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Abstract

The aim of this thesis is to develop novel methodology for estimating an extreme risk

measure, known as a return curve, for bivariate random vectors. In doing this, we also

aim to develop novel techniques for estimating the extremal dependence structure of

bivariate random vectors, and then to compare these techniques to existing methodol-

ogy.

In many practical applications, understanding joint extreme risks from pairs of

random variables is crucial for ensuring robust risk analyses and informed decision

making. Return curves provide a means of both quantifying and visualising such risks.

However, estimation of these curves has not been well studied, particularly in the case

when data exhibits asymptotic independence. Furthermore, under the influence of

climate change, the joint extremal behaviour for pairs of environmental variables is

likely to change; techniques are required to ensure such trends are captured when

estimating return curves.

We first propose a range of novel estimation methods for return curves; unlike several

existing techniques, our estimates are based on bivariate extreme value models that can

capture both key forms of extremal dependence. We devise tools for validating return

curve estimates, as well as representing their uncertainty, and compare a selection of

curve estimation techniques through simulation studies. Curve estimates are obtained

for two metocean data sets, with diagnostics indicating generally good performance.

In the context of extremes, few methods have been proposed for modelling trends
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in extremal dependence, even though capturing this feature is important for quantify-

ing joint tail behaviour. Motivated by observed dependence trends in data from the

UK Climate Projections, we propose a novel semi-parametric modelling framework for

non-stationary, bivariate extremal dependence structures. This framework allows us to

capture a wide variety of dependence trends for datasets exhibiting asymptotic inde-

pendence. We compare our model to an existing technique through a simulation study,

obtaining competitive results over a range of extremal dependence structures. When

applied to a climate projection dataset, our model is able to capture observed depen-

dence trends and, in combination with models for marginal non-stationarity, can be

used to produce estimates of return curves in future climates.

Whilst asymptotic independence is frequently observed in practice, the majority of

approaches for bivariate extremes are based on the framework of regular variation. In

practice, this is problematic since this framework is is unable to accurately extrapolate

into the joint tail for data sets exhibiting this class of extremal dependence. Moti-

vated by this shortcoming, we introduce a range of novel estimators for the so-called

‘angular dependence function’, a quantity which summarises the dependence structure

for asymptotically independent variables. We compare the proposed estimators to ex-

isting techniques through a systematic simulation study, obtaining competitive results

in many cases. The proposed methodology is also applied to river flow data from the

north of England, UK, and used to obtain return curve estimates for different pairs of

gauge sites.
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Chapter 1

Introduction

1.1 Motivation

The modelling of extreme values is important for a wide variety of sectors, including

actuarial science, insurance, environmental science, and structural engineering. One

area of structural engineering in which this modelling is particularly crucial is the

nuclear industry; extreme natural hazards, such as floods, solar storms and earthquakes,

can pose high risks to the safety of nuclear sites. Due to the potential safety breach,

nuclear facilities are often built to be able to withstand very extreme natural events,

and such events must be estimated during the engineering design process.

By definition, historical datasets will contain few extreme observations with which

to guide estimation; extreme value theory provides a mathematical framework for mod-

elling such values, allowing one to extrapolate beyond the observed range of data. This

allows for a more robust inference from historical extreme events and, for many practical

applications, fitted models are often used to obtain estimates of extreme risk measures.

Such measures act as a guide for decision-making and risk assessment.

In many cases, it does not suffice to consider the extremes of a single hazard. For

example, during the 1999 flood of the Blayais nuclear power plant in France, a com-
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bination of extreme winds and sea levels resulted in the plant’s flood defences being

overwhelmed, causing damage to the plant’s power supply and cooling facilities (Mattei

et al., 2001). Cooling is a crucial process for keeping nuclear reactors at safe tempera-

tures. This event was ranked as a level 2 on the International Nuclear Event Scale, and

while no major accident occurred, it exposed key weaknesses within the safety measures

and procedures in place at the time for many nuclear sites (Institute for Nuclear Pro-

tection and Safety, 2000). This led to the development of new methods for evaluating

flood risk, resulting in a significant cost to upgrade many existing sites.

In contrast to the Blayais incident, the direct impact of the 2011 Fukushima nuclear

disaster in Japan, ranked as a level 7 on the International Nuclear Event Scale, was

huge. Damage to the plant’s cooling facilities led to the meltdown of three reactors,

resulting in $187 billion in damages and 154,000 people being evacuated. As in Blayais,

this event was also triggered by the combination of two extreme events: in this case, an

earthquake and a tsunami (International Atomic Energy Agency, 2015). Prior to the

accident, regulatory and safety procedures for the Fukushima-Daiichi plant had only

considered the separate risks from these two hazards. Owing to this shortcoming, a

government report released following the accident stated that it was a “profoundly man-

made disaster – that could and should have been foreseen and prevented” (National Diet

of Japan, 2012). The Fukushima disaster also led to wide-spread changes in nuclear

safety assessments and procedures, both in Japan and internationally. In the most

drastic cases, certain countries, such as Germany and Belgium, opted to phase-out all

nuclear energy operations in response to the events of Fukushima.

As a consequence of these two incidents, international nuclear regulatory practices

now require that the impact from combined extreme events be taken into consideration

when designing nuclear facilities. A recent report from the Office for Nuclear Regu-

lation (ONR), the independent safety regulator for the UK’s nuclear industry, states

that licensees “should take into account combinations of external hazards that could
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reasonably be expected to occur at a given site” (Office for Nuclear Regulation, 2018).

Moreover, the ONR requires sites to be built such that they can withstand external

hazards at a 10−4 annual exceedance probability (Office for Nuclear Regulation, 2014).

This corresponds to events with a 10,000 year return period (see Chapter 2.1.3). Simi-

lar standards are in place for other nuclear regulatory bodies, such as the US Nuclear

Regulatory Commission (NRC) and the French Nuclear Safety Authority (ASN).

These regulatory requirements raise two important questions. Firstly, how does one

define an extreme event for a combination of two variables? Unlike in the univariate

setting, bivariate vectors have no natural ordering, and the most extreme values of two

variables need not occur simultaneously. Moreover, in many practical settings there

exist wide ranges of bivariate events which can be high impact, implying the definition

of a joint extreme event may not be unique; see, for instance, Ross et al. (2020).

Assuming one has a means of defining a joint extreme event, an important question

remains: how does one estimate the risk from such events? This typically requires an

assessment of how the extremes of one variable depend on the extremes of another.

Formally, this is known as the extremal dependence structure, and many frameworks

exist for its estimation. However, this assessment is further complicated by the fact that

many variables considered by nuclear regulators, such as temperature, relative humidity

and wind speed (Office for Nuclear Regulation, 2021), exhibit complex distributional

trends over time. Such trends occur due to various factors, including anthropogenic

climate change. As such, both the definition of a joint extreme event and the underlying

extremal dependence structure may change over time.

In this thesis, we attempt to answer both of these questions. We introduce a risk

measure, known as a return curve, which provides a summary of joint extreme events

for two variables. These curves are based on the concept of the joint survivor region,

and are used to evaluate extreme responses in a wide range of sectors; see Chapters 2.4

and 3 for further details. We provide novel techniques for estimating this risk measure
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for a wide range of data structures, including structures exhibiting complex dependence

trends. Furthermore, we provide uncertainty quantification and diagnostic tools for the

return curve, allowing for a more robust and detailed practical analysis.

Alongside return curves, we also introduce novel methods for estimating the ex-

tremal dependence structures of bivariate random vectors. These techniques build

upon the current theory, allowing for a more accurate assessment of joint tail prop-

erties. The methods we propose can also be used to model trends in the extremal

dependence structure, and hence our approach can be used to evaluate joint extremes

in future climates.

1.2 Overview of thesis

As stated, our objective is to answer both of the following questions: for a bivariate

random vector, what constitutes a joint extreme event, and how does one make inference

on such events? There exists a rich literature on both topics, and our techniques build

upon this work while simultaneously addressing some of the limitations of existing

approaches.

To begin, Chapter 2 gives a brief overview of extreme value modelling techniques.

We introduce approaches for modelling univariate and bivariate extremes, including the

cases when the underlying random variables or vectors exhibit non-stationarity. We also

introduce the notion of a return curve, and discuss its utility and interpretation.

In Chapter 3, we introduce novel return curve estimation techniques. These tech-

niques are shown to outperform existing approaches and provide accurate curve es-

timates for both simulated and observed datasets. We also introduce a means for

quantifying uncertainty for this risk measure, which is important in a practical setting.

Furthermore, we provide a diagnostic tool for curve estimates, allowing one to evaluate

goodness of fit for observed datasets.
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In Chapter 4, we introduce a novel modelling framework for capturing trends in the

extremal dependence structure under asymptotic independence. The majority of exist-

ing approaches for modelling non-stationary extremal dependence assume asymptotic

dependence, even though asymptotic independence is often shown to exist in practice.

In practice, assuming the incorrect form of extremal dependence can lead to an inaccu-

rate extrapolation in the joint upper tail. Our work overcomes these limitations, while

simultaneously outperforming an existing approach. Furthermore, our framework can

be used to estimate return curves in a non-stationary setting, allowing one to assess

the impact of climate change (for example) on joint extreme events.

In Chapter 5, we introduce techniques for estimating the extremal dependence struc-

ture of bivariate random vectors. In particular, we consider the model of Wadsworth

and Tawn (2013) and provide novel methods for estimating a key quantity known as the

‘angular dependence function’. Until recently, this quantity has only been estimated

using a pointwise estimator, resulting in rough functional estimates. Our proposed

techniques, which give smooth functional estimates, outperform the pointwise estima-

tor, resulting in better estimates of extremal dependence structures. In a practical

setting, this helps improve the accuracy of return curve estimates.

Finally, in Chapter 6, we briefly summarise the contributions of this thesis, and

discuss avenues for further work. In particular, we consider how the proposed techniques

could be extended beyond the bivariate setting, and how the underlying inferential

procedures could be improved. We also highlight the impact of this work within the

context of nuclear regulation, and discuss how the proposed methodology could be

utilised to improve regulatory practices.
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Literature review

2.1 Univariate extreme value theory

In the univariate setting, there are two widely used methodologies for modelling extreme

values: the block maxima approach and the peaks over threshold approach. We briefly

introduce both approaches; a detailed discussion of these modelling frameworks can

be found in Coles (2001). We restrict attention to the upper tail, noting that both

approaches can be easily adapted for the lower tail.

2.1.1 Block maxima approach

Let X1, X2 . . . , Xn denote a sequence of n ∈ N independent and identically distributed

(IID) random variables with distribution function F . We consider the random variable

Mn := max{X1, . . . , Xn}.

Interest lies in understanding how Mn is distributed, since this gives some insight into

the extremal behaviour of F . In theory, it is straightforward to derive the distribution
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of Mn since

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x)× . . .× Pr(Xn ≤ x)

= F n(x).

However, for any x < xu, where xu denotes the upper end-point of F , we have that

F (x) < 1 and F n(x) → 0 as n → ∞, implying the theoretical distribution of Mn is

degenerate.

This issue can be overcome by renormalising the variable Mn. The extremal types

theorem of Leadbetter et al. (1983) states that if there exist series an > 0 and bn such

that

Pr

(
Mn − bn

an
≤ z

)
→ G(z),

as n → ∞, where G is non-degenerate, then G is a generalised extreme value (GEV)

distribution taking the form

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ

+

}
, (2.1.1)

with x+ := max{x, 0} and (µ, σ, ξ) ∈ R × R+ × R. In this case, we say that F lies

in the domain of attraction of G. Given a GEV distributed variable Z, we write

Z ∼ GEV(µ, σ, ξ).

We refer to µ, σ, and ξ as the location, scale and shape parameters, respectively.

Moreover, the GEV distribution has three distinct subclasses: Fréchet, Gumbel, and

negative Weibull, corresponding to ξ > 0, ξ = 0, and ξ < 0, respectively. These

subclasses exhibit different and distinct forms of tail behaviour. Note that the Gumbel

subclass is interpreted as the limit of equation (2.1.1) as ξ → 0.

In practice, the normalising series an and bn, which depend on F , are unknown.
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However, we can assume equation (2.1.1) holds approximately for large n, implying

Pr(Mn ≤ z) ≈ G

(
z − bn
an

)
= G∗(z),

where G∗ denotes a GEV(µ∗, σ∗, ξ) distribution, for which the location and scale have

been shifted in comparison to the limiting values from equation (2.1.1). This avoids the

need to estimate the normalising series, resulting in the block maxima statistical model.

Data are first split into large blocks of equal length and the maxima of each block is

recorded. A GEV distribution is then fitted to these block maxima using standard

statistical techniques, and the fitted model can be used to approximate the upper tail

of F . This approach is illustrated in Figure 2.1.1.

−
2

0
2

4

Block maxima approach

Time

X

−
2

0
2

4
Peaks over threshold approach

Time

X

Figure 2.1.1: Block maxima (left) and peaks over threshold (right) approaches. The
green points represent the observations used in each modelling approach, while the red
dotted lines represent the block boundaries and threshold for the block maxima and
peaks over threshold approaches, respectively.
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2.1.2 Peaks over threshold approach

One drawback of the block maxima approach is that only the maxima of each block

are used in inference. This can result in some extreme observations being disregarded,

leading to an incomplete picture of the upper tail.

A more widely used alternative is the peaks over threshold approach. Given X ∼ F ,

with F in the domain of attraction of some GEV distribution G, the Pickands-Balkema-

de Haan theorem (Balkema and de Haan, 1974; Pickands, 1975) implies that under

certain regularity conditions, there exists a normalising function c(u) > 0 such that for

all z > 0,

Pr

(
X − u

c(u)
≤ z

∣∣∣ X > u

)
→ H(z) := 1−

[
1 +

ξz

σ̃

]−1/ξ

+

, (2.1.2)

as u → xu, with (σ̃, ξ) ∈ R+ × R. Here, H is the cumulative distribution function

of a generalised Pareto (GP) distribution, with scale and shape parameters σ̃ and ξ,

respectively. Note that ξ is equal to the shape parameter of G.

Like the normalising series of the block maxima approach, the normalising function

c(u) depends on F and hence is unknown in practice. However, assuming equation

(2.1.2) approximately holds for some large threshold u,

Pr
(
X − u ≤ z

∣∣∣ X > u
)
≈ H

(
z

c(u)

)
= H∗(z),

where H∗ denotes a GP distribution with a shifted scale parameter σ̃∗. This implies

we can model the exceedances of u using a GP distribution - hence the term peaks

over threshold. In this case, we write X − u | X > u ∼ GP(σ̃∗, ξ). This approach

is illustrated in Figure 2.1.1, alongside the block maxima approach. One can clearly

observe the difference in the observations incorporated by either approach.

To apply either of the univariate modelling approaches, one must first select either

the block size or the threshold. In both cases, this selection represents a bias-variance

trade off; selecting a block size (threshold) too large will result in high variability, while

9



Chapter 2

too small a block size (threshold) will give biased results. A more detailed discussion

of this trade off can be found in Coles (2001). In the case of the peaks over threshold

approach, a wide range of techniques have been proposed for threshold selection; see

Wadsworth (2016), Northrop et al. (2017) and Varty et al. (2021), for instance.

