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Overview
� Background

� definitions and characteristics of prototypicality 
� importance of prototypicality
� Identification of prototypical texts

� RQs and experiment design
� Replicating the Anthony & Baker (2015) study
� Expanding the study across multiple annotation layers

� Results and discussion
� Prototypical short/long texts
� Outlier texts in a 1 m word corpora
� Improving the method for more nuanced rankings

� Conclusions
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Background
definitions and characteristics of prototypicality;

importance of prototypicality; Identification of prototypical texts
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Background
Definitions and facets of prototypicality 

� Prototypicality as "graded centrality"
[Croft, W., & Cruse, D. A. (2004). Cognitive linguistics. Cambridge University Press]

� "Members that are judged to be the best examples of a category can be considered 
to be the most central in the category" (p. 77)
� e.g., Goodness-of-Exemplar (GOE) rankings for VEGETABLE

� leek, carrot (GOE rating 1)
� lemon (GOE rating 7)

� Correlates with frequency and order of mention, order of learning, family 
resemblance, verification speed, priming4

"having the typical qualities of a particular group or kind of person or thing" 
(Merriam-Webster, 2014)

the clearest, best, most typical, most representative examples
(Labov 1973, Rosch 1975, Gries 2001)



Background
Definitions and facets of prototypicality

� Facets of prototypicality
[Croft et al. 2004; Lakoff 1987: 84-90]
� Stereotypicality

� "the shape of a diamond"
� Closeness to an ideal

� "the perfect diamond shape"
� Typicality/representativeness

� "the most common diamond shape"

5 https://www.jfjco.com/wp-content/uploads/2017/02/Diamond-shapes.jpg

The Hope Diamond



Background
Definitions and facets of prototypicality - in corpus linguistics

� Types of prototypicality
� Stereotypicality; Closeness to an ideal; Typicality/representativeness

� Properties of language
� ůĞǆŝĐĂů͕�ŐƌĂŵŵĂƚŝĐĂů͕�ƐƚƌƵĐƚƵƌĂů͕�ƐĞŵĂŶƚŝĐ͕��ĐŽŶƚĞǆƚƵĂů͕�ĨƵŶĐƚŝŽŶĂů͕�ƚŚĞŵĂƚŝĐ͕�͙
� lexical ʹ single words vs multi-word units
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Background
Importance of prototypicality

� corpus creation
� choosing appropriate texts to include in a corpus
� identifying problematic texts to exclude from a corpus 

� corpus analysis
� choosing texts for close reading (down-ƐĂŵƉůŝŶŐͿ�ƚŽ͙

� formulate hypotheses
� validate findings created at the corpus level

� pedagogic purposes
� selecting 'good' examples of texts to serve as in-class models
� selecting atypical/outlier learner texts to identify language problems

� ͙
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Background
Identification of prototypical texts

� Critical Discourse Analysis (CDA) and other qualitative studies
� opportunistic selection

� e.g., Caldas-Coulthard et al. (2003)
� Η͙ǁĞ�ƉƵƌĐŚĂƐĞĚ�Ăůů�ƚŚĞ�ϭϱ�ďĞĂƌ�ďŽŽŬƐ�ĂǀĂŝůĂďůĞ�ŝŶ�Ă�ůŽĐĂů�ĐŚŝůĚƌĞŶΖƐ�ďŽŽŬƐƚŽƌĞ�ŝŶ�>ŽŶĚŽŶ͘Η

� limitations
� non-principled
� possible bias of researcher ('cherry picking')
� difficult to replicate the results
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Background
Identification of prototypical texts

� Critical Discourse Analysis (CDA) and other qualitative studies
� selective downsizing

� e.g. Khosravinik (2010)
� in a corpus of 170,000 articles, select articles from five one-week periods where the 

number of articles about immigration peak (resulting in 439 articles)
� limitations

� can still result in a large number of sample texts
� 'cherry picking' criticism is not completely addressed
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Background:
Identification of prototypical texts

� ProtAnt (Anthony & Baker, 2015)
http://www.laurenceanthony.net/software/antcorgen/
� a freeware automatic text prototype detection tool

� ranks corpus texts by degree of 'lexical' prototypicality
� e.g., number of (normed) keywords per text
� e.g., number of pre-defined 'key' words per text (e.g., AWL list)

