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Abstract
Environmental problems have become increasingly serious around the world. With
lower carbon emissions, Electric Vehicles (EVs) have been utilized on a large scale
over the past few years. However, EVs are limited by battery capacity and require
frequent charging. Currently, EVs suffer from long charging time and charging
congestion. Therefore, EV charging optimization is vital to ensure drivers’ mobility.
This study first presents a literature analysis of the current charging modes taxonomy
to elucidate the advantages and disadvantages of different charging modes. In
specific optimization, under plug-in charging mode, an Urgency First Charging
(UFC) scheduling policy is proposed with collaborative optimization of the spatial-
temporal domain. The UFC policy allows those EVs with charging urgency to get
preempted charging services. As conventional plug-in charging mode is limited by the
deployment of Charging Stations (CSs), this study further introduces and optimizes
Vehicle-to-Vehicle (V2V) charging. This is aim to maximize the utilization of charging
infrastructures and to balance the grid load. This proposed reservation-based V2V
charging scheme optimizes pair matching of EVs based on minimized distance.
Meanwhile, this V2V scheme allows more EVs get fully charged via minimized waiting
time based parking lot allocation. Constrained by shortcomings (rigid location of CSs
and slow charging power under V2V converters), a single charging mode can hardly
meet a large number of parallel charging requests. Thus, this study further proposes
a hybrid charging mode. This mode is to utilize the advantages of plug-in and V2V
modes to alleviate the pressure on the grid. Finally, this study addresses the potential
problems of EV charging with a view to further optimizing EV charging in subsequent
studies.
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Chapter 1

Introduction

The global climate is experiencing significant changes with warming as the main feature,
which has become a major challenge faced by the international community today. With the
degradation of the cryosphere and the beginning of environmental degradation, climate
warming has profoundly affected human survival and development and is triggering a
global energy revolution. Meanwhile, the global energy crisis is also getting worse,
especially in terms of demand for oil. The latest data published by the International Energy
Agency for 2018 [1] show that the global demand for oil continues to grow, with an increase
of more than 15% over the same level in 2016. The transport sector, however, consumes
about 60% of the total oil consumed.

The development of modern intelligent transportation systems cannot be achieved
without safe and efficient transportation energy technologies. Technological changes in
the field of transportation energy are also an important way to protect the energy system of
society, and even in the global climate. Energy and transportation are the two cornerstones
of modern human society, and the change in energy and transportation is naturally the most
fundamental change in modern society. Electric Vehicles (EVs) use electricity instead of
traditional fuel as a means of energy replenishment, effectively achieving low carbon and
environmental protection. Thus, EVs are regarded as an important means of solving energy
and environmental problems. With the tightening of fuel resources and the development
of battery technology, EVs are approaching or even outperforming traditional internal
combustion vehicles in terms of performance and economy. Recently, EVs are beginning
to be used gradually around the world. It has become a general consensus that EV is an
inevitable approach in the development of the automotive industry. The charging system
provides an important basic support system for EVs, as well as an important link in the
process of commercialisation and industrialisation of EVs. In the charging system, the
construction of charging infrastructures needs to be planned and designed accordingly
according to the charging demand of EVs and combined with the charging mode of EVs.
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1.1 Importance of EV charging
Recently, a large number of countries regard the deployment of EVs as a core environmental
strategy. The UK government announced in 2020 that internal combustion vehicles will
cease to be sold in 2035. At the same time, the UK government requires new production of
vehicles to be completely zero-emission from 2035 onwards. In contrast, China released a
development plan for its EVs industry in 2020. China has set a goal that EVs ratio reaches
about 20% of total new vehicle sales by 2025. By 2035, EVs will become the mainstream
of new vehicle sales in China.

To ensure the widespread adoption of EVs, it is necessary to break through current
charging infrastructure constraints, and actively promote key technology and mode innova-
tions. Meanwhile, in order to achieve the goal of net greenhouse gas emissions, EVs need
to be effectively integrated into the charging system for the transition to a decarbonisation
society in the near future. Here, EV charging optimization focuses on spatial domain
optimization and temporal domain optimization:

• Spatial domain optimization: Taking the current EV situation in China as an
example. The current EV charging network includes dedicated Charging Stations
(CS), intercity and urban public charging networks, and personal charging infras-
tructures. Here, the EV charging network in China suffers from unbalanced regional
development. EV charging network is unable to meet the scale of the private vehicle
market. The current oil-to-electricity ratio (ratio of the petrol station to charging
infrastructures) in China’s major first-tier cities has reached 2.8. However, the fuel-
to-electricity ratio in regions with poor development is less than 0.3. The limited
deployment of EV charging infrastructures places a higher demand on EV charging
optimization. Moreover, combined with the penetration of vehicles in different
levels of cities, the oil-to-electricity ratio indicator has a high correlation with the
penetration of operating vehicles (buses, etc.). However, there is a low correlation
with the regional penetration of private vehicles, which means that there are greater
difficulties in charging private EVs.

• Temporal domain optimization: EV charging optimization involves the flexible
use of time latitude for charging services, such as at night when demand on the
power system is low, or when renewable energy generation is high. This helps to
reduce the need for costly electrical network reinforcement and increased generation
capacity. Here, EV drivers can adopt different charging strategies to reduce charging
congestion and avoid high charging price.
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1.2 Challenges in EV Charging

1.2.1 Range Anxiety in EV Travelling
Range anxiety refers to the mental distress or anxiety caused by the fear of sudden loss of
power while driving an EV [2]. Here, range anxiety is mainly caused by limited battery
capacity and the difficulty of finding charging infrastructures. Factors such as vehicle
speed, driving habits, road conditions, and temperature would have a non-negligible impact
on range. There is even an exaggerated situation where the actual range of EVs is only
half of the summer range in winter below freezing temperatures, and the instability is far
beyond consumer expectations, which leads to mileage anxiety among EV drivers. The
core of solving the range anxiety problem lies in improving the deployment of charging
infrastructures and optimizing EV charging management.

1.2.2 Concern on Charging Infrastructures
A major difficulty in optimizing EV charging is the deployment of charging infrastructures.
In contrast to the large number of EVs, charging infrastructures built are struggle to meet a
large number of parallel charging requests, with the following constraints:

• Unbalanced distribution of charging infrastructures: Currently, charging infras-
tructures are mainly located in urban areas, while the coverage of suburban areas
is insufficient. The location of charging infrastructures needs to consider factors
such as customer flow density and utilization rate, which makes public areas such as
superstores, schools, hospitals and tourist attractions become high deployment areas.
At the macro level, some local governments have provided significant funding for CS
deployment to promote infrastructure development, while some areas lack funding.

• Low utilization of charging infrastructures: Due to cost considerations, some
operators choose to deploy charging infrastructures in suburban areas to reduce
land and operating costs. This brings the problem of low utilization of charging
infrastructures. During the peak hours of electricity consumption, the queuing of
public charging infrastructures is more prominent in some hotspots.

• Difficulty in grid capacity: With the rapid growth of EVs, the charging behaviour
of EVs poses a great challenge to the stability and load of the grid in charging
network. Considering the limited load capacity of the power system, the deployment
of charging infrastructures are with a huge challenge. In addition, the service capacity
of the grid is required to be continuously improved to meet the rapidly growing
demand for EV charging. In addition to the hardware infrastructures mentioned
above, Information and Communication Technology (ICT)-based navigation systems
are also important to facilitate the development of EVs.
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1.2.3 Inconsistent Stakeholders Requirement
In the charging network, the interests of various stakeholders are inconsistent. For example,
if the charging facility operators increase their investment, EV users will get higher quality
charging services (e.g., shorter charging waiting time and more available charging slots).
Nevertheless, the charging infrastructures may have lower revenue due to excessive idle rate
and operation and maintenance costs. Conversely, EV users will not get reliable charging
services, such as the insufficient number of charging infrastructures or the charging distance
being too far. Therefore, this places higher demands on EV charging optimization,
including overall energy utilization efficiency and distribution network security.

1.2.4 Evaluation Metrics
• Average Charging Waiting Time: It indicates the average waiting time for EVs

between arriving at a charging infrastructure and receiving a charging service.

• Average Charging Trip Duration: It indicates the average trip duration for EVs
from their location to their destination via an intermediate charging service.

• Average Charging Price: It indicates the average charging price of EVs charged at
CS.

• Average Energy Charging: It indicates the average energy of EVs charged per
charging service.

• Number of Fully Charged EVs: It indicates the total number of EVs being fully
charged.

• Number of Not Fully Charged EVs: It indicates the total number of EVs that can
not get fully charged although they have arrived at a charging infrastructure.

1.3 Research Motivation of EV Charging Optimization

1.3.1 Spatial- Temporal Domain Optimization
Due to the increasing amount of EVs, it is extremely problematic for the driver to make
charging decisions solely through the EV side. Therefore, a systematic optimization of
EV charging can significantly address the EV charging challenges mentioned in the above
section. Previous studies on EV charging optimization seldom focused on both the temporal
domain and the spatial domain, e.g., solving the problem of where to charge by optimizing
charging recommendations (spatial domain) and solving the charging scheduling problem
by charging scheduling (temporal domain). Therefore, integrated optimization of the
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spatial-temporal domain and optimization of the management of differentiated charging
requests are particularly important.

1.3.2 Charging Scenario Iteration
EV charging has evolved with technology to benefit from novel charging mode, while a
large number of previous studies have focused on a single plug-in charging mode. Less
research considers battery swapping mode. Battery swapping mode is effective in reducing
the time required to charge an EV. Therefore, the optimization of the battery swapping
mode can improve the effectiveness of EV charging. Meanwhile, with the improvement
of battery technology, the V2V charging mode has started to be studied. In this mode, the
EV as energy Providers (EV-Ps) can transfer electrical energy directly via a converter to
the EV as energy Consumers (EV-Cs), in the form of a V2V-Pair. The V2V charging mode
resolves the limitations of fixed charging infrastructures.

However, optimization under a single charging mode is difficult to accommodate a large
number of parallel EV charging requests. This means that EV charging optimization can
be done by combining the advantages of each mode for targeted EV charging allocation.
For example, plug-in charging mode has the advantage of stable electrical energy replenish-
ment, while swapping mode has the advantage of rapid battery replacement. By combining
and optimizing the different charging modes, EV charging can be effectively improved.
Even during peak charging times, the hybrid charging mode would achieve a more stable
charging service.

1.4 Contributions in This Thesis

1.4.1 Research Aim
EVs emit great greenhouse gases and do not rely on non-renewable energy. Thus, they
have huge application potential in achieving green transportation. However, the current
limitations of battery charging technology and the unreasonable allocation of Charging
infrastructures lead to long EV charging time and charging congestion, which degrades the
travel experience of EVs. Here, charging scheduling (when-to-charge) and CS-Selection
(where-to-charge) become key optimization points under the plug-in charging mode.
Therefore, this research aims to optimize EV charging under spatial-temporal domain.
Furthermore, a novel flexible V2V charging mode can be applied as a supplement to the
plug-in charging mode as it alleviates CS deployment and charging peak hour problems.
This research further alleviates EV charging congestion, improves EV charging efficiency,
and explores the benefits of iterative EV charging scenarios (V2V charging and hybrid
charging modes).

5



Chapter 1. Introduction 1.4. Contributions in This Thesis

1.4.2 Research Methodology
In this research, a corresponding EV charging simulation platform and evaluation system
are built using an Opportunistic Networks Environment (ONE). ONE is an opportunity
network environment simulation software based on a discrete-event simulation engine,
which can achieve simulation results that approximate real-city scenarios.

1.4.3 Research Objectives
The objectives are to optimize EV charging experience, as follows:

• Adopt a flexible charging scheduling strategy and CS selection scheme to improve
charging efficiency.

• Iterate charging mode (V2V charging) to suit different temporal and spatial require-
ments of EV charging.

1.4.4 Research Achievements
• The first achievement concentrates on optimizing the plug-in charging mode. Here,

a preemptive charging scheduling strategy that considers the EVs’ charging urgency
(urgency-first charging policy) is proposed [3]. It allows EVs with high charging
urgency, calculated by charging demand and remaining parking time, to get preemp-
tively charged, optimizing EV charging in the temporal domain [4]. Based on the
proposed charging scheduling strategy, a CS selection scheme is further proposed,
jointly considering the anticipated charging reservation information [5]. This scheme
selects the CS with the shortest charging trip duration including one charging process.
Meanwhile, EVs are required to report their charging reservation information,
helping to accurately predict the congestion status of CSs and efficiently allocate
charging resources in the spatial domain [6]. The charging network simulation is
carried out through the urban traffic scenario of Helsinki. The results show that the
proposed charging management scheme (scheduling policy and reservation-based CS
selection scheme) can effectively shorten the EVs’ average charging waiting time and
allow more EVs to get fully charged within a limited parking duration.

• The second achievement introduces an emerging V2V charging mode to solve the
problems encountered in the plug-in charging mode, such as charging congestion
at peak hours due to the fixed locations of CSs. Urban areas are nearly saturated
recently, and CSs suffer from high costs in deployment and operation, which restricts
further EV charging optimization in the CS charging mode. In the V2V charging
mode, EV-Ps transfer their surplus energy to EV-Cs in the form of V2V-Pairs via
V2V charging converters deployed at Parking Lots (PLs). However, this brings the
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matching problem of V2V-Pairs and the PL selection problem. A distance-based
V2V-Pair matching algorithm is proposed to reduce energy costs in travelling, and
a PL selection scheme to maximize the use of constrained parking resources within
the parking duration limitation [7]. As the occupation status of PLs is difficult to
estimate, EVs are asked to send V2V charging reservations for accurate estimation
[8].

• Finally, the V2V charging mode still has certain limitations (the power provided by
EV-Ps is limited, and the V2V charging power is low). In the work [9], a holistic
EV charging management via cooperative deployment (CSs and battery switching
stations) is considered, improving convenience for EV charging. Therefore, in-
troducing the V2V charging mode as a supplement to the CS charging mode can
improve the flexibility and effect of EV charging. A cooperative charging system
by simultaneously considering CS and PL in the charging network is proposed.
This cooperative charging system maximizes the comprehensive utilization of CS
charging (flexible charging scheduling and high charging power) and V2V charging
(flexible charging location selection). This cooperative charging system finds the
optimal charging provider among CSs and PLs and recommends the optimal provider
to the EV as the charging selection, thereby shortening the charging service time.
In addition, the joint optimization of user travels and charging also improves the
convenient charging and parking management for EV drivers [10].

1.5 Structure of This Thesis
The rest of this thesis is as follows:

In Chapter 2. I provide a survey on different charging modes, where objectives, risks
and optimization approaches under different modes are discussed. This work has been
submitted to Elsevier eTransportation.

Chapter 3 provides an introduction to the EV charging network simulation tool, the
Opportunistic Networks Environment (ONE) simulator. It includes EV movement model,
EV routing model (for charging purpose) and auxiliary models (reporting and visualization
model).

Chapter 4 provides an EV charging scheduling policy named the “Urgency First
Charging” policy. It considers the charging urgency of EVs (calculated by estimated
charging time and remaining parking time). Based on this policy, EVs can be scheduled
efficiently (time domain optimization). As EVs would park at CSs for a limited duration,
based on this policy and the introduction of reservation, we propose an EV charging
recommendation scheme to utilise CSs efficiently (spatial domain optimization). This work
was accepted at the IEEE-VTC 2020 Fall conference and the work was further refined and
accepted by Elsevier Sustainable Cities and Society in 2021.
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Chapter 5 provides a V2V charging mode optimization under constrained parking
duration and locations. It is designed to optimize V2V-Pair matching and charging location
selection, to reduce charging waiting time and allow more EVs to be fully charged. This
work was accepted at the ICCAIS 2021 conference and the work was further refined and
accepted by IEEE System Journal in 2021.

Chapter 6 provides an optimization approach to hybrid charging mode. Since a single
charging mode faces some limitations (e.g. location limitation under plug-in charging
and low charging stability under V2V charging), my research considers the cooperative
optimization of multiple charging modes. This part of the work designs the switching
between the various charging modes and how to select the charging facilities (CSs etc.)
according to the requirement of the EV. This work has been accepted by Elsevier Renewable
Energy (hybrid under plug-in and battery swapping modes). Meanwhile, another paper
based on this part of the work has been submitted to Elsevier Energy for revision (hybrid
under plug-in and V2V charging modes).

Finally, Chapter 7 concludes contributions together with the highlighted future research
directions.
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Chapter 2

Survey on EV Charging Modes

2.1 Taxonomy on EV Charging Modes
With the continuous development of EV industry and the increasing number of EVs, the
EV charging problem becomes an important factor that affects EV development. The
construction of charging infrastructures affects the utilization of EVs. Limited by battery
capacity, EVs need frequent charging to replenish their driving range. The existing charging
methods of EV include plug-in charging mode (AC plug-in charging, DC plug-in charging),
and battery swapping mode. Since the batteries used in EVs are mostly fused in the vehicle
body, the plug-in charging mode was the previous mainstream EV charging mode. With
the progressed battery technology and introduction of split battery design, the battery
swapping mode has gained more attention these years. However, plug-in charging mode
and battery swapping mode both face the problem of restricted locations of charging
infrastructures. Therefore, the V2V charging mode has been proposed in recent years.
Furthermore, wireless charging and portable charging modes are also introduced as novel
charging solutions.

2.2 Plug-in Charging Mode

2.2.1 Introduction of Plug-in Charging Mode
Plug-in charging mode, due to its convenience and economy, has become the mainstream
charging mode for EVs. Therefore, the study of the plug-in mode is of great importance.
Here, plug-in charging mode is usually divided into AC plug-in charging and DC plug-in
charging.
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2.2.1.1 AC plug-in charging

AC charging includes private home charging and public charging. Home AC charging
generally uses a fairly low charging current to charge the battery. EV drivers simply plug
the vehicle charger into an electrical outlet. In addition, because AC charging at home is
usually processed at night or during low electricity periods, it facilitates the efficient use
of electricity and EV charging can enjoy more price discounts. Public AC charging is
one of the most important charging methods for EVs, with chargers set up on the street,
in supermarkets, office buildings, etc. Regular charging current is used for charging. EV
drives only need to park the car at CSs and connect the wire to start charging.

AC charging current is generally not large, with a charging time of more than 6 hours.
The advantage of AC charging is that it has less impact on the battery life of EVs and
the impact on the power grid. The disadvantage of AC charging is that the charging time
of EVs is longer, which is difficult to meet when there is an urgent demand for power
replenishment. AC charging adopts the traditional charging method of constant voltage and
current to charge EVs.

2.2.1.2 DC plug-in charging

The purpose of DC plug-in charging is to fully charge EVs in a short period of time, and
the charging time could be close to the refuelling time of the internal combustion vehicle.
Most CSs apply DC plug-in charging. This is mainly for long-distance travel or the need
for rapid range replenishment. Here, the typical charging time is 10-30 min. The key to the
fast CSs is the non-vehicle fast charging component, which is capable of outputting 35 KW
or even higher power. Because of the high power and current ratings, DC charging method
has high requirements on the power grid and is widely applied for service.

DC charging current are high, thus it is called fast charging. The advantage of DC
charging is that it improves the charging efficiency of EVs and saves time. The disadvantage
of DC charging is that it produces a huge current shock to the power battery pack, which
will reduce the cycle life of the power battery pack. Meanwhile, the cost of the battery pack
is relatively high.

2.2.2 Optimization under Plug-in Charging Mode
The following methods are most often adopted in optimization problems about plug-in
charging mode:

• Mathematical optimization: Typical methods include linear programming, Mixed-
Integer Linear Programming (MILP), quadratic programming and robust optimiza-
tion.
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• Operational research: Typical methods include queuing theory and game theory.
Considering the computational complexity with a large density of EVs and CSs in
practical case, the above solve tools of mathematical optimization are not always
applicable. With regard to the characteristic of the large-scale optimization problems,
solving methods related to operation research are thus applied.

• Meta-heuristic algorithms: Typical methods include Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and evolutionary algorithms. Since traditional
optimization algorithms are hard to deal with large-scale mobile scenarios, meta-
heuristic algorithms have thus been applied to obtain an approximate optimal
solution.

Here, reasonable decision-making control manners can improve the optimization
performance given demands constraints [11]. The benefit of cooperative control over the
charging decision-making between EVs and the system operator has also been depicted in
the literature [12]. There are two main types of decision-making frameworks as follows.

• Centralized control: The centralized control method is the most common op-
timization scheme under plug-in charging mode [13]. The centralized control
framework aggregates the global information, including the charging demand of
all EVs and the service capability of all CSs [14, 15]. Based on comprehensive
information, the centralized method can thus obtain the optimal solution. Besides,
a central node that aggregates and deals with all global information is necessary
to implement centralized decision-making [16, 17]. The node is usually called the
Central Aggregator (CA) or the Global Control (GC). As for the intelligent traffic
scenario, the CA or GC plays the role of the city brain to manage the traffic flow [18,
19, 20, 21]. Compared to the decentralized control framework, centralized control is
efficiently executed in practical applications due to lower communication costs and
time delays. This is because CSs and EVs can connect with the central node directly
without intermediate transmission.

• Decentralized control: As discussed above, the centralized control framework
can obtain the global optimal solution, but it also faces some problems, such as
robustness and privacy issues. This is because the centralized approach aggregates all
information to the central node, making it vulnerable and fragile. The decentralized
control framework has been proposed as an essential supplement to the centralized
framework [22, 23, 24]. The advantage of the decentralized method is that it can
share information only with local infrastructure rather than aggregating all data at a
central node [25, 26]. Therefore, it only requires minimal computational resources
on the local side. However, it should also be noted that the decentralized control
framework is limited by the availability of global information, making it difficult to
obtain the global optimal solution [26, 27].
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2.2.3 Objectives and Risks under Plug-in Charging Mode
2.2.3.1 Objectives of Plug-in Charging

The objective of EV charging determines the optimization problem formulation and
decision behavior for different service stakeholders. The objective from the perspective
of multi-party stakeholders in charging service is further discussed.

• From the power grid’s perspective, it mainly concerns peak load shifting, voltage
fluctuations and power system load variance to maintain the stability of electricity
service network. Renewable energy such as wind, hydro, solar, and geothermal is also
important energy sources that can be fully utilized. Based on these, the power grid
can alleviate dependence on fossil fuels and reduce power generation cost. Therefore,
environmental friendliness and lower power generation cost can be achieved.

• From EV drivers’ perspective, the Quality of Experience (QoE), namely the service
waiting time, is the primary concern. Besides, charging cost is another crucial factor
they consider. The cost usually consists of two aspects: the battery degradation cost
caused by charging and the charging expense paid to CSs.

• From CSs’ perspective, the operating profit is the determinant for long-term running.
To maximize the profit, the CS operator should improve the charging revenue from
EVs and reduce the expenditure on purchasing electricity. Additionally, the departure
deadline is normally taken into account so as to address the user tolerance on charging
service.

2.2.3.2 Potential Risks of Plug-in Charging

The objective and benefits of EV charging under plug-in mode are presented in section
2.2.3.1. The primary control frameworks for plug-in charging is introduced. Besides, the
potential risks of above control frameworks are summarized.

• Infrastructure construction: To support communication among entities, primary
infrastructures over networks are necessary. Therefore, the construction of commu-
nication facilities is the fundament of EV charging.

• Privacy issues: Regardless of centralized or decentralized frameworks, EVs send
information about IDs, locations and destinations to a third party. Private information
should be protected and prevented for commercial purposes.

• Coordinated management: Different service stakeholders tend to make decisions
that benefit their interests. A coordinated management scheme that balances the
demand of various entries is thus essential for long-term operation.
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2.2.4 Optimization under Plug-in Charging Mode

Figure 2.1: The optimization under plug-in charging mode.

2.2.4.1 CS Operation Optimization:

The optimal decision is mainly concerned with the perspective of CSs. With a focus
on these scenarios, operation optimization can be achieved at CSs from construction to
charging scheduling. Therefore, optimization objectives from the perspective of CSs are
eventually realized based on these analyses.

• Charging scheduling: The optimization problem of charging scheduling is usually
formulated as allocating each time slot for optimal charging/discharging. Under plug-
in charging mode, EVs are usually parked at a building and connected to the power
grid with a wired connection. The problem is defined as “when/whether to charge”,
where EVs are regarded as static consumers without considering the property of
mobility.

For a plug-in EV charging scenario, EVs are parked at CSs or parking lots with
plugging into charging slots. EVs set the target State of Charge (SOC) and the
departure time to the CS operator. Based on the demand for serviced EVs, the CS
operator determines an optimal charging scheduling with respect to each EV.
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Han et al. [13] designed an optimal aggregator by providing frequency regulation
service to the power grid. In this scenario, apart from the energy demander, EVs
are also regarded as the supplier of frequency regulation services. Considering
the constraint of battery energy, the optimization problem is formulated based on
the EV charging cost and the frequency regulation revenue. Then, a dynamic
programming-based approach is accordingly developed to solve the optimization
problem. Therefore, the optimal charging scheduling in terms of charging rate,
charging sequence and charging duration is derived from revenue maximization.

Erol-Kantarci and Mouftah [14] developed a prediction-based charging method to
determine the suitable charging time achieving low operation cost. Specifically, the
CS receives real-time electricity price with the help of Information and Communica-
tion Technologies (ICT). Then, the data is saved for training a K-Nearest Neighbor
classification to forecast the future electricity price. If the predicted price exceeds
the set threshold, the charging process is delayed until an acceptable price emerges.
Finally, the electricity cost of EV charging is significantly reduced based on the
proposed algorithm.

Apart from centralized charging scheduling, decentralized charging is also an
important component of static mode. Gan et al. [22] proposed a decentralized EV
charging scheduling algorithm, applying broadcast control signals and asynchronous
computation to satisfy the valley-filling electricity demand. To be specific, the
charging scheduling problem is reformulated as an optimal control process. Then,
EVs update their charging choice according to the price signal broadcast from the
power grid in each iteration.

• CS-placement: The CS is an essential infrastructure to supply electrical energy for
EVs’ recharging. A reasonable planning scheme for CS-placement can improve the
QoE of EV drivers and benefit the CS’s long-term operation. Considering different

Table 2.1: Literature Related to Charging Scheduling under Plug-in Mode
Reference Methods & Techniques Objectives Advantage & Disadvantage

[13] Dynamic programming Revenue maximization; Fre-
quency regulation

Make efficient use of the distributed power; Consider
the transport properties and charge loads of EVs

[14] K-nearest neighbor Reduce electricity cost Provide simple classification technique; Show
prediction-based charging providing less operating
cost

[22] Optimal control process Peak-load shifting Consider PV farm transactive energy; Achieve higher
revenue by the private investor

[23] Convex relaxation opti-
mization

Maximize user convenience Work even meeting predefined circuit-level demand
limits; Online, decentralized and robust against
various uncertainties

[15] Look-ahead dispatch Maximize CS profits Model power system on stochastic differential-
algebraic equations

[24] Four-stage optimization
and control

Reduce operation cost Use a chance-constrained optimization objective;
Propose an optimized operational cost reduction
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charging modes for EVs, the CS-placement optimization problem is accordingly
divided into two categories: slow and fast charging.

1) AC charging station: Here, slow charging is usually related to AC charging.
EV drivers can spend 6-10 hours recharging the EV at home, in buildings and in
workplaces, which has a negligible impact on the power grid. Considering the low
power of this mode, EV charging is regarded as household electrical equipment.

Frade et al. [16] investigated the deployment of slow charging facilities around
Lisbon, where the utilization of residential and commercial is mixed. The proposed
method is developed from the prediction of charging demand on the basis of census
data. Besides, considering the mixing characteristic of the district, a nighttime factor
related to residences and a daytime factor related to workplaces are both analyzed.
Finally, the placement of CSs aims to best cover the predicated demand based on a
maximal covering model.

2) DC charging station: Fast charging stations provide a public charging service to
EV drivers. Due to a higher power, the charging duration can thus be significantly
reduced. Recent research has extensively focused on the placement and planning
of fast charging stations. The majority of these works are mainly formulated from
the field of economic benefit. However, the security of the power grid can not
be guaranteed if operation profit is the only determinant factor for CS-placement.
Therefore, the optimization problem of placement and planning of fast charging
stations should also consider power grid impacts.

Liu et al. [18] comprehensively investigated the impact of geographic information,
construction and running cost. Then, an objective function is mathematically
formulated based on the above factors. Since the optimization problem is with
the characteristic of non-convex, non-linear and combinatorial optimization, the
optimal planning of CSs is determined with the proposed adaptive particle swarm
optimization algorithm. The convergence and effectiveness of the proposed algorithm
are also validated by examples.

Wang et al. [19] proposed a multi-objective CS planning scheme to ensure the
satisfaction of customers and the stability of the power grid. With the constraint
of traffic system, the proposed algorithm is developed based on data analysis and
cross-entropy method to obtain the optimal location of CSs. The simulation with a
33-node power system and a 25-node traffic network confirms the reasonability of
proposed scheme.

2.2.4.2 EV Drivers’ QoE Optimization:

The above analysis of application scenarios has been derived from the concerns of
CSs. Besides, EV drivers are another indispensable part of the plug-in charging service.
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Considering the essential role of EV drivers, the following application scenario from their
perspective is introduced.

• EVs to Grid (V2G): The optimization problem of charging scheduling from the view
of CSs is mainly based on the Grid to Vehicles (G2V). Based on the application of
bidirectional power flow, EVs can sell the residual energy to the grid for profit. In
a G2V scenario, an EV only acts as an energy demand side. By contrast, an EV
can supply energy to the grid in a V2G scenario. Apart from an energy supplier, it
can provide ancillary services such as frequency regulation and peak-load shifting.
Although EVs can participate in the bidirectional power flow, the battery degradation
on EV batteries due to frequent discharging should also be studied.

Sortomme and El-Sharkawi [20] proposed a unidirectional regulation algorithm for
an aggregator. The aggregator combines many EVs for transacting energy in the
market and uses several smart algorithms to determine the discharging rate. Finally,
it is proven that the energy demand of EVs can be maximally satisfied with minimum
charging cost.

Ota et al. [25] developed an autonomous distributed V2G control strategy. In this
scenario, large-scale Renewable Energy Sources (RES) and battery energy storage
are integrated into the power system. Besides, a smart charging control algorithm is
proposed to satisfy the convenience of EV drivers and ensure the frequency stability
of the power grid. To be specific, if the frequency deviation is below a minimum
threshold, the EV discharge to the power grid. Otherwise, the EV is charged from the
power grid.

