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Abstract—For decades, industrial control systems (ICS) have
experienced an increasing frequency of cyber attacks, which
in turn have increased in sophistication. Consequently, secure
programmable logic controller (PLC) programming prac-
tices are becoming crucial as more adversaries are attaining
the capability to gain a foothold in the ICS environment and
directly attack the physical process through exploiting vul-
nerable PLC code. Existing programming practices involve
the frequent use of vendor-provided, proprietary library
functions, which cannot be viewed or edited, inhibiting the
incorporation of secure PLC programming practices. This
work begins by exploring the viability of open-source PLC
functions as an alternative because of their open nature and
potential for broader adoption of secure PLC programming
practices. However, when analysed, the selected open-source
PLC functions are found to contain the same vulnerabilities
as those provided by the vendor. In response, a conceptual
framework for a community-driven initiative is proposed
that would acquire open-source PLC functions and their
supporting documentation, review them for vulnerabilities
and apply secure PLC coding practices, and finally dissemi-
nate the newly-secured, open-source PLC functions for wider
use.

Index Terms—ICS, cyber security, PLC programming prac-
tices, open source

1. Introduction

Industrial control systems (ICS) form the backbone
of modern industry, managing essential operations in sec-
tors such as manufacturing, energy, water, and transporta-
tion [5]. As a subset of the broader operational technology
(OT), these systems were traditionally isolated from the
broader information technology (IT) environment, and en-
joyed a certain degree of immunity from the cyber threats
that targeted their IT counterparts. However, in recent
years, a convergence of IT and OT environments has
evolved, driven by the need for greater efficiency, automa-
tion, and data-driven decision making. This integration has
led to a dramatic increase in the interconnection of ICS

devices, exposing them to a whole new world of cyber
threats and vulnerabilities [21].

The IT/OT convergence has seen ICS devices become
targeted by an increasing number and variety of adver-
saries, as opposed to the insider threats and more advanced
(but less frequent) adversaries to which they have become
accustomed [6], [18]. In response, many IT cyber secu-
rity practices and controls have been re-appropriated into
the ICS environment, most notably network segregation.
However, ICS devices were developed primarily for func-
tionality and reliability [10], with little consideration given
to the potential risks associated with external access. As a
result, many ICS components lack the necessary security
features to protect against modern cyber threats, such as
secure PLC authentication protocols [3], and even when
they are available they are often not used [19]. This issue
is exacerbated by the fact that ICS devices often have long
lifecycles, with some systems remaining in operation for
decades, leading to long vulnerability exposure times [7],
[17]. This means that many ICS devices currently in use
were designed and implemented well before the contem-
porary cyber threat landscape took shape, leaving them
ill-equipped to deal with modern attacks.

Programmable logic controllers (PLCs) are the em-
bedded devices at the heart of ICS and the industrial
process. They are responsible for the monitoring and
control of the physical environments in which they reside,
automating the reading of sensors and actuation of pumps,
valves, or even robots according to their programming. As
PLCs form an integral part of the industrial process, it is
essential that the code they run to monitor and control
the physical environment is implemented securely; this
is done by observing secure PLC programming practices
[23]. By adhering to established programming standards,
implementing secure programming practices, and follow-
ing thorough testing and validation processes, organisa-
tions can minimise the likelihood of vulnerabilities being
introduced into their ICS and physical process. However,
many organisations rely on PLC code in the form of
vendor-provided library functions [15], which are propri-
etary, unable to be edited, and demonstrably vulnerable
[12], [16], meaning that many elements of secure PLC



programming practices cannot be exercised when they are
sorely needed.

This paper first explores secure PLC programming
practices and their importance, before considering the
use of open-source functions as an alternative to vendor-
provided library functions. By using existing tooling [16]
to scan a PLC’s code for vulnerabilities, it is found
that such open-source functions are as vulnerable as the
vendor-provided library functions, but with one clear dis-
tinction; unlike the proprietary, vendor-provided library
functions, open-source functions’ code may be viewed
and edited, affording the incorporation of secure PLC
programming practices. This leads to a proposed frame-
work of a community-driven hub for secure, open-source
PLC code, which tests and verifies that the code is free
of known vulnerabilities and conforms to both secure
PLC programming practices and known best practice of
standards and guidelines.