� displays keyword lists, per-text lexical profiles, ranking criteria
� allows for easy close reading of ranked texts
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ProtAnt (Anthony & Baker, 2015)
Basic algorithm

� Step 1: Generate keywords for the target corpus
� e.g., using log-likelihood + (log) relative frequency (effect size) against a reference corpus
� e.g., using a pre-ĚĞĨŝŶĞĚ�ůŝƐƚ�ŽĨ�ΖŬĞǇΖ�ǁŽƌĚƐ�;'^>�ϭͬϮ͕��t>͕�͙Ϳ

� Step 2: Rank target files by the (normalized) number of keywords they contain
� e.g., (key types in file)/(total types in file)
� e.g., (key tokens in file)/ (total tokens in file)
� e.g., (log key types|tokens)/(log total types|tokens)

� Step 3: Display profiling information to the user
� the keyword list
� the per-file keyword list
� the target file rankings
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Research Questions
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Research Questions
1. What can a replication and extension of the Anthony & Baker (2015) study tell us 

about prototypicality? 
What impact do different layers of annotation have on text rankings?
� lexical (LEX) items
� lemma (LEM) items
� USAS semantic (SEM) tags
� CLAWS 7 part-of-speech (POS) tags

2. How can ProtAnt be improved to allow more nuanced rankings?
3. What are the implications of corpus prototypicality for corpus design and 

methods?
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RQ1
What can a replication and extension of the Anthony & Baker (2015) study tell us about prototypicality? 

What impact do different layers of annotation have on text rankings?
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Experiment 1: Prototypicality rankings of 'in/out' texts 
'Islam' news article corpus - LEX rankings
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Log Likelihood (LL2)

� Results confirm accurate rankings of 'in' 
texts for a pseudo corpus focused on the 
topic of 'Islam'

� The 5 texts ranked as most prototypical (p<.0001) 
ƌĞƉŽƌƚ�Žƌ�ĐŽŵŵĞŶƚ�ŽŶ�Ă�ƐƉĞĞĐŚ�ĂďŽƵƚ�͚ƌĂĚŝĐĂů�
/ƐůĂŵ͛�ďǇ�h<�ƉƌŝŵĞ�ŵŝŶŝƐƚĞƌ�dŽŶǇ��ůĂŝƌ

� Why are texts about 'football' ranked so high?
[Keywords about 'football' 'pollute' the results?]

row_id p05 p01 p001 p0001
1 04_islam.txt 07_islam.txt 08_islam.txt 08_islam.txt
2 05_islam.txt 08_islam.txt 07_islam.txt 07_islam.txt
3 08_islam.txt 05_islam.txt 04_islam.txt 04_islam.txt
4 07_islam.txt 04_islam.txt 05_islam.txt 05_islam.txt
5 15_football.txt 06_islam.txt 06_islam.txt 06_islam.txt
6 09_islam.txt 15_football.txt 03_islam.txt 13_football.txt
7 02_islam.txt 09_islam.txt 13_football.txt 03_islam.txt
8 06_islam.txt 03_islam.txt 09_islam.txt 09_islam.txt
9 03_islam.txt 02_islam.txt 11_football.txt 10_islam.txt

10 01_islam.txt 10_islam.txt 02_islam.txt 11_football.txt
11 13_football.txt 13_football.txt 10_islam.txt 18_tennis.txt
12 12_football.txt 01_islam.txt 18_tennis.txt 02_islam.txt
13 19_review.txt 19_review.txt 15_football.txt 01_islam.txt
14 10_islam.txt 14_football.txt 01_islam.txt 15_football.txt
15 20_art.txt 12_football.txt 12_football.txt 12_football.txt
16 16_obituary.txt 20_art.txt 20_art.txt 16_obituary.txt
17 18_tennis.txt 11_football.txt 14_football.txt 20_art.txt
18 11_football.txt 18_tennis.txt 16_obituary.txt 14_football.txt
19 14_football.txt 16_obituary.txt 19_review.txt 19_review.txt
20 17_science.txt 17_science.txt 17_science.txt 17_science.txt



