
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. XX, 2023 1

DOPpler: Parallel Measurement Infrastructure
for Auto-tuning Deep Learning Tensor Programs

Damian Borowiec, Gingfung Yeung, Adrian Friday, Richard Harper, Peter Garraghan

Abstract—The heterogeneity of Deep Learning models, libraries, and hardware poses an important challenge for improving model
inference performance. Auto-tuners address this challenge via automatic tensor program optimization towards a target-device.
However, auto-tuners incur a substantial time cost to complete given their design necessitates performing tensor program candidate
measurements serially within an isolated target-device to minimize latency measurement inaccuracy. In this paper we propose
DOPpler, a parallel auto-tuning measurement infrastructure. DOPpler allows for considerable auto-tuning speedup over conventional
approaches whilst maintaining high-quality tensor program optimization. DOPpler accelerates the auto-tuning process by proposing a
parallel execution engine to efficiently execute candidate tensor programs in parallel across the CPU-host and GPU target-device, and
overcomes measurement inaccuracy by introducing a high-precision on-device measurement technique when measuring tensor
program kernel latency. DOPpler is designed to automatically calculate the optimal degree of parallelism to provision fast and accurate
auto-tuning for different tensor programs, auto-tuners and target-devices. Experiment results show that DOPpler reduces total
auto-tuning time by 50.5% on average whilst achieving optimization gains equivalent to conventional auto-tuning infrastructure.

Index Terms—Measuring Program Latency, Program Auto-tuning, Deep Learning Compilers, Deep Learning Systems

✦

1 INTRODUCTION

Deep Learning (DL) has unquestionably become impor-
tant for both industry and academia. Demand for ever better
performing DL models offering accurate and low-latency
inference, drives research into optimizing DL models to
reduce their inference latency [1]. An effective mean to
achieve this goal is to optimize individual computational
components of DL models – tensor programs – towards
specific target-device characteristics (e.g. cache & memory
hierarchy, thread scheduling). Manually performing such
optimizations is difficult and time-consuming, requiring
expertise in DL and systems engineering. This has led to
the rise of auto-tuning: an automated optimization of tensor
programs towards a target-device, facilitated by DL compil-
ers such as TVM [2] and Halide [3].

Auto-tuning optimizes tensor program latency on a
target-device by conducting an automated implementation
search for tensor programs [2], [3], [4], [5], and requires
performing thousands of costly iterative measurements of
candidate implementations per target-device. Such mea-
surements must be performed in an isolated target-device
serially to ensure accurate latency measurement [2]. This
serial approach yields low platform resource utilization
and throughput, meaning auto-tuning of even small DL
models requires hours to achieve reasonable performance
improvement [5], resulting in reduced cost-efficiency for
DL providers. Given the growing industrial adoption of
auto-tuning in large-scale DL deployments (Amazon Sage-
Maker [6], Microsoft Watch For [7]) and the emergence
of Optimization-as-a-Service solutions (OctoML Octomizer
[8]), slow DL auto-tuning is a crucial issue to address.
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One approach to overcome these issues is to provide
auto-tuners the capability to measure multiple tensor pro-
gram candidates simultaneously within a target-device. This
appears to be an appealing solution, as computing sys-
tem parallelization can improve throughput and resource
efficiency. However, this has yet to be attempted for auto-
tuning, as established thinking is that introducing any de-
gree of parallelism during latency measurement will incur
high inaccuracy stemming from programs (i.e. GPU kernels)
competing for target-device resources. Such inaccuracy is
further compounded given that all auto-tuners measure
tensor program latency at the CPU-level, and not on the
target-device itself. This is appropriate for measurement
in isolation, however incurs measurement inaccuracy in
parallel due to CPU-level contention from awaiting GPU
kernels to complete execution. This presents a challenging
conundrum: performing a high degree of tensor program
latency measurements in parallel will speedup auto-tuning,
however increases measurement inaccuracy leading to sub-
optimal optimization – the purpose of auto-tuning.

In this paper we present DOPpler – a parallel DL auto-
tuning measurement infrastructure. DOPpler accelerates
auto-tuning measurement whilst enabling state-of-the-art
auto-tuners to attain optimization performance improve-
ments equivalent to conventional serial measurement infras-
tructure. DOPpler achieves this by performing tensor pro-
gram latency measurements in parallel using simultaneous
CPU processes and leveraging the per-process, GPU driver-
level serialization, reducing the proportionally significant
execution costs occurring at the CPU-level measurement
harness. To maintain measurement accuracy, DOPpler per-
forms measurements directly on target-device, instead at
the CPU-level currently used. During auto-tuning, DOPpler
dynamically determines an optimal parallelism level with
respect to tensor program execution characteristics, to accel-
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erate auto-tuning and minimize measurement inaccuracy.
Specifically, the core contributions [9] of our work are:

• We explore the feasibility of parallel auto-tuning
measurements, identifying auto-tuner design limi-
tations causing GPU/CPU performance bottlenecks,
measurement inaccuracy, unpredictable CPU-level
latency measurements, and execution timeouts.

• We propose DOPpler: an auto-tuning measurement
infrastructure for DL auto-tuners that dynamically
changes parallelism levels to perform fast and accu-
rate latency measurements.

• We demonstrate that DOPpler reduces auto-tuning
time by 50.5% on average across a large variety of
tensor programs, auto-tuners and DL models on both
single and multiple-device measurements, whilst
maintaining optimization quality equivalent to the
default auto-tuning measurement infrastructure.

2 BACKGROUND

2.1 Deep Learning Optimization
Deep Learning: DL models provide computational abilities
to perform tasks such as automatic translation or image
recognition. DL models are composed of multi-layered
Deep Neural Networks (DNNs) expressed as computational
graphs, where nodes represent operators (ReLU, Convolu-
tion) and edges their data dependencies (N-dimensional
tensors) [10]. Operators are implemented by tensor programs
that comprise CPU code for data loading and accelerator
code (e.g. Nvidia CUDA kernels for GPUs) that manipu-
late and transform tensors. Characterized by their operator
quantity, dimensionality and tensor-program complexity,
carefully designed DNNs exhibit improved accuracy at
the expense of higher Floating Point Operations (FLOP)
count [10]. Increasingly, DNN inference is performed on
massively-parallel GPU architectures, enabling faster tensor
program computation compared to CPUs.

DL inference optimization: DL inference can be per-
formed using DL framework-specific tensor program im-
plementations [11] or DL compilers such as TVM [2]. DL
compilers compile high-level DL model definitions to target-
device binaries, enabling control over their implementation
specifics. Both DL frameworks and compilers can optimize
DL tensor programs to reduce their execution latency on
a given target-device [12]. At a high-level, graph transforma-
tions are performed (e.g. algebraic simplification or operator
fusion to reduce intermediate program launch steps). At
a low-level, target-device dependent optimizations are per-
formed (e.g. computation/data alignment to device cache
size, vectorization, device-intrinsic function substitution, in-
sertion of synchronization primitives, data tiling towards
device threads) [2]. Manually applying low-level optimiza-
tions is time-consuming, and must be performed for each
unique tensor program towards a unique device, exploring
a limited range of the implementation space, which leads to
sub-optimal program latency improvement [4].

2.2 Deep Learning Auto-tuning
DL auto-tuning enables automation of low-level tensor pro-
gram optimizations, requiring DL compilers to generate,
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Fig. 1: Overview of DL model auto-tuner operation.

compile and measure execution latencies of thousands of
candidate tensor program implementations on a target-
device. The purpose of an auto-tuner is to decide what
transformations of compute1 should be performed to param-
eterize or generate an optimal schedule2, transforming the
tensor program implementation. Once measured, an auto-
tuner selects the fastest candidate implementation for a tensor
program. Auto-tuners are similar in operation as shown in
Figure 1, however, can be categorized into two types.

