalues and examples of what a typical dual spectrum looks like for
the models defined in the previous section. Then, we discuss the unfolding procedure and the resulting eigenvalue
distribution.
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FIG. S4. Left : Radial distribution of dual eigenvalues of a two-site Haar-random unitary gate, with each site having degree
of freedom q, for q = 2, 3, 4, 10, 20 (increasing in darkness). Middle: Distribution of the magnitude of eigenvalues of TI-BWM
with q = 2 and t = 3, 4, 5, 6 with increasing darkness (inset), and the main panel shows the distribution of the magnitude of the

unfolded spectrum ξ = z
1

2t+1 . Right: Distribution of the magnitude of eigenvalues of TI-RPM with q = 3 and t = 4, 5, 6, 7, 8

with increasing darkness (inset). The main panel shows the distribution of the magnitude of the unfolded spectrum ξ = z
1
t+1 .

Using the slowly-varying regime of the unfolded spectrum, we can select of range ra < r < rb so that for all system sizes, the
distribution in that regime is approximately constant.

1. Distribution of dual eigenvalues and unfolding

In Figure S4, the distribution of the absolute value of the eigenvalues is shown for the dual of a two-site unitary
gate, TI-BWM and TI-RPM as representative examples, collected from around 1000 − 5000 random realizations.
For the two-site gate, for q > 2, the distribution looks close to that of GinUE, which should be linear in the radial
distance r until r ≈ 1. On the other hand, for the dual circuits, the distribution is heavily concentrated close to the
origin. Note that it is sufficient to look at the radial distribution because the distribution of eigenvalues is rotational
symmetric upon taking disorder average, which can also be seen in a scatter plot of the spectra of single realizations
of such models in Figure S5.

Since choosing a flat region from the original distribution for dual circuits can be difficult because of the power
law/exponential distribution of the magnitude of eigenvalues, we take inspiration from the unfolding procedure per-
formed in [70]. [70] considers an ensemble of products of n independent N × N matrices drawn from GinUE, and
applies the conformal transformation ξ = z1/n [70] to the spectrum, which reveals that the ensemble eigenvalue distri-
bution and correlations are GinUE-like. We apply the same transformation by associating n with the number of (dual)
sites or the number of gates in the dual circuit. Even though the circuit geometry is different from a simple product
of matrices, the transformation leads to a more slowly varying distribution of eigenvalues (Figure S4), allowing us to
directly select a cutoff range of r where using rectangular strips approximately leads to flat density. It remains to be
seen if there exists a transformation which can make the distribution of eigenvalues completely flat.

2. Spectra of single realizations

The spectrum of a single realizations of the dual of a two-site unitary gate, TI-RPM and a few parameters of KIM
are shown in Figure S5. Note that for the dual two-site gate, the scatter plot looks uniformly spread out (with level
repulsion) inside the unit disc. However for TI-BWM, they are more concentrated near the origin. Unlike both,
however, TI-KIM displays a more complex structure of the spectrum. Starting with J = Jc (the self dual point), the
spectrum is spread out on the unit circle, owing to the unitarity. But breaking the unitarity by decreasing J/Jc leads
to the eigenvalues spreading inside the unit circle in a spiral structure, which is expected to continue exhibiting level
repulsion, resulting in a fractal distribution.
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FIG. S5. Left: Spectrum of a single realization of the dual of a single two-site q2× q2 unitary with q = 20. Middle: Scatter plot
of the eigenvalues of single realizations of the DTM for the RPM, with t = 5 and q = 3. Right: Scatter plot of the eigenvalues
of single realizations of the DTM for the KIM, with t = 12 and J/Jc = 1, 3/4, 1/2, 1/4, clockwise from top-left, showing how
starting from the self dual point, the eigenvalues collapse into a spiral, which has a fractal like structure that appears alongside
level repulsion.

3. Dual spectra of non-interacting quantum circuits

In this subsection, we comment on the dual spectra of non-interacting many-body quantum circuits. The time
direction quantum circuits are known to exhibit level statistics corresponding to the Poisson distribution when the
quantum circuits are non-interacting or many-body localized [19, 71], and we show here that such spectral properties
are also reflected in dual spectra of the dual transfer matrix. For concreteness, consider the TI-RPM (or TI-KIM) at
the non-interacting point ε = 0 (J = 0), where the contribution to the dual Floquet operator in Eq. SA.5 (Eq. SA.9)
from the random phases becomes

[V1]b,b′ = 1 (SD.1)

i.e. V1 becomes a rank-1 matrix with where all matrix elements are one, while V2 remains a diagonal matrix.
Consequently, the dual tensor V = V2V1 has the same elements for each column in a given row. Such a matrix has
N − 1 zero eigenvalues, and one non zero eigenvalue (= Tr[V2]).