• CS-selection: Since most works focus on the static mode, the mobility characteristic
of EVs should be taken into account. Compared to the charging scheduling problem
about “when/whether to charge”, the optimization problem under the on-the-move
mode is defined as “where to charge”. When an EV requires a charging service, it will
drive toward the optimal CS under recommendation. Based on the above analysis, it
can observe that the optimization problem under the on-the-move mode is formulated
as a “CS-selection” problem. In recent years, the EV charging optimization problem
related to “CS-selection” has been attracting increasing attention. Combining the

Table 2.2: Literature Related to CS-selection under Plug-in Mode
Reference Methods & Techniques Objectives Advantage & Disadvantage

[21] Data mining Minimize recharging time Provide real-time recommendations for CSs; Reduce
downtime of EV taxis; Rely on up-to-date data on CS
availability

[26] Service protocol frame-
work

Minimize service waiting time;
Improve communication effi-
ciency

Enable on-the-move EV charging management ; Use
reliable vehicular-publish/subscribe (V-P/S) commu-
nication
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mobility characteristic of EVs, research is usually derived from the perspective of
EV drivers. Besides, load balance over the network is another main focus in this
field.

Tian et al. [21] proposed a real-time CS recommendation system for Electric Taxis
(ETs). The solution framework of the real-time recommendation system combines
historical recharging events and real-time taxi GPS. Based on the above information,
the recharging intentions of ET drivers are predicated. Then, for ET drivers with
recharging demand, an optimal CS is recommended for the ET drivers, so as to
minimize charging cost and total charging time.

Cao et al. [26] developed a vehicular-publish/subscribe communication framework
for on-the-move EV selecting the optimal CS. The framework is integrated with
public transportation buses. Based on the infrastructure, considering low privacy
sensitivity, the charging management scheme is implemented in a fully distributed
manner. Simulations based on the city scenario of Helsinki verify the desirable
performance of the proposed framework in improving EV drivers’ QoE and com-
munication efficiency.

• Routing and navigation: The optimization problem of routing and navigation aims
to find a desirable route from the current location towards the selected CS. Besides,
it also aims to design an optimal tour route so that EVs can experience the shortest
additional distance for recharging.

Lee and Park [27] proposed a distance-based heuristic algorithm to design a tour
schedule for EVs selecting CSs during a trip with better QoE. The work in [27]
considers the increasing time complexity caused by the large density of CSs. To deal
with the disadvantage, the literature [27] adjusts the optimal CS selecting from all
CSs in the area to the candidate subset. Moreover, the candidate subset is determined
by the proposed heuristic algorithm picking CSs close to selected destination points.

2.3 Battery Swapping Mode

2.3.1 Introduction of Battery Swapping Mode
The battery swapping mode uses battery pack replacement, where a fully charged battery
pack is used to replace a depleted battery pack when the battery is depleted. The concept
of battery swapping can be traced back to 1896 [28]. Moreover, the battery swapping
technology was applied into practice by Hartford Electric Light Company in the early 1900s
[29]. The battery is owned by the service station or battery manufacturer, and the EV user
simply rents the battery. The EV user parks the vehicle in a specific area and then uses a
battery pack replacement machine to remove the depleted battery and replace it with a fully
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Figure 2.2: Battery Swapping Mode for EVs.

charged battery pack. The replaced uncharged batteries can be charged at the service station
or collected centrally for recharging later. Since the battery replacement process includes
mechanical replacement and battery charging, it is sometimes referred to as mechanical
“refuelling” or mechanical charging. The battery replacement station has the advantages of
both a normal charging station and a fast charging station, which means that the battery can
be charged by low valley electricity while the “refuelling” process can be completed in a
very short time. Through the use of mechanical equipment, the entire battery replacement
process can be completed within 10min, and the existing fuel car refuelling time is roughly
equivalent. However, there are still a number of problems with this method that need to be
solved. First, the initial cost of this battery replacement system is high, including expensive
mechanical devices and a large number of batteries. Second, because of the large amount
of space required to store a large number of uncharged and charged batteries, the space
required to build a battery replacement station is much larger than the space required to
build a normal charging station or a fast charging station. Also, uniform standards for the
physical size and electrical parameters of batteries need to be developed before automatic
battery replacement systems can be applied. As a result, the battery exchange model is
more widely used in the public sector. However, in recent years, the battery exchange mode
has also seen a major development in the private mode. EV producers like NIO [30] have
established more than 900 Battery Swapping Stations (BSSs).

2.3.2 Benefits of Battery Swapping Service
The dramatic increment in BSSs has promoted the application of battery swapping service,
which can be summarized as follows:

• From EV drivers’ perspective, the battery swapping service can effectively reduce
the energy supplement duration, alleviate range anxiety and improve QoE. Moreover,
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EV drivers will no longer concern about the battery degradation problem. This is
mainly due to the business model of battery swapping, where both EV manufacturers
and battery operation share market by separating the battery and the vehicle.

• From the BSS operator’s perspective, the battery swapping mode can reduce the
operation cost, by charging batteries in advance at the valley electricity price periods.
Differing from the plug-in charging mode with uncertain charging behavior, the
battery swapping service can balance service demand and charging process by
providing inventory batteries. Therefore, the demand of EV drivers can be guaranteed
and the operation cost can be reduced.

• From the power grid’s perspective, depleted batteries are managed by the BSS
operator. The disordered charging behavior of individual users under plug-in
charging mode can thus be avoided. Therefore, the stability of power grid can be
achieved with the cooperation of BSSs. Besides, depleted batteries are regarded as
a static load connected to the power grid. The battery swapping mode can further
help to implement peak-load shifting through charging and discharging behaviors of
depleted batteries.

• From the government’s perspective, the battery lifetime can be extended by regular
testing and maintenance. Besides, the battery swapping mode facilitates recycling of
batteries. Moreover, it can improve the public acceptance of EVs, thus promoting EV
popularization.

2.3.3 Potential Risks of Battery Swapping Service
Although the battery swapping service mode indeed exhibits great excellence, potential
risks should also be noticed.

• Users convenience: Compared with the plug-in charging mode, the battery swapping
service can significantly reduce the waiting time. However, it is based on the
ideal assumption that there are adequate inventory batteries for incoming EVs.
Otherwise, long charging waiting time is still inevitable for depleted batteries
becoming available. Besides, considering the land value, BSSs are usually deployed
in suburban districts. Thus, users have to drive a long distance for energy
supplements. Moreover, considering congestion at BSSs, a reasonable BSS-selection
mechanism is necessary to achieve load balance.

• Initial investment: The battery swapping mode can indeed reduce electricity costs
through battery charging optimization. However, the expensive BSS construction
cost is inevitable, such as expenditure on batteries and equipment.
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2.3.4 Optimization under Battery Swapping Mode

Figure 2.3: The optimization under battery swapping mode.

2.3.4.1 BSS Operation Optimization:

Compared to plug-in charging mode, stakeholders under battery swapping mode include
BSS operators and EV drivers. Then, the operation optimization at BSSs is presented from
the construction to charging scheduling.

• Charging scheduling of batteries: Batteries at each BSS can be regarded as a static
load connecting to the power grid. Therefore, the scheduling can be achieved through
battery charging regulation.

1)BSS Operation Scheduling: As for BSS operation scheduling, the BSS operator
arranges an optimal charging scheduling based on the service requirements of
incoming EVs and the availability of batteries. The target is to maximize the profit
for BSS operation and satisfy the demand for EV drivers.

The first method to achieve the BSS operation scheduling is to allocate charging slots
with different charging rates on depleted batteries. Different types of chargers, i.e.,
slow charge, fast charge and ultra-fast charge, may cause different battery degradation
cost on batteries. Considering this characteristic, the BSS determines the optimal
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charging scheduling based on the local status information, such as requirements for
EV drivers, BSS status, battery cost and Time-Of-Use (TOU) electricity price.

Wu et al. [31] developed an optimal charging scheduling method for batteries in
BSSs. It aims to maximize the number of available batteries, and minimize the
average battery degradation cost caused by different rates of charger. Then, a
multi-objective optimization problem integrating the above two factors is formulated.
Accordingly, the GA, differential evolution algorithm and three versions of PSO
algorithms have been applied to solve the optimization problem. Combining the
advantages of above algorithms, the varied population genetic algorithm and varied
population differential evolution algorithm are thus proposed to achieve optimal
charging scheduling with low time complexity.

Apart from the different types of chargers in [31], authors in [32] further considered
the Constant-Current/Constant-Voltage (CC-CV) model to depict the actual charging
process. The optimal charging scheduling based on different kinds of charging
rates is to minimize BSS operation cost, including the number of batteries removed
from inventory, battery degradation cost caused by different types of chargers
and electricity cost. Inspired by GA, PSO and differential evolution algorithm,
an integrated algorithm with desirable characteristics of the above algorithms is
accordingly proposed. Simulations verify the effectiveness of proposed algorithm
in optimal scheduling facing large-scale swapping demands during the day.

The second method to achieve the BSS operation scheduling is assigning a specific
charging time slot for depleted batteries. In this situation, the difference among
chargers is neglected. By contrast, the BSS can assign a different charging time
slot for each depleted battery according to the current battery capacity. Therefore,
the individual demand related to battery energy for EV drivers can be satisfied.

Based on an arrival rate at BSSs, SOC of serviced EVs and target SOC, Wang
and Pedram [33] predicated the future service demands, so as to guide the optimal
charging scheduling in terms of charging time and rate. Considering the dynamic
energy price, a battery swapping charging algorithm is proposed to implement online
charging scheduling of batteries at BSSs. Eventually, the electricity cost during BSS
operation can be reduced while the QoE of EV drivers is guaranteed. Besides, a
heuristic algorithm is proposed to solve the offline optimization problem about the
optimal number of inventory batteries.

Considering the stochasticity of requirements and real-time energy price, Mohsen
et al. [34] investigated the optimal scheduling problem based on the constraint of
BSS operation. Since the charging scheduling includes the charging and discharging
process, the BSS operation cost is formulated from electricity and battery degradation
cost. Then, a robust optimization method is developed to find the optimal solution
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with the aim of minimizing cost function, so as to achieve the optimal BSS
scheduling.

2) Interactive Charging Scheduling With the Power Grid: Considering the high power
demand of BSSs and the energy storage characteristic of batteries, a reasonable charg-
ing scheduling method interacting with the power grid is necessary. Accordingly,
depleted batteries can be charged at the valley electricity price to reduce operation
cost. Besides, BSSs can transmit battery energy back to the grid at peak periods.
Through above interaction, the profit of BSSs and the stability of power grid can both
be improved.

Benefiting from the rapid development of deep Q-network, Wang et al. [35]
developed a dynamic scheduling strategy at BSSs for providing fast frequency
regulation services to the power grid. Specifically, a cost function is formulated to
evaluate the revenue for BSS providing fast frequency regulation services. Due to the
non-convex and random characteristics of the optimization problem, a well-trained
deep Q network (DQN) is thus proposed for optimal scheduling. Simulation results
present the effectiveness of proposed scheme in improving fast frequency regulation
services and profits of the BSS.

Yang et al. [36] utilized the energy storage property of batteries in the BSS, providing
auxiliary services with the Battery to Grid (B2G) method. Then, an operation strategy
is proposed based on the SOC of each battery to determine the candidate battery set
for B2G. Besides, considering the power fluctuation and QoE of battery swapping
service, a coordinated charging mechanism for the BSS in a microgrid is proposed
to minimize electricity costs. An actual example investigates the impact of free
parameters and verifies the desirable performance of proposed service strategies.

• BSS Construction: This part mainly analyzes the BSS initial operation planning,
including BSS placement and configuration.

1) BSS-placement: The BSS placement problem is defined as locating and deploying
a BSS at a certain place over the city district. Since the location of BSS is fixed
but with increased investment cost, the construction of BSS should be determined
with the sufficient investigation based on the quantity of EV, land price, distance and
power grid.

Since BSS-placement plays an important role in subsequent operations, Wang et al.
[37] proposed a BSS-placement framework based on multi-criteria decision making.
Firstly, three criteria are considered, including up-front investment, impact on power
grid and QoE of EV drivers. The criteria system is further developed. Then,
considering a lack of information in the decision scenario, triangular fuzzy numbers
are applied to handle uncertainties. Besides, a decision making trial and evaluation
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laboratory method is developed to determine the weights of three criteria. Finally, a
fuzzy-based approach is applied to rank the candidate position.

Considering the prevalence of internal combustion engines and data science, Zeng et
al. [38] developed a data-driven BSS-placement method based on large-scale GPS
data. The proposed BSS-placement scheme includes three parts: a Hidden Markov
Model for map matching and trajectory extraction, an electricity consumption rate
model for demand estimation, and a clustering strategy for location determination.
An example case in Shanghai present that the proposed scheme outperforms related
benchmarks.

2) Configuration: After a BSS is deployed, the matched configuration is an essential
factor for BSS’s long-term operation. It includes the service strategy, the number of
charging slots and the initial number of batteries.

Schneider et al. [39] investigated the configuration optimization problem of BSSs
with charging slots and batteries. The aim is to obtain the optimal equipment
configuration of BSS operation, considering the battery swapping requirements and
electricity price. Whereas, the optimization problem is hard to be solved in practice
due to large time complexity. Therefore, a near-optimal solution heuristic based on
Monte Carlo sampling is developed to obtain the solution. Finally, the proposed
algorithm can simultaneously determine the optimal configuration of BSSs and
charging scheduling strategy.

With the aim of reducing carbon emission and operation cost, Liang et al. [40]
proposed a BSS configuration and operation model with three charging strategies.
Based on dynamic and historical data, the authors derive the optimal number of
chargers, swappers and inventory batteries. Besides, annual battery rental fees are
taken into account to satisfy battery swapping demand and improve BSS profits.
Then, the profit of BSSs is analyzed from the aspect of battery technology, policy,
and BSS planning. Finally, it is concluded that battery cost and swapping pricing are
crucial factors for BSS profits.

2.3.4.2 EV drivers’ QoE Optimization:

From the perspective of EV drivers, the optimization problem is usually formulated from
the aspect of service waiting time and servicing expense.

• BSS-selection: EV drivers move toward an optimal BSS for battery swapping service
when the service requirement occurs due to extending driving range anxiety, known
as the BSS-selection problem. In charging scheduling part, the optimization strategy
on BSS operation is presented, with concern on when and which battery to charge.
By contrast, the BSS-selection problem is devoted to recommending the optimal BSS
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to EV drivers. Here, the optimal BSS is selected according to various criteria, such as
minimum service waiting time, lowest service cost and shortest travelling distance.

1) Optimization Theory: Due to the limited available batteries and charging slots of
BSSs, incoming EVs usually have to wait until a depleted battery becomes available.
Considering the arrival rate of EV flows and the service ability of BSSs, the service
process can thus be transformed as a queuing theory problem. Besides, since the
optimization objective function is usually formulated with waiting time and service
cost, the optimization problem can thus be solved from the field of mathematical
optimization.

Based on the battery swapping and charging process, Tan [41] et al. proposed a
queuing theory method to assess the service performance of a Battery Swapping
and Charging Station (BSCS). To be specific, a Mixed Queuing Network (MQN)
model consisting of an EV queue and a battery queue is designed. Then, the
balance equations and steady-state distribution is derived. Besides, the EVs’ blocking
probability (a criterion related to waiting time) is adopted to evaluate the battery
swapping service performance. Moreover, the influence of crucial configurations of
BSCS (e.g., the number of parking spaces, swapping islands, chargers, and batteries)
on the blocking probability is also depicted.

You et al. [42, 43] investigated the optimal BSS assignment based on the current
location and SOC in a centralized and distributed manner. It aims to minimize a
weighted sum of EVs’ travel distance and electricity generation cost. For centralized
implementation, a solution based on second-order cone programming relaxation
of optimal power flow and generalized Benders decomposition is proposed with
global information [42]. Since the power grid, EVs and BSSs may be operated
independently, the global scheduling information is unable to be obtained.

2) Service Framework: Many works are developed based on mathematical optimiza-
tion. Although a globally optimal solution can be achieved, they are usually derived
with the ideal assumption that the global demand information is known in advance.
Considering this disadvantage, the service framework is thus proposed in practical
application scenarios.

With the development of ICT, Cao et al. [44] developed a Mobile Edge Computing
driven battery swapping service management scheme. In this work, the optimal
BSS decision process is implemented by EVs in a distributed manner. Besides,
the public transportation bus integrated with MEC server collects EVs’ reservations
and transmits BSS status to EVs. Based on the number of batteries at BSSs
and reservation information, the GC can predicate the waiting time at each BSS.
Therefore, the EV driver can move toward the optimal BSS with the shortest waiting
time.
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Apart from the waiting time for EV drives, Li et al. [45] also considered the impact
of battery degradation cost from the perspective of BSS operator. In the paper, a CC-
CV charging model is applied to depict the recharging process of depleted batteries.
Based on the CC-CV model, the battery degradation cost is accordingly derived.
Then, combining the reservation mechanism, a demand balance battery swapping
service framework is proposed. Finally, the joint optimization between EV drivers
and the BSS operator can be achieved through the optimal BSS selection.

• Routing and Navigation: The routing and navigation optimization problem is
mainly derived from the optimal path planning when a target BSS is selected.
Considering the route limitation, EVs aim to find a BSS for energy supplement. This
is common for ETs service process that drivers should achieve fast battery swapping
service to meet seamless journey demand for customers, in order to maximize profit.

Due to the limited battery capacity, ETs have to select a BSS for energy supplement
during pickup and drop-off tours. Based on above scenario, Sayarshad et al. [46]
developed a dynamic routing method based on Markov Decision Process (MDP)
with elastic demand. The proposed non-myopic routing scheme considers battery
SOC, detours of the ET moving toward a BSS, customers delay and system cost to
maximize social welfare. Then, the optimization problem is formulated and solved as
a Traveling salesman problem with pickup and drop-off to obtain the optimal route
planning. An example case based on taxi trip data in New York City proves the
proposed method’s effect on improving social welfare.

Masmoudi et al. [47] defined an EV Dial-a-Ride Problem. The optimization problem
considers the interaction between EVs and BSSs. Besides, it focuses on scheduling a
fleet of EVs to satisfy pre-specified service requests during a certain planning period.
Then, three Evolutionary Variable Neighborhood Search algorithms are proposed,
including population-based, diversification and advanced local search method. The
simulation presents that the proposed algorithm efficiently combines the advantage
of evolutionary meta-heuristics and Variable neighborhood search.

• Multiple BSSs and CSs: Under multiple BSSs and CSs service mode, BSSs and CSs
are operated independently. A station can only support battery swapping or charging
services. A certain number of BSSs and CSs are located around the city. EV drivers
with energy supplement demand, will move toward a BSS or a CS according to the
recommendation.

Utilizing MATLAB and MATPOWER, Luo et al. [48] developed a simulation
platform for a large-scale traffic flow and proposed an EV charging scheduling
scheme for different types of EVs. Considering the deployment of BSSs and CSs
over the city, choosing a charging or battery swapping service depends on service
waiting time, travelling distance and real-time road condition information. Then,
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a multi-objective optimization operation function related to traffic, power grid and
CSs/BSSs, is constructed. Finally, the optimal charging scheduling strategy is solved
with the weight coefficient method.

2.4 Vehicle-to-Vehicle Charging Mode

2.4.1 Introduction of Vehicle-to-Vehicle Mode
Unlike the traditional plug-in mode, a flexible V2V charging mode is proposed in [49] to
allow a pair of EVs to transfer energy between each partner other than plug-in charging
at CS/ battery swapping at BSS. The V2V charging mode allows EVs’ energy transfer
from EVs as energy Providers (EV-Ps) to those EVs as energy Consumers (EV-Cs), in
a convenient and economic energy transfer manner. Besides, the V2V charging mode
does not occupy grid resources during the peak charging period. Therefore, the V2V
charging mode can also be used to balance the load of the grid and reduce the adverse
impact of the grid during peak hours. Due to the V2V charging mode, the optimization
of charging service is normally modelled as a constrained MILP. In the work [49], through
dual decomposition and benders decomposition, the distributed algorithm was used to solve
the problem. Chakraborty et al. [50] introduced a cloud-based control system to match
V2V charging pair and optimize charging service. At the hardware level, Ucer et al. [51]
investigated the potential of bidirectional DC-DC converters for V2V charging. Meanwhile,
by deploying converters, traditional PLs can be facilitated for V2V charging [52].

There are mainly two V2V charging modes, direct V2V charging and asynchronous
V2V charging. The direct V2V charging mode provides adaptability for EVs on-the-move.
Usually, under the direct V2V charging mode, EVs are divided into energy providers
and energy consumers. Through energy transfer devices (such as DC-DC converters
[53]), energy can be transferred from energy providers to energy consumers [54, 55].
Besides, the accumulators at Power Storage Stations (PSSs) can store the energy of energy
providers, and transmit energy to energy consumers that needed charging. Thus, under the
asynchronous V2V charging mode, the charging and discharging services do not require
both parties to start at the same time.

The dual-input single-output DC-DC converter geography is proposed in [53] for the
integration of the two information sources. This converter works in six distinct kinds of
activity, it can utilize the power delivered by sun-based Photovoltaic (PV) and the power
accessible in the battery. Likewise, it performs V2V or V2G activity when the vehicle is in
leaving mode without the necessity of any outer DC converter.

Roberts et al. [54] proposed a progression of confirmation protocols to be utilized
for V2V charging applications. The fundamental inspiration is to get EVs charged using
existing norms like dedicated short range communication, Wi-Fi Direct or Bluetooth.
Authors utilized a common key trade convention that doesn’t depend on testaments for
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confirmation. Then, they proposed conventions utilizing cell phones and Wi-Fi Direct
conventions.

2.4.2 Objectives and Risks under V2V Charging Mode
2.4.2.1 Objective of EV Charging under V2V Charging

The objective of the V2V charging determines the optimization problem consensus and
decision-making behavior of different service participants. This objective from the
perspective of both the provider and the consumer is further analyzed.

• From the perspective of energy consumers, range anxiety and QoE are major
concerns. Besides, charging cost is another key factor that energy consumers
consider. Here, the cost typically includes two aspects: travel costs and fees paid
to the energy provider.

• From the perspective of energy providers, they want to sell their excess energy to
energy consumers. Therefore, selling price and travel costs are key issues for them to
consider.

• From the perspective of PL/PSS, when EVs reach the PL/PSS, an effective scheduling
strategy is required to plan the charging/discharging sequence of EVs.

2.4.2.2 Potential Risks of V2V Charging Service

In this section, the potential risks of above V2V charging mode are summarized.

• The mismatch of V2V-Pairs: The V2V charging may fail due to mismatch of
charging protocol among heterogeneous EVs in the market.

• Privacy issues: The V2V charging mode requires sensitive information of EVs
including location and driving route. The leaking of information will affect the
security of users.

• Slow charging: The V2V charging is flexible in the temporal domain and avoids the
problem of long charging waiting time at CSs. However, it is noted that the charging
power, between energy consumers and energy providers under V2V charging mode,
is much lower compared to that under the plug-in mode.

2.4.3 Optimization under V2V Mode
The V2V charging mode is flexible in the temporal domain (depends on the available time
of EVs other than the available time of charging infrastructures), avoids the charging time
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of EVs not matching the free time of CSs/BSSs. Besides, the V2V charging mode is flexible
in the spatial domain (depending on choosing a parking lot with available parking space),
avoiding selecting fixed-position CSs. Thus, the V2V charging mode can avoid the problem
of long waiting time at CSs.

However, it is a significant problem for optimization of temporal and spatial domain.

• In the temporal domain, the distance between energy consumers and energy providers
should normally not be too far, so that they can reach the target PL at a certain time
to perform V2V charging services. Otherwise, the energy transfer may suffer from a
long time to wait for any one of V2V pair reaches the PL. Thus, in order to allocate
resources, it is necessary to collect the current information of both energy consumers
and energy providers.

• In the spatial domain, the matching optimization is performed according to the
distance of energy consumers, energy providers and PLs. The optimality of spatial
domain problem is limited by the high mobility of EVs and the complexity of PLs
locations. Thus, it is important to match energy consumers and energy providers that
are not too far. At the same time, it is also necessary to consider the distance between
both V2V charging parties and the target PL.

Here, optimization approaches are reviewed under V2V application scenarios (direct
and asynchronous V2V charging modes). A typical procedure for on-the-move EVs V2V
charging is structured. The system is controlled centrally by a GC, including information
collection and global planning. Based on global planning, energy consumers and energy
providers can travel to PLs for V2V charging services according to their respective
preferences.

Under the direct V2V charging mode, when an EV customer requests for charging,
it requires an adequate energy provider to match for a maximized charging utility and
minimized charging cost.

• V2V-pair matching: During V2V-pair matching, the following constraints should
be noted: (a) If the subsequent travel of energy providers is considered, the residual
energies of energy providers need to meet the minimum requirement of completing
their travels. (b) The transferring of EVs providers’ energy will cause additional
energy loss.

1) Maximum weighted diplot matching algorithm: Bulut et al. [55] proposed a
V2V charging system to permit V2V energy transferring. EV drivers with range
anxiety can purchase energy from EVs with excess energy to sell. A mobility
model is developed for EVs during their trips. EVs communicate with each other in
proximity through a location based social networking system. Besides, this work uses
a maximum weighted diplot matching algorithm to optimize pair matching between
EVs.
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Figure 2.4: The optimization under direct V2V charging

2) Trucks with batteries: Kabir et al. [56] assumed a company having a number
of V2V enabled charging trucks equipped with a larger battery and a fast charger.
The company intends to maximize the served number of EVs been fully charged.
The work also considers that all trucks should return to the depot after serving EVs.
Kabir et al. formulate a MILP to maximize the number of served EVs by determining
the optimal trajectory of each truck.

3) Cooperating V2V charging and plug-in charging: In the work [57], energy
consumers are allocated to the optimal energy supplier (CS or energy provider) to
minimize the total charging cost. The matching problem is described as a mixed
integer optimization problem which is NP-hard, and then this work develops an
algorithm based on a stable marriage algorithm.

4) The stable marriage matching algorithm: The work [57] proposed a stable
marriage matching algorithm for the given preferences of EVs. It is proven by
the classical deferred acceptance algorithm [58] that at least one stable matching
exists. Then, the problem comes with how to find a stable matching effectively
and efficiently. The Gale-Shapley algorithm [59] has been proposed as an efficient
method to find a stable one-to-one matching in the stable marriage problem.
Note that although the provided EV-consumer-oriented and EV-provider-oriented
V2V matching algorithms can both realize stable matchings, they have significant
consequences. The EV-consumer-oriented algorithm yields an EV-consumer optimal
stable matching, in which each EV as energy consumer has the best matched partner
that it can have in any stable matching, whereas the EV-provider-oriented algorithm
leads to an EV-consumers output. This property is referred to as the polarization of
stable matchings [59].
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5) Subsystems of V2V charging Scenario: Zeng et al. [60] proposed a hierarchical
bipartite graph matching method to facilitate power exchange in power distribution
systems. The power distribution system is divided into a series of subsystems
according to the location of the EVs. The V2V power exchange is optimized to
schedule charge/discharge cycles between trading EVs in each subsystem. The
energy surplus and deficit of each subsystem will be regulated by the exchange
of electricity between adjacent subsystems and the utility grid. The proposed
hierarchical bipartite graph algorithm adopts charging models in EVs to facilitate
transactional V2V power exchange. In addition, by adaptively adjusting the
respective energy transaction targets, the energy transaction price of a single EV can
track the price of the subsystem. Several case studies demonstrate the effectiveness
of the approach, in which interactive V2V power exchange is improved to increase
the energy efficiency of power distribution systems.

6) Price model: Wang et al. [61] presented a novel smart grid architecture with
enhanced communication capabilities for mobile EVs, via a heterogeneous wireless
network-enhanced smart grid. The authors proposed an online V2V energy swapping
strategy based on price control. Specifically, EVs with surplus energy are motivated
by getting paid to contribute to a V2V energy swapping transaction. Based on the
gathered information from both EVs and the power grid, the aggregators determine
the energy price for EVs. The price control strategy is modeled as an Oligopoly game
[62] with competition among EVs. Using the announced price, a mobility-aware
spatio-temporal coordinated V2V energy swapping strategy is designed to enable
energy exchange among EVs at the aggregators. The proposed strategy is modelled
as a time-coupled MILP, which is decoupled into a series of sub-MILPs through
Lagrange duality [63]. To evaluate the performance of the proposed V2V energy
swapping strategy, a realistic suburban scenario is developed in VISSIM [64] to track
the EVs’ mobility using the generated simulation traces. Extensive simulation results
are given to demonstrate the efficacy of the proposed V2V energy swapping strategy.

7) V2V energy sharing framework: Shurrab et al. [65] proposed a novel holistic V2V
energy sharing framework. It consists of four layers including vital modules, models,
and technologies to develop efficient and effective V2V solutions. This framework
focuses on building an all inclusive V2V solution, which is not only cost effective, but
also maintains high user satisfaction, social welfare, and energy demands fulfillment.
Besides, this framework can simultaneously protect users’ privacy and secure their
sensitive data. This is possible with the support of evolutionary technologies, such as
AI, IoT, blockchain, and game theory, which are the building blocks of the proposed
framework. The aim of the framework is to build a comprehensive V2V system. It
can integrate all the necessary modules at various stages of the V2V process and
introduces new ideas, such as user behavior profiling, AI models, etc., that can
enhance the system.
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• PL-selection: Any V2V-pairs need to select a PL as common place to operate energy
transfer. Once the GC has conducted a feasibility analysis of PL-Selection for V2V-
pairs, the core factors are based on trajectory driving time, energy consumption,
charging time and charging comfort quality. When energy consumers and energy
providers establish the charging matching of V2V-pairs, they will face the problem
of PL-selection. In practice, EVs requires an optimized PL-selection algorithm due
to the scarcity of parking resources. Besides, PLs provide the equipment for V2V
charging and EVs may cause congestion. However, only a few previous studies have
considered the problem of PL-selection after V2V pairing [66], [67].

1) Travel energy cost and charging pleasure degree models: Li et al. [66] designed
a VANETs-based communication framework to enable data transmissions between
CSs and EVs in a real-time manner. By means of the derived travel energy cost
and charging pleasure degree models, EVs firstly reserve the corresponding optimal
parking place to minimize the charging cost.