Template-based auto-tuners utilize pre-defined tem-
plates that specify an implementation configuration space
(e.g. loop tiling or unroll factors). Cost models and search
algorithms are used to navigate the configuration space
to prune and find candidates that produce lower ten-
sor program latency. Examples include AutoTVM [12],
Chameleon [5] or AdaTune [13].

Auto-schedulers generate implementations using rules
and steps, incrementally creating a candidate implementa-
tion. Search methods and cost-models are used to explore
step spaces whilst generating implementations. Exemplified
by Ansor [4] or Halide [3], auto-scheduling reduces engi-
neering effort by avoiding manual templates, yet can be
less effective for esoteric operators whose implementation
spaces are challenging to define within rule-space bounds.

2.3 Tensor Program Execution in Auto-tuning

GPUs – a prominent type of accelerator for DL and the
focus of our work – facilitate the Single Program Multiple
Data (SPMD) stream programming model, whereby a kernel
describes operations to be performed on a single stream
datapoint. Nvidia GPUs implement SPMD via the Single
Instruction Multiple Threads (SIMT) [14] model, where each
thread executes the kernel over a single data point simul-
taneously across multiple GPU cores. DL auto-tuners gen-
erate and execute thousands of candidate tensor program
implementations, each comprising both CPU-level code and
the GPU CUDA kernel(s) to determine candidates with the
lowest latency. The auto-tuner measurement infrastructure
generates and compiles a batch of tensor programs from
configurations provided by the auto-tuner. Each program
in the batch is measured (in-order) by (i) spawning a CPU
process, (ii) loading tensor data onto the GPU, (iii) collecting
a start timestamp, (iv) repeatedly launching the kernel N
times (10s - 100s), (v) collecting a stop timestamp, (vi) ob-
taining average kernel execution latency (from N sample
timestamp differences) and, (vii) terminating the CPU pro-
cess and reporting measurements. This sequence repeats

1. Compute — High-level definition of operator computation.
2. Schedule — Compute implemented towards a target-device.
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Fig. 2: Auto-tuning in Nvidia V100 GPU, 500 measurement.

for the next candidate in the batch. Existing measurement
infrastructure enables single and multi-device candidate
execution for measurement on both host-local and remote
target-devices via an RPC-based client-tracker-server model
3. Thus, the degree of auto-tuning speedup is presently
determined by the number of available GPUs.

2.4 Performance Limitations in Auto-tuning
Auto-tuning has been shown to effectively optimize DL
tensor programs, resulting in sizable DL model inference
speedup as depicted in Figure 2a. However, it requires
considerable time to complete, as shown in Figure 2b. For
example, auto-tuning VGG16 towards Nvidia Titan X using
AutoTVM takes >11 hours [5]. The latency measurement
phase is particularly time-intensive, constituting on average
51.6% of total auto-tuning time as shown in Figure 2c due to
auto-tuners executing individual candidate tensor programs
within an isolated target-device to measure latency accu-
rately [4], [13]. The necessity to perform serial measurement
(i.e one candidate a time) results in high auto-tuning time.
This decision is motivated by GPU kernel scheduling unpre-
dictability if multiple candidates were to execute together
on a single device. Serial measurement reduces auto-tuning
throughput, platform availability and utilization to as low
as 7% CPU and 19% GPU as shown in Figure 2d.

3 ACHIEVING PARALLEL AUTO-TUNING

Parallelism increases resource efficiency and throughput
in many areas of computing. Intuitively, auto-tuning time
could also be reduced by launching multiple candidate
tensor programs simultaneously on a single target-device
during their measurement. However, the established view
held and practiced in the community is to measure tensor
programs in isolation and serially to ascertain accurate
latency. The proprietary scheduling of concurrent CUDA
Stream kernels provides no guarantees on workload la-
tency [15] – established to be problematic for parallel can-
didate measurements. Existing DL auto-tuners are thus de-
signed to strictly perform serial measurement, isolating the

3. A server is instantiated per GPU to measure a single candidate

TABLE 1: Hardware, software, and workload setup.

Platform Hardware Specification

A 2x (16-core) Intel Xeon 5218 [2.3GHz],
196GB DDR4, Nvidia V100 (Volta) 32GB

B (12-core) AMD Ryzen 1920X [3.5GHz],
128GB DDR4, Nvidia GTX2080 (Turing): 8GB

C (6-core) Intel i7-6850K [3.8GHz],
32GB DDR4, Nvidia GTX1080 (Pascal) 8GB

Type Software / Workload Specification

Compiler TVM 0.7dev [2]

OS/Driver Ubuntu 20.04, Nvidia Driver 465.31, CUDA 11.3.1 [15]

Auto-tuner Chameleon, AutoTVM, Ansor [4], [5], [12]

DL Model MobileNet-V1, SqueezeNet, VGG-16, AlexNet,
ResNet-18 [16], [17], [18], [19], [20] { batch 1, 3×224×224 }

Tensor
Program

MatMul (x3), T-Conv1D (x2), Conv1D-NCW (x2),
Conv1D-NWC (x3), Conv2D-NCHWc-Int8 (x4),
Conv2D-HWCN/NCHW/NHWC (x9), GRP-Conv2D,
DepthW-Conv2d (x2), Correlation, Dense-Int8 (x2),
Dense, Conv3D-NCDHW/NDHWC (x5), T-Conv3D,

device for both remote (RPC) and local auto-tuning. During
conventional serial measurements, parallelism is achieved
inter-device, using multiple local or remote target-devices
where measurements remain serial. To date, no DL auto-
tuner performs intra-device parallel measurement.

Parallel Auto-tuning Implementation: Intra-device,
parallel auto-tuning on a single target-device could be
achieved by binding N TVM RPC servers (see. Section 2.3)
to a single GPU, bypassing per-server isolation constraints
at the expense of increased overhead with higher degrees of
parallelism (DP) – the number of simultaneous candidates
executing for measurement. Alternatively, existing infras-
tructure can be modified to disable isolation constraints
and extended to enable simultaneous candidate execution
intra-device – our approach chosen to investigate parallel
auto-tuning. We modified existing infrastructure to spawn
separate processes each with a dedicated CUDA Stream,
which we define within this work as Naive Parallel Measure-
ment (NPM). We further evaluate the effectiveness of using
multiple GPUs in Section 5.2.

3.1 Naive Parallel Measurement (NPM)

We compared serial and NPM auto-tuning by studying
(i) time taken to complete 500 candidate measurements,
and (ii) lowest latency candidate found by an auto-tuner
(optimization quality). We optimized 36 tensor programs
with 3 auto-tuners Ansor (AN), AutoTVM (AT), Chameleon
(CH) in 3 platforms (A, B, C) as per Table 1, with 7 DP
levels {1 - 64}. We also studied the impact of Nvidia Multi-
Process Service (MPS) [21] that enables kernel multiplexing,
avoiding time-slice scheduling and permitting thread blocks
to execute kernels from multiple candidate tensor programs.