Experiment 1: Prototypicality rankings of 'in/out' texts 
'Islam' news article corpus - LEM rankings
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Log Likelihood (LL2)

row_id p05 p01 p001 p0001
1 05_islam.txt 07_islam.txt 07_islam.txt 07_islam.txt
2 15_football.txt 08_islam.txt 08_islam.txt 08_islam.txt
3 04_islam.txt 05_islam.txt 04_islam.txt 05_islam.txt
4 08_islam.txt 04_islam.txt 05_islam.txt 04_islam.txt
5 07_islam.txt 15_football.txt 06_islam.txt 09_islam.txt
6 09_islam.txt 06_islam.txt 09_islam.txt 13_football.txt
7 06_islam.txt 09_islam.txt 13_football.txt 03_islam.txt
8 02_islam.txt 02_islam.txt 03_islam.txt 06_islam.txt
9 03_islam.txt 10_islam.txt 02_islam.txt 02_islam.txt

10 10_islam.txt 13_football.txt 10_islam.txt 11_football.txt
11 01_islam.txt 03_islam.txt 11_football.txt 10_islam.txt
12 19_review.txt 19_review.txt 15_football.txt 18_tennis.txt
13 13_football.txt 01_islam.txt 01_islam.txt 15_football.txt
14 12_football.txt 11_football.txt 18_tennis.txt 01_islam.txt
15 20_art.txt 12_football.txt 12_football.txt 14_football.txt
16 16_obituary.txt 20_art.txt 20_art.txt 12_football.txt
17 18_tennis.txt 14_football.txt 14_football.txt 20_art.txt
18 11_football.txt 16_obituary.txt 16_obituary.txt 16_obituary.txt
19 14_football.txt 18_tennis.txt 19_review.txt 19_review.txt
20 17_science.txt 17_science.txt 17_science.txt 17_science.txt

� Results confirm accurate rankings of 'in' texts 
for a pseudo corpus focused on the topic of 
'Islam'

� LEM rankings differ slightly for LEX rankings
� LEM rankings (p<.05) improve on LEX rankings
� Why are texts about 'football' ranked so high?

[Keywords about 'football' 'pollute' the results?]



Experiment 1: Prototypicality rankings of 'in/out' texts 
'Islam' news article corpus - SEM rankings
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Log Likelihood (LL2)

row_id p05 p01 p001 p0001
1 06_islam.txt 03_islam.txt 03_islam.txt 06_islam.txt
2 03_islam.txt 06_islam.txt 06_islam.txt 03_islam.txt
3 10_islam.txt 10_islam.txt 13_football.txt 14_football.txt
4 05_islam.txt 02_islam.txt 15_football.txt 13_football.txt
5 02_islam.txt 05_islam.txt 10_islam.txt 11_football.txt
6 14_football.txt 14_football.txt 14_football.txt 15_football.txt
7 04_islam.txt 01_islam.txt 05_islam.txt 02_islam.txt
8 15_football.txt 08_islam.txt 02_islam.txt 10_islam.txt
9 07_islam.txt 04_islam.txt 11_football.txt 18_tennis.txt

10 11_football.txt 15_football.txt 08_islam.txt 08_islam.txt
11 09_islam.txt 13_football.txt 01_islam.txt 01_islam.txt
12 13_football.txt 07_islam.txt 04_islam.txt 05_islam.txt
13 08_islam.txt 11_football.txt 18_tennis.txt 12_football.txt
14 01_islam.txt 19_review.txt 12_football.txt 09_islam.txt
15 19_review.txt 09_islam.txt 09_islam.txt 20_art.txt
16 18_tennis.txt 18_tennis.txt 19_review.txt 04_islam.txt
17 17_science.txt 12_football.txt 07_islam.txt 07_islam.txt
18 16_obituary.txt 17_science.txt 17_science.txt 19_review.txt
19 12_football.txt 16_obituary.txt 20_art.txt 16_obituary.txt
20 20_art.txt 20_art.txt 16_obituary.txt 17_science.txt

� Results confirm accurate rankings of 'in' texts 
for a pseudo corpus focused on the topic of 
'Islam' (as the p value is increased)

� Fewer SEM key items lead to 'unstable' rankings
� Why are texts about 'football' ranked so high?

[Keywords about 'football' 'pollute' the results?]