2.1.3 Return levels

With a GEV or GP distribution fitted to extreme observations, interest lies in under-

standing the potential risk from extreme events. Return levels are the most widely

used metric for quantifying this risk. Given a variable X and a small probability p, the

return level xp is defined as the (1 − p)-th quantile of X, i.e., Pr(X > xp) = p. Esti-

mates of xp can be obtained by inverting either equation (2.1.1) or (2.1.2) depending

on whether X represents block maxima or threshold exceedances. We would expect X

to exceed the corresponding return level xp once, on average, every 1/p observations,

with the quantity 1/p termed the return period.

For example, suppose X denotes annual maxima of some time series (e.g., tempera-

ture) and p = 0.1. In this case, the xp return level is the temperature we would expectX

to exceed once every 10 years on average. In many applications, return levels estimates

are obtained for return periods that correspond to some number of years; for example,

nuclear regulators often specify a 10, 000 year time period for design standards.

For both univariate approaches, uncertainty for return levels can be easily quantified

using standard statistical methods. Combined, these techniques allow us to quantify

extremal risks at different return periods, along with the corresponding uncertainties,

allowing for a robust risk analysis.

10
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2.2 Bivariate extreme value theory

2.2.1 Defining extreme events

Unlike in the univariate setting, there is no standard practice for defining extreme

events when considering two variables. This is in part due to the lack of a natural

ordering for bivariate vectors, i.e., given (x1, y1), (x2, y2) ∈ R2, the statement (x1, y1) <

(x2, y2) lacks meaning. Barnett (1976) suggests several possible methods for defining

bivariate extremes; however, the suitability of each method is likely to be context

dependent. The earliest approaches directly extended the block maxima approach to the

bivariate setting, resulting in componentwise maxima. However, as shown in Chapter

2.2.3, componentwise maxima need not correspond to actual observations, and hence

such approaches have limited applicability in practice. Alternative approaches include

constructing a one-dimensional structure variable from the bivariate vector (Coles and

Tawn, 1994), constructing a convex hull from the data (Chatterjee and Chatterjee,

1990), and conditioning on at least one variable being extreme (Rootzén and Tajvidi,

2006), with the latter approach resulting in a bivariate extension to the GP distribution.

2.2.2 Copula modelling

Unlike in the univariate setting, bivariate modelling requires us to consider the depen-

dence between variables. In the context of extremes, particular interest lies in under-

standing how the extremes of one variable depend on the extremes of another. However,

this dependence can be obscured for variables with different marginal behaviours. Bi-

variate extreme value modelling therefore makes use of copulas, which allow for the

separation of marginal and dependence modelling.

Given a continuous random vector (X, Y ) with joint distribution function F and

X ∼ FX , Y ∼ FY , Sklar’s theorem (Sklar, 1959) implies that there exists a unique

11
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distribution function C : [0, 1]2 → [0, 1] such that

F (x, y) = C(FX(x), FY (Y )).

One can observe that C is simply the joint distribution function on standard uniform

margins since, by the probability integral transform (PIT), we have that the variables

FX(X) and FY (Y ) are Uniform[0, 1] distributed.

A consequence of Sklar’s theorem is that the joint distribution function of a ran-

dom vector (X, Y ) is invariant under marginal transformation, implying the choice of

margins is somewhat arbitrary for bivariate modelling procedures. This result is often

applied in bivariate extremes, where certain choices of margins are favourable for quanti-

fying the dependence between extremes. Two common choices of margins are standard

Fréchet and standard exponential; the corresponding joint distribution functions for

these marginal choices are

F (x, y) = CF

{
− 1

logFX(x)
,− 1

logFY (y)

}
,

F (x, y) = CE {− log(1− FX(x)),− log(1− FY (y))} ,

where CF and CE denote the joint distribution functions on standard Fréchet and ex-

ponential margins, respectively. Figure 2.2.1 illustrates data simulated from a bivariate

Gaussian copula with ρ = 0.5 on standard Gaussian, uniform, Fréchet, and exponential

margins. One can observe how each marginal distribution exaggerates different aspects

of the underlying dependence structure.

2.2.3 Componentwise maxima

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote n ∈ N IID copies of a random vector (X, Y )

with joint distribution function F . In analogy to the block maxima approach, we
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Figure 2.2.1: Data from a bivariate Gaussian copula, with ρ = 0.5 and n = 3, 000, on
four different margins. From left to right: standard Gaussian, uniform, exponential and
Fréchet marginal distributions.

consider the distribution of the componentwise maxima

Mn := (max
i≤n

Xi,max
i≤n

Yi).

This structure variable is illustrated in Figure 2.2.2. Understanding how Mn is dis-

tributed provides insight into the joint extremal behaviour of (X, Y ). Suppose there

exist series of vectors an = (an,1, an,2) ∈ R2
+ and bn = (bn,1, bn,2) ∈ R2 such that

Pr(a−1
n (Mn − bn) ≤ z) → G(z), (2.2.1)

as n → ∞, where G is a non-degenerate distribution function and vector algebra

is interpreted as being componentwise. Then G is a bivariate extreme value (BEV)

distribution, and we say that F is in the domain of attraction of G. In contrast to the

univariate setting, there is no finite dimensional closed parametric form for G.

The required normalising series an and bn depends on the marginal distributions

of (X, Y ), and it is standard practice to assume common margins for both X and Y .

In particular, letting X and Y be standard Fréchet, it suffices to set an = (n, n) and

bn = (0, 0) to achieve the convergence of equation (2.2.1). In this case, G is given by

G(x, y) = exp{−V (x, y)},

13



Chapter 2

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Componentwise maxima

X

Y

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Bivariate regular variation

X

Y

Figure 2.2.2: Componentwise maxima (left) and regular variation (right) modelling
approaches for bivariate extremes. In either case, the green points represent the extreme
values, while the red dotted lines represent marginal maxima and a high radial threshold
for the left and right plots, respectively.

where V is known as the exponent measure (de Haan and Resnick, 1977). This measure

takes the form

V (x, y) = 2

∫ 1

0

max

(
w

x
,
1− w

y

)
dH(w), (2.2.2)

where H is a distribution function on [0, 1], known as the spectral measure, satisfying

the mean constraint ∫ 1

0

wdH(w) = 1/2. (2.2.3)

This implies that the class of BEV distributions are in one-to-one correspondence with

the set of distributions functions H satisfying equation (2.2.3). Moreover, H (equiv-

alently, V ) captures the dependence structure between the extreme values, otherwise

known as the extremal dependence structure. Special cases include independence, for

which H({0}) = H({1}) = 0.5, equivalently V (x, y) = x−1 + y−1, and complete depen-

dence, for which H({0.5}) = 1, equivalently V (x, y) = max{x−1, y−1}.

From equation (2.2.2), it is straightforward to see that the exponent measure V
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is homogeneous of order −1, i.e., V (sx, sy) = s−1V (x, y) for any s > 0. In practice,

this implies that a fitted BEV distribution can be used to evaluate probability regions

outside the observed data range, allowing for extrapolation of joint extreme events.

Several parametric forms for V have been proposed, including the logistic distri-

bution (Gumbel, 1960) for which V (x, y) =
(
x−1/α + y−1/α

)α
with α ∈ (0, 1]. Here,

α = 1 corresponds to independence and the degree of positive dependence increases

as α → 0. Other popular parametric models include the asymmetric logistic (Tawn,

1988), Dirichlet (Coles and Tawn, 1991), and Hüsler-Reiss (Hüsler and Reiss, 1989)

distributions.

Finally, we note that the extremal dependence structure can be equivalently char-

acterised using Pickands’ dependence function (PDF) (Pickands, 1981). Given a valid

exponent measure V (x, y), the PDF is given by

A(w) := V

(
1

w
,

1

1− w

)
,

where w := x/(x+ y). This function is convex, and satisfies max(w, 1−w) ≤ A(w) ≤ 1

for all w ∈ [0, 1]. The convexity of A implies that it is not possible to model negative

dependence using the componentwise maxima approach, illustrating a drawback of

this framework. In the cases of independence and complete dependence, we have that

A(w) = 1 and A(w) = max(w, 1− w), respectively, for all w ∈ [0, 1].

2.2.4 Bivariate regular variation

Again, let (X, Y ) be a random vector on standard Fréchet margins and consider R :=

X+Y and W := X/R; we refer to these variables as the radial and angular components

of (X, Y ), respectively. We say that (X, Y ) is bivariate regularly varying if, for any
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measurable B ⊂ [0, 1],

lim
r→∞

Pr(W ∈ B,R > sr | R > r) = H(B)s−1, (2.2.4)

for any s ≥ 1, where H is the spectral measure of equation (2.2.2) and H(∂B) = 0,

with ∂B denoting the boundary of B (Resnick, 1987). Limit (2.2.4) implies that for the

largest radial values, the radial and angular components are approximately independent.

Evaluation of the distribution of W | R > u for some large threshold u, can pro-

vide insight into the joint extremal behaviour of (X, Y ). In this sense, this modelling

framework can be viewed as a bivariate extension to the peaks over threshold approach

in which R represents the magnitude of the joint extreme events, while W represents

the relative contribution of each component of (X, Y ). This approach is also illustrated

in Figure 2.2.2. In analogy with the univariate framework, one can again observe the

difference in the observations incorporated by this modelling technique and the com-

ponentwise maxima approach.

For both the componentwise maxima and bivariate regular variation frameworks,

the extremal dependence is characterised by the spectral measure H or, equivalently,

the PDF A. Consequently, a broad range of modelling approaches have been proposed

for estimating these quantities; an overview of such techniques can be found in Chapter

9 of Beirlant et al. (2004). For examples of recent estimation approaches, see Einmahl

and Segers (2009), Eastoe et al. (2014), Guillotte and Perron (2016) and Marcon et al.

(2016).

2.2.5 Dependence measures

When modelling bivariate extremes, it is clear that capturing the extremal dependence

structure is of paramount importance. A fundamental classification of this dependence

is whether the most extreme events can occur jointly or not. Given any random vector

16



Chapter 2

(X, Y ), with X ∼ FX , Y ∼ FY , consider the coefficient χ (Joe, 1997), defined as

χ := lim
u→1

Pr(FY (Y ) > u | FX(X) > u) ∈ [0, 1],

where the limit exists. If χ > 0, the most extreme values of either variable can occur

simultaneously, and we say that X and Y are asymptotically dependent. The strength

of dependence increases as χ → 1, with perfect dependence arising at χ = 1. Conversely,

if χ = 0, we say that X and Y are asymptotically independent since the most extreme

values of either variable occur separately.

In practice, using the spectral measure (or PDF) to model asymptotically indepen-

dent data leads to unsatisfactory extrapolation in the joint tail (Ledford and Tawn,

1996, 1997; Heffernan and Tawn, 2004). This occurs due to the fact for any random

vector (X, Y ) exhibiting asymptotic independence, the spectral measure H places all

mass on the points {0} and {1}; equivalently, A(w) = 1 for all w ∈ [0, 1]. Asymptotic

independence is therefore a degenerate case for both modelling frameworks introduced

in Chapters 2.2.3 and 2.2.4 since neither framework can distinguish between it and exact

independence. This limits the use of these modelling frameworks to data sets exhibit-

ing asymptotic dependence, and has consequently led to the development of flexible

modelling approaches that are able to capture both classes of extremal dependence.

2.2.6 Modelling asymptotic independence

The first framework to capture asymptotic independence was proposed by Ledford and

Tawn (1996). Given a random vector (X, Y ) with standard exponential margins, the

joint upper tail is assumed to take the form

Pr(X > u, Y > u) = Pr(min(X, Y ) > u) = L(eu)e−u/η, (2.2.5)
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as u → ∞, where L is a slowly varying function at infinity, i.e., limu→∞ L(cu)/L(u) = 1

for c > 0, and η ∈ (0, 1]. The parameter η is termed the coefficient of tail dependence,

with η = 1 and limu→∞ L(u) > 0 corresponding to asymptotic dependence and η < 1,

or η = 1 and limu→∞ L(u) = 0, corresponding to asymptotic independence.

Similarly to χ, η provides a classification of extremal dependence, with the strength

of dependence increasing as η approaches 1. The coefficient of tail dependence also

indicates the form of asymptotic independence, with η ∈ (1/2, 1), η = 1/2 and η <

1/2 corresponding to cases of positive association, (near) extremal independence and

negative association between variables. In practical settings, both χ and η are unknown,

and a wide range of methods exist for their estimation; see, for instance, Coles et al.

(1999), Peng (1999), Frahm et al. (2005) and Aghakouchak et al. (2010).

Resnick (2002) formalised the theory of the limit expression denoted in equation

(2.2.5), resulting in the concept of bivariate hidden regular variation. Given a ran-

dom vector (X, Y ) on standard Pareto margins, we say (X, Y ) exhibits hidden regular

variation if there exists a function k : R+ → R+ such that, for all measurable sets

A ⊂ R2
+,

uPr((X, Y )/k(u) ∈ A) → ν(A), (2.2.6)

as u → ∞, where k is regular varying with index η, i.e., limu→∞ k(cu)/k(u) = cη, c > 0,

and ν is a non-degenerate measure on R2
+ satisfying ν(tA) = t−1/ην(A), t > 0. In the

case of η = 1 (i.e., asymptotic dependence), equation (2.2.6) is equivalent to bivariate

regular variation.

Extensions of the framework in equation (2.2.5) include Ledford and Tawn (1997),

Draisma et al. (2004) or Ramos and Ledford (2009). However, like the original, all

of these extensions are applicable only in regions where both variables are large. As

such, statistical techniques based on equation (2.2.5) offer limited practical applicability.

To address this central limitation, Heffernan and Tawn (2004) proposed a conditional

modelling approach for bivariate extremes: given a random vector (X, Y ) on standard
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Laplace margins, it is assumed there exist normalising functions a : R → R and b :

R → R+ such that

lim
u→∞

Pr [(Y − a(X))/b(X) ≤ z,X − u > x | X > u] = D(z)e−x, x > 0, (2.2.7)

for a non-degenerate distribution function D. This framework is able to capture both

classes of extremal dependence, with asymptotic dependence arising when a(x) = x

and b(x) = 1, and asymptotic independence otherwise.

This method is a flexible approach for modelling bivariate extremes and, unlike

equation (2.2.5), is not restricted to regions where both variables are large. Note that

one can equivalently condition on the event Y > u in equation (2.2.7) and assume the

existence of normalising functions for X. In practice, the functions a and b are typically

estimated parametrically under a misspecified model for D, while the distribution func-

tion D is subsequently estimated non-parametrically. In particular, setting a(x) = αx

and b(x) = xβ, with α ∈ [−1, 1] and β ∈ (−∞, 1], captures the limiting joint conditional

distributions for a large variety of bivariate distributions (Heffernan and Tawn, 2004;

Keef et al., 2013a).