Appendix E: Spectral correlations of dual spectra

Now we show the comparison of short and long range dual spectral statistics of various MBQC models and the
GinUE, starting with nearest neighbour level spacing distribution, then the complex level spacing ratio, and finally
the dissipative spectral form factor.

1. Nearest neighbour spacing distribution

The level spacing distribution of eigenvalues in the complex plane p(s), can be computed by looking at the first and
nth nearest neighbour (in terms of the distance between the two points in the plane) for a given eigenvalue, denoted
by d1 and dn. The unfolded level spacing is then given by s = d1

√
n/πd2n [2], and normalized such that the mean level

spacing
∫
sp(s)ds = 1. We choose n in the range [5, 15], and plot the distribution of the entire spectrum over 1000 to

5000 realizations for different models in Figure S6. Whenever an additional conserved quantity is incorporated, we
restrict ourselves to a given subsector or block, for example for TIF circuits, we only look at the part of the spectrum
belonging to the zero momentum sector or the sector with the largest dimensions.

For the KIM, as we move from J = π/4 to J = 0 , the level spacing distribution, after performing the appropriate
unfolding (with n = 15 for J < Jc), changes from that of the Gaussian Orthogonal Ensemble (GOE) (J = Jc) to
AI† [65], for which the analytical distribution is not known, so the distribution numerically generated from symmetrized
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FIG. S6. Left: Unfolded and normalized level spacing distribution for dual of TI-RPM, with q = 3, ε = 2, t = 8 (red), and
TI-BWM with q = 2, t = 6 (blue) compared with the exact distribution for the complex Ginibre ensemble (solid curve) showing
good agreement. Middle: Unfolded and normalized level spacing distribution in a given symmetry sector for dual circuits with
different types of symmetry, compared with the exact distribution for the complex Ginibre ensemble (solid curve) showing
good agreement. Right: Unfolded and normalized level spacing distribution for dual of TI-KIM, with b = π/4, σ = 10π and J
varying from the value at self dual point J = π/4, whose dual spectrum falls under the universality class of GOE due to the
time reversal symmetry. On the other hand as soon as we move away from the self dual point, the level spacing distribution
resembles that of the time reversal symmetric Ginibre universality class AI†.

GinUE matrices of size around 2000 has been plotted for comparison. The distribution for J = 0 is not plotted but
can be shown to be the same as for TI-RPM with ε = 0, having N − 1 eigenvalues zero, and a single non zero value.
A summary of the universality classes for different models is given in Table S1.

Space direction Time direction Universality Class

Translation None GinUE
Translation Translation GinUE
Translation + TRS TRS† AI†

TABLE S1. Different symmetric circuits considered here, with the first two columns noting the symmetry in the space and time
direction, and the third column denoting the resulting symmetry in the dual spatial direction. The third column denotes the
conjectured universality class of the corresponding circuit in a given projected sector of the conserved quantity corresponding
to the symmetry of the dual circuit.

2. Complex spacing ratio

Another useful quantity which also probes the angular correlations at the shortest scale is the complex level spacing
ratio r [62], given for the eigenvalue zi by

ri =
znni − zi
znnni − zi

(SE.1)

where znni and znnni are the nearest and next nearest distance neighbours of z respectively. The distribution of r in the
complex plane has a “pac-man” shape for non-Hermitian matrices which show level repulsion [62, 72]. An advantage
of this quantity is that it doesn’t require unfolding of the spectra, unlike the level spacing distribution. Figure S7
shows qualitative resemblance of the distribution for TI-RPM and TI-BWM with that of the GinUE.
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FIG. S7. Complex level spacing ratio distribution for GinUE (left), TI-RPM (middle) and TI-BWM (right), with the two dual
spectra showing excellent qualitative agreement with the typical pac-man shape of level repulsion for the Ginibre ensemble.
These results are consistent with the corresponding nearest neighbour level spacing distributions.