Auto-tuning time is consistently reduced in NPM across
auto-tuners and tensor programs as shown in Figure 3.
At higher DP {8 - 64}, NPM achieves 2 - 3.62× speedup
over serial, whereas at lower DP {2 - 4} achieves lesser
improvement of 1.01 - 1.2×. This stems from GPU time-
slice scheduling, as CUDA Runtime serializes kernels from
different Streams. While this is no issue for serial mea-
surement, NPM is unable to fully exploit CPU parallelism
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Fig. 3: NPM auto-tuning speedup vs. serial for auto-tuners, tensor
programs, and DPs (averaged across platforms).

due to overhead in process creation and blocking at the
CUDA Runtime level, awaiting straggler kernel comple-
tion. In few cases, NPM at DP levels {2 - 4} is slower
than serial (Dense, TConv3D-NCDHW). This is due to the
default timeout threshold limiting measurement time per
candidate to 3 seconds [2], [5] to avoid erroneous candidates
preventing auto-tuning progression. In most cases candidate
measurement completes within the allotted time, however
in the worst case candidates must await timeout before
a measurement is deemed failed. For NPM at DP levels
{2 - 4}, candidates failing to complete ahead of timeout
(e.g. invalid candidate, out-of-memory (OOM) errors) will
delay reporting completed candidate measurements until ≥
3 seconds has elapsed, resulting in idle time. At low DP
levels this causes total measurement time to be higher than
serial measurement. At higher DP levels {16 - 64} this inef-
ficiency is amortized by the number of in-flight candidates
measured. The cumulative measurement throughput from
CPU core saturation eliminates idle time between measure-
ments reducing auto-tuning time, however 64× speedup
with NPM (DP=64) is rarely possible due to host and target
device capacity limitations. Enabling Nvidia MPS achieved
auto-tuning speedup between 0.98% to 10.97% (σ = 25.6%)
across all studied platforms and tensor programs.

3.2 Measurement Inaccuracy
We observed a large discrepancy between measured latency
of identical candidates during serial measurement and NPM
auto-tuning – which can be expressed as δ = |r̃i − ri|
where ri is the candidate latency i as reported during
measurement in isolation, and r̃i the latency reported dur-
ing NPM. As shown in Figure 4, performance improve-
ment achieved with NPM in comparison to baseline tensor-
program (i.e. no auto-tuning performed) is typically always
worse than serial, however, when the best candidates found
by NPM are re-measured in an isolated device (black arrows
Figure 4), their reported latency differs substantially from
values reported using NPM. When examined with Nvidia
Nsight Systems / Compute profilers [22], kernel latencies
measured with NPM typically matched latency measure-
ments obtained during serial measurements, suggesting that
majority of inaccuracy stems from the CPU-level method
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produces higher inaccuracy and inconsistency.

of performing measurements. In serial measurement infras-
tructure, candidate latency measurements rely on start and
end timestamps collected when the kernel launch command
is issued via the CUDA Runtime by the tensor program.
NPM enables CPU-level parallelism to measure candidate
execution. At any DP level ≥2, kernels originating from
separate CUDA Streams (CPU processes) must compete for
GPU time, blocking at the GPU scheduler. These factors
combined result in unpredictably inflated candidate latency
when measured with CPU-level timestamps, and amplified
by SM resource constraints and GPU-level scheduling.

3.3 Measurement Inconsistency

The measurement inaccuracy incurred from CPU-level mea-
surements at higher DP levels also hinders the ability of the
auto-tuner to converge on low-latency candidates. Figure 5
depicts auto-tuning progress across different tensor pro-
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grams when optimizing with a Grid-index auto-tuner [2],
which proposes measurement candidates deterministically,
allowing for one-to-one latency comparison across different
DP levels4 We observe that for the same candidates, higher
DP levels produced greater divergence of the latency distri-
bution compared to serially-measured counterparts, further
varying across tensor programs types due to their different
computational intensity and scheduling characteristics.

Despite reduced measurement inaccuracy (by 15%, with
Median Absolute Deviation 40% across all tensor pro-
grams and platforms), introduction of Nvidia MPS still
incurs measurement inconsistency, and in some cases fur-
ther skews the CPU-level timestamp measurements due
to kernel funnelling into a single CUDA context. Whilst
increasing kernel throughput, MPS exacerbates the over-
head of cache/memory accesses by kernels originating from
concurrent CUDA Streams, where kernel executions are
interleaved and compete for cache/DRAM, particularly for
memory-bound tensor programs [15]. Whilst advantageous
for some use-cases, we found MPS to be counterproductive
for parallel auto-tuning due to negative effects on mea-
surement accuracy. Auto-tuners relying upon inaccurate
measurements will explore the implementation spaces of
tensor programs differently than serial measurements, and
potentially propose sub-optimal candidates.

3.4 Discussion
Our study indicates that when performed in parallel, CPU
timestamp-based latency measurements inadvertently incur
process blocking (GPU) and competition (CPU) overhead,
negatively impacting measurement accuracy. Given this
inaccuracy and inconsistency is non-deterministic across
measurements, the auto-tuner’s ability to effectively explore
the implementation space is hindered. As such, a more
accurate measurement method is required for NPM to ef-
fect a meaningful auto-tuning speedup. Moreover, while
naively increasing candidate measurement concurrency re-
duces auto-tuning time, it leads to more frequent mea-
surement timeouts and failures, reducing the number of
successful measurements available for feedback to the auto-
tuner. This stems from the static timeout threshold (3s) used
in each measurement by default, which when combined
with GPU blocking and CPU-level process competition,
prematurely preempts measurements that would have suc-
ceeded otherwise. These findings suggest that the choice of
timeout threshold should reflect a specific DP to minimize
candidate failures. Moreover, we observe that certain tensor
program types benefit more from NPM w.r.t. time saving
and reduced measurement inaccuracy and inconsistency. As
such, the relationship between tensor program type and
device performance limits must also be considered when de-
ciding appropriate DP that reduces auto-tuning time whilst
maintaining accuracy of parallel measurements.

4 DOPPLER DESIGN & IMPLEMENTATION

4.1 Overview
The objective of DOPpler is to reduce auto-tuning time
and maintain optimization quality. DOPpler achieves this

4. Infeasible with auto-tuners such as AutoTVM or Ansor, given their
exploration strategies propose different candidates for each new run.
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Fig. 6: Overview of DOPpler architecture.

by continually analyzing measurement results, dynamically
selecting DP levels to minimize inaccuracy and adjusting
measurements reported to the auto-tuner. DOPpler acts as
a layer between the auto-tuner and GPU target-device as
shown in Figure 6, and comprises: (i) Precise Parallel Mea-
surer (PPM), which enables parallel execution of candidates
within the same target-device and across multiple devices,
whilst increasing parallel candidate measurement accuracy
by measuring latency directly on the GPU target-device, as
opposed to CPU-level timestamps used by current auto-
tuners; (ii) Calibrator analyzes measurement consistency, cal-
culates appropriate DP levels for the current measurement
batch to adjust reported measurements, and ranked serial
re-measurement of a subset of candidates on an isolated
target-device to ensure selection of the best candidate. We
selected DOPpler’s hyperparameters using methods prac-
ticed by the TVM auto-tuning community [2], [5], ascer-
tained through prior work [23], [24] and experimenting
with different configurations (6 tensor programs, 1 auto-
tuner and platform) representing 3.7% of total scenarios
evaluated. These hyperparameter values are static across all
examined workloads, auto-tuners and platforms, and their
effectiveness is studied within a hyperparmeter analysis in
Section 5.3. DOPpler is designed towards three goals:

argmin
i,j,p

δmean,Υ = E(ci, hj , dp) (1)

With E denoting the tensor program execution: (i): mini-
mize measurement time Υ = {υi | i = 1 . . .K} for a set
of candidates C = {ci | i = 1 . . .K} proposed by the auto-
tuner given target-device H = {hj | j = 1 . . . N} operating
with degree of parallelism DP = {dp | p = 1 . . .maxdp};
(ii): maximize dp, thus increasing measurement through-
put and utilization of the target-device and host CPU,
argmax dp; and (iii): minimize measurement inaccuracy
δmean resultant from assigned dp being too high for a given
set of candidate measurements executing in parallel.