Wadsworth and Tawn (2013) subsequently introduced an alternative representation

for bivariate tail probabilities via a general extension of the Ledford and Tawn (1996)

framework. Allowing for different marginal growth rates of the variables, as in the

conditional extremes approach of Heffernan and Tawn (2004), their model also captures

both asymptotic dependence and asymptotic independence. Given (X, Y ) on standard

exponential margins, it is assumed that for each ray w ∈ [0, 1],

Pr(min{X/w, Y/(1− w)} > u) = L(eu;w)e−λ(w)u, (2.2.8)

as u → ∞, where L(· ;w) is slowly varying and λ(w) ≥ max(w, 1 − w), termed the

angular dependence function (ADF), generalises the coefficient of tail dependence, with
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η = 1/{2λ(0.5)}. Asymptotic dependence implies the lower bound for the ADF, i.e.,

λ(w) = max(w, 1−w) for all w ∈ [0, 1]. Evaluation of equation (2.2.8) for rays w close

to 0 and 1 corresponds to regions where only one variable is extreme. Moreover, for the

boundary cases w = 0 and w = 1, equation (2.2.8) reduces to the marginal exponential

survivor functions, i.e., Pr(X > u) = Pr(Y > u) = e−u. The quantity λ captures

the extremal dependence structure for a wide variety of copula models; see Wadsworth

and Tawn (2013) for further details. In practice, λ(w) is estimated separately for each

w ∈ [0, 1] via the Hill estimator (Hill, 1975).

Alongside these flexible approaches, there exist several copula-based modelling ap-

proaches that can capture both dependence regimes; see, for instance, Coles and Pauli

(2002), Wadsworth et al. (2017) or Huser and Wadsworth (2019). For several of these

proposed copula models, asymptotic dependence does not represent a boundary case.

However, while this feature is practically advantageous, these copula models require spe-

cific parametric forms to be assumed for the joint distribution function. These strong

assumptions significantly reduces the flexibility of these copula-based approaches, limit-

ing their use in practice. In this sense, we prefer to adopt only those bivariate modelling

approaches for which inference is semi- or non-parametric.

2.3 Non-stationary extremes

Thus far, all of the theory and subsequent statistical models have used the assumption

that the underlying random variables are IID. However, this assumption is unlikely to

hold in many practical settings. Many environmental hazards, such as temperatures,

sea levels and river flows, exhibit complex distributional trends, thus invalidating the

assumption of being ‘identically distributed’. These trends can arise for a variety of

reasons, such as seasonal behaviour and long-term shifts in climate conditions.

A random variable or vector for which the underlying distribution function(s) changes
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over time is said to be non-stationary. In such cases, the standard extreme value mod-

elling procedures described in Chapters 2.1 and 2.2, which assume stationarity, are

no longer applicable, and additional statistical techniques are required to capture the

underlying tail behaviours.

To accurately assess extremal risks from non-stationary random variables or vectors,

the underlying trends should be incorporated in the statistical procedures. Moreover,

such trends typically arise due to the influence of external covariates. For example, the

observed increase in extreme global temperatures is driven, in large part, by the rise in

atmospheric carbon dioxide emissions (Baker et al., 2018).

2.3.1 Univariate non-stationary extremes

Let {Xt} denote a non-stationary univariate process with g-dimensional covariates

Zt, t ∈ {1, 2, . . . , n}, with g ∈ N. Interest lies in understanding the tail behaviour

of Xt | Zt = zt for some covariate realisation zt.

The earliest approaches for modelling univariate non-stationary extremes involved

allowing the parameters of the GEV or GP distributions to be covariate dependent; see

Smith (1989) and Davison and Smith (1990). We restrict attention to the GP approach

since it is more widely used in practice. In this case, the non-stationary model is given

by

Xt − u | (Xt > u, Zt = zt) ∼ GP(σ̃(zt), ξ(zt)), (2.3.1)

for a sufficiently large threshold u. The covariate functions, σ̃ and ξ, must be specified

prior to applying this model; this is seldom a trivial task, and often requires a degree

of subjective judgement.

Many extensions to equation (2.3.1) have been proposed. Several allow for the

threshold u to also be covariate dependent: Kyselý et al. (2010) and Northrop and

Jonathan (2011) use quantile regression to estimate a varying threshold with a constant

exceedance probability, whereas Sigauke and Bere (2017) use a cubic smoothing spline.
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A more recent class of models use random effects to capture non-stationary trends in

the GP distribution parameters. Originally developed in the spatial context (Casson

and Coles, 1999), these models have been used to represent a range of environmental

variables, such as ozone levels (Gilleland et al., 2006), river flow data (Eastoe and Tawn,

2010) and precipitation data (Cooley et al., 2007).

Alongside these techniques, several flexible approaches have been proposed that

use generalised additive models (GAMs) to capture non-stationary behaviour in model

parameters for both the GEV and GP distributions (Chavez-Demoulin and Davison,

2005; Yee and Stephenson, 2007; Youngman, 2019). GAMs use smooth functions to

capture covariate trends and are less rigid than linear regression models; see Wood

(2017) for an overview.

Finally, Nogaj et al. (2007), Eastoe and Tawn (2009) and Mentaschi et al. (2016)

propose pre-processing the data set prior to fitting the GP distribution. The pre-

processing typically takes the form

X̃t =
Xt −m(zt)

s(zt)
,

for each t ≤ n, with m : Rg → R and s : Rg → R+ denoting covariate functions

relating to the mean and variance of {Xt}, respectively. Assuming the variable X̃t is

stationary for all t ≤ n, standard extreme value techniques can then be used to model

tail behaviour. As with equation (2.3.1), the covariate functions must be specified prior

to applying the pre-processing step.

Given the end goal is to quantify extremal risks, we observe that the traditional

concept of a return level lacks meaning in the non-stationary setting, motivating an

alternative definition. This is not a trivial task, and a variety of extended definitions

have been proposed (Rootzén and Katz, 2013; Serinaldi, 2015). We restrict attention

to one in particular: given any t ∈ {1, . . . , n} and a small probability p, the conditional

return level xp,t is defined as the value satisfying Pr(Xt > xp,t | Zt = zt) = p (Eastoe,
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2019). Unlike its stationary counterpart, xp,t cannot be interpreted in terms of its

return period, i.e., the process {Xt} will not exceed xp,t once, on average, every 1/p

observations, since the distribution varies over t. However, by fixing p and considering

how the conditional return level varies over all t, one can evaluate the change in extremal

risk across different covariate realisations. For example, this could allow one to assess

changes in extreme temperatures over time as a result of increases in CO2 emissions.

2.3.2 Bivariate non-stationary extremes

Let {Xt, Yt} denote a non-stationary bivariate process with covariates Zt defined as

before. In this setting, non-stationarity can exist in both the marginal and joint dis-

tribution functions. In the spirit of copula modelling, we opt for a separate treatment

of marginal and dependence modelling and assume that the margins of {Xt, Yt} are

stationary. In practice, if this is not the case, stationary marginals can be obtained by

first fitting non-stationary marginal distributions, such as those described in Chapter

2.3.1, and then transforming to a stationary scale using the PIT.

Interest now lies in understanding how the extremal dependence structure of {Xt, Yt}

varies under different realisations of the covariate process Zt. This problem has not been

well studied in the literature, and consequently only a handful of modelling approaches

exist. Of these approaches, the majority assume that the underlying process is bivariate

regularly varying, and their use is thereby restricted to data sets exhibiting asymptotic

dependence. de Carvalho and Davison (2014), Castro-Camilo et al. (2018) and Mhalla

et al. (2019a) propose flexible modelling techniques for capturing non-stationary trends

in the spectral measure under covariate influence, while Mhalla et al. (2017), Escobar-

Bach et al. (2018) and Mhalla et al. (2019b) propose similar techniques for capturing

non-stationarity in the PDF. Alongside these modelling frameworks, Bodik et al. (2022)

propose a technique for detecting causal covariates influencing the PDF, allowing for a

simplified analysis of dependence trends.
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Far less consideration has been given to the case where the data is asymptotically in-

dependent. Jonathan et al. (2014b) and Guerrero et al. (2023) propose a non-stationary

extension of the modelling framework described in equation (2.2.7), whereby the de-

pendence parameters (α, β) are allowed to vary over time. In the former, the authors

propose smooth covariate functions for a and b, while for the latter, the parameters

(α, β) are allowed to vary smoothly over time for blocks of observations via a penalised

log-likelihood. On the other hand, Mhalla et al. (2019b) propose non-stationary exten-

sion of equation (2.2.8), along with a flexible GAM-based technique for estimating the

ADF under covariate influence.

2.4 Bivariate risk measures

As noted in Chapter 1, it is often important to quantify joint extreme risks from bi-

variate random vectors. However, this is not a trivial task, in part due to the lack of

any unique definition for a ‘bivariate extreme value’. As a result, a wide range of risk

measures have been proposed within the literature.

Serinaldi (2015) introduces seven possible bivariate risk measures for extremes, with

each measure defined by a different probability related to the joint distribution. Several

additional risk measures have been proposed under the term ‘environmental contour’;

see Mackay and Haselsteiner (2021) and Haselsteiner et al. (2021) for an overview of such

techniques. Whilst a wide range of practical applications exist, the suitability of each

proposed measure is likely to be highly context dependent; see Lindt and Niedzwecki

(2000), Salvadori and Michele (2004), Gouldby et al. (2017) and Velarde et al. (2019).

In this thesis, we restrict attention to one particular measure known as a return

curve. Return curves are the natural bivariate extension of univariate return levels,

and are also interpreted in terms of a return period. In addition, they are one of the

measures that is of most interest in nuclear regulation (Office for Nuclear Regulation,
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2017). Given a random vector (X, Y ) and probability p, the p-probability return curve

is given by the set

RC(p) :=
{
(x, y) ∈ R2 : Pr(X > x, Y > y) = p

}
.

Clearly values of p close to zero correspond to rare joint exceedance events. Within the

literature, this set has a variety of labels including level curves (Salvadori and Michele,

2004), quantile curves (Chebana and Ouarda, 2011), joint probability curves (Gouldby

et al., 2017) and isolines (Cooley et al., 2019). In analogy to return levels, we also

define the return period to be 1/p; given any point (x, y) ∈ RC(p), we would expect

to observe the joint exceedance event {X > x, Y > y} once, on average, each return

period. Equivalently, in a sample of size n from (X, Y ), we expect to observe np points

in the region (x,∞)× (y,∞).

The concept of a return curve is illustrated in Figure 2.4.1. Unlike in the univariate

setting where each p-probability return level is unique, return curves are instead sets

containing an infinite number of values. We also see that return curves include regions

where only one variable is extreme as well as those in which both are extreme. Con-

sidering the left panel of Figure 2.4.1, one can observe how the behaviour of the return

curves changes as the probability p (return period 1/p) decreases (increases).

In many practical applications, estimates of RC(p) are required for return periods

that exceed the number of observations. This extrapolation is only possible given

an accurate description of the joint tail behaviour. As in univariate risk estimation,

standard statistical techniques are unsuitable for this purpose, motivating the use of

bivariate extreme value theory.

One must also quantify uncertainty when estimating return curves. Compared with

univariate risk measures, this is an even more complex problem since uncertainty arises

over two-dimensional space. It is also essential to evaluate goodness of fit of a given

return curve estimate. In particular, one must ensure the curve estimate accurately

25



Chapter 2

−2 0 2 4

−
2

0
2

4

X

Y

p = 10−1

p = 10−2

p = 10−3

p = 10−4

p = 10−5

−2 0 2 4

−
2

0
2

4

X

Y

Figure 2.4.1: Illustrations of return curves for bivariate Gaussian data on standard
normal margins, with ρ = 0.5 and n = 3, 000. Left: return curves for five probabilities
p ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. Right: the joint survivor set (x,∞)×(y,∞) (shaded
blue region) for a point on the p = 10−2 return curve. The probability of observing
data in joint survivor sets of form (x,∞) × (y,∞) is constant and equal to p for any
point on the return curve.

represents the probability p.

Within the literature for extremes, little attention has been given to the estimation of

return curves. Moreover, the limitations of the few existing approaches clearly motivate

the development of novel estimation techniques. These points are addressed in Chapter

3, where we introduce a range of novel estimation techniques for the return curve, as

well as developing tools for evaluating uncertainty and goodness of fit.

Finally, like the univariate return level, the standard definition of a return curve

lacks meaning in the non-stationary setting. We therefore extend the definition of

this risk measure to be covariate-dependent. Given a process {Xt, Yt} with covariates

Zt, t ∈ {1, 2, . . . , n}, we define the p-probability return curve at the covariate realisation

zt to be

RCzt(p) := {(x, y) ∈ R2 | Pr(Xt > x, Yt > y | Zt = zt) = p}.

Thus far, no methods have been proposed for estimating return curves under covariate
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influence within the literature, even though non-stationarity is commonly observed in

many practical settings where quantifying joint risks is important. This gap in the

literature is addressed in Chapter 4.
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New estimation methods for

extremal bivariate return curves

3.1 Introduction

3.1.1 Univariate extremal risk measures

Statistical analysis of extreme values is important in a wide range of environmental

contexts, from the modelling of ocean waves (Shooter et al., 2021) and wind speeds

(Baran et al., 2021) to climatological assessments (Yu et al., 2022; Worms and Naveau,

2022). The two most common approaches to modelling the extreme behaviour (or

tail) of a single variable are block maxima and peaks over threshold (Coles, 2001).

For the latter, which is more popular in practice, the generalised Pareto distribution

(GPD) is used to model exceedances of some high threshold. This is justified through

the Pickands-Balkema-de Haan theorem (Balkema and de Haan, 1974; Pickands, 1975);

given a random variableX ∼ FX satisfying certain conditions, there exists a normalising

function c(u) such that

Pr

(
X − u

c(u)
≤ x

∣∣∣ X > u

)
→ G(x) := 1−

{
1 +

ξx

σ

}−1/ξ

+

, x > 0, (σ, ξ) ∈ R+ × R,
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as u → xF := sup{x : FX(x) < 1}. Here, G is the cumulative distribution function of a

GPD, with scale and shape parameters, σ and ξ, respectively, and z+ = max(0, z). The

shape parameter ξ determines the behaviour of the tail: the cases ξ < 0, ξ = 0 and ξ > 0

correspond to bounded, exponential and heavy tails, respectively. Given a sufficiently

high threshold u, we assume the statistical model X − u | X > u ∼ GPD(σ, ξ). A

detailed discussion of peaks over threshold modelling can be found in Coles (2001).

Often, univariate extreme value models are used to estimate risk measures for events

associated with small probabilities; these summary statistics provide a quantification

of extremal behaviour that can be used to help mitigate against rare environmental

events, such as floods, storms, or wildfires. One such measure is known as a return

level. Given a real variable X, representing a measurement taken at regular time

intervals, and probability p, the p-probability return level is the value xp that satisfies

the equation Pr(X > xp) = p. For small p, xp represents a high quantile which can be

estimated using the GPD. We restrict attention to the case when X is stationary since

the interpretation of return levels is more straightforward in this setting. We define

the return period of xp to be the value 1/p; one would expect the variable X to exceed

xp once, on average, during each return period. The relationship between return levels

and periods can be illustrated using a return level plot; examples of three such plots

with varying shape parameters are given in the left panel of Figure 3.1.1.

