
CoinEM: Tuning-Free Particle-Based Variational
Inference for Latent Variable Models

Louis Sharrock∗

Department of Mathematics and Statistics
Lancaster University, UK

l.sharrock@lancaster.ac.uk

Daniel Dodd∗

Department of Mathematics and Statistics
Lancaster University, UK

d.dodd@lancaster.ac.uk

Christopher Nemeth
Department of Mathematics and Statistics

Lancaster University, UK
c.nemeth@lancaster.ac.uk

Abstract

We introduce two new particle-based algorithms for learning latent variable models
via marginal maximum likelihood estimation, including one which is entirely
tuning-free. Our methods are based on the perspective of marginal maximum
likelihood estimation as an optimization problem: namely, as the minimization
of a free energy functional. One way to solve this problem is to consider the
discretization of a gradient flow associated with the free energy. We study one such
approach, which resembles an extension of the popular Stein variational gradient
descent algorithm. In particular, we establish a descent lemma for this algorithm,
which guarantees that the free energy decreases at each iteration. This method,
and any other obtained as the discretization of the gradient flow, will necessarily
depend on a learning rate which must be carefully tuned by the practitioner in order
to ensure convergence at a suitable rate. With this in mind, we also propose another
algorithm for optimizing the free energy which is entirely learning rate free, based
on coin betting techniques from convex optimization. We validate the performance
of our algorithms across a broad range of numerical experiments, including several
high-dimensional settings. Our results are competitive with existing particle-based
methods, without the need for any hyperparameter tuning.

1 Introduction

In statistics and machine learning, probabilistic latent variable models pθ(z, x) comprising model
parameters θ ∈ Θ ⊆ Rdθ , unobserved latent variables z ∈ Z ⊆ Rdz , and observations x ∈ X ⊆
Rdx , are widely used to capture the hidden structure of complex data such as images [7], audio [65],
text [8], and graphs [31]. In this paper, we consider the task of estimating the parameters in such
models by maximizing the marginal likelihood of the observed data,

θ∗ = argmax
θ∈Θ

pθ(x) := argmax
θ∈Θ

∫
Z
pθ(z, x)dz, (1)

and quantifying the uncertainty in the latent variables through the corresponding posterior
pθ∗(z|x) = pθ∗(z, x)/pθ∗(x). This framework, which represents a pragmatic compromise between
frequentist and Bayesian approaches, is known as the empirical Bayes paradigm [13, 59].

*Equal contribution.

Preprint. Under review.

ar
X

iv
:2

30
5.

14
91

6v
1

 [
st

at
.M

L
]

 2
4

M
ay

 2
02

3

A classical approach for solving the marginal maximum likelihood estimation problem in (1) is the
Expectation Maximization (EM) algorithm [22]. This iterative method consists of two steps: an
expectation step (E-step) and a maximization step (M-step). In the tth iteration, the E-step involves
computing the expectation of the log-likelihood with respect to the current posterior distribution
µt := pθt(·|x) of the latent variables, viz,

Qt(θ) =

∫
Z
log πθ(z)µt(z)dz, (E)

where πθ(z) := pθ(z, x) denotes the joint density of z and x, given fixed x ∈ Rdx . Meanwhile, the
M-step involves optimizing this quantity with respect to the parameters, namely

θt+1 := argmax
θ∈Θ

Qt(θ). (M)

Under fairly general conditions, this procedure guarantees convergence of the parameters θt to
a stationary point θ∗ of the marginal likelihood, and convergence of the corresponding posterior
approximations pθk(·|x) to pθ∗(·|x) [5, 48, 49, 58, 73]. In many applications of interest, neither the
E-step nor the M-step is analytically tractable, in which case it is necessary to use approximations.
In particular, the M-step can be approximated using numerical optimization routines [40, 44, 49].
Meanwhile, the E-step can be approximated via Monte-Carlo methods, leading to the so-called Monte
Carlo EM (MCEM) algorithm [9, 12, 14, 63, 66, 71], or otherwise a Robbins-Monro type stochastic
approximation procedure [39, 60], resulting in the stochastic approximation EM (SAEM) algorithm
[21]. In practice, it is often not possible to sample exactly from the current posterior distribution
pθt(·|x). In this setting, it is standard to use a Markov chain Monte Carlo (MCMC) approximation
for the E-step [e.g., 1, 4, 11, 20, 28, 38, 42, 47, 51, 57]. In this paper, we follow a different approach,
based on an observation first made in [50], and recently revisited in [38], that the EM algorithm
can be viewed as coordinate-descent on a free-energy functional F (see Sec. 2.2). Leveraging this
perspective, [38] obtain a set of easy-to-implement, particle-based algorithms for optimizing the free
energy, and thus for solving (1). A similar approach has since also been studied in [1]. We provide a
more detailed discussion of these two works in Section 3.

Both in theory and in practice, the performance of these methods relies on a careful choice of
hyperparameters such as the learning rate. In particular, the learning rate must be small enough to
ensure stability of the parameter updates, whilst also large enough to guarantee convergence at a
reasonable rate [1, Theorem 1]. The situation is additionally complicated by the interdependence
between the parameters and the latent variables, as well as the sensitivity of the learning rate to
other hyperparameters such as the number of particles. As a result, it is typically necessary to
make use of heuristics such as Adagrad [25], Adam [35], or RMSProp [67], or otherwise to resort
to computationally expensive quasi-Newton updates [38, App. C] which exploit a second order
approximation of the log-likelihood to better capture its local geometry. In this context, it is natural
to ask whether we can obtain alternative algorithms which are more robust to different specifications
of the learning rate, or even remove the dependence on the learning rate entirely.

Our contributions. In this paper, we propose two new particle-based algorithms for marginal
maximum likelihood estimation in latent variable models, including one which is completely tuning
free. Our methods can be applied to a very broad class of latent variable models, namely, any for
which the density pθ(z, x) is differentiable in θ and z. Inspired by [38], both of our algorithms
are rooted in the viewpoint of marginal maximum likelihood estimation as the minimization of the
free energy functional. Our first approach, SVGD EM, is motivated by recent developments in the
theory and application of gradient flows on the space of probability measures [e.g., 2, 26, 36, 56]. In
particular, SVGD EM corresponds to the discretization of a particular gradient flow of the free energy
F on Θ× P2(X), and resembles a generalization of the popular Stein variational gradient descent
(SVGD) algorithm. Meanwhile, our second approach, Coin EM, is inspired by the parameter-free
stochastic optimization methods developed by Orabona and coworkers [19, 53, 55], and their recent
extension to the space of probability measures in [62]. In particular, Coin EM leverages a reduction
of the minimization of the free energy to two coin betting games. Unlike our first algorithm, or the
recent schemes proposed in [1, 38], Coin EM does not correspond to the time-discretization of any
gradient flow, and has no learning rates. It thus thus bears little resemblance to existing particle-based
methods for training latent variable models.

After introducing our algorithms, we study the convergence properties of SVGD EM, establishing a
descent lemma which guarantees that this algorithm decreases the free energy at each iteration. We

2

then illustrate the performance of Coin EM and SVGD EM on a wide range of examples, including a
toy hierarchical model, two Bayesian logistic regression models, two Bayesian neural networks, and
a latent space network model. Our results indicate that SVGD EM and Coin EM achieve comparable
or superior performance to existing particle-based EM algorithms, with Coin EM removing entirely
the need to tune any hyperparameters.

2 Maximum Likelihood Training of Latent Variable Models

2.1 Notation

We will make use of the following notation. Let P2(Z) denote the set of probability measures with
finite second moment. Given µ ∈ P2(Z), let L2(µ) denote the space of functions f : Z → Z such
that

∫
||f ||2dµ <∞. We write || · ||L2(µ) and ⟨·, ·⟩L2(µ) for the norm and inner product of this space.

Given a probability measure µ ∈ P2(Z) and a measurable function T : Rd → Rd, we write T#µ
for the pushforward measure of µ under T . For µ, ν ∈ P2(Z), the quadratic Wasserstein distance
between µ and ν is defined byW 2

2 (µ, ν) = infγ∈Γ(µ,ν)

∫
Z×Z ||z1 − z2||2γ(dz1,dz2), where Γ(µ, ν)

denotes the set of couplings between µ and ν. We refer to the metric space (P2(Z),W2) as the
Wasserstein space.

We will later also write k : Rd × Rd → R for a positive semi-definite kernel, Hk for the reproducing
kernel Hilbert space (RKHS) associated with this kernel, and H := Hdz

k for the product RKHS consist-
ing of elements f = (f1, . . . , fdz), with fi ∈ Hk. We also write Sµ : L2(µ) → H for the integral op-
erator associated with k and the measure µ, defined according to Sµf(z) =

∫
Rd k(z, w)f(w)µ(dw).

Finally, we write Pµ : L2(µ) → L2(µ) for the operator Pµ = ιSµ, where ι : H → L2(µ) is the
inclusion map, with adjoint ι∗ = Sµ. This map differs from Sµ only in its range.

2.2 The Free Energy

As outlined in Section 1, our approach will leverage the connection between marginal maximum
likelihood estimation and the optimization of the free-energy functional F : Θ×P(Z) → R, defined
according to

F(θ, µ) :=

∫
log(µ(z))µ(z)dz −

∫
log(πθ(z))µ(z)dz. (2)

To be precise, we build on the observation made in [50], and recently revisited in [38], that finding
θ∗ = argmaxθ∈Θ pθ(x) and computing the corresponding posterior µ∗ = pθ∗(·|x) is equivalent to
solving the joint minimization problem

(θ∗, µ∗) = argmin
(θ,µ)∈Θ×P2(Z)

F(θ, µ). (3)

In particular, as noted in [50], the EM algorithm corresponds precisely to a coordinate descent scheme
applied to F : given some initial θ0 ∈ Θ, solve

µt := argmin
µ∈P2(Z)

F(θt, µ) (E)

θt+1 := argmin
θ∈Θ

F(θ, µt), (M)

until convergence. Despite the simplicity of this approach, its practical use is limited for more
complex models. In particular, it can only be applied when it is possible to solve the two optimization
subroutines (i.e., compute the E-step and the M-step) exactly.

2.3 SVGD EM: Minimizing the Free Energy using a Stein-Variational Gradient Flow

As pointed out in [38], instead of using (E) and (M) in order to solve (2), a natural alternative is to
use a discretization of a gradient flow associated with (2). We are then faced with several questions.
First, what is an appropriate notion of the gradient flow of the functional F(θ, µ)? Second, how
should we discretize this flow? Regarding the first question, a natural way in which to construct a
gradient flow for F(θ, µ) is to consider a Euclidean gradient flow w.r.t. the first argument, and a
Wasserstein gradient flow w.r.t. the second argument [e.g., 2, Chapter 11]. In particular, we will say
that (θ, µ) : [0,∞) → Θ× P2(Z) is a solution of a ‘Euclidean-Wasserstein’ gradient flow of F if,

∂tθt = −∇θF(θt, µt), ∂tµt = −∇µF(θt, µt), (4)

3

Algorithm 1 SVGD EM
Input: number of iterations T , number of particles N , initial particles {zi0}Ni=1 ∼ µ0, initial θ0,
target density π, kernel k, learning rate γ.
for t = 0, 1, . . . , T − 1 do

θt+1 = θt +
γ

N

∑N
j=1 ∇θ log πθt(z

j
t)

zit+1 = zit +
γ

N

∑N
j=1

[
k(zjt , z

i
t)∇z log πθt+1

(zjt) +∇zj
t
k(zjt , z

i
t)
]
, i ∈ [N]

end for
return θT and {ziT }Ni=1.

where ∇θF(θ, µ) is the standard Euclidean gradient of F(·, µ) at θ, and where
∇µF(θ, µ) = −∇ · (µ∇W2F(θ, µ)), with ∇W2F(µ, θ) denoting the Wasserstein gradient of F(θ, ·)
at µ, which exists and is given by ∇W2F(µ, θ) = ∇z log(

µ
πθ
) under mild regularity conditions on

µ ∈ P2(Z) [e.g. 2, Lemma 10.4.13]. Explicitly, the gradients in (4) are thus given by

∇θF(θ, µ) = −
∫
∇θ log πθ(z)µ(z)dz, ∇µF(θ, µ) = −∇ ·

(
µ∇z log

(
µ
πθ

))
. (5)

To obtain an implementable discrete-time algorithm, an obvious choice is to consider an explicit
Euler discretization of (4) which, for t ∈ N0, corresponds to1

θt+1 = θt + γ
∫
∇θ log πθt(z)µt(z)dz, µt+1 =

(
id− γ∇z log

(
µt

πθt+1

))
#
µt, (6)

where γ > 0 is a step size or learning rate, and id is the identity map. Unfortunately, implementing
this scheme would require estimating the density of µt based on samples, which is rather challenging.
Inspired by Stein variational gradient descent (SVGD) [45], suppose that we replace the Wasser-
stein gradient ∇W2

F(θt, µt) by its image Pµt
∇W2

F(θt, µt), under the integral operator Pµt
. This

essentially plays the role of the Wasserstein gradient in the RKHS Hk. Then, crucially, under the
assumption that lim||z||→∞ k(z, ·)π(z) = 0, one can show using integration by parts [e.g., 45] that

Pµ∇z log
(

µ
πθ

)
(·) = −

∫
[∇z log πθ(z)k(z, ·) +∇zk(z, ·)]µ(z)dz, (7)

which can easily be approximated using samples from µ. Using this result, our algorithm now reads
θt+1 = θt + γ

∫
∇θ log πθt(z)dµt(z) (8)

µt+1 =
(
id + γ

∫ [
∇z log πθt+1(z)k(z, ·) +∇zk(z, ·)

]
µt(z)dz

)
#
µt. (9)

Finally, we can approximate the two intractable integrals using a set of N interacting particles,
{zit}Ni=1. Based on this approximation, we arrive at Alg. 1.

Naturally, we would like to establish the convergence of this algorithm to the minimizer of F(θ, µ).
In App. A.1, we establish that F(θt, µt) converges exponentially fast along the continuous-time
SVGD EM dynamics, under a fairly natural gradient dominance condition. Here, we focus on the
discrete-time case. We will require the following assumptions, which extend those introduced in [36].
Assumption 1. There exists B > 0 such that, for all z ∈ Z , ||k(z, ·)||Hk

and ||∇zk(z, ·)||H ≤ B.
Assumption 2. For all z ∈ P(Z), the Hessian HVz of Vz = − log π(·)(z) is well defined, and
there exists M1 > 0 such that ||HVz

||op ≤ M1. In addition, for all θ ∈ Θ, the Hessian HVθ
of

Vθ = − log πθ(·) is well-defined, and there exists M2 > 0 such that ||HVθ
||op ≤M2.

Assumption 3. For all θ ∈ Θ, there exists C > 0 such that ||Sµt
∇W2

F(θ, µt)||2H ≤ C for all
t ∈ N0.
Theorem 1. Assume that Assumptions 1 - 3 hold. Let α > 1, and suppose that γ < α−1

αBC2 . Then, for
all t ≥ 0, the updates in (8) - (9) guarantee

F(θt+1, µt+1)−F(θt, µt) ≤ −γ
[(

1− M1γ

2

)
||∇θF(θt, µt)||2Rdθ

+

(
1− (M2 + α2)B2γ

2

)
||Sµt

∇W2
F(θt+1, µt)||2H

]
. (10)

1In a slight abuse of notation, we use t to index both time in the continuous-time dynamics, and the iteration
in the discrete-time algorithm. The appropriate meaning should always be clear from context.

4

We prove this Theorem in App. B.2. An immediate consequence of Theorem 1 is the convergence
of ||∇θF(θt, µt)||2Rdθ

and ||Sµt∇W2F(θt+1, µt)||2H to zero, under appropriate conditions on the
learning rate γ. We provide a precise statement of this result in App. A.