3. Dissipative spectral form factor (DSFF)

In this section, we discuss the technical details in the computation of the DSFF, including the unfolding procedure
and the angular dependence, and we demonstrate the GinUE universality of the long-range spectral correlations of the
dual spectra by computing DSFF for two-site Haar-random unitary gate (Fig. S9 left), TI-BWM with q = 2 (Fig. 2a
in the main text), TI-RPM with q = 3 (Fig. S9 middle), and TIF-BWM with q = 2 (Fig. S9 right).

The quadratic ramp of (connected) DSFF is sensitive to the variation of density of states (DOS) across the complex
plane — different local region of eigenvalues contribute to a ramp-plateau DSFF curves that plateau at different
effective Heisenberg times, and sum to a smeared-out non-RMT-like DSFF behaviour. Therefore, the study of spectral
correlation of complex spectra typically requires the complex generalization of unfolding [1], which is considerably
more delicate than the real counterpart since the unfolding transformation needs to be conformal. Specifically, the
(connected) DSFF, defined in Eq. 3, is computed for dual circuits after performing the unfolding procedure described

in Appendix D 1. For example for the DSFF of TI-BWM in Figure 2a, the unfolded eigenvalues are ξ = z
1
t+1 . The

level spacing of original eigenvalues scale as ∆(t) ∼ N−1/2 = q−t/2, and after unfolding scale as ∆(t) ∼ 1/
√

(t+ 1)N ,
inferred by looking at the collapse of DSFF with different dual system size t. Averages are performed around 10000
to 15000 realizations. Note that in Figure 2a and wherever not specified, the angle θ for which DSFF is computed,
is chosen to be θ = π/5 away from the axes. The DSFF for different θ for TI-BWM are shown in Figure S8, with
the same unfolding procedure used. Because of rotational symmetry of eigenvalues, we see similar approaches to
KGin(|τ |) for different θ, except for the initial dips of the DSFF appear at different τ . However, for all of them, the
dip approaches zero for larger system sizes. That scale also depends on the cutoff chosen for the eigenvalues.

Lastly, the universality of dual spectral statisticss obtained through DSFF are further argued for in Figure S9, by
looking at the DSFF of the dual of two-site unitary gate with dimension q2×q2 A 1, arguably the simplest model with
space-time duality. We see that the DSFF of the dual of this ensemble approaches the DSFF of GinUE as q increases.
Note that the density of eigenvalues for q > 2 is roughly flat (Fig. S4), and no unfolding is required. Consqeurently,
there are no dips for small |τ | in this case.

Appendix F: SFF for GinUE

1. Exact evaluation of SFF for GinUE

In this section, we evaluate the SFF for the GinUE. The definition of SFF is reproduced as follows.

KGin(L) =
〈∣∣Tr[V LG ]

∣∣2〉 (SF.1)
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FIG. S9. Left: Connected part of the DSFF of dual of two-site q2 × q2 Haar-random unitary gate with θ = π/4 and q =
2, 3, 4, 10, 20 and the darkness increasing for larger q. The rescaled Kc,Gin(|τ |) is given as the green curve. No unfolding is
performed, resulting in finite size effects for small q, although for larger q the spectrum is generally flat(Figure S4). Middle:
Connected DSFF of TI-RPM with θ = π/8, q = 3, and t = 4, 5, 6, 7, 8. Right: Connected DSFF in the zero momentum sector
of TIF-BWM with q = 2, θ = π/16, and t = 6, 8, 10, 12, 14. All three different models approach the GinUE behaviour as system
sizes increase.

where VG is a N -by-N matrix drawn from the GinUE with variance σ2 = v/N , and 〈·〉 is the ensemble average over
the GinUE. The joint probability distribution function of eigenvalues of GinUE is known exactly, and the correlation

function of eigenvalues can be expressed in terms of the kernel [63], k(z1, z2) = N
πv e
− N

2v (|z1|
2+|z2|2)

∑N−1
`=0

1
`!

(
Nz1z

∗
2

v

)`
.