Return levels are widely used and provide a simple way to understand risk. However,

many potentially impactful events arise due to the effect of more than one variable. For

example, Mattei et al. (2001) describe how the combination of high sea levels and wind

led to large-scale flooding at the Blayais nuclear power plant in 1999, causing significant

damage. For this reason, it is desirable to have similar risk measures in the multivariate

case, but thus far relatively little consideration has been given to this problem. This is

in part due to the lack of natural ordering for multivariate vectors, which means there

is no longer a single definition of an extreme event. A variety of measures have been
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Figure 3.1.1: Left: Return level plots under varying shape parameters. Centre: Return
curve RC(p) (red) of standard bivariate normal data with ρ = 0.5 and n = 1000 for
return period of 100 (p = 1/100). In a sample of size n, we expect to observe np points
in the blue shaded region; this is true for all equivalent shaded regions at any point
on the curve. Right: Return curves of the same bivariate normal data set for return
periods in the set {10, 100, 1000, 10000}.

proposed (Serinaldi, 2015), with each suited to a different analytical need. In this text,

we focus on the bivariate case and one particular measure known as a return curve,

which directly extends the return level concept to the bivariate setting.

3.1.2 Return curves

Consider the joint survival function of the continuous random vector (X, Y ) at a given

probability p, i.e. Pr(X > x, Y > y) = p. The combinations (x, y) ∈ R2 satisfying this

equation define a curve in the plane; we therefore define the p-probability return curve

to be the set

RC(p) :=
{
(x, y) ∈ R2 : Pr(X > x, Y > y) = p

}
.

We consider values of p close to zero, corresponding to rare joint exceedance events.

Within the literature, this set has a variety of labels, including isolines (Cooley et al.,

2019), hazard curves (Simpson and Wadsworth, 2017) and joint probability curves

(Gouldby et al., 2017). In an analogue to return levels, we define the return period to

be 1/p, since given any point (x, y) ∈ RC(p), we would expect to observe the event
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{X > x, Y > y} once, on average, each return period. Equivalently, in a sample of size

n from (X, Y ), we expect to observe np points in the region (x,∞)× (y,∞).

Since return curves define a line in R2 rather than a single value, the two dimensional

return level plot does not naturally extend to this setting. Instead, we can consider dif-

ferent return periods and plot the corresponding curves individually or simultaneously;

examples of both are given in the centre and right panels of Figure 3.1.1 for a standard

bivariate normal data set with correlation coefficient ρ = 0.5.

Return curves are arguably the most intuitive bivariate extension to return levels

since they are also defined in terms of the survivor function. They have been used in

practice to derive extremal environmental conditions for the design and analysis of ocean

structures, such as oil rigs (Jonathan et al., 2014a), freight ships (Vanem et al., 2020)

and wind turbines (Manuel et al., 2018; Velarde et al., 2019), and coastal structures,

such as railway lines (Environmental Agency, 2005; Gouldby et al., 2017) and wave

energy converters (Eckert-Gallup and Martin, 2016).

As motivating examples, we consider two environmental data sets of practical im-

portance, both of which are illustrated in Figure 3.1.2. Our objective is to use return

curve estimates to derive joint extremal conditions for each data set. Both data sets

are comprised of metocean variables, which have previously been used in a comparison

exercise for a risk measure known as an environmental contour (Haselsteiner et al.,

2021); such measures also aim to summarise joint extremal behaviour. However, unlike

return curves, they do not offer an intuitive interpretation in terms of return periods.

The first data set contains measured significant wave height (m) and zero up crossing

period (s) between 1996-2005 obtained from a buoy on the east coast of Florida, USA.

The second data set contains 25 years of wind speed (m/s) and significant wave height

(m) observations obtained from the hindcast model coastDat −2 (Groll and Weisse,

2017) for a location in the North Sea near the east coast of the UK. These combinations

of variables are of particular relevance for the structural reliability of offshore and coastal
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structures, and bivariate risk measures are commonly used to inform the design basis for

such structures (Jonathan et al., 2014a; Haselsteiner et al., 2019; Mackay and Jonathan,

2020). They therefore provide realistic examples with which to illustrate the utility of

return curve estimates.
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Figure 3.1.2: Left: Measured daily maxima metocean data for a buoy located on the
east coast of Florida, USA. Right: Hindcast daily maxima metocean data for a location
near the east coast of the UK.

Both of the original data sets are comprised of hourly observations, resulting in

strong temporal dependence between observations. To reduce the temporal depen-

dence while retaining a relevant data set, we restrict attention to daily maxima values.

Furthermore, we account for seasonal non-stationarity by restricting attention to the

months September-March; our analysis suggests the largest wave heights are observed

in this interval. This results in n = 2048 and n = 5306 observations, respectively, for

the measured and hindcast data sets.

3.1.3 Practical considerations for return curve estimation

To estimate return curves in practice, we must first estimate the joint survival function

of an observed bivariate process at a fixed probability p. Since we restrict attention to
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probabilities close to zero, we require an estimation method that can accurately capture

the joint tail behaviour of the process and provide realistic extrapolation to estimate

RC(p) for p outside of the observation period. For this reason, we restrict attention

to models from multivariate extreme value theory. We must also consider methods

for evaluating the uncertainty associated with return curve estimates. This is a more

complex problem than assessing the uncertainty of return level estimates, since there

is more than one dimension in which the risk measure can vary. Furthermore, given a

data set for which a curve has been estimated at probability p, it is also essential to

evaluate goodness of fit via a diagnostic tool. Little attention has been given to either

of these problems within the extremes literature, motivating the development of novel

approaches.

This article is structured as follows. Section 3.2 provides a brief background on bi-

variate extreme value theory. In Section 3.3, we introduce various properties of return

curves, review existing approaches for curve estimation within the extremes literature

and present two novel approaches. Section 3.4 introduces new tools for analysing uncer-

tainty and goodness of fit in return curve estimates. Section 3.5 presents a simulation

study to evaluate the performance of these tools and compare curve estimates from

several models. In Section 3.6, we apply our methodology to the two aforementioned

environmental data sets. We conclude in Section 3.7 with a discussion and outlook on

future work.

3.2 Bivariate extreme value theory

When assessing the extremal behaviour of a continuous bivariate random vector (X, Y ),

one must consider tail behaviour within both marginal processes, along with the de-

pendence between the largest observations of either variable, which we refer to as the

extremal dependence. A fundamental classification of extremal dependence is whether
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the most extreme events can occur jointly or not. This is quantified by the coefficient

χ := limu→1 χ(u) ∈ [0, 1], where

χ(u) = Pr(FY (Y ) > u | FX(X) > u),

for X ∼ FX , Y ∼ FY . The cases χ = 0 and χ > 0 correspond to asymptotic inde-

pendence (AI) and asymptotic dependence (AD), respectively. A larger χ corresponds

to stronger positive dependence in the joint tail, with χ = 1 occurring for perfectly

dependent variables. In practice, we cannot estimate χ in the limit as u → 1, meaning

we must use χ(u), u < 1, to determine AD vs AI.

Early modelling techniques proposed for multivariate extreme values focused only

on the AD case (de Haan and Resnick, 1977; Coles and Tawn, 1991; de Haan and

de Ronde, 1998). Such methods are based on the framework of multivariate regular

variation: given a random vector (X, Y ) with standard Fréchet margins, we define

radial and angular components R := X + Y and W := X/R, respectively. We say

(X, Y ) is multivariate regularly varying if, for measurable B ⊂ [0, 1], we have

lim
r→∞

Pr(W ∈ B,R > sr | R > r) = H(B)s−1, s ≥ 1, (3.2.1)

with H(∂B) = 0, where ∂B is the boundary of B (Resnick, 1987). Limit (3.2.1) implies

that for large radial values, R and W are approximately independent. The quantity H,

which is known as the spectral measure, captures the extremal dependence structure of

(X, Y ) and must satisfy the moment constraint
∫ 1

0
wdH(w) = 1/2. For all AI vectors,

the spectral measure places mass on the atoms {0} and {1}; consequently, under AI,

this framework is degenerate and is unable to accurately extrapolate into the joint tail,

except in the special case of independence (Ledford and Tawn, 1996, 1997).

In recent years, it has been shown that the AI case is at least as important as the AD

case, and that assuming the incorrect form of extremal dependence leads to unsuitable
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extrapolation in the joint upper tail (Ledford and Tawn, 1996, 1997; Heffernan and

Tawn, 2004). Therefore, unless there is strong prior knowledge in favour of either AD

or AI, it is desirable to use models which have sufficient flexibility to allow the data to

directly inform the class of extremal dependence structure.

The first such approach was proposed in Ledford and Tawn (1996). Given (X, Y )

with standard exponential margins, this model assumes the joint tail representation

Pr(X > t, Y > t) = Pr(min(X, Y ) > t) = L(et)e−t/η as t → ∞, (3.2.2)

where L is a slowly varying function at infinity, i.e., limt→∞ L(ct)/L(t) = 1 for c > 0,

and η ∈ (0, 1]. The parameter η is termed the coefficient of tail dependence, with η = 1

and limt→∞ L(t) > 0 corresponding to AD and η < 1, or η = 1 and limt→∞ L(t) =

0, corresponding to AI. Estimation of η can be performed in practice using the Hill

estimator (Hill, 1975). Several extensions to this approach exist (Ledford and Tawn,

1997; Ramos and Ledford, 2009): however, all techniques derived under this framework

are applicable only within regions where both variables are large. Consequently, these

methods are not appropriate for the estimation of return curves, since this measure is

defined also in regions where only one variable is large; see Figure 3.1.1.

Wadsworth and Tawn (2013) provide an alternative representation for bivariate tail

probabilities using a more general extension of the model described in equation (3.2.2)

that allows for joint tail estimation in regions where only one variable is large. Given

(X, Y ) with standard exponential margins, they assume for each w ∈ [0, 1]

Pr(min{X/w, Y/(1− w)} > t) = L(et | w)e−λ(w)t, λ(w) ≥ max(w, 1− w), (3.2.3)

as t → ∞, where L(· | w) is slowly varying for each ray w ∈ [0, 1]. The function λ,

which is termed the angular dependence function, is the key quantity in determining

joint tail behaviour, and both AD and AI can be captured under this assumption,
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with AD implying the lower bound λ(w) = max(w, 1 − w). This quantity generalises

the coefficient η, with η = 1/(2λ(0.5)), and can be estimated pointwise for any ray

w ∈ [0, 1] using the Hill estimator. This approach can be used to estimate joint survivor

probabilities where only one variable is large by taking values of w close to 0 or 1.

Heffernan and Tawn (2004) proposed a very general modelling tool for conditional

probabilities. We consider the extension given in Keef et al. (2013a) since the formu-

lation given in the original approach cannot easily accommodate structures exhibiting

negative dependence. Given a random vector (X, Y ) with standard Laplace margins, it

is assumed that there exist normalising functions a : R → R and b : R → R+ such that

lim
t→∞

Pr [(Y − a(X))/b(X) ≤ z,X − t > x | X > t] = D(z)e−x, (3.2.4)

for a non-degenerate distribution functionD. Similarly to Wadsworth and Tawn (2013),

this framework is able to capture both AD and AI, with AD arising when a(x) = x

and b(x) = 1. This method is a flexible approach for modelling multivariate extremes

and is also not restricted only to regions where both variables are large. Note that

one could also condition on the event Y > t and assume the existence of normalising

functions for the variable X: in combination, these assumptions allow consideration of

the region where either variable is large. The functions a and b are typically estimated

parametrically under a misspecified model for D, while the distribution function D is

subsequently estimated non-parametrically.

Alongside these approaches, we note that there exist a range of copula-based models

that can capture both dependence regimes (Coles and Pauli, 2002; Wadsworth et al.,

2017; Huser and Wadsworth, 2019). Such techniques aim to create a unified modelling

framework for AD and AI. Moreover, the case of AD does not represent a boundary case

for the latter two approaches, which could be practically advantageous. However, they

all require stronger assumptions about the form of parametric family for the bivariate

distribution, reducing their flexibility and limiting their use in practice. As a result,
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we prefer instead to consider the more flexible modelling assumptions described in

equations (3.2.3) and (3.2.4).

3.3 Bivariate return curve estimation

We now consider techniques for practical estimation of return curves. We begin by

introducing theoretical results for return curves in Section 3.3.1. Naive implementation

of statistical estimation methods would generally produce curves that fail to respect

these results, but imposing them will typically improve estimation. Section 3.3.2 details

how to perform marginal transformations so that the models in equations (3.2.3) and

(3.2.4) can be applied in practice. In Section 3.3.3, we present existing approaches for

return curve estimation before introducing novel estimation techniques in Section 3.3.4.

3.3.1 Return curve properties

A careful consideration of the theory surrounding the joint survival function allows us to

deduce several properties about the shape and magnitude of RC(p) for a given p ∈ (0, 1).

We begin by noting that the joint distribution function, FX,Y , can be expressed in terms

of the marginal distribution functions of X and Y , FX , FY , respectively, and a copula C

via FX,Y (x, y) = C(FX(x), FY (y)). The return curve is linked to the joint distribution

function FX,Y by the equation Pr(X > x, Y > y) = 1 − FX(x) − FY (y) + FX,Y (x, y).

Throughout this section, we make the assumption that the random vector (X, Y ) has

strictly continuous marginal distribution functions.

Property 3.3.1. Let xp := F−1
X (1− p) and yp := F−1

Y (1− p) be the (1− p)-th quantiles

of X and Y, respectively. Then for (x, y) ∈ RC(p), x ≤ xp and y ≤ yp.

Proof. We have Pr(X > x) ≥ Pr(X > x, Y > y) = p = Pr(X > xp) and hence x ≤ xp .
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This result bounds the coordinate values that can be observed on the return curve.

Next, by considering the limit of the joint survivor function as one variable converges

to the lower limit of the marginal support, we obtain the following result.

Property 3.3.2. Let supp(F ) denote the support of F and xinf := inf{supp(FX)},

yinf := inf{supp(FY )}. We have that

Pr(X > x, Y > y) =


Pr(Y > y) if x ≤ xinf ,

Pr(X > x) if y ≤ yinf .

Combining this statement with Property 3.3.1, Property 3.3.3 follows.

Property 3.3.3. Let (x, y) ∈ RC(p). If x ≤ xinf (y ≤ yinf ), then y = yp (x = xp).

These results allow us to easily compute the curve coordinates on the regions

(−∞, xinf ) × (yp,∞) and (xp,∞) × (−∞, yinf ), assuming we can accurately estimate

the marginal quantiles (xp, yp) and the infima of marginal supports (xinf , yinf ). Finally,

by considering coordinates at different points on a return curve, we obtain the following

result.