Experiment 1: Prototypicality rankings of 'in/out' texts 
'Islam' news article corpus - POS rankings
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Log Likelihood (LL2)

row_id p05 p01 p001 p0001
1 08_islam.txt 08_islam.txt 08_islam.txt 08_islam.txt
2 10_islam.txt 07_islam.txt 07_islam.txt 10_islam.txt
3 06_islam.txt 18_tennis.txt 16_obituary.txt 07_islam.txt
4 02_islam.txt 10_islam.txt 18_tennis.txt 13_football.txt
5 18_tennis.txt 06_islam.txt 10_islam.txt 05_islam.txt
6 04_islam.txt 02_islam.txt 06_islam.txt 09_islam.txt
7 05_islam.txt 09_islam.txt 13_football.txt 16_obituary.txt
8 14_football.txt 04_islam.txt 02_islam.txt 18_tennis.txt
9 07_islam.txt 05_islam.txt 05_islam.txt 02_islam.txt

10 16_obituary.txt 16_obituary.txt 09_islam.txt 06_islam.txt
11 03_islam.txt 13_football.txt 04_islam.txt 20_art.txt
12 09_islam.txt 01_islam.txt 03_islam.txt 19_review.txt
13 13_football.txt 14_football.txt 20_art.txt 04_islam.txt
14 01_islam.txt 03_islam.txt 19_review.txt 01_islam.txt
15 17_science.txt 15_football.txt 01_islam.txt 14_football.txt
16 11_football.txt 17_science.txt 14_football.txt 12_football.txt
17 20_art.txt 11_football.txt 12_football.txt 11_football.txt
18 12_football.txt 20_art.txt 17_science.txt 15_football.txt
19 19_review.txt 19_review.txt 11_football.txt 03_islam.txt
20 15_football.txt 12_football.txt 15_football.txt 17_science.txt

� Results confirm accurate rankings of 'in' texts 
for a pseudo corpus focused on the topic of 
'Islam' (as the p value is increased)

� Fewer POS key items leads to 'unstable' rankings
� Why are texts about 'football' ranked so high?

[Keywords about 'football' 'pollute' the results?]



Experiment 2: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (LEX)

19

Log Likelihood (LL2); p < 0.0001

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 45 45 0
B Press: Editorial L9 28 28 0
C Press: Reviews P13 18 18 0
D Religion C8 18 18 0
E Skills, Trades and Hobbies N7 36 37 1
F Popular Lore A3 19 49 30
G Belles Lettres, Biographies, Essays M6 48 76 28
H Miscellaneous: Government documents, industrial reports etc L13 31 31 0
J Academic prose in various disciplines R8 81 81 0
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 25 25 0
M Science Fiction N8 4 7 3
N Adventure and Western A7 30 30 0
P Romance and Love story A5 30 30 0
R Humour L2 2 10 8



Experiment 2: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (LEM)

20

Log Likelihood (LL2); p < 0.0001

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 45 45 0
B Press: Editorial L9 28 28 0
C Press: Reviews P13 18 18 0
D Religion C8 18 18 0
E Skills, Trades and Hobbies N7 33 37 4
F Popular Lore A3 12 49 37
G Belles Lettres, Biographies, Essays M6 62 76 14
H Miscellaneous: Government documents, industrial reports etc L13 31 31 0
J Academic prose in various disciplines R8 81 81 0
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 25 25 0
M Science Fiction N8 5 7 2
N Adventure and Western A7 30 30 0
P Romance and Love story A5 30 30 0
R Humour L2 2 10 8



Experiment 2: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (SEM)

21

Log Likelihood (LL2); p < 0.05

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 45 45 0
B Press: Editorial L9 28 28 0
C Press: Reviews P13 18 18 0
D Religion C8 14 18 4
E Skills, Trades and Hobbies N7 36 37 1
F Popular Lore A3 46 49 3
G Belles Lettres, Biographies, Essays M6 63 76 13
H Miscellaneous: Government documents, industrial reports etc L13 31 31 0
J Academic prose in various disciplines R8 81 81 0
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 18 25 7
M Science Fiction N8 6 7 1
N Adventure and Western A7 30 30 0
P Romance and Love story A5 30 30 0
R Humour L2 3 10 7



Experiment 2: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (POS)

22

Log Likelihood (LL2); p < 0.05

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 45 45 0
B Press: Editorial L9 25 28 3
C Press: Reviews P13 18 18 0
D Religion C8 10 18 8
E Skills, Trades and Hobbies N7 32 37 5
F Popular Lore A3 5 49 44
G Belles Lettres, Biographies, Essays M6 49 76 27
H Miscellaneous: Government documents, industrial reports etc L13 31 31 0
J Academic prose in various disciplines R8 80 81 1
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 18 25 7
M Science Fiction N8 7 7 0
N Adventure and Western A7 30 30 0
P Romance and Love story A5 30 30 0
R Humour L2 3 10 7