Naturally, the convergence of this algorithm depends on the choice of learning rate γ > 0. Indeed, this
is necessarily the case for any algorithm obtained as the discretization of a gradient flow associated
with the free energy functional, including those recently studied in [1, 38]. In the case that γ is too
large, the algorithm is unstable and the parameter and particles will diverge. Meanwhile, if γ is too
small, the algorithm will converge slowly. Empirically, [38] noted the challenges of appropriately
setting the learning rate parameter simultaneously for the parameters and the latent variables. This is
also observed in our empirical results (see Sec. 4). We now address this issue by proposing a learning
rate free algorithm for minimizing the free energy functional, which removes entirely the need for
user-chosen learning rates, and leads empirically to significantly faster convergence rates.

2.4 Coin EM: Minimizing the Free Energy using Coin Sampling

Our approach is based on the learning rate free optimization techniques introduced in [53, 54, 55],
and their recent extension to optimization problems on spaces of probability measures [62]. Roughly
speaking, our method can be viewed as a hybrid between the coin betting techniques from [53], which
we use for the optimization over Θ, and one of the coin sampling algorithms (Coin SVGD) from
[62], which we use for the optimization over P2(Z). The resulting algorithm, which we term Coin
EM, represents a automatic, general-purpose EM algorithm, which does not require a user-defined
learning rate, and outperforms existing algorithms across a range of applications (see Sec. 4).

The coin betting framework [53] involves a gambler making repeated bets on the outcomes of a
series of adversarial coin flips. The gambler’s goal is to maximize their wealth, starting from some
initial wealth, w0 = 1. In each round of the game, t ∈ N, the gambler bets on the outcome of a coin
flip, either heads or tails, without borrowing any additional money. The gambler’s bet is encoded by
zt ∈ R, where the sign indicates whether the bet is a heads or tails and the absolute value indicates
the size of the bet. The gambler’s wealth thus accumulates according to wt = w0 +

∑t
s=1 cszs,

where ct ∈ {−1, 1} denotes the outcome of the coin flip. The gambler’s bets are restricted to satisfy
zt = βtwt−1, where βt ∈ [−1, 1] denotes a betting fraction, meaning the gambler can only bet a
fraction βt of their accumulated wealth up to time t, and cannot borrow any additional money.

In [53], the authors demonstrated how this coin betting game could be used to solve convex opti-
mization problems of the form z∗ = argminz∈Rd f(z), for some convex function f : Rd → R.
In particular, by considering a game with outcomes ct = −∇f(zt), and replacing scalar multi-
plications with scalar products in the framework described above, [53] proved that, under certain
assumptions on the betting strategy, f(1t

∑t
s=1 zs) → f(z∗) at a rate determined by this strategy. In

the case that |ct| ≤ 1,2 a standard choice for the betting fraction is βt = 1
t

∑t−1
s=1 cs, known as the

Krichevsky-Trofimov (KT) betting strategy after [37]. This choice results in the sequence of bets

zt = βtwt−1 =

∑t−1
s=1 cs
t

(
1 +

∑t−1
s=1⟨cs, zs⟩

)
. (11)

Recently, [62] extended this approach to optimization problems on the space of probability measures,
thus obtaining learning-rate free algorithms which could be used for sampling problems. In this
setting, several modifications are required. First, in round t, one now bets zt − z0, rather than zt,
where z0 is distributed according to some initial betting distribution µ0 ∈ P2(Z). In this case,
viewing zt : Z → Z as a function that maps z0 7→ zt(z0), one can define the betting distribution
µt ∈ P2(Z) as the push-forward of µ0 under the function zt. This definition implies, in particular,
that if z0 ∼ µ0, then zt := zt(z0) is distributed according to the betting distribution µt.

Using this approach, [62] showed that one can solve optimization problems of the form
µ∗ = argminµ∈P2(Z) F(µ). In particular, by setting F(µ) = KL(µ|π), constructing a betting game
in which the outcomes are given by the kernelized Wasserstein gradients ct = −Pµt

∇W2
F(µt)(zt),

and approximating (ct)t∈N using a set of N particles in the corresponding sequence of bets, [62] ob-
tained a learning-rate free analogue of the SVGD, known as Coin SVGD. Empirically, this approach
has demonstrated competitive performance with SVGD, with no need to tune a learning rate.

2If, instead, |ct| ≤ L, for some constant L > 0, then one can replace ct by its normalized version. If, more
commonly, such a constant is unknown, then one can replace it by an empirical estimate, which is updated as the
betting game progresses. We provide details on this approach, and its application to our setting, in App. D.

5

Algorithm 2 Coin EM
Input: number of iterations T , number of particles N , initial particles {zi0}Ni=1 ∼ µ0, initial θ0,
target density π, kernel k.
for t = 1, . . . , T do

θt = θ0 +

∑t−1
s=1

1
N

∑N
j=1 ∇θ log πθs(z

j
s)

t

(
1 +

∑t−1
s=1⟨

1
N

∑N
j=1 ∇θ log πθs(z

j
s), θs − θ0⟩

)
zin = zi0 +

∑t−1
s=1

1
N

∑N
j=1 k(z

j
s , z

i
s)∇z log πθs(z

j
s) +∇zj

s
k(zjs , z

i
s)

t

×
(
1 +

∑t−1
s=1⟨

1
N

∑N
j=1 k(z

j
s , z

i
s)∇z log πθs(z

j
s) +∇zj

s
k(zjs , z

i
s), z

i
s − zi0⟩

)
, i ∈ [N]

end for
return θT and {ziT }Ni=1.

By combining the original coin betting algorithm in [53, 54] to optimize F(θ, µ) over θ ∈ Θ, and the
Coin SVGD algorithm in [62] to optimize over µ ∈ P2(Z), we now have a learning rate free method
for solving (2). In particular, initialized at some θ0 ∈ Θ and zi0

i.i.d.∼ µ0, we update, for t ∈ N0,

θt = θ0 −
∑t−1

s=1 ∇θF(θs, µ
N
s)

t

(
1−

∑t−1
s=1⟨∇θF(θs, µ

N
s), θs − θ0⟩

)
, (12)

zit = zi0 −
∑t−1

s=1 PµN
s
∇W2

F(µN
s)(zis)

t

(
1−

∑t−1
s=1⟨PµN

s
∇W2

F(θs, µ
N
s)(zis), z

i
s − zi0⟩

)
, (13)

where µN
t = N−1

∑N
j=1 δzj

t
denotes the empirical measure of the interacting particles. We will refer

this approach, which is summarized in full in Alg. 2, as Coin EM.

3 Related Work

Comparison with Kuntz et al. [38] and Akyildiz et al. [1]. In a recent paper, [38] revisited
the perspective of marginal maximum likelihood estimation as the minimization of the free energy
functional, and proposed the gradient flow in (4) to minimize this functional. In contrast to us, their
resulting algorithms are based on the observation that (4) is a mean-field Fokker-Planck equation
satisfied by the law of the McKean-Vlasov SDE

dθt =
[∫

∇θ log πθt(zt)dµt(z)
]
dt, dzt = ∇z log πθt(zt)dt+

√
2dwt, (14)

where w = (wt)t≥0 is a standard dz-dimensional Brownian motion. By approximating this SDE
using a system of interacting particles {zjt }Nj=1, and discretizing in time, [38] obtain the particle
gradient descent (PGD) algorithm. [1] have since analyzed an extension of this algorithm, which
includes a carefully chosen noise term in the θ dynamics in (14), allowing them to obtain a non-
asymptotic concentration bound for θt. [38] also develop two variants of PGD. The first is the particle
quasi-Newton (PQN) algorithm, which includes a preconditioning term in the θ dynamics [38, App.
C]. In principle, one could obtain a similar version of SVGD EM based on the techniques in [23]. The
second is the particle marginal gradient descent (PMGD) algorithm, in which the θ update in (14) is
replaced by θt = θ∗(µ

N
t), where θ∗(µ) = argminµ∈P(Z) F(θ, µ), which can be applied whenever

it is possible to compute µ 7→ θ∗(µ) in closed form [38, App. D]. In a similar vein, we can obtain
marginal variants SVGD EM (Alg. 1) and Coin EM (Alg. 2). These are given in App. C.

Learning-rate free methods for optimization and sampling. The idea of using coin betting
for parameter free online learning was first introduced in [53, 54] and has since been extensively
developed by Orabona and coworkers [3, 16, 17, 19, 32, 33, 55]. Meanwhile, other than the recent
work of [61, 62], the literature on learning-rate free methods for (gradient-based) Bayesian inference
is non-existent. In practice, the standard technique when using methods such as stochastic gradient
Langevin dynamics (SGLD) is to use a grid search, running the algorithm of choice for multiple
learning rates, and selecting the value which minimizes an appropriately chosen metric. While there
have been some efforts to semi-automate the design of effective learning rate schedules [15, 18, 34,
43], typically these approaches still rely on an appropriate choice of certain hyperparameters.

6

10 510 410 310 210 1 100 101 102 103

Learning Rate
10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
Soul

(a) MSE(θt) vs learning rate.

0 100 200 300 400 500
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
SOUL

(b) MSE(θt) vs t.

0 100 200 300 400 500
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

M
SE

 (P
os

te
rio

r M
ea

n) Coin EM
SVGD EM
PGD
SOUL

(c) MSE
(

1
N

∑N
i=1 z

i
t

)
vs t.

Figure 1: Results for the toy hierarchical model. MSE of the parameter estimate θt as a function of
the learning rate after T = 500 iterations (a); and MSE of the parameter estimate (b) and the posterior
mean (c) as a function of the number of iterations, using the optimal learning rate from (a).

4 Numerical Experiments

We now evaluate the performance of SVGD EM (Alg. 1) and Coin EM (Alg. 2) against other recent
approaches in the literature.

4.1 Toy hierarchical model

We begin by considering a toy hierarchical model introduced in [38]. In particular, suppose that
we observe data x = (x1, . . . , xdz)

⊤ generated according to xi|zi
i.i.d.∼ N (xi|zi, 1), where the latent

variables zi
i.i.d.∼ N (θ, 1), for some real valued parameter θ ∈ R. Our model is thus given by

pθ(z, x) =
∏dz

i=1
1
2π exp[−(zi − θ)2/2− (xi − zi)

2/2]. In this case, the marginal likelihood θ 7→
pθ(x) has a unique maximum given by θ∗ = d−1

z

∑dz

i=1 xi, and one can obtain an explicit expression
for the corresponding posterior pθ∗(·|x) [38, App. E.1].

In Fig. 1, we evaluate the performance of SVGD EM and Coin EM on this model, setting dz = 100
and θ = 1. We also include results for PGD [38] and the stochastic optimization via unadjusted
Langevin (SOUL) algorithm [20]. In this case, both of our methods generate parameters θt which
converge rapidly to θ∗, and particles (zit)

N
i=1 whose mean converges to the corresponding posterior

mean. Even in this toy example, it is clear that PGD, SOUL, and to a lesser extent SVGD EM, are
very sensitive to the learning rate (Fig. 1(a)). If the learning rate is too small, then convergence is
slow; if it is too large, then the parameter estimates are unstable and may fail to converge (Fig. 8 in
App. F.1). Coin EM circumvents this problem entirely, obtaining comparable or superior performance
to the competing methods, with no need to tune a learning rate. In Fig. 2, we further investigate the
performance of our methods, plotting the posterior variance estimates from Coin EM and SVGD EM
in the case dz = 1. Here, we see there is a significant bias when using a small number of particles.
This should not be a surprise: even if the parameters were fixed, the SVGD updates in Alg. 1 only
converge to the true posterior in the joint continuous time and mean-field limit [e.g. 26]. Nonetheless,
as is evident in Fig. 2, this bias can be all but eliminated by taking a sufficiently large number
of particles. Additional results, further illustrating the robustness of our method to changes in the
number of particles (Fig. 6, Fig. 7) and the initialization (Fig. 9), can be found in App. F.1.

0 200 400
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

Po
st

er
io

r V
ar

ia
nc

e

N = 1
N = 5
N = 10
N = 20
N = 50
N = 100
Optimal variance

(a) Coin EM.

0 200 400
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

Po
st

er
io

r V
ar

ia
nc

e

N = 1
N = 5
N = 10
N = 20
N = 50
N = 100
Optimal variance

(b) SVGD EM.

10 7 10 5 10 3 10 1 101 103

Learning Rate

10 3

10 2

10 1

100

M
SE

 (P
os

te
rio

r V
ar

ia
nc

e)

Coin EM
SVGD EM
PGD
SOUL

(c) Comparison.

Figure 2: Additional results for the toy hierarchical model. Estimates for the posterior variance
in the case dz = 1 obtained using (a) Coin EM and (b) SVGD EM, as a function of the number of
iterations. In (c), we plot the MSE of the posterior variance estimate as a function of the learning rate,
for Coin EM, SVGD EM, PGD, and SOUL, after T = 250 iterations and with N = 50 particles.

7

0 100 200 300 400 500 600 700 800
Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(a) Parameter Estimates.

0 1 20

1

2 0 2

Coin EM
SVGD EM
PGD
PMGD
SOUL

0 2 40

1

0 1 2

(b) Posterior Estimates.

10 9 10 7 10 5 10 3 10 1 101

Learning Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Te
st

 E
rro

r

Coin EM
SVGD EM
PGD
SOUL

(c) Test Error.

Figure 3: Results for the Bayesian logistic regression. Plots of (a) the sequence of parameter
estimates θt initialized at zero, (b) the kernel density estimate of four components of the posterior
approximation µ̂n

800 = 1
n

∑n
j=1 δzj

800
, (c) the test error as a function of the learning rate.

4.2 Bayesian logistic regression

We next consider a standard Bayesian logistic regression with Gaussian priors, fit using the Wisconsin
dataset [72]; see also [20, Sec. 4.1]. In this case, the latent variables are the regression weights.
We place an isotropic Gaussian prior N (θ1dz

, 51dz
) on the weights, and aim to estimate the unique

maximizer θ∗ of the marginal likelihood. We provide full details on this model in App. E.2, and
additional results for an alternative Bayesian logistic regression model in App. F.3.

In Fig. 3, we compare the performance of our algorithms with PGD [38], PMGD [38], and SOUL [20].
We first plot an illustrative sequence of parameter estimates (Fig. 3(a)) for each method, initialized at
zero, using N = 100 particles and T = 800 iterations. All methods converge to approximately the
same parameter θ∗. In this case, Coin EM converges noticeably faster than its competitors. The same
is true when the parameter is initialized further from θ∗, in which case the shorter transient period
exhibited by Coin EM is even more pronounced (Fig. 10 in App. F.2). By increasing the learning
rates of PGD, PMGD, and SOUL, one can improve their convergence rates, but this comes at the
cost of a (significant) bias in the resulting parameter estimate (Fig. 11 in App. F.2). Meanwhile,
the posterior estimates obtained by each method are generally rather similar, as is their predictive
performance. In fact, in this case the predictive power of the posterior approximations obtained by all
of the methods are robust both to the choice of learning rate (Fig. 3(c)) and to the number of particles
(see Fig. 12 in App. F.2). This can be largely attributed to the relatively simple nature of the posterior,
which is both peaked and unimodal; see also [38, Sec. 3.1] and [20, Sec. 4.1].

4.3 Bayesian neural network

We now consider an example with a notably more complex posterior, namely, a Bayesian neural
network. We consider a similar setting to the one described in [30, 45], and apply a single layer neural
network to perform regression on several UCI benchmark datasets. We assume a Gaussian likelihood
with precision γ, and assign a Gaussian prior with precision λ on each of the network weights. We
then place a Gamma prior on γ, and a Gamma hyperprior on λ. The latent variables are the weights
w, the precisions λ, and γ. Meanwhile, the parameters are the hyperparameters of the Gamma prior
on γ and the Gamma hyperprior on λ. We provide full details of this model in App. E.4.

