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In ballistic SNS Josephson junctions, such as those made from graphene or high mobility

semiconductors, the current-phase relation may not have the common, sinusoidal form but

can be skewed to have a peak supercurrent at a phase difference greater than π/2. Here

we use a numerical simulation that includes thermal noise to investigate the sensitivity of

a DC SQUID with such junctions. The simulation uses an RCSJ model where the current-

phase relation of each junction can be defined as an arbitrary function. The modulation,

transfer function, noise and sensitivity of a SQUID are calculated for different types of

current-phase relation. For the examples considered here, we find that the flux sensitivity

of the SQUID is always degraded by forward skewing of the current-phase relation, even

in cases where the transfer function of the SQUID has been improved.
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The current-phase relation (CPR) of superconducting junctions can take many forms that are

different to the typical, sinusoidal relation originally associated with the DC Josephson effect1.

Here we study numerically the sensitivity of a DC SQUID where the Josephson junctions have

non-sinusoidal CPRs that are skewed to give a peak supercurrent at a phase difference greater

than π/2. CPRs of this form can occur in highly ballistic SNS junctions such as those made

from graphene or high mobility semiconductors, as predicted by theory1–6 and observed in exper-

iments7–19.

The effect of non-sinusoidal CPRs in the junctions of a DC SQUID has previously been consid-

ered with respect to the modulation of switching current with applied magnetic flux in the absence

of noise20,21. Similar models have been applied to graphene-based DC SQUIDs11. Work on

micro- and nano-SQUIDs has gone further to predict the finite voltage above the switching current

for some non-sinusoidal CPRs in the presence of noise22. This last work contains the information

needed to quantify SQUID sensitivity, but not for the CPRs or the range of parameters considered

here. In this work, we use a resistively and capacatively shunted junction (RCSJ) model to pre-

dict important properties of a DC SQUID that contains junctions with various different forms of

CPR. The formulation of the model is familiar from the literature, as summarised in The SQUID

Handbook23, and it has been shown that the RCSJ model can provide a good description of the

dynamics of individual graphene junctions24.

We follow the approach of Tesche and Clarke23,25 to implement a numerical simulation of the

RCSJ model in the presence of thermal noise. In our model, the sinusoidal CPR is replaced with an

arbitrary function iSC(δ ), where δ is the superconducting phase difference across a junction and

max(iSC) = 1. Further details of how the model is implemented can be found in the supplementary

material and the code is available26.

Figure 1(a) and Fig. 1(b) show examples of the calculated, time-averaged DC voltage 〈v〉 across

two SQUIDs as a function of applied flux φa and DC current i. All three quantities are expressed

as dimensionless values. Currents are normalised by the average critical current of the junctions

I0. Voltages are normalised by I0R where R is twice the parallel resistance of the two junctions in

the normal state. The flux φa is the applied magnetic flux in units of the magnetic flux quantum.

Using standard definitions23, the SQUID is characterised by its Stewart-McCumber parameter βc,

normalised loop inductance βL and four parameters that defined the asymmetry of the critical

currents αI , junction shunt resistances αR, junction capacitances αC, and the inductances on each

side of the SQUID loop αL.

2

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
1
6
0
7



−1.0 −0.5 0.0 0.5 1.0

φa

−3

−2

−1

0

1

2

3

i

−1.0

−0.5

0.0

0.5

1.0

〈v
〉

−1.0 −0.5 0.0 0.5 1.0

φa

−3

−2

−1

0

1

2

3

i

−1.0

−0.5

0.0

0.5

1.0

〈v
〉

−π −π/2 0 π/2 π

δ

−1.0

−0.5

0.0

0.5

1.0

i S
C
(δ
)

sin(δ)

skew ≈ 0.25

skew ≈ 0.61

sawtooth

0.00

0.25

0.50

〈v
〉

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

φa

−20

0

20

v
φ

sin(δ)

sawtooth

(a) (b) (c)

(d)

i = 1.75

FIG. 1. Numerical simulation of the time-averaged voltage 〈v〉 across two symmetric SQUIDs (αI = αR =

αC = αL = 0) with βc = 1.0, βL = 1.0. In (a) the SQUID junctions have a sinusoidal CPR and in (b)

the junctions have a sawtooth CPR. Both CPRs are shown in (c) together with two intermediate, forward-

skewed examples. These are calculated using Eq. 1 with T = 0.80 to produce a skew of 0.25 and T = 0.99

to produce a skew of 0.61. (d) Shows voltage and the transfer function vφ = d 〈v〉/dφa as a function of flux

for both SQUIDs at a current i = 1.75.