2) Intelligent V2V charging navigation strategy: Li et al. [67] proposed an intelligent
V2V charging navigation strategy for mobile EVs under VANET communication.
Firstly, an efficient Mobile Edge Computing (MEC) based semi-centralized charging
navigation structure has been established. It ensures reliable charging information
dissemination and feasible charging coordination with a low cost of communication
and computation. After that, based on the travelling time prediction model, Li et
al. designed an effective local charging navigation scheme and global charging
navigation mechanism, to dynamically choose the optimal travelling route as well
as stopping location for V2V charging operations.

2.4.3.1 The Asynchronous V2V Charging:

Since the majority of the direct V2V charging approaches are with low charging rates
under 20 kW [51, 52], the charging time through direct V2V charging is extremely long.
Meanwhile, the V2V charging mode suffers from the uncertainty of EV charging demand.
Therefore, by introducing an asynchronous V2V charging mode, the above problem can be
alleviated by decoupling the requirement in spatial and temporal dimensions.

Fig. 2.5 shows the asynchronous V2V charging scenario. The asynchronous V2V
charging method is different from the direct V2V charging [66], under asynchronous V2V
charging mode, an energy consumer and an energy provider do not have to start V2V
charging at the same moment. energy providers deliver energy to the Power Storage Station
(PSS) equipped with condensers [68], which can store energy. The PSS can transfer energy
to energy consumers that have energy demand.

• GC: It is responsible for coordinating EVs information, and calculating the waiting
time of V2V charging to arrange EV charging/discharging services.
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Figure 2.5: Asynchronous V2V Charging Scenario

• PSS: PSSs can provide V2V charging services as charging places. They are
equipped with batteries to store energy discharged by energy providers and provide
asynchronous charging services to energy consumers.

• EV-Cs: When the SOC of an energy consumer is under the threshold, it will send a
charging request to the GC and waits for the result of charging arrangement.

• EV-Ps: An energy provider sends its discharging request to the GC when its SOC is
higher than the threshold. Then, the energy will transfer from the energy provider to
the target PSS.

Under the asynchronous V2V charging mode, when an EV customer requests for
charging, it requires a suitable PSS for a maximized charging utility and minimized
charging time. Therefore, optimization problems for asynchronous V2V charging are
divided into two main categories as asynchronous V2V charging and synchronous V2V
charging. At present, there are few pieces of literary work on asynchronous V2V charging.

• PSS-selection: During PSS-selection, the following constraints should be noted:
From the perspective of energy consumers, they want to recharge with a short
charging service time. In addition, the charging price also needs to be considered.
From the perspective of energy providers, they want to sell excess energy at a high
price. Besides, the energy consumption for travel also needs to be considered.
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1) Cooperation between V2G and V2V modes: Kim et al. [69] tackled range anxiety
and limited charging spots, based on the matching theory (choosing sufficient energy
supplier for energy consumers). In this paper, the authors proposed a matching
based method that can cooperate between V2G and V2V charging modes, then it
can decrease range anxiety and increase the number of charged EVs. Then, Kim
et al. investigated the proposal numerically by comparing V2G and V2V charging
mechanisms. Results show that the algorithm can improve in terms of range anxiety
and the number of charged EVs.

• PSS-scheduling: During PSS-scheduling, scheduling algorithms should be applied
to efficiently schedule EVs to charge/discharge. It is important to prioritize charging
for EVs. In addition, EVs in urgent need of charging should be given high priority.

1) An online auction mechanism: Yuan et al. [70] researched the EV charging
scheduling problem with V2V auction and local generation under demand response.
To incentivize EVs to participate in energy supply, authors proposed an online auction
mechanism based on a primal-dual approximation algorithm, which decomposes the
long-term social cost minimization problem into a series of single-round auctions.
Furthermore, to avoid the cost caused by excessive switching of local generators,
Yuan et al. designed an online algorithm based on the idea of delayed switching,
which guarantees provable polynomial running time, authenticity, and individual
rationality for each auction. Finally, real-world data is used tu track and verify the
practical superiority of the method over multiple existing algorithms.

2) Cooperation between G2V and V2V modes: Koufakis et al. [71] proposed
an optimal EV charging scheduling scheme considering the cooperation between
G2V and V2V modes. This work formulates the optimization using integer linear
programming and for problem solving in off-line manner. Furthermore, it introduces
three different ideal arrangements for the EV charging planning problem, which
support the movement of energy between EVs. Through a number of trials, authors
demonstrated the efficiency of energy storage devices (i.e., EV batteries, or batteries
at the CS) towards the higher use of energy and higher EV satisfaction. Additionally,
the authors showed that all calculations have generally low execution times and great
adaptability.

2.5 Mobile Charging Mode

2.5.1 Introduction of Mobile Charging
Considering that EVs are with high mobility, there is a great potential for EVs to be
charged via mobile charging. Mobile charging involves MCSs (as opposed to fixed charging

33



Chapter 2. Survey on EV Charging Modes 2.5. Mobile Charging Mode

Figure 2.6: Mobile Charging
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infrastructure) and in-motion EV charging by Mobile Charging Truck (MCTs) or other
private EVs. As such, mobile charging has greater potential for application in temporary
charging or emergency roadside assistance. There are currently two categories of mobile
charging:

Mobile Charging Station (MCS): Unlike Fixed location Charging Stations (FCSs)
deployed at fixed locations, MCSs can be dispatched by transport vehicles to changing
addresses for charging. Battery Energy Storages (BESs), the main component of MCSs,
are towed or carried by transport vehicles.

In-motion EV Charging: When an EV determines that it needs to get charging service
as soon as possible, it sends a charging request. Other EVs (MCTs or other private EVs)
that are aware of this signal can provide the service. EVs are continuously charging by
wired or wireless approach while driving.

2.5.2 Benefits and Risks under Mobile Charging
2.5.2.1 Benefits of Mobile Charging Service

Mobile charging is more flexible than FCS in terms of location. The MCS mode is designed
to relieve energy pressure in ‘hot spot’ areas, while the in-motion EV charging mode
provides differentiated charging services specifically for EVs (e.g. roadside assistance).

• From EV driver’s perspective, the lack of charging infrastructure in most remote areas
(suburban or rural) makes it difficult for EVs to find charging facilities. However,
the MCS mode allows temporary deployment and increases the supply of charging
infrastructure in remote areas.

• From the grid perspective, the use of MCS can effectively reduce the investment
cost of grid charging facilities. On the one hand, as a flexible mobile charging
mode, mobile charging can effectively reduce the driving time of EVs. On the other
hand, mobile charging can be used in emergency charging scenarios such as roadside
assistance (charging EVs with depleted batteries). In addition, MCS with storage
capacity can be recharged during off-peak hours, allowing them to provide energy
during peak hours, thereby relieving pressure on the grid [72].

2.5.2.2 Potential Risks of Mobile Charging

Although mobile charging has a huge application potential, it is still subject to a number of
constraints:

• Operational Management: The current EV penetration rate is not high enough, the
economic benefits of deploying and operating MCSs will be smaller than those of
FCSs [73]. Meanwhile, as some MCSs are dispatched to remote areas, it is difficult
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to carry out periodic checks on them at short frequencies. This leads to susceptible
physical uncertainties, making MCSs more difficult to manage. Furthermore, MCSs
still face the impact of battery degradation levels on BES life expectancy [74].

• Privacy Protection: Due to high frequency data interaction in mobile charging
management, this places a high demand on privacy protection during communication.
A large amount of private EV data (e.g. location, vehicle ID) is included, thus MCSs
operator needs to ensure that the data is protected during transmission and utilization.

2.5.3 Mobile Charging Operation Optimization
The V2V charging optimization focuses on the requirement for users to optimize EV
drivers’ QoE, while the mobile charging optimization focuses on service providers.
Therefore, the operational deployment of MCSs is crucial.

2.5.3.1 MCS Operation

There are currently two issues for MCS research. To ensure the QoE of EV drivers, the
deployment of MCSs needs to be optimised. To minimise the operating costs of MCS
operators, optimisation of MCS scheduling, charging station reservation and charging
pricing need to be considered.

• MCS-Placement: The deployment of MCS can alleviate charging pressure in
‘hotspot’ areas and provide flexible charging options in locations that are not suitable
for permanent FCS deployment. The work in [75] proposed a nomadic MCS concept,
it looked at the impact of the number of MCSs in a region and the ratio of EVs
to MCSs on the probability of outages and charging delays. The EV charging
waiting time was reduced by MCSs deployment through a proposed mobile charging
information management system in [76]. It allocates MCSs based on information
about the charging density of FCSs. This allocation takes into account EV arrival
queues, request queues. In [76], a multi-queue scenario is applied to optimise the
mobile charging service provided to EVs. The work in [77] modelled the dispatch
of MCSs as a constrained optimization problem and proposes a heuristic solution.
Here, a meta-heuristic solution based on an ant colony optimization algorithm is
considered. A greedy algorithm was proposed in [78] to allocate MCSs. Here, the
MCS with the most excess energy is allocated to the locations where the energy
demand is highest, helping to maintain load balance in the grid.

• MCS Operation Optimization: On the operational side, optimizing the energy use
of MCS requires balancing supply and demand [79]. The work in [80] modelled the
stochastic and dynamic behaviour of charging demand. This is to reduce operating
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costs while improving mobile charging service levels. Out of consideration for the
benefits of MCSs, the work in [81] proposed an optimization on transport vehicle
routing problem with time windows, which is optimized by MILP. The maintenance
of MCSs to complete grid line rehabilitation was considered in [82], with the dispatch
of mobile battery-carried vehicles to stabilise the grid load. A recovery model for
distribution systems based on MCSs is proposed. Ding et al. modelled it into
a MILP optimization problem and solved it by an algorithm based on auxiliary
induced functions. The work in [83] presented an energy trading system involving
multiple MCSs and EVs. The system formulates the incentives between MCS and
EV as an auction game, where MCSs act as the auctioneers and EVs as the bidders.
Experimental results demonstrate the fairness guarantee of the system for mobile
charging. The work in [84] modelled MCSs as a queuing process. It developed
mathematical models to characterize the placed MCSs, for minimizing operating
costs and battery capacity of MCSs with efficient mobile charging services provided.

• MCS Scheduling:In contrast to First In First Serve (FIFS), an approach based
on Nearest Job Next (NJN) policy was proposed in [85]. Here, MCSs serve the
next closest EV after the completion of the previous charging service. The work
in [86] modelled MCSs path planning as a MILP problem, considering different
possible service allocations and constrained operating range. This is to minimise
the total distance travelled of transport vehicles. In order to increase the number
of EVs that obtain charging services, the work in [87] applied an ILP to determine
the optimal driving path of transport vehicles. For more accurate information, the
work in [88] proposed a reservation-based intelligent scheduling scheme for efficient
MCS utilisation. The proposed scheme is suitable for charging on demand with
pre-charging reservation at MCSs. Nazari-Heris et al. proposed a smart parking
self-scheduling model for EVs [89]. MCSs are involved in the planning of energy
production and storage in RES system, as interim BESs. The work in [89] aims to
quantify the equity implications of MCS operation, the optimal siting of RES system.

2.5.3.2 In-motion EV Charging Decision

In-motion EV Charging can be regarded as V2V charging on the move, or accompanying
charging. This convenient mobile charging mode has been in the spotlight in recent years
as battery technology has evolved. Cisco Technologies also filing a patent for In-motion
EV Charging in 2019 [90].

The work in [91] investigated the technical aspects of in-motion EV charging and pro-
posed a novel structure for V2V wireless charging technology to increase the possibilities
of wireless charging services. In [92], EV fleets are used as a collaborative system where
EVs in the fleet can share batteries with other EVs while driving to optimise the distribution
of power across the EV fleet.
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2.6 Wireless Charging Mode

2.6.1 Introduction of Wireless Charging
Wireless charging converts electrical energy into a form of energy that can be transmitted
wirelessly. Converters then receive energy (wirelessly) and convert it into electrical energy,
enabling wireless EV charging. Wireless charging, also known as inductive charging
or contactless inductive charging, is a technology for the wireless transfer of electrical
energy in space based on the principle of electromagnetic induction. With wireless
charging technology, electric or dual-energy vehicles on the road can be quickly recharged
using transmitters mounted on utility poles or other tall buildings [DUARTE2021102952].
Current wireless charging technologies include inductive coupling [93] and magnetic
resonance coupling [94]. Both are efficient over medium distances and can be used to
charge EVs wirelessly (as opposed to wired in the traditional plug-in charging mode) [95].

Figure 2.7: Wireless Charging

Fig.2.7 demonstrates the scenario of wireless charging. Depending on whether an EV is
static during the wireless charging process, there are two main categories: Static Wireless
Charging (SWC) and Dynamic Wireless Charging (DWC). Under SWC mode, EVs park in
user-friendly areas (e.g., supermarkets, parking lots) and perceive direct charging services
via ground wireless charging assembly. Under DWC mode, EVs perceive charging service
during driving through the road sections covered with an energy transfer loop.
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2.6.2 Benefits and Risks under Mobile Charging
2.6.2.1 Benefits of Wireless Charging

The wireless charging mode avoids the involvement of wired devices during the charging
process, and therefore guarantees a relatively close and safe system. In addition, wireless
charging reduces the maintenance pressure of the charging providers.

• From EV driver’s perspective, the wireless charging mode allows EVs to charge on
the move, saving the time EVs need to drive exclusively to the FCS. With two minutes
of waiting time at each stop and 20 minutes at the terminal, the electric bus could gain
one hour of wireless charging time. This can effectively extend the range of buses.

• From the security protection perspective, wireless charging does not require an
external wired device and therefore avoids security threats (e.g., illegal access at the
software level) during the wireless connection.

2.6.2.2 Potential Risks of Wireless Charging

Wireless charging technology has rapid development in recent years and is being applied
in some cities. Literature works have assessed the application prospects and significant
economic benefits of wireless charging [96, 97]. However, there are still concerns about the
mass adoption of wireless charging services.

• Insufficient Charging: The low charging conversion rate is still the major gap for
large-scale commercialization of wireless charging. Inherently, wireless charging is
less efficient than traditional charging methods, as there is a significant amount of
energy loss in transition. Meanwhile, the wireless charging rate is not fast enough,
with most wireless charging powers below 11kW under wireless charging standards
[98].

• Safety Concerns: The safety of electromagnetic radiation is widely concerned.
Firstly, electrical energy is transmitted in the form of electromagnetic waves. Here,
metal obstacle detection between EVs and transmitters is mandatory, to avoid
overheating and fire. Secondly, when a high-powered wireless charging device is in
operation, it has an impact on the surrounding biological and electronic equipment.
Therefore, how alleviating people’s concerns about health is also crucial.

• Road Renovation: Although DWC can effectively extend the driving range of
EVs, it requires the modification of roads for pilot operation, a large upfront cost
investment and human resource extensive cost on maintenance if applied for large-
scale operation.
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2.6.3 Optimization under Wireless Charging
The previous mobile charging mode focused on optimization at the operational level. In
contrast, QoE for EV drivers is a key optimisation target for wireless charging services.
The following therefore addresses wireless charging optimization from a driver charging
service perspective.

2.6.3.1 Adaptation and Navigation

SWC technology is applied when EVs are parked. This technology is of potential for
applications in parking lots, supermarkets and residential areas. Recently, the power and
efficiency of SWC is increasing as technology advances, some manufacturers (like Audi
[99], Qualcomm [100], etc.) are already able to achieve stable SWC for commercial
applications. Meanwhile, SWC for electric buses staying at stops is currently being
implemented in public transport systems in Barcelona [101]. Meanwhile, dynamic charging
and driving can be processed simultaneously, which eliminates the charging waiting time
and helps to reduce range anxiety for EV drivers [102].

Under DWC mode, how to facilitate the deployed wireless charging road sections for
path planning is of importance. In addition, the communication between the road and EVs
is crucial for bridging the seamless and optimal energy transfer. Here, when an EV enters
a dynamic wireless road segment, the EV should be informed so that the EV could slow
down in order to obtain sufficient charging time [103]. An online coordination strategy
is proposed in [104], it allows EVs to maximise the use of a dynamic wireless road,
thus achieving grid load balance and maximising charging capacity. Meanwhile, DWC
has commercial benefits for EVs, where battery costs can be significantly reduced when
wireless road segments are large-scaled [96].

2.6.3.2 Charging Reliability

SWC does not require substantial human involvement during charging service and avoids
some of the potential safety issues, such as the danger of electric shock in plug-in charging
[105].

The work in [106] controls the wireless charging rate to balance energy supply, and
demand to facilitate the integration of SWC with the grid. In contrast to SWC, DWC allows
EVs to charge while they are on-the-move [107]. Under DWC mode, charging panels are
laid on the road, for EVs charging while on-the-move. This provides continuous energy
transfer to EVs without much concern for the capacity of batteries.
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2.7 Cooperated and Hybrid Charging Mode

2.7.1 Introduction of Hybrid Charging Mode
EV charging modes are usually investigated separately. Thus, in most research, only plug-in
charging mode and battery swapping mode are considered in a scenario, with optimization
targeting a single type of stakeholder. Nevertheless, it is difficult for a single charging mode
to solve the flexible charging requirements of EVs, and optimizing EV charging through
hybrid mode synergy can ensure the QoE of EV charging more efficiently.

2.7.2 Hybrid Battery Swapping and Plug-in Charging Mode
In this section, a hybrid coordinated consideration of CSs and BSSs is introduced. Hybrid
stations are integrated with the function of battery swapping and plug-in charging under
this service mode. When an EV arrives at the station, the driver can choose the battery
swapping or charging service based on the personalized demand, such as waiting time and
service cost.

Zhong et al. [108] investigated a cooperative mechanism for a CS and a BSS in
a microgrid to reduce operation costs. Considering the important role of CS and BSS
in electricity and carbon trading, the optimization problem related to operation revenue
is formulated based on Nash bargaining theory. Moreover, the optimization problem
is modelled as an electricity and carbon scheduling subproblem. With a linearization
method, the subproblem is further converted into a MILP optimization problem and solved.
Simulation results present the effectiveness of the proposed cooperative strategy compared
with a non-cooperative method.

Sun et al. [109] proposed an optimal operation strategy for a BSCS to simultaneously
reduce the electricity cost and ensure QoE of EV drivers. Based on a queuing model,
the optimization problem of charging scheduling is modelled as a constrained MDP. Then,
the optimal strategy is obtained by the standard Lagrangian and dynamic programming
methods. Moreover, considering the problem of dimension curse in practical application,
the dynamic programming process is transformed into an equivalent threshold optimization
problem with a discrete separable convex objective function for real-world applications.

2.7.3 Hybrid V2V and Plug-in Charging Mode
Although plug-in charging is stable and fast [110], the deployment of CS is costly and rigid
in location, which still leads to higher electricity prices and longer charging waiting time.
The V2V charging mode is flexible in terms of location [67], however with limitations in
slow charging power and uncertain energy supply from EV-Ps. The shortcomings under
single plug-in and V2V charging modes limit further user QoE enhancements. Thus, a
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hybrid plug-in and V2V charging could flexibly utilise the advantages of both charging
modes [111]. However, the above two charging modes differ in their application scenarios.
The plug-in charging mode is used for deterministic charging as the charging place is fixed
and public, while V2V charging is used for opportunistic charging as the charging place is
flexible and uncertain [112, 57]. It is crucial to figure out how to combine the advantages
of V2V charging (high flexibility) and plug-in charging (high stability).

Koufakis et al. [113] consider the cooperation of plug-in and V2V charging mode,
via dispatched by offline and online algorithms. Plug-in charging benefits from cheap
electricity prices from RES, but energy availability is limited. Thus, EVs are capable and
willing to participate in V2V energy transfer to reduce charging costs and increase the
utilization of RES. This work minimizes the total charging cost of EVs via a formulated
problem of MILP problem. Meanwhile, it optimizes EV charging with full knowledge of
EV demand and energy production.

2.8 Research Gaps
At present, plug-in charging, battery-swapping charging and V2V charging are the most
mature and widely used charging methods. Plug-in charging and battery-swapping charging
have the advantages of fast charging speed and low cost, while V2V charging can realize
energy sharing between vehicles and further improve charging efficiency. Therefore, the
research on these charging methods is also more in-depth and mature.

In contrast, wireless charging and mobile charging technologies are still in the
early stages of development, and there are many technical difficulties and limitations in
application scenarios. For example, wireless charging has problems such as low energy
transmission efficiency and distance limitations between devices. Mobile charging needs to
fully consider factors such as the vehicle’s driving path and road conditions to achieve
effective charging. These technical difficulties and limitations make the research on
wireless charging and mobile charging relatively less. Therefore, this study only conducts
a small amount of literature analysis on these two modes in Chapter 2.

My research focuses on plug-in charging optimization (Chapter 4), V2V charging
optimization (Chapter 5), and hybrid optimization of V2V and plug-in charging (Chapter 6),
because these charging methods have been widely used and researched, and have practical
application scenarios and implementation possibilities. Through the optimization research
on these charging methods, the charging efficiency can be further improved, the cost can be
reduced, and the popularization and development of electric vehicles can be promoted. At
the same time, the research on these charging methods can also provide reference for the
development of people’s EV travel in the future.
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Chapter 3

Introduction of Simulation Tool

My research uses Opportunistic Network Environment (ONE) [114] as a simulation
environment for EV charging networks to test different optimization approaches. ONE is
written in Java by the University of Helsinki, Finland. ONE uses different routing protocols
to simulate the sending and receiving of messages in Delay Tolerant Networks (DTN) and
generate records of node movement trajectories. Node movement events can be generated
in ONE based on different movement models, displaying messages between nodes with
various DTN routing algorithms, senders and receivers (types) and real-time graphical
display of node movements and messages. The movement of nodes in ONE is implemented
by the movement model (definable) and the communication between nodes is based on
the node’s location, communication range and transmission rate. In addition, the routing
function of ONE is determined by the routing model and messages are created by the event
generator. Considering that ONE is a discrete event-based simulation engine, simulation
effects similar to real city scenarios can be achieved. Therefore, this project flexibly
applies ONE to reproduce EV charging information interaction and EV node movement
information. In addition, ONE can introduce real-world information (e.g., importing WKT
format files of city roads through OpenStreetMap as simulation scenarios and setting EV
nodes by modifying parameters), simulate node motion patterns, and generate various result
reports (applied to charging management scheme evaluation).

3.1 Core Architecture of ONE Simulator
The ONE simulation platform consists of six core packages: UI, GUI, core, movement,
routing and report. As shown in Fig.3.1, the core components of ONE (e.g., nodes defining
DTNs and classes for simulation) are contained in the core package, while interface-related
classes are contained in the GUI package. the GUI package also contains the playfield
sub-package, which defines the program classes displayed in the playfield view. The basic
interface classes and the text-based output classes can be found in the UI package. The
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Figure 3.1: Core Architecture of ONE Simulator

routing module can be built from classes in the routing package, and the movement module
is built from the movement package. In addition, the report module is implemented through
the report package. Among them, the routing module and the movement module provide
data sources for the report module. The functionality of each package is independent. For
example, the GUI class instantiates the simulator environment from the core package.

3.2 Modules Related to EV Charging

3.2.1 Movement Module
The Movement Model (Fig.3.2) provides the way the node (EV) moves during the
simulation, and the definition of coordinates, velocity, and other parameters is done
through the model. All the movement models in the simulation are inherited from the
MovementModel parent class. Note here that the MovementModel class provides an
interface for nodes to request new paths and ask for new paths, and implements the above
functions through different subclasses.

The map-based movement model controls node movement in the core road path.
the ONE simulator version includes three map-based movement models. 1) Map-based
Stochastic Movement (MBM), 2) Shortest Path Map-Based Movement (SPMBM), and 3)
Routed Map-Based Movement (RMBM). Here, movement models are able to understand
arbitrary map data defined in Well Known Text (WKT). Such data is usually converted from
real-world map data or created manually using a Geographic Information System (GIS)
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Figure 3.2: Movement Model in ONE

program (e.g. OpenJUMP). The ShortestPathMapBasedMovement model, which inherits
from the MapBasedMovement class, is mainly used in this thesis. This model ensures that
EVs will only travel in the road topology and find the shortest path between two random
map nodes and the end point using the Dijkstra algorithm, which can find the shortest path
to travel to the destination in complex urban areas.

3.2.2 Routing Module

Figure 3.3: Routing Model in ONE

As shown in Fig.3.3, the Routing package in the ONE project provides the routing
module, which defines how messages are handled during the entire environment simulation.
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MessageRouter class is divided into ActiveRouter and PassiveRouter classes according
to active and passive routing, where the ActiveRouter class provides functions such as
neighboring node messaging.

The implementation of the message routing module is similar to the movement model:
the simulator includes a framework for defining the algorithms and rules used in routing
and comes with ready-made implementations of known DTN routing protocols. In order to
restore the EV charging network, the tuples in the charging network (e.g., EVs, charging
infrastructures, etc.) use active routing protocols. Here, EV router class (charging behavior
logic is implemented within specific routing classes) completed in this thesis inherits from
ActiveRouter. EV router class inherit ActiveRouter Basic functionality such as simple
buffer management and callbacks for various message related events.

3.2.3 Reporting Module
ONE includes reporting modules for message statistics, statistics on the time period of node
contacts, etc. The Report class is an abstract superclass of all reporting module classes, and
all settings defined therein can be used for all report classes. The report module can be
registered to the node’s connectivity, message forwarding, movement, and other related
events. Thus, when a relevant event of a node occurs, the registered report module can
generate data corresponding to the relevant event that occurred. This helps to record the
evaluation of the effectiveness of the EV charging network. When the EV charging network
is simulated, the reporting module collects charging performance data (charging wait time,
charging energy), which facilitates the evaluation of EV charging optimization effects.

3.2.4 Visualization Module
ONE can generate a real-time screen during the simulation through the GUI. Fig3.4
displays a simulation GUI of EV charging network: it includes EV node location, charging
infrastructures location, current EV path, etc. Also, the GUI of this EV charging network
generates a filter for monitoring the charging status of EVs and charging infrastructures.
The simulation GUI allows selecting a node from the EV list for a specific review,
facilitating an intuitive understanding of the real-time status of the EV charging network.

3.2.5 Summary
ONE simulator, designed to evaluate routing and application protocols for DTNs. It allows
users to create scenes based on different synthetic motion models and real-world traces,
and provides a framework It allows users to create scenes based on different synthetic
motion models and real-world traces. ONE is used as the simulation platform in this
thesis and a large number of functions are rewritten using java to achieve the goal of EV
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Figure 3.4: GUI of EV Charging Simulator
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charging optimization. Here, the advantages of ONE as an EV charging network simulation
are presented. The following advantages can be achieved by rewriting ONE to build EV
charging simulation:

• ONE includes movement and routing modules that can revert to simulate the EV
movement and program the EV action logic.

• ONE can obtain real-time data through simulation. This allows for better reproduc-
tion of realistic EV charging optimization problems compared to simulations using
offline data.

• ONE can extract background data and analyze the results through report classes. This
can be of great help to optimize EV charging.

• ONE supports visualization interface. This can help more third parties or industries
to get convenient EV charging optimization analysis.
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Chapter 4

Reservation-based EV Charging
Recommendation Concerning Charging
Urgency Policy

For coping with long charging time and uneven distribution of CSs in urban city, CS-
Selection scheme (which/where to charge) and charging scheduling (when/whether to
charge) are key solutions. In this chapter, an Urgency First Charging (UFC) scheduling
policy is proposed, which orders EV charging via their charging urgency (calculated by their
charging demand and remaining parking duration). With the underlying UFC policy, this
chapter further proposes a reservation-based CS-Selection scheme that selects the optimal
CS with the minimum trip duration (summation of travelling time through CS, and the
charging time spent at CS). Meanwhile, EVs would further report their reservations to help
anticipate the service congestion status of CSs.

These approaches aims to reduce the charging congestion problems that exists under
plug-in charging mode. Technically:

1. Firstly, this chapter proposes a UFC scheduling policy, which calculates charging
urgency by EVs’ charging demand and parking duration. Here, the charging urgency
is enabled as a metric for prioritized scheduling. The EV with higher charging
urgency is allowed to be preempted charged. The UFC policy is different from
previous works without considering the parking duration (like in works [115, 116,
117]) and those without providing preempted charging (like in works [115, 118]),
instead, it guarantees as many EVs as possible to get fully charged before their
departure.

2. Further to UFC scheduling policy, this chapter proposes a reservation-based CS-
Selection scheme via a total trip duration estimation (based on the summation of
time spent at CS and travelling time towards and departs from the CS). Here, the
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estimation of the time spent at CS applies the UFC scheduling policy. Many previous
CS-Selection schemes are based on historic data (like in works [119, 120]), it is
novel in this proposed CS-Selection which is based on real-time charging status at
CSs. Meanwhile, in this proposed scheme, EVs are asked to send their charging
reservations. Such reservations would benefit the overall allocation of EVs in the
network and would significantly improve the user’s QoE.

4.1 System Model

4.1.1 Urgency First Charging

CS

EV1

EV2

Time Axis

EV Remaining Parking Duration

EV Charging Time Estimation

t0

Charging Urgency = Charging Time Estimation - Remaining Parking Duration 

Charging Urgency 

t2t1

EV Waiting Time  

Figure 4.1: Urgency First Charging

This chapter proposes a UFC policy as an underlying scheduling policy (concerning
when to charge EVs). The UFC takes into account EVs’ parking duration, charging energy
demand and allows preempted charging for those EVs with higher “charging urgency”.
Here, the charging urgency is given by the difference that EV’s remaining parking duration
minus EV’s charging time estimation.

In Fig.4.1, charging urgency is a metric used to determine which EVs should receive
priority charging service when multiple EVs are waiting for charging slots. The higher the
charging urgency of an EV, the more priority it should receive for charging.

Even though EV1 arrived earlier than EV2 and has a shorter remaining parking duration,
it will not receive preemptive charging service because EV2 has a higher charging urgency.
The charging algorithm will prioritize EV2 and charge it first to ensure that it has enough
energy to reach its destination. Once EV2 is fully charged, the charging slot will be made
available for EV1 to charge.
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This charging scheduling algorithm is designed to optimize the charging process for all
EVs and ensure that they have enough energy to complete their journeys. By prioritizing
the EV with the highest charging urgency, the algorithm minimizes the risk of EVs running
out of energy and maximizes the efficiency of the charging infrastructure.