10 8 10 6 10 4 10 2 100

Learning Rate

101

102

103

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(a) Concrete

10 8 10 6 10 4 10 2 100

Learning Rate

100

101

102

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(b) Energy

10 8 10 6 10 4 10 2 100

Learning Rate

10 1

100

101

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(c) Kin8nm

Figure 4: Results for the Bayesian neural network. Root mean-squared-error (RMSE) as a function
of the learning rate, for several UCI datasets, averaged over ten random test-train splits.

8

0.004 0.003 0.002 0.001 0.000 0.001 0.002

0.002

0.000

0.002

0.004

0.006

ARYA
BRAN

CATELYN

CERSEI

DAENERYS

JAIME

JOFFREY

JON

JORAH

LITTLEFINGER
MAESTER_LUWIN

NED

PYCELLEPYP
RENLY

ROBB
ROBERT

SAM

SANSA

THEON

TYRION
VARYS

VISERYS

(a) Season 1
0.004 0.002 0.000 0.002 0.004 0.006

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

ARYA

BRAN

CATELYN

CERSEI

DAENERYS

DAVOS
JAIME

JOFFREY

JON

LITTLEFINGER

OSHA

RENLY

ROBB

SAM

SANSA

STANNIS

THEON

TYRION

TYWINVARYS

XARO

(b) Season 2
0.004 0.002 0.000 0.002 0.004

0.004

0.002

0.000

0.002

0.004

ARYA

BRAN

CATELYN

CERSEI

DAVOS

EDMURE

GENDRY

JAIME

JOFFREY

JOJEN

JORAH

LORAS

MARGAERY

MEERA

OLENNA

OSHA

ROBB

ROOSE_BOLTON

SAM

SANSA

THEON

THOROS TYRION

TYWIN

VARYS

WALDER

(c) Season 3

Figure 5: Results for the latent space network model. Mean of the particles {ziT }Ni=1 output by
Coin EM afer T = 500 iterations. Each node of the network represents a Game of Thrones character.

In Fig. 4 and Fig. 14 (App. F.4), we plot the test error as a function of the learning rate for several
UCI benchmark datasets. Here, the optimal predictive performance of Coin EM is comparable with
the optimal predictive performance of SVGD EM and SOUL. Meanwhile, Coin EM, SVGD EM, and
SOUL all tend to outperform PGD. In this case, the predictive performance is much more sensitive to
the choice of learning rate (see Fig. 4), and the other methods only achieve comparable (or superior)
performance to Coin EM for a narrow range of learning rates. In App. F.5, we provide results for
another Bayesian neural network model used on an MNIST classification task. Here, Coin EM offers
competitive predictive performance with PGD and SOUL, while also providing increased robustness
to changes in the number of particles (Fig. 16 in App. F.5), the need for additional heuristics to deal
with ill-conditioning (Fig. 17 in App. F.5), and, of course, the learning rate (Fig. 15 in App. F.5).

4.4 Latent space network model

Finally, we consider a latent space network model [31, 46, 68]. Such models assume that each node
in a network has an unobserved latent position in a low-dimensional Euclidean space, and that the
probability of a link between two nodes i and j depends on the distance between their latent variables
||z(i)−z(j)||. Latent space network models can account for transitivity, homophily, and other network
properties, and provide a natural way to analyze social network data. In particular, the estimated
latent positions can be used to visualize the network, and also for downstream machine learning tasks
such as node classification or community detection through clustering.

Here, we consider fitting a latent space network model to a dataset curated by [6], which consists of a
sequence of binary undirected networks indicating whether or not an interaction occurred between
two characters in the TV series Game of Thrones, with one network for each of the eight seasons (see
App. E.6 for further details). In Fig. 5, we plot the latent representation of the character interactions
obtained using Coin EM. Plots for the other algorithms are given in App. F.6. In this case, we find
that the latent representations obtained via Coin EM successfully capture the natural groupings of the
characters, and how these groupings evolve through the first three seasons. Meanwhile, this is not the
case for PGD (Fig. 20 in App. F.6) or SOUL (Fig. 21 in App. F.6).

5 Discussion

Summary. We introduce two new particle-based algorithms for marginal maximum likelihood
estimation and empirical Bayesian inference in latent variable models, including one which is entirely
tuning-free. Our first algorithm, SVGD EM (Sec. 2.3), can be viewed as a particular form of gradient
descent on the free-energy functional F over the product space Θ× P2(Z). Our second algorithm,
Coin EM (Sec. 2.4), is entirely different, and leverages coin betting ideas introduced in [53] and
recently extended in [62], to remove any dependence on learning rates.

Limitations and Future Work. We highlight several limitations of our methods. First, similar
to SVGD, our algorithms have a cost O(N2) per update, which prohibits their use with very large
numbers of particles. Second, our convergence results for SVGD EM were derived in the population
limit. We leave to future work the extension of these results to the finite particle case; here, the results
in [36, Sec. 6] and in particular [64] will likely prove a good starting point. Finally, we leave open
the problem of establishing convergence and convergence rates for Coin EM, both in the population
limit and the finite particle setting.

9

Acknowledgments

We are grateful to Juan Kuntz for many insightful discussions. LS and CN were supported by the
Engineering and Physical Sciences Research Council (EPSRC), grant number EP/V022636/1. CN
acknowledges further support from the EPSRC, grant number EP/R01860X/1. DD was supported by
the EPSRC funded STOR-i Centre for Doctoral Training, grant number EP/L015692/1.

References
[1] Ö. D. Akyıldız, F. R. Crucinio, M. Girolami, T. Johnston, and S. Sabanis. Interacting Particle

Langevin Algorithm for Maximum Marginal Likelihood Estimation. arXiv preprint, 2023. 2, 5,
6

[2] L. Ambrosio, N. Gigli, and Giuseppe Savaré. Gradient Flows: In Metric Spaces and in the
Space of Probability Measures. Birkhäuser, Basel, 2008. 2, 3, 4

[3] H. Asi and J. C. Duchi. Stochastic (Approximate) Proximal Point Methods: Convergence,
Optimality, and Adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019. 6

[4] Y. F. Atchadé, G. Fort, and E. Moulines. On Perturbed Proximal Gradient Algorithms. Journal
of Machine Learning Research, 18:1–33, 2017. 2

[5] S. Balakrishnan, M. J. Wainwright, and B. Yu. Statistical guarantees for the EM algorithm:
From population to sample-based analysis. The Annals of Statistics, 45(1):77–120, 2017. 2

[6] A. Beveridge and M. Chemers. The Game of Game of Thrones: Networked Concordances and
Fractal Dramaturgy. In Reading Contemporary Serial Television Universes, pages 201–225.
Routledge, 2018. 9, 26

[7] C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, New York, 2006. 1

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022, 2003. 1

[9] J. G. Booth and J. P. Hobert. Maximizing generalized linear mixed model likelihoods with
an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(1):265–285, 1999. 2

[10] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 23

[11] B. S. Caffo, W. Jank, and G. L. Jones. Ascent-based Monte Carlo expectation– maximization.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):235–251,
2005. 2

[12] O. Cappé, A. Doucet, M. Lavielle, and E. Moulines. Simulation-based methods for blind
maximum-likelihood filter identification. Signal Processing, 73(1):3–25, 1999. 2

[13] G. Casella. An Introduction to Empirical Bayes Data Analysis. The American Statistician,
39(2):83–87, 1985. 1

[14] K. S. Chan and J. Ledolter. Monte Carlo EM Estimation for Time Series Models Involving
Counts. Journal of the American Statistical Association, 90(429):242–252, 1995. 2

[15] C. Chen, D. Carlson, Z. Gan, C. Li, and L. Carin. Bridging the Gap between Stochastic Gradient
MCMC and Stochastic Optimization. In Proceedings of the 19th International Conference on
Aritificial Intelligence and Statistics (AISTATS 2016), Cadiz, Spain, 2016. 6

[16] K. Chen, A. Cutkosky, and F. Orabona. Implicit Parameter-free Online Learning with Truncated
Linear Models. In Proceedings of the 33rd International Conference on Algorithmic Learning
Theory (ALT 2022), Paris, France, 2022. 6

10

[17] K. Chen, J. Langford, and F. Orabona. Better Parameter-Free Stochastic Optimization with ODE
Updates for Coin-Betting. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial
Intelligence (AAAI-22), Online, 2022. 6

[18] J. Coullon, L. South, and C. Nemeth. Efficient and Generalizable Tuning Strategies for
Stochastic Gradient MCMC. arXiv preprint, 2021. 6

[19] A. Cutkosky and F. Orabona. Black-Box Reductions for Parameter-free Online Learning in
Banach Spaces. In Proceedings of the 31st Annual Conference on Learning Theory (COLT
2018), Stockholm, Sweden, 2018. 2, 6

[20] V. De Bortoli, A. Durmus, M. Pereyra, and A. F. Vidal. Efficient stochastic optimisation by
unadjusted Langevin Monte Carlo. Statistics and Computing, 31(3):29, 2021. 2, 7, 8, 24, 28, 29

[21] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation version
of the EM algorithm. The Annals of Statistics, 27(1):94–128, 1999. 2

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm. J. R. Stat. Soc. B, 39(1):1–38, 1977. 2

[23] G. Detommaso, T. Cui, A. Spantini, Y. Marzouk, and R. Scheichl. A Stein variational Newton
method. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS 2018), Montreal, Canada, 2018. 6

[24] D. Dua and C. Graff. UCI Machine Learning Repository. Technical report, University of
California, Irvine, School of Information and Computer Sciences, 2019. 24, 25

[25] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. 2,
23, 25, 27

[26] A. Duncan, N. Nüsken, and L. Szpruch. On the geometry of Stein variational gradient descent.
Journal of Machine Learning Research, 24:1–40, 2023. 2, 7, 14, 15

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, pages 226–231. AAAI Press, 1996. 33

[28] G. Fort, E. Moulines, and P. Priouret. Convergence of adaptive and interacting Markov chain
Monte Carlo algorithms. The Annals of Statistics, 39(6):3262–3289, 2011. 2

[29] S. J. Gershman, M. D. Hoffman, and D. M. Blei. Nonparametric Variational Inference. In Pro-
ceedings of the 29th International Conference on Machine Learning (ICML 2012), Edinburgh,
UK, 2012. 24

[30] J. M. Hernandez-Lobato and R. P. Adams. Probabilistic Backpropagation for Scalable Learning
of Bayesian Neural Networks. In Proceedings of the 32nd International Conference on Machine
Learning (ICML 2015), Lille, France, 2015. 8, 25

[31] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent Space Approaches to Social Network
Analysis. Journal of the American Statistical Association, 97(460):1090–1098, 2002. 1, 9, 26

[32] K.-S. Jun and F. Orabona. Parameter-Free Online Convex Optimization with Sub-Exponential
Noise. In Proceedings of the 32nd Annual Conference on Learning Theory (COLT 2019),
Phoenix, AZ, 2019. 6

[33] K.-S. Jun, F. Orabona, S. Wright, and R. Willett. Online Learning for Changing Environments
using Coin Betting. Electronic Journal of Statistics, 11, 2017. 6

[34] S. Kim, Q. Song, and F. Liang. Stochastic gradient Langevin dynamics with adaptive drifts.
Journal of Statistical Computation and Simulation, 92(2):318–336, 2022. 6

[35] D. P. Kingma and J. Ba. Adam: a method for stochastic optimisation. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR ’15), pages 1–13, San Diego, CA,
2015. 2

11

[36] A. Korba, A. Salim, M. Arbel, G. Luise, and A. Gretton. A Non-Asymptotic Analysis for Stein
Variational Gradient Descent. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NeurIPS 2020), Vancouver, Canada, 2020. 2, 4, 9, 14, 15, 16,
18, 19, 20, 21

[37] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Transac-
tions on Information Theory, 27(2):199–207, 1981. 5

[38] J. Kuntz, J. N. Lim, and A. M. Johansen. Particle algorithms for maximum likelihood training
of latent variable models. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS 2023), Valencia, Spain, 2023. 2, 3, 5, 6, 7, 8, 14, 16, 19,
24, 25, 26, 29, 30, 32

[39] H. J. Kushner and D. S. Clark. Stochastic approximation methods for constrained and uncon-
strained systems. Springer-Verlag, New York, 1978. 2

[40] K. Lange. A Gradient Algorithm Locally Equivalent to the EM Algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 57(2):425–437, 1995. 2

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 25, 26

[42] R. A. Levine and G. Casella. Implementations of the Monte Carlo EM Algorithm. Journal of
Computational and Graphical Statistics, 10(3):422–439, 2001. 2

[43] C. Li, C. Chen, D. Carlson, and L. Carin. Preconditioned Stochastic Gradient Langevin
Dynamics for Deep Neural Networks. In Proceedings of the 30th AAAI Conference on Aritificial
Intelligence (AAAI-16), Phoenix, AZ, 2016. 6

[44] C. Liu and D. B. Rubin. The ECME Algorithm: A Simple Extension of EM and ECM with
Faster Monotone Convergence. Biometrika, 81(4):633–648, 1994. 2

[45] Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm. In Proceedings of the 30th Conference on Neural Information Processings Systems
(NIPS 2016), Barcelona, Spain, 2016. 4, 8, 25

[46] J. D. Loyal and Y. Chen. A Bayesian Nonparametric Latent Space Approach to Modeling
Evolving Communities in Dynamic Networks. Bayesian Analysis, 18(1):49–77, 2023. 9

[47] C. E. McCulloch. Maximum Likelihood Algorithms for Generalized Linear Mixed Models.
Journal of the American Statistical Association, 92(437):162–170, 1997. 2

[48] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley & Sons, 2nd
edition, 2007. 2

[49] X.-L. Meng and D. B. Rubin. Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework. Biometrika, 80(2):267–278, 1993. 2

[50] R. M. Neal and G. E. Hinton. A View of the Em Algorithm that Justifies Incremental, Sparse,
and other Variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355–368.
Springer Netherlands, Dordrecht, 1998. 2, 3

[51] E. Nijkamp, B. Pang, T. Han, S.-C. Zhu, and Y. N. Wu. Learning Multi-layer Latent Variable
Model via Variational Optimization of Short Run MCMC for Approximate Inference. In
European Conference on Computer Vision, pages 361–378, Online, 2020. 2

[52] F. Orabona and A. Cutkosky. Tutorial on Parameter-Free Online Learning. In Proceedings of
the 37th International Conference on Machine Learning (ICML 2020), Online, 2020. 26

[53] F. Orabona and D. Pal. Coin Betting and Parameter-Free Online Learning. In Proceedings
of the 30th Conference on Neural Information Processings Systems (NIPS 2016), Barcelona,
Spain, 2016. 2, 5, 6, 9

12

[54] F. Orabona and D. Pal. Parameter-Free Convex Learning Through Coin Betting. In Proceedings
of the 33rd International Conference on Machine Learning (ICML 2016): AutoML Workshop,
New York, NY, 2016. 5, 6

[55] F. Orabona and T. Tommasi. Training Deep Networks without Learning Rates Through Coin
Betting. In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS 2017), Long Beach, CA, 2017. 2, 5, 6, 22

[56] F. Otto. The Geometry of Dissipative Evolution Equations: The Porous Medium Equation.
Communications in Partial Differential Equations, 26(1-2):101–174, 2001. 2

[57] Y. Qiu and X. Wang. Stochastic Approximate Gradient Descent via the Langevin Algorithm. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20), New York, NY,
2020. 2

[58] R. A. Redner and H. F. Walker. Mixture Densities, Maximum Likelihood and the EM Algorithm.
SIAM Review, 26(2):195–239, 1984. 2

[59] H. Robbins. An empirical Bayes approach to statistics. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, pages 157–164, 1956. 1

[60] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951. 2

[61] L. Sharrock, L. Mackey, and C. Nemeth. Learning Rate Free Bayesian Inference in Constrained
Domains. arXiv preprint, 2023. 6