The rest of the paper is structured as follows. Section
2 discusses the vulnerabilities and attacks that may arise
due to insecure PLC programming practices and initiatives
to prevent them. Section 3 presents a brief background of
vendor-provided, proprietary library functions and open-
source alternatives. Section 4 provides an analysis of a
selection of open-source functions to discover whether
they are vulnerable. Section 5 proposes a conceptual
framework for a community-driven initiative to create
secure open-source functions. Section 6 concludes the
work and discusses future work that may be necessary.

2. Related Work

There has been limited research on secure program-
ming practices for PLCs, on the vulnerabilities that result
from insecure code, and on the consequent attacks on
those vulnerabilites. This section presents the prominent
work that has investigated this issue, as well as the vul-
nerabilities and attacks that may arise from them.

Serhane et al. [24] show that inadequately structured
and designed ladder logic code can increase the risks of
vulnerabilities, even when adhering to company standards
and recommendations. These risks are exacerbated when
code is not written by professional, experienced individu-
als. Serhane et al. assert that company-oriented standards
often prioritise system functionality, optimisation, and
safety over addressing security threats and vulnerabilities,
thus potentially creating back doors for hackers or dor-
mant threats within PLC programs. They have also seen
that vulnerabilities in ladder logic code arise from various
poor programming practices. For example, the use of du-
plicated instructions, such as output enable (OTE), coun-
ters, timers, and jump-to-subroutine (JSR), can lead to
undesirable results. Duplicated instructions may produce
unintended fluctuating values for operands, complicating
debugging efforts. Some PLCs may not permit duplication
of specific outputs, while others might allow it. This all
goes to show that poor programming practices can lead
to significantly more vulnerable systems.

Valentine and Farkas [25] categorise programming er-
rors and intentional attacks on PLCs into major and minor
threats. Major threats include duplicate objects, logic er-
rors, syntax errors, programming standard violations, and
unused objects. Minor threats comprise scope and linkage

errors and hidden jumpers. For example, they state a miss-
ing coil to trigger contacts would be a potential security
issue. In the correct use case, a normally open contact
triggers an alarm, sending an alert message to the operator.
A malicious individual could, however, write code that
omits the required coil, making the code compile without
errors. This programming error might remain undetected
until the alarm needs to be triggered. To address this issue,
the authors propose converting PLC code into a database
and querying it against a predefined set of security rules.
For example, a rule would state that there must always
be exactly one coil associated with at least one contact of
the same name. During code validation, violations would
be flagged. This presents a suitable way to enforce secure
programming practices within PLC programming.

Focusing on the intersection of PLC programming
practices and memory management, Green et al. [12]
introduce the technique ‘Process Comprehension at a
Distance’ (PCaaD). PCaaD takes advantage of the fact
that many PLC programmers use vendor-provided library
functions [15] to distinguish what functions are running
on the PLC, thus providing an adversary a greater level
of process comprehension [13]. This is done by reading
those functions’ data blocks (areas of memory dedicated
to storing variables) at a byte-code level and matching
each function’s unique signature of byte-code length and
offsets of memory which contain only 0 values. By us-
ing a similar technique but instead writing to the PLC’s
memory, Green et al. also demonstrate the possibility of
manipulating variables and therefore the physical process.
The areas of memory that contain 0 values are determined
to be benign and could be used by adversaries to store
their own data, resulting in PLC memory being used as a
conduit for command and control.

Building on some of the concepts of PCaaD [12],
Maesschalck et al. [16] show that many of the vendor-
provided library functions contain a vulnerability that
allows adversaries to change the operation of the PLC.
The authors present a scanning tool to identify bytes, and
therefore variables, in the target PLC’s memory that are
susceptible to being manipulated over the network. The
potential implications of this vulnerability are outlined
using an example attack scenario, whereby an adversary
may prohibit the PLC from sending an alert email to an
engineer by preventing the COUNT UP function from
triggering the pulse to send it. Maesschalck et al. analysed
10 vendor-provided library functions, all of which were
found to contain a large number of vulnerable bytes. This
was tested against immediate reads to check the value
had been written to memory, and delayed reads to check
the value persisted in memory without being overwritten.
It was discovered that default variables, i.e. those which
are left unchanged after importing the vendor-provided
library function, are the most vulnerable. However, direct
variables (hard coded variables) and variables in the global
variable block (an area of memory accessible to multiple
functions) may also be vulnerable in certain circumstances
though less likely to be vulnerable than their default
counterparts.