Experiment 3: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (LEX)
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Log Likelihood (LL2); p < 0.0001



Experiment 3: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (LEM)
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Log Likelihood (LL2); p < 0.0001



Experiment 3: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (SEM)

25
Log Likelihood (LL2); p < 0.05



Experiment 3: Ranking of 'outlier' texts 
AmE06 categories + 1 outlier category text (POS)

26
Log Likelihood (LL2); p < 0.05



RQ2
How can ProtAnt be improved to allow more nuanced rankings?
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How can ProtAnt be improved?
Ranking of 'outlier' texts (SEM)

28

Log Likelihood (LL2); p < 0.05

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 45 45 0
B Press: Editorial L9 28 28 0
C Press: Reviews P13 18 18 0
D Religion C8 14 18 4
E Skills, Trades and Hobbies N7 36 37 1
F Popular Lore A3 46 49 3
G Belles Lettres, Biographies, Essays M6 63 76 13
H Miscellaneous: Government documents, industrial reports etc L13 31 31 0
J Academic prose in various disciplines R8 81 81 0
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 18 25 7
M Science Fiction N8 6 7 1
N Adventure and Western A7 30 30 0
P Romance and Love story A5 30 30 0
R Humour L2 3 10 7



How can ProtAnt be improved?
Ranking of 'outlier' texts (SEM) ʹ SEM tag selection

29

Category Register Outlier File Ranking Total Files Diff
A Press: Reportage K12 35 45 10
B Press: Editorial L9 28 28 0
C Press: Reviews P13 11 18 7
D Religion C8 18 18 0
E Skills, Trades and Hobbies N7 37 37 0
F Popular Lore A3 30 49 19
G Belles Lettres, Biographies, Essays M6 47 76 29
H Miscellaneous: Government documents, industrial reports etc L13 25 31 6
J Academic prose in various disciplines R8 51 81 30
K General Fiction E15 30 30 0
L Mystery and Detective Fiction C6 23 25 2
M Science Fiction N8 7 7 0
N Adventure and Western A7 27 30 3
P Romance and Love story A5 29 30 1
R Humour L2 7 10 3

Log Likelihood (LL2); p < 0.05; Highest SEM Key item only



How can ProtAnt be improved?
Ranking of 'outlier' texts ʹ Using keyword text dispersion (LEX)

30
Egbert, J., & Biber, D. (2019). Incorporating text dispersion into keyword 

analyses. Corpora. DOI:10.3366/COR.2019.0162

Standard LL2 method
(LEX)

https://doi.org/10.3366/COR.2019.0162


How can ProtAnt be improved?
Ranking of 'outlier' texts ʹ Using keyword text dispersion (LEX)

31
Egbert, J., & Biber, D. (2019). Incorporating text dispersion into keyword 

analyses. Corpora. DOI:10.3366/COR.2019.0162

Text Dispersion LL2 method
(LEX)

https://doi.org/10.3366/COR.2019.0162


RQ3
What are the implications of corpus prototypicality for corpus design and methods?
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Implications for corpus design and methods
� A general assumption in corpus design is that text categories (topics, registers, 

genres, domains, etc.) are real
� e.g., Brown/LOB family categories

� A. PRESS: REPORTAGE (44 texts)
� B. PRESS: EDITORIAL (27 texts)
� C. PRESS: REVIEWS (17 texts)
� D. RELIGION (17 texts)
� E. SKILL AND HOBBIES (36 texts)
� F. POPULAR LORE (48 texts)
� G. BELLES-LETTRES (75 texts)
� H. MISCELLANEOUS: GOVERNMENT & HOUSE ORGANS (30 texts)
� J. LEARNED (80 texts)
� K: FICTION: GENERAL (29 texts)
� L: FICTION: MYSTERY (24 texts)
� M: FICTION: SCIENCE (6 texts)
� N: FICTION: ADVENTURE (29 texts)
� P.FICTION: ROMANCE (29 texts)
� R. HUMOR (9 texts)
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Implications for corpus design and methods
� A general assumption in corpus design is that text categories (topics, registers, 

genres, domains, etc.) are real
� e.g., Brown/LOB family categories

� How real are these categories?
� What can we say about the characteristic features (LEXICAL, LEMMA, SEM, POS) of corpus text 

categories?
� How much do the individual texts in corpus text categories match the category descriptions