4.2 Precise Parallel Measurer

The Precise Parallel Measurer (PPM), as shown in Algo-
rithm 1 is a process manager and candidate execution infras-
tructure leveraging the multiprocessing [25] Python library.
The PPM spawns separate CPU worker processes W where
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W = {wi | i = 1 . . .maxdp}5 each containing a separate
CUDA Stream, that executes the compiled tensor program
bi and performs latency measurement. Each worker wi

accepts execution requests containing compiled candidates
bi ∈ Bcurr and parameters (timeout threshold, number
of measurement repeats), via Inter-process Communication
(IPC) and/or RPC for multiple local/remote target-devices.
The PPM increases measurement throughput at the CPU-
level via temporal concurrency, since the CUDA Streams
kernels are serialized by the GPU scheduler. DOPpler does
not spatially multiplex workloads at the GPU (e.g. by
enabling Nvidia MPS) as we found this imposed further
measurement inaccuracy with modest measurement time
reduction (see. Sections 3.1 and 3.3).

Adaptive timeout: As discussed in Section 3.1, measur-
ing candidates at higher DP levels increases the likelihood
of OOM/device launch errors and timeouts. Thus to achieve
timely completion of parallel measurements, an adaptive
timeout is introduced. The tout denotes the number of sec-
onds until all remaining processes will be preempted due to
inactivity or execution latency exceeding tout. We determine
an appropriate measurement timeout for a DP level using a
modified Heaviside step function [23] as follows:

tout = ⌊max{η,min{ι, 2ι× tanh(ϕdp
G

2
)}}⌋ (2)

where η and ι represent the minimum and maximum feasi-
ble timeout bounds, and ϕ controls how quickly timeout
should increase with increasing dp and G - the set of
available target-devices (local or remote). Dynamic timeout
is directly used by the PPM, as shown in Algorithm 1. We set
η to conservative 4s (+1 w.r.t. default 3s for serial). We set ι to
20s, guided empirically by auto-tuning progressively larger
tensor programs at DP = maxdp

6, where ι is the maximum
time taken for maxdp measurements of the largest viable
tensor program to complete, whilst avoiding runtime errors.

Measurement accuracy: To alleviate measurement in-
accuracy occurring due to CPU-level timestamp collection
during parallel measurements described in Section 3.2, we
implemented a measurement procedure that collects ker-
nel execution latency information directly from the target-

5. maxdp is the maximum expected DP, set to auto-tuner candidates
batch size - commonly set to 64 in analyzed works

6. using the Grid-index auto-tuner towards platform A

Algorithm 1: Precise Parallel Measurer
Input: Bcurr, dp, G
Output: Mcurr

1 init
2 W ← Instantiate maxdp workers across G devices
3 begin
4 tout = CalcTimeout(dp) // Eq. 2

5 while candidates left to measure do
6 Bsel ← take dp ×G candidates from Bcurr

// Allocate dp candidates to each device gi ∈ G

7 BGalloc ← allocate(Bsel, dp, G)
8 for (bi, gj) ∈ BGalloc do
9 subm←

measure(wrk=wij ,dev=gij ,cd=bi,t=tout)
10 end
11 end
12 Mcurr ← Retrieve results from workers W
13 end

device. We leveraged the Activity API from the Nvidia
CUPTI library [26] to collect kernel latencies using the
CUpti ActivityKernel5 records. Activity API is commonly
used by engineers to manually instrument CUDA kernels
to profile specific code regions, and is used by the Nvidia
profilers [22] to generate detailed profiling reports. We au-
tomatized this process by enabling record collection prior
to each candidate execution, relying upon the device to
report accurate kernel latencies. The difference between
serial CPU-level timestamp measurements and DOPpler
Precise Parallel Measurer are depicted in Figure 7. Whilst
DOPpler does not leverage MPS-based kernel multiplexing
and employs accurate kernel latency measurements, any
cache/DRAM access overhead resultant from executing ten-
sor program kernels in close succession when submitted in
parallel will be inadvertently captured within the Nvidia
Activity API on-device measurements. As such, there is an
upper bound for DP beyond which measurement inconsis-
tency occurs (see. Section 3.3) resultant from cache/DRAM
access competition, and dependent on unique combination
of tensor program and target-device hardware.

4.3 Calibrator
As discussed in Sections 3.1 and 3.3, certain combinations
of DP levels and program types exhibit latency inconsis-
tency. To address this, the Calibrator dynamically adjusts
DP levels based on changing measurement characteristics.
Algorithm 2 describes the Calibrator operation. Initially,
the Calibrator compiles tensor program T , |C| times with
configurations C provided by the auto-tuner. It then begins
a parallel measurement process using Parallel Executor to
measure dp configurations across G devices with DP level =
dp on each device. Any failed measurements are repeated to
determine how many failures occurred due to DP being too
high (Nerr.dp) and how many succeeded (Nsucc).

Anatomy of a measurement: Let M denote a batch of K
measurements M = {mi|i = 1 . . .K} of candidates {bi ∈
B} as configured by {ci ∈ C}. In line with current auto-
tuners, each execution of bi is repeated N times during mi

to obtain mean latency of ci, as depicted in Figure 7. We
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Algorithm 2: Calibrator operation
Input: T - Tensor program definition

C - Batch of candidate configurations for T
G - Available target devices

Output: M - Measurements of each Bi as configured by
Ci

1 begin
2 B ← Compile(T , C) // B = Set of compiled candidates

3 while len(B) ≥ 0 do
4 Mres ←Measure(dp ×G candidates from B, dp=dp,

devs=G)
5 Mres, Nerr.dp, Nsucc ← RemeasureFailed(Mres)
6 Msmpl ← SampleCandidates(Mres, param) // Eq. 3

7 Mremeas ←Measure(Msmpl, dp=1, devs=G)
8 Mres, δmean,∆← Analyze(Mres, Mremeas) // Eq. 4

9 Mupdt ← Update(Mres, δmean) // Eq. 5

10 M ← Concat(M , Mupdt)
// REACT Policy Update

11 A← α // Adaptive Max Degree of Parallelism

12 if (δmean > τ ) or (Nerr.dp > (dp × τ)) then
13 A, dp ←MultiplicativeDecrease(A, dp, β) // Eq. 6

14 end
15 γcur ← CalculateAdjustment(A, dp, γmin, γmax)

// Eq. 7

16 dp ← |dp + γcur| // Binary Increase

17 end
18 end

denote measurement duration of candidate bi as υi ∈ Υ and
mean achieved latency as li ∈ L.