[62] L. Sharrock and C. Nemeth. Coin Sampling: Gradient-Based Bayesian Inference without
Learning Rates. To appear in Proceedings of the 40th International Conference on Machine
Learning (ICML 2023), 2023. 2, 5, 6, 9, 22

[63] R. P. Sherman, Y.-Y. K. Ho, and S. R. Dalal. Conditions for convergence of Monte Carlo
EM sequences with an application to product diffusion modeling. The Econometrics Journal,
2(2):248–267, 1999. 2

[64] J. Shi and L. Mackey. A Finite-Particle Convergence Rate for Stein Variational Gradient Descent.
arXiv preprint, 2022. 9

[65] P. Smaragdis, B. Raj, and M. Shashanka. A Probabilistic Latent Variable Model for Acoustic
Modeling. In Proceedings of the 20th Annual Conference on Neural Information Processing
Systems: Workshop on Advances in Models for Acoustic Processing (NIPS 2006), Vancouver,
Canada, 2006. 1

[66] M. A. Tanner. Tools for Statistical Inference. Springer-Verlag, New York, NY, 2nd edition,
1993. 2

[67] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012. 2

[68] K. Turnbull, S. Lunagómez, C. Nemeth, and E. Airoldi. Latent space modelling of hypergraph
data. arXiv preprint, 2019. 9, 26

[69] T. van Erven and P. Harremos. Rényi Divergence and Kullback-Leibler Divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014. 19

[70] C. Villani. Topics in Optimal Transportation. American Mathematical Society, Providence,
Rhode Island, 2003. 20

[71] G. C. G. Wei and M. A. Tanner. A Monte Carlo Implementation of the EM Algorithm and the
Poor Man’s Data Augmentation Algorithms. Journal of the American Statistical Association,
85(411):699–704, 1990. 2

[72] W. H. Wolberg and O. L. Mangasarian. Multisurface method of pattern separation for med-
ical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences,
87(23):9193–9196, 1990. 8, 24

13

[73] C. Wu. On the convergence properties of the EM algorithm. Annals of Statistics, 11(1):95–103,
1983. 2

[74] Y. Yao, A. Vehtari, and A. Gelman. Stacking for nonmixing Bayesian computations: The curse
and blessing of multimodal posteriors. Journal of Machine Learning Research, 23(79):1–45,
2022. 25, 26

A Additional Theoretical Results

We will require the following additional notation. We will write Let (U , || · ||U) denote the Cartesian
product of the Euclidean space (Θ, || · ||Rdθ) and the Hilbert product space (Hkdz , || · ||Hdz

k
), with

norm ||·||U defined according to ||(θ, f)||2U = ||θ||2Rdθ
+ ||f ||2

Hdz
k

for θ ∈ Θ and f ∈ Hdz

k . In addition,
we will write ∇UF = (∇θF , Sµ∇W2

F) ∈ U .

A.1 Continuous Time Results

In this section, we study the properties of the SVGD EM gradient flow, which we recall is given by

∂θt
∂t

= −∇θF(θt, µt), ∇θF(θt, µt) = −
∫

∇θ log πθt(z)µt(z)dz, (15)

∂µt

∂t
= −∇µF(θt, µt) , ∇µF(θt, µt) := −∇ ·

(
µt

[
Pµt

∇W2
F(θt, µt)

])
, (16)

where ∇W2
F(θt, µt) = ∇z log

(
µt

πθt

)
denotes the Wasserstein gradient of F(θt, ·) at µt. This

gradient flow was obtained by replacing the Wasserstein gradient appearing in (4), (5) with its
kernelized version, Pµt

∇W2
F(θt, µt).

We first provide a result which quantifies the dissipation of the free energy along the trajectory of the
continuous-time SVGD EM dynamics.
Proposition 1. The dissipation of the free energy along the SVGD EM gradient flow (15) - (16) is
given by

dF(θt, µt)

dt
= −

∫ ∣∣∣∣∇θ log πθt(z)
∣∣∣∣2
Rdθ

µt(z)dz −
∣∣∣∣Sµt

∇z log

(
µt

pθt(·|x)

) ∣∣∣∣2
Hd

k

. (17)

Proof. See App. B.1.

Remark 1. We can identify the second term in (17) as the Stein Fisher information of µt relative to
the posterior pθt(·|x) [26, 36], written

IStein(µt|pθt(·|x)) :=
∣∣∣∣Sµt

∇z log

(
µt

pθt(·|x)

) ∣∣∣∣2
Hd

k

. (18)

This quantity is sometimes also referred to as the squared kernel Stein discrepancy (KSD).

Since both of the terms on the RHS in (17) are negative, Proposition 1 shows that the free energy
decreases along the SVGD EM gradient flow. Under some additional assumption, we can actually
establish convergence of the two terms on the RHS to zero. First, we will require the following rather
mild regularity condition on the marginal likelihood; see also [38, Assumption 1].
Assumption 4. The super-level sets of the marginal likelihood pθ(x) are compact. That is, the set
{θ ∈ Θ : pθ(x) ≥ c} is bounded for all c ≥ 0.

We will also require an additional control on the derivatives of the function Vθ : Z → R which
maps z 7→ − log πθ(z), for fixed θ ∈ Θ, and on the mixed partial derivatives of the function
V : Θ×Z → R which maps (θ, z) 7→ − log πθ(z)

Assumption 5. For all θ ∈ Θ, the gradient of the function Vθ grows at most linearly. In particular,
there exists L > 0 such that, for all θ ∈ Θ, ||∇zVθ(z)||Rdz ≤ K(1 + ||z||).
Assumption 6. The matrixHVθ,z

: Rdz → Rdθ containing the mixed partial derivatives of V , namely
[HVθ,z

]ij = ∂θi∂zjV , is well defined. In addition, there exists M3 such that ||Hθ,z||op ≤M3.

14

Proposition 2. Let (θt)t≥0 and (µt)t≥0 be solutions of the SVGD EM gradient flow (15) - (16).
Suppose that Assumptions 1, 2, 4, 5, and 6 hold. In addition, suppose that there exists a positive
constant C > 0 such that

∫
||z||µt(z)dz for all t ≥ 0. Then

lim
t→∞

[∣∣∣∣∇θF(θt, µt)
∣∣∣∣2 + ∣∣∣∣Sµt

∇z log

(
µt

πθt

) ∣∣∣∣2
Hd

k

]
= 0. (19)

Proof. See App. B.1.

Remark 2. We note that, as an alternative to Assumptions 2 and 6, one could instead assume directly
that the Hessian HV of V is well defined, and that there exists a constant M such that ||HV ||op ≤M .
In this case, Assumptions 2 and 6 would certainly hold, taking M1 =M2 =M3 =M . We separate
these two assumptions since for certain results, e.g., Theorem 1, we only require boundedness of the

‘diagonal blocks’ of this Hessian. That is, the Hessian of Vz : Θ → R which maps θ 7→ − log πθ(z)
for fixed z ∈ Z , and the Hessian of Vθ : Z → R which maps z 7→ − log πθ(z) for fixed θ ∈ Θ.

In order to establish exponential convergence along the SVGD EM gradient flow, we will require
an additional condition, which characterizes the properties of F around its equilibria. We assume a
particular ‘gradient dominance’ condition, which represents a natural extension of the corresponding
conditions used for Euclidean gradients flows - the Polyak-Łojasiewicz inequality - and for the SVGD
gradient flow - the Stein log-Sobolev inequality [26, 36].
Assumption 7. There exists λ > 0 such that F satisfies the following gradient dominance condition

F(θ, µ)− min
(θ,µ)∈θ×P2(Z)

F(θ, µ) ≤ 1

2λ
||∇UF||2U . (20)

Proposition 3. Assume that Assumption 7 holds. Then the free energy F(θ, µ) decreases exponen-
tially fast along the SVGD EM gradient flow. In particular,

F(θt, µt)− min
(θ,µ)∈θ×P2(Z)

F(θ, µ) ≤ e−2λt

[
F(θ0, µ0)− min

(θ,µ)∈θ×P2(Z)
F(θ, µ)

]
. (21)

Proof. See App. B.1.

A.2 Additional Discrete Time Results

We now consider the forward Euler discretisation of the dynamics in (15) - (16), as given in (8) - (9).
For convenience, we recall these update equations again now:

θt+1 = θt + γ

∫
∇θ log πθt(z)dµt(z) (22)

µt+1 =

(
id + γ

∫ [
∇z log πθt+1

(z)k(z, ·) +∇zk(z, ·)
]
µt(z)dz

)
#

µt. (23)

The updates in (22) - (23) represent the population limit of SVGD EM (Alg. 1). In Theorem 1,
we established a descent lemma, guaranteeing that, given a suitable choice of the learning rate
γ, the free energy decreases at each iteration of the SVGD EM algorithm. As a corollary to this
result, we now obtain a discrete time convergence rate for the average of ||∇θF(θt, µt)||2Rdθ

and
||Sµt∇W2F(θt+1, µt)||2Hdz

k

. In particular, we have the following result.

Corollary 1. Let α > 1, and γ ≤ min
(

α−1
αBC1/2 ,

2
M1
, 2
(M2+α2)B2

)
. Then, defining cγ =

γ
(
1− [M1+(M2+α2)B2]γ

2

)
, the discrete-time, population-limit, SVGD EM updates in (8) - (9) satisfy

min
t=1,...,T

(
||∇θF(θt, µt)||2Rdθ + ||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

)
(24)

≤ 1

T

T∑
t=1

(
||∇θF(θt, µt)||2Rdθ + ||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

)
(25)

≤
F(θ0, µ0)−min(θ,µ)∈θ×P2(Z) F(θ, µ)

cγT
. (26)

Proof. See App. B.3.

15

B Proofs of Theoretical Results

B.1 Proof of Propositions 1, 2, and 3.

Proof of Proposition 1. Using differential calculus in the product space Θ× P2(Z), and the chain
rule, we have that

dF(θt, µt)

dt
= ⟨−∇θF(θt, µt),∇θF(θt, µt)⟩Rdθ + ⟨Pµt

∇W2
F(θt, µt),∇W2

F(θt, µt)⟩L2(µt)

= −
∣∣∣∣∇θF(θt, µt)

∣∣∣∣2
Rdθ

−
∣∣∣∣Sµt

∇W2
F(θt, µt)

∣∣∣∣2
Hdz

k

(27)

where in the second line we have used the fact that, given µ ∈ P2(Z), and functions
f, g ∈ L2(µ),Hdz

k , it holds that ⟨f, ιg⟩L2(µ) = ⟨ι∗f, g⟩Hdz
k

= ⟨Sµf, g⟩Hdz
k

, since the adjoint of the
inclusion ι : H → L2(µ) is ι∗ = Sµ. To obtain the first term on the RHS of (17), we can now just
substitute the expression for ∇θF(θt, µt) from (15) into the first term on the RHS of (27). For the
remaining term, recalling the definition of πθ(z), namely, πθ(z) := pθ(z, x) = pθ(z|x)pθ(x), we
have

∇z log

(
µt

πθt

)
= ∇z log

(
µt

pθt(.|x)pθt(x)

)
= ∇z log

(
µt

pθt(·|x)

)
(28)

where the final equality follows from the fact that pθt(x) is independent of z. Substituting this into
(27) completes the proof.

Proof of Proposition 2. We use similar arguments to those in the proofs of [38, Theorem 3] and [36,
Proposition 8], adapted appropriately to our setting. For notational convenience, let us define

I(θt, µt) := ||∇θF(θt, µt)||2Rdθ + ||Sµt∇W2F(θt+1, µt)||2Hdz
k
. (29)

We start by establishing that, under the stated assumptions, there exists a positive constant β > 0
which guarantees that ∣∣∣∣dI(θt, µt)

dt

∣∣∣∣ ≤ βI(θt, µt). (30)

We will then show that this implies convergence of I(θt, µt) to zero. To prove (30), we first compute
dI(θt, µt)

dt
=

d

dt
||∇θF(θt, µt)||2Rdθ︸ ︷︷ ︸

I
(1)
t (θt,µt)

+
d

dt
||Sµt∇W2F(θt, µt)||2Hdz

k︸ ︷︷ ︸
I
(2)
t (θt,µt)

(31)

We begin with I(1)t (θt, µt). Let us define vt = ∇θF(θt, µt) = −
∫
∇θ log πθt(z)µt(z)dz and

wt = Sµt
∇W2

F(θt, µt) = Sµt
∇ log(µt

πθt
). We then have

I
(1)
t (θt, µt) =

d

dt
||vt||2Rdθ = 2

〈
vt,

d

dt
vt
〉
Rdθ

. (32)

We now need to obtain d
dtvt. Using the chain rule, and then integration by parts, we have

d

dt
vt = −

∫
d

dt
[∇θ log πθt(z)µt(z)] dz (33)

= −
∫

d

dt
[∇θ log πθt(z)]µt(z)dz −

∫
∇θ log πθt(z)

∂µt

∂t
(z)dz (34)

= −
∫

∇2
θ log πθt(z)µt(z)

∂θt
∂t

dz −
∫

∇θ log πθt(z)∇z · (wt(z)µt(z))dz (35)

=

∫
∇2

θ log πθt(z) vt µt(z)dz +

∫
∇θ∇z log πθt(z) wt(z)µt(z)dz. (36)

It follows, in particular, that

I
(1)
t (θt, µt) =− 2

dθ∑
i=1

dθ∑
j=1

∫
vit
[
∇2

θ log πθt(z)
]
ij
vjt µt(z)dz

+ 2

dθ∑
i=1

dz∑
j=1

∫
vit [∇θ∇z log πθt(z)]ij w

j
t (z)µt(z)dz. (37)

16

For the second term, we will work component-wise. First, using the notation wt = (w1
t , . . . , w

dz
t),

we have ||wt||2Hk
=
∑dz

j=1 ||w
j
t ||2Hk

. Thus, in particular,

I
(2)
t (θt, µt) =

d

dt

dz∑
j=1

||wj
t ||2Hk

= 2

dz∑
j=1

⟨wj
t ,

d

dt
wj

t ⟩Hk
. (38)

It remains to compute the components d
dtw

j
t , for j ∈ [dz]. Starting from the definition, using

integration by parts, the chain rule, and then integration by parts again, we have
d

dt
wj

t (z) =
d

dt

∫
k(z′, z)∂z′

i
log

(
µt

πθt

)
(z′)µt(z

′)dz′ (39)

= −
∫

d

dt

[[
∂z′

j
log πθt(z

′)k(z′, z) + ∂z′
j
k(z′, z)

]
µt(z

′)
]
dz′ (40)

= −
∫ 〈

∇θ∂z′
j
log πθt(z

′)k(z′, z),
∂θt
∂t

〉
Rdθ

µt(z
′)dz′

−
∫ [

∂z′
j
log πθt(z

′)k(z′, z) + ∂z′
j
k(z′, z)

] ∂
∂t
µt(z

′)dz′ (41)

=

∫ 〈
∇θ∂z′

j
log πθt(z

′)k(z′, z), vt
〉
Rdθ

µt(z
′)dz′

+

∫ 〈
∇z′

[
∂z′

j
log πθt(z

′)k(z′, z) + ∂z′
j
k(z′, z)

]
, wt(z

′)
〉
Rdz

µt(z
′)dz′ (42)

=

∫ 〈
∇θ∂z′

j
log πθt(z

′)k(z′, z), vt
〉
Rdθ

µt(z
′)dz′

+

∫ dz∑
i=1

[
∂z′

i
∂z′

j
log πθt(z

′)k(z′, z) + ∂z′
j
log πθt(z

′)∂z′
i
k(z′, z)

+∂z′
i
∂z′

j
k(z′, z)

]
wj

t (z
′)µt(z

′)dz′. (43)