(at the LEXICAL, LEMMA, SEM, POS layers)?
� KƵƌ�ƌĞƐƵůƚƐ�ƐƵŐŐĞƐƚ�ĐĂƵƚŝŽŶ͙

� "Remember the text!" (Anthony, 2022)
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Conclusions
� ZĞƉůŝĐĂƚŝŶŐ�ĐŽƌƉƵƐ�ƐƚƵĚŝĞƐ�ŝƐ�ŶŽƚ�ĞĂƐǇ�ĂŶĚ�ŚĂƐ�ŵĂŶǇ�ĐŚĂůůĞŶŐĞƐ͙

� locating the original texts
� matching the experiment conditions
� interpreting the results

� ProtAnt experiments here model prototypicality in the form of 
typicality/representativeness of LEX/LEM/SEM/POS forms
� LEX/LEM rankings were generally 'stable' for different parameter settings
� SEM/POS rankings required careful parameter selection

� ProtAnt ĐĂŶ�ďĞ�ŝŵƉƌŽǀĞĚ�ŝŶ�ŵĂŶǇ�ǁĂǇƐ͙
� allow for (easy) processing of texts in different annotation layers
� allow more choices for keyword statistics and ranking measures (e.g., text dispersion)
� allow more options for (batch) visualizations of the results 
� [offer ways to evaluate prototypicality of texts without a reference corpus]

35
View publication stats

https://www.researchgate.net/publication/370866533

	Slide 1:  Understanding corpus text prototypicality A multifaceted problem
	Slide 2: Overview
	Slide 3: Background definitions and characteristics of prototypicality; importance of prototypicality; Identification of prototypical texts
	Slide 4: Background Definitions and facets of prototypicality 
	Slide 5: Background Definitions and facets of prototypicality
	Slide 6: Background Definitions and facets of prototypicality - in corpus linguistics
	Slide 7: Background Importance of prototypicality
	Slide 8: Background Identification of prototypical texts
	Slide 9: Background Identification of prototypical texts
	Slide 10: Background: Identification of prototypical texts
	Slide 11: ProtAnt (Anthony & Baker, 2015) Basic algorithm
	Slide 12: Research Questions
	Slide 13: Research Questions
	Slide 14: RQ1 What can a replication and extension of the Anthony & Baker (2015) study tell us about prototypicality?  What impact do different layers of annotation have on text rankings?
	Slide 15: Experiment 1: Prototypicality rankings of 'in/out' texts  'Islam' news article corpus - LEX rankings
	Slide 16: Experiment 1: Prototypicality rankings of 'in/out' texts  'Islam' news article corpus - LEM rankings
	Slide 17: Experiment 1: Prototypicality rankings of 'in/out' texts  'Islam' news article corpus - SEM rankings
	Slide 18: Experiment 1: Prototypicality rankings of 'in/out' texts  'Islam' news article corpus - POS rankings
	Slide 19: Experiment 2: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (LEX)
	Slide 20: Experiment 2: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (LEM)
	Slide 21: Experiment 2: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (SEM)
	Slide 22: Experiment 2: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (POS)
	Slide 23: Experiment 3: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (LEX)
	Slide 24: Experiment 3: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (LEM)
	Slide 25: Experiment 3: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (SEM)
	Slide 26: Experiment 3: Ranking of 'outlier' texts  AmE06 categories + 1 outlier category text (POS)
	Slide 27: RQ2 How can ProtAnt be improved to allow more nuanced rankings?
	Slide 28: How can ProtAnt be improved? Ranking of 'outlier' texts (SEM)
	Slide 29: How can ProtAnt be improved? Ranking of 'outlier' texts (SEM) – SEM tag selection
	Slide 30: How can ProtAnt be improved? Ranking of 'outlier' texts – Using keyword text dispersion (LEX)
	Slide 31: How can ProtAnt be improved? Ranking of 'outlier' texts – Using keyword text dispersion (LEX)
	Slide 32: RQ3 What are the implications of corpus prototypicality for corpus design and methods?
	Slide 33: Implications for corpus design and methods
	Slide 34: Implications for corpus design and methods
	Slide 35: Conclusions