The 1-point correlation function, i.e. the density of states, is given by 〈ρ(z)〉 = k(z, z), and the kernel is normalized
such that

∫
d2z 〈ρ(z)〉 =

∫
d2z k(z, z) = N . Note that the DOS is isotropic, and is asymptotically, as N → ∞, flat

on a unit disc |z| < 1 and vanishing outside. The 2-point correlation function is 〈ρ(z1)ρ(z2)〉 = k(z1, z1)δ(z1 − z2) +

k(z1, z1)k(z2, z2) − |k(z1, z2)|2. We will refer to the above three terms as the contact, disconnected and connected
term respectively. The SFF of GinUE can now be written as

KGin(L) =

∫∫
d2z1d

2z2 〈ρ(z1)ρ(z2)〉 zL1 z∗L2 . (SF.2)
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The contact term can be evaluated as follows

∫
d2z |z|2Lk(z, z) =

N−1∑
`=0

vL

NL`!
(L+ `)! =

vL(N + L)!

NL(L+ 1)(N − 1)!
, (SF.3)

where we have used the identity
∫∞
0
d|z| |z|2p+1e−N |z|

2/v = 1
2

(
v
N

)p+1
Γ(p + 1). (SF.3) is indeed N at L = 0 as

expected. The disconnected term is given by

∣∣∣∣∫ d2z zLk(z, z)

∣∣∣∣2 = N2 δL,0 . (SF.4)

Lastly, the connected term can be evaluated as

−
∫
d2z1 d

2z2 z
L
1 z
∗L
2 |k(z1, z2)|2 =−

∫
d2z1 d

2z2
4N2

v2
e−

N
2v (|z1|

2+|z2|2)
N−L−1∑
`=0

NL+2` |z1|2(L+`)+1 |z2|2(L+`)+1

vL+2` `! (L+ `)!

=−
N−L−1∑
`=0

vL [(L+ `)!]2

NL`!(L+ `)!
= − vLN !

NL (L+ 1)(N − L− 1)!
.

(SF.5)

Together, we arrive

KGin(L) = N2δL,0 +
vL
(

(L+N)!− N !(N−1)!
(N−L−1)!

)
NL(L+ 1)(N − 1)!

. (SF.6)

We reproduce the large N expansion provided in the main text below as

KGin(L) = vLL

[
1 +

(L− 2)(L− 1)L(L+ 1)

24N2
+O

(
L8

N4

)]
(SF.7)

which is verified by the diagrammatical approach in large-N below.

2. Diagrammatical approach

FIG. S10. Diagrammatical representation of (a) the matrix element of matrix VG drawn from the Ginibre ensemble, (b) a
constraction, and (c) the (ensemble-averaged) SFF KGin(2).
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FIG. S11. (a) The thick line notation for a group of parallel contractions. (b) Leading diagrams in N of KGin. (c, d) Subleading
diagrams of KGin of order O

(
N−2

)
. Thick lines are colored to guide the eyes.

The diagrammatical approach of GinUE is useful as analytical tool for variations of GinUE-like models, and also as
a consistency check for the exact computation of SFF (SF.6) and (SF.7) in large N . The diagrammatical approach is
constructed by representing a matrix VG drawn from the GinUE as in Fig. S10a, and a contraction as in in Fig. S10b.
The ensemble average of the SFF of the GinUE at L = 2 is given as an example in Fig. S10c.

Now we verify the result in (SF.6) and (SF.7) using the diagrammatical approach in large N . Note that we fix
v = 1 in this section. In large N , ensemble-averaged observables are dominated by diagrams with the most number
of solid-line loops in the notation given in Fig. S10b (see also [19]), since each loop corresponds to a factor of N .
The leading diagrams are the well-known ladder diagrams given in S11b, and it is shown in [73] that the subleading
diagrams of SFF are of the form S11c and d. Firstly, We can count the degeneracy of the ladder diagran following [19].
Suppose there are L nodes in the upper trace and L nodes in the lower trace. The top left node can be chosen to
contract to any one of the bottom nodes, and the rest of the nodes on the top loop have to be contracted such that a
ladder is formed. Hence there are L choices, i.e. the degeneracy Da of diagram S11a is

Db = L (SF.8)

Secondly, to count diagrams in S11c, consider a realization of S11c given in Fig. S11e. We use the labels `1, `2 and
`3 to denote the number of contractions in the three groups of parallel contractions. We first consider all possible
diagrams with the top left node connecting with the bottom left node, colored in red in Fig. S11e. `1 can take values
from 1 to L− 2. `2 can take L− `1− 1 choices. For each choices of `2, `3 is fixed since

∑3
i=1 `i = L. Furthermore, we

have to account for the fact that the red contractions can be one of any contractions in the group of `1 contractions.
Finally, we unfix the contraction of the top left node and allow it to contract to any one of the L nodes in the bottom
loop. This gives an additional factor of L. Therefore, we have degeneracy Dc given by