Property 3.3.4. Suppose the copula, C, of (X, Y ) on uniform margins has joint support

on the whole of [0, 1]2 and joint density function, denoted c. Given (x1, y1), (x2, y2) ∈

RC(p) with 0 < FX(x1), FX(x2) < 1 and 0 < FY (y1), FY (y2) < 1, we have that x1 <

x2 ⇔ y1 > y2.
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Proof. Suppose x1 < x2 and y1 ≤ y2. This implies that

p = Pr(X > x1, Y > y1) = Pr(FX(X) > FX(x1), FY (Y ) > FY (y1))

=

∫ 1

FX(x1)

∫ 1

FY (y1)

c(u, v)dvdu

=

∫ FX(x2)

FX(x1)

∫ 1

FY (y1)

c(u, v)dvdu+

∫ 1

FX(x2)

∫ 1

FY (y1)

c(u, v)dvdu

>

∫ 1

FX(x2)

∫ 1

FY (y1)

c(u, v)dvdu (since we have support on the whole of [0, 1]2)

≥
∫ 1

FX(x2)

∫ 1

FY (y2)

c(u, v)dvdu = Pr(X > x2, Y > y2) = p

implying p > p, a contradiction. Hence, y1 > y2.

This result governs the shape of the contour defined by the return curve set. We

note there is an alternative proof given in Cooley et al. (2019) under the assumption of

monotonicity of the joint survivor function.

3.3.2 Marginal transformations

From Section 3.2, it is clear that in order to apply multivariate extreme value models, we

need to standardise the marginal distributions of a random vector to achieve the form

assumed by the model. Typically, inference involves two steps: forward transformation

to get the data onto desired margins and back transformation to move any computed

statistics, such as a return curve, back onto the original margins. For both steps, we

use the semi-parametric approach given in Coles and Tawn (1991). Given an identically

distributed sample {(xi, yi) : i = 1, . . . , n} from a random vector (X, Y ) with unknown

margins, we estimate the marginal distribution F̂X (similarly F̂Y ) by

F̂X(x) =


1− {1− F̃X(uX)}{1 + ξX(x− uX)/σX}−1/ξX

+ , for x > uX ,

F̃X(x), for x ≤ uX ,

(3.3.1)
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where the first line represents the GPD above a high threshold uX and F̃X is an empirical

rank transform given by F̃X(x) =
∑n

i=1 1(xi ≤ x)/(n + 1). This approach ensures the

marginal tail behaviour is captured within the transformation. Moreover, equation

(3.3.1) can be easily inverted to perform the back transformation step.

3.3.3 Existing methodology

The literature on extremal return curve estimation is sparse, owing to the fact that

little consideration has been given to this problem in practice. Of the existing ap-

proaches, each can be designated into one of three categories: approaches for AD data

only, approaches for AI data only, and approaches applicable to data exhibiting either

regime. The majority of the available literature falls within the first of these categories

(Stephenson, 2002; Salvadori and Michele, 2004; Marcon et al., 2017a). In all cases,

the authors assume the bivariate copula is in a family of distributions termed bivariate

extreme value copulas. These copulas, which are directly related to the spectral mea-

sure from limit (3.2.1), imply AD and provide the basis for the majority of multivariate

extreme value techniques. The necessity for making such a strict assumption is a well

known drawback of this kind of model, since the form of extremal dependence is sel-

dom known prior to analysis and AI is frequently observed in practice (Heffernan and

Tawn, 2004; Huser and Wadsworth, 2019). We therefore choose not to consider such

approaches further.

In Cooley et al. (2019), the authors propose separate techniques for the first and

second categories. In both cases, extremal return curve estimates are obtained by

‘projecting’ empirical curves estimated for less extreme probabilities. For the case of

AD, given a random vector (X, Y ) with standard Fréchet margins, multivariate regular

variation is exploited to obtain curve estimates. Consider two small probabilities p

and p∗ with p∗ > p; multivariate regular variation implies that RC(p) ≈ s−1RC(p∗),

where s := p∗/p > 1. In practice, RC(p∗) is estimated empirically via a smooth
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Gaussian-kernel estimate of the joint survivor function, and scaled by the coefficient

s−1 to produce an estimate for RC(p).

In the case of AI, a similar estimation procedure is proposed based on the framework

of hidden regular variation (Resnick, 2002), an elaboration of the assumption outlined

in equation (3.2.2). However, as mentioned in Section 3.2, this approach only works

in regions where both variables are large. To account for this, Cooley et al. (2019)

proposed an ad-hoc procedure to link this region to the marginal axes, requiring addi-

tional steps and parameter estimation. In contrast, the assumption in equation (3.2.3)

provides a theoretically sound link between regions where variables are of different

magnitudes. Estimates of return curves from the Cooley et al. (2019) approach are il-

lustrated in Figure 3.5.1. In Section 3.5, we compare the resulting curve estimates from

this approach to the methods introduced in this paper and show that the techniques

we present outperform this method in a wide range of scenarios.

For the third category, few approaches exist within the literature; this is in part

because the bivariate extreme value methodologies that allow for dual estimation are

relatively modern. All proposed techniques use a semi-parametric implementation of

the conditional extremes model described in equation (3.2.4) (Jonathan et al., 2014a;

Gouldby et al., 2017; Simpson and Wadsworth, 2017; Tilloy et al., 2020). However, like

the other techniques introduced in this section, little to no consideration is given to the

theory behind return curves, leading to curve estimates with undesirable properties.

Moreover, as will be discussed in Section 3.3.4.1, utilising the Heffernan and Tawn

(2004) modelling framework for return curve estimation is not straightforward, requiring

delicate treatment and several steps; this has not been fully acknowledged in these

existing approaches.

To the best of our knowledge, the modelling techniques discussed here cover all of

the proposed methods for estimating return curves at extremal probabilities. Further-

more, we know of no attempt to compare curve estimates from these different methods.
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No formal quantifications of return curve uncertainty or bias have been proposed previ-

ously, making it difficult to evaluate performance over different dependence structures.

Some approaches (Simpson and Wadsworth, 2017; Cooley et al., 2019) instead provide

bootstrap curve estimates which, while representing the uncertainty in curve estimates,

do not provide interpretable confidence regions.

Alongside this issue, there is only one diagnostic tool in the literature for evaluating

the accuracy of return curve estimates (Cooley et al., 2019). This tool utilised the result

that, if data are independent and identically distributed, the number of points in each

survival region on the return curve should theoretically be Binomial(n, p) distributed,

where n denotes the size of the data set. This property can be used to construct a theo-

retical confidence region for the number of points in the joint survival set (x,∞)×(y,∞)

for any point (x, y) ∈ RC(p). While the authors show that these confidence regions

capture the number of observations within estimated joint survival sets for the majority

of considered examples, we argue that the resulting diagnostic is relatively uninforma-

tive since it lacks an intuitive interpretation in terms of the survival probability p.

Moreover, this diagnostic strongly relies on the assumption of independent observa-

tions, which is seldom the case in practice. We present an alternative diagnostic tool

in Section 3.4.2, where confidence intervals are instead obtained using sets of empir-

ical probability estimates obtained through bootstrapping and compared to the true

probability p. Temporal dependence can be incorporated through block bootstrapping,

meaning this tool can be applied to a wider range of data sets; see Sections 3.4.2 and

3.6 for further details.

3.3.4 Novel methods for return curve estimation

We outline two methods for estimation of RC(p) based on the modelling assumptions

given in equations (3.2.3) and (3.2.4). Consider a random vector (X, Y ) with standard

exponential margins, for which the marginal support is given by the set R+; this implies
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xinf = yinf = 0. We can immediately deduce from Property 3.3.3 that the coordinates

of the return curve intersecting the margins are given by (0, yp) and (xp, 0), with yp =

xp = − log(p), the (1 − p)-th quantile. These coordinates give us ‘start’ and ‘end’

points for curve construction. Moreover, given a curve estimate R̂C(p) for this vector

constructed with these boundary points, Properties 3.3.1 and 3.3.4 can be imposed to

ensure the resulting curve is theoretically possible. For the former, if any (x, y) ∈ R̂C(p)

satisfy x > xp (similarly, y > yp), we set x = xp (y = yp), thereby bounding values

on the curve. For the latter, we treat the bounded curve estimate as a function of x

and apply an iterative algorithm starting at the point (0, yp) to obtain a monotonic

function. Incorporating additional theoretical knowledge into return curve estimation

should lead to more accurate and robust estimates. For both of the methods introduced

in this section, we impose the properties above retrospectively once curve estimates have

been obtained.

3.3.4.1 Method based on the approach given in Heffernan and Tawn (2004)

In this section, we propose an implementation of the Heffernan and Tawn (2004) model,

which builds on the existing methods that have applied this framework for return curve

construction. Unlike these techniques, we incorporate the properties introduced in

Section 3.3.1 into return curve estimates and provide an intuitive algorithm for com-

bining the point estimates obtained from conditioning on both variables. Let (XL, YL)

denote the vector (X, Y ) on standard Laplace margins and consider a small proba-

bility p for which we wish to obtain a return curve estimate. To achieve this, we

fit the Heffernan and Tawn (2004) model twice, conditioning on both XL and YL

separately, thus allowing us to estimate the curve in different regions. In particu-

lar, we consider the regions defined by RYL>XL
:= {(xL, yL) ∈ R2 | yL > xL} and

RYL≤XL
:= {(xL, yL) ∈ R2 | yL ≤ xL}.

For RYL>XL
, we first select a high quantile uYL

from the marginal distribution of YL
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such that Pr(YL > uYL
) > p. In particular, we select the 0.95 empirical quantile of this

distribution, implying the return curve probability, p, must be smaller than 0.05. We

assume the normalising functions are given by a(y) = αy and b(y) = yβ for constants

α ∈ [−1, 1] and β ∈ (−∞, 1): as noted in Keef et al. (2013a), these functions capture

the limiting dependence structures for a wide range of distributions. The parameters α

and β can be estimated under the working assumption that the distribution function D,

which captures the stochastic behaviour of the variable (XL − αYL)/Y
β
L | YL > uYL

, is

that of a Gaussian distribution. We denote the fitted values by α̂ and β̂. These values

can be used to simulate from the variable XL | YL > uYL
; for example, see Jonathan

et al. (2014a).

We then consider a decreasing sequence of high quantiles from YL that exist in the

interval (uYL
, F−1

YL
(1 − p)). The upper end point of this interval is the limit that YL

values can attain on this curve and the lower end point represents the minimal quantile

for which the fitted model is valid. We denote this set by Y and iteratively consider

each y∗ ∈ Y in turn, with q := Pr(YL > y∗). Using the fitted parameter values, we

use the model to simulate from the conditional distribution XL | YL > y∗. Letting x∗

denote the (estimated) (1 − p/q)-th quantile from this distribution, we have that the

resulting coordinate (x∗, y∗) is a member of the set R̂C(p) (defined for (XL, YL)) since

Pr(XL > x∗, YL > y∗) = Pr(XL > x∗ | YL > y∗) Pr(YL > y∗) =
p
q
× q = p. We continue

in this manner until we obtain a value x∗∗ with y∗ ≤ x∗∗, or we have exhausted all

values in the set Y . The resulting coordinate set then gives an estimate of the curve in

RYL>XL
.

A near identical procedure is used to obtain the curve estimate in RYL≤XL
, this

time selecting a high quantile uXL
from the distribution of XL and fitting the condi-

tional model above this quantile. We then consider a set of quantiles in the interval

(x
′
∗∗, F

−1
XL

(1 − p)), where x
′
∗∗ = x∗∗ if x∗∗ exists and uXL

otherwise, where uXL
denotes

the empirical 0.95 quantile from XL. We label this set X , ordered such that the quan-
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 estimation procedure
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Figure 3.3.1: Illustration of return curve estimation procedure using Heffernan and
Tawn (2004) modelling framework. Red and green lines give 0.95 and (1−p)-th quantiles
for both margins, respectively. The brown and orange points denote the point estimates
obtained for the regions RYL>XL

and RYL≤XL
, respectively.

tiles are increasing, and use the fitted model to obtain quantiles from the conditional

distribution YL | XL > x∗ for each x∗ ∈ X . The resulting coordinate sets from both

regions are combined to give an estimate of the return curve over the entire joint sup-

port of (XL, YL). An illustration of this procedure is given in Figure 3.3.1. As can be

observed, two sets of points estimates are obtained by conditioning on either variable;

these sets are then combined to give an estimate of the entire return curve. As a final

step, we apply the probability integral transform to transform the curve estimate to

standard exponential margins.

We note that the implementation of this model to estimate return curves is more

complex than the methods proposed in Section 3.3.4.2 and Cooley et al. (2019). This

is due to the fact the model requires a variable to condition on, meaning we have to

fit the model twice and provide a technique for joining point estimates from regions

RYL>XL
and RYL≤XL

.
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3.3.4.2 Method based on the approach given in Wadsworth and Tawn

(2013)

In this section, we propose a novel implementation of the model described in equation

(3.2.3) to generate non-parametric return curve estimates. Consider a random vector

(X, Y ) with standard exponential margins and define a set W containing equally spaced

rays in the interval [0, 1], ordered from lowest to highest. Assuming |W| is sufficiently

large, we are able to evaluate the joint extremal behaviour across the entire region for

which at least one variable is extreme. For each w ∈ W , we use the 95% empirical

threshold of the variable Tw := min {X/w, Y/(1− w)} to obtain an estimate of the

angular dependence function via the Hill estimator, which we denote λ̂(w). For large

u, equation (3.2.3) implies that for any w ∈ (0, 1) and t > 0,

Pr
(
Tw > t+ u

∣∣∣Tw > u
)
≈ exp{−tλ̂(w)}.

Estimates of t and u, combined with the rays w, provide estimates of points in RC(p).

We firstly select a small probability p∗ > p and estimate u as the (1 − p∗)-th quantile

of Tw, implying Pr(Tw > u) = p∗. One can then estimate the value of t > 0 such that

Pr(Tw > t+ u) = p since

p = Pr(Tw > t+ u) = Pr(Tw > u)× Pr(Tw > t+ u | Tw > u) = p∗ exp{−tλ̂(w)},

giving the estimate t = − 1

λ̂(w)
log(p/p∗). Setting (x, y) := (w(t+ u), (1−w)(t+ u)), we

have (x, y) ∈ R̂C(p), resulting in a return curve point estimate for each ray w ∈ W .

The special case of asymptotic dependence, i.e., λ(w) = max(w, 1−w), is discussed

in the appendix. In particular, we show that whilst asymptotic dependence corresponds

to a boundary case for the Wadsworth and Tawn (2013) modelling framework, this

framework can still be used to derive return curve estimates for this class of extremal

dependence.
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3.4 Uncertainty estimation and diagnostic tool

3.4.1 Capturing uncertainty in return curve estimates

While previous methods for return curve estimation have considered sampling uncer-

tainty, none provide a means to construct interpretable confidence regions and/or ‘av-

erage’ estimates for return curves (Simpson and Wadsworth, 2017; Cooley et al., 2019).

Here, we propose a new method for representing uncertainty in return curve estimates

that addresses limitations in the existing methods and provides a formal framework for

comparing curve estimates from different models where the truth is known.

Our goal is to represent sampling uncertainty in return curve estimates via some

type of confidence region at a given significance level α ∈ (0, 1). Since these curves

vary in two dimensions, careful consideration is needed to ensure the resulting region

represents α in a straightforward and interpretable manner.