If an EV is with higher charging demand and a shorter remaining parking duration, the
UFC policy scheduling will improve the possibility that the EV gets a charging service.
Meanwhile, the UFC policy can reduce the number of EVs that miss fully charging (due to
that some EVs may need to depart before being fully charged). It is worth mentioning that
the preempted charging will only occur between EVs plan to be charged, the UFC policy
will not interrupt EVs being charged.

4.1.2 Assumption
In this chapter, CSs are distributed in different locations over the city scenario. The GC
globally manages EV charging and is equipped with communication module for wireless
information exchange with CSs and EVs. EVs’ on-board system can communicate with
the GC with the equipped wireless devices such as 3G/Long Term Evolution (LTE). EVs
request/reply to the GC for CS-Selection. Here, the GC processes the charging requests on
the cloud in a centralized manner to optimize the distribution of charging facilities. When an
EV is on-the-move and its SOC is lower than the preset threshold, the EV sends its charging
request to the GC. The GC processes EV’s charging request and starts ranking CSs through
which the EV perceive the minimum trip duration (mainly influenced by waiting time). To
fully recharge more EVs, the GC jointly considers EVs charging demand and CSs charging
status. Here, the UFC scheduling policy is applied to provide preempted charging service
for EVs with charging urgency. With this, the GC estimates total trip duration that the EV
charges at each CS and selects the CS with the minimum total trip duration. Table 4.1 lists
the notations covered in this chapter. It should be noted that some of the parameters are
named in line with other chapters, but the notations in this table are only applicable to this
chapter.

4.1.3 Problem Formulation
To achieve a better usage of CSs and alleviate charging congestion, the CS-Selection
optimization is formulated in this subsection, starting with the notations and following with
the objective functions. To facilitate problem formulation, this work has the notations as
follows:

• δlcs: Number of EVs being fully charged at a CS.

• υlcs: Average trip duration for each EV being fully charged at a CS lcs.
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Table 4.1: List of Notations of Chapter 4
LIST Output including available time per charging slot at CS

Tarr
ev EV’s arrival time at CS

T tra
ev EV’s travelling time to reach CS

T cha
ev Estimated charging time upon arrival of EV

T sta
ev Time EV has stayed at the CS after its arrival

Tcur Current time in network

Sev Moving speed of EV

α Electric energy consumed per meter

Dev Parking duration of EV

β Charging power at CS

NC Queue of EVs under charging at CS

NW Queue of EVs waiting for charging at CS

NR Queue of EVs reserved for charging at CS

Vev Charging urgency of EV

δ Number of charging slots at CS

Emax
ev Full volume of EV battery

Ecur
ev Current volume of EV battery

T fin
ev Charging finish time of EV

EACTcs Estimated available charging time at CS

Ncs Queue of CSs

lcs Location of a CS

Tmin
cs,d Travelling time from a CS to EV’s trip destination

T cs,d
ev(r) Trip duration of EVr through charging at a CS

LIST Available charging time list of the charging slots at a CS

• NCS: Queue of CSs.

• M : Total trip duration for all EVs being fully charged in the network.

• X: Total number of all EVs being fully charged in the network.

Then the objective functions are as follows:

Maximize X =
∑

lcs∈Ncs

δlcs (4.1)

Minimize M =
∑

lcs∈Ncs

δlcs × υlcs (4.2)

Here, the time an EV could stay at a CS is constrained by the parking duration. An EV
has to depart from the CS after its departure deadline. The objective function (4.1) is set to
maximize the total number of all EVs get fully charged, which could better reflects charging
scheduling efficiency. To fully charge more EVs in the network, δlcs at each CS needs to
increase. The objective function (4.2) aims to minimize the total trip duration for all EVs
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being fully charged in the network. As δlcs increases in objective function (4.1), υlcs needs
to decrease. υlcs and δlcs are related to Ncs, a larger Ncs enables a small υlcs, this is because
EVs could be distributed at more CSs. Since Ncs is immutable as it refers to number of
total CSs, υlcs can only be reduced by distributing EVs equally among the CSs as an ideal
situation.
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Figure 4.2: T-variables on time axis

Fig.4.2 illustrates T-variables in a timeline from EVr’s original location to its destination
with an intermediate charging at a CS.

4.2 System Design

Local Status of CS

Step 1  Currently 

Available 

Charging Time

Reservation 

from Other 
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Scheduling 

for EVs
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Charging 

Waiting Time

Arrival Time 

of EVr with 

Reservation

Step  4  Total 
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Figure 4.3: Flow Chart of Computation Logic

EV drivers want to shorten their trip durations. Therefore, the GC calculates EV’s total
trip duration at each CS with an intermediate charging and select the optimal CS. Referred
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to Fig.4.3, the total trip duration of an incoming EV with reservation (EVr) is obtained
through the follow steps:

Step 1: Through the local charging status, the GC estimates the available time at
charging slots.

Step 2: When EVr requests, the output of Step 1, the queue of parked EVs and
reservations of on-the-move EVs are aggregated to estimate the charging scheduling (via
UFC policy) when EVr arrives.

Step 3: The GC calculates charging waiting time through the scheduling estimated by
Step 2.

Step 4: Through the charging waiting time estimation by Step 3 and the EVr’s trip time
drives to/departs from the CS, the total trip duration is estimated.

4.2.1 Estimation of CS Charging Status

Algorithm 4.1 Estimation of CS Charging Status
1: if no EV is under charging then
2: add Tcur in LIST with δ times
3: return LIST
4: end if
5: for (n = 1; n ≤ NC ; n++) do

6: if ((Tcur +
Emax

ev(n)
−Ecur

ev(n)

β ) ≤ (T arr
ev(n)

+Dev(n)
)) then

7: LIST.ADD(
Emax

ev(n)
−Ecur

ev(n)

β + Tcur)
8: else
9: LIST.ADD(T arr

ev(n)
+Dev(n)

)
10: end if
11: end for
12: if (NC < δ) then
13: for (m = 1; m ≤ (δ −NC); m++) do
14: LIST.ADD(Tcur)
15: end for
16: end if
17: sort LIST with ascending order
18: return LIST

Considering that CS has several charging slots to charge multiple EVs in parallel, the
EVs under charging is characterized in the queue of NC . The current time in the network
is denoted as Tcur. If no EV currently parking at the CS for charging, Tcur will be added
into the LIST (available charging time list of the charging slots) with δ (number of charging
slots) times to indicate the CS is available, and the available charging time of all charging
slots is Tcur, as line 2 in Algorithm 4.1 demonstrated. Lines from 5 to 11 present the
charging process of EVn (EVs in the queue of NC). Line 6 compares parking duration
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Dev(n)
and time (

Emax
ev(n)

−Ecur
ev(n)

β
) to fully charge EVn. If EVn could get fully charged before

its departure, given by the condition ((Tcur+
Emax

ev(n)
−Ecur

ev(n)

β
) ≤ (T arr

ev(n)
+Dev(n)

)), its charging

finish time (
Emax

ev(n)
−Ecur

ev(n)

β
+ Tcur) will be added to the LIST. Otherwise, the charging finish

time will be given by (T arr
ev(n)

+Dev(n)
) instead, which indicates that EVn has to leave after

the departure deadline.
The lines between 12 and 16 consider the situation that not all charging slots are

occupied, Tcur will be added to the LIST with (δ−NC) times (number of available charging
slots). Here, Tcur will be the available charging time for these unoccupied charging slots.
Followed by lines 17 and 18, Algorithm 4.1 returns the LIST with ascending order. The
LIST indicates the charging status for each charging slot in the order of their available time.

4.2.2 Estimation of Available Charging Time
To alleviate charging congestion at CSs, the CS-Selection scheme attempts to allocate EVs
evenly across CSs. In practice, EVs have different charging urgency requirements and
some EVs may need to be preempted charged. Therefore, the GC estimates charging status
of CSs when the on-the-move EV that sends charging request (EVr) arrives. Algorithm
4.2 and Algorithm 4.3 calculate the Estimated Available Charging Time (EACT) at the CS
underlying the UFC policy charging scheduling. There are two cases separately introduced
in Algorithm 4.2 and Algorithm 4.3:

• Case-1: Algorithm 4.2 considers the incoming EVs (EVr and other EVs made
reservations) have chance to be preempted charged upon their arrival (only with high
charging urgency), comparing with EVs in the queue of NW .

• Case-2: Algorithm 4.3 considers the incoming EVs will be charged, in which case,
all EVs in the queue of NW have been charged or the CS has no parked EV.

4.2.2.1 Case-1

Initially, the queue of NW is sorted with the UFC policy, EVr is added into the queue
of NR (sorted with the UFC order). Lines between 4 and 6 refer to the condition that EVr

arrives at a CS with no other EVs waiting for charging, then the EACT will be further
calculated in Algorithm 4.3. The LIST has been sorted in Algorithm 4.1 with the earliest
available order of charging slots. Thus, LIST.GET(0) represents the first available charging
time. When the first charging slot is available, EVi (the EV in the queue of NW ) and
EVj (the EV in the queue of NR) will be compared to decide their charging priority. The
comparison is indicated in loop operation starts from line 7. Here, the charging urgency
(Vev) will be the indicator to determine the charging order among the EVs, given by:
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Algorithm 4.2 EACT Case-1⟨LIST, NR⟩
1: sort the queue of NW according to UFC order
2: add EVr into the queue of NR

3: sort the queue of NR according to UFC order
4: if no EV is waiting for charging then
5: return EACT Case-2⟨LIST, NR⟩
6: else
7: for (i = 1; i ≤ NW ; i++) do
8: for (j = 1; j ≤ NR; j ++) do
9: if (LIST.GET(0) > T arr

ev(j)
) ∩ (Vev(j)

> Vev(i)
) then

10: if (EVj equals to EVr) then
11: return LIST.GET(0)
12: else
13: if ((T cha

ev(j)
+ LIST.GET(0)) < (Dev(j)

+ T arr
ev(j)

)) then
14: T fin

ev(j)
= LIST.GET(0) + T cha

ev(j)

15: else
16: T fin

ev(j)
= Dev(j)

+ T arr
ev(j)

17: end if
18: replace the LIST.GET(0) with T fin

ev(j)

19: sort LIST with ascending order
20: record EVj into DELETESET
21: end if
22: end if
23: end for
24: remove EVs recorded in DELETESET, from the queue of NR

25: if ((T cha
ev(i)

+ LIST.GET(0)) < (Dev(i)
+ T arr

ev(i)
)) then

26: T fin
ev(i)

= LIST.GET(0) + T cha
ev(i)

27: else
28: T fin

ev(i)
= Dev(i)

+ T arr
ev(i)

29: end if
30: replace the LIST.GET(0) with T fin

ev(i)

31: sort LIST with ascending order
32: end for
33: end if
34: return EACT Case-2⟨LIST, NR⟩
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Vev = T cha
ev − (T arr

ev +Dev − T sta
ev ) (4.3)

In this equation, T arr
ev reflects the time slot an EV arrives at CS, T cha

ev reflects the charging
time. T sta

ev reflects the time that the EV has stayed at the CS after its arrival (the time at
which the algorithm is called minus the time at EV arrives), calculated by (Tcur − T arr

ev ).
Here, (T arr

ev + Dev − T sta
ev ) refers to the remaining parking duration of a EV. Line 9

refers to the condition that EVj’s charging urgency Vev(j) is higher than EVi’s charging
urgency Vev(i) , and EVj has arrived at the CS when the first charging slot is available
(LIST.GET(0) > T arr

ev(j)
), then EVj can preempt charging before EVi. However at line

10, there are two different conditions.
On the one hand, if EVj (the EV in the queue of NR being processed in current loop

operation) is the EVr. This implies that EVr is able to be preempted charged upon its
arrival, Algorithm 4.2 will return the EACT as LIST.GET(0) at line 11.

On the other hand, lines from 13 to 18 consider the other condition that EVj could
preempt charging prior to EVi, but EVj is other than EVr. EVj’s charging finish time T fin

ev(j)
will take place LIST.GET(0). As EVj is currently travelling and has not yet arrived the CS,
its charging time T cha

ev(j)
is estimated by:

T cha
ev(j)

=
Emax

ev(j)
− Ecur

ev(j)
+ (Sev × T tra

ev(j)
× α)

β
(4.4)

Here, extra energy is consumed due to EVj’s travelling from its current location to the CS,
which is calculated as (Sev × T tra

ev(j)
× α). Under the condition that meets line 13, EVj can

get fully charged within its parking duration (Dev(j) + T arr
ev(j)

), then T fin
ev(j)

is estimated as
(LIST.GET(0) + T cha

ev(j)
). If EVj can not get fully charged, line 16 estimates T fin

ev(j)
as EVj’s

departure deadline (Dev(j) + T arr
ev(j)

).
Because the charging slot is occupied by EVj , the LIST will be updated in the ascending

order so that LIST.GET(0) will still be the earliest available charging time. Since EVj

has been scheduled, it will be removed from the queue of NR which is given at line 24.
EVj will not be scheduled to get preempted charged when it does not meet the preempt
charging condition (Vev(j) is higher than Vev(i) and there is an available slot when EVj

arrives). Therefore, only EVi could get charged. Lines from 25 to 28 calculate EVi’s
charging finish time T fin

ev(i)
. Considering the parking duration, If EVi could be fully charged

((T cha
ev(i)

+ LIST.GET(0)) < (Dev(i) + T arr
ev(i)

)), T fin
ev(i)

will be calculated as (LIST.GET(0) +
T cha
ev(i)

). Otherwise, T fin
ev(i)

will be calculated as (Dev(i) + T arr
ev(i)

). Lines 30 and 31 update the
LIST to ensure that LIST.GET(0) is the first available charging time. Eventually, if EVr

is still not scheduled for charging within the loop operation, Algorithm 4.3 is applied to
schedule the rest EVs in the queue of NR at line 34.

4.2.2.2 Case-2
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Algorithm 4.3 EACT Case-2⟨LIST, NR⟩
1: insert all EVs (in the queue of NR) into Nf

R

2: sort the queue of Nf
R according to FIFS order

3: for (k = 1; k ≤ NR; k ++) do
4: for (l = 1; l ≤ Nf

R; l ++) do
5: if ((LIST.GET(0) > T arr

ev(l)
) ∩ (LIST.GET(0) > T arr

ev(k)
) ∩ (Vev(l)

> Vev(k)
)) then

6: if (EVl equals to EVr) then
7: return LIST.GET(0)
8: else
9: if ((T cha

ev(l)
+ LIST.GET(0)) < (Dev(l)

+ T arr
ev(l)

)) then
10: T fin

ev(l)
= LIST.GET(0) + T cha

ev(l)

11: else
12: T fin

ev(l)
= Dev(l)

+ T arr
ev(l)

13: end if
14: replace the LIST.GET(0) with T fin

ev(l)

15: sort LIST with ascending order
16: record EVl into DELETESET
17: end if
18: end if
19: end for
20: remove EVs recorded in DELETESET, from the queues of NR and Nf

R

21: if (EVk is not EVr) then
22: if (LIST.GET(0) > T arr

ev(k)
) then

23: if ((T cha
ev(k)

+ LIST.GET(0)) < (Dev(k)
+ T arr

ev(k)
)) then

24: T fin
ev(k)

= LIST.GET(0) + T cha
ev(k)

25: else
26: T fin

ev(k)
= Dev(k)

+ T arr
ev(k)

27: end if
28: else
29: if ((T arr

ev(k)
+T cha

ev(k)
) < (Dev(k)

+ T arr
ev(k)

)) then
30: T fin

ev(k)
= T arr

ev(k)
+ T cha

ev(k)

31: else
32: T fin

ev(k)
= Dev(k)

+ T arr
ev(k)

33: end if
34: end if
35: replace the LIST.GET(0) with T fin

ev(k)

36: sort LIST with ascending order
37: else
38: if (LIST.GET(0) > T arr

ev(r)
) then

39: return LIST.GET(0)
40: else
41: return T arr

ev(r)

42: end if
43: end if
44: end for
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If the queue of NW is empty or EVr fails to get preempted charged, the GC only needs
to consider charging priority among EVr and the other EVs in the queue of NR. The inputs
of Algorithm 4.3 (the LIST and the queue of NR) have been updated by Algorithm 4.2. All
EVs in the queue of NR are added into the queue of N f

R at line 1. The queue of N f
R is then

sorted as a queue scheduled in FIFS order. The loop operation from line 3 goes through EVl

(the EV in the queue of N f
R), meanwhile loop operation from line 4 goes through EVk (the

EV in the queue of NR). If EVl has arrived at the CS before LIST.GET(0), EVk has arrived
at the CS before LIST.GET(0) and EVl is with a higher charging urgency (Vev(l) > Vev(k)),
EVl is allowed to be charged prior to EVk. Under the conditions specified in line 5, there
are two cases:

• At lines 6 and 7, if the EVl in the current loop is EVr, the EACT will be returned as
LIST.GET(0).

• Lines 8 to 16 refer that EVl could get charged before EVk, however EVl is other
than EVr. LIST.GET(0) will be replaced with EVl’s charging finish time T fin

ev(l)
. Note

that if EVl could get fully charged before its departure, T fin
ev(l)

will be calculated as
(LIST.GET(0)+T cha

ev(l)
). If EVl could not get fully charged, T fin

ev(l)
will be calculated as

(Dev(l) + T arr
ev(l)

). Then line 15 sorts the LIST to ensure the LIST is with available time
order.

As EVl has been scheduled for charging, it will be removed from the queues of NR and
N f

R at line 20. It should be mentioned that EVl and EVk are EVs in the initial queue of NR,
the queues of NR and N f

R have same EVs but sorted with two different scheduling policy.
Any EVl mapping to EVk that is excluded at line 20, will no longer appear in subsequent
loop operations. After EVl that meets the above condition has been scheduled, Algorithm
4.3 only needs to schedule the rest EVk. There are two different cases depends on whether
EVk is EVr:

• Lines from 21 to 36 process the condition that EVk is other than EVr. Depending on
whether EVk arrives before LIST.GET(0) and whether EVk could be fully charged,
there are four different sub-cases. Firstly, if EVk arrives before LIST.GET(0) and
could be fully charged within its parking duration ((T cha

ev(k)
+ LIST.GET(k)) < (Dev(k)

+ T arr
ev(k)

)), T fin
ev(k)

will be calculated as (LIST.GET(0)+T cha
ev(k)

) at line 24. Secondly,
if EVk arrives before LIST.GET(0) but could not be fully charged within its parking
duration, T fin

ev(k)
will be calculated as (Dev(k)+T arr

ev(k)
) at line 26. Thirdly, if EVk arrives

later than LIST.GET(0) but could be fully charged within its parking duration, T fin
ev(k)

will be calculated as (T arr
ev(k)

+ T cha
ev(k)

). In the last sub-cases, if EVk arrives later than
LIST.GET(0) and could not be fully charged within its parking duration, T fin

ev(k)
will

be returned as (Dev(k) + T arr
ev(k)

). Then T fin
ev(k)

will take place LIST.GET(0) at line 35
and the LIST will be sorted with ascending order at line 36.
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• Lines from 37 to 43 consider the final condition that EVk in current loop is EVr.
EVr’s arrival time will be compared with LIST.GET(0) concerning when EVr could
get charged. LIST.GET(0) is returned as the EACT at lines 39 if EVr arrives before
the first available charging slot. In the other condition under line 41, its arrival time
(T arr

ev(r)
) is returned as the EACT.

4.2.3 CS-Selection Decision Making

Algorithm 4.4 CS-Selection Decision Making
1: for ∀lcs ∈ Ncs do
2: calculate Tmin

cs,d

3: calculate EACTcs via Algorithm 4.3
4: if ((T cha

ev(r)
+ EACTcs) ≤ (Dev(r)

+ T arr
ev(r)

)) then
5: T cs,d

ev(r)
= T cha

ev(r)
+ EACTcs + Tmin

cs,d

6: else
7: T cs,d

ev(r)
= T arr

ev(r)
+Dev(r)

+ Tmin
cs,d

8: end if
9: end for

10: lmin
cs ← argmin(T cs,d

ev(r)
)

11: return lmin
cs

As to select the CS with the minimum time spent through an entire charging process
(total trip duration T cs,d

ev(r)
), the CS-Selection scheme calculates total trip duration (T cs,d

ev(r)
) at

each CS. Here, T cs,d
ev(r)

is calculated with the following three inputs:

1. The duration EVr spends at the selected CS, which is given by the lines between 5
and 7 in Algorithm 4.4. It refers to the EV’s charging and waiting time (duration
before the EV gets charging service). Here, the EACT at CS (with location lcs) has
been estimated by the Algorithm 4.3.

2. The travelling time from the selected CS to EVr’s trip destination, given by Tmin
cs,d .

Considering the parking duration, T cs,d
ev(r)

is calculated in two cases to refer that EVr to be
fully/not fully charged respectively. Firstly, if EVr could get a fully charged service before
it departure deadline ((T cha

ev(r)
+ EACTcs) ≤ (Dev(r) + T arr

ev(r)
)), T cs,d

ev(r)
is given by:

T cs,d
ev(r)

= T cha
ev(r)

+ EACTcs + Tmin
cs,d (4.5)

In the other case, EVr could not get a fully charged because it has to depart at its departure
deadline (T arr

ev(r)
+Dev(r)), T

cs,d
ev(r)

is calculated by the following calculation at line 7:

T cs,d
ev(r)

= T arr
ev(r)

+Dev(r)
+ Tmin

cs,d (4.6)
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When loop operation finished at line 9, T cs,d
ev(r)

for each CS is obtained. The GC will
select the CS with the minimum T cs,d

ev(r)
together with its location lmin

cs back to EVr as the
CS-Selection decision. Then, the CS-Selection scheme calculates the total trip duration
(T cs,d

ev(r)
) at each CS. Here, T cs,d

ev(r)
is calculated with the following inputs:

1. The duration EVr spends at the selected CS, which is given by the lines between 5
and 7 in Algorithm 4.4. It refers to the EV’s charging and waiting time (duration
before the EV gets charging service). Here, the EACT at CS (with location lcs) has
been estimated by the Algorithm 4.3.

2. The travelling time from the selected CS to EVr’s trip destination, given by Tmin
cs,d .

Considering the parking duration, T cs,d
ev(r)

is calculated in two cases to refer that EVr to be
fully/not fully charged respectively. Firstly, if EVr could get a fully charged service before
it departure deadline ((T cha

ev(r)
+ EACTcs) ≤ (Dev(r) + T arr

ev(r)
)), T cs,d

ev(r)
is given by:

T cs,d
ev(r)

= T cha
ev(r)

+ EACTcs + Tmin
cs,d (4.7)

In the other case, EVr could not get a fully charged because it has to depart at its departure
deadline (T arr

ev(r)
+Dev(r)), T

cs,d
ev(r)

is calculated by the following calculation at line 7:

T cs,d
ev(r)

= T arr
ev(r)

+Dev(r)
+ Tmin

cs,d (4.8)

When loop operation finished at line 9, T cs,d
ev(r)

for each CS is obtained. The GC will
select the CS with the minimum T cs,d

ev(r)
together with its location lmin

cs back to EVr as the
CS-Selection decision.

4.3 Performance Evaluation
This work applies ONE to build a city charging system simulation scenario. In Fig.4.4, a
4500×3400 m2 area scenario demonstrates the urban area of Helsinki city in Finland. EVs
are configured using Coda Automotive [121] with 33.8 kWh maximum electricity capacity,
193 km max travelling distance and average energy consumption of 0.1751 kWh/km. All
EVs’ batteries are with full volume at the beginning of the simulation.

To classify different EVs types, three SOC thresholds 30%, 40% and 50% are set. EVs
are initialized in the scenario with variable moving speed from 30km/h to 50km/h. The
speed of EVs change upon each path to reflect the impact of traffic. Each EV would
randomly select its destination. Whenever the destination is reached, a new destination
will be randomly selected by the GC, until its SOC reaches the preset threshold. Besides,
7 CSs are deployed in the city scenario and provide fast charging. CSs are equipped with
5 charging slots. This work applies the centre manner for communication between EVs,
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CS2
CS1

CS3

CS4

CS5

CS6

CS7

Figure 4.4: Simulation Scenario of Helsinki City

CSs and the GC. The GC processes all charging requests from all EVs and make CS-
Selection decision to EVs whenever EVs request CS-Selection. The EV with request then
would travel towards the decided CS for charging with the shortest road path underlying
the Helsinki road topology.

The simulation lasts for a 12 hours’ duration with updating per 0.1s, where EVs’
positions, speeds and energies are updated every 0.1s, no matter EVs are on the road
or parked at CSs. Unless mentioned, incoming EVs are scheduled underlying the UFC
policy, as detailed in Section 4.1.1. The following CS-Selection schemes are evaluated for
comparison:

• Proposed: The GC returns the decided CS with the minimum total trip duration by
the Algorithm 4.4, indicated as UFC with reservation.

• Urgency First Charging Without Reservation (UFCWR) [4]: Literature work that
the GC selects the CS with the EACT which is detailed in Algorithm 4.2, but does not
ask EVs making reservations to CSs. The EVs’ charging scheduling in simulation is
based on the UFC policy.

• Reservation: The reservation scheme is based on FIFS charging scheduling [122].
The GC returns the CS-Selection decision by the EACT which considers both parked
EVs and EVs made reservations.

To compare different simulation results, the following performance metrics are evalu-
ated:
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• Number of EVs Fully Charged: It is a performance metric at the CS side, which
refers to the total number counting of EVs get fully charged service in the network
within the simulation duration (each EV can be fully charged and counted for several
times).

• Number of EVs Not Fully Charged: Number of EVs not fully charged although
they have arrived at a CS. In the extreme case, an EV could not get charging
service within its parking duration, which degrades user QoE, and the EV needs to
continuously find a new CS for charging.

• Average Waiting Time: It is a performance metric at the EV side, which represents
the average time costs that an EV get fully charged after it arrives at a selected CS.

• Average Trip Duration: The average trip duration sums the travelling time that an
EV travels through the decided CS and its charging time the EV spends at the CS.

4.3.1 Influence of Parking Duration
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Figure 4.5: Influence of Parking Duration (EV Density: 330 EVs & Charging Power:
62kWh)
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In the first group of simulations, EV density and charging power are fixed. Here, the
parking duration are set to 1300s, 1500s, 1800s, and 2100s respectively. In 1800s, an EV
could complete a fully charging from empty battery volume to full battery volume. Here,
charging slots would terminate EVs’ charging service after their departure deadline. It
refers that with a higher parking duration, all of the three CS-Selection schemes achieve a
higher number of EVs get fully charged in Fig. 4.5(a). However, as both the proposed
scheme and the reservation scheme allow EVs making reservations, they have more
accuracy in the EACT than the UFCWR scheme. Thus the GC can allocate EVs towards a
CS with lower congestion level. Since the proposed scheme takes into account the charging
urgency and would allow preempted charging, it avoids some EVs having to leave CS
when the parking duration expires after a long wait but not getting fully charged. With the
benefit of the UFC policy, more EVs could get fully charged comparing with the reservation
scheme.

In Fig.4.5(b), the proposed scheme has an obvious advantage over the reservation
scheme and the UFCWR scheme. Especially when the parking duration is the primary
constrain, congestion would occur at CSs, EVs with higher charging urgency would require
preempted charging, thus charging scheduling becomes significant. In Fig.4.5(c), the
UFCWR scheme suffers from the longest average waiting time among the three schemes,
no matter how parking duration changes. The average waiting time of the proposed scheme
and the reservation scheme are at a similar level. Because both the reservation scheme and
the proposed scheme enable the GC to estimate CSs charging status more accurate, it can
prevent EVs from driving to a CS with a high level of congestion. However the proposed
scheme has certain advantages as the proposed scheme achieves a larger number of EVs
fully charged (in Fig.4.5(a)). The proposed scheme achieves a shorter average trip duration
than the UFCWR scheme and the reservation scheme in Fig.4.5(d). With the increasing
parking duration, the advantage of the proposed scheme becomes more significant. Because
in Algorithm 4.4 the proposed CS-Selection scheme jointly considers the time from the
EV’s current location to the CS and the time from the CS to EV’s destination, so the
proposed scheme performs better than the other two schemes in average trip duration.

The parking duration are set to 3600s in the last set of simulations. As there are not
many EVs in the network, most EVs can be fully charged in Fig.4.5(a) and only a few EVs
can not fully charged in Fig.4.5(b). Meanwhile, the average waiting time and trip duration
fail to reflect the difference between the three schemes. This is because the advantages of
schemes can be better reflected when congestion occurs.

4.3.2 Influence of EV Density
In the second group of simulations, EV’s parking duration is set to 1800s and charging
power to 62kW. Then the results of three different CS-Selection schemes are evaluated
when changing number of EVs. In Fig.4.6(a), the result shows that the proposed scheme
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Figure 4.6: Influence of EV Density (Parking Duration: 1800s & Charging Power: 62kWh)
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Table 4.2: Influence of EV Density (EV Density: 660 & Parking Duration: 3600s &
Charging Power: 62kWh)

Performance Metrics\CS-Selection Schemes Proposed UFCWR Reservation
Number of EVs Fully Charged 1401 883 870
Number of EVs Not Fully Charged 1844 2973 2922
Average Waiting Time (s) 2031 2377 2242
Average Trip Duration (s) 4288 4883 4743

achieves the highest number of EVs fully charged. Especially when the total number of
EVs increases, the proposed scheme performs much better than the reservation scheme and
the UFCWR scheme. Here, the proposed scheme achieves the higher number of EVs fully
charged because it considers the charging urgency of EVs and allows preempted charging.

The result in Fig.4.6(b) also proves the advantage of the proposed scheme. It is worth
mentioning that when the number of EVs increased by 330, the difference between the
proposed scheme and the reservation scheme has a huge increase, this is because more
congestion occurs when the number of EV increases and charging scheduling becomes
significant. As the total number of EVs increases, the average waiting time and the
average trip duration in Fig.4.6(c) and Fig.4.6(d) increase as well. This is due to the more
charging congestion happens. The average waiting time of the proposed scheme and the
reservation scheme are at a similar level as shown in Fig.4.6(c), shorter than the UFCWR
scheme. This is because the UFCWR scheme calculates the EACT without considering
EVs’ reservations, thus the CSs charging status are not able to be accurately predicted and
the GC may select a CS with charging congestion. Due to the difference of number of
EVs fully charged, the proposed scheme has an advantage over the reservation scheme as
it allows more EVs get fully charged (in Fig.4.6(a)). In Fig.4.6(d), the proposed scheme
achieves the shortest average trip duration among the three schemes. This is because
Algorithm 4.4 jointly considers travelling time and charging time, which is different from
the reservation scheme and the UFCWR scheme.