Dc = L

L−2∑
`1=1

`1(L− `1 − 1) =
(L− 2)(L− 1)L2

6
. (SF.9)

Thirdly, we can repeat the same counting argument for S11d, and obtain

Dd = L

L−3∑
`1=1

`1

L−`1−2∑
`2=1

(L− `1 − `2 − 1) =
(L− 3)(L− 2)(L− 1)L2

24
. (SF.10)

Together, up to O(N−2), we have

KGin(L) = Db +
1

N2
(Dc +Dd) +O

(
1

N4

)
= L+

(L− 2)(L− 1)L2(L+ 1)

24N2
+O

(
1

N4

)
, (SF.11)

which verifies Eq. (SF.7).

Appendix G: SFF for Floquet GinUE model

In this appendix, we compute the SFF of a Ginibre model for the DTM of Floquet but spatially random MBQC
systems, and thereby demonstrate that the emergence of GinUE-like behaviour persists beyond TI systems. The
GinUE-like model is given by V(t, L) =

∏L
r=1 VG(t, r), such that VG(t, r) = TVG(t, r)T−1, where T translates the dual
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system over one period, and where we impose spatial randomness, i.e. VG(r) 6= VG(r′) for r 6= r′. For simplicity, we
assume invariance under one site translation, with T |s = s1s2 . . . st〉 = |s2s3 . . . sts1〉. Generalization to longer unit
cells can be straightforwardly obtained. As described in the main text, we restrict the Hilbert space to the set of
computational basis {|s〉} translational invariant with only period t. We note that the fraction of configurations with
maximal period goes to 1 for large t (and/or obviously for large q). We demand VG-s to have Ginibre-like correlation
given by 〈

[VG]ss′ [VG]∗pp′
〉

=
1

No

∑
τ,τ ′

δsT τ (p)δs′T τ′ (p′)J(τ − τ ′) , (SG.1)

where No denotes the number of orbits, and J(τ) determines the correlation between matrix elements. Recall that
s is a computational basis string, translational invariant with period t. It is convenient to represent each basis state
s = (s̃, τ) in terms of a representative s̃ of the orbit and a translation parameter τ such that s = T τ s̃. In this
representation, the SFF of this Floquet Ginibre model can be evaluated as the ladder diagram given in S11a and b.
(Due to spatial randomness, there is only a single ladder diagram since VG(r) can only correlate with V ∗G(r) for a
given r.) By summing over the s degrees of freedom, the SFF can be written as

K(t, L) =
〈
|Tr[VG(t, L)]|2

〉
=
∑
{τ}

L∏
i=1

J(τi − τi+1) =
∑
ω

[Ĵ(ω)]L . (SG.2)

where we have used the Fourier transform

Ĵ(ω) =
∑
τ

J(τ)e−
i2πωτ
t , J(τ) =

1

2π

∑
ω

Ĵ(ω)e
i2πωτ
t . (SG.3)

Now we consider a general class of correlation with J(τ) of form

J(τ) = δτ,0 + f(t)h(τ) (SG.4)

where f(t) is some function that decays from 1 to 0 in t. Together with the first term in (SG.4), the second term
ensures that there are t “domain wall” contribution, which is expected to dominate the SFF in late time [19, 20].
For simplicity, we further assume that the second term has a factorized form in t and τ . Lastly, note that in the
convention of (SG.4), h(τ = 0) = 0. The Fourier transform of (SG.4) is given by

Ĵ(ω) = 1 + f(t)ĥ

(
2πω

t

)
≡ 1 + f(t)ĥ (ω̃) . (SG.5)

We will explore two cases of J(τ), namely, the fast-decaying or “short-range” and slow-decaying or “long-range” J(τ)
in τ , and derive K(L) and its scaling forms. In particular, when J(τ) is long-range, we recover the scaling form and an
emergent Potts model, recovering the results in [20, 23], and thereby showing the emergence of Ginibre-like ensemble
beyond TI MBQC systems.