Figure 3.4.1 displays n = 10000 datapoints from inverted logistic (Ledford and

Tawn, 1997) and asymmetric logistic (Tawn, 1988) copulas on standard exponential

margins. The true return curves for p = 1/10000 are given in red while the curves

estimated using the Wadsworth and Tawn (2013) model are given in green. A repre-

sentation of sampling uncertainty will help to determine the quality of these estimates.

To achieve this, we propose an adaptation of a tool given in Haselsteiner et al. (2019)

for representing uncertainty in environmental contour estimates. The novelty in our

approach comes from the fact the original tool has not been directly applied for return

curve estimation, even though return curves and environmental contours bear many

similarities (Haselsteiner et al., 2021). Moreover, no consideration is given to the theo-

retical justification of the resulting uncertainty representation in the original approach

in terms of coverage properties.

On standard exponential margins, the joint support is given by the set R2
+; we

consider a set of angles in the interval (0, π/2) and use these angles to divide the R2
+
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Figure 3.4.1: Estimated (green) vs true (red) curves for data sets simulated from in-
verted logistic (left) and asymmetric logistic (right) copulas.

plane. Specifically, given some large positive integer m, we define Θ := {π(m + 1 −

j)/2(m + 1) | 1 ≤ j ≤ m}, i.e., a sequence of decreasing angles starting near π/2 and

approaching 0. For each θ ∈ Θ, let Lθ := {(x, y) ∈ R2
+ | tan(θ) = y/x} denote the

line segment intersecting the origin with gradient tan(θ) > 0. For any return curve

estimate R̂C(p) satisfying properties 3.3.1 - 3.3.4, we have that Lθ intersects R̂C(p)

exactly once for every θ ∈ Θ, implying there is a one-to-one correspondence between

angles and points on the estimated curve. An illustrative figure of this correspondence

can be found in the supplementary material.

Letting {(x̂θ, ŷθ)} := R̂C(p)∩Lθ, we let d̂θ denote the l2-norm of this point estimate,

i.e., d̂θ := (x̂2
θ + ŷ2θ)

1/2. Since the angle θ is fixed, this metric represents the aspect of

(x̂θ, ŷθ) that will vary across different curve estimates. Uncertainty in return curve

estimates can consequently be quantified using the distribution of d̂θ at each angle

θ ∈ Θ. We propose the following bootstrap procedure: for k = 1, . . . , K,

1. Bootstrap the original data sample to produce a new sample of the same size.

2. For each θ ∈ Θ, obtain the l2-norm for the corresponding point estimate obtained

using a given model. Denote this value by d̂θ,k.

If temporal dependence is shown to exist in the data, block bootstrapping (Kunsch,
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1989) can be used for this procedure. This sampling scheme retains temporal depen-

dence in the resampled datasets, which ensures the additional uncertainty that arises

due to the lower effective sample size is accounted for (Politis and Romano, 1994). It is

widely used for quantifying uncertainty in environmental applications of extreme value

theory; see, for instance, Eastoe and Tawn (2009), Mhalla et al. (2019b) and Simpson

and Wadsworth (2021).

Given θ ∈ Θ, we construct empirical estimates of the mean, median, and 100(1−α)%

confidence intervals for the l2-norm values using the sample {d̂θ,k | 1 ≤ k ≤ K}. Taking

α = 0.05, we estimate the 2.5% and 97.5% quantiles using this sample, which we denote

d̂0.025θ and d̂0.975θ respectively. Assuming unbiased estimation, Pr(d̂0.025θ ≤ dθ ≤ d̂0.975θ ) ≈

0.95, where dθ = (x2
θ + y2θ)

1/2 is the l2-norm of (xθ, yθ) ∈ RC(p) ∩ Lθ. Hence, one can

show that

Pr
[
(xθ, yθ) ∈

{
(x, y) ∈ Lθ

∣∣∣dθ ∈ [d̂0.025θ , d̂0.975θ ]
}]

≈ 0.95,

implying the set
{
(x, y) ∈ Lθ

∣∣dθ ∈ [d̂0.025θ , d̂0.975θ ]
}

defines a confidence region for curve

points along the line y = tan(θ)x. Taking the maximum and minimum x and y co-

ordinates in this set, we obtain a pointwise confidence region for points along the line

segment Lθ at each angle θ ∈ Θ. These pointwise confidence regions, along with the x

and y coordinates corresponding to the mean and median l2-norm values, can be joined

together in order of angle to construct estimates that represent mean, median, and 95%

confidence interval estimates for the return curve.

Our procedure is illustrated in Figure 3.4.2 with m = 150. The confidence interval

width appears to vary over angles in both cases - this is partly explained by implementa-

tion of Properties 3.3.1 - 3.3.4 in each bootstrap curve estimate. For the inverted logistic

copula, the true curve is captured by the estimated confidence region at all angles. For

the asymmetric logistic copula, the estimated confidence region only captures the true

curve in certain regions of the R2
+ plane. This observation indicates some bias may

exist for curve estimates from this model. This bias is likely a result of the modelling
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Figure 3.4.2: Comparison of median, median, and 95% confidence interval return curve
estimates (green, blue and black dotted lines respectively) to the true return curves
(red) for inverted logistic (left) and asymmetric logistic (right) copulas with K = 1000
bootstrap samples.

framework being unable to account for the complex asymmetric structure of this copula

at finite levels due to a poor rate of convergence to the limiting angular dependence

function introduced in equation (3.2.3). Many bivariate extreme value models fail to

account for asymmetric dependence structures; see, for instance, Tendijck et al. (2021).

3.4.2 Return curve diagnostic tool

Since the true return curve is unknown in practice, we require a means of evaluating

the goodness of fit for a curve estimate, R̂C(p), obtained from a particular sample. We

propose such a technique and illustrate the method using a single data set simulated

from a logistic copula (Gumbel, 1960) on standard exponential margins. This tool

provides a means to assess the accuracy of a given curve estimate for a data set with

no knowledge of marginal or copula distributions.

Consider the shaded survival regions defined in the left panel Figure 3.4.3 for an

estimated return curve R̂C(p), where p is small but R̂C(p) is in the range of the data.

Regions of the form (x,∞) × (y,∞) are illustrated at three different points on the

curve. The probability of lying within each such region should, by definition, equal p.
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To assess this, we consider fixed survival regions for a chosen subset of points on the

estimated curve. For convenience, this subset is chosen such that points correspond to

the set of angles Θ; again we take m = 150. This results in the set of points sufficing

as a representation of the entire estimated curve, as demonstrated in the right panel

of Figure 3.4.3. If this estimated curve accurately reflects the true return curve, the

empirical probability of observing data within each survival region should be close to

p.
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Figure 3.4.3: Left: Survival regions for three points on the estimated return curve.
Right: Subset of points on the estimated curve considered in diagnostic.

Let j ∈ [1, 150] denote the index of an angle θj ∈ Θ, and let (x̂θj , ŷθj) denote the

corresponding point on the estimated curve. Furthermore, let (x,y) = {(xi, yi) : 1 ≤

i ≤ n} denote the observed sample that has been used to estimate the curve. The

empirical estimate, which we denote p̂j, is given by the proportion of points lying in the

region (x̂θj ,∞)×(ŷθj ,∞). We then apply the bootstrap to resample the original data set

and this estimation procedure is repeated to obtain a range of empirical estimates. As

in Section 3.4.1, block bootstrapping should be applied if temporal dependence is shown

to exist in the data set. For each j, we let P̂j denote the set of empirical probability

estimates obtained using bootstrapping. Finally, we estimate the median and 95%

pointwise confidence intervals for the probabilities at index j by taking empirical 2.5%,
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50% and 97.5% quantiles of the set P̂j. These estimates provide a pointwise diagnostic

at each angle, and can be combined over angles to represent the diagnostic procedure

over the whole curve.

This procedure is illustrated in Figure 3.4.4 using the example given in Figure 3.4.3.

The black line and shaded regions in the figure represent the empirical estimates of the

median and 95% pointwise confidence intervals, respectively, for each index, with the

red line denoting the true probability. As can be observed, for all indices, the confidence

bounds contain the true value p, suggesting this estimated curve accurately represents

this value. However, the median empirical estimates are greater than p at the majority

of indices, suggesting a slight overestimation bias for this particular curve estimate.
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Figure 3.4.4: Illustration of diagnostic tool. Solid red and black lines denotes true and
mean empirical estimates, respectively, and grey shaded region between dotted blues
lines describe empirical 95% CI estimates.

We note that the confidence intervals produced through bootstrapping for the return

curves in Section 3.4.1, and survival probabilities in Section 3.4.2, are all pointwise

and dependent across angles. Although they cannot be interpreted across the whole

range, they still provide a useful assessment of the utility of various curve estimation

techniques. Both tools are adapted in Section 3.6 to account for the original margins of

the environmental data sets, allowing us to analyse the quality of return curve estimates

for these examples.
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3.5 Simulation study

We compare the return curve estimates from the models discussed in Section 3.3.4 to

those estimated using the methodology of Cooley et al. (2019). For this, we consider

several simulated data sets on standard exponential margins, representing a range of

different extremal dependence structures. Specifically, we consider the following copula

families: logistic and asymmetric logistic copulas from the bivariate extreme value

(BEV) family, the bivariate normal copula with correlation coefficient ρ, logistic and

asymmetric logistic copulas from the inverted BEV family, the bivariate t copula with

correlation coefficient ρ and degrees of freedom ν and the Frank copula with dependence

parameter ζ.

For the methods introduced in Cooley et al. (2019), we transform data to standard

Fréchet margins, use these methods to obtain return curve estimates, transform back

to standard exponential margins and apply Properties 3.3.1, 3.3.3 and 3.3.4. For each

example, the chosen estimation procedure is determined by the extremal dependence

exhibited by the underlying copula; this must be specified prior to inference, illustrating

a drawback of this approach. We use our knowledge of the true dependence structure to

implement the correct procedure, but in practice such knowledge would not be available

to us. The code for implementing this approach can be found at https://www.stat.

colostate.edu/~cooleyd/Isolines/.

Examples of both estimated and true return curves for each copula, with n =

10000 and p = 10−3, are illustrated in Figure 3.5.1. We note that for the Frank

copula, there is a distinct ‘linear’ segment of the curve estimate from the Heffernan

and Tawn (2004) model: this lack of fit arises because the model formulation described

in equation (3.2.4) requires us to condition on either XL or YL. This implies we can

only evaluate joint tail behaviour in the region where at least one variable is large,

i.e., {(x, y) ∈ R2 | x > uXL
OR y > uYL

}. As observed for the Frank copula, part

of the true return curve can be defined outside of this region for negatively dependent
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data sets; consequently, without additional methodology for approximating the joint

survivor function in {(x, y) ∈ R2 | x ≤ uXL
AND y ≤ uYL

}, this curve region cannot

be estimated using equation (3.2.4). This explains the linear segment, since the point

estimates for the regions RYL>XL
and RYL≤XL

are connected to obtain R̂C(p).
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Figure 3.5.1: Examples curve estimates for each copula family. True curves are given in
red, while the estimated curves from the Heffernan and Tawn (2004), Wadsworth and
Tawn (2013) and Cooley et al. (2019) models are given in green, dark blue and light
blue, respectively.

To compare curve estimates, we evaluated bias, computational cost and sampling

uncertainty for each of the three curve estimation procedures. To assess bias, 1000

samples of size n = 100000 were simulated from each copula and the probabilities
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p = 10−3 and p = 10−4 were considered. Adapting the procedure detailed in Section

3.4.1, median curve estimates for each copula were obtained over the 1000 samples and

compared to the corresponding true curves. While a median curve cannot be computed

in practice, this measure should provide a summary of the bias that arises from each

procedure.

To summarise results, we consider a plot of the l2-norm values at angles θj ∈ Θ

against the corresponding indices j ∈ [1,m] for the true and estimated median curves,

with m = 150. Numerical methods can then be used to compute the absolute area

between the resulting norm curves, with smaller area values corresponding to median

curves with less bias. An illustration of this procedure can be found in the supplemen-

tary material.

The summary statistics of integrated absolute difference for each copula-model pair-

ing are given in Table 3.5.1. The bias from each procedure appears to vary significantly

over the different copula structures, suggesting that the bias in return curve estimates

exhibited by a particular model varies with the form of extremal dependence. It is clear

that the bias from the Cooley et al. (2019) curve estimates are significantly larger for

all but three of the copulas considered; however, we note than in all cases, this method

has an unrealistic advantage, namely that the extremal dependence classes have been

correctly specified. On the other hand, the models proposed in Heffernan and Tawn

(2004) and Wadsworth and Tawn (2013) appear to have similar amounts of bias across

the majority of copula structures considered, and neither consistently outperforms the

other. Since models for multivariate extremes are typically based on asymptotic argu-

ments which sometimes hold better for one data set than another, this conclusion is

most likely a reflection of the different asymptotic arguments for these models.

To evaluate the computational cost of each estimation technique, fifty samples of

size n = 10000 were simulated from a logistic copula with dependence parameter 0.5.

With p = 10−3, a Windows machine with a 1.60 GHz Intel(R) Core(TM) i5-8250U
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Table 3.5.1: Summary statistics for each model under different copula structures. In
each case, 1000 samples of n = 100000 datapoints were simulated and the median curves
were computed for p = 10−3 and 10−4. ‘HT’, ‘WT’ and ‘CO’ correspond to the median
curve estimates from the Heffernan and Tawn (2004), Wadsworth and Tawn (2013) and
Cooley et al. (2019) models, respectively.

Copula
p = 10−3 p = 10−4

Model HT WT CO HT WT CO
BEV Logistic 1.80 10.83 0.21 2.56 14.07 0.22

BEV Asymmetric Logistic 23.61 28.27 85.50 47.66 78.16 126.25
Bivariate Normal 1 2.49 3.01 25.31 4.07 7.69 37.21
Bivariate Normal 2 0.18 0.14 8.83 0.37 0.22 13.14

Inverted BEV Logistic 2.75 0.39 26.23 4.06 0.56 34.12
Inverted BEV Asymmetric Logistic 0.80 0.19 11.47 1.22 0.30 11.35

Bivariate T 1 8.26 7.17 2.36 11.24 10.44 3.87
Bivariate T 2 14.62 26.37 65.05 39.77 74.95 90.72

Frank 46.39 9.65 5.65 30.33 46.56 29.70

processor and 16GB of RAM was used to compute return curve estimates for each of

the fifty samples, and the total computation times were recorded. For the Heffernan

and Tawn (2004), Wadsworth and Tawn (2013) and Cooley et al. (2019) techniques,

these times were 269.9s, 6.1s, and 2618.2s, respectively.

Application of the Wadsworth and Tawn (2013) modelling framework was signifi-

cantly quicker than the other two approaches; this is likely due to the fact this tech-

nique does not involve any simulation and/or smoothing. Of the remaining estimation

frameworks, application of the Heffernan and Tawn (2004) model was still significantly

quicker than the method given in Cooley et al. (2019). This conclusion appears to be a

result of the Gaussian-kernel density smoothing techniques that are applied when ob-

taining the empirical curve estimates for the latter approach. Combined with the fact

the bias appears significantly lower for the other two models, we choose not consider

the approach of Cooley et al. (2019) further.