Now, using the fact that each component of wj
t is an elements of the RKHS Hk, and thus satisfies the

reproducing property wj
t (z) = ⟨wj

t , k(z, ·)⟩Hk
, we can rewrite the previous display as

I
(2)
t (θt, µt) = 2

dθ∑
i=1

dz∑
j=1

∫
vit [∇θ∇z log πθt(z)]ij w

j
t (z)µt(z)dz

+ 2

d∑
i=1

dz∑
j=1

∫ [
∂zi∂zj log πθt(z)w

j
t (z) + ∂zi log πθt(z)∂zjw

j
t (z)

+∂zj∂ziw
j
t (z)

]
wj

t (z)µt(z)dz. (44)

Substituting (37) and (44) into (31), before once more making use of the reproducing property, we
thus have

dI(θt, µt)

dt
= 2

dθ∑
i=1

dθ∑
j=1

∫
vit
[
−∇2

θ log πθt(z)
]
ij
vjt µt(z)dz

+ 2

dθ∑
i=1

dz∑
j=1

∫
vit [∇θ∇z log πθt(z)]ij w

j
t (z)µt(z)dz

+ 2

dz∑
i=1

dz∑
j=1

∫ [
∂zi∂zj log πθt(z)w

j
t (z) + ∂zi log πθt(z)∂zjw

j
t (z)

+∂zj∂ziw
j
t (z)

]
wj

t (z)µt(z)dz (45)

=

dθ∑
i=1

dθ∑
j=1

vitA
ij
t v

j
t +

dθ∑
i=1

dz∑
j=1

vit⟨B
ij
t , w

j
t ⟩Hk

+

dz∑
i=1

dz∑
j=1

⟨wi
t, C

ij
t w

j
t ⟩Hk

, (46)

17

where in the final line we have defined

Aij
t = 2

∫
[−∂θi∂θj log πθt(z)]µt(dz) (47)

Bij
t = 2

∫
k(z, ·)∂θi∂zi log πθt(z)µt(z)dz (48)

Cij
t = 2

∫
k(z, ·)⊗ k(z′, ·)∂zi∂zj log π(z)µt(z)µt(z

′)dzdz′

+ 2

∫
∂zik(z, ·)⊗ k(z′, ·)∂zi log πθt(z)µt(z)dzµt(z

′)dz′

+ 2

∫
∂zik(z, ·)⊗ ∂zjk(z

′, ·)µt(z)µt(z
′)dzdz′. (49)

We now need to bound each of these terms in an appropriate sense. In particular, if we can show
that ||Aij

t ||op ≤ D1, ||Bij
t ||Hk

≤ D2, and ||Cij
t ||HS ≤ D3, for all t ≥ 0, where || · ||HS denotes the

Hilbert-Schmidt norm, then it follows immediately that∣∣∣∣dI(θt, µt)

dt

∣∣∣∣ ≤ D1

dθ∑
i=1

||vit||2 +D2d
1
2

θ d
1
2
z

(dθ∑
i=1

||vit||2
) 1

2
(dz∑
i=1

||wj
t ||2Hk

) 1
2 +D3dz

dz∑
i=1

||wi
t||2Hk

≤ D
(
||vt||2Rdθ

+ 2||vt||Rdθ ||wt||Hdz
k

+ ||wt||2Hdz
k

)
(50)

≤ 2D
(
||vt||2Rdθ

+ ||wt||2Hdz
k

)
:= βI(θt, µt), (51)

where in the first line we have used the Cauchy-Schwarz inequality, in the second line we have defined
the constant D = max(D1,

1
2D2d

1
2

θ d
1
2
z , D3dz), and in the final line we have used a2 + 2ab+ b2 =

(a+ b)2 ≤ 2(a2 + b2), and set β = 2D. It remains to obtain the bounds on Aij
t , Bij

t , and Cij
t .

For the first term, we just require the boundedness of the Hessian HVz : Rdθ → Rdθ of the function
Vz : θ 7→ − log πθ(z), for each z ∈ Z , which is guaranteed by Assumption 2. In particular, we recall
that ||HVz

||op ≤M1, from which it immediately follows that ||Aij
t ||op ≤ 2M1. For the second term,

using the boundedness of HVz,θ
(Assumption 6), and the boundedness of the kernel (Assumption 1),

we have

||Bij
t ||Hk

≤ 2

∫
||k(z, ·)||Hk

|∂θi∂zi log πθt(z)|µt(z)dz ≤ BM3. (52)

For the final term, we argue similarly to in [36, Proposition 8]. In particular, using the boundedness of
the Hessian HVθ

: Rdz → Rdz (Assumption 2) of the function Vθ : z 7→ − log πθ(z) for each θ ∈ Θ,
and the boundedness of the kernel and its gradient (Assumption 1), we have

||Cij
t ||HS ≤ 2

∫
||k(z, ·)||Hk

|∂zi∂zj log πθt(z)|µt(z)dz||k(z′, ·)||Hk
µt(z

′)dz′

+ 2

∫
||∂zik(z, ·)||Hk

|∂zi log πθt(z)|µt(z)dz

∫
||k(z′, ·)||Hk

µt(z
′)dz′

+ 2

(∫
||k(z, ·)||Hk

µt(z)dz

)2

≤ 2B2

(
M2 +

∫
|∂zi log πθt(z)|µt(z)dz + 1

)
.

(53)

To bound the remaining integral, we use the linear growth of the function z 7→ ∇z log πθ(z)
(Assumption 5), and the bounded moment condition stated in the proposition. From these assumptions,
it follows that ∫

|∂zi log πθt(z)|µt(dz) ≤
∫
L [1 + ||z||]µt(z)dz ≤ L(1 + C). (54)

Substituting (54) into (53), we thus have that ||Cij
t ||HS ≤ 2B2(1 + CL+ L+M2). Thus, setting

D1 = 2M1, D2 = BM3, D3 = 2B2(1 +CL+L+M2), and using the argument in (50) - (51), we
have established the result in (30).

18

It remains to establish that I(θt, µt) → 0. Once more, we will utilize some of the ideas from the
proofs of [38, Theorem 3] and [36, Proposition 8]. We begin by observing that the free energy can be
written as

F(θ, µ) =

∫
∇z log

(
µ

πθ

)
µ(z)dz (55)

=

∫
log

(
µ

pθ(.|x)pθ(x)

)
µ(z)dz (56)

=

∫
log

(
µt

pθt(·|x)

)
µ(z)dz︸ ︷︷ ︸

KL(µt|pθt (·|x))

− log pθ(x). (57)

Rearranging (57), using the non-negativity of the KL divergence, and finally the fact that the free
energy dissipates along the flow of the SVGD EM dynamics (Proposition 1), it then follows that

log pθt(x) = −F(θt, µt) + KL(µt|pθt(·|x)) ≥ F(θt, µt) ≥ F(θ0, µ0). (58)

Under Assumption 4, the set ΘF0 = {θ ∈ Θ : log pθ(x) ≥ F(θ0, µ0)} is compact. This, along with
(58), immediately implies that (θt)t≥0 is relatively compact. We now return to (57). In particular,
once more rearranging this equation, we have that, for each t ≥ 0,

inf
θ∈ΘF0

KL(µt|pθ(·|x)) ≤ KL(µt|pθt(·|x)) = F(θt, µt) + log pθt(x) (59)

≤ F(θ0, µ0) + log pθt(x) ≤ F(θ0, µ0) + sup
θ∈ΘF0

log pθ(x). (60)

It thus follows, using also the fact that the KL divergence has compact sub-level sets in the weak
topology [69, Theorem 20], that the family (µt)t≥0 is weakly relatively compact. Based on these two
observations, and also the (weak) continuity of I(θ, µ), we can conclude that supt≥0 I(θt, µt) <∞.
Thus, using the bound (30) that we established earlier in the proof, we have that | ddtI(θt, µt)| ≤ K
for some K > 0.

Finally, we are ready to show that I(θt, µt) → 0. We follow closely the final part of the proof of
[36, Proposition 8], which we can now apply almost verbatim. For the interested reader, we also
provide the details here. We will argue by contradiction. In particular, suppose that I(θt, µt), so that
there exists a sequence tm → ∞ such that I(θtm , µm) > ε > 0. In addition, since | ddtI(θt, θt)| is
bounded, it is uniformly K Lipschitz in time. Thus, there exists a sequence of intervals Jm of length
m
K , and centered at tm, such that I(θt, µt) ≥ ε

2 for all t ∈ Jk. Finally, integrating the dissipation over
s ∈ [0, t], we have

F(θ0, µ0)− min
(θ,µ)∈Θ×P2(Z)

F(θ, µ) ≥ F(θ0, µ0)−F(µt, θt) (61)

=

∫ t

0

I(θs, µs)ds ≥
∑

m:tm≤t

ε2

2K
, (62)

which diverges as t → ∞ since the subsequence tm → ∞. But this is contradiction, since
F(θ0, µ0) <∞. This completes the proof.

Proof of Proposition 3. Suppose we write F∗ = min(θ,µ)∈θ×P2(Z) F(θ, µ). Proceeding almost
identically to the start of the proof of Proposition 1, we have

d

dt

(
F(θt, µt)−F∗) (63)

= ⟨−∇θF(θt, µt),∇θF(θt, µt)⟩Rdθ + ⟨−Pµt
∇W2

F(θt, µt),∇W2
F(θt, µt)⟩L2(µt)

(64)

= − ||∇θF(θt, µt)||2Rdθ − ||Sµt∇W2F(θt, µt)||2Hdz
k

(65)

≤ −2λ (F(θt, µt)−F∗) . (66)

where in the final line we have used the gradient dominance condition (Assumption 7). The conclusion
now follows straightforwardly via Grömwall’s inequality.

19

B.2 Proof of Theorem 1.

Proof. For fixed t ∈ N0, consider the following decomposition

F(θt+1, µt+1)−F(θt, µt) = F(θt+1, µt+1)−F(θt+1, µt)︸ ︷︷ ︸
I

+F(θt+1, µt)−F(θt, µt)︸ ︷︷ ︸
II

. (67)

We will deal with (I) and (II) in turn, beginning with (II). First, for each τ ≥ 0, and for fixed t ∈ N0,
let θτ = θt − τ∇θF(θt, µt). We then have θ0 = θt and θγ = θt − γ∇θF(θt, µt) = θt+1. We
also have that θ̇τ = −∇θF(θt, µt+1) and θ̈τ = 0, where here we emphasize that · and ·· denote
derivatives with respect to the continuous τ ∈ R+, rather than the discrete t ∈ N0.

In addition, suppose we let g(τ) = F(θτ , µt). We then have g(0) = F(θt, µt) and g(γ) =
F(θt+1, µt). In addition, using a Taylor expansion, we have that

g(γ) = g(0) + γg′(0) +

∫ γ

0

(γ − τ)g′′(τ)dτ. (68)

Let us identify the remaining terms in this expansion. Using the chain rule, and in the second line
also the fact that θ̈τ = 0, we have that

g′(τ) = ⟨θ̇τ ,∇θF(θτ , µt)⟩Rdθ = −⟨∇θF(θt, µt),∇θF(θτ , µt)⟩Rdθ (69)

g′′(τ) = ⟨θ̇τ ,∇2
θF(θτ , µt)θ̇τ ⟩Rdθ = ⟨∇θF(θt, µt),Hessθ(F)(θτ , µt)∇θF(θt, µt)⟩Rdθ (70)

where Hessθ(F) denotes the Hessian matrix of F(·, µt). Thus, g′(0) = −||∇θF(θt, µt)||2Rdθ
, and

g′′(τ) ≤ M1||∇θF(θt, µt)||2Rdθ
, the latter by Assumption 2. Putting everything together, we thus

have that

F(θt+1, µt) ≤ F(θt, µt)− γ||∇θF(θt, µt)||2Rdθ
+M1

∫ γ

0

(γ − τ)||∇θF(θt, µt)||2Rdθ
dτ (71)

≤ F(θt, µt)− γ||∇θF(θt, µt)||2Rdθ
+
M1γ

2

2
||∇θF(θt, µt)||2Rdθ

(72)

which implies, in particular, that

F(θt+1, µt+1)−F(θt, µt) ≤ −γ
(
1− M1γ

2

)
||∇θF(θt, µt)||2Rdθ

. (73)

We will use a very similar argument to obtain an upper bound on (I), adapted appropriately to the
Wasserstein space. Here, we follow very closely the proof of [36, Proposition 5]. In the interest of
completeness, we provide this argument in full. Similar to above, for τ ≥ 0, let ψτ = id− τξ, where
ξ = Pµt

∇W2
F(θt+1, µt), and where id denotes the identity operator. In addition, let ρτ = (ψτ)#µt.

By definition, we then have ρ0 = µt and ργ = µt+1.

In addition, let us define h(τ) = F(θt+1, ρτ). Using the definition above, we have that h(0) =
F(θt+1, µt) and h(γ) = F(θt+1, µt+1). Now, via a Taylor expansion,

h(γ) = h(0) + γh′(0) +

∫ γ

0

(γ − τ)h′′(τ)dτ. (74)

Similar to before, it remains to identify the final two terms. In this case, use an appropriate chain rule
[e.g. 70, Section 8.2], we have

h′(τ) = ⟨∇W2
F(θt+1, ρτ), wτ ⟩L2(ρτ)

(75)

h′′(τ) = ⟨wτ ,HessW2(F)(θt+1, ρτ)wτ ⟩L2(ρτ)
(76)

where wτ ∈ L2(ρτ), defined according to wτ (z) = −ξ(ψ−1
τ (z)), is the velocity field which rules

the time evolution of ρτ [70, Theorem 5.34], and HessW2
(F) is the Hessian of F(θt+1, ·). It follows,

in particular, that

h′(0) = −⟨∇W2
F(θt+1, µt), ξ⟩L2(µt) = −||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

. (77)

In addition, we have that

h′′(τ) = Ez∼ρτ

[
⟨wτ (z),Hessz(− log πθt+1(z))wτ (z)

]︸ ︷︷ ︸
h1(τ)

+Ez∼ρτ

[
||J(wτ (z))||2HS

]︸ ︷︷ ︸
h2(τ)

(78)

20

where J denotes the Jacobian matrix, and || · ||HS denotes the Hilbert-Schmidt norm. It remains
to bound these two terms. Recalling that ρτ = (ψτ)#µt and wτ (z) = −ξ(ψ−1

τ (z)), and using
Assumption 2, we have

h1(τ) = Ez∼ρτ

[
⟨wτ (z),Hess(− log πθt+1

(z))wτ (z)
]

(79)

= Ez∼ρτ

[
⟨ξ(ψ−1

τ (z)),Hess(− log πθt+1(z))ξ(ψ
−1
τ (z))

]
(80)

= Ez∼µt

[〈
ξ(z),Hess(− log πθt+1

(z))ξ(z)
〉]

(81)

≤M2Ez∼µt

[
||ξ(z)||2

]
≤M2B

2 ||Sµt∇W2F(θt+1, µt)||2Hdz
k
, (82)

where in the final line we have used [36, Lemma 9], which holds under Assumption 1. For the
remaining term, first note that, by the chain rule, we have Jwτ (z) = Jξ(ψ−1

τ (z))(Jψτ)
−1(ψ−1

τ (z));
see the proof of [36, Lemma 11]. It follows that

h2(τ) = Ez∼ρτ

[
||J(wτ (z))||2HS

]
= Ez∼ρτ

[
||Jξ(ψ−1

τ (z))(Jψτ)
−1(ψ−1

τ (z))||2HS

]
(83)

= Ez∼µt

[
||Jξ(z)(Jψτ)

−1(z)||2HS

]
≤ α2B2 ||Sµt∇W2F(θt+1, µt)||2Hdz

k
, (84)

where the final display follows from [36, Lemma 9,10], which hold under Assumption 1 and
Assumptions 1 and 3, respectively, as well as our assumption on the step size. Finally, substituting
everything back into (74), we have

F(θt+1, µt+1) ≤ F(θt+1, µt)− γ||Sµt
∇W2

F(θt+1, µt)||2Hdz
k

(85)

+
(
M2 + α2

)
B2

∫ γ

0

(γ − τ)||Sµt∇W2F(θt+1, µt)||2Hdz
k

dτ (86)

≤ F(θt+1, µt)− γ||Sµt∇W2F(θt+1, µt)||2Hdz
k

(87)

+

(
M2 + α2

2

)
B2γ2||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

, (88)

and thus, in particular, that

F(θt+1, µt+1)−F(θt+1, µt) ≤ −γ
(
1− (M2 + α2)B2γ

2

)
||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

. (89)

Finally, combining (73) and (89), we have the desired bound,

F(θt+1, µt+1)−F(θt, µt) ≤ −γ
[(

1− M1γ

2

)
||∇θF(θt, µt)||2Rdθ

+

(
1− (M2 + α2)B2γ

2

)
||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

]
. (90)

B.3 Proof of Corollary 1.