Figure 1(a) shows the calculated voltage across a SQUID whose junctions have a sinusoidal

CPR while Fig. 1(b) is for a SQUID whose junctions have a highly-skewed, sawtooth CPR. The

form of the CPRs clearly has a significant influence on the modulation of both the switching current

is and the average voltage 〈v〉 as a function of flux. The shape of the CPR therefore affects the

response of the SQUID to changes in flux as quantified by the transfer function vφ = d 〈v〉/dφa.

Fig. 1(d) shows that the sawtooth CPR generally reduces the transfer function, as compared to

a sinusoidal case, except at the switching current where transitions from finite 〈v〉 to 〈v〉 = 0 are

sharper. The main motivation for this work is to determine whether the large transfer functions

that occur at these sharp features can be used to achieve better overall sensitivity when thermal

noise is taken into account.

The sawtooth CPR used to calculate Fig. 1(b) applies to the extreme case of a uniform and

perfectly ballistic junction at low temperature. In practice, the CPR of an SNS junction at finite

temperature with high, but not perfect, transmission and imperfect contacts is likely to be inter-

mediate between a sawtooth and sine2–12,16,18, with maximum supercurrent at a phase in the range
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FIG. 2. Depth of modulation of the SQUID switching current is(φa) across a range of βL, from numerical

simulations using the three different CPRs. The junction capacitance is βc = 0.1. At low βL, the sawtooth

CPR halves the modulation depth of is compared to the sinusoidal CPR.

π/2 < δ < π . Two examples are shown in Fig. 1(c). They are calculated using equation 1, which

applies to short SNS junctions with a single conducting channel of transmission probability T , in

the limit of low temperatures (Ref. 1).

iSC(δ ) ∝
T sin(δ )

√

1−T sin2(δ/2)
(1)

We use equation 1 to produce forward-skewed CPRs in the simulations not because it is strictly

correct for every type of junction that might be of interest but because it is a relatively efficient

way to implement a smooth, forward-skewed function. When such a CPR is used in this work it

is characterised by the ‘skew’, defined as the position of the maximum supercurrent with respect

to δ = π/2, as a fraction of π/2.

Figure 2 shows in detail how the modulation with flux of the switching current of a SQUID is

affected by the CPR of its junctions. As expected, the modulation is reduced when the junctions

have a forward-skewed CPR20,21,27,28. For a symmetric SQUID with negligible loop inductance

(βL ≪ 1) and junctions with a sinusoidal CPR, the switching current is fully suppressed at φa =

(n+ 1
2), where n is an integer, giving a modulation depth of ∆is/max(is) = 1. If instead the SQUID

junctions have a sawtooth CPR then is ≥ 1.0 for all φa and the maximum possible modulation

depth is ∆is/max(is) = 0.5. The modulation depth for all three CPRs shown in Fig. 2 converge for

βL ≫ 1.

For a typical SQUID with sinusoidal CPR in its junctions, the scaling with βL of the modulation

depth of the switching current is similar to the scaling of the maximum transfer function: the

transfer function is largest for βL ≪ 1 and tends to zero for βL ≫ 1. The same is true for junctions
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with a highly skewed CPR, but the sharp features that occur close to the switching current [(see

Fig. 1(d)] can produce much larger transfer functions at low βL. In a simulation with no noise, the

sawtooth CPR can produce an arbitrarily large transfer function. To understand how this affects

the sensitivity, it is necessary to also consider the noise of the SQUID at these particular points.

To introduce intrinsic noise into the model, two random current sources are added in parallel

to the junctions to represent Johnson noise in their shunt resistances. The noise currents iN1 and

iN2 have a dimensionless power spectral density si = 4Γ. The value of Γ can be interpreted in

several ways, including as the ratio of the thermal energy to the Josephson energy, Γ = kBT/EJ
23.

In practice, the numerical simulation randomises the values of iN1 and iN2 every τN units of time

(typically, τN = 0.1). The correct spectral density is obtained by choosing random numbers from

a normal distribution of width
√

2Γ/τN. Here we use the dimensionless time τ = (2eI0R/h̄)t.

The random currents drive the SQUID in a way that depends on its static parameters and its

instantaneous state. In general, the addition of noise has the effect of smoothing out sharp features

in 〈v〉 as a function of i and φa (see supplementary material for more details). This reduces the

transfer function. The noise currents also generate voltage noise across the SQUID, which is

generally larger for larger Γ but also depends on i and φa.