In Table 4.2, the number of EVs is increased and the parking duration is set to 3600s
(otherwise most EVs cannot be fully charged). This setting reflects that when the number
of vehicles increases and congestion occurs, the proposed scheme increases the probability
of EV getting fully charged within the limited parking duration. This scheme also reduces
the total trip time as it considers the charging urgency.

4.3.3 Influence of Charging Power
In the third group of simulations, the parking duration is fixed to 1800s and EV density is
set to 330 EVs to observe the influence of charging power. In this chapter, DC charging
(fast charging technology) is applied to supplement EV energy. Fast charging reduces
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Figure 4.7: Influence of Charging Power (EV Density: 330 EVs & Parking Duration:
1800s)
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the charging time of EVs, which is more convenient for drivers to travel. In Fig.4.7(a),
the proposed scheme achieves the highest number of EVs get fully charged. Especially
when the charging power is at 38kW, the proposed scheme has an obvious advantage over
the other CS-Selection schemes. This is because the proposed scheme allows preempted
charging and sends reservations to the GC, which benefits overall EVs charging allocation.
The result in Fig.4.7(a) also shows that, with the increase of charging power, more EVs
get fully charged in all three schemes. The proposed scheme achieves the least number of
EVs not fully charged in Fig.4.7(b). Because the proposed scheme considers the charging
urgency of EVs, it prevents EVs from waiting at one CS without charging before its
departure. When the charging power increases by 74kW, EV’s charging time is shortened
at all CSs, and all the three schemes decrease the number of EVs not fully charged.

The UFCWR scheme suffers from the longest average waiting time in Fig.4.7(c),
this is because the UFCWR scheme does not ask EVs to send their reservations. Thus
estimation of CSs charging status are uncertain, and it causes CS hotpots. Both the proposed
scheme and the reservation scheme achieve shorter average waiting time comparing
with the UFCWR scheme, however the proposed scheme allows more EVs get fully
charged (Fig.4.7(a)) and thus it proves the importance of considering charging urgency.
In Fig.4.7(d), the average trip duration decreases when the charging power increases.
Here, the result shows that if charging power at CSs is increased, EVs would adequately
avoid charging congestion, thereby reducing the overall trip duration. Among the three
CS-Selection schemes, the proposed scheme considers the influence of the trip time in
Algorithm 4.4, and thus achieves the shortest average trip duration.

4.4 Remaining Challenges
The proposed UFC charging scheduling policy orders EVs charging priority by their
charging urgency (jointly considering their charging demand and parking duration). Based
on the UFC scheduling policy, this work further proposed a reservation-based CS-Selection
scheme to minimize the EVs’ trip duration, which also guarantees more EVs to get fully
charged within the parking duration. Results show the proposed CS-Selection scheme
achieves a shorter EVs’ trip duration through an intermediate charging, higher number of
EVs get fully charged as well as a shorter average waiting time.

While the UFC policy and the associated recommendation scheme have shown promis-
ing results in improving the efficiency of EV charging scheduling and spatial optimization,
there are still several challenges that need to be addressed. One major challenge is to
improve the accuracy of estimating charging urgency, which can help in better predicting
the optimal charging duration for each EV. Additionally, integrating renewable energy
sources into the charging process can pose a challenge due to their intermittent nature,
traditional plug-in charging modes will be limited to fixed locations, challenges that will be
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addressed in the next chapter, where we present the flexible application of V2V charging
mode optimization in synergy with time and space.
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Chapter 5

Reservation-Based V2V Charging
Service under Constraint of Parking
Duration

The traditional plug-in charging mode is limited by fixed location and peak hours.
Therefore, a flexible V2V charging mode is considered in this chapter. Here, PLs widely
dispersed in cities can be reused as a common place for V2V charging. EVs are divided
into EVs as energy consumers and EVs as energy providers to form as V2V-Pairs.

A V2V charging management scheme is proposed, which includes a distance-based
V2V-Pair matching algorithm and a PL-Selection scheme. As the occupation status at PLs
is difficult to predict, to achieve high PL utilization and evenly PL-Selection, V2V charging
reservation is introduced. Meanwhile, since EV drivers usually park at PLs within a limited
duration, this proposed V2V charging scheme introduces the parking duration to optimize
V2V charging under a temporal constraint. This chapter simulates V2V charging scheme
under the Helsinki city scenario. The results prove the proposed V2V charging scheme
achieves great charging efficiency (minimized charging waiting time and maximized fully
charging times). Technically:

1. This chapter proposes a distance-based V2V-Pair matching scheme to reduce the
EVs’ energy consumed on-the-move before the charging of V2V-Pairs starts. Major
previous works in V2V-Pair matching rely on preset static data (like in works [113,
123]), nevertheless, the real-time status of EVs is considered in this chapter.

2. Furthermore, this chapter proposes a PL-Selection scheme. This is different from
previous works that focus on V2V charging optimization in a single parking area
without considering on-the-move EVs (like in works [49, 57]).

3. As the occupation status at PLs is difficult to predict, EVs are asked to send
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reservations (different from the work [124]). This helps to predict the occupation
status at PLs and evenly allocate V2V-Pairs.

4. Previous works ignore the parking duration constraint (like in works [67, 60]), which
is contrary to the reality (drivers park a PL within a limited duration). It is novel
in this chapter that introduces the parking duration to refer the upper limitation that
EVs park at a PL. This allows the GC to intelligently allocate V2V charging requests
within the limited parking duration.

5.1 Preliminary

5.1.1 Assumption

Table 5.1: List of Notations of Chapter 5
δV 2V Number of V2V converters at PL

βV 2V V2V Charging power via converters

αV 2V Electric energy consumed per meter

Tcur Current time in the network

T tra
ev EV’s travelling time to reach PL

Emax
ev Full volume of EV battery

Ecur
ev Current volume of EV battery

Tarr
ev EV’s arrival time at PL

Tarr
pair Later EV’s arrival time at PL in a V2V-Pair

DISev
ev Distance between two EVs (an EV-C and another EV-P)

LIST List includes available charging time for converters at PL

NC Queue of EV-Cs under V2V charging at PL

NW Queue of EV-Cs waiting for V2V charging at PL

NR Queue of EV-Cs sending reservation to PL

Nev
P Queue of EV-Ps

NPL Queue of PLs providing V2V charging

T fin
ev Charging finish time of EV-C

Dev Parking duration of EV

Sev Speed of EV

EACT Estimation of Available Charging Time

This chapter considers V2V charging under an urban scenario as follows. Table 5.1
lists the notations covered in this chapter. It should be noted that some of the parameters
are named in line with Chapter 4, but the notations in this table are only applicable to
this chapter. A GC is deployed to communicate with EVs and PLs. The GC manages
V2V charging in a centralized manner. Multiple PLs are geographically distributed in the
scenario. Each PL is equipped with multiple DC-DC converters (δ) to allow parallel energy
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transfer. EVs are divided into EV-Cs and EV-Ps, an EV-C can only receive energy from
a paired EV-P. Here, the energy transfer via an EV-P to an EV-C is under a rate of βV 2V

(constrained by converters).
The freshness of occupation status information is determined by the communication

architecture [125]. Such information is particularly important in V2V charging [126].
Therefore, the GC and EVs are equipped with a wireless communication module so that
they can communicate through the cellular network with a low delay. Additionally, the
encrypted communication between EV and GC is applied to ensure the message will not be
eavesdropped on by others and to protect drivers’ privacy.

5.1.2 Network Entity

EV-C

EV-P1

PL1

V2V-Pair Under Charging 

Communication between GC and PLs 

Communication between GC and EVs 

PL2

EV-P2

GC

EV Waiting for 

Charge at PL (All 

Converters are 

Occupied )

V2V-Pair

DC-DC

Converters

Figure 5.1: System Procedure

An urban scenario is illustrated in Fig.5.1. Network entities involved are as follow:
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EV as energy Consumer (EV-C): An EV-C seeks for V2V charging if its State of
Charge (SoC) is below the threshold. Here, the EV-C requires a suitable EV-P to match.
Once an EV-C has been matched to an EV-P (in the form of a V2V-Pair) by means of
centralized optimization, they both will travel towards the determined PL to enable V2V
charging service. Here, this chapter considers EV-Cs would leave the service due to limited
parking duration.

EV as energy Provider (EV-P): It is EV with surplus energy providing and transferring
energy to EV-C. Each EV-P is assumed to have enough energy to provide multiple times
V2V services, deemed as an alternative to the grid.

Parking Lot (PL): Each PL has space for EVs to park. Meanwhile, it provides
additional DC-DC converters to allow energy transfer between a V2V-Pair. Multiple V2V-
Pairs are allowed to transfer energy in parallel at a PL, but it depends on the number of DC-
DC converters. In the worst case, EVs need to wait if all DC-DC converters are occupied.

Global Controller (GC): The GC communicates with PLs and EVs simultaneously in
a centralized manner. Here, the GC monitors the local occupation status of V2V-Pairs at
PLs. If the GC receives a V2V charging request from an EV-C, it matches a suitable EV-P
and arranges the PL-Selection for the V2V-Pair.

5.1.3 Proposed V2V Charging Management System

EV-CPL

2

V2V-Pair Matching

GC

1
EV-C Sends Charging Request

GC Replies with 

PL-Selection
4

GC Collects 

EV-P’s Status

PL’s Local 

Status Monitoring

EV-P

4

SoC Check

PL-Selection

Decision

PL-Selection

Confirmation

PL-Selection

Confirmation

5
EV-C Confirms PL-Selection 

and Sends Reservation

Cellular Network

Communication

Cellular Network

Communication

3
GC Replies with 

Matching Result
3

Figure 5.2: Time Sequence of V2V Charging

Fig.5.2 illustrates the procedure for the proposed V2V charging scheme. Here, the GC
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monitors the local occupation status of V2V-Pairs of all PLs in the charging network. Here,
the V2V charging management scheme contains two parts: the V2V-Pair matching process
(steps 2,3) and the PL-Selection decision process (steps 4,5).

Step 1: Once an EV-C (EVr) is driving on the road and its SoC is below the preset
threshold, EVr sends its V2V charging request (contains its location and energy request) to
the GC.

Steps 2: When the GC receives the charging request from EVr, it communicates with
EV-Ps to aggregate their current status.

Steps 3: The GC matches an appropriate EV-P for EVr according to the collected real-
time location of EV-Ps, and then it replies to the V2V-Pair matching result to EVr and
EV-Ps.

Step 4: The GC estimates the V2V charging availability at each PL. This estimation
jointly considers PLs’ local occupation status of V2V-Pairs, EVs parked at PLs waiting
for energy transfer and EVs sending charging reservations. Here, the GC replies to the
PL-Selection decision (the PL with the shortest trip duration) to the matched V2V-Pair of
EVr.

Steps 5: The V2V-Pair (EVr and the matched EV-P) then confirms the selected PL by
reporting the reservation to the GC.

5.1.4 V2V Charging Reservation Format
The GC accurately estimates the Earliest Available Charging Time (EACT) at each PL.
Here, the GC replies to the PL with the minimum trip duration (influenced by the EACT)
as PL-Selection to EVs. An EV-C is asked to confirm and send a reservation once it
receives the PL-Selection decision from the GC. Such reservation is beneficial to analyse
PL’s occupation status in the near future and prevent EVs from driving towards potential
PL hotspots.

The reservation is reported via the cellular network and includes the following
information:
⟨EV-C ID:⟩ The ID of EV-C which needs charging.
⟨EV-P ID:⟩ The ID of matched EV-P in EV-C’s V2V-Pair.
⟨Arrival Time:⟩ Here, the estimated arrival time T arr

ev is given by the travelling time
(T tra

ev ) from EV’s current location towards the selected PL plus the current time in the
network (Tcur):

T arr
ev = Tcur + T tra

ev (5.1)

⟨Expected Charging Time:⟩ The estimated charging time T cha
ev of the EV-C, is given

by:

T cha
ev =

Emax
ev − Ecur

ev + (Sev × T tra
ev × αV 2V )

βV 2V
(5.2)
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(Sev×T tra
ev ×αV 2V ) calculates the energy consumption in EV’s travelling, where Sev refers

speed of EV-C and αV 2V refers to energy consumption per meter.
Here, Table 5.2 displays a sample reservation message of EV22 sent to the GC.

Table 5.2: Reservation of EV-C22
EV-C ID Matched EV-P Selected PL Arrival Time Expected Charging Time
EV-C22 EV-P85 PL26 8676s 3043s

5.1.5 Problem Formulation
This chapter proposes a V2V charging management solution to alleviate potential charging
congestion. To facilitate the problem formulation, the following notations are listed:

(a) ξl: The V2V charging service time for an EV-C being fully charged at PL l.

(b) ωl: The average waiting time for each EV-C being fully charged at PL l.

(c) NPL: The queue of PLs in the network.

(d) ϕl: The number of EV-Cs that arrive at PL l and require V2V charging services.

(e) Ω: Overall V2V charging service time for all EV-Cs taken V2V charging in the
network.

Here, the V2V charging service time (ξl) is summed by the waiting time (before an
EV-C get charged) and charging time. It is worth mentioning, an EV waiting at a PL is due
to either the other EV (EV-P/EV-C in the V2V-Pair) not arrived (arrival latency) or the PL
has no converter available (charging congestion). To reduce the V2V charging service time
and improve drivers’ Quality of Experience (QoE), the problem is formulated as follows:

Minimize Ω =
∑

l∈NPL

ϕl · ξl (5.3)

Since the charging time depends on the charging power (determined as a constant by
converters), reducing the average waiting time (ωl) has become the core in the optimization.
Ω is minimized if charging EV-Cs (ϕl) are evenly across all PLs (NPL). Due to the
uncertainty in the city scenario, a practical approach is to achieve local optimization for
each EV-C. Therefore, the problem of Equation (5.4) is formulated as follow:

arg min
l∈NPL

ωl := {l|l ∈ NPL ∧ ∀i ∈ NPL : ωi ≥ ωl} (5.4)

Here, this chapter aims to find the optimized PL-Selection for EVs, which minimizes the
EV’s average waiting time. This will be discussed in detail in Section 5.2.5.
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5.2 V2V Charging Management

Local Occupation 
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EVs Reservation

Algorithm

EACT  with EVs 

Reservation

Algorithm

Algorithm

If the PL Has EVs 
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Algorithm 

5

PL-Selection 

Decision

V2V-Pair 

Matching

Algorithm

Figure 5.3: Computation Logic of V2V Charging Management

Fig.5.3 illustrates the logic of the proposed V2V charging management scheme. To
reduce energy consumed on-the-move before the charging of V2V-Pairs starts, the GC
matches V2V-Pairs in Algorithm 5.5.

There are three types of EVs in V2V charging process:

(a) EVs under V2V charging at PLs (in the queue of NC)

(b) EVs waiting for V2V charging at PLs (in the queue of NW )

(c) EVs send reservations to PLs (in the queue of NR)

In Algorithm 5.6, the GC calculates the PLs’ local occupation status of V2V-Pairs by
considering EV-Cs in the queue of NC , and further sorts the converters in the order of
their charging availability in time. Here, the cases a PL without or with receiving EVs’
reservations are concerned respectively, as detailed in Algorithm 5.7 and Algorithm 5.8.
Algorithm 5.7 and 5.8 estimate the Earliest Available Charging Time (EACT) at a PL.
Algorithm 5.9 further aggregates the EACT at each PL and selects the most suitable PL for
selection.
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Algorithm 5.5 Pair Matching Algorithm
1: for (p = 1; p ≤ Nev

P ; p++) do
2: if (EV-Pp is not matched) then
3: calculate DIS

ev−p(p)
ev(r)

4: end if
5: end for
6: EV-Pp ← argmin(DIS

ev(p)
ev(r)

)
7: return EV-Pp

5.2.1 Distance-Based V2V-Pair Matching
When an EV-C (EVr)’s SoC is below the preset threshold, it sends a charging request to

the GC. Here, the GC matches the most suitable EV-P (with the minimized energy cost on-
the-move) as the EVr’s V2V-Pair. This energy cost calculation is according to the location
and availability of EV-Ps.

In the Algorithm 5.5, the GC communicates with EV-Ps to aggregate their locations.
The GC confirms whether an EV-P (EV-Pp) has been matched with other EV-C at line 2. If
EV-Pp has not been matched, then EV-Pp is determined available, and the distance between
EVr and EV-Pp is calculated at line 3. EV-Pp with the minimum distance is returned as the
most suitable EV-P, thanks to the minimum energy consumed on-the-move (line 6). Then
the GC matches EV-Pp as the V2V-Pair result of EVr at line 7. This pair matching result is
replied to EVr and EV-Ps to ensure the stability of V2V-Pair matching.

5.2.2 Local Occupation Status of V2V-Pairs at PLs
Algorithm 5.6 calculates the local occupation status of V2V-Pairs at a PL. Meanwhile,

it further returns a list (LIST) that indicates the available time for V2V charging at each
DC-DC converter. Here, an EV-C’s V2V charging refers to the energy transferring from
its V2V-Pair. If there’s no EV-C under charging at the PL, the current time in the network
(Tcur) is added into the LIST with δV 2V to indicate all converters are available from Tcur.

The loop operation from line 5 to 11 considers the condition that the PL has EVs under
charging. Therefore, a number of converters (size of NC) are occupied until EVn (in the
queue of NC) finishes charging. From lines 6 to 10, Algorithm 5.6 calculates the charging
finish time of EVn. Note that, EVn’s charging time is limited by the parking duration (Dev).
If EVn can get fully charged before its departure deadline, the EVn’s charging finish time

(
Emax

ev(n)
−Ecur

ev(n)

βV 2V
+ Tcur) is added into the LIST at line 7. Otherwise, EVn has to depart at its

departure deadline (T arr
ev(n)

+Dev).
The condition from 12 to 16 indicates that not all converters have EV-Cs under charging.

Here, the converters with availability are added to the LIST to indicate they are available
from Tcur. At line 17, the LIST is sorted in the order of the available time at each converter.
Algorithm 5.6 further returns the LIST at line 18 as the local occupation status at the PL.
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Algorithm 5.6 Local Occupation Status of V2V-Pairs at PLs
1: if no EV is under charging then
2: add Tcur in LIST with δV 2V times
3: return LIST
4: end if
5: for (n = 1; n ≤ NC ; n++) do

6: if ((Tcur +
Emax

ev(n)
−Ecur

ev(n)

βV 2V
) ≤ (T arr

ev(n)
+Dev)) then

7: LIST.ADD(
Emax

ev(n)
−Ecur

ev(n)

βV 2V
+ Tcur)

8: else
9: LIST.ADD(T arr

ev(n)
+Dev)

10: end if
11: end for
12: if (NC < δV 2V ) then
13: for (m = 1; m ≤ (δV 2V −NC); m++) do
14: LIST.ADD(Tcur)
15: end for
16: end if
17: sort LIST with ascending order
18: return LIST

5.2.3 Estimation of EACT without Reservation
EV-Cs waiting at the PL are scheduled to charge. At line 1, the waiting queue of NW is

sorted with the FIFS order to ensure more EVs can finish V2V charging within their Dev.
The lines from 2 to 14 consider the condition that there are EVs waiting for V2V-Pair at

the PL. Those EVs are scheduled to charge once a converter becomes available. Here, the
estimated charging time of EVi (the EV-C in the queue of NW ) is calculated by:

T cha
ev(i)

=
Emax

ev(i)
− Ecur

ev(i)

βV 2V
(5.5)

To consider whether EVi is able to be fully recharged before its departure, lines 5 and 7
calculate EVi’s charging finish time (T fin

ev(i)
) respectively. If EVi is able to be fully recharged

(meets the condition at line 4), its T fin
ev(i)

is calculated as (T cha
ev(i)

+ LIST.GET(0)). Otherwise,
EVi has to depart at (Dev + T arr

ev(i)
). LIST.GET(0) is replaced by T fin

ev(i)
to imply the first

available converter is occupied by EVi until T fin
ev(i)

. Then the LIST is sorted in ascending
order at line 10. EVi is recorded into DELETESET and removed at line 13 to indicate that
all EVs in the queue of NW have been scheduled to charge.

If the PL has not received any reservation for charging as the condition at line 15, EVr

will be the first charging sequence when it arrives. However, a necessary condition of
starting V2V charging is both EVs in a V2V-Pair have arrived. Therefore, the arrival time
(T arr

pair(r)
) is determined of EVr’s V2V-Pair as the later EV’s arrival time in the pair. If EV-

Pr (EVr’s energy provider in its V2V-Pair) arrives later than EVr, T arr
pair(r)

is recorded as
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Algorithm 5.7 EACT without EVs Reservation ⟨LIST⟩
1: sort the queue of NW according to the FIFS order
2: if contains EVs waiting for charging then
3: for (i = 1; i ≤ NW ; i++) do
4: if ((T cha

ev(i)
+ LIST.GET(0)) < (Dev + T arr

ev(i)
)) then

5: T fin
ev(i)

= T cha
ev(i)

+ LIST.GET(0)
6: else
7: T fin

ev(i)
= Dev + T arr

ev(i)

8: end if
9: replace the LIST.GET(0) with T fin

ev(i)

10: sort LIST with ascending order
11: record EVi into DELETESET
12: end for
13: remove EVs recorded in DELETESET, from the queue of NW

14: end if
15: if no EV reservation for charging then
16: if (T arr

ev(r)
< T arr

ev−p(r)
) then

17: T arr
pair(r)

= T arr
ev−p(r)

)

18: else
19: T arr

pair(r)
= T arr

ev(r)

20: end if
21: if (T arr

pair(r)
<LIST.GET(0)) then

22: return LIST.GET(0)
23: else
24: return T arr

pair(r)

25: end if
26: else
27: return EACT with EVs Reservation ⟨LIST⟩
28: end if
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T arr
ev−p(r)

at line 17. If EVr arrives later than EV-Pr, T arr
pair(r)

is recorded as T arr
ev(r)

at line 19.
Considering that the PL may have no available converter when EVr arrives (all

converters are occupied by EVs in the queue of NW ), it is necessary to compare
T arr
pair(r)

with LIST.GET(0). If EVr arrives with the first available converter occupied
(T arr

pair(r)
<LIST.GET(0)), then Algorithm 5.7 returns LIST.GET(0) at line 22 for PL-

Selection purpose in Algorithm 5.9. In the other case, T arr
pair(r)

is returned at line 24.
If the PL has received V2V charging reservations, the further EACT estimation will be

processed in Algorithm 5.8.

5.2.4 Estimation of EACT with Reservation

Algorithm 5.8 EACT with EVs Reservation ⟨LIST⟩
1: sort the queue of NR according to the FIFS order
2: for (j = 1; j ≤ NR; j ++) do
3: if ((T cha

ev(j)
+ LIST.GET(0)) < (Dev + T arr

ev(j)
)) then

4: T fin
ev(j)

= T cha
ev(j)

+ LIST.GET(0)
5: else
6: T fin

ev(j)
= Dev + T arr

ev(j)

7: end if
8: replace the LIST.GET(0) with T fin

ev(j)

9: sort LIST with ascending order
10: record EVj into DELETESET
11: end for
12: remove EVs recorded in DELETESET, from the queue of NR

13: if (T arr
ev(r)

< T arr
ev−p(r)

) then
14: T arr

pair(r)
= T arr

ev−p(r)
)

15: else
16: T arr

pair(r)
= T arr

ev(r)

17: end if
18: if (T arr

pair(r)
<LIST.GET(0)) then

19: return LIST.GET(0)
20: else
21: return T arr

pair(r)

22: end if

Based on the output from Algorithm 5.7, Algorithm 5.8 further calculates the EACT
with reservations generated from EV-Cs. Here, NR is sorted according to the FIFS order.
This is the estimated arrival order of EV-Cs in the queue of NR.

If EVj (EV-C in the queue of NR) could be fully charged before its departure ((T cha
ev(j)

+
LIST.GET(0)) < (Dev + T arr

ev(j)
)), Algorithm 5.8 calculates T fin

ev(j)
as (T cha

ev(j)
+ LIST.GET(0))

at line 4. Otherwise, T fin
ev(j)

is calculated as (Dev + T arr
ev(j)

) at line 6.
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Line 8 replaces LIST.GET(0) with T fin
ev(j)

to indicate the first available converter is
occupied until T fin

ev(j)
. Then line 9 updates the LIST in ascending order to make sure that

LIST.GET(0) is still the first available charging time at converters. All EVs that have been
scheduled to charge are recorded into DELETELIST and removed from the reservation
queue of NR.

As the V2V charging can only start when both EVs in a V2V-Pair have arrived, the
lines from 13 to 17 compare the arrival time of EVs in a V2V-Pair. If EVr arrives later than
EV-Pr, T arr

pair(r)
is recorded as T arr

ev−p(r)
. Otherwise, T arr

pair(r)
is recorded as T arr

ev(r)
.

If all converters are occupied when EVr arrives (T arr
ev(r)

<LIST.GET(0)), Algorithm 5.8
returns LIST.GET(0) as the EACT at the PL at line 19. In the other case, EVr can get direct
energy transfer service once it arrives, the EACT at the PL is returned as T arr

pair(r)
at line 21.

5.2.5 PL-Selection Decision

Algorithm 5.9 PL-Selection Decision Making
1: for ∀lpl ∈ NPL do
2: calculate Tmin

pl,d

3: calculate EACTpl via Algorithm 5.7 & 5.8
4: if ((T cha

ev(r)
+ EACTpl) ≤ (Dev + T arr

ev(r)
)) then

5: T pl,d
ev(r)

= T cha
ev(r)

+ EACTpl + Tmin
pl,d

6: else
7: T pl,d

ev(r)
= T arr

ev(r)
+Dev + Tmin

pl,d

8: end if
9: end for

10: lmin
pl ← argmin(T pl,d

ev(r)
)

11: return lmin
pl

Algorithm 5.9 selects the PL for EVr with the minimum time spent with an intermediate
V2V charging (total trip duration T pl,d

ev(r)
). Here, T pl,d

ev(r)
is the summation of the duration

EVr spends at the selected PL and the travelling time from the selected PL to EVr’s trip
destination (Tmin

pl,d ).
Here, Tmin

pl,d is calculated at line 2, which refers to the time EVr travels from the PL
to its destination via the shortest path. The EACT at PL (with location lpl) is estimated
by Algorithm 5.7 & 5.8. There are also two cases considering whether EVr can be fully
charged before its departure.

(a) At line 5, EVr can be fully charged before its departure, thus T pl,d
ev(r)

is calculated by
(T cha

ev(r)
+ EACTpl + Tmin

pl,d ).

(b) At line 7, due to the Dev limitation, EVr has to depart from the PL no matter whether
it is fully charged or not. Thus T pl,d

ev(r)
is calculated by (T arr

ev(r)
+Dev + Tmin

pl,d ).
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In the loop operation at line 10, Algorithm 5.9 calculates T pl,d
ev(r)

at each PL. The PL with
the minimum T pl,d

ev(r)
will be returned as PL-Selection decision to EVr.

5.3 Performance Evaluation

5.3.1 Simulation Configuration

(a) The Helsinki City
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(b) Deployment of PLs

Figure 5.4: Simulation Scenario

This chapter applies ONE to build V2V charging management scenario. The ONE is
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initially designed for mobile networks. Here, the system is modified to simulate the V2V
charging process. In Fig.5.4(a), the simulation demonstrates the urban area of Helsinki
city (Fig.5.4(a)) with a 4500×3400 m2 scenario. 26 PLs are geographically deployed in
the urban area and each PL is equipped with 4 DC-DC converters. One DC-DC converter
allows V2V charging for a V2V-Pair with an energy transferring rate of 15 kW.

Meanwhile, to examine the efficiency of V2V charging mode as compared with the
plug-in charging mode. Another scenario is considered under plug-in charging mode where
5 CSs are deployed in this urban scenario. Each CS is provided with 5 charging slots, using
the fast charging rate of 62 kW.

EVs in the scenario are using Coda Automotive [121] with the following configuration:
Maximum electricity capacity: 33.8 kWh; Max travelling distance: 193 km; Average
energy consumption: 0.1751 kWh/km.

To enrich EV differences in the scenario, three SoC thresholds (30%, 40% and 50%)
are set. All EV-Cs’ batteries are at full volume when the simulation starts. To simplify the
simulation and exam the optimality of V2V-Pair matching, PL-Selection and reservations,
EV-Ps are set with a super power, EV-Ps are able to provide repeatedly charging services
without intermediate charging. The numbers of EV-Cs and EV-Ps are set equally to avoid a
large number of EV-Cs competing with a few number of EV-Ps.

Here, EVs are with [30 ∼ 50] km/h variable moving speed, the speed fluctuation
reflects the impact of traffic. The EV’s destination is randomly selected from a location on
the map. Once an EV arrives at its trip destination, it will travel towards the next randomly
selected destination again. If the EV’s SoC is below the threshold, it travels towards the
selected PL via the shortest path, which is formed considering the Helsinki road topology.
The simulation lasts for 12 hours. Here, EVs’ location, speed and energy are updated per
0.1s, no matter whether EVs are at a PL or on-the-move.

5.3.2 Comparison Configuration
A reservation-based V2V charging management scheme is proposed in this chapter. To
compare the efficiency of different V2V charging schemes, the following V2V schemes are
evaluated for comparison:

• MD-V2V: The benchmark scheme with distance-based V2V matching and distance-
based PL-Selection.

• MWT-V2V [7]: The benchmark scheme with distance-based V2V matching and
waiting time-based PL-Selection (without reservation).

• R-V2V: The proposed scheme with a distance-based matching scheme and a
reservation-based PL-Selection scheme.
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This chapter evaluates two other CS charging schemes for comparison. In CS charging
schemes, the number of EVs is set as the same number of EV-Cs in V2V schemes.

• MWT-CS [120]: Literature work applies the plug-in charging mode for EVs. The
GC allocates EVs to the CS with the minimum waiting time.

• R-CS [118]: Literature work applies the plug-in charging mode for EVs and
considers charging reservation. The CS allocates EVs to the CS with the earliest
EACT.

The key differences between the existing work and the proposed work lie in the PL-
Selection scheme and the reservation mechanism as listed in Table 5.3.