To assess the sampling uncertainty from the remaining procedures, we computed

the coverage for estimated confidence regions at fixed angles. For this, 500 simulated

samples of size n = 10000 from each copula were considered. Using bootstrapping with

K = 200 iterations, confidence regions were obtained following the procedure outlined
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in Section 3.4.1 for probabilities of p = 10−3 and 10−4, and we assessed the coverage of

these at five fixed angles θ ∈ {π(m+ 1− j)/2(m+ 1) | j = 1, 38, 75, 112, 150}, allowing

assessment of coverage for a variety of regions. Two of the angles are only considered

for the BEV asymmetric logistic and inverted BEV asymmetric logistic copulas, since

these are the only distributions not to exhibit symmetry. We consider 95% confidence

regions for both probabilities. The results for p = 10−3 are given in Table 3.5.2; the

results for p = 10−4 can be found in the supplementary material, along with an visual

illustration of the coverage procedure.
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Table 3.5.2: Coverage values of 95% confidence regions for p = 10−3. ‘HT’ and ‘WT’ correspond to the Heffernan and Tawn
(2004) and Wadsworth and Tawn (2013) models, respectively.

Copula
Probability p = 10−3

Model HT WT

BEV Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.014 0.970 0.800 * * 0.856 0.606 0.896 * *

BEV Asymmetric Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.756 0.938 0.868 0.860 0.896 0.908 0.054 0.362 0.902 0.936

Bivariate Normal 1
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.358 0.942 0.956 * * 0.872 0.930 0.912 * *

Bivariate Normal 2
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.948 0.930 0.955 * * 0.930 0.934 0.934 * *

Inverted BEV Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.780 0.932 0.932 * * 0.864 0.944 0.942 * *

Inverted BEV Asymmetric Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.960 0.929 0.942 0.951 0.922 0.924 0.934 0.958 0.942 0.904

Bivariate T 1
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.504 0.928 0.512 * * 0.920 0.758 0.884 * *

Bivariate T 2
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.784 0.896 0.930 * * 0.938 0.806 0.632 * *

Frank
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.896 0 0 * * 0.922 0.692 0.714 * *
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These coverage results provide an insight into differences in the Heffernan and Tawn

(2004) and Wadsworth and Tawn (2013) models. Firstly, for angles close to 0 and π/2,

the coverage from the Wadsworth and Tawn (2013) model tends to be closer to the

nominal level then that from the Heffernan and Tawn (2004) model. This is especially

apparent when examining the scores at both probabilities for the logistic and first

bivariate normal copula examples. We note that imposing Property 3.3.1 will affect the

coverage near the margins, since we do not allow return curve coordinate estimates that

exceed the marginal (1− p)-th quantiles, resulting in constrained confidence intervals.

We also note that the coverage values for the Frank copula from the Heffernan and Tawn

(2004) framework are noticeably small; this relates to aforementioned shortcoming of

this approach for data sets with negative dependence. On the other hand, certain

coverage values obtained using the Wadsworth and Tawn (2013) approach are noticeably

smaller than the corresponding values from the Heffernan and Tawn (2004) approach;

for example, for the BEV asymmetric logistic copula at p = 10−4 and the second

bivariate t copula. On the whole, neither procedure consistently outperforms the other

over the copulas and angles considered and encouragingly, the resulting coverage scores

were, in many cases, close to the nominal level.

From these results, we suggest that the curve estimation technique derived using the

Wadsworth and Tawn (2013) model is preferable in a practical setting; it is straight-

forward to implement and significantly outperforms the other considered techniques

in terms of computation time. Combined with bias and coverage results, alongside

the ability of the Wadsworth and Tawn (2013) model to capture negative dependence

structures, this curve estimation technique offers clear advantages over the alternative

methods, making it the best suited for practical applications.
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3.6 Case study

We now apply the techniques proposed in Section 3.3.4 to the two metocean data sets

introduced in Section 3.1. We first transform both data sets to standard exponential

margins. Assuming each margin is identically distributed over time, we estimate the

marginal distributions using equation (3.3.1) and apply the probability integral trans-

form. We then use the techniques proposed in Section 3.3.4 to obtain curve estimates

for the probability p = 10−3, corresponding to a return period of approximately 4.7

years. The resulting curve estimates are illustrated in Figure 3.6.1 on the original mar-

gins (following back transformation). The corresponding parameter estimates for the

Heffernan and Tawn (2004) and Wadsworth and Tawn (2013) modelling frameworks

are given in the supplementary material.
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Figure 3.6.1: Return curves estimated for measured (left) and hindcast (right) data
sets, with p = 10−3. Green and blue lines represent the estimates from the Heffernan
and Tawn (2004) and Wadsworth and Tawn (2013) models, respectively.

Next, we adapt the diagnostic tool introduced in Section 3.4 to assess the goodness of

fit of return curve estimates for both data sets. To account for the additional uncertainty

that arises during estimation of the marginal distributions, we apply the diagnostic on

the original margins of the data. This is done as follows: letting {(xi, yi)}i=1,...,n denote

either data set, we define (x0, y0) = (mini xi,mini yi). We use these coordinates as a
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reference point from which we can evaluate return curve estimates. Given Θ defined as

before, we define the line segment L′
θ := {(x, y) ∈ R2 | y = (x−x0) tan(θ)+y0} for each

θ ∈ Θ and, for any curve estimate R̂C(p), consider the intersection of the sets R̂C(p)∩L′
θ.

Illustrations of reference points, line segments and intersection points are given in the

supplementary material for both data sets. Similarly to before, these intersection points

are used to define the joint survival regions; the data is then resampled and sets of

empirical probability estimates are obtained for each region.

We apply block bootstrapping for resampling, because even with pre-processing,

both data sets still appear to exhibit some marginal temporal dependence. Block sizes

of 5 and 10 were selected for the measured and hindcast data sets, respectively, by

considering plots of the autocorrelation function and selecting values beyond which the

dependence appeared insignificant for both variables. These block sizes were then used

to bootstrap the original data sets. The resulting diagnostic plots are given in Figures

3.6.2 and 3.6.3.
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Figure 3.6.2: Measured data diagnostic plots with K = 1000 block bootstraps from
Heffernan and Tawn (2004) (left) and Wadsworth and Tawn (2013) (right) models,
respectively.

For the observed data, Figure 3.6.2 suggests both models perform similarly and

provide accurate curve estimates, while for the hindcast data, Figure 3.6.3 suggests

the Wadsworth and Tawn (2013) curve estimate outperforms the Heffernan and Tawn
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Figure 3.6.3: Hindcast data diagnostic plots with K = 1000 block bootstraps from
Heffernan and Tawn (2004) (left) and Wadsworth and Tawn (2013) (right) models,
respectively.

(2004) estimate at a subset of angles. This is reflected by the difference in curve

estimates in the the joint upper tail of the data; see Figure 3.6.1. In both cases, the

variability in curve estimates appears to vary with the angle. The estimated confidence

intervals capture the true probability at the majority of considered angles, suggesting

both estimation techniques can accurately capture joint tail behaviour for these data

sets.

Finally, we apply an adaptation of the technique introduced in Section 3.4.1 to assess

uncertainty in return curve estimates. Letting (x̂θ, ŷθ) := R̂C(p) ∩ L′
θ, with L′

θ defined

as before, uncertainty is captured by considering the distribution of l2-norm values from

the reference point, i.e., d̂θ = |(x̂θ − x0)
2 + (ŷθ − y0)

2|1/2. Using block bootstrapping,

with the marginal distributions re-estimated for each bootstrapped sample, we obtain

median and mean curve estimates, along with pointwise 95% confidence intervals across

angles. For the reasons outlined in Section 3.4.2, we use the Wadsworth and Tawn

(2013) approach to obtain these estimates. The resulting curve estimates are illustrated

in Figure 3.6.4; we observe that taking mean and median curves appears to have a

smoothing effect on the resulting estimates, relative to the original curve estimates

given in Figure 3.6.1.
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Figure 3.6.4: Median (orange) and mean (brown) curve estimate, along with 95% (black
dotted) confidence regions obtained using block bootstrapping with K = 250 for the
measured (left) and hindcast (right) data sets. The Wadsworth and Tawn (2013) model
was used to obtain all estimates.

3.7 Discussion

We have considered the concept of a return curve as a bivariate extension to a return

level and introduced novel estimation techniques, illustrating that these methods per-

form better than an existing approach. Furthermore, unlike Cooley et al. (2019), our

methods do not require the form of extremal dependence to be pre-specified: this is

an obvious advantage, since determining the extremal dependence structure is seldom

straightforward. We have also proposed novel uncertainty representation and diagnostic

tools for the risk measure.

For the diagnostic tool proposed in Section 3.4.2, we note that extreme survival

region probabilities are estimated empirically, meaning the accuracy of such estimates

will be directly related to the sample size n and the probability p. This represents a

broader problem within the extremes literature, since, by definition, we will have ob-

served very few extremes values that can be used to verify and justify a given approach.

This issue is illustrated further in the supplementary material, where we consider de-

creasing probabilities for a fixed sample size. However, as with similar analyses, if the

tool appears to illustrate a good fit to the data at less extreme probabilities, we can be
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more confident in extrapolating to more extreme values.

While we have focused on bivariate random vectors, both concepts and methodology

can be extended to the general multivariate setting. However, higher dimensional curves

are difficult to visualise and capturing the dependence structures in higher dimensions

becomes increasingly complex, since different two dimensional marginals can exhibit

different forms of extremal dependence. Nevertheless, in the bivariate setting, we believe

return curves are a useful tool for researchers to explore joint extremal behaviour and

develop a better understanding of potential risks. Indeed, return curves are already

utilised to analyse risks for ocean and coastal structures. It is also important to note

this risk measure only denotes the rarity of events, not impact: therefore, in practice,

researchers must carefully consider which regions of the multivariate space are impactful

prior to inference.

As is common in many environmental contexts, the data sets considered in Section

3.6 both appear to exhibit non-negligible temporal dependence. We account for this

feature by using block bootstrapping to quantify uncertainty, but this creates the addi-

tional challenge of block size selection. For this, we use an ad-hoc technique based on

examinations of ACF plots. An in-depth investigation could improve on this approach

through a more robust, theoretically justified resampling scheme.

For the hindcast data set discussed in Section 3.6, Figure 3.6.3 illustrates a downside

of applying the diagnostic tools on the original marginal distributions. In particular, the

majority of angles selected to represent the curve estimates correspond to the ‘marginal

limits’ of the curves, i.e., the straight line segments connecting the curve estimates

to the margins in Figure 3.6.4. Due to the strong positive dependence between the

hindcast variables, empirical survival probabilities will be unchanging along these line

segments, explaining the largely constant diagnostic probabilities in Figure 3.6.3. This

is further demonstrated by the illustration of line segments given in the supplementary

material. Future research could explore techniques for selecting angles such that the
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corresponding return curve representation is exclusively in-between the aforementioned

marginal limits.

Finally, we note that all techniques discussed in this paper are only applicable

to data sets exhibiting stationarity; accounting for non-stationarity in the context of

return curves presents many challenges, since return curves are defined in the stationary

setting only and all models introduced in Section 3.3 assume stationarity. While a range

of approaches exist for capturing non-stationary in the univariate setting (e.g. Eastoe,

2019), relatively few approaches exist in the multivariate setting. This topic has recently

been explored in Murphy-Barltrop and Wadsworth (2022), whereby the authors extend

the definition of return curves to the non-stationary setting and provide techniques for

their estimation.
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Modelling non-stationarity in

asymptotically independent

extremes

4.1 Introduction

Modelling joint tail behaviour of multivariate datasets is important in a wide variety

of applications, including nuclear regulation (Office for Nuclear Regulation, 2018), neu-

roscience (Guerrero et al., 2023) and flood risk analysis (Gouldby et al., 2017). When

analysing multivariate extremes, it is important to capture the dependence structure

at extreme levels appropriately. In certain applications, one would expect the extremes

to occur simultaneously – a situation termed asymptotic dependence – whilst in oth-

ers, joint occurrence of the very largest events cannot happen – a situation termed

asymptotic independence. Section 4.2 explains these concepts in detail. The study

of extremal dependence structures is well established, and a wide range of statistical

modelling techniques have been proposed (Coles and Tawn, 1991; Ledford and Tawn,

1997; Heffernan and Tawn, 2004).
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Extremal dependence between two variables may be summarised by bivariate risk

measures. A variety of risk measures have been proposed in the literature (Serinaldi,

2015), and are selected according to the needs of an analysis. For this paper, we restrict

attention to one particular measure known as the return curve due to its utilisation

in a variety of practical applications (Murphy-Barltrop et al., 2023). Given a small

probability p, the p-probability return curve is given by RC(p) := {(x, y) ∈ R2 | Pr(X >

x, Y > y) = p}, with corresponding return period 1/p. This curve directly extends the

concept of a return level from the univariate framework (Coles, 2001) to the bivariate

setting. These curves, which provide a summary of joint tail behaviour, are widely used

in practice to derive extremal conditions during the design analysis of many ocean and

coastal structures, including oil rigs (Jonathan et al., 2014a), railway lines (Gouldby

et al., 2017) and wind turbines (Manuel et al., 2018).

However, in many real world scenarios, datasets exhibit non-stationarity; this fea-

ture can result in extremal dependence structures that are not fixed due to covariate

influences on the underlying processes. In this setting, there is no longer a meaning-

ful or fixed definition of a return curve. We therefore expand the definition of this

risk measure to be covariate-dependent, resulting in a non-stationary counterpart; see

Rootzén and Katz (2013) and Serinaldi (2015) for related discussion. Given some co-

variates Zt, t ∈ {1, 2, . . . , n}, where t denotes time, let {Xt, Yt} denote a conditionally

stationary process, i.e., the distribution of (Xt, Yt) | Zt does not depend on t (Caires

and Ferreira, 2005). In this setting, we define the p-probability return curve at a co-

variate realisation zt to be RCzt(p) := {(x, y) ∈ R2 | Pr(Xt > x, Yt > y | Zt = zt) = p}.

Evaluation of RCzt(p) over different values of t allows one to explore joint extremal be-

haviour over time, and thus may be useful when designing ocean and coastal structures

for future climates.

In a practical setting, we wish to derive estimates of non-stationary return curves for

environmental datasets to evaluate the changing risk with covariates. Our methodology
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is motivated particularly by non-stationarity observed in data obtained from the UK

Climate Projections (UKCP18) under emissions scenario RCP 8.5. This corresponds to

the ‘worst-case’ scenario, whereby greenhouse gas emissions continue to rise throughout

the 21st century (Met Office Hadley Centre, 2018). As such, data from these projections

can be used as a risk management tool to help mitigate against the impacts of climate

change in a conservative manner. Specifically, we focus in this work on relative humidity

and temperature projections over the summer months (June, July and August) at

a grid cell containing the UK’s Heysham nuclear power station. Denoting relative

humidity by RHt ∈ [0, 100] for t ∈ {1, 2, . . . , n}, we define a ‘dryness’ variable as

Drt := 100− RHt ∈ [0, 100].