Outlier detection & remeasurement : To identify candi-
dates whose latency measurements was disproportionally
affected by parallel execution and unpredictable on-GPU
co-scheduling, we performed outlier detection using the
double Median Absolute Deviation (MAD) [27] and mod-
ified Z-scores [24], adopting the constant 0.6745 from [24].
We feed the detector with a population of ratios between
latencies L and measurement duration Υ calculated as
R = { li

υi
|li ∈ L, υi ∈ Υ}. In an ideal scenario, N×li ≈ υi for

each mi. However, when DP is set too high for the specific
tensor program T computational intensity vs. capabilities of
the target-device, we found ratios ri ∈ R disproportion-
ally inflated for candidate measurements that were most
affected7 by paralellism, compared to remaining ratios in
population R. A total of Q candidates are selected for re-
measurement in isolation, comprising outliers and random
samples from the iteration batch, where Q is:

Q = max(len(Routliers), ⌈ζ × len(Msuccess)⌉) (3)

where Msuccess denotes all successful measurements in
the iteration and ζ the re-measurement percentage factor,
and set to 0.2 based on an initial empirical and sensitivity
analysis. A combination of outliers and/or randomly sam-
pled candidates are then re-measured in isolation serially,
producing Mremeas. Re-measurement results are used to
calculate a population-level δmean as follows:

7. |li − lj | was higher than for other population members, where lj
is the latency of the candidate re-measured in isolation.

δmean ← mean

({ |lj − li|
li

| lj ∈ Lremeas, li ∈ L

})
(4)

The δmean is used two-fold: (1) to guide adjustments
in DP for next iteration, and (2) to scale measurements
reported to the auto-tuner in the current iteration. The
scaling is performed as follows:

Mupdt = {ri × (υi − (υi × δmean))|ri ∈ R, υi ∈ Υ} (5)

Since scaling is performed using unique per-candidate
ratios, each measurement can be individually adjusted w.r.t.
population, accounting for individual interference impact.

REACT Policy – DP adjustment: Before commencing
a new measurement iteration, Calibrator adjusts DP using
the REACT policy – inspired by the operation of the Binary
Increase Congestion control (BIC) algorithm [28] from Trans-
mission Control Protocol (TCP). REACT rapidly reacts to
any relative change in δmean and candidate failures Nerr.dop,
and attempts to maximize DP as specified in Eq. 1. As
per Algorithm 2, during DP adjustment, REACT uses an
adaptive maximum dp for the next round, denoted as A
(initialized by α). Initially, REACT checks if either δmean

or Nerr.dop have surpassed threshold τ , indicating high
degree of measurement inaccuracy or failed candidates in
the prior round due to the previously proposed dp. Under
such conditions, REACT performs Multiplicative Decrease of
A using β and adjusts dp as follows:

A←
{
|dp × 2−β

2 |, if dp < A

|dp| otherwise

dp ← |dp × (1− β)|
(6)

Xu et al. (2004) [28] set β to 0.125 motivated by higher
utilization at the expense of convergence. More conserva-
tively, we set β = 0.2, reducing inaccuracy at the expense
of throughput. The dp for next iteration is established using
the binary increase factor γ, as follows:

γ ←
{

A−dp

2 , if dp < A

dp −A, otherwise

γ ← max{min{γ, γmax}, γmin}
(7)

Where γmin and γmax are the lower and upper bounds
of adjustment at each update point, limiting the degree of
change in dp. In REACT we set γmin to 2 and γmax to 12 in
line with [28]. Calibrator continues to monitor and adjust dp
until auto-tuning completion. Via such approach, DOPpler
is able to constantly adjust parallelism levels in response
to measurement inaccuracy and target-device compute ca-
pability. For example, auto-tuning large tensor programs
resulting in high target-device utilization will result in lower
DP levels (possibly dp = 1 for very high utilization).

Rank selection: Upon tuning completion, Calibrator re-
measures Top-K candidates in isolation to re-affirm the glob-
ally best candidate latency. During rank selection, DOPpler
reverts to conventional serial measurement. K was empir-
ically determined to 1% of |C| as described in Section 5.3.
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Fig. 8: Auto-tuning 3 tensor programs for 2000 trials, (Ansor, Platform
A). DOPpler achieves equivalent performance.

5 EVALUATION

5.1 Experiment Setup

Our goal was to evaluate DOPpler’s ability to reduce auto-
tuning time while achieving optimization equivalent to that
attained using serial measurement infrastructure.

Testbeds: We evaluate DOPler across three platforms
listed in Table 1, with primary focus on experiments with on
platform A, containing the most computationally powerful
target-device at our disposal (Nvidia V100). Each platform
contains four GPUs each and is provisioned with identical
OS, GPU drivers, TVM compiler version and CUDA com-
pute library as per Table 1.

Auto-tuners: DOPpler was integrated with Ansor auto-
scheduler [4] and two template-based auto-tuners; Au-
toTVM and Chameleon [2], [5] configured with default
TVM and auto-tuner parameters (3s timeout, 64 candidate
batch size), and settings reported in publications and code-
bases [2], [5]. We selected 60 measurement repeats to balance
between 3 repeats used in AutoTVM by default, and the
TVM’s community recommendations of 1000ms measure-
ment duration. Avoiding dynamic number of repeats en-
ables us to compare the measurement infrastructures fairly
and proportionally to each tensor program. We evaluate this
choice in Section 5.2 and depict results in Figure 9.

Workloads: In evaluation, we used 36 tensor programs
({Regular/Transposed} {1D,2D,3D,Depthwise,Grouped}
Convolution, Matrix Multiplication etc.) with batch size
= 1, and 5 DL Models (AlexNet, SqueezeNet, MobileNet,
VGG16, ConvNext [29]) with inputs {1 × 3 × 224 × 224}.
Workloads were chosen in line with existing auto-tuners
[2], [4], [5], and experiments repeated 10 times.

Experiments: We performed auto-tuning using cur-
rent serial measurement infrastructure (serial) and DOPpler
(DOPpler auto-tuning). During, tensor program experiments,
auto-tuners complete 500 candidate measurements trials
(or early-stop {implementation space size < 500}). We
selected 500 measurements as the stop threshold in line
with existing works [5], [13] that perform between 150 and
800 measurements, and commonly observe optimization
convergence at 500 trials across majority of experiments.
We also demonstrate DOPpler’s effectiveness for longer
auto-tuning using experiments with 2000 measurements.
For DL model experiments we allow auto-tuners to extract
all tunable operators, and either perform 500 candidate
measurements or self-allocate the number of candidates per
operator (Ansor) up to a maximum of O × 500 candidate
measurements, where O = number of extracted operators.
For multi-device auto-tuning, DOPpler measured DP × G
candidates per round where G is the number of devices.
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(60). (Ansor, Platform A). Lowering repeats as a naive speedup method.

TABLE 2: Aggregate results across platforms and auto-tuners. (*) -
Auto-tuning with Ansor towards Platform A only

Program Type DOPpler tuning
time reduced %

Serial latency
reduced %

DOPpler latency
reduced %

Conv1D-NCW 56.24± 12.96 31.62± 8.55 33.18± 9.26
Conv1D-NWC 57.89± 13.41 30.61± 8.23 32.55± 7.88
Conv2D-HWCN 36.41± 26.21 48.57± 32.95 46.19± 30.84
Conv2D-INT8 55.61± 13.59 86.35± 3.32 82.81± 9.3
Conv2D-NCHW 49.28± 32.03 77.74± 8.05 74.81± 9.84
Conv2D-NHWC 49.93± 18.31 63.14± 23.04 66.09± 18.99
Conv3D-NCDHW 47.48± 20.48 98.61± 1.54 97.36± 5.12
Conv3D-NDHWC 48.97± 13.08 94.42± 2.36 94.51± 2.3
Corr-NCHW 55.17± 10.04 80.51± 6.59 81.13± 6.28
DEPTH-Conv2D 45.61± 16.31 30.91± 15.78 25.38± 10.53
Dense 51.47± 13.95 9.56± 4.38 11.49± 4.22
DenseINT8 51.68± 15.36 93.28± 3.85 92.74± 4.17
GRP-Conv2D 52.15± 13.91 97.56± 1.31 98.05± 1.01
MatMul 53.84± 21.57 45.71± 9.37 45.47± 8.85
TConv1D-NCW 57.41± 11.85 54.13± 6.23 56.47± 5.28
TConv3D-NCDHW 46.15± 14.65 88.79± 2.52 88.79± 2.77
*LSTM 65.72± 2.56 36.31± 0.90 36.85± 1.70
*SelfAttention 61.94± 8.70 21.44± 3.79 19.51± 1.29

Metrics: Metrics collected: (i) auto-tuning time of tensor
programs and DL models; (ii) latency of tensor program
execution and DL model inference, compiled with best
implementation found by the auto-tuner; and (iii) platform
utilization of host CPU and GPU target-device.