Table 5.3: Comparison of Existing and Proposed Schemes
Characteristics MD-V2V MWT-V2V

[7]
R-V2V MWT-CS

[120]
R-CS [118]

V2V Matching
Scheme

Distance-
based

Distance-
based

Distance-based N/A N/A

PL-Selection
Scheme

Distance-
based

Waiting
time-based
(without
reservation)

Waiting time-
based (with
reservation)

Waiting time-
based

Waiting time-
based (with
reservation)

Reservation
Mechanism

N/A N/A Proposed
with fixed
and adaptive
reservation
windows

N/A Proposed with
fixed reservation
windows

Charging Mode V2V V2V V2V Plug-in Plug-in

The following performance metrics are evaluated:

• Number of EVs Fully Charged (NOFC): It indicates the total number of EV-Cs get
fully charged. Here, within the simulation duration, each EV-C can be charged for
several times.

• Number of EVs Not Fully Charged (NONFC): It indicates the total number of
EV-Cs can not get fully charged although EV-Cs have arrived at a PL. In extremity,
an EV-C may not receive V2V charging before its departure, thus it needs another
PL-Selection for charging.

• Average Waiting Time (AWT): It indicates the average queuing time for EV-Cs
before they get charging service at the selected PL.
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Figure 5.5: Influence of Parking Duration

5.3.3 Influence of Parking Duration
In the first group of simulations, the EV density is set to 840 (420 EV-Cs and 420 EV-
Ps) and observe the influence of the parking duration. Here, the parking durations are set
to 7200, 9000, and 10800s respectively. To further observe the upper limit of charging
schemes, the results are added without considering the parking duration (the results with∞
symbol in the figures).

In Fig.5.5(a), due to the lack of prediction at PLs/CSs, MWT-CS, MD-V2V and MWT-
V2V schemes are unable to prevent EVs from selecting the PL/CS hotspots and suffer from
a longer AWT. Here, V2V charging schemes (based on flexible utilization of PLs), with a
far lower charging power (15 kW), are able to achieve better charging efficiency than 5 CSs
with 62 kW charging power (MWT-CS and R-CS schemes). In the three V2V schemes,
the MD-V2V scheme suffers from the longest AWT. This is because the MD-V2V scheme
lacks global planning and only considers the location of EV-Cs. This inevitably leads to
charging congestion at PL hotspots. As the R-V2V scheme enables the GC to estimate PLs’
occupation status accurately (with the benefit of reservations), it is able to better allocate
V2V charging among PLs and achieves the shortest AWT. If the parking duration is not
limited, the AWT of MD-V2V and MWT-V2V schemes are obviously increased, which
also reflects the importance of reservation to charging efficiency.

In Fig. 5.5(b), under V2V charging mode, a longer parking duration reduces the
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proportion of arrival latency (time waiting for EV-C/EV-P in a V2V-Pair) in one entire
charging process. Here, an EV-C has a longer time waiting for its matched pair to get
fully charged and thus the NOFC increases. As R-CS and R-V2V schemes ask EVs to
send reservations, then the GC has more accuracy in the estimation of EACT than the other
schemes. The GC is able to select the CS/PL with a lower congestion level. Therefore,
R-CS and R-V2V schemes achieve higher NOFC than other schemes. In Fig.5.5(c), the
R-V2V scheme achieves a lower NONFC than the other schemes. This benefits from the
prediction of potential occupation status at PLs. When the parking duration is extended to
10800s, almost all EV-Cs charging requests can be satisfied.

5.3.4 Influence of EVs Density
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Figure 5.6: Influence of EVs Density

In the second group of simulations, EV’s parking duration is set to 9000s and further
vary the number of EVs to reflect the scalability of management schemes. Here, the EV
density refers to the number of EV-Cs. The numbers of EV-Cs and EV-Ps are set equally to
avoid a large number of EV-Cs competing with a few numbers of EV-Ps.

The result in Fig.5.6(a) shows that the MWT-CS scheme suffers from the longest AWT.
However, the AWT can be significantly reduced with the help of reservation in the R-CS
scheme. Among three V2V schemes, the MD-V2V scheme suffers the longest AWT. This
is because the distance-based PL-Selection would centralize charging requests at PLs in
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the city centre and thus cause charging congestion. By considering the local occupation
status of V2V-Pairs at PLs, EVs are able to avoid PL hotspots. Here, when the number of
EV-Cs is 360, MWT-V2V and R-V2V schemes can effectively reduce the AWT. When the
number of EV-Cs increases by 480, the R-V2V scheme still achieves the shortest AWT as
it considers the potential charging flow.

In Fig.5.6(b), it shows that the R-V2V scheme achieves the highest NOFC. In CS
schemes, charging congestion occurs when the number of EVs increases and thus NOFC
decreases. However, in V2V schemes, the V2V-Pair matching becomes more flexible when
the number of EVs increases. Therefore, the NOFC increases in V2V schemes.

The result in Fig.5.6(c) also proves the advantage of the R-V2V scheme. When the
number of EVs is at a low level (360 and 420 EV-Cs), the R-V2V scheme benefits from the
reservations as the GC could accurately estimate EACT at PLs. This effectively avoids EV-
Cs charging at PLs with high charging congestion. When the density of EV-Cs increases by
480, reservations still help the GC evenly allocate EVs at PLs and thus maximize the PLs’
charging utility.

5.3.5 Influence of Charging Power
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Figure 5.7: Influence of Charging Power

By adjusting the charging power at CSs and PLs, this chapter observes the utility of
each charging scheme. Here, the parking duration is set to 9000s and EV-Cs density to 420.
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The R-V2V scheme achieves the shortest AWT in Fig.5.7(a). The increment of charging
power reduces the AWT in all charging schemes. However, under V2V charging mode,
charging power with a small increase (5 kW) can significantly shorten the AWT. This is
because the number of PLs is large, and a small increase of charging power can effectively
improve the overall charging performance in V2V charging. Considering the bottleneck in
charging technology, V2V charging schemes take great charging efficiency improvement
with less charging power increment.

In Fig.5.7(b), when the charging power increases, the NOFC is significantly increased
under V2V charging schemes. And the R-V2V scheme achieves the highest NOFC, because
it considers the reservations and efficiently allocates the charging requests at each PL.
Note that with the increase of charging power, the NONFC decreases significantly in all
schemes in Fig.5.7(c), and this decreasing trend is more obvious in V2V schemes. When
the charging power at PL reaches 20 kW, the R-V2V scheme can ensure that all EV-Cs can
be fully charged once they arrive at PLs.

5.3.6 Influence of Charging Facility Deployment
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Figure 5.8: Influence of Charging Facility Deployment

To simulate the EV charging under different charging facility deployment, the number
of PLs and CSs are adjusted in the scenario for simulation:

88



Chapter 5. Reservation-Based V2V Charging Service under Constraint of Parking
Duration 5.3. Performance Evaluation

(a) In the first group of comparison, the number of CSs is reduced to 4. Here, CS0 to
CS3 in Fig.5.4(a) can continue to provide charging services. Meanwhile, the number
of PLs is reduced to 22. Here, PL0 to PL21 in Fig.5.4(a) can continue to provide V2V
charging services.

(b) In the second group of comparison, the number of CS is further limited to 3. Here,
CS0 to CS2 can continue to provide charging. The number of PLs is limited to 18.
Here, PL0 to PL17 can can continue to provide V2V charging.

In Fig.5.8(a), a less number of charging facilities means that EV charging is further
limited by constrained locations. Therefore, the MD-V2V scheme suffers a significant
increase in the AWT. This is because distance-based PL-Selection further aggravates
charging congestion at PL hotspots. MWT-CS and MWT-V2V schemes consider the local
charging status/occupation status of CSs/PLs and select the CS/PL with the minimum
waiting time. To some extent, the charging requests are evenly distributed among CSs/PLs.
However, R-CS and R-V2V schemes further consider the reservation information to predict
potential charging requests. Therefore, these two reservation-based schemes achieve a
lower AWT.

In Fig.5.8(b), the NOFC reduces with less number of charging facilities. This reflects
the dilemma faced by plug-in charging mode when a small number of CSs deployed. Since
V2V charging mode can flexibly use preset PLs, V2V schemes can still ensure relatively
high NOFC. In particular, the R-V2V scheme achieves the highest NOFC, with the benefit
of reservations. In Fig.5.8(c), V2V schemes achieve a lower NONFC. However, limited by
the number of CSs, more EVs depart with not fully charged in plug-in charging mode.

5.3.7 Charging Distribution at PLs
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Figure 5.9: Charging Distribution at PLs
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Fig. 5.9 shows the distribution of V2V charging at each PL under V2V charging
schemes. Here, the parking duration is set as 9000s and the number of EV-Cs is set to
420.

The even distribution of V2V charging at each PL can maximize the V2V charging
efficiency. Since the MD-V2V scheme selects PL based on EV’s local information (distance
from each PL), V2V charging requests are easy to concentrate at some PLs (especially PLs
at the city centre). This leads to charging congestion and reduces EV drivers’ QoE. In
the MWT-V2V scheme, the GC calculates the EACT of each PL. But due to the lack of
reservations, the GC cannot accurately predict the potential charging requests. Here, it’s
inevitable that several V2V-Pairs are allocated to the PL hotspots and thus cause charging
congestion.

The R-V2V scheme avoids the above problems. In Fig. 5.9, the V2V charging
distribution at each PL is relatively average under the R-V2V scheme. Therefore, converters
at each PL are able to be highly utilized. This guarantees a higher charging efficiency in
large-scale EVs deployment.

5.3.8 Summary Discussions of V2V Charging
Based on the above evaluations, the proposed V2V charging mode proves its advantages
over CS charging mode.

• When the number of EVs participating in V2V charging increases (from 360 to
480 EV-Cs), the more EVs get fully charged. This is because V2V-Pair matching
optimizes with more EV participators. However, the increase number of EVs in CS
charging mode leads to the decrease of charging results (less fully charged EVs and
longer charging waiting time).

• The V2V charging mode flexibly use PLs under a low charging power (10-20 kW)
to achieve a charging result of CSs under a high charging power (35-65 kW).
Meanwhile, a small charging power increase (5 kW) in V2V charging mode achieves
a large improvement in V2V charging result. Currently, charging power is limited by
battery technology, V2V charging mode is conducive to improving the EV drivers’
charging experience.

• In V2V charging schemes, the introduction of reservation optimizes the PL-Selection.
This proposed V2V charging scheme proves its advantage over simply considering
the local PL occupation at PLs. EVs distributes evenly among PLs thanks to V2V
charging reservations, which maximizes the use of V2V charging resources in the
city.
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5.4 Remaining Challenges
Since range anxiety and spatial limitation of public charging facilities hinder EVs’ large-
scale application, this chapter proposes a reservation-based V2V charging management
scheme. It is applied as an alternative to the traditional plug-in charging mode. Here,
the V2V charging mode is able to effectively reduce grid fluctuation as it allows directly
transfer among EVs.

By means of V2V charging technology, PLs widely distributed in urban areas can be
reused as V2V charging places. Here, an EV-P transfers surplus energy to another EV-C
(in the form of a V2V-Pair) through the DC-DC converters deployed. To reduce energy
consumed on-the-move before the charging of V2V-Pairs starts, the GC monitors EVs’
status and global matches V2V-Pairs considering their locations. Meanwhile, to solve
where to charge problem for V2V-Pairs, this chapter proposes a reservation-based PL-
Selection algorithm. Here, the GC selects the PL with the highest charging availability
(jointly considers parking V2V-Pairs and reservations).

This chapter further evaluates the EVs’ charging performance under the plug-in and
V2V charging modes. The results show that the V2V charging mode provides more
flexibility in urban scenarios, which shortens the AWT and achieves a higher NOFC within
the constrained parking duration. The V2V charging mode optimization proposed in this
chapter has demonstrated significant improvements in reducing charging waiting times and
increasing the number of fully charged EVs. However, there are still several challenges that
need to be addressed to make V2V charging more efficient and scalable. One key challenge
is to improve the matching algorithm for V2V-Pair selection, which can help in reducing the
overall charging time. Additionally, the limited availability of V2V charging infrastructure
in certain regions can pose a challenge for widespread adoption. These challenges will
be addressed in the next chapter, where we propose an optimization approach to hybrid
charging mode that considers the cooperative optimization of multiple charging modes.
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Chapter 6

Towards Reservation-based E-Mobility
Service via Hybrid of V2V and G2V
Charging Modes

The shortcomings of plug-in and V2V charging modes limit further user QoE enhance-
ments. Thus, a hybrid charging management is proposed to flexibly utilise the advantages
of both charging modes [111]. Generally, plug-in and V2V charging modes differ in their
application scenarios. The plug-in charging mode is used for deterministic charging as
CSs fixed and public, while V2V charging is used for opportunistic charging as PLs are
flexible and uncertain [112, 57]. It is crucial to figure out how to combine the advantages of
V2V charging (high flexibility) and plug-in charging (high stability). Although the plug-in
charging is stable and fast [110], the deployment of CS is costly and rigid in location, this
still leads to higher electricity price and longer charging waiting time. The V2V charging
mode is flexible in terms of location [67], however with limitation in slow charging power
and uncertain energy supply from EV-Ps.

With vision to integrate both charging modes into sustainable eco-system for future
smart city, this chapter proposes a hybrid charging management in this chapter. The pro-
posed management recommends the most suitable charging mode (CS/PL-Selection) with
aim to minimize charging cost for EV. The charging cost is calculated with consideration
of charging price, charging waiting time (time spent from arrival at CS/PL to the start of
charging service) and charging energy factors. The contributions of this chapter are as
follows. Technically:

1. Hybrid plug-in & V2V charging management framework: In previous works,
EV charging optimization has been solely considered under a single charging
mode (those [8, 67] under V2V charging and that [127] under plug-in charging).
Although, some literature applied V2V charging as a replacing of grid when the
grid stops supplying energy ([113, 128, 129]). This chapter proposes a hybrid
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charging management in this chapter, which allows EV charging via two different
charging modes. This framework alleviates charging congestion and flexibly utilizes
heterogeneous charging infrastructures across city.

2. Collaborative optimization in price-time-energy dimensions: In this chapter, a
charging cost optimization function is proposed, which is jointly calculated by
expected charging price, charging waiting time and charging energy (price-time-
energy dimensions). Here, the weights of each dimension are innovatively assigned
based on the AHP. By selecting the charging service with the lowest charging cost,
EV charging can be optimized across above three dimensions.

3. Hybrid real-time recommendation system: Unlike previous literature that utilized
offline data (historical price data [130], fixed energy requirement [60]), real-time
data is considered in this chapter. Real-time data better represents complexities of
the real-world conditions, but changes in real-time data are more difficult to predict.
This chapter therefore introduces charging reservation, including EV arrival time
and expected charging energy, to effectively alleviate this problem and improve the
charging recommendation by accurate information.

6.1 Preliminary

6.1.1 Assumption
In this chapter, a hybrid framework is considered between the plug-in charging and V2V
charging modes, aiming to take advantages of both modes under a holistic manner. In this
framework, GC, CSs/PLs and EVs are equipped with wireless communication modules so
that they can communicate charging information over the cellular network. To protect the
privacy of EVs, encrypted communication is applied between EVs and GC. Table 6.1 lists
the notations covered in this chapter. It should be noted that some of the parameters are
named in line with other chapters, but the notations in this table are only applicable to this
chapter.

6.1.2 Problem Formulation
The charging quality of EV-Cs is affected by the charging decision (charging mode
selection and CS/PL-Selection). To achieve an optimal hybrid charging management,
a comprehensive consideration of factors under different dimensions is required. The
proposed hybrid charging management aims to: 1) minimize the unit price of energy for
charging services. 2) minimize the charging waiting time. 3) maximize charging energy
per service. To formulate above objectives, it has follow sub-questions:
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Table 6.1: List of Notations of Chapter 6
δ Number of charging slots at CS / Number of V2V converters at PL

β CS charging power at slot / V2V charging power via converters

α Electric energy consumed per meter

λ Charging rate at converter

ωγ Charging rate at converter

ωϵ Charging rate at converter

ωλ Charging rate at converter

Emax
ev Full volume of EV battery

Ecur
ev Current volume of EV battery

Ereq
ev Required charging volume of EV battery

Echa
ev Actual charging volume of EV battery

Etra
ev EV’s energy consumption in travelling to CS/PL

Tarr
ϕ EV’s arrival time at CS / V2V-Pair’s arrival time at PL

Tcur Current time in the network

T cha
ϕ EV’s charging time at CS / V2V-Pair’s charging time at PL

Twait
ϕ EV/V2V-Pair’s waiting time at CS/PL before it been charged

T fin
ϕ Charging finish time of EV / V2V-Pair

DISev
ev Distance between two EVs (an EV-C and another EV-P)

LIST List includes available charging time for slots at CS / converters at PL

NC Queue of EVs under CS charging at CS / V2V charging at PL

NW Queue of EVs waiting for CS charging at CS / V2V charging at PL

NR Queue of EVs sending reservation to CS/PL

Nev
P Queue of EV-Ps

NPL Queue of PLs providing V2V charging

NCS Queue of CSs providing CS plug-in charging

Dev Parking duration of EV

Sev Speed of EV

CostΦev Charging cost for EV / V2V-Pair to be charged at CS / PL

Note: Φ and ϕ differs under plug-in/V2V charging modes, which is replaced by CS/PL or EV/V2V-Pair respectively.
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1. Minimize Charging Price: EV wants to be charged at providers with lower energy
price, the total charging price for EVs is defined as R. The optimization objective is
as follow:

Minimize R =
∑
l∈L

∑
sl∈Sl

Psl × Echa
sl

(6.1)

Here, L is the list of all EVs in the network. Considering that each EV may receive
charging service for several times, each EV is with a charging service list Sl. The
price of each charging service (sl ∈ Sl) is calculated as the unit price of energy (Psl)
multiplied by the amount of energy it charged (Echa

sl
).

2. Minimize Charging Waiting Time: EV requires a reduced charging waiting time to
shorten time spent at a CS/PL, the total charging waiting time for EVs is defined as
W . The optimization objective is as follow:

Minimize W =
∑
l∈L

∑
sl∈Sl

Twait
sl

(6.2)

Here, Twait
sl

represents the waiting time of an EV charging service.

3. Maximize Charging Energy: EV wants to receive more charging energy, thus avoids
frequent charging in the subsequent travelling. Here, the ratio of overall EVs’
received charging energy is defined as Ω, the optimization objective is given as:

Maximize Ω =
∑
l∈L

∑
sl∈Sl

Echa
sl

Ereq
sl

(6.3)

EVs want to maximize the ratio of actual charging energy (Echa
sl

) to the energy
required (Ereq

sl
).

Considering there exist repulsion, a charging cost (CostΦev) is proposed to balance each
factor, which is given as follow:

CostΦev = ωγ ∗
Plocal

Pmax
+ ωϵ ∗

Twait
ϕ

Dev
− ωλ ∗ ζ ∗

Echa
ev

Ereq
ev

(6.4)

Here, CostΦev optimizes charging QoE in a joint consideration of three factors:

• Charging Price Factor: (ωγ ∗ Plocal

Pmax
) calculates the price factor. Plocal

Pmax
represents the

ratio of the local energy price at a CS/PL (Plocal) to the maximum energy price in the
network (Pmax). ωγ represents the charging price coefficient. A lower charging price
means that a CS/PL has a more significant advantage in terms of price.

• Charging Waiting Time Factor: (ωϵ ∗
Twait
ϕ

Dev
) calculates the charging waiting time

factor. ωϵ represents charging waiting time coefficient,
Twait
ϕ

Dev
calculates the ratio of

charging waiting time (Twait
ϕ ) to the EVr’s parking duration (Dev). In case CS/PL is

highly congested, this value may be greater than 1.
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• Charging Energy Factor: (ωλ ∗ ζ ∗ Echa
ev

Ereq
ev

) calculates the charging energy factor. ωλ

represents charging energy coefficient. ζ indicates the rate of energy transfer through
the converter (energy is lost during the transfer), which differs between V2V and
plug-in charging modes. ζ is set as 86% under V2V charging mode [113] and 95%
under plug-in charging mode. A higher charging energy factor means that EVs have
a higher probability of receiving a fully charging service.

The calculation of CostΦev is influenced by the predefined coefficients of ωγ , ωϵ and ωλ.
The primary objective for EV charging is to replenish the driving range of EVs, therefore,
ωλ is weighted as the most important. The impact of energy price is weighted higher than
the charging waiting time, provided that the charging service is guaranteed [131]. Based on
the AHP [132], to determine the relative importance of the criteria, it calculates the weights
for each factor based on the judgement matrix construction in Table 6.1.2.

Table 6.2: AHP Judgement Matrix Construction
Criteria ωλ ωγ ωϵ

ωλ 1 2 3
ωγ 1/2 1 2
ωϵ 1/3 1/2 1

Weights ωγ , ωϵ and ωλ are then calculated as 0.2970, 0.1634 and 0.5396 respectively,
thus CostΦev is normalized as:

CostΦev = 0.2970 ∗ Plocal

Pmax
+ 0.1634 ∗

Twait
ϕ

Dev
− 0.5396 ∗ ζ ∗ E

cha
ev

Ereq
ev

(6.5)

6.2 Hybrid Charging Management Framework
Fig.6.1 demonstrates the framework of proposed hybrid charging management. Once the
SOC of an EV-C falls below the preset threshold, it sends a charging request to the GC, the
hybrid management is as follow:

• V2V Charging Mode: It contains V2V-Pair matching process and V2V charging
process. The GC is responsible for V2V-Pair matching by referring EVs’ current
location (Algorithm 1). In the V2V charging process, PL schedules its charging
queue, including the current occupancy queue (V2V-Pairs under charging), the
subsequent queue for V2V-Pairs waiting and reservation queue for V2V-Pairs that
have sent charging reservations. The V2V charging cost at a PL is calculated at
Algorithms 2 and 3.
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Figure 6.1: Hybrid Charging Management Framework

• Plug-in Charging Mode: It contains a CS charging process. CS schedules the
charging order of EV-Cs, which includes the current charging queue of EV-Cs,
the waiting queue and the reservation queue of EV-Cs. Subsequently, the EV-C’s
charging cost at the CS can be calculated (Algorithm 4).

• Global Hybrid Charging Decision: The charging cost at overall CSs/PLs are
aggregated to the GC for global decision making (Algorithm 5). This decision is then
sent to the EV-C. Once the EV-C confirms the charging reservation, the information
in hybrid charging management system is updated.

6.2.1 V2V Charging Mode

Algorithm 6.10 Pair Matching Algorithm
1: for (p = 1; p ≤ Nev

P ; p++) do
2: if (EV-Pp has not been matched) then
3: calculate DIS

ev−p(p)
ev(r)

4: end if
5: end for
6: EV-Pp ← argmin(DIS

ev−p(p)
ev(r)

)
7: return EV-Pp

Flowchart in Fig.6.2(a) demonstrates V2V-Pair matching process in Algorithm 6.10.
When EV-C (EVr) sends charging request to the GC, the GC matches the most suitable
EV-P (with the minimised energy cost on-the-move) as the V2V-Pair of EVr. Flowchart
in Fig.6.2(b) demonstrates that all PLs are traversed in the charging network to obtain the
V2V charging cost at each PL.
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Figure 6.2: Flowcharts of algorithms. (a) Algorithm 6.10. (b) Algorithms 6.11 and 6.12.
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6.2.1.1 V2V-Pair Matching

In the Algorithm 6.10, the GC communicates with EV-Ps to aggregate their locations. The
GC confirms whether an EV-P (EV-Pp) has been matched with other EV-C (line 2). If not,
EV-Pp is considered with service availability, then the distance between EVr and EV-Pp is
calculated at line 3. The EV-Pp with the minimum distance is returned as the most suitable
EV-P, thanks to the minimum energy consumed on-the-move (line 6). At line 7, the GC
matches EV-Pp as the result of V2V-Pair for EVr. This pair matching result is replied to
EVr and EV-Ps to ensure the stability of V2V-Pair matching.

6.2.1.2 V2V Charging Process

Lines from 2 to 13 in Algorithm 6.11 process PL local charging occupation status. If there
is no converter at the PL currently occupied by V2V-Pairs, the current time in the network
(Tcur) will be added to LIST with δ time at line 3. It indicates all converters (with number
of δ) are available from Tcur. Here, LIST represents the available V2V charging time at
each converter.

If there is EV (EVn) in the queue of charging EVs at PL (NC), the charging finish time
of its V2V-Pair (T fin

pair(n)
) will be added into LIST at line 6. This represents the converter

is occupied by a V2V-Pair till T fin
pair(n)

. It should be noted that the calculation of T fin
pair(n)

includes two cases:

• If the EV-C in a V2V-Pair can be fully charged, as the condition ((Tcur + T cha
pair(n)

) ≤
(T arr

pair(n)
+ Dev)), T

fin
pair(n)

is given as the fully charging time of V2V-Pair (T cha
pair(n)

+

Tcur).

• If the EV-C in a V2V-Pair cannot be fully charged, T fin
pair(n)

is calculate as the V2V-
Pair’s departure deadline (T arr

pair(n)
+ Dev). Then the V2V-Pair has to leave the PL at

the upper limit of parking duration.

T arr
pair(n)

=

{
T arr
ev−p(n)

if (T arr
ev(n)

≤ T arr
ev−p(n)

)

T arr
ev(n)

else
(6.6)

Here, the arrival time of a V2V-Pair depends on the pair with later arrival time. Due to
the difference in arrival times of EV-C and EV-P as V2V-Pair, EVs inevitably incur extra
waiting time at PLs, and this would cause those EVs in the queue of NW to wait.

To ensure LIST is with the earliest available charging time, it is sorted in ascending
order at line 13. Lines from 14 to 21 process EV (EVi) in the queue of NW (EVs waiting
to be charged). The for-loop from lines 16 to 20 updates the LIST by scheduling converters
occupation of waiting V2V-Pair of EVi. Line 17 replaces LIST.GET(0) with T fin

pair(i)
to

indicate the first available converter would be occupied by EVi until T fin
pair(i)

. Then LIST
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Algorithm 6.11 V2V Charging of Local V2V-Pairs
1: for each PL in NPL do
2: if no EV is under charging then
3: add Tcur in LIST with δ times
4: end if
5: for (n = 1; n ≤ NC ; n++) do
6: LIST.ADD(T fin

pair(n)
)

7: end for
8: if (NC < δ) then
9: for (m = 1;m ≤ (δ −NC);m++) do

10: LIST.ADD(Tcur)
11: end for
12: end if
13: refine LIST with ascending order
14: sort the queue of NW

15: if contains EVs waiting for charging then
16: for (i = 1; i ≤ NW ; i++) do
17: replace the LIST.GET(0) with T fin

pair(i)

18: refine LIST with ascending order
19: remove EVi from the queue of NW

20: end for
21: end if
22: if no EV’s reservation for charging then
23: Ereq

ev(r)
= Emax

ev(r)
− Ecur

ev(r)
− Etra

ev(r)

24: T cha
pair(r)

=
Ereq

ev(r)

β

25: if ((T cha
pair(r)

+ LIST.GET(0)) < (Dev + T arr
pair(r)

)) then
26: Echa

ev(r)
= Ereq

ev(r)

27: else
28: Echa

ev(r)
= (Dev + T arr

pair(r)
− LIST.GET(0)) ∗ β

29: end if
30: if (T arr

pair(r)
<LIST.GET(0)) then

31: Twait
pair(r)

=LIST.GET(0) −T arr
pair(r)

32: else
33: Twait

pair(r)
= 0

34: end if
35: calculate CostPL

ev(r)

36: return CostPL
ev(r)

37: else
38: return Algorithm 3 with input LIST
39: end if
40: end for
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is sorted in ascending order at line 18 to make sure that LIST.GET(0) remains the first
available charging time among converters. EVi that has been scheduled is removed from
NW at line 19. Subsequently, the remaining EVs in the queue of NW , continue to be
scheduled for V2V charging until all EVs in the queue of NW have been ordered.

Based on whether the PL has V2V charging reservations, Algorithm 6.11 is divided into
two cases:

• Case 1 - No Reservation: If the PL has not been reserved, LIST.GET(0) becomes
the first available V2V charging time, after the scheduling of NC and NW queues.
The charging cost for V2V charging through this PL can be calculated at line 35.

• Case 2 - With Reservation: If the PL has been reserved, then LIST is passed to
Algorithm 6.12 for V2V charging scheduling with the reservation queue NR at line
38.

6.2.1.3 Case 1 - No Reservation

At line 23 in Algorithm 6.11, the V2V charging energy requirement of EVr (Ereq
ev(r)

) is
calculated. Considering whether the EVr can be fully charged, the actual charging energy
(Echa

ev(r)
) is calculated between lines 24 and 28. If EVr can be fully charged, Echa

ev(r)
is equal

to Ereq
ev(r)

at line 26. Conversely, at line 28, Echa
ev(r)

is calculated as the product of its actual
charging time and charging power at the PL ((Dev + T arr

pair(r)
−LIST.GET(0)) ∗ β).

Lines from 30 to 34 calculate the charging waiting time (Twait
pair(r)

). If the V2V-Pair of
EVr arrives earlier than the earliest available charging converter (T arr

pair(r)
<LIST.GET(0)),

Twait
pair(r)

is calculated as (LIST.GET(0) −T arr
pair(r)

). Otherwise, Twait
pair(r)

equals 0, which means
that EVr is able to directly receive V2V charging upon its arrival.

As core parameters (Ereq
ev(r)

, Echa
ev(r)

and Twait
pair(r)

) for calculating the charging cost have
been obtained, Algorithm 6.11 calculates the charging cost at the PL at line 35. The
charging cost calculation is detailed in section 6.1.2. Line 36 returns the charging cost
for EVr to charge at the PL (CostPL

ev(r)
). This charging cost is then aggregated to further

determine the optimal V2V charging PL.

6.2.1.4 Case 2 - With Reservation

If a PL receives V2V charging reservations (at line 37 in Algorithm 6.11), it is necessary
to sort the charging scheduling of other EVs (and their corresponding V2V-Pairs) in the
queue of NR with EVr. Thus, at line 38, LIST is passed to Algorithm 6.12 for further V2V
charging scheduling and charging cost calculation.