The sensitivity of a SQUID to magnetic flux is determined by both its transfer function

and its voltage noise. The transfer function quantifies the conversion of flux to DC voltage,

VΦ = dV/dΦa, and the minimum detectable flux is limited by the voltage noise, characterised

by its power spectral density SV. The flux sensitivity, expressed as a flux noise power spec-

tral density, is SΦ = SV/V 2
Φ

. In our simulations, the dimensionless transfer function vφ =

VΦΦ0/I0R = d 〈v〉/dφa is found by numerically differentiating calculated values of 〈v〉. The

dimensionless voltage noise sv = SV(2π/I0RΦ0) is found from the low-frequency power spectral

density of simulated time series v(τ). (Power spectral densities are calculated using the SciPy

library function ‘scipy.signal.welch’29. An example time series and power spectrum can

be found in the supplementary material.) These quantities give the dimensionless flux sensitiv-

ity sφ = SΦ(2πI0R/Φ
3
0) = sv/v2

φ . The noise currents iN1 and iN2 affect both components of the

sensitivity, vφ and sv. In general, the sensitivity gets worse (sφ increases) as the noise increases.

Figure 3 compares the sensitivity of two SQUIDs that have identical parameters but different

CPRs. For a symmetric SQUID (αI = αR = αC = αL = 0) the best sensitivity is typically found

at φa ≈ 0.25 and i & is
23. To find the best sensitivity we combine the transfer function vφ (i) with

the simulated voltage noise sv(i) at φa = 0.25. The best sensitivity is the miniumum value of
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FIG. 3. Flux sensitivity sφ determined by simulation of two symmetric SQUIDs, each with a different CPR

in its junctions. Noise is included with Γ= 10−4 and βL = 1, βC = 0.1. The voltage v(τ) across each SQUID

is simulated for 104 time units, with 2.5 > i > is(φa) and for a small range of φa about φa = 0.25. (a) shows

the transfer function vφ = d 〈v〉/dφa as a function of i at φa = 0.25, found by numerical differentiation of

the time-averaged voltage. (b) shows the low frequency spectral density of the simulated voltage time series

v(τ). (c) shows the resulting flux sensivity sφ = sv/v2
φ .

sφ = sv(i)/vφ (i)
2.

For the examples shown in Fig. 3, the noise is sufficiently low that the sawtooth CPR produces

a large peak in vφ , close to the switching current. This corresponds to a sharp transition of the

type shown in Fig. 1(c). However, as shown in Fig. 3(b), the noise is also larger at the point

where the transfer function is large. The net effect is higher sφ (worse sensitivity) than for the

sinusoidal CPR. At higher i, the noise is similar for the two cases but the sawtooth CPR results in

a consistently lower transfer function. Again, the result is that the sinusoidal CPR produces better

sensitivity (lower sφ ). Overall, for this choice of parameters the sinusoidal CPR produces better

sensitivity across all i.

Figure 4 shows the best sensitivity for SQUIDs with a range of loop inductances βL and thermal

noise Γ. It also includes results for an intermediate CPR with a skewness of 0.5. In all cases, the

flux sensitivity is either unaffected or degraded by forward-skewing of the CPR. For the majority
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FIG. 4. Simulated flux sensitivity of symmetric DC SQUIDs with βc = 0.1. (a) shows flux sensitivity as

a function of normalised loop inductance βL. Good sensitivity (flux noise power sφ ≪ 1) is obtained for

βL . 1. In this range, junctions with a sinusoidal CPR always produce better sensitivity (lower sφ ) than

junctions with a sawtooth CPR. Thermal noise is included with Γ = 0.01. (b) shows flux sensitivity as

a function of thermal noise for βL = 1. As expected, sensitivity improves with decreasing thermal noise.

Junctions with sinusoidal CPR produce better sensitivity across the whole range. The results in (a) and (b)

are obtained by simulating the voltage across each SQUID for 4×104 time units at every point.

of the results shown in Fig. 4, the sensitivity is worse than the sinusoidal case because the transfer

function is lower at the point of best sensitivity. However, as shown in Fig. 3, the sensitivity is not

improved even when the transfer function is higher because of an associated increase in voltage

noise.

In conclusion, numerical simulations using a modified RCSJ model show that forward skewing

of the CPRs in a DC SQUID results in poorer flux sensitivity across a wide range of parameters.

While skewing of the CPR produces a stronger intrinsic response to the phase difference across

a single junction (a larger maximum diSC/dδ ) this does not translate into better sensitivity when

two junctions form a DC SQUID. At the particular operating points where forward skewing can
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increase the transfer function, the voltage noise is also larger, resulting in an overall degradation

of sensitivity.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details of the numerical simulation used in this

work.
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