5.2 Experiment Results
Impact of trials & measurement repeats: Figure 8 compares
DOPpler effectiveness during prolonged auto-tuning (2000
trials). We observed that DOPpler produced performance
improvement equivalent to serial measurement while re-
ducing total auto-tuning time by 46.5-64.0%. When auto-
tuning with repeated measurements reduced from 60 to 3
(see 5.1) DOPpler auto-tuning time marginally reduces as
depicted in Figure 9. Compared to serial with 3 repeats,
DOPpler reduced auto-tuning time by 47.8–54.4%. This is
because the majority of time during serial candidate mea-
surement was spent on process/context management and
sequential kernel invocation. We found that in some cases
(MatMul) using 3 repeats instead of 60 was counterpro-
ductive for DOPpler as it incurred measurement inaccuracy
from more frequent candidate re-measurement.

Single-device auto-tuning time: DOPpler was able to at-
tain tensor program auto-tuning times 51.9%±18.6% lower
than serial as depicted in Table 2 and Figure 10 (details
in supplementary material). This stems from increased
measurement throughput achieved by DOPpler, particu-
larly for less-complex or lower FLOP operators (Conv1D-
NWC/NCW, TConv1D-NCW, Dense), where auto-tuning
completed between 51.4-57.9% faster than serial. Within a
minority of experiment runs, DOPpler achieved minimal
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auto-tuning speedup for certain combinations of tensor
program, auto-tuner, and platform (2.53% MatMul, CH,
Platform B). Such minimal speed-up was due to a dis-
proportionate number of timeouts or erroneous candidates
proposed by the auto-tuner, causing delays. We observed
erroneous candidate proposals in Chameleon and AutoTVM
(high-FLOP Conv3D-NCDHW). DOPpler increased CPU
utilization on platforms A (48.43%), B (54.23%), C (51.46%).

Single-device tensor program latency: DOPpler auto-
tuning attained tensor program latency improvement equiv-
alent to serial measurement, reflected by a ±1.37% differ-
ence on average across all tensor program types as shown
in Figure 11 and Table 2. We observed few instances where
a measurement method outperformed (Serial: Dense, Mat-
Mul; DOPpler: Conv1D-NCW, DEPTH-Conv2D) that is due
to non-determinism of auto-tuner exploration strategies. We
confirmed this behaviour by auto-tuning a tensor program
10 times using the same auto-tuner, yielding on average
2.16% deviation in achieved latency from variation in im-
plementation space exploration. Thus, the best found can-
didate latency discovered using DOPpler reside within an
equivalent range as serial measurement. For certain com-
binations (Ansor Dense-INT8, AutoTVM Conv2D-INT8),
DOPpler auto-tuning discovered high latency candidates, as
esoteric INT-8 tensor programs are known to to consistently
generate non-erroneous, high-latency implementations [4].

Parallelism levels: DOPpler assigned varying paral-
lelism levels for different tensor program and platform
combinations as shown in Figure 12. Observably, DOPpler
reduced DP levels for increasingly larger tensor programs
(Conv3D NCDHW, 0.524 GFLOPs) due to increased mea-
surement inaccuracy stemming from kernel interference and
contention for compute resources. DOPpler naturally selects
and maintains lower DP on less capable devices (Platform
C), also adjusting to tensor program complexity.

Multi-device & multi-platform auto-tuning: As shown
in Figure 13a, DOPpler auto-tuning on a single GPU yielded
a time reduction across multiple local GPUs, providing
further time reduction of 52.76%, 52.93%, 45.32% over se-
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Fig. 12: DOPpler parallelism levels over time (Ansor). Smaller DP levels
assigned for large tensor programs.
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rial measurement with 2, 3 and 4 GPUs, respectively. For
specific tensor programs (MatMul, Conv1D-NCW, Conv2D-
NCHW), we observed that using 3 or more GPUs yielded
4.69% improvement compared to 2 GPUs for both DOPpler
and serial measurement. This was caused by CPU satu-
ration by candidates on a local device. Such saturation
is alleviated when performing auto-tuning across multiple
platforms (43.44% vs. 35.06% CPU utilization for local and
remote, respectively) providing on average 40.5% time re-
duction against remote serial measurement as shown in
Figure13b. Multi-device and multi-platform DOPpler auto-
tuning maintains equivalent optimization quality to serial
measurement, with latency differences of 0.97% - 1.46% in-
line with expected auto-tuner deviation as per Table 2.

Model-level auto-tuning: Following similar trends ob-
served in tensor programs, DOPler auto-tuning also ben-
efited DL models. As shown in Figure 16, DOPpler auto-
tuning with Ansor reduced DL model auto-tuning time by
51.40% on average across all models and platforms. We ob-
served that in-line with results shown in Figure 11, DOPpler
produced DL model-level inference latency improvement
equivalent to those found via serial measurement (σ =
3.3% ± 7.8%). Such improvements can also be observed
on a per-layer basis as shown in Figure 14 for ConvNext
[29](350m parameters, 28 unique tunable layers). DOPpler

achieved sizable auto-tuning time reduction (µ=48.67%,
σ=27.0%) with similar performance gains to serial across
majority of layers of varied FLOP count (4.7 × e−6 to 0.92
GFLOP). We observed cases (L5, L11, L17) where DOPpler
resulted in slower auto-tuning, stemming from increased
number of erroneous candidates proposed by Ansor and
thus more frequent re-measurements in DOPpler.
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5.3 Hyperparameter Analysis

To demonstrate the effectiveness of DOPpler hyperparam-
eter configuration, we experimentally analysed DOPpler
configured with different hyperparameter values.

Dynamic timeout: As shown in Figure 15a, DOPpler’s
dynamic timeout resulted in 18.84% reduced auto-tuning
time over a static timeout value (3s by default in AutoTVM)
due to its ability to either avoid excessive OOM, and idle
candidate time from configuring lower and higher timeout
thresholds based on tensor program type. Such results in-
dicate that there exists no one-size-fits-all timeout threshold
applicable to all tensor programs and target-device combi-
nations that can be alleviated by adjusting timeout.

Rank re-measurement: The proportion of re-measured
ranked candidates had a sizable impact on auto-tuning time,
with a 31.34% difference between 1% (DOPpler) and 20%
ranking as shown in Figure 15b. Our intuition was higher
re-measurement proportion would find better performing
candidates. However, given we observed no major changes
to tensor program latency, DOPpler appears to success-
fully minimize measurement inconsistency, thus rank re-
measurement can be configured with a lower value.

τ threshold: As per Figure 15c, when compared to
DOPpler’s τ threshold (5%), we found leveraging a strict
τ (10%) resulted in REACT performing Multiplicative De-
crease too frequently, reducing throughput and increasing
auto-tuning time. In contrast, using a permissive τ (25 - 50%)

resulted in an excessive DP due to continual Multiplicative
Increase in REACT, resulting in increased auto-tuning time
due to a higher likelihood of candidate timeout threshold
violation and OOM errors discussed in Section 3.