In Algorithm 6.12, EVr is added into the queue of NR at line 1. EV (EVj) in the queue
of NR is sorted in ascending order. This is to ensure EVj can receive V2V charging in the
order of their arrival time. The for-loop operation from lines 3 to 16 schedules the V2V
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Algorithm 6.12 V2V Charging of Reservation V2V-Pairs ⟨LIST⟩
1: add EVr into the queue of NR

2: sort the queue of NR

3: for (j = 1; j ≤ NR; j ++) do
4: if EVr equals to EVj then
5: break
6: else
7: if ((T cha

pair(j)
+ LIST.GET(0)) < (Dev + T arr

pair(j)
)) then

8: T fin
pair(j)

= T cha
pair(j)

+LIST.GET(0)
9: else

10: T fin
pair(j)

= Dev + T arr
pair(j)

11: end if
12: replace the LIST.GET(0) with T fin

pair(j)

13: sort LIST in ascending order
14: remove EVj from the queue of NR

15: end if
16: end for
17: calculate CostPL

ev(r)

18: return CostPL
ev(r)

charging of EVj in NR. At line 5, the for-loop would break if EVj in that loop is equal to
EVr. Otherwise, EVj would charge prior to EVr. T

fin
pair(j)

is calculated separately at lines 8
and 10, corresponding to the fully charged and not fully charged cases. Then LIST.GET(0)
is replaced by T fin

pair(j)
, meaning that the earliest available converter is occupied by the V2V-

Pair of EVj till its charging finished. EVj been scheduled is removed from NR at line
14.

When the for-loop is finished, parameters for EVr to charge at that PL (Ereq
ev(r)

, Echa
ev(r)

and Twait
pair(r)

) can be calculated. With above parameters, Algorithm 6.12 calculates CostPL
ev(r)

at line 17 and outputs this value as the charging cost of EVr to have V2V charging at this
PL.

6.2.2 CS Charging Mode
In Algorithm 6.13, a global for-loop traverses all CSs in the charging network, to obtain

the charging cost at each CS under the CS charging mode. Such process is demonstrated in
Fig.6.3(a).

The EVs under charging is characterized in the queue of NC . Here, Tcur will be added
into the LIST with δ times to indicate that all slots are available from Tcur. Lines from 5 to
7 update the LIST by traversing charging service of EVn (EV in the queue of NC). T fin

ev(n)

is added into LIST at line 6 to indicate that a charging slot is providing service to EVn

until T fin
ev(n). Lines between 8 and 12 consider the situation that not all charging slots are
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Figure 6.3: Flowcharts of algorithms. (a) Algorithm 6.13. (b) Algorithm 6.14.
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Algorithm 6.13 CS Charging of Local EV-Cs
1: for each CS in NCS do
2: if no EV is under charging then
3: add Tcur in LIST with δ times
4: end if
5: for (n = 1;n ≤ NC ;n++) do
6: LIST.ADD(T fin

ev(n))

7: end for
8: if (NC < δ) then
9: for (m = 1;m ≤ (δ −NC);m++) do

10: LIST.ADD(Tcur)
11: end for
12: end if
13: refine LIST with ascending order
14: sort the queue of NW

15: if contains EVs waiting for charging then
16: for (i = 1; i ≤ NW ; i++) do
17: replace the LIST.GET(0) with T fin

ev(i)

18: refine LIST with ascending order
19: remove EVi from the queue of NW

20: end for
21: end if
22: if no EV’s reservation for charging then
23: calculate CostCS

ev(r)

24: return CostCS
ev(r)

25: else
26: add EVr into the queue of NR

27: sort the queue of NR

28: for (j = 1; j ≤ NR; j ++) do
29: if EVr equals to EVj then
30: break
31: else
32: replace the LIST.GET(0) with T fin

ev(j)

33: sort LIST in ascending order
34: remove EVj from the queue of NR

35: end if
36: end for
37: calculate CostCS

ev(r)

38: return CostCS
ev(r)

39: end if
40: end for
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occupied, Tcur will be added to the LIST with (δ − NC) times. Followed by lines 13 and
14, Algorithm 6.13 schedules the LIST in ascending order.

Lines from 14 to 21 process EVs parked at the CS waiting for charging. To obtain
the occupation status of converters, EVi in the queue of NW is calculated. For each EVi,
its T fin

ev(i)
would replace LIST.GET(0) to indicate its occupancy status for the charging slot.

Then LIST is sorted in ascending order at line 18, to make sure that LIST.GET(0) remains
the first available charging time among converters. EVi that has been scheduled is removed
from NW at line 19. Those EVs not been removed, continue to be scheduled until they have
been ordered.

If the CS has no charging reservation received, EVr is scheduled with the top charging
order after EVi been charged. The charging cost (CostCS

ev(r)
) of EVr at this CS can be

calculated at line 23. This CostCS
ev(r)

is return for the global hybrid charging decision
making. Lines from 25 to 38 consider the condition that this CS has charging reservation
received. If EVj (the EV in the queue of NR being processed in current loop operation) is
the EVr. This implies that EVr is able to be charged upon its arrival. If not, EVj’s charging
finish time T fin

ev(j)
will take place LIST.GET(0). Then LIST is sorted in ascending order

and EVj that has been scheduled is removed from NR. Once EVr has been determined its
charging order, CostCS

ev(r)
can be calculated. Such CostCS

ev(r)
is returned to Algorithm 6.14 at

line 38 for final charging decision making.

Algorithm 6.14 Global Hybrid Charging Decision Making
1: for ∀lpl ∈ NPL do
2: calculate CostPL

ev(r)
via Algorithm 6.11 and 6.12

3: end for
4: Costoptpl ← argmin(CostPL

ev(r)
)

5: for ∀lcs ∈ NCS do
6: calculate CostCS

ev(r)
via Algorithm 6.13

7: end for
8: Costoptcs ← argmin(CostCS

ev(r)
)

9: if Costoptpl < Costoptcs then
10: return lmin

pl

11: else
12: return lmin

cs

13: end if

6.2.3 Global Hybrid Charging Decision
In order to serve EVs with desire QoE, in Algorithm 6.14, the GC aggregates CostΦev
via Algorithm 6.11, 6.12 and 6.13, and determines the global hybrid charging decision
selection. Here, the process of Algorithm 6.14 is demonstrated in Fig.6.3(b).
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The for-loop from lines 1 to 3 traverses all PLs in the charging network to calculates
their CostPL

ev(r)
. Then the PL with the lowest CostPL

ev(r)
would be selected as optimal V2V

charging selection. This PL-Selection determines the minimum charging cost (Costoptpl )
under V2V charging mode.

All CSs in the charging network are traversed between lines 5 and 8. Their charging
cost (CostCS

ev(r)
) are calculated. The CS with the lowest Costoptcs will be determined as CS-

Selection for global hybrid selection at line 8.
Based on the minimized charging cost, the optimal PL-Selection and CS-Selection are

identified at line 5 and line 8 respectively, which takes into account the charging price, the
charging waiting time and the actual charged energy. Therefore, if the condition (Costoptpl <

Costoptcs ) holds, the optimal PL (lmin
pl ) will be recommended for EVr as its allocated charging

decision; Otherwise, the optimal CS (lmin
cs ) will be recommended for EVr.

6.3 Performance Evaluation

6.3.1 Simulation Configuration
The Opportunistic Network Environment (ONE) [114] is applied to simulate EV charging
network scenario. In Fig.6.4(b), the simulation demonstrates the urban area of Helsinki
city (Fig.6.4(a)) with a 4500×3400 m2 scenario. 24 PLs are geographically deployed in
the urban area and each PL is equipped with 4 DC-DC converters. The DC-DC converter
allows charging for a V2V-Pair with an energy transfer power of 15 kW. Meanwhile, 5 CSs
are deployed in this urban scenario, and each is provided with 4 charging slots using the fast
charging power of 52 kW. The benchmark price in the network is set as plug-in charging
price with C0.25 /kWh [133]. To represent the price variation of V2V charging and the
impact of PL availability on the price, a grading price is introduced in simulation as listed
in Table 6.3.

Table 6.3: V2V Charging price at PL (C/kWh)
Urban Areas Suburban Areas

All Converters Available 0.10 0.12
Half Converters Available 0.15 0.16
All Converters Occupied 0.20 0.20

EVs in the scenario are divided into three types, with the following configuration:
Maximum Electricity Capacity (MEC), Max Travelling Distance (MTD), Average Energy
Consumption (AEC) and SOC threshold. Table 6.4 lists configuration of EVs.
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Figure 6.4: Simulation Scenario

107



Chapter 6. Towards Reservation-based E-Mobility Service via Hybrid of V2V and G2V
Charging Modes 6.3. Performance Evaluation

Table 6.4: EV configuration under hybrid mode
Coda [121] Wheego whip [134] BlueOn[135]

MEC (kWh) 33.8 30.0 16.4
MTD (km) 193 161 140

AEC (kWh/km) 0.1751 0.1863 0.1171
SOC threshold 30% 40% 50%

EV-C battery is with full volume at the beginning. Meanwhile, the number of EV-Ps
is set as the same number of EV-Cs (to ensure stable V2V-Pair matching). EV-Ps are set
to have enough energy to provide multiple V2V charging service, thus they don’t require
intermediate charging.

EVs are with moving speed from 30 to 50 km/h, to reflect situation of roads and traffic.
Here, destinations of EVs are set randomly. If the SOC of an EV-C is below the threshold,
it sends charging request to the GC for charging decision. When the EV receives CS/PL-
Selection and confirms the charging reservation, it travels to the selected CS/PL along the
Helsinki city road topology. The real-time location and energy information of EVs are
updated at a frequency of 0.1s. The simulation lasts for a duration of 12 hours.

6.3.2 Comparison Configuration
A hybrid charging management scheme is proposed in this chapter. The following charging
schemes are evaluated for comparison:

• Reservation-based Hybrid Charging Management (R-Hyb): The proposed scheme
with hybrid charging management that selects the CS/PL with the minimized
charging cost, with reservation.

• Hybrid Charging Management without Reservation (Hyb): The benchmark
scheme with hybrid charging management that selects the CS/PL with the minimized
charging cost, without reservation.

Two other schemes under single plug-in or V2V mode are evaluated.

• Reservation-based V2V Charging (R-V2V) [8]: Literature work applies the V2V
charging mode with reservation. The GC allocates V2V-Pairs to the PL with the
earliest available charging time.

• Reservation-based plug-in Charging (R-CS) [122]: Literature work applies the
plug-in charging mode with reservation. The GC allocates EVs to the CS with the
earliest available charging time.

The following performance metrics are evaluated:
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• Average Charging Price per unit (ACP): It indicates the average charging price of
EV-Cs charged at CS/PL.

• Average Waiting Time (AWT): It indicates the average waiting time for EV-Cs
between they arrive at CS/PL and receive charging service.

• Average Energy Charging (AEC): It indicates the average energy of EV-Cs charged
per charging service.

• Charging Cost: It indicates the average charging cost of each EV during the entire
duration of simulation. Here, lower charging cost refers better QoE.

6.3.3 Influence of Parking Duration
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Figure 6.5: Influence of Parking Duration

In the first group of simulations, the EV density is set to 150 (including 150 EV-Cs and
150 EV-Ps) and observe the influence of parking duration.

R-Hyb scheme achieves a shorter AWT comparing with Hyb scheme in Fig.6.5(a). As
the parking duration increases, there is a significant increase of AWT under both hybrid
modes. Since charging cost is considered, the increase of parking duration means that
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hybrid modes accept a longer waiting time in exchange for sufficient charging energy (ωλ

= 0.5396).
When the parking duration increases in Fig.6.5(b), AEC increase under R-Hyb scheme

is most significant. Hyb scheme suffers with a lower AEC than that of R-Hyb scheme by
14%, due to the lack of a priori information. In Fig.6.5(c), R-V2V scheme achieves the
lowest ACP as it only allows V2V charging (with a lower charging price). The ACP under
R-CS scheme, on the other hand, is fixed at C0.25 /kWh. The ACP of R-Hyb and Hyb
schemes are concentrated around C0.2 /kWh. This is because their optimization jointly
consider both charging modes. In addition, parking duration have low influence on the
ACP, as the coefficients of charging price is low (ωϵ = 0.1634).

The charging cost of EVs is illustrated in Fig.6.5(d). Here, the charging cost of R-
Hyb scheme decreases when the parking duration increases. Meanwhile, R-Hyb scheme
achieves the lowest charging cost. The improvement in charging cost for R-Hyb compared
to Hyb is about 33%. The improvement in charging cost for R-Hyb compared to R-V2V is
about 65%, which is most significant when the parking duration is short (meaning higher
charging congestion). This indicates that R-Hyb scheme ensures EV-Cs receiving services
with high QoE, thanks to the consideration of hybrid charging mode, as well as charging
reservation.

6.3.4 Influence of EV Density
In the second group of simulations, the parking duration is set to 2200s and observe the
influence of EV density.

In Fig.6.6(a), R-CS scheme achieves the shortest AWT above all schemes. However,
it is worth noting that there is a significant increase in AWT of R-CS scheme when the
number of EVs increases. This reflects that, limited by the rigid deployment of CSs, R-CS
scheme can not avoid charging congestion when it faces with large concurrent charging
requests. In comparison, R-Hyb scheme maintains a lower level of AWT when the number
of EVs increases.

As the number of EVs increases, AEC under each of the schemes decreases (Fig.6.6(b)).
Here, R-Hyb achieves the highest AEC due to the introduction of charging cost as
an optimization objective. Meanwhile, R-Hyb scheme considers hybrid charging, thus
allowing for a maximized utilization of charging resources. As R-Hyb avoids allocating
EVs to CSs/PLs with high charging congestion and considers hybrid charging, it helps R-
Hyb scheme to maximized utilize charging resources. This results in that the ACP under
R-Hyb scheme decreases even when the number of EVs increases (Fig.6.6(c)).

In Fig.6.6(d), both R-CS and R-V2V schemes have significant increase in charging
cost when the number of EVs increases, which means that the QoE of EV charging can
not be guaranteed. This is due to a longer charging waiting time caused by charging
congestion. However, R-Hyb scheme still achieves the lowest charging cost, due to the
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Figure 6.6: Influence of EV Density

consideration of hybrid charging and charging reservation. Even if the number of EVs
increases significantly, the increase in charging cost under R-Hyb is about only 3%. This
refers that R-Hyb can guarantee QoE by flexibly utilizing charging resources in the network.

6.3.5 Influence of AHP Coefficients Weight
In Eq.(6.5), the coefficient weight in the judgement matrix is assigned according to AHP.
Due to that the coefficient of charging energy (ωλ = 0.5396) is the highest, AEC among all
metrics varies the most significant. Therefore, in this group of simulation, the weight of
each coefficient are adjusted. Here, the parking duration is set to 2200s and the number of
EVs is set to 150. The results of changing weight for ωγ , ωϵ and ωλ respectively are shown
in Fig.7(a-c). This is to see how each coefficient has an effect on performance metrics under
different levels of weight.

In Fig.6.7(a), ωϵ is set to 0.5396, 0.2970 and 0.1634 respectively. The results reflect that
AWT of R-Hyb increases as ωϵ decreases. When ωϵ is 0.5396, both hybrid schemes achieve
lower AWT than R-V2V scheme, while still higher than R-CS scheme. However, Hyb
scheme suffers a higher AWT comparing with R-Hyb scheme, which reflects the importance
of reservation. In Fig.6.7(b), ωλ is changed. It should be noted that AEC under R-Hyb is
even lower than that under R-V2V scheme, when ωλ is set to 0.1634. This reflects the
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Figure 6.7: Influence of AHP Coefficients Weighting

importance of individual coefficient weight settings. Meanwhile, in Fig.6.7(c), ACP under
R-Hyb is the lowest when the weight of ωγ is the highest.

In Fig.6.7(d), results show charging cost when each coefficient is set with the highest
weight priority. Here, the density of EVs and the parking duration are set same. When ωλ’s
weight is set as the highest (ωλ = 0.5396), the charging cost of all schemes are at the lowest
level. This illustrates the improvement of overall EV charging QoE when charging energy is
given priority. Nevertheless, for the purpose of optimizing EV charging, coefficient weights
could be adjusted by EV charging network operators to suit different charging scenarios.

6.3.6 Distribution of Charging at CSs/PLs
Fig.6.8(a) illustrates the charging distribution at different CSs/PLs under R-Hyb and Hyb
schemes. Here, the simulation is set with 150 EVs and 2200s parking duration.

An even distribution among CSs/PLs could maximise the utilization of charging
resources. As Hyb scheme makes charging decision without reservation, CSs/PLs in
urban centre would be selected frequently. This inevitably causes charging congestion
and reduces the QoE of EV drivers. However, R-Hyb scheme ensures a relatively even
distribution of charging among all CSs/PLs. This reflects that R-Hyb makes better
utilization of charging resources in the network. When the charging network is faced with
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(a) Distribution

Figure 6.8: Distribution of Charging at CSs/PLs

a large number of concurrent EV charging requests, R-Hyb can still guarantee a high QoE.

6.4 Summary
Currently, a single charging mode cannot handle a large number of concurrent EVs
charging requests. Therefore, this chapter proposes a hybrid charging management scheme
to flexibly utilise both plug-in charging and V2V charging modes. To improve the
QoE of EV charging, the proposed hybrid management introduces a charging cost based
on a collaborative optimization of price-time-energy dimensions. When determining
the charging allocation for EVs, the proposed hybrid management selects the CS/PL
with the lowest charging cost. Considering the high mobility of EVs, the hybrid
charging management further introduces charging reservation. This allows a more accurate
assessment of charging availability of each CS/PL, to make optimal utilization of charging
resources in the network. In this chapter, a EV charging network is simulated under Helsinki
urban scenario. The results show that the proposed reservation-based hybrid scheme can
effectively improve the EV charging QoE, with higher charging energy, lower charging
waiting times and charging price.
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Chapter 7

Conclusions

This chapter provides a summary of this thesis’ contributions and discusses how the
proposed algorithms in this thesis contributed to the field of EV charging optimization.
The perspective regarding future works is further discussed.

7.1 Summary of Contributions
In Chapter 2, different modes of EV charging are discussed methodologically. Optimization
under plug-in charging mode focuses on CS deployment problem, charging scheduling
problem, and charging recommendation problem (where-to-charge). In contrast, under
the battery swapping mode, charging optimization focuses on battery scheduling, BSS
deployment, and BSS-Selection. Here, V2V charging mode, as a novel approach, requires
optimization of V2V-Pair matching and PL-Selection problem. Considering the advantages
and disadvantages of the above three modes, hybrid modes would have a greater application
prospect. It avoids uneven allocation of charging infrastructures and charging congestion
under a single mode, achieving higher EV charging flexibility. Meanwhile, the hybrid
mode could improve the efficiency of charging infrastructure utilization. Following this
taxonomy, a better perception of the overall framework of EV charging can be achieved.

In Chapter 4, a spatial-temporal domain co-optimization approach, UFC policy, under
plug-in charging mode is proposed. It takes into account the user charging demand as
well as the remaining available parking duration. Based on the UFC policy, an EV with
high charging urgency obtains a higher chance to be fully charged, which improves the
overall charging efficiency of the charging network. In addition, this work applies to queue
theory to optimize CS-Selection. As EV drivers lack global awareness in making charging
decisions, this optimization method manages to charge globally via the GC. Moreover,
this optimization approach introduces a reservation method. This is to guide EV charging
allocation through prior information, thus alleviating the charging congestion problem.
Based on the ONE introduced in Chapter 3, simulation results show the improvement of
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EV charging by applying the UFC policy. There is a significant reduction in the average
charging waiting time, and average charging trip duration, and a significant increase in the
number of EV fully charged.

In chapter 5, EV charging is optimized by introducing a novel V2V charging mode.
Here, EV-Ps transfer surplus energy to EV-Cs. This reduces the stress on the grid
while maximizing the flexibility of EV charging. Since in the V2V charging mode, EV
charging takes place in the form of V2V-Pair, V2V-Pair matching needs to be optimized.
For the consideration of minimizing energy consumption, the shortest distance V2V-Pair
matching method is proposed. Meanwhile, the mobility of EVs in V2V mode presents
higher requirements on the PL-Selection. Thus, the V2V charging reservation method is
introduced in this work. This approach perceives the PL occupation status in different areas
of the city and improves the PL-Selection allocation. Considering factors such as parking
duration, EV density, and charging power, this V2V charging optimization is evaluated
under simulations (based on the ONE). The results under different scenarios show that the
proposed V2V charging achieves a higher percentage of EV fully charged and a shorter
charging waiting time compared to the traditional plug-in charging mode.

In Chapter 6, a hybrid charging mode is proposed by taking advantage of the algorithms
presented in Chapters 4 and 5. This hybrid mode flexibly exploits the advantages and
overcomes the disadvantages under each single charging mode. For example, plug-in
charging mode is stable but limited by CS deployment, and V2V charging is flexible
but does not guarantee fast charging. The proposed hybrid charging mode integrates the
charging infrastructures in the network. It is emphasized that the charging reservation
approach is introduced in this mode to avoid charging congestion, considering the high
mobility of EVs. Aware of the difficulty of selecting different charging modes in the same
dimension, this hybrid mode introduces AHP to analyze the charging cost under different
CS and PL. The simulations of EV charging network show that this mode is effective in
reducing charging waiting time by up to 30% and minimizing charging cost compared with
single charging modes.

7.2 Future Direction

7.2.1 EV Charging and Autonomous Driving
Autonomous driving technology provides convenience for people in their daily travels.
Considering that EVs would become the main branch of future mobility, there leads to
a huge challenge in combining EV charging with autonomous driving. Specifically, such a
combination suffers from the following problems:

• Precise navigation technology in charging space: In order to accommodate large-
scale cluster autonomous driving, some EVs need to travel to CSs for charging while
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autonomous driving. Therefore, it is necessary to confirm the charging position at the
parking space by means of a precise navigation system.

• Construction of a supporting communication platform: Autonomous driving EVs
require communication between the on-board system and charging system. Au-
tonomous EV notifies CSs via communication for advance docking, to facilitate
charging scheduling.

• Application of wireless charging technology: With wireless charging technology,
EVs can be charged without human involvement. The combination of wireless
charging and autonomous driving enables automated EV charging. Meanwhile,
automated charging would automatically break at the departure deadline.

7.2.2 Integration of Multi-energy in EV Charging
The main difference between EVs and traditional fuel vehicles is the source of energy. Here,
EVs utilize electricity as a clean source of energy to supplement driving range. However,
as electricity generation still relies heavily on thermal power, there is currently controversy
over the level of carbon emissions from EVs. Optimizing EV charging, therefore, requires
consideration of the renewable energy sources:

• PV system: The utilization of PV systems for EV charging is a popular recently.
However, PV system requires high upfront deployment cost. In addition, considering
the practical charging scenario, plenty of EVs request charging services during night
periods (e.g., in residential areas). The staggered timing of energy generation and
charging makes PV charging system more inconvenient.

• Wind power systems: Currently, there is considerable installed wind power capacity
worldwide, but relatively few applications apply wind power as a source of EV
energy. This is because wind power does not provide a steady supply of electricity,
and thus cannot meet a large number of EV charging requests. In addition, wind
power is mostly established in suburban locations, where the wind is stronger at
night than during the day, but the night period is with a low charging request level
in suburban. Therefore, there are challenges in integrating wind power systems with
EV charging.

7.2.3 Information Security
The vehicle-mounted system faces a risk of information security, and it may be attacked by
hackers causing serious threats to society. This is because the number and types of external
interfaces of ICVs have increased rapidly. Thus, ICVs have become highly integrated
information system equipped with large-scale software. Accordingly, utilizing existing
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vulnerabilities of software and system, hackers can attack the vehicle-mounted system
for the purpose of in-vehicle information theft, driving system failure, remote control of
the braking system etc. Therefore, the security of vehicle-mounted system needs to be
concerned.

Apart from the above security problem of in-vehicle, the information security of V2X
(Vehicle to Everything) communication is another focus. If the attacker always sends
fake messages, the driver will be disturbed and ignore various warnings from the cloud
controller, causing unreasonable decision-making behaviors. Besides, privacy protection
is an important field of V2X communication. When a message containing personal
information is sent from the ICV to the outside, it is easy to be tracked. It causes a serious
privacy problem for the driver.

7.2.4 The Binding between the ICV and the Metaverse
The technology usage of the metaverse fits in a lot with ICV. In the future, ICVs will become
an important terminal in people’s daily life. Many people in the industry even believe that
this will become a more important terminal device than mobile phones. The combination
of ICV and metaverse will produce many colorful and brand-new application scenarios.

• The Virtual Reality and Augmented Reality technologies in the metaverse have been
applied to ICVs to become AR-HUD.

• Connecting virtual and reality will make ICVs’ service, brand communication, etc.
easier.

• The display form of car virtual projection will also derive more diverse and
humanized functions. It will promote communication between drivers and ICVs,
pedestrians, and even other vehicles, making driving safe and comfortable.

• Metaverse creates an immersive experience space, trying to replicate a parallel world
in the digital world.
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Appendix A

Introduction

A.1 Running Simulation
ONE comes with a default settings.txt file. It is important to note here that this file is read
(used) for every simulation. Thus, we would, in general, be modifying this file to suit this
research. It is needed to specify names of these files while running the simulation, as shown
below:

Listing A.1: ONE simulation execution
one . b a t −b 1 V2V . t x t

A.2 Scenario Configuration
Next, an example of the configuration file using for V2V charging under EV charging
simulation in Chapter 5 is presented:

Listing A.2: V2V.txt
######################
## S c e n a r i o s e t t i n g s ##
#IEEE Systems J o u r n a l #
######################

S c e n a r i o . name = / V2VJournal /
S c e n a r i o . s i m u l a t e C o n n e c t i o n s = [ t r u e ]
S c e n a r i o . u p d a t e I n t e r v a l = [ 0 . 1 ]
S c e n a r i o . endTime = [ 4 3 2 1 0 ]

##############################
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## T r a n s m i s s i o n C o n f i g u r a t i o n ##
##############################
/****EV Radio Range **** /
b t I n t e r f a c e . t y p e = S i m p l e B r o a d c a s t I n t e r f a c e
b t I n t e r f a c e . t r a n s m i t S p e e d = [500 k ]
b t I n t e r f a c e . t r a n s m i t R a n g e = [ 1 5 ]
S c e n a r i o . n r o f H o s t G r o u p s = [ 2 3 ]

Group . r o u t e r = [ RVEVRouter ]
# SpeedEVRouter ; REVRouter ;

############################
#RSU−EVRouter C o n f i g u r a t i o n #
############################
EVRouter . S t reamingModel = [ f a l s e ]
EVRouter . St reamRecordTime = [ 1 ]

##############################################
##RSU−EVRouter R e s e r v a t i o n / Changing D e c i s i o n ##
###########” f a l s e ” For C e n t r a l i s e d E V ##########
##############################################
EVRouter . RSULabel = [ f a l s e ]

##########################
####CS Update I n t e r v a l ####
##########################
EVRouter . C S U p d a t e I n t e r v a l = [ 3 0 0 ]

#######################################
##### Change D e c i s i o n C o n f i g u r a t i o n #####
#######################################
EVRouter . ChangeDec i s ion = [ f a l s e ]

########################################
## True , For D i r e c t l y Moving Towards CS##
########################################
Group . T r i p P l a n n i n g = [ t r u e ]

#######################################
## Update P e r i o d For Changing D e c i s i o n ##
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######0 Means No Upda t ing P r o c e s s ######
#######################################
Group . T r i p U p d a t i n g = [ 1 0 0 ]

#####################################
###### C o n s i d e r T r i p D e s t i n a t i o n ######
#####################################
Group . C o n t i n u o u s T r i p = [ t r u e ]

####################
## T r a f f i c A c c i d e n t ##
####################
Group . M o t i o n C h a n g e I n t e r v a l = [300 ]
Group . JamDura t ion = [ 1 0 0 ]
Group . JamNumber = [ 3 0 ]
Group . J amDis t ance = [ 3 0 0 ]

Group . n r o f I n t e r f a c e s = [ 1 ]
Group . i n t e r f a c e 1 = [ b t I n t e r f a c e ]

Group . movementModel = [ Shor tes tPathMapBasedMovement ]
Group . speed = [ 8 . 3 3 3 , 1 3 . 9 ]

Group . n r o f H o s t s = [ 1 4 0 ]

Group1 . groupID = [EV−C]
Group2 . groupID = [EV−C]
Group3 . groupID = [EV−C]
Group4 . groupID = [EV−P ]
Group4 . n r o f H o s t s = [ 2 1 0 ]
Group5 . groupID = [EV−P ]
Group5 . n r o f H o s t s = [ 2 1 0 ]

#########################
#### Deployment o f CS ####
#########################
Group6 . movementModel = [ PLPlacementMovement ]
Group6 . groupID = [ PL ]
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Group6 . speed = [ 0 , 0 ]
Group6 . n r o f H o s t s = [ 1 ]
Group6 . n o d e L o c a t i o n = [ 2 6 3 7 , 9 4 0 ]

Group7 . movementModel = [ PLPlacementMovement ]
Group7 . groupID = [ PL ]
Group7 . speed = [ 0 , 0 ]
Group7 . n r o f H o s t s = [ 1 ]
Group7 . n o d e L o c a t i o n = [ 1 5 5 2 , 1 3 0 1 ]

Group8 . movementModel = [ PLPlacementMovement ]
Group8 . groupID = [ PL ]
Group8 . speed = [ 0 , 0 ]
Group8 . n r o f H o s t s = [ 1 ]
Group8 . n o d e L o c a t i o n = [ 3 5 9 2 , 1 1 5 1 ]

Group9 . movementModel = [ PLPlacementMovement ]
Group9 . groupID = [ PL ]
Group9 . speed = [ 0 , 0 ]
Group9 . n r o f H o s t s = [ 1 ]
Group9 . n o d e L o c a t i o n = [ 1 0 9 2 , 2 0 0 1 ]

Group10 . movementModel = [ PLPlacementMovement ]
Group10 . groupID = [ PL ]
Group10 . speed = [ 0 , 0 ]
Group10 . n r o f H o s t s = [ 1 ]
Group10 . n o d e L o c a t i o n = [ 2 4 9 2 , 1 8 0 1 ]

Group11 . movementModel = [ PLPlacementMovement ]
Group11 . groupID = [ PL ]
Group11 . speed = [ 0 , 0 ]
Group11 . n r o f H o s t s = [ 1 ]
Group11 . n o d e L o c a t i o n = [ 1 1 5 2 , 3 0 7 ]

Group12 . movementModel = [ PLPlacementMovement ]
Group12 . groupID = [ PL ]
Group12 . speed = [ 0 , 0 ]
Group12 . n r o f H o s t s = [ 1 ]
Group12 . n o d e L o c a t i o n = [ 9 9 1 , 2 4 0 1 ]
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Group13 . movementModel = [ PLPlacementMovement ]
Group13 . groupID = [ PL ]
Group13 . speed = [ 0 , 0 ]
Group13 . n r o f H o s t s = [ 1 ]
Group13 . n o d e L o c a t i o n = [ 3 1 7 1 , 1 7 0 1 ]