Proof. Using Theorem 1, and the definition of cγ , we have that

F(θt+1, µt+1)−F(θt, µt) ≤ −cγ
(
||∇θF(θt, µt)||2Rdθ + ||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

)
.

Let F∗ = min(θ,µ)∈Θ×P2(Z) F(θ, µ). Using the previous inequality, and the definition of F∗, we
have

−F(θ0, µ0) ≤ −F(θ1, µ1) ≤ (F(θT+1, µT+1)−F∗)−F(θ1, µ1), (91)
Rearranging, and using a telescoping sum, it follows straightforwardly that

− (F(θ0, µ0)−F∗) ≤
T∑

t=1

F(θt+1, µt+1)−F(θt, µt) (92)

≤ −cγ
T−1∑
t=0

(
||∇θF(θt, µt)||2Rdθ + ||Sµt

∇W2
F(θt+1, µt)||2Hdz

k

)
. (93)

Finally, and dividing both sides by −cγT , we have the required conclusion.

21

C Marginal SVGD EM and Marginal Coin EM

In certain models, the M step is tractable. In other words, it is possible to derive a tractable
expression for θ∗(µ) = argmaxµ∈P2(Z) F(θ, µ). Thus, in particular, given the empirical measure
µN = 1

N

∑N
j=1 δzj , we can compute θ∗(z1:N) := θ∗(µ

N), where z1:N = (z1, . . . , zN) ∈ ZN . In
such cases, instead of SVGD EM (Alg. 1) or Coin EM (Alg. 2), we can use marginal variants of
these algorithms, in which the θ updates are now exact.

Algorithm 3 Marginal SVGD EM
input: number of iterations T , number of particles N , initial particles {zi0}Ni=1 ∼ µ0, initial θ0,
target density π, kernel k, function µ 7→ θ∗(µ), learning rate γ.
for t = 1, . . . , T − 1 do

For i ∈ [N]

zin+1 = zin +
γ

N

∑N
j=1

[
k(zjt , z

i
t)∇z log πθ∗(z1:N

t)(z
j
t) +∇zj

t
k(zjt , z

i
t)
]

end for
return θT and {ziT }Ni=1.

Algorithm 4 Marginal Coin EM
input: number of iterations T , number of particles N , initial particles {zi0}Ni=1 ∼ µ0, initial θ0,
target density π, kernel k, function µ 7→ θ∗(µ).
for t = 1, . . . , T do

For i ∈ [N]

zit = zi0 +

∑t−1
s=1

1
N

∑N
j=1 k(z

j
s , z

i
s)∇z log πθ∗(z1:N

s)(z
j
s) +∇zjk(zjs , z

i
s)

t

×
(
1 +

∑t−1
s=1⟨

1
N

∑N
j=1 k(z

i
s, z

j
s)∇z log πθ∗(z1:N

s)(z
j
s) +∇zjk(zjs , z

i
s), z

i
s − zi0⟩

)
end for
return θT and {ziT }Ni=1.

D Adaptive Coin EM

In Sec. 2.4, the update equation given in (11), and thus the update equations (12) - (13), and the
update equations in Alg. 2, were given under the assumption that the sequence of outcomes, in this
case (cθt)t∈[T] = (∇θF(θt, µ

N
t))t∈[T] and (cµt)t∈[T] = (Pµt

∇W2
F(θt, µ

N
t))t∈[T], were bounded

above by 1 (see the remark in Footnote 2). In practice, of course, this may not be the case. If, instead,
there exists a known constant which upper bounds (cθt)t∈[T] and (cµt)t∈[T], then one can simply
replace these quantities by their normalized versions in Alg. 2. In the more unlikely scenario that such
a constant is unknown, we can instead use an adaptive version of Coin EM, in which an empirical
estimate of this constant is updated as the algorithm progresses; see [55, Sec. 6] and [62, App. D] for
precedents. This algorithm, which we recommend and use in all experiments, is summarized in Alg.
5.

In addition, once more following [55, Sec. 6], whenever we apply CoinEM to a Bayesian neural
network (see Sec. 4.3 and App. E.5), we further alter the parameter update equation in Alg. 5 to read
as

θt,j = θ0,j +

∑t−1
s=1 c

θ
s,j

max(Gθ
t,j + Lθ

t,j , 100L
θ
t,j)

(1 +
Rθ

t,j

Lθ
t,j

), (94)

with an analogous modification for the particle update equation. It is worth noting that both of these
adaptive versions of the CoinEM algorithm remain entirely tuning free.

22

Algorithm 5 Adaptive Coin EM
input: number of iterations T , number of particles N , initial particles {zi0}Ni=1 ∼ µ0, initial θ0,
target density π, kernel k
initialize: for i ∈ [N]: Lθ

0,j = 0, Gθ
0,j = 0, Rθ

0,j = 0; for i ∈ [N] and j ∈ [d], Lz,i
0,j = 0,

Gz,i
0,j = 0, Rz,i

0,j = 0.
for t = 1, . . . , T do

Compute

cθt−1 =
1

N

N∑
j=1

∇θ log πθt−1(z
j
t−1) (parameter gradient)

for j = 1, . . . , dθ do
Compute

Lθ
t,j = max(Lθ

t−1,j , |cθt,j |) (max. observed scale)

Gθ
t,j = Gθ

t−1,j + |cθt−1,j | (sum of absolute value of gradients)

Rθ
t,j = max(Rθ

t−1,j + ⟨cθt−1,j , θt−1,j − θ0,j⟩, 0) (total reward)

θt,j = θ0,j +

∑t−1
s=1 c

θ
s,j

Gθ
t,j + Lθ

t,j

(1 +
Rθ

t,j

Lθ
t,j

). (parameter update)

end for
for i = 1, . . . , N do

Compute

cz,it−1 =
1

N

N∑
j=1

k(zjt−1, z
i
t−1)∇zj log πθt(z

j
t−1) +∇zjk(zjt−1, z

i
t−1) (particles gradient)

for j = 1, . . . , dz do
Compute

Lz,i
t,j = max(Lz,i

t−1,j , |c
i
t−1,j |) (max. observed scale)

Gz,i
t,j = Gz,i

t−1,j + |cz,it−1,j | (sum of absolute value of gradients)

Rz,i
t,j = max(Rz,i

t−1,j + ⟨cz,it−1,j , z
i
t−1,j − zi0,j⟩, 0) (total reward)

zit,j = zi0,j +

∑t−1
s=1 c

z,i
s,j

Gz,i
t,j + Lz,i

t,j

(1 +
Rz,i

t,j

Lz,i
t,j

). (particles update)

end for
end for

end for
output: θT and (ziT)

N
i=1.

E Additional Experimental Details

We implement all of the algorithms using Python 3 and JAX [10]. We perform all experiments using
a MacBook Pro 16" (2021) laptop with Apple M1 Pro chip and 16GB of RAM.

E.1 Toy hierarchical model

Implementation Details. For the results in Fig. 1, we initialize all methods with θ0 ∼ N (0, 0.12) and
zi0 ∼ N (0, 1). We use N = 10 particles and run each algorithm for T = 500 iterations. Additional
results for larger numbers of particles are given in App. F.1. In Fig. 1(a), we run each algorithm
over a grid of 50 logarithmically spaced learning rates γ ∈ [10−5, 103]. We use Adagrad [25] to
automatically adjust the learning rates of SVGD EM and PGD. In Fig. 1(b) and Fig. 1(c), we run
each algorithm using the learning rate which obtained the lowest final iterate MSE in Fig. 1(a).

23

For Fig. 2(a) and Fig. 2(b), we run the algorithms for T = 5000 iterations, and report the empirical
variance of the latent particles (zit)

N
i=1 for each t ∈ [0, T]. In Fig. 2(c), we run each algorithm for

T = 250 iterations with N = 50 particles. For Coin EM and SVGD EM, we compute the MSE
between the empirical variance of the final particles (ziT)

N
i=1, and the true posterior variance, which

in this case is just given by 0.5 [38, App. E.1]. For PGD and SOUL, we use the empirical variance of
time-averaged particles, due to the noise used in the particle updates. All results are averaged over 10
random seeds (5 random seeds for Fig. 2(c)), and we report 95% bootstrap CIs as well as the mean.

E.2 Bayesian logistic regression

Model. We consider the setup in [20, Sec. 4.1]. The observed data is D = {xi, yi}Ni=1, where
xi ∈ Rdx are dx-dimensional real-valued covariates, and yi ∈ {0, 1} are binary class labels. We
assume the labels yi are conditionally independent given the features xi and the regression weights
z ∈ Rdz , with p({yi, xi}|z) = σ(xTi z)

yi [1− σ(xTi z)]
1−yi for i ∈ [N], where σ(u) := eu/(1 + eu)

denotes the standard logistic function. We place a Gaussian prior on the latent weights, p(z) =
N (z|θ1dz

, 51dz), for some real parameter θ ∈ R which we would like to estimate. The model is thus

pθ(z,D) = N (z|θ1dz
, 51dz

)

N∏
i=1

σ(xTi z)
yi [1− σ(xTi z)]

1−yi . (95)

Data. We fit this model using the Wisconsin Breast Cancer dataset [72]. This dataset contains 683
datapoints, each with nine features xi ∈ R9 extracted from a digitized image of a fine needle aspirate
of a breast mass, and a label yi ∈ {0, 1} indicating whether the mass is benign (yi = 0) or malign
(yi = 1). We normalize the features so that each has mean zero and unit standard deviation across the
dataset, and split the data using a random 80-20 train-test split.

Implementation Details. For the results in Fig. 3, following [20, 38], we initialize θ0 = 0 and
zi0 ∼ N (0, 1). In Fig. 3(a) and Fig. 3(b), we use a learning rate of γ = 0.02 for PGD, PMGD, and
SOUL, and a learning rate of γ = 0.2 for SVGD EM, which typically obtains its best performance for
a higher learning rate than the other methods (see, e.g., Fig. 1(a) or Fig. 2(c)). We run each algorithm
with N = 100 particles for T = 800 iterations. In Fig. 3(c), we run each algorithm using a grid
of 50 logarithmically spaced learning rates γ ∈ [10−10, 102], using N = 20 particles and T = 400
iterations. We repeat each experiment over 10 random test-train splits of the data.

E.3 Bayesian logistic regression (alternative model)

In App. F.3, we present results for an alternative Bayesian logistic regression model, which were
omitted from the main text due to space constraints. Here, we provide full details of this model.

Model. We now follow the setup in [29]. Similar to before, the observed data is given by D =
{xi, yi}Ni=1, where xi ∈ Rdx are dx-dimensional real-valued covariates, and yi ∈ {0, 1} are binary
class labels. Meanwhile, the latent variables are now given by z = {w, logα}, consisting of a dx-
dimensional real-valued regression coefficientswk ∈ Rdx , and a positive precision parameter α ∈ R+.
Finally, the parameters are given by θ = (log a, log b), for positive a, b ∈ R+. As before, we assume
that the labels yi are conditionally independent given the features xi and the regression weights
z ∈ Rdz , with p({yi, xi}|z) = σ(xTi z)

yi [1− σ(xTi z)]
1−yi for i ∈ [N], where σ(u) := eu/(1 + eu)

denotes the standard logistic function. We now also assume that p(wk|a) = N(wk; 0, α
−1) for

k ∈ [dx], and place a Gamma prior on α, so p(α) = Γ(α|a, b). In this case, the model is given by

pθ(z, x) = Gamma(α|a, b)
dx∏
k=1

N(wk; 0, α
−1)

N∏
i=1

σ(xTi z)
yi [1− σ(xTi z)]

1−yi . (96)

Data. We fit this model to several datasets from the UCI Machine Learning repository [24]: the
Covertype dataset, which contains 581012 datapoints and 54 attributes, the Banknote dataset, which
contains 1372 datapoints and 4 features, and the Cleveland heart disease dataset, which contains 303
datapoints and 13 features. We split the dataset into train-test sets using a 70-30 train-test split.

Implementation Details. For the results in Fig. 13, we initialize a0 = 1, b0 = 0.01, αi
0 ∼

Gamma(a0, b0), and wi
0 ∼ N (0, 1/αi

0). We run each algorithm using N = 10 particles for T =
1000 iterations, over a grid of logarithmically spaced learning rates γ ∈ [10−9, 101]. We repeat each
experiment over 10 random train-test splits of the data.

24

E.4 Bayesian neural network

Model. We consider the setup described in [30, 45]. The observed data is of the form D = {xi, yi}Ni=1,
where xi ∈ Rdx are dx-dimensional real-valued covariates, and yi ∈ R are real-valued responses. We
assume that the responses yi are conditionally independent given the covariates xi and the network
weights w ∈ Rdw , and that p(yi|xi, w) = N (yi|f(xi, w), γ−1) for i ∈ [n], where f(xi, w) denotes
the output of the neural network. We place a Gaussian prior on each of the neural network weights,
namely p(wj) = N (wj |0, λ−1), for j ∈ [dw]. To complete our model, we assume a Gamma prior
for the inverse covariance γ ∈ R+, and a Gamma hyperprior on the inverse covariance λ ∈ R+, so
p(γ) = Gamma(γ|aγ , bγ) p(λ) = Gamma(λ|aλ, bλ). Our model thus takes the form

pθ(z,D) = Gamma(γ|aγ , bγ)Gamma(λ|aλ, bλ)
N∏
i=1

dz∏
j=1

N (yi|f(xi, w), γ−1)N (wj |0, λ−1)

(97)
where z = (w, log λ, log γ) ∈ Rdw+1+1, and θ = (log aγ , log bγ , log aλ, log bλ). Rather than fixing
the parameters as in [30, 45], we allow these parameters to be learned from the data.

Data. We fit the Bayesian neural network using several UCI datasets [24]. The number of datapoints
varies from 506 in the Boston Housing (Boston) dataset, to 11934 in the Naval Propulsion (Naval)
dataset. The number of features is between 4 in the Combined Cycle Power Plant (Power) to 16 in the
Naval Propulsion dataset (Naval). In each case, we normalize the features so that each has mean zero
and unit standard deviation across the dataset, and split the data using a random 90-10 train-test split.

Implementation Details. For the results in Fig. 4 and Fig. 14, we use a neural network with a
single hidden layer and with 50 hidden units, and a Relu activation function. We use Adagrad [25]
to automatically adjust the learning rates of SVGD EM and PGD. We initialize the parameters by
setting aγ0

= 1, bγ0
= 0.1, aλ0

= 1, bλ0
= 0.1. Meanwhile, we initialize the particles for the

precisions as λ ∼ Gamma(aλ0 , bλ0) and γ ∼ Gamma(aγ0 , bγ0), and for the weights w according
to zero-mean Gaussians with variance given by the reciprocal of the input dimension (the latent
dimension for the first layer, and the number of hidden units for the second). We run each algorithm
using N = 20 particles for T = 1000 iterations, over a logarithmically spaced grid of 30 learning
rates γ ∈ [10−9, 101]. We repeat each experiment over 10 random train-test splits of the data.