ζ sampling threshold: We compared DOPpler’s default
20% ζ against other configurations as shown in Figure 15d.
While increasing ζ from 1 sample to 50% negatively im-
pacted auto-tuning time by 30.1%, a low ζ threshold re-
sulted in insufficient samples measured. This caused the
calculated δmean of the candidate population not exhibiting
a sufficiently high delta, leading to infrequent Multiplicative
Decrease and increased timeout/OOM errors. DOPpler’s
20% ζ , whilst re-measuring more samples than other thresh-
olds (10%, 15%, 1 sample), enabled the REACT policy to
rapidly respond to variance in measurement accuracy.

5.4 Auto-tuning Large Tensor Programs

We studied DOPpler’s ability for auto-tuning large tensor
programs that produce high GPU utilization. While large
DL models frequently contain many small/medium sized
layers, certain models contain tensor programs whose high
FLOP-count kernels may lead to higher measurement in-
accuracy if executed concurrently. DOPpler was able to
successfully auto-tune high FLOP-count tensor programs
0.924–3.70 GFLOPs (larger GFLOP tensor programs pro-
duced OOM errors due to NV100 memory capacity) pro-
ducing high GPU utilization, determined by observing in-
creased instantaneous GPU utilization and more frequent
continuous on-device activity compared to serial shown in
Figure 17, indicating better GPU utilization and reduced
auto-tuning time. Despite higher GPU utilization and ap-
proaching NV100 compute limits (Platform A), DOPpler
reduced auto-tuning time by 32.4% by avoiding overheads
from the sequential candidate execution launch procedure.

DOPpler maintained reasonable performance improve-
ment comparable to serial for high FLOP-count tensor
programs as shown in Figure 18. In response to detection
of measurement inaccuracy stemming from resource con-
tention, DOPpler was able to assign lower parallelism levels
(DP 1-3) when auto-tuning large tensor programs. This is
reflected by DOPpler and serial measurement requiring the
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Fig. 18: Auto-tuning performance of large layers. (Ansor, Platform A)

same auto-tuning time for a 3.70 GFLOP tensor program
as shown in Figure 17. Whilst reduced DP decreases auto-
tuning time reduction, it minimizes likelihood of measure-
ment error from concurrent high GFLOP kernel execution.
Effective simultaneous measurement of concurrent high-
FLOP kernels is possible due to the time-slice GPU schedul-
ing, which disallows spatially-parallel execution of multiple
kernels in the same time-slice [30]. In extreme cases of
contention from high-FLOP kernel execution, slowdown
occurs due to cache contention which DOPpler attempts to
mitigate by reducing DP levels in response to inaccuracy.

5.5 Discussion
Compatibility: DOPpler replaces serial candidate measure-
ment infrastructure currently used by many prominent
DL auto-tuners [4], [5] originating from AutoTVM [2]. As
such, DOPpler is compatible with all these auto-tuners.
DOPpler has been evaluated on Nvidia GPUs due to their
prevalence in recent DL research, and especially auto-tuning
projects [4], [5]. We believe that DOPpler is also compatible
with both edge (Nvidia Jetson - Tegra) and large-scale Multi
Instance GPUs such as Nvidia A100, which support Nvidia
Activity API and multi-context Stream-based submission of
kernels, and have been used to evaluate DL serial mea-
surement auto-tuners [31]. As MIGs’ virtual instances entail
separate memory, cache and DRAM access paths [32], auto-
tuners can target individual instances or the entire GPU,
granting DOPpler greater utility given unique instances
would require separate auto-tuning. With minimal modifi-
cation, DOPpler can support non-Nvidia GPUs via OpenCL
Cmd-Queues and clWaitForEvents(. . . ) [33].

Workload: Whilst evaluated on CNN models and a
range of tensor program families, DOPpler is compatible
with any DL workload supported by compatible auto-
tuners and target-devices. Such compatibility is signifi-
cant for projects such as Amazon SageMaker Neo [6] that
use AutoTVM-derived auto-tuning and Nvidia GPUs, and
would benefit from DOPpler’s time savings at scale.

Time and quality: Whilst DOPpler speeds-up auto-
tuning without compromising optimization, it can balance

optimization quality and measurement throughput. Con-
trolling such balance may be advantageous: i.e. during
large-scale Neural Architecture Search (NAS) [34], where
rapid discovery of DL architectures characterized by high-
accuracy and low inference latency is paramount. Alter-
natively, a DL provider servicing many customers may
desire to prioritize throughput over optimization quality
(e.g. fast but ‘good’ auto-tuning immediately, vs. slower
and ‘excellent’ auto-tuning enqueued for hours to days).
Such scenarios would require refining or augmenting our
proposed DP policy described within Section 4.3.

6 RELATED WORK

DL inference optimization: Improving DL model accuracy
has motivated development of various approaches to high-
level [35] and low-level [36], [37] inference latency optimiza-
tions. Traditionally applied in DL frameworks [11], [38] by
leveraging vendor-specific libraries, such optimizations are
now bridged and accelerated by DL compilers, enabling
more engineering control to obtain high-performance tensor
programs for fast DL inference. Several DL-specific com-
pilers have been proposed [39], [40], with prominent types
including Halide [41] and TVM [2] that support auto-tuning.

DL auto-tuners: For enabling automatic low-level ten-
sor program optimization, various auto-tuners have been
proposed with different search cost models and optimiz-
ers to generate fast candidate implementations [13], [41].
Prominent examples include Ansor [4], an auto-scheduler
with evolutionary search and gradient-boosting cost model;
AutoTVM [2], a template-based auto-tuner with a gradient-
boosting cost model and simulated annealing optimizer;
and Chameleon [5] using AutoTVM and Reinforcement
Learning for candidate proposals and sampling. Whilst
parallelizing DL workloads within a GPU has been demon-
strated at device-level [42] and cluster-level [43] in other
DL systems, auto-tuners have yet to achieve this due to
dependency on serial measurements.

Accelerating optimization: Techniques have been pro-
posed to alleviate costly candidate measurements [44], [45]
by leveraging trained offline cost models that predict ten-
sor program latency, which requires performing millions
of measurements to ascertain candidate latency on unique
target-devices to train the model. DOPpler can speedup
training and re-training of such predictive optimizers.

7 CONCLUSION

We present DOPpler, a parallel DL auto-tuning mea-
surement infrastructure. By introducing parallel candidate
measurement and addressing multiple auto-tuner perfor-
mance limitations, we have experimentally demonstrated
that DOPpler is capable of achieving significant DL auto-
tuning speedup with no degradation to optimization qual-
ity. DOPpler grants the capability to perform fast and ac-
curate tensor program optimization for both single and
multiple GPU target-devices, which conventionally was
thought as infeasible for auto-tuning due to measurement
inaccuracy. We hope that our work will aid both researchers
and DL service providers towards designing and leveraging
DL model optimization tools.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. XX, 2023 12

ACKNOWLEDGMENTS

This work was supported by the EPSRC (EP/V007092/1)
and the Leverhulme trust Doctoral Scholarships programme
in Material Social Futures (DS-2017-036).

REFERENCES

[1] J. Park et al., “Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware impli-
cations,” arXiv:1811.09886, 2018.

[2] T. Chen et al., “TVM: An automated end-to-end optimizing com-
piler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 578–594.

[3] A. Adams et al., “Learning to optimize halide with tree search and
random programs,” TOG, vol. 38, no. 4, pp. 1–12, 2019.