Group14 . movementModel = [ PLPlacementMovement ]
Group14 . groupID = [ PL ]
Group14 . speed = [ 0 , 0 ]
Group14 . n r o f H o s t s = [ 1 ]
Group14 . n o d e L o c a t i o n = [ 8 7 6 , 1 8 0 1 ]

Group15 . movementModel = [ PLPlacementMovement ]
Group15 . groupID = [ PL ]
Group15 . speed = [ 0 , 0 ]
Group15 . n r o f H o s t s = [ 1 ]
Group15 . n o d e L o c a t i o n = [ 2 8 7 1 , 7 0 1 ]

Group16 . movementModel = [ PLPlacementMovement ]
Group16 . groupID = [ PL ]
Group16 . speed = [ 0 , 0 ]
Group16 . n r o f H o s t s = [ 1 ]
Group16 . n o d e L o c a t i o n = [ 2 0 1 , 2 6 8 2 ]

Group17 . movementModel = [ PLPlacementMovement ]
Group17 . groupID = [ PL ]
Group17 . speed = [ 0 , 0 ]
Group17 . n r o f H o s t s = [ 1 ]
Group17 . n o d e L o c a t i o n = [ 1 5 6 0 , 1 6 0 4 ]

Group18 . movementModel = [ PLPlacementMovement ]
Group18 . groupID = [ PL ]
Group18 . speed = [ 0 , 0 ]
Group18 . n r o f H o s t s = [ 1 ]
Group18 . n o d e L o c a t i o n = [ 2 8 8 4 , 8 0 1 ]

Group19 . movementModel = [ PLPlacementMovement ]
Group19 . groupID = [ PL ]
Group19 . speed = [ 0 , 0 ]
Group19 . n r o f H o s t s = [ 1 ]
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Group19 . n o d e L o c a t i o n = [ 5 7 1 , 6 8 8 ]

Group20 . movementModel = [ PLPlacementMovement ]
Group20 . groupID = [ PL ]
Group20 . speed = [ 0 , 0 ]
Group20 . n r o f H o s t s = [ 1 ]
Group20 . n o d e L o c a t i o n = [ 1 6 0 1 , 2 7 5 6 ]

Group21 . movementModel = [ PLPlacementMovement ]
Group21 . groupID = [ PL ]
Group21 . speed = [ 0 , 0 ]
Group21 . n r o f H o s t s = [ 1 ]
Group21 . n o d e L o c a t i o n = [ 1 8 6 0 , 8 6 0 ]

Group22 . movementModel = [ PLPlacementMovement ]
Group22 . groupID = [ PL ]
Group22 . speed = [ 0 , 0 ]
Group22 . n r o f H o s t s = [ 1 ]
Group22 . n o d e L o c a t i o n = [ 7 0 1 , 2 4 5 6 ]

Group23 . movementModel = [ PLPlacementMovement ]
Group23 . groupID = [ PL ]
Group23 . speed = [ 0 , 0 ]
Group23 . n r o f H o s t s = [ 1 ]
Group23 . n o d e L o c a t i o n = [ 3 0 2 , 2 3 2 6 ]

Group24 . movementModel = [ PLPlacementMovement ]
Group24 . groupID = [ PL ]
Group24 . speed = [ 0 , 0 ]
Group24 . n r o f H o s t s = [ 1 ]
Group24 . n o d e L o c a t i o n = [ 8 8 8 , 1 8 8 8 ]

Group25 . movementModel = [ PLPlacementMovement ]
Group25 . groupID = [ PL ]
Group25 . speed = [ 0 , 0 ]
Group25 . n r o f H o s t s = [ 1 ]
Group25 . n o d e L o c a t i o n = [ 1 6 6 6 , 6 6 6 ]

Group26 . movementModel = [ PLPlacementMovement ]
Group26 . groupID = [ PL ]
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Group26 . speed = [ 0 , 0 ]
Group26 . n r o f H o s t s = [ 1 ]
Group26 . n o d e L o c a t i o n = [ 9 9 9 , 9 9 9 ]

Group27 . movementModel = [ PLPlacementMovement ]
Group27 . groupID = [ PL ]
Group27 . speed = [ 0 , 0 ]
Group27 . n r o f H o s t s = [ 1 ]
Group27 . n o d e L o c a t i o n = [ 2 9 9 1 , 1 9 0 1 ]

Group28 . movementModel = [ PLPlacementMovement ]
Group28 . groupID = [ PL ]
Group28 . speed = [ 0 , 0 ]
Group28 . n r o f H o s t s = [ 1 ]
Group28 . n o d e L o c a t i o n = [ 3 2 0 4 , 2 3 0 1 ]

Group29 . movementModel = [ PLPlacementMovement ]
Group29 . groupID = [ PL ]
Group29 . speed = [ 0 , 0 ]
Group29 . n r o f H o s t s = [ 1 ]
Group29 . n o d e L o c a t i o n = [ 2 8 3 7 , 1 2 4 0 ]

Group30 . movementModel = [ PLPlacementMovement ]
Group30 . groupID = [ PL ]
Group30 . speed = [ 0 , 0 ]
Group30 . n r o f H o s t s = [ 1 ]
Group30 . n o d e L o c a t i o n = [ 1 8 3 7 , 1 7 5 8 ]

Group31 . movementModel = [ PLPlacementMovement ]
Group31 . groupID = [ PL ]
Group31 . speed = [ 0 , 0 ]
Group31 . n r o f H o s t s = [ 1 ]
Group31 . n o d e L o c a t i o n = [ 3 2 3 3 , 3 3 3 0 ]

Group32 . movementModel = [ PLPlacementMovement ]
Group32 . groupID = [ PL ]
Group32 . speed = [ 0 , 0 ]
Group32 . n r o f H o s t s = [ 1 ]
Group32 . n o d e L o c a t i o n = [ 1 4 0 5 , 2 9 2 0 ]
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Group33 . movementModel = [ PLPlacementMovement ]
Group33 . groupID = [ PL ]
Group33 . speed = [ 0 , 0 ]
Group33 . n r o f H o s t s = [ 1 ]
Group33 . n o d e L o c a t i o n = [ 7 0 8 , 2 8 7 0 ]

Group34 . movementModel = [ PLPlacementMovement ]
Group34 . groupID = [ PL ]
Group34 . speed = [ 0 , 0 ]
Group34 . n r o f H o s t s = [ 1 ]
Group34 . n o d e L o c a t i o n = [ 1 7 0 8 , 1 9 2 0 ]

Group35 . movementModel = [ PLPlacementMovement ]
Group35 . groupID = [ PL ]
Group35 . speed = [ 0 , 0 ]
Group35 . n r o f H o s t s = [ 1 ]
Group35 . n o d e L o c a t i o n = [ 3 4 0 8 , 1 9 2 0 ]

Group36 . movementModel = [ PLPlacementMovement ]
Group36 . groupID = [ PL ]
Group36 . speed = [ 0 , 0 ]
Group36 . n r o f H o s t s = [ 1 ]
Group36 . n o d e L o c a t i o n = [ 3 2 0 8 , 5 2 0 ]

Group37 . movementModel = [ PLPlacementMovement ]
Group37 . groupID = [ PL ]
Group37 . speed = [ 0 , 0 ]
Group37 . n r o f H o s t s = [ 1 ]
Group37 . n o d e L o c a t i o n = [ 2 0 8 , 3 5 2 0 ]

Group38 . movementModel = [ PLPlacementMovement ]
Group38 . groupID = [ PL ]
Group38 . speed = [ 0 , 0 ]
Group38 . n r o f H o s t s = [ 1 ]
Group38 . n o d e L o c a t i o n = [ 2 4 0 8 , 3 3 2 0 ]

Group39 . movementModel = [ PLPlacementMovement ]
Group39 . groupID = [ PL ]
Group39 . speed = [ 0 , 0 ]
Group39 . n r o f H o s t s = [ 1 ]
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Group39 . n o d e L o c a t i o n = [ 1 0 9 , 1 3 7 6 ]

Group40 . movementModel = [ PLPlacementMovement ]
Group40 . groupID = [ PL ]
Group40 . speed = [ 0 , 0 ]
Group40 . n r o f H o s t s = [ 1 ]
Group40 . n o d e L o c a t i o n = [ 1 1 0 9 , 1 8 7 6 ]

Group41 . movementModel = [ PLPlacementMovement ]
Group41 . groupID = [ PL ]
Group41 . speed = [ 0 , 0 ]
Group41 . n r o f H o s t s = [ 1 ]
Group41 . n o d e L o c a t i o n = [ 1 9 9 9 , 1 9 9 9 ]

##############################
##### R epo r t C o n f i g u r a t i o n #####
##############################
Re po r t . n r o f R e p o r t s = [ 3 ]
Re po r t . warmup = [ 0 ]
Re po r t . r e p o r t D i r = r e p o r t s /

Re po r t . r e p o r t 1 = [ EVEnergyReport ]
Re po r t . r e p o r t 2 = [ EVEncounte rRepor t ]
Re po r t . r e p o r t 3 = [ E V I n f o r m a t i o n R e p o r t ]

EVEncounte rRepor t . g r a n u l a r i t y = [ 4 3 2 1 0 ]
EVEnergyReport . g r a n u l a r i t y = [ 4 3 2 1 0 ]
E V I n f o r m a t i o n R e p o r t . g r a n u l a r i t y = [ 4 3 2 1 0 ]

##############################
#### M o b i l i t y C o n f i g u r a t i o n ####
##############################
MovementModel . rngSeed = [ 1 ]
MovementModel . w o r l d S i z e = [ 4 5 0 0 , 3 4 0 0 ]
MovementModel . warmup = [ 0 ]

MapBasedMovement . n r o f M a p F i l e s = [ 4 ]
MapBasedMovement . mapFi le1 = d a t a / r o a d s . wkt
MapBasedMovement . mapFi le2 = d a t a / main\ r o a d s . wkt
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MapBasedMovement . mapFi le3 = d a t a / p e d e s t r i a n \ p a t h s . wkt
MapBasedMovement . mapFi le4 = d a t a / shops . wkt

###########################
#### Energy C o n f i g u r a t i o n ###
###########################
Group . c h a r g e I n t e r v a l = [ 0 . 1 ]
Group . SOC = [ 0 . 6 ]

###########################
###########################
Group . d e p a r t u r e D e a d l i n e = [ 9 0 0 0 ]

################################
# C o n f i g u r a t i o n o f Charg ing S l o t #
################################
Group . c h a r g e S l o t = [ 8 ]

##############################
##### Energy C o n f i g u r a t i o n #####
##############################
/* − − − −108000KJ=30KWh−−−−*/
Group1 . i n t i a l E n e r g y = [ 1 0 8 0 0 0 ]

/* − − − −108000KJ /161000 Mete r s =0.67801 KJ / Meters −−−−*/
Group1 . movingEnergy = [ 0 . 6 7 0 8 1 ]
Group1 . SOC= [ 0 . 4 ]

Group2 . i n t i a l E n e r g y = [ 1 2 1 6 8 0 ]
Group2 . movingEnergy = [ 0 . 6 3 0 4 6 ]
Group2 . SOC= [ 0 . 3 ]

/* − − − −3600000KJ=1000KWh−−−−*/
Group3 . i n t i a l E n e r g y = [ 5 9 0 4 0 ]
Group3 . movingEnergy = [ 0 . 4 2 1 7 1 ]
Group3 . SOC = [ 0 . 5 ]

/* − − − −3600000KJ=1000KWh−−−−*/
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/*−−−− Let Group 4−5 be c h a r g i n g p r o v i d e r −−−−*/
Group4 . i n t i a l E n e r g y = [108000000]
Group4 . movingEnergy = [ 0 . 6 7 0 8 1 ]
Group4 . SOC = [ 0 . 0 1 ]

Group5 . i n t i a l E n e r g y = [108000000]
Group5 . movingEnergy = [ 0 . 6 7 0 8 1 ]
Group5 . SOC = [ 0 . 0 1 ]

Group6 . i n t i a l E n e r g y = [108000000]
Group6 . c h a r g e E n e r g y = [ 1 5 ]

Group7 . i n t i a l E n e r g y = [108000000]
Group7 . c h a r g e E n e r g y = [ 1 5 ]

Group8 . i n t i a l E n e r g y = [108000000]
Group8 . c h a r g e E n e r g y = [ 1 5 ]

Group9 . i n t i a l E n e r g y = [108000000]
Group9 . c h a r g e E n e r g y = [ 1 5 ]

Group10 . i n t i a l E n e r g y = [108000000]
Group10 . c h a r g e E n e r g y = [ 1 5 ]

Group11 . i n t i a l E n e r g y = [108000000]
Group11 . c h a r g e E n e r g y = [ 1 5 ]

Group12 . i n t i a l E n e r g y = [108000000]
Group12 . c h a r g e E n e r g y = [ 1 5 ]

Group13 . i n t i a l E n e r g y = [108000000]
Group13 . c h a r g e E n e r g y = [ 1 5 ]

Group14 . i n t i a l E n e r g y = [108000000]
Group14 . c h a r g e E n e r g y = [ 1 5 ]

Group15 . i n t i a l E n e r g y = [108000000]
Group15 . c h a r g e E n e r g y = [ 1 5 ]
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Group16 . i n t i a l E n e r g y = [108000000]
Group16 . c h a r g e E n e r g y = [ 1 5 ]

Group17 . i n t i a l E n e r g y = [108000000]
Group17 . c h a r g e E n e r g y = [ 1 5 ]

Group18 . i n t i a l E n e r g y = [108000000]
Group18 . c h a r g e E n e r g y = [ 1 5 ]

Group19 . i n t i a l E n e r g y = [108000000]
Group19 . c h a r g e E n e r g y = [ 1 5 ]

Group20 . i n t i a l E n e r g y = [108000000]
Group20 . c h a r g e E n e r g y = [ 1 5 ]

Group21 . i n t i a l E n e r g y = [108000000]
Group21 . c h a r g e E n e r g y = [ 1 5 ]

Group22 . i n t i a l E n e r g y = [108000000]
Group22 . c h a r g e E n e r g y = [ 1 5 ]

Group23 . i n t i a l E n e r g y = [108000000]
Group23 . c h a r g e E n e r g y = [ 1 5 ]

Group24 . i n t i a l E n e r g y = [108000000]
Group24 . c h a r g e E n e r g y = [ 1 5 ]

Group25 . i n t i a l E n e r g y = [108000000]
Group25 . c h a r g e E n e r g y = [ 1 5 ]

Group26 . i n t i a l E n e r g y = [108000000]
Group26 . c h a r g e E n e r g y = [ 1 5 ]

Group27 . i n t i a l E n e r g y = [108000000]
Group27 . c h a r g e E n e r g y = [ 1 5 ]

Group28 . i n t i a l E n e r g y = [108000000]
Group28 . c h a r g e E n e r g y = [ 1 5 ]

Group29 . i n t i a l E n e r g y = [108000000]
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Group29 . c h a r g e E n e r g y = [ 1 5 ]

Group30 . i n t i a l E n e r g y = [108000000]
Group30 . c h a r g e E n e r g y = [ 1 5 ]

Group31 . i n t i a l E n e r g y = [108000000]
Group31 . c h a r g e E n e r g y = [ 1 5 ]

Group32 . i n t i a l E n e r g y = [108000000]
Group32 . c h a r g e E n e r g y = [ 1 5 ]

Group33 . i n t i a l E n e r g y = [108000000]
Group33 . c h a r g e E n e r g y = [ 1 5 ]

Group34 . i n t i a l E n e r g y = [108000000]
Group34 . c h a r g e E n e r g y = [ 1 5 ]

Group35 . i n t i a l E n e r g y = [108000000]
Group35 . c h a r g e E n e r g y = [ 1 5 ]

Group36 . i n t i a l E n e r g y = [108000000]
Group36 . c h a r g e E n e r g y = [ 1 5 ]

Group37 . i n t i a l E n e r g y = [208000000]
Group37 . c h a r g e E n e r g y = [ 1 5 ]

Group38 . i n t i a l E n e r g y = [108000000]
Group38 . c h a r g e E n e r g y = [ 1 5 ]

Group39 . i n t i a l E n e r g y = [108000000]
Group39 . c h a r g e E n e r g y = [ 1 5 ]

Group40 . i n t i a l E n e r g y = [108000000]
Group40 . c h a r g e E n e r g y = [ 1 5 ]

Group41 . i n t i a l E n e r g y = [108000000]
Group41 . c h a r g e E n e r g y = [ 1 5 ]

#####################################
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S e l e c t i o n PL : 1 = MinWaitingTime
7 = D i s t a n c e ;

#####################################
S c h e d u l e EV: 0 = S h o r t e s t Charg ing Time ;

1 = Longes t Charg ing Time ;
2 = E a r l i e s t D e p a r t u r e
o t h e r = FIFO ;

#####################################
EVRouter . S e l e c t M o d e l = [ 1 ]
EVRouter . ScheduleModel = [ 3 ]

A.3 Output of Result Report
An example of the output report for V2V charging optimization in Chapter 5 is presented.
Here, EV-C is set to 180, and parking duration is set to 7200s. The result displays charging
services encountered at each PL, together with AWT, NOFC and NONFC.

Listing A.3: 360C-EV-Reservation-EVEncounterReport.txt
[ 4 3 2 1 0 ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−
PL720 Number o f E n c o u n t e r e d by EVs : 94 .0000
PL720 Number o f Times f o r Update : 0 .0000
PL721 Number o f E n c o u n t e r e d by EVs : 80 .0000
PL721 Number o f Times f o r Update : 0 .0000
PL722 Number o f E n c o u n t e r e d by EVs : 74 .0000
PL722 Number o f Times f o r Update : 0 .0000
PL723 Number o f E n c o u n t e r e d by EVs : 88 .0000
PL723 Number o f Times f o r Update : 0 .0000
PL724 Number o f E n c o u n t e r e d by EVs : 106 .0000
PL724 Number o f Times f o r Update : 0 .0000
PL725 Number o f E n c o u n t e r e d by EVs : 86 .0000
PL725 Number o f Times f o r Update : 0 .0000
PL726 Number o f E n c o u n t e r e d by EVs : 84 .0000
PL726 Number o f Times f o r Update : 0 .0000
PL727 Number o f E n c o u n t e r e d by EVs : 104 .0000
PL727 Number o f Times f o r Update : 0 .0000
PL728 Number o f E n c o u n t e r e d by EVs : 80 .0000
PL728 Number o f Times f o r Update : 0 .0000
PL729 Number o f E n c o u n t e r e d by EVs : 90 .0000
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PL729 Number o f Times f o r Update : 0 .0000
PL730 Number o f E n c o u n t e r e d by EVs : 66 .0000
PL730 Number o f Times f o r Update : 0 .0000
PL731 Number o f E n c o u n t e r e d by EVs : 96 .0000
PL731 Number o f Times f o r Update : 0 .0000
PL732 Number o f E n c o u n t e r e d by EVs : 86 .0000
PL732 Number o f Times f o r Update : 0 .0000
PL733 Number o f E n c o u n t e r e d by EVs : 80 .0000
PL733 Number o f Times f o r Update : 0 .0000
PL734 Number o f E n c o u n t e r e d by EVs : 82 .0000
PL734 Number o f Times f o r Update : 0 .0000
PL735 Number o f E n c o u n t e r e d by EVs : 80 .0000
PL735 Number o f Times f o r Update : 0 .0000
PL736 Number o f E n c o u n t e r e d by EVs : 84 .0000
PL736 Number o f Times f o r Update : 0 .0000
PL737 Number o f E n c o u n t e r e d by EVs : 70 .0000
PL737 Number o f Times f o r Update : 0 .0000
PL738 Number o f E n c o u n t e r e d by EVs : 86 .0000
PL738 Number o f Times f o r Update : 0 .0000
PL739 Number o f E n c o u n t e r e d by EVs : 84 .0000
PL739 Number o f Times f o r Update : 0 .0000
PL740 Number o f E n c o u n t e r e d by EVs : 88 .0000
PL740 Number o f Times f o r Update : 0 .0000
PL741 Number o f E n c o u n t e r e d by EVs : 90 .0000
PL741 Number o f Times f o r Update : 0 .0000
PL742 Number o f E n c o u n t e r e d by EVs : 94 .0000
PL742 Number o f Times f o r Update : 0 .0000
PL743 Number o f E n c o u n t e r e d by EVs : 88 .0000
PL743 Number o f Times f o r Update : 0 .0000
PL744 Number o f E n c o u n t e r e d by EVs : 80 .0000
PL744 Number o f Times f o r Update : 0 .0000
PL745 Number o f E n c o u n t e r e d by EVs : 81 .0000
PL745 Number o f Times f o r Update : 0 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−−
PL720 Number o f Queued EVs : 10 .0000
PL721 Number o f Queued EVs : 8 .0000
PL722 Number o f Queued EVs : 6 .0000
PL723 Number o f Queued EVs : 8 .0000
PL724 Number o f Queued EVs : 6 .0000
PL725 Number o f Queued EVs : 4 .0000

132



Appendix A. Introduction A.3. Output of Result Report

PL726 Number o f Queued EVs : 8 .0000
PL727 Number o f Queued EVs : 8 .0000
PL728 Number o f Queued EVs : 6 .0000
PL729 Number o f Queued EVs : 8 .0000
PL730 Number o f Queued EVs : 8 .0000
PL731 Number o f Queued EVs : 8 .0000
PL732 Number o f Queued EVs : 8 .0000
PL733 Number o f Queued EVs : 8 .0000
PL734 Number o f Queued EVs : 4 .0000
PL735 Number o f Queued EVs : 6 .0000
PL736 Number o f Queued EVs : 8 .0000
PL737 Number o f Queued EVs : 8 .0000
PL738 Number o f Queued EVs : 10 .0000
PL739 Number o f Queued EVs : 6 .0000
PL740 Number o f Queued EVs : 6 .0000
PL741 Number o f Queued EVs : 6 .0000
PL742 Number o f Queued EVs : 8 .0000
PL743 Number o f Queued EVs : 4 .0000
PL744 Number o f Queued EVs : 10 .0000
PL745 Number o f Queued EVs : 7 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−−
PL720 Average Wai t ing Time : 4235 .6500
PL720 T o t a l Wai t i ng Time : 160954.7000
PL720 Number o f Charged EVs i n H i s t o r y : 38 .0000
PL720 Maximum Wai t ing Time of EV: 6672 .0000
PL720 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL721 Average Wai t ing Time : 4947 .0000
PL721 T o t a l Wai t i ng Time : 173145.0000
PL721 Number o f Charged EVs i n H i s t o r y : 35 .0000
PL721 Maximum Wai t ing Time of EV: 6901 .0000
PL721 Number o f Missed Charged EVs : 1 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL722 Average Wai t ing Time : 4679 .8630
PL722 T o t a l Wai t i ng Time : 126356.3000
PL722 Number o f Charged EVs i n H i s t o r y : 27 .0000
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PL722 Maximum Wai t ing Time of EV: 6980 .8000
PL722 Number o f Missed Charged EVs : 7 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL723 Average Wai t ing Time : 4090 .1031
PL723 T o t a l Wai t i ng Time : 130883.3000
PL723 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL723 Maximum Wai t ing Time of EV: 6857 .4000
PL723 Number o f Missed Charged EVs : 8 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL724 Average Wai t ing Time : 4185 .8833
PL724 T o t a l Wai t i ng Time : 175807.1000
PL724 Number o f Charged EVs i n H i s t o r y : 42 .0000
PL724 Maximum Wai t ing Time of EV: 6398 .1000
PL724 Number o f Missed Charged EVs : 8 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL725 Average Wai t ing Time : 4391 .6405
PL725 T o t a l Wai t i ng Time : 162490.7000
PL725 Number o f Charged EVs i n H i s t o r y : 37 .0000
PL725 Maximum Wai t ing Time of EV: 6477 .8000
PL725 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL726 Average Wai t ing Time : 4454 .4882
PL726 T o t a l Wai t i ng Time : 151452.6000
PL726 Number o f Charged EVs i n H i s t o r y : 34 .0000
PL726 Maximum Wai t ing Time of EV: 6978 .1000
PL726 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL727 Average Wai t ing Time : 3823 .8556
PL727 T o t a l Wai t i ng Time : 137658.8000
PL727 Number o f Charged EVs i n H i s t o r y : 36 .0000
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PL727 Maximum Wai t ing Time of EV: 7080 .9000
PL727 Number o f Missed Charged EVs : 12 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL728 Average Wai t ing Time : 4420 .8586
PL728 T o t a l Wai t i ng Time : 128204.9000
PL728 Number o f Charged EVs i n H i s t o r y : 29 .0000
PL728 Maximum Wai t ing Time of EV: 6479 .9000
PL728 Number o f Missed Charged EVs : 8 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL729 Average Wai t ing Time : 5126 .0143
PL729 T o t a l Wai t i ng Time : 179410.5000
PL729 Number o f Charged EVs i n H i s t o r y : 35 .0000
PL729 Maximum Wai t ing Time of EV: 6865 .2000
PL729 Number o f Missed Charged EVs : 6 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL730 Average Wai t ing Time : 4427 .2458
PL730 T o t a l Wai t i ng Time : 106253.9000
PL730 Number o f Charged EVs i n H i s t o r y : 24 .0000
PL730 Maximum Wai t ing Time of EV: 6720 .0000
PL730 Number o f Missed Charged EVs : 5 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL731 Average Wai t ing Time : 4309 .2105
PL731 T o t a l Wai t i ng Time : 163750.0000
PL731 Number o f Charged EVs i n H i s t o r y : 38 .0000
PL731 Maximum Wai t ing Time of EV: 6777 .3000
PL731 Number o f Missed Charged EVs : 6 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL732 Average Wai t ing Time : 4811 .2031
PL732 T o t a l Wai t i ng Time : 153958.5000
PL732 Number o f Charged EVs i n H i s t o r y : 32 .0000
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PL732 Maximum Wai t ing Time of EV: 6448 .4000
PL732 Number o f Missed Charged EVs : 7 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL733 Average Wai t ing Time : 4520 .1437
PL733 T o t a l Wai t i ng Time : 144644.6000
PL733 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL733 Maximum Wai t ing Time of EV: 7027 .8000
PL733 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL734 Average Wai t ing Time : 4582 .6421
PL734 T o t a l Wai t i ng Time : 174140.4000
PL734 Number o f Charged EVs i n H i s t o r y : 38 .0000
PL734 Maximum Wai t ing Time of EV: 7055 .4000
PL734 Number o f Missed Charged EVs : 1 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL735 Average Wai t ing Time : 4922 .6061
PL735 T o t a l Wai t i ng Time : 162446.0000
PL735 Number o f Charged EVs i n H i s t o r y : 33 .0000
PL735 Maximum Wai t ing Time of EV: 6937 .5000
PL735 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL736 Average Wai t ing Time : 4411 .5125
PL736 T o t a l Wai t i ng Time : 141168.4000
PL736 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL736 Maximum Wai t ing Time of EV: 6708 .9000
PL736 Number o f Missed Charged EVs : 6 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL737 Average Wai t ing Time : 4543 .7043
PL737 T o t a l Wai t i ng Time : 104505.2000
PL737 Number o f Charged EVs i n H i s t o r y : 23 .0000
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PL737 Maximum Wai t ing Time of EV: 7083 .8000
PL737 Number o f Missed Charged EVs : 8 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL738 Average Wai t ing Time : 4355 .5969
PL738 T o t a l Wai t i ng Time : 139379.1000
PL738 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL738 Maximum Wai t ing Time of EV: 6393 .7000
PL738 Number o f Missed Charged EVs : 6 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL739 Average Wai t ing Time : 4482 .1937
PL739 T o t a l Wai t i ng Time : 143430.2000
PL739 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL739 Maximum Wai t ing Time of EV: 7057 .5000
PL739 Number o f Missed Charged EVs : 7 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL740 Average Wai t ing Time : 4592 .0371
PL740 T o t a l Wai t i ng Time : 160721.3000
PL740 Number o f Charged EVs i n H i s t o r y : 35 .0000
PL740 Maximum Wai t ing Time of EV: 6780 .3000
PL740 Number o f Missed Charged EVs : 6 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL741 Average Wai t ing Time : 4568 .4314
PL741 T o t a l Wai t i ng Time : 159895.1000
PL741 Number o f Charged EVs i n H i s t o r y : 35 .0000
PL741 Maximum Wai t ing Time of EV: 6656 .0000
PL741 Number o f Missed Charged EVs : 7 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL742 Average Wai t ing Time : 4384 .0051
PL742 T o t a l Wai t i ng Time : 170976.2000
PL742 Number o f Charged EVs i n H i s t o r y : 39 .0000
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PL742 Maximum Wai t ing Time of EV: 6389 .8000
PL742 Number o f Missed Charged EVs : 4 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL743 Average Wai t ing Time : 4400 .7622
PL743 T o t a l Wai t i ng Time : 162828.2000
PL743 Number o f Charged EVs i n H i s t o r y : 37 .0000
PL743 Maximum Wai t ing Time of EV: 6853 .8000
PL743 Number o f Missed Charged EVs : 5 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL744 Average Wai t ing Time : 4852 .6937
PL744 T o t a l Wai t i ng Time : 155286.2000
PL744 Number o f Charged EVs i n H i s t o r y : 32 .0000
PL744 Maximum Wai t ing Time of EV: 7033 .5000
PL744 Number o f Missed Charged EVs : 3 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
PL745 Average Wai t ing Time : 4194 .8853
PL745 T o t a l Wai t i ng Time : 142626.1000
PL745 Number o f Charged EVs i n H i s t o r y : 34 .0000
PL745 Maximum Wai t ing Time of EV: 6435 .2000
PL745 Number o f Missed Charged EVs : 3 .0000
−−−−−−−−−−−−−−−−−−−−−−−−−−

@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@
***************************

A l l PL T o t a l Average Wai t ing Time : 4481 .5273
A l l PL T o t a l Wai t i ng Time : 3912373.3000
A l l PL Number o f Charged EVs i n H i s t o r y : 873 .0000
A l l PL Maximum Wai t ing Time : 7083 .8000
A l l PL T o t a l Missed Charged EVs : 144 .0000

−−−−−−−−−−−−−−−−−−−−−−−−−−−
T o t a l T r i p D u r a t i o n 10429802.7999
Average T r i p D u r a t i o n 5251 .6630

***************************
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