1. Long-range J(τ)

Suppose we take J(τ) to be long range, i.e. slow-decaying in τ . For sufficiently large t where f(t) small, we
substitute (SG.5) into (SG.2) and write

KF−Gin(t, L) =
∑
ω

[1 + f(t)ĥ(ω̃)]L ≈ ef(t)ĥ(0)L +
∑
ω̃ 6=0

ef(t)ĥ(ω̃)L ≈ ef(t)ĥ(0)L +
t− 1

2π

∫
dω̃ ef(t)ĥ(ω̃)L . (SG.6)

Taking x = f(t)ĥ(0)L ≡ L/L∗(t) with L∗ ≡ [f(t)ĥ(0)]−1, we have

KF−Gin(t, L) ≈ ex +
t− 1

2π

∫
dω̃ exĥ(ω̃)/ĥ(0) ≈ ex + t− 1 +

(t− 1)x

2π

∫
dω̃

ĥ(ω̃)

ĥ(0)
. (SG.7)

To evaluate the last term, we note that

0 = h(τ = 0) =
t

2π

∫
dω̃ h(ω̃) = ĥ(0) +

t

2π

∫
dω̃ h(ω̃) . (SG.8)
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Substituting this into (SG.7), we have SFF

KF−Gin(t, L) ≈ ex + t− 1− x . (SG.9)

and the scaling form

κF−Gin(t, L) = lim
L,t→∞

x=L/L∗(t)

KF−Gin − t = ex − x− 1 . (SG.10)

Consequently, we recovered the results derived in [23], i.e.

κF−Gin(x) = κF−MBQC(x) . (SG.11)

2. Long-range J(τ) example: Emergent Potts model

As an example of long-range J(τ), we take J(τ) to be

J(τ) = δτ,0 + f(t)(1− δτ,0) , (SG.12)

with f(t) vanishing for t > t∗, the analogue of Thouless time for this Floquet-GinUE model, we recover exactly the
SFF of MBQC system evaluated at infinite-q in [20]. The fourier transform of (SG.12) gives

Ĵ(ω) = (1− f) + tfδω,0 , (SG.13)

and therefore,

KF−Gin = [1 + (t− 1)f ]L + (t− 1)(1− f)L . (SG.14)

This coincides with the SFF result for Floquet MBQC systems in [20], if f(t) = e−εt for some parameter ε. Taking
the scaling limit where L and t are sent large, and where x = Ltf(t) fixed, we have

κF−Gin(x) = lim
L,t→∞
x=Ltf(t)

KF−Gin − t = ex − x− 1 , (SG.15)

which again coincides with the SFF scaling form for Floquet MBQC systems in [20]. In summary, we have

KF−Gin(t, L) = ZPotts = KF−MBQC(t, L) , (SG.16)

where Z is the partition function of a classical t-state ferromagnetic Potts model with Boltzmann weight B(σi, σi+1) =
δσi,σi+1

+ f(t)(1− δσi,σi+1
) and σi labels the Pott state at site i. Consequently, taking the scaling limit, we have the

exact identity

κF−Gin(x) = κF−MBQC(x) . (SG.17)

3. Short-range J(τ)

Suppose we take J(τ) to be short range, i.e. fast-decaying in τ . For sufficiently large t where f(t) small, we
substitute (SG.5) into (SG.2) and write

KF−Gin(t, L) =
∑
ω

[1 + f(t)ĥ(ω̃)]L ≈
∑
ω

ef(t)ĥ(ω̃)L ≈ t

2π

∫
dω̃ ef(t)ĥ(ω̃)L . (SG.18)

Casting the above equation in the scaling form, we write

κF−Gin(x) = lim
L,t→∞

x=L/L∗(t)

KF−Gin

t
, (SG.19)

where L∗(t) ≡ 1/f(t). Importantly, this scaling form does not coincide with the analogous scaling form derived for
long-range J(τ), and the results in [20, 23].
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4. Short-range J(τ) example with nearest-neighbour coupling

As an example of short-range J(τ), we take

J(τ) = δτ,0 + f(t)(δτ,1 + δτ,−1) , (SG.20)

with Fourier transform given by

Ĵ(ω) = 1 + 2f cos

(
2πω

t

)
, (SG.21)

The SFF can be computed as

KF−Gin(t, L) =
∑
ω

[1 + 2f cos (ω̃)]
L ≈ t

2π

∫
dω̃ e2f(t) cos(ω̃)L = tI(2f(t)L) , (SG.22)

where I is the Bessel function.