[4] L. Zheng et al., “Ansor: Generating high-performance tensor pro-
grams for deep learning,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 863–879.

[5] B. H. Ahn et al., “Chameleon: Adaptive code optimization for
expedited deep neural network compilation,” in ICLR 19, 2019.

[6] Amazon. (2022) Amazon sagemaker neo. [Online]. Available:
https://aws.amazon.com/sagemaker/neo

[7] Microsoft. (2023) Watch for. [Online]. Available: https://www.
microsoft.com/en-us/research/project/watch-for

[8] OctoML. (2023) Octoml documentation. [Online]. Available:
https://app.octoml.ai/docs/

[9] D. Borowiec et al. (2023) Conductor + DOPpler. [Online].
Available: https://github.com/dborowiec10/conductor

[10] I. Goodfellow et al., Deep learning. MIT press, 2016.
[11] PyTorch. (2022) Pytorch. Facebook’s AI Research lab (FAIR).

[Online]. Available: https://pytorch.org/
[12] T. Chen et al., “Learning to optimize tensor programs,” in NIPS

2018: The 32nd Annual Conference on Neural Information Processing
Systems, 2018, pp. 3389–3400.

[13] M. Li et al., “Adatune: Adaptive tensor program compilation made
efficient,” Advances in Neural Information Processing Systems, 2020.

[14] E. Lindholm et al., “Nvidia tesla: A unified graphics and comput-
ing architecture,” IEEE micro, vol. 28, no. 2, pp. 39–55, 2008.

[15] S. Rennich. (2022) CUDA Streams and Concurrency. NVIDIA.
[Online]. Available: https://developer.download.nvidia.com/
CUDA/training/StreamsAndConcurrencyWebinar.pdf

[16] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861, 2017.

[17] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and¡ 0.5 mb model size,” arXiv:1602.07360, 2016.

[18] K. Simonyan et al., “Very deep convolutional networks for large-
scale image recognition,” arXiv:1409.1556, 2014.

[19] A. Krizhevsky et al., “Imagenet classification with deep convolu-
tional neural networks,” Advances in neural information processing
systems, vol. 25, pp. 1097–1105, 2012.

[20] K. He et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[21] Nvidia. (2022) Multi-process service - mps. Nvidia. [Online].
Available: https://docs.nvidia.com/deploy/pdf/CUDA Multi
Process Service Overview.pdf

[22] NVIDIA. (2022) NVIDIA nsight systems. NVIDIA. [Online].
Available: https://developer.nvidia.com/nsight-systems

[23] E. J. Berg, Heaviside’s Operational Calculus as applied to Engineering
and Physics. McGraw-Hill, 1936.

[24] B. Iglewicz et al., How to detect and handle outliers. Asq Press, 1993,
vol. 16.

[25] Python Foundation. (2022) Python multiprocessing — process-
based parallelism. Python Software Foundation. [Online]. Avail-
able: https://docs.python.org/3/library/multiprocessing.html

[26] Nvidia. (2022) Cupti :: Cupti documentation. Nvidia. [Online].
Available: https://docs.nvidia.com/cupti/Cupti/index.html

[27] C. Leys et al., “Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the median,”
Journal of experimental social psychology, vol. 49, pp. 764–766, 2013.

[28] L. Xu et al., “Binary increase congestion control (bic) for fast long-
distance networks,” in IEEE INFOCOM 2004. IEEE, 2004.

[29] Z. Liu et al., “A convnet for the 2020s,” in Proceedings of the
IEEE/CVF, 2022, pp. 11 976–11 986.

[30] G. Gilman et al., “Characterizing concurrency mechanisms for
nvidia gpus under deep learning workloads,” Performance Eval-
uation, vol. 151, p. 102234, 2021.

[31] W. Sun et al., “Efficient tensor cores support in tvm for low-latency
deep learning,” in DATE 21, 2021, pp. 120–123.

[32] Nvidia. (2022) Multi-Instance GPU. Nvidia. [Online]. Available:
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

[33] The Khronos Group Inc. (2022) clwaitforevents. [Online].
Available: https://man.opencl.org/clWaitForEvents.html

[34] B. Baker et al., “Accelerating neural architecture search using
performance prediction,” arXiv:1705.10823, 2017.

[35] L. Wang et al., “A unified optimization approach for cnn model
inference on integrated gpus,” in ICPP 19, 2019, pp. 1–10.

[36] G. S. Murthy et al., “Optimal loop unrolling for gpgpu programs,”
in 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS). IEEE, 2010, pp. 1–11.

[37] N. G. Dickson et al., “Importance of explicit vectorization for cpu
and gpu software performance,” Journal of Computational Physics,
vol. 230, no. 13, pp. 5383–5398, 2011.

[38] Apache Software Foundation. (2022) MXNet. [Online]. Available:
https://mxnet.apache.org/

[39] S. Cyphers et al., “Intel ngraph: An intermediate representation,
compiler, and executor for deep learning,” arXiv:1801.08058, 2018.

[40] R. Baghdadi et al., “Tiramisu: A polyhedral compiler for express-
ing fast and portable code,” in CGO. IEEE, 2019, pp. 193–205.

[41] J. Ragan-Kelley et al., “Halide: a language and compiler for opti-
mizing parallelism, locality, and recomputation in image process-
ing pipelines,” Acm Sigplan Notices, vol. 48, pp. 519–530, 2013.

[42] S. Pai et al., “Improving gpgpu concurrency with elastic kernels,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 1, pp. 407–
418, 2013.

[43] G. Yeung et al., “Horus: Interference-aware and prediction-based
scheduling in deep learning systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 1, pp. 88–100, 2022.

[44] B. Steiner et al., “Value learning for throughput optimization of
deep learning workloads,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 323–334, 2021.

[45] R. Baghdadi et al., “A deep learning based cost model for au-
tomatic code optimization,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 181–193, 2021.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. XX, 2023 13

Damian Borowiec is a PhD student in the Experi-
mental Distributed Systems Laboratory (EDS Lab)
at Lancaster University. He holds a BSc in Com-
puter Science from Lancaster University. He has
interned with Microsoft Research and Huawei Tech-
nologies R&D UK. His research interests include
Deep Learning systems, energy-adaptive comput-
ing, and Neural Network compilation methods.

Gingfung Yeung received his PhD degree from
Lancaster University in July 2022, and was a re-
search intern with Alibaba Group and ARM Re-
search. He is currently working as a System Infras-
tructure Researcher within Huawei Technologies
R&D UK. His research interests include distributed
systems, data-driven resource management and
applied machine learning.

Adrian Friday is a Professor of Computing and
Sustainability at Lancaster University. His interests
include the role of computational systems in under-
standing the energy and carbon footprint of socio-
technical systems, and more sustainable ways of
living. He focuses on the role of energy data in
smart cities, and using statistical / ML techniques
to identify new opportunities for energy savings.

Richard Harper is a Professor of Computer Sci-
ence and Co-Director for the Institute of Social Fu-
tures (ISF) at Lancaster University. Richard Harper
has written 18 books and collections, including The
Myth of the Paperless Office (2003), Texture: hu-
man expression in the age of communications over-
load (2010) and Skyping the Family (2019).

Peter Garraghan is a Reader in Distributed Sys-
tems and EPSRC Fellow at Lancaster University.
He is the leader of the Experimental Distributed
Systems Laboratory (EDS Lab). Peter has indus-
trial experience building production distributed sys-
tems at scale. His research interests include Ma-
chine Learning systems, green computing, dis-
tributed systems, and system security.