In contrast to the vulnerabilities and attacks discussed
thus far, Ponnada and Fluchs [23] present their top 20 list
of secure PLC coding (programming) practices. Despite
its name, the list extends further than just programming



practices to more holistic controls such as disabling un-
used ports and protocols and monitoring uptime. Each
item on the list is expanded on to include guidance,
example implementation, and a discussion as to why it
is beneficial for security, reliability, and maintenance, as
well as including a list of references to resources such
as MITRE ATT&CK for ICS [20] and ISA 62443 [22].
Where the list items do include programming practices,
the guidance provides helpful examples in the form of
diagrams representing ladder logic as one of the more
common languages for PLC programming.

3. PLC Programming Practices

Current PLC programming practices in industry envi-
ronments rely on vendor-provided library functions [15].
However, these functions are proprietary and their under-
lying code cannot be viewed or edited without circum-
venting digital rights management (e.g. Siemens Know-
How Protection, as depicted in Figure 1). This opacity
can result in challenges when incorporating secure PLC
programming practices, and thus requires a significant
amount of trust in the vendor. As mentioned in Section
2, previous research investigating a PLC memory vulner-
ability [16] identified numerous vulnerable areas in the
memory related to Siemens-provided library functions.
All of the functions investigated contained at least some
vulnerable bytes either after direct or delayed read. Even
smaller, commonly used functions, such as COUNT UP,
contain vulnerabilities such that their variables may be
overwritten. This means that once an adversary has access
to the ICS network, they are able to manipulate variables
within the PLC and, in turn, to affect the physical process.

Figure 1. Siemens Know-How Protection error when trying to view
library function code

Across the vast domain of cyber security, open source
has frequently been a wellspring of concepts and tool-
ing, such as Snort [4] and OpenVAS [14]. Within ICS,
open-source initiatives have focused more on device level
functionality as can be seen with OpenPLC [2]. OpenPLC
is an open-source software alternative to physical systems
and is capable of emulating different PLCs. The operation
of these PLCs is similar to that of physical PLCs, and
they can be programmed in several languages including
Function Block Diagram, Ladder Logic, and Structured
Text. The tool also allows users to share their projects
through a community forum, thus further building a col-
laborative open-source community. This initiative goes
part way to a more open-source approach to PLC program-
ming, but OpenPLC code is not compatible with all other
PLCs [1]. However, since vendor-provided, proprietary
library functions cannot be viewed or edited, and therefore
cannot reliably adhere to secure PLC programming prac-
tices without vendor intervention, open-source functions
provide a potentially useful alternative.

4. Open-Source PLC Functions

There are many open-source functions available on-
line, with one of the more significant projects being the

Siemens Open Library [8] for Siemens PLCs. This library
contains multiple functions and function blocks to be
used by engineers for motor control, valve control, and
other various operations. Two of these function blocks
were selected to be evaluated for vulnerabilities accord-
ing to the scanner proposed by Maesschalck et al. [16],
to discover whether open-source functions are inherently
more secure. While this is not an in-depth study to com-
prehensively identify vulnerabilities across a significant
sample of open-source functions, it serves to form an
understanding of whether they already adhere to secure
PLC programming practices.

The function blocks chosen were IO AnalogInput and
Interlock. These functions were deployed on an Siemens
S7-300 series PLC as per the supporting documentation
and scanned from a system connected to the ICS network
of an established testbed [11]. These function blocks are
part of the Siemens Open Library V13 SP1 Update 8,
which is the latest version supported by the version of
TIA Portal used in this evaluation.

Function Bytes Direct Delayed
IO AnalogInput 112 48 44

Interlock 5 4 4
TOTAL 117 52 48

TABLE 1. SIEMENS OPEN LIBRARY VULNERABLE BYTES

4.1. Analysis

The two open-source blocks that were analysed have
a combined total size of 117 bytes, with IO AnalogInput
comprising 112 bytes and Interlock comprising 5 bytes.
The results of the experiment can be found in Table
1, whereby the first column is the number of bytes in
the function and the following columns reflect vulnerable
bytes found per type of read after writing to memory.
A confirmed direct read means that the byte was written
into memory successfully and that byte can at least be
immediately manipulated. However, a confirmed delayed
read means that the byte written to memory had persisted
for 5 seconds, which means that byte can be persistently
manipulated.