Appendix H: SFF for TI Floquet GinUE model

In this appendix, we compute the SFF of a Ginibre model for the DTM of TIF MBQC systems. The TIF Ginibre
model is given by V(t, L) =

∏L
r=1 VG(t, r), with VG(t, r) satisfying VG(t, r) = TVG(t, r)T−1, VG(t, r) = VG(t, r′) for

all r, r′ and (9). Recall that T translates the dual system over one period. We will use the same representation for
the basis state s = (s̃, τ), as in Appendix G, where s̃ is a representative of the orbit of s, and τ is a parameter such
that s = T τ s̃. In this representation, the matrix elements of V is given by,

V ττ
′

ss′ ≡ 〈s′, τ ′|V |s, τ〉 = V τ−τ
′

ss′ (SH.1)

where the last equality is due to VG(t, r) = TVG(t, r)T−1, and we have left the subscript G implicit. Using the Fourier
transformation |s, τ〉 = (2π)−1/2

∑
ω e

ı2πτω/t |s, ω〉 and |s, ω〉 = (2π)−1/2
∑
t e
−ı2πτω/t |s, t〉, we write

〈s′, ω′|V |s, ω〉 = δω,ω′
∑
τ

e−ı2πτω/tV τss′ (SH.2)

We can then rewrite the covariance, 〈
V τs1s2V

∗τ ′
s3s4

〉
=
J(τ − τ ′)

No
δs1,s2δs3,s4 (SH.3)

in the frequency space as

〈
V ωs1s2V

∗ω′
s3s4

〉
= δωω′

Ĵ(ω)

No
δs1,s2δs3,s4 (SH.4)

where V ωss′ ≡ 〈s′, ω|V |s, ω〉. Eq. (SH.4) means that different frequency sectors are statistically decoupled. Noting

that matrix elements of V in (SH.4) behave like matrix elements of a Ginibre matrix, with variance v/N → Ĵ(ω)/No.
We can thus evaluate KTIF−Gin for this model, using Eq. (5) within each frequency sector and obtain for L 6= 0,

KTIF−Gin(t, L) =

(
(L+No)!− No!(No−1)!

(No−L−1)!

)
NL

o (L+ 1)(No − 1)!

∑
ω

[
Ĵ(ω)

]L
= KGin(No, L)KF−Gin(t, L)

∼ LκTI−Gin

(
L

L∗TI

)[
κF−Gin

(
L

L∗F

)
+ t

]
,

(SH.5)

where in the last line, we have used the results in Eqs. (6,10).
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Appendix I: SFF: Numerical results

In this section, we provide further scaling collapses of the TIF-BWM as a representative model of TIF MBQC
systems. From the numerical fitting in 2f, we have L∗F < L∗TI for TIF-BWM. This motivates us to plot the scaling
collapse according to Eq. (13) in Fig. S12, and we see that agreement is obtained with the scaling function provided
in Eq. (13). Lastly, note that LTh(t) is computed by looking at the intersection points of KTI(t, L)/L vs L with a
horizontal line close to 1 (see also the Appendices in [23]), and averaged over around 10000 to 15000 realizations.
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FIG. S12. Scaling collapse of KTIF(t, L)/tL against x for TIF-BWM with q = 3, t = 2, 3, 4 (reds), also shown in Fig. 2e. The
scaling form KTIF/tL agrees with κGinUE(x) in Eq. 13. The inset shows the corresponding LTh(t) and L∗(t) against t.


	Many-body quantum chaos and emergence of Ginibre ensemble
	Abstract
	 References
	A Models of MBQC
	1 Two-site random unitary gate
	2 Random phase model (RPM)
	3 Brick-wall model (BWM)
	4 Kicked Ising model (KIM)

	B Ginibre models of dual transfer matrices (DTM) of MBQC systems
	C SFF regime diagrams for MBQC systems with space-time translational invariance
	D Spectral properties of dual spectra
	1 Distribution of dual eigenvalues and unfolding
	2 Spectra of single realizations
	3 Dual spectra of non-interacting quantum circuits

	E Spectral correlations of dual spectra
	1 Nearest neighbour spacing distribution
	2 Complex spacing ratio
	3 Dissipative spectral form factor (DSFF)

	F SFF for GinUE
	1 Exact evaluation of SFF for GinUE
	2 Diagrammatical approach

	G SFF for Floquet GinUE model
	1 Long-range J()
	2 Long-range J() example: Emergent Potts model
	3 Short-range J()
	4 Short-range J() example with nearest-neighbour coupling

	H SFF for TI Floquet GinUE model
	I SFF: Numerical results