E.5 Bayesian neural network (alternative model)

In App. F.5, we present results for an alternative Bayesian neural network model. Here, we provide
full details of this model.

Model. We consider the setting described in [74, Setion 6.5] and [38, Sec. 3.2], applying a neural
network to classify MNIST images [41]. In particular, we use a Bayesian two-layer neural network
with tanh activation functions, a softmax output layer, and Gaussian priors on the weights.

In this case, the observed data is of the form D = {xi, yi}Ni=1, where xi ∈ R784 are 28×28 grayscale
images of handwritten digits, and yi ∈ {0, 1} are labels denoting whether the image is a 4 or 9. We
normalise the 784 features so that each has mean zero and unit standard deviation across the dataset.
We assume that the labels yi are conditionally independent given the features xi and the network
weights z = (w, v), where w ∈ Rdw=40×784 and v ∈ Rdv=2×40, and that

p(yi|xi, w) exp

 40∑
j=1

vij tanh

(
784∑
k=1

wjkxik

) (98)

for i ∈ [n]. We then place Gaussian priors on the weights of input layer and the output layer, viz
p(wk) = N (wk|0, e2α), for k ∈ [784] and p(vj) = N (vj |0, e2β) for j ∈ [40]. In this case, rather
than assigning a hyperprior to α and β, we will learn them from data. Thus, our model takes the form

pθ(z,D) =

40∏
j=1

N (wk|0, e2α)
784∏
k=1

N (vk|0, e2β)
N∏
i=1

p(yi|xi, w) (99)

where z = (w, v) ∈ R40×784+2×40, and θ = (α, β).

25

Data. We use the MNIST dataset [41], which contains 70’000 28×28 grayscale images xi ∈ R784 of
handwritten digits between 0 and 9, each with an accompanying label yi ∈ {0, 1, . . . , 9}. Following
[38, 74], we subsample 1000 points with labels 4 and 9. We normalize the features so that each has
mean zero and unit standard deviation across the dataset, and split the data using a random 80-20
train-test split.

Implementation Details. For the results in Fig. 15 - 18, we initialize α0 = 0, β0 = 0, and
wi

k ∼ N (0, e2α0), vj ∼ N (0, e2β0), and run each algorithm for T = 500 iterations. In addition, in
Fig. 18, we use N = 10 particles, and run each algorithm for 50 logarithmically spaced learning rates
γ ∈ [10−9, 101]. We repeat each experiment over 5 (Fig. 15 - 17) or 10 (Fig. 18) random train-test
splits of the data.

E.6 Latent space network model

Model. We consider the latent space network model first introduced in [31], where, in the context of
social networks, each entity is represented by a node of the network. Edges between nodes indicate
connections between entities. We restricted ourselves to binary undirected graphs, where an edge in
the network between nodes i and j is represented by a binary indicator, yi,j = {0, 1}.

The latent space network model [31, 68] is popular network model to simplify complex network data
by embedding the network’s nodes in a lower-dimensional space z. A general form of this model is,

Yi,j ∼ Bernoulli(pij) i ̸= j; i, j = 1, . . . , n (100)
logit(pij) = θ + d(zi, zj),

where d(·, ·) is a function of the similarity between the latent variables. In this paper, we let
d(zi, zj) = ||zi − zj || be the Euclidean distance between zi and zj , although other similarity metrics
which preserve the triangle inequality are also possible.

Data. We use a dataset curated by [6] from fan scripts on the website Genius. The dataset contains
the frequency of interactions among characters in the first four season of the TV series Game of
Thrones. Each season is represented by a binary undirected network, where an edge indicates that
two characters interacted at least 10 times in that season. For the purpose of visualization, we filter
out minor characters with fewer than 10 interactions per season. The dataset covers four seasons of
the TV series, one network per season, with n = 165 nodes each season.

Implementation Details. We follow a similar inference scheme as [31]. Firstly, we find the maximum
likelihood estimates (MLEs) for (θ, z) by maximizing the likelihood function (100). Using the MLEs
(θ̂, ẑ), we initialize PGD, SOUL and Coin EM with θ0 = θ̂ and for i = 1, . . . , N , set zi0 ∼ N (ẑ, 0.1).
One of the well-known challenges of using latent space network models is that a set of points
in Euclidean space will have the same distances regardless of how they are rotated, reflected, or
translated. This means that the likelihood (100) is invariant to transformation of the latent positions z.
This issue can be resolved by using a Procrustes transformation of the latent variables, relative to a
fixed point, which we choose to be the MLE, ẑ. Therefore, for all zit in all algorithms we store and
plot z̃it = argminTz tr(ẑ−Tzit)

⊤(ẑ−Tzit). For the SOUL and PGD algorithms we use learning rate
parameter γ = 0.001. For all algorithms we use N = 10 particles at T = 500 iterations.

F Additional Numerical Results

F.1 Toy hierarchical model

In this section, we provide additional results for the toy hierarchical model studied in Sec. 4.1.

Additional results for a different number of particles. We first consider the impact of varying the
number of particles. In Fig. 6 and Fig. 7, we replicate the results in Fig. 1, now using N = 20 and
N = 50 particles, rather than N = 10. There is little to distinguish between the two sets of results.
In particular, all methods still converge to θ∗; and Coin EM and SVGD EM still tend to achieve a
lower MSE than PGD and SOUL. We note that the appearance of wide blue bands in Fig. 6 and Fig.
7 (and Fig. 1) is an artifact of the plotting resolution, and the logarithmic scale. In truth, the CoinEM
parameter estimates oscillate rapidly as they convergence towards the marginal maximum likelihood
estimate, giving the appearance of these bands at this resolution. This type of oscillatory convergence
is common for coin betting algorithms; see, e.g., [52, pg. 36] for a very simple example.

26

10 510 410 310 210 1 100 101 102 103

Learning Rate
10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
Soul

(a) MSE(θt) vs learning rate.

0 100 200 300 400 500
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
SOUL

(b) MSE(θt) vs t.

0 100 200 300 400 500
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

M
SE

 (P
os

te
rio

r M
ea

n) Coin EM
SVGD EM
PGD
SOUL

(c) MSE
(

1
N

∑N
i=1 z

i
t

)
vs t.

Figure 6: Additional results for the toy hierarchical model with N = 20 particles. MSE of the
parameter estimate θt as a function of the learning rate after T = 500 iterations (a); and MSE of the
parameter estimate (b) and the posterior mean (c) as a function of the number of iterations, using the
optimal learning rate from (a).

10 510 410 310 210 1 100 101 102 103

Learning Rate
10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
Soul

(a) MSE(θt) vs learning rate.

0 100 200 300 400 500
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

102
M

SE
 (T

he
ta

 E
st

im
at

e) Coin EM
SVGD EM
PGD
SOUL

(b) MSE(θt) vs t.

0 100 200 300 400 500
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

M
SE

 (P
os

te
rio

r M
ea

n) Coin EM
SVGD EM
PGD
SOUL

(c) MSE
(

1
N

∑N
i=1 z

i
t

)
vs t.

Figure 7: Additional results for the toy hierarchical model with N = 50 particles. MSE of the
parameter estimate θt as a function of the learning rate after T = 500 iterations (a); and MSE of the
parameter estimate (b) and the posterior mean (c) as a function of the number of iterations, using the
optimal learning rate from (a).

Additional results for different learning rates. Next, we provide an additional demonstration of
how the choice of learning rate can affect the parameter estimates generated by PGD, SOUL, and
SVGD EM. In particular, in Fig. 8, we plot the parameter estimates generated by SVGD EM, PGD,
and SOUL for three different learning rates: the optimal learning rate as determined by Fig. 7(a), a
smaller learning rate, and a larger learning rate ‘at the edge of stability’.The specific learning rates
{γopt, γsmall, γlarge} used in this figure {0.79, 0.039, 100.00} for SVGD EM,3 {0.26, 0.013, 1.15}
for PGD, and {0.0013, 0.000066, 0.018} for SOUL.

0 20 40 60 80 100
Iteration

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Th
et

a

Coin EM
SVGD EM (Optimal LR)
SVGD EM (Small LR)
SVGD EM (Big LR)

(a) SVGD EM

0 20 40 60 80 100
Iteration

0.5

0.0

0.5

1.0

1.5

2.0

Th
et

a

Coin EM
PGD (Optimal LR)
PGD (Small LR)
PGD (Big LR)

(b) PGD.

0 20 40 60 80 100
Iteration

4

2

0

2

4

6

Th
et

a

Coin EM
SOUL (Optimal LR)
SOUL (Small LR)
SOUL (Big LR)

(c) SOUL.

Figure 8: Additional results for the toy hierarchical model with different learning rates. The
sequence of parameter estimates generated by SVGD EM, PGD, and SOUL, for three different
learning rates: the ‘optimal’ learning rate from Fig. 7(a), a smaller learning rate, and a larger learning
rate at the edge of stability.

Additional results for a different initialization. We now consider the impact of varying the
initialization. In Fig. 9, we repeat the experiment in Sec. 4.1, but now using an initialization far away

3We note that, when SVGD EM is implemented with an adaptive method such as Adagrad [25], as is the case
here, it remains stable even for very large values of the learning rate.

27

from the true parameter θ = 1. In particular, we now initialize the parameters using θ0 ∼ N (10, 0.12).
The results are rather similar to before. In particular, Coin EM and SVGD EM both converge rapidly
to the true parameter, and tend to outperform the competitors.

10 510 410 310 210 1 100 101 102 103

Learning Rate
10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
Soul

(a) MSE(θt) vs learning rate.

0 100 200 300 400 500
Iteration

10 16

10 13

10 10

10 7

10 4

10 1

102

M
SE

 (T
he

ta
 E

st
im

at
e) Coin EM

SVGD EM
PGD
SOUL

(b) MSE(θt) vs t.

0 100 200 300 400 500
Iteration

10 15
10 13
10 11
10 9
10 7
10 5
10 3
10 1
101

M
SE

 (P
os

te
rio

r M
ea

n) Coin EM
SVGD EM
PGD
SOUL

(c) MSE
(

1
N

∑N
i=1 z

i
t

)
vs t.

Figure 9: Additional results for the toy hierarchical model with initialization θ0 ∼ N (10, 0.1).
MSE of the parameter estimate θt as a function of the learning rate after T = 500 iterations (a);
and MSE of the parameter estimate (b) and the posterior mean (c) as a function of the number of
iterations, using the optimal learning rate from (a).

F.2 Bayesian logistic regression

In this section, we present additional numerical results for the Bayesian logistic regression model in
Sec. 4.2.

Additional results for different initializations. In Fig. 10, we plot the sequence of parameter esti-
mates ouput by Coin EM, SVGD EM, PGD, PMGD, and SOUL, for different parameter intializations.
In particular, we now initialize the parameter at θ0 = 10 or θ0 = −10, compared to θ0 = 0 in Fig.
3(a). In both cases, all of methods converge to a similar value. SOUL is known to obtain accurate
estimates of θ∗ in this example [20], provided the learning rate is suitably small, and thus we use
this as a benchmark. In these examples, where the parameter estimate is initialized far from the true
parameter, the shorter transient exhibited by Coin EM relative to the other methods is even more
evident.

0 100 200 300 400 500 600 700 800
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(a) θ0 = 10.

0 100 200 300 400 500 600 700 800
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(b) θ0 = −10.

Figure 10: Additional results for the Bayesian logistic regression in Sec. 4.2. Parameter estimates
θt from Coin EM, SVGD EM, PGD, SOUL, and PMGD, initialized at (a) θ0 = 10 and (b) θ0 = −10.

Additional results for different learning rates. In Fig. 11, we plot the sequence of parameter
estimates ouput by Coin EM, SVGD EM, PGD, PMGD, and SOUL, for different learning rates. In
particular, we now use smaller learning rates of γ = 0.001 (PGD, PMGD, SOUL) or γ = 0.005
(SVGD EM), or larger learning rates of γ = 0.1 (PGD, PMGD, SOUL) or γ = 0.5 (SVGD EM).
For reference, we also include the results for the original learning rates of γ = 0.02 (PGD, PMGD,
SOUL) or γ = 0.2 (SVGD EM) in Fig. 3(a) (see Sec. E.2).

These figures illustrate the difficulties associated with tuning the learning rate for PGD, PMGD,
SOUL and, to a lesser extent, SVGD EM. In particular, if the learning rate is chosen too small (Fig.

28

0 100 200 300 400 500 600 700 800
Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(a) Original Learning Rate.

0 100 200 300 400 500 600 700 800
Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(b) Smaller Learning Rate.

0 100 200 300 400 500 600 700 800
Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pa
ra

m
et

er
 E

st
im

at
e

Coin EM
SVGD EM
PGD
SOUL
PMGD

(c) Larger Learning Rate.

Figure 11: Additional results for the Bayesian logistic regression in Sec. 4.2. Parameter estimates
θt from Coin EM, SVGD EM, PGD, SOUL, and PMGD, using (a) smaller learning rates γ = 0.001
(PGD, SOUL, PMGD) and γ = 0.005 (SVGD EM); and (b) larger learning rates γ = 0.1 (PGD,
SOUL, PMGD) and γ = 0.5 (SVGD EM).

11(b)), then convergence to the true parameter θ∗ is painfully slow. On the other hand, if one selects a
larger learning rate (Fig. 11(c)), convergence is more rapid, but one incurs a (significant) bias in the
resulting parameter estimates. This is evident if one compares the asymptotic parameter estimates
obtained in Fig. 11(a) and in Fig. 11(c). For PGD, PMGD, and SOUL, this bias originates in the bias
associated with an Euler-Maruyama discretization of the Langevin dynamics; see, e.g., the discussion
in [38, Sec. 2]. Interestingly, SVGD EM does not seem to incur this bias to the same extent, despite
the error associated with the discretization of the continuous-time SVGD dynamics. Coin EM, of
course, has no dependence on the learning rate, and is consistent across these experiments.

Additional results for different numbers of particles. Finally, we consider the impact of changing
the number of particles uses in the latent variable updates on the predictive performance. In Fig. 12,
we repeat the experiment used to generate Fig. 3(c), but now using N = 5, 20, 100 particles. In this
example, we see that there is little to be gained from increasing the number of particles in terms
of the predictive performance, other than a minor increase in the performance of the learning-rate
dependent methods (SVGD EM, PGD, SOUL) for sub-optimal choices of the learning rate. In this
example, the posteriors are peaked and unimodal (see [20, Fig. 2]), and can be approximated well
using even a single particle in the vicinity of the modes.

10 9 10 7 10 5 10 3 10 1 101

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 E
rro

r

Coin EM
SVGD EM
PGD
SOUL

(a) N = 5.

10 9 10 7 10 5 10 3 10 1 101

Learning Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Te
st

 E
rro

r

Coin EM
SVGD EM
PGD
SOUL

(b) N = 20.

10 9 10 7 10 5 10 3 10 1 101

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 E
rro

r

Coin EM
SVGD EM
PGD
SOUL

(c) N = 100.

Figure 12: Additional results for the Bayesian logistic regression in Sec. 4.2. Test error as a
function of the learning rate, for different numbers of particles.

F.3 Bayesian logistic regression (alternative model)

We now present numerical results for the alternative Bayesian logistic regression model described in
App. E.3. In particular, in Fig. 13, we compare SVGD EM and Coin EM against PGD and SOUL,
plotting the area under the receiver operator characteristic curve (AUC) as a function of the learning
rate, after running each algorithm with 10 particles for 1000 iterations. For each of the datasets
considered, the predictive performance of Coin EM is similar to the performance of SVGD EM, PGD
and SOUL with well tuned learning rates. In comparison to the Bayesian logistic regression studied
in Section 4.2, here the predictive performance of the SVGD EM, PGD, and SOUL is rather more
sensitive to the learning rate, particularly for the Covertype dataset. In particular, in this case there is
a much smaller range of values for which these methods exhibit performance on-par with, or superior
to, Coin EM.