From the analysis, it can be seen that for
IO AnalogInput, 43% of its bytes were immediately ma-
nipulable and 39% of its bytes were persistently manip-
ulable. This means that should an adversary write to this
function during an attack, 39% of the bytes in memory
would persist, enabling the potential for a higher impact
attack. Although a much smaller function, Interlock was
approximately 80% vulnerable for both direct and delayed
reads. However, the memory for the Interlock function
is used predominantly for Boolean variables which use
single bits. Therefore, in two of the bytes there exists an
individual bit in each that is not vulnerable. This shows
that open-source functions unfortunately contain the type
of vulnerability described by Maesschalck et al. [16],
though fortunately not to the same extent as the vendor-
provided functions.

While the analysis was being set up, a particular
variable of interest was noticed in the IO AnalogInput
function called rlnLowLowDeadband. In this context, a
deadband is responsible for verifying whether a value is



Figure 2. IO AnalogInput function block configuration guidance from
supporting documentation

Figure 3. rlnLowLowDeadband variable in the data block of
IO AnalogInput

Figure 4. Vulnerability scanner output of the IO AnalogInput data block
focused on rlnLowLowDeadband’s offset

at or exceeds a particular threshold for a certain period
of time before raising an alert. This is to ensure that,
for example, if water is being disturbed in a tank, that
disturbance repeatedly exceeding a threshold does not also
repeatedly raise an alert, thus causing alert fatigue. The
recommended guidance in the documentation is to leave
this variable at ‘0’ to disable the deadband, and as depicted
in Figure 2, the function comes with rlnLowLowDeadband
set as ‘0’ by default. However, this may lead unsuspecting
engineers into a false sense of security, as this default
variable could be persistently overwritten to enable the
deadband at an abnormally high time period, stifling
any alerts and allowing for dangerous conditions. Paying
close attention to the rlnLowLowDeadband variable of
IO AnalogInput during the analysis, the variable’s offset
and length were recorded, viz. Figure 3. As can be seen,
rlnLowLowDeadband is at offset byte 30 and is 4 bytes
long. As expected, the vulnerability scan reveals that an
adversary would be able to write to these 4 bytes with
persistence, as depicted by the tool output in Figure 4.

Upon further review of the Siemens Open Library
documentation [9], extending to functions that were not

scanned in the analysis, this specific type of configuration
vulnerability was identified across many other functions in
this library, including the proportional integral derivative
(PID) function. This highlights that not only must the PLC
code itself adhere to secure PLC programming practices,
but also the supporting documentation that provides the
code’s implementation guidance.

To reiterate, this analysis has served as just one proof
of concept example of open-source functions being vul-
nerable, which could be fixed by the community either via
modification of the code, the supporting documentation,
or both. It is not intended to be a comprehensive analysis
of vulnerabilities in open-source PLC code; nor is it meant
to be a criticism of the Siemens Open Library’s admirable
efforts to provide open-source PLC code.

5. Framework

Although open-source functions can be viewed and
edited, which allows them to be adapted to secure PLC
programming practices, an organisation would have to in-
vest significantly more time to incorporate such processes
when compared to simply importing the vendor-provided
functions. Therefore, this section presents a conceptual
framework for a community-driven initiative that would
allow for organisations and their engineers to collaborate
on acquiring, securing, and disseminating open-source
functions. The framework is depicted in Figure 5 and the
rest of this section will describe the Code and Documen-
tation Acquisition and Processing, Community Action,
and Secure PLC Code processes along with their sub-
processes.

5.1. Code and documentation acquisition and
processing

The first process is intended to be where the functions
are uploaded, scanned for malware, and provide informa-
tion to the Community Action process.

5.1.1. Scan documentation. As a matter of security, the
first sub-process suggested by the framework is to scan
any acquired documentation for traditional malware. This
is to reduce the risk of the whole operation becoming
compromised given that the intention of the eventual
secure PLC functions is to be trusted by all manner of
industrial processes, potentially including CNI.

5.1.2. Scan code. As well as scanning the acquired docu-
mentation, the framework also suggests scanning acquired
functions for traditional malware. This is perhaps even
more important than the documentation to ensure that the
eventual secure PLC functions are not used as part of a
supply chain attack.

5.1.3. Profile code. Within the profile code sub-process,
the vendor and version of the code are detected. This is for
categorisation so it can be understood for which devices
the open-source functions are intended.

5.1.4. Generate PDF. By potentially using vendor-
provided configuration software, metadata about the func-
tion can be extracted and printed as a PDF which may
provide additional useful information to the community.



Figure 5. Framework for community secured open-source library functions

5.1.5. Flag for review. Once the function has been suc-
cessfully acquired thus far, it can then be flagged for
review and passed to the community for processing.

5.2. Community action

The community action process is where the open-
source functions are checked for vulnerabilities via offline
and online reviews.

5.2.1. Offline review. The offline review sub-process
recommends that reviewers manually analyse the func-
tions’ code, using resources such as recommended vendor-
specific settings and practices, Ponnada and Fluchs’ Top
20 Secure PLC Coding Practices [23], and relevant stan-
dards and guidelines. During the offline review, the frame-
work also suggests that the acquired documentation be re-
viewed such that no configuration guidelines recommend
insecure practices.

5.2.2. Online review. The online review sub-process rec-
ommends that reviewers download the function to a PLC
and use PLC-focussed vulnerability scanners such as the
one proposed by Maesschalck et al. [16].

5.2.3. Information. The offline and online reviews should
both provide detailed information and a history of each
function to understand what vulnerabilities it contained
and what has been done to improve its security.

5.2.4. Implement secure coding practices. This sub-
process is where the function will take all output from
the offline and online reviews, as well as any historical
information, and implement secure PLC programming
practices. Should there be any vulnerabilities which cannot
be removed due to functionality constraints, a warning
should be provided within its documentation, perhaps even
with suggestions of how to implement the security features
should the eventual user choose to do so.

5.2.5. Final offline/online review. Before being released
publicly, the function should pass through one final round
of offline and online reviews for quality and security
assurance. This can be expedited by focusing on the
function’s historical information.

5.3. Secure PLC code

The final process is to release and monitor the newly-
secured functions.

5.3.1. New/verified code & information. The functions
should be released along with historical information of
what vulnerabilities it initially had, how they were se-
cured, and any remaining vulnerabilities left to preserve
functionality. This release should also include supporting
documentation of how to use the function safely and
securely.

5.3.2. Review upon new vulnerability info. Finally, the
released functions should have a record of release date and
a warning upon becoming a certain age with no review,
particularly if any of the related historical information
about previous vulnerabilities, vendors, or versions are rel-
evant in newly-released vulnerability information. Should
the function reach a certain age or be related to a newly-
released vulnerability, it should be flagged for review such
that it can be patched.

6. Conclusion

In the face of the IT/OT convergence and an ever
increasing number of adversaries targeting ICS, this work
has explored whether an open source approach may con-
tain the answer to secure PLC programming practices. At
present, current PLC programming practices frequently in-
volve the use of vendor-provided, proprietary library func-
tions that are unable to be edited or even viewed, which
makes incorporating secure PLC programming practices a
challenge at best. Conversely, open-source functions may



be both viewed and edited. In light of this, an analy-
sis was conducted on selected open-source functions to
discover whether they contain the same vulnerabilities as
their vendor-provided counterparts; unfortunately they do,
albeit in fewer numbers. Moreover, the open-source func-
tions’ supporting documentation suggest unsafe practices
that lead to further vulnerability. Although the existing
open-source functions and documentation contain vulner-
abilities, they still offer the promise of incorporating se-
cure PLC programming practices. Therefore, a conceptual
framework for a community-driven, open-source initiative
was proposed. Within this framework, open-source PLC
functions and their supporting documentation are acquired
and checked for vulnerabilities via multiple methods by a
community, creating an audit trail of evidence to document
their journey, before finally being disseminated for wider
use. The intention is that this framework would be adopted
by organisations and engineers that own and operate ICS.
In this way they could integrate secure PLC functions into
their infrastructure without the time-intensive overhead of
adapting all of their PLC code to ensure secure program-
ming practices, and more importantly without leaving their
PLC code insecure in the first place.

This paper presents a proposition to improve the cyber
security of PLC programming in ICS; the proposed frame-
work has not yet been implemented. Further work would
invite discussion and refinements to the framework, before
potentially building a consortium of interested parties as
stakeholders in order to bring the framework to fruition.
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