29

10 8 10 6 10 4 10 2 100

Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Coin EM
SVGD EM
PGD
Soul

(a) Covertype

10 8 10 6 10 4 10 2 100

Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Coin EM
SVGD EM
PGD
Soul

(b) Banknote

10 8 10 6 10 4 10 2 100

Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Coin EM
SVGD EM
PGD
Soul

(c) Cleveland

Figure 13: Results for the alternative Bayesian logistic regression in App. E.3. AUC as a function
of the learning rate, averaged over 10 random test-train splits.

F.4 Bayesian neural network

In this section, we present additional numerical results for the Bayesian neural network model in Sec.
4.3.

Additional results for different datasets. In Fig. 14, we compare the performance of Coin EM
and SVGD EM on several additional UCI benchmarks, using the Bayesian neural network model
considered in Sec. 4.3 (see also App. E.4). Once again, we compare our algorithms with PGD
and SOUL. As noted in Sec. 4.3, in this case the performance of the three learning-rate-dependent
algorithms (SVGD EM, PGD, SOUL) is highly sensitive to the choice of learning rate. In particular,
there is generally a very small range of learning rates for which these algorithms outperform Coin
EM. Given an optimal choice of learning rate, the best predictive performance of SVGD EM
is generally comparable with the best predictive performance of SOUL, and better than the best
predictive performance of PGD, though there are cases in which Coin EM and SVGD EM significantly
outperform the competing methods (see Fig. 14(c)).

10 8 10 6 10 4 10 2 100

Learning Rate

100

101

102

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(a) Boston

10 8 10 6 10 4 10 2 100

Learning Rate

10 3

10 2

10 1

100

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(b) Naval

10 8 10 6 10 4 10 2 100

Learning Rate

101

102

103

Te
st

 R
M

SE

Coin EM
SVGD EM
PGD
Soul

(c) Power.

Figure 14: Additional results for the Bayesian neural network in Sec. 4.3. Root mean-squared-
error (RMSE) as a function of the learning rate, for several UCI datasets, averaged over ten random
test-train splits.

F.5 Bayesian neural network (alternative model)

We now present numerical results for the alternative Bayesian neural network model described in
App. E.5.

In Fig. 15, we plot the test error achieved by SVGD EM, PGD, and SOUL for several different
choices of learning rate; and for several different choices of the number of particles. For comparison,
we also plot the test error achieved by Coin EM. We also include results for SVGD EM, PGD, and
SOUL when using a scaling heuristic recommended in [38, Sec. 2], which is designed to stabilize the
updates and avoid ill-conditioning. We refer to these methods as SVGD EM’, PGD’, and SOUL’.

Unsurprisingly, all methods other than Coin EM are highly dependent on the choice of learning rate.
While, in all cases, we observe that the convergence rate can be improved by increasing the learning
rate, this approach can only go so far. In particular, if the learning rate is increased much beyond the
largest values considered in Figure 15, then the updates are likely to become unstable (see, e.g., Fig.
15(m) - 15(o)).

30

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(a) PGD (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(b) PGD (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(c) PGD (N = 100).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.001
LR = 0.005
LR = 0.01
LR = 0.05
LR = 0.1

(d) PGD’ (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.001
LR = 0.005
LR = 0.01
LR = 0.05
LR = 0.1

(e) PGD’ (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.001
LR = 0.005
LR = 0.01
LR = 0.05
LR = 0.1

(f) PGD’ (N = 100).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 1e-05
LR = 5e-05
LR = 0.0001
LR = 0.0005
LR = 0.001

(g) SVGD EM (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 1e-05
LR = 5e-05
LR = 0.0001
LR = 0.0005
LR = 0.001

(h) SVGD EM (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 1e-05
LR = 5e-05
LR = 0.0001
LR = 0.0005
LR = 0.001

(i) SVGD EM (N = 100).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(j) SVGD EM’ (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(k) SVGD EM’ (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(l) SVGD EM’ (N = 100).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(m) SOUL (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(n) SOUL (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 1e-06
LR = 5e-06
LR = 1e-05
LR = 5e-05
LR = 0.0001

(o) SOUL (N = 100).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(p) SOUL’ (N = 5).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(q) SOUL’ (N = 20).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin EM
LR = 0.0001
LR = 0.0005
LR = 0.001
LR = 0.005
LR = 0.01

(r) SOUL’ (N = 100).

Figure 15: Additional results for the alternative Bayesian neural network model in App. E.5:
learning rate comparison. Test error achieved by several methods over T = 500 training iterations,
for different learning rates. For reference, we also include the test error achieved by Coin EM.

31

In Fig. 16, we further investigate the performance of each algorithm as we vary the number of
particles. In this case, each method is improved by increasing the number of particles. Interestingly,
Coin EM is robust to the number of particles, achieving good predictive performance even when the
number is small (Fig. 16(a)). The same is true, to a lesser extent, for SVGD EM (with or without
the heuristic), which performs relatively well across experiments (Fig. 16(b), Fig. 16(c)). PGD
observes a more significant performance increase as the number of particles is increased (Fig. 16(d)),
consistent with the observations in [38, Sec. 3.2], although performs relatively well even for small
particular numbers with the heuristic (Fig. 16(e)). Finally, even for large numbers of particles, and
when using the heuristic, SOUL struggles to compete with the other methods (Fig. 16(f), Fig. 16(g)).

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(a) Coin EM.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(b) SVGD EM.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(c) SVGD EM’.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(d) PGD.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(e) PGD’.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(f) SOUL.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

N = 2
N = 5
N = 10
N = 20
N = 50
N = 100

(g) SOUL’.

Figure 16: Additional results for the alternative Bayesian neural network model in App. E.5:
particle number comparison. Test error over T = 500 training iterations, for different numbers of
particles. For all learning-rate dependent methods, we use the best learning rate as determined by Fig.
15.

In Fig. 17, we compare the predictive performance of all of the methods, now using the optimal
learning rate according to the results in Fig. 15. We highlight three observations. First, Coin EM
offers comparable performance to the best competing method, namely, PGD’. While the initial
convergence of PGD’ is typically faster, this difference tends to be relatively small. Meanwhile, the
asymptotic predictive performance of Coin EM is generally slightly better, particularly for small
numbers of particles. Second, SVGD EM (and SVGD EM’) is bettered only by Coin EM and PGD’.
Moreover, the scaling heuristic seems to have a smaller impact on SVGD EM than it does on PGD
(i.e., SVGD EM and SVGD EM’ and typically more similar than PGD and PGD’). Finally, the
convergence of SVGD EM, and to a lesser extent Coin EM, are less ‘noisy’ than the convergence of
PGD and SOUL. This is unsurprising, given that the latent variable updates in PGD and SOUL are
stochastic, while the latent variable updates in SVGD EM and Coin EM are deterministic.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin
SVGD
PGD
SOUL

SVGD'
PGD'
SOUL'

(a) N = 5.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin
SVGD
PGD
SOUL

SVGD'
PGD'
SOUL'

(b) N = 20.

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Coin
SVGD
PGD
SOUL

SVGD'
PGD'
SOUL'

(c) N = 100.

Figure 17: Additional results for the alternative Bayesian neural network model in App. E.5:
method comparison. Test error over T = 500 training iterations, for different numbers of particles.
For all learning-rate dependent methods, we use the best learning rate as determined by Fig. 15.

32

Finally, in Fig. 18, we provide a comparison of the test accuracy achieved by Coin EM, SVGD EM,
PGD, and SOUL, now over a much finer grid of learning rates.

10 8 10 6 10 4 10 2 100

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

Coin EM
SVGD EM
PGD
Soul

(a) Standard

10 8 10 6 10 4 10 2 100

Learning Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

Coin EM
Heuristic PGD
Heuristic Soul
Heuristic SVGD

(b) Heuristic

Figure 18: Additional results for the Bayesian neural network in Sec. E.5. Accuracy as a function
of the learning rate, for the MNIST dataset, averaged over ten random test-train splits.

F.6 Network model

In this section, we provide additional results for latent space network model studied in Sec. 4.4. In
Fig. 19 - Fig. 21, we plot the mean of the particles {ziT }Ni=1 output by Coin EM (Fig. 19), PGD (Fig.
20), and SOUL (Fig. 21), using N = 10 particles and T = 500 iterations. In this case, each latent
variable represents a network node, which corresponds to a Game of Thrones character. In each plot,
Fig. (a) - (d) correspond to Series 1 - 4 of the TV series, respectively. The nodes are colour coded
according to their cluster assignment from running DBScan [27]. In this case, only Coin EM is able
to successfully capture the correct relationships between characters. We experimented with various
learning rates for PGD and SOUL and were not able to improve the latent representation of the nodes
to infer useful clusters among the characters. If additional covariate information were available, e.g.
house labels such as Targaryen, Lannister, etc. then it is possible that the additional information could
improve the latent representation for the PGD and SOUL algorithms.

0.004 0.003 0.002 0.001 0.000 0.001 0.002

0.002

0.000

0.002

0.004

0.006

ARYA
BRAN

CATELYN

CERSEI

DAENERYS

JAIME

JOFFREY

JON

JORAH

LITTLEFINGER
MAESTER_LUWIN

NED

PYCELLEPYP
RENLY

ROBB
ROBERT

SAM

SANSA

THEON

TYRION
VARYS

VISERYS

(a) Season 1
0.004 0.002 0.000 0.002 0.004 0.006

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

ARYA

BRAN

CATELYN

CERSEI

DAENERYS

DAVOS
JAIME

JOFFREY

JON

LITTLEFINGER

OSHA

RENLY

ROBB

SAM

SANSA

STANNIS

THEON

TYRION

TYWINVARYS

XARO

(b) Season 2

0.004 0.002 0.000 0.002 0.004
0.004

0.002

0.000

0.002

0.004

ARYA

BRAN

CATELYN

CERSEI

DAVOS

EDMURE

GENDRY

JAIME

JOFFREY

JOJEN

JORAH

LORAS

MARGAERY

MEERA

OLENNA

OSHA

ROBB

ROOSE_BOLTON

SAM

SANSA

THEON

THOROS TYRION

TYWIN

VARYS

WALDER

(c) Season 3
0.006 0.004 0.002 0.000 0.002 0.004

0.006

0.004

0.002

0.000

0.002

0.004

ARYA

BRAN

BRIENNECERSEI

DAENERYS

GRENN

HOUND

JAIME

JOFFREY

JONKARL_TANNER

LITTLEFINGERMARGAERY

OBERYN

SAM

SANSA

STANNIS

TOMMEN TYRIONTYWIN

(d) Season 4

Figure 19: Additional results for the network model in Sec. 4.4. Posterior mean 1
N

∑N
j=1 z

j
T of

the particles generated by Coin EM after T = 500 iterations.

33

0.0075 0.0050 0.0025 0.0000 0.0025 0.0050 0.0075

0.004

0.002

0.000

0.002

0.004

0.006

ARYA

BRAN

CATELYN

CERSEI

DAENERYS

JAIME

JOFFREY

JON

JORAH
LITTLEFINGER

MAESTER_LUWIN NED

PYCELLE

PYP

RENLY

ROBB

ROBERT

SAM
SANSA

THEON

TYRION

VARYS

VISERYS

(a) Season 1
0.006 0.004 0.002 0.000 0.002 0.004 0.006

0.008

0.006

0.004

0.002

0.000

0.002

0.004
ARYA

BRAN

CATELYN CERSEI

DAENERYS

DAVOS

JAIME

JOFFREY

JON
LITTLEFINGER

OSHA

RENLYROBB

SAM

SANSA

STANNIS

THEON
TYRION

TYWIN

VARYS

XARO

(b) Season 2

0.006 0.004 0.002 0.000 0.002 0.004

0.008

0.006

0.004

0.002

0.000

0.002

0.004

ARYA

BRAN

CATELYN
CERSEI

DAENERYS

DAVOS

EDMURE

GENDRY

JAIME

JOFFREY

JOJEN

JORAH

LORAS

MARGAERY

MEERA

OLENNAOSHA

ROBB

ROOSE_BOLTON

SAM

SANSA
THEON

THOROS

TYRION

TYWIN

VARYS

WALDER

(c) Season 3
0.0050 0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

0.006

0.004

0.002

0.000

0.002

ARYA

BRAN

BRIENNE

CERSEI

DAENERYS
GRENN

HOUND

JAIME

JOFFREY

JON

KARL_TANNER

LITTLEFINGER

MARGAERY

OBERYN

SAM

SANSA

STANNISTOMMEN

TYRION

TYWIN

(d) Season 4

Figure 20: Additional results for the network model in Sec. 4.4. Posterior mean 1
N

∑N
j=1 z

j
T of

the particles generated by PGD after T = 500 iterations.

0.015 0.010 0.005 0.000 0.005 0.010 0.015
0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

ARYA

BRAN
CATELYN CERSEI

DAENERYS
JAIME

JOFFREY

JON

JORAH

LITTLEFINGER

MAESTER_LUWIN

NED

PYCELLE

PYP

RENLY

ROBB

ROBERT

SAM

SANSA

THEON

TYRION
VARYS

VISERYS

(a) Season 1
0.0075 0.0050 0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

ARYA

BRAN

CATELYN

CERSEI

DAENERYS

DAVOS

JAIME

JOFFREY

JONLITTLEFINGER

OSHA

RENLY

ROBB

SAMSANSA
STANNIS

THEONTYRION

TYWIN

VARYS

XARO

(b) Season 2

0.0100 0.0075 0.0050 0.0025 0.0000 0.0025 0.0050 0.0075

0.010

0.005

0.000

0.005

0.010

ARYA

BRAN

CATELYN

CERSEI

DAENERYS

DAVOS

EDMURE

GENDRY

JAIME
JOFFREY

JOJEN

JORAH

LORAS

MARGAERY

MEERA

OLENNA

OSHA
ROBB

ROOSE_BOLTON
SAM

SANSA

THEON

THOROS

TYRION

TYWIN

VARYS

WALDER

(c) Season 3
0.010 0.005 0.000 0.005 0.010

0.015

0.010

0.005

0.000

0.005

0.010

ARYA

BRAN

BRIENNE

CERSEI

DAENERYS

GRENN

HOUND

JAIME

JOFFREY JON

KARL_TANNER

LITTLEFINGER

MARGAERY

OBERYNSAM
SANSA

STANNIS

TOMMEN

TYRION

TYWIN

(d) Season 4

Figure 21: Additional results for the network model in Sec. 4.4. Posterior mean 1
N

∑N
j=1 z

j
T of

the particles generated by SOUL after T = 500 iterations.

34

	Introduction
	Maximum Likelihood Training of Latent Variable Models
	Notation
	The Free Energy
	SVGD EM: Minimizing the Free Energy using a Stein-Variational Gradient Flow
	Coin EM: Minimizing the Free Energy using Coin Sampling

	Related Work
	Numerical Experiments
	Toy hierarchical model
	Bayesian logistic regression
	Bayesian neural network
	Latent space network model

	Discussion
	Additional Theoretical Results
	Continuous Time Results
	Additional Discrete Time Results

	Proofs of Theoretical Results
	Proof of Propositions 1, 2, and 3.
	Proof of Theorem 1.
	Proof of Corollary 1.

	Marginal SVGD EM and Marginal Coin EM
	Adaptive Coin EM
	Additional Experimental Details
	Toy hierarchical model
	Bayesian logistic regression
	Bayesian logistic regression (alternative model)
	Bayesian neural network
	Bayesian neural network (alternative model)
	Latent space network model

	Additional Numerical Results
	Toy hierarchical model
	Bayesian logistic regression
	Bayesian logistic regression (alternative model)
	Bayesian neural network
	Bayesian neural network (alternative model)
	Network model