Data are only considered for summer months since extremal dependence structures

vary significantly across meteorological seasons and worst extremes tend to occur in

summer; see the Supplementary Material for further details. In the context of nuclear

safety, both high temperature and high dryness (low humidity) values are independently

identified as primary hazards by the UK’s Office for Nuclear Regulation (ONR) (Office

for Nuclear Regulation, 2018). As a result, pre-set ‘design values’ of either variable,

corresponding to a ‘1 in 10,000-year’ event, are used to inform the design bases of UK-

based nuclear sites. Moreover, the combination of high temperature and high dryness

values has been identified as a relevant safety consideration (Knochenhauer and Louko,

2004; Office for Nuclear Regulation, 2021), since this combination is characteristic of

drought conditions. Such conditions have the potential for catastrophic consequences,

including loss of foundation support to facilities and loss of water supply. Therefore,

evaluating the joint extremal behaviour for this particular combination of hazards can

provide useful information about joint risk over the observation period.

The dataset of temperature and dryness at the start and end of the time period,

along with the temperature time series, are plotted in the left and centre panels of

Figure 4.1.1, respectively. Clear non-stationary trends can be observed within both
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Figure 4.1.1: Left: Plot of first and last 10 years of combined projections, given in
red and blue, respectively. Centre: Plot of Heysham temperature time series. Right:
Plot of η estimates over rolling windows (solid black lines), alongside 95% pointwise
confidence intervals (dotted blue lines).

marginal data sets; these trends are likely a result of seasonal behaviour combined with

long term trends due to climate change.

To assess trends in dependence, we can calculate suitable coefficients using rolling

windows of data, assuming local stationarity within each window. Rolling windows are

defined by taking a reference year y ∈ {1995, 1996, . . . , 2065} and considering all data

for the months June, July and August within the interval [y − 15, y + 15]: this results

in 2, 790 observations for each window. The right panel of Figure 4.1.1 demonstrates

a clear trend in an extremal dependence coefficient labelled η (Ledford and Tawn,

1996); this measure summarises the dependence between the most extreme observations,

with larger values corresponding to a higher degree of positive dependence. Further

discussion can be found in Section 4.2.2. The illustrated trend suggests the probability

of extreme observations occurring simultaneously is increasing over time, motivating

the need for modelling techniques that can capture trends of this nature. We return to

a detailed analysis of this dataset in Section 4.5.

The majority of existing techniques for modelling multivariate extremes assume

stationarity in the joint tail structure. Furthermore, of the approaches that can ac-

commodate non-stationarity, most are suitable only for datasets exhibiting asymptotic

dependence, as we discuss in Section 4.2.3. This is restrictive since in practice, asymp-
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totic independence is often observed (Ledford and Tawn, 1996, 1997); this is further

evidenced by estimated η values for the UKCP18 dataset, which indicate the presence

of asymptotic independence, at least throughout most of the observation period.

We propose a new method for capturing non-stationary extremal dependence struc-

tures when asymptotic independence is present, based on a non-stationary extension

to the Wadsworth and Tawn (2013) modelling framework. In doing so, we are able

to evaluate and visualise trends across the entire extremal dependence structure. This

is in contrast to other approaches, where implementation may be limited to trends in

one-dimensional summary measures, such as the coefficient of tail dependence (Ledford

and Tawn, 1996) or the extremal coefficient (Frahm, 2006).

This paper is structured as follows: Section 4.2 recalls existing methodology for cap-

turing tail behaviour in the stationary and non-stationary settings for both univariate

and multivariate random vectors. Section 4.3 introduces our modelling approach, which

relies on quantile regression techniques to derive two estimators of a quantity describ-

ing extremal dependence in a non-stationary setting. We also propose methodology

for non-stationary return curve estimation using these estimators. Section 4.4 details a

simulation study, showing our estimators to be approximately unbiased over a range of

simulated examples. In Section 4.5, we apply our model to the UKCP18 dataset. Our

approach is able to reveal clear trends in the extremal dependence of this process, and

estimates of return curves are obtained. We conclude in Section 4.6 with a discussion

and outlook on future work.

4.2 Background

4.2.1 Univariate extreme value theory

In the univariate setting, one of the most popular techniques for capturing tail behaviour

is known as the peaks-over-threshold approach, whereby a generalised Pareto distribu-
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tion (GPD) is fitted to all exceedances of some high threshold. This is justified by

the Pickands-Balkema-de Haan theorem (Balkema and de Haan, 1974; Pickands, 1975),

which states that for a random variable X satisfying certain regularity conditions, there

exists a normalising function c(u) such that

Pr

(
X − u

c(u)
≤ x

∣∣∣ X > u

)
→ G(x) := 1−

{
1 +

ξx

τ

}−1/ξ

+

, x > 0, (τ, ξ) ∈ R+ × R,

(4.2.1)

as u → xF := sup{x : F (x) < 1}; see also Coles (2001). Here, G(x) is the cumulative

distribution function of a GPD, with scale and shape parameters, τ and ξ, respectively,

and z+ = max(0, z). The shape parameter dictates the behaviour of the tail, with

ξ < 0, ξ = 0 and ξ > 0 corresponding to bounded, exponential and heavy tails,

respectively. In practice, for an observed random variable with a finite sample size, a

high threshold u is selected and a GPD is fitted to the positive exceedances: we write

X − u | X > u ∼ GPD(τ, ξ).

In many contexts, such as financial and environmental modelling, datasets exhibit

non-stationarity, whereby the underlying distribution changes with time or other co-

variates. In most such cases, we can no longer expect a stationary GPD model to

capture the tail adequately. This feature can be present in a range of different forms, as

exhibited by the seasonal and long term trends present in the UKCP18 dataset intro-

duced in Section 4.1. Davison and Smith (1990) addressed this issue by using covariates

to capture trends in the GPD parameters. Given a non-stationary process {Yt}, with

covariates Zt, a non-stationary GPD model is given by

(Yt − u | Yt > u, Zt = zt) ∼ GP(τ(zt), ξ(zt)), (4.2.2)

for a sufficiently large threshold u. More recent extensions to this model also allow

the threshold u to be covariate dependent. For example, Kyselý et al. (2010) and

Northrop and Jonathan (2011) use quantile regression to estimate a threshold with a
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constant exceedance probability, whereas Sigauke and Bere (2017) use a cubic smooth-

ing spline. More flexible approaches have been proposed using generalised additive

models (GAMs) to capture non-stationary behaviour in univariate extremes (Chavez-

Demoulin and Davison, 2005; Youngman, 2019). GAMs use smooth functions to capture

trends due to covariates, and are less rigid than standard regression models. A wide

range of statistical software is available for fitting these models (Wood, 2021).

All the approaches discussed thus far can only be used to model non-stationarity

in the extremes. For many statistics corresponding to joint tail behaviour, such as

return curves, one must also be able to capture non-stationary within the body of the

data simultaneously. This is because extremes of one variable may occur with average

values of another variable; see, for instance, the combined projections data for the

1981-1990 period in Figure 4.1.1. To address such challenges, a range of pre-processing

techniques have been proposed that allow marginal non-stationarity to be captured in

the body and tail of a dataset simultaneously (Nogaj et al., 2007; Eastoe and Tawn,

2009; Mentaschi et al., 2016). For these approaches, covariate functions are used to

capture and effectively ‘remove’ non-stationarity from the body of the data. Once

removed, any remaining trends in the tail can be captured using any of the methods

introduced above. For a non-stationary process {Yt}, with covariates Zt, the general

set-up of these models is to assume

(Yt | Zt = zt) = µ(zt) + σ(zt)Rt, (4.2.3)

with µ and log(σ) as linear functions of covariates. Here, the residual process {Rt} is

assumed to be approximately stationary, and assigning a distribution to this yields a

likelihood for all parameters; Eastoe and Tawn (2009), for example, adopt a standard

normal distribution, with the option to also include a shape transformation. Covariate

functions are selected through an analysis of non-stationary trends within the body.

An alternative is given by Krock et al. (2021), who propose a single distribution for
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capturing non-stationary behaviour in the body and tail simultaneously. This distribu-

tion, which extends the model for stationary data proposed in Stein (2021), accounts

for both seasonal and long term trends. The idea behind this approach is to provide

a ‘one size fits all’ model, hence the same trends are assumed to be present within the

extremes as in the rest of the data. This is unlikely to be the case in all practical

scenarios; as a result, we prefer to adopt pre-processing techniques.

4.2.2 Bivariate extreme value theory

We briefly recall approaches to modelling extremes in the bivariate setting. To begin,

consider a random vector (X, Y ) with respective marginal distribution functions FX , FY .

Consider the conditional probability χ(u) = Pr(FY (Y ) > u | FX(X) > u) and define

the coefficient χ := limu→1 χ(u) ∈ [0, 1]. The cases χ = 0 and χ > 0 correspond

to the aforementioned asymptotic independence and asymptotic dependence schemes,

respectively. This distinction is important since many models are suitable for data

exhibiting one scheme only.

For mathematical simplicity in the description of extremal dependence, it is common

to consider random vectors with standardised marginal distributions. This is achieved

in practice through marginal estimation and application of the probability integral

transform.

Classical modelling approaches are based on the framework of multivariate regular

variation, and are applicable only to asymptotically dependent data. Given a ran-

dom vector (X, Y ) with standard Fréchet margins, we define the radial and angular

components to be V := X + Y and W := X/V , respectively. We say that (X, Y ) is

multivariate regularly varying if, for all Borel subsets B ∈ [0, 1], we have

lim
v→∞

Pr(W ∈ B, V > sv | V > v) = H(B)s−1,
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for any s > 1, whereH is termed the spectral measure (Resnick, 1987). This assumption

implies that, for large radial values, V and W are independent. The spectral measure

captures the extremal dependence structure of (X, Y ). It must satisfy the moment

constraint
∫ 1

0
wH(dw) = 1/2, but has no closed parametric form. All asymptotically

independent distributions have a spectral measure placing mass at the endpoints {0}

and {1} of the unit interval, which is why this modelling framework is unable to capture

tail properties under this scheme (Coles et al., 1999). Moreover, it has been shown

that assuming the incorrect form of extremal dependence will lead to unsatisfactory

extrapolation in the joint tail (Ledford and Tawn, 1997; Heffernan and Tawn, 2004).

This has consequently led to the development of flexible modelling approaches that are

able to theoretically capture both extremal dependence regimes.

The first such idea was proposed in Ledford and Tawn (1996, 1997). It is assumed

that the joint tail of a random vector (X, Y ) with standard exponential margins is given

by

Pr(X > u, Y > u) = Pr(min(X, Y ) > u) = L(eu)e−u/η as u → ∞, (4.2.4)

where L is a slowly varying function at infinity, i.e., limx→∞ L(cx)/L(x) = 1 for c > 0,

and η ∈ (0, 1]. The parameter η is termed the coefficient of tail dependence, with η = 1

and limu→∞ L(eu) > 0 corresponding to asymptotic dependence and η < 1, or η = 1

and limu→∞ L(eu) = 0, corresponding to asymptotic independence. In Figure 4.1.1,

our estimates of η suggest asymptotic independence is exhibited by the UKCP18 data

throughout most of the observation period. In practice, this framework is limited by

the fact it only characterises the joint tail where both variables are large, and hence is

not applicable in regions where only one variable is extreme.

Alternative characterisations of the joint tail have been proposed to circumvent this

issue. Heffernan and Tawn (2004) introduce a general, regression-based modelling tool

for conditional probabilities. Given a random vector (X, Y ) with standard Laplace

margins (Keef et al., 2013a), it is assumed that normalising functions a : R → R and
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b : R → (0,∞) exist such that the following convergence holds:

lim
u→∞

Pr [(Y − a(X))/b(X) ≤ z,X − u > x | X > u] = D(z)e−x, x > 0,

for a non-degenerate distribution function D. Both regimes can be captured via the

functions a and b, with asymptotic dependence arising when a(x) = x and b(x) = 1.

Note that one could instead condition on the event Y > u. The functions a and b are

typically estimated parametrically, while the distribution function D is estimated non-

parametrically. This model has been widely used in practice, with applications ranging

from ocean engineering (Ross et al., 2020) to coastal flood mitigation (Gouldby et al.,

2017).

Wadsworth and Tawn (2013) provide an alternative representation for the joint tail

using a general extension of the framework described in equation (4.2.4). Given (X, Y )

with standard exponential margins, they assume that for each w ∈ [0, 1],

Pr(min{X/w, Y/(1− w)} > u) = L(eu;w)e−λ(w)u, λ(w) ≥ max(w, 1− w), (4.2.5)

as u → ∞, where L(· ;w) is slowly varying for each ray w ∈ [0, 1] and λ is the

termed the angular dependence function (ADF). This function, which describes the

dependence structure of the joint tail along the ray w, generalises the coefficient η,

with η = 1/{2λ(0.5)}. Both extremal dependence regimes can be captured by λ,

with asymptotic dependence implying the lower bound λ(w) = max(w, 1 − w) for all

w ∈ [0, 1]. Pointwise estimates of the ADF can be obtained in practice via the Hill

estimator (Hill, 1975). Moreover, λ captures the joint tail behaviour of a wide range

of data structures (Wadsworth and Tawn, 2013), and thus equation (4.2.5) provides a

flexible modelling framework for bivariate extremes.

Alongside these approaches, we note that there exist several copula-based models

that can theoretically capture both extremal dependence regimes, such as those given
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in Coles and Pauli (2002), Wadsworth et al. (2017) and Huser and Wadsworth (2019).

However, due to the stronger assumptions about the form of parametric family for the

bivariate distribution, we prefer instead to use more flexible modelling techniques.

4.2.3 Non-stationary extremal dependence

Although many extreme value analyses seek to capture marginal non-stationarity, com-

mon practice is to assume stationarity in dependence, often without even assessing

this feature. Relatively little consideration has been given to this problem in the lit-

erature, and most of the approaches that do exist rely on the multivariate regular

variation framework, thereby being restricted to asymptotically dependent data. For

example, Mhalla et al. (2017) and Mhalla et al. (2019b) propose semi-parametric mod-

els to capture trends in parameters of quantities related to the spectral measure, while

de Carvalho and Davison (2014), Castro-Camilo et al. (2018) and Mhalla et al. (2019a)

propose flexible modelling techniques for capturing non-stationary trends in the spectral

measure under covariate influence.

Mhalla et al. (2019b) also propose a technique for data exhibiting asymptotic inde-

pendence, using GAMs to capture trends in the non-stationary extension to the ADF

defined in equation (4.3.1). Given a non-stationary process {Xt, Yt} with standard

exponential margins and an external g-dimensional covariate Zt, the extended ADF

λ(· : Zt = zt) is assumed to take the semi-parametric form

λ(w : Zt = zt,ϕ) = h−1
w

{
(z1t )

′γ +
A∑

a=1

sa(z2t,a)

}
, (4.2.6)

where hw is a link function, and z1t , z
2
t,1, . . . , z

2
t,A are subvectors of zt, or products of

covariates if interactions are considered. The vector γ gathers linear coefficients whereas

sa denote smooth functions for each a ≤ A; the parameter vector ϕ represents all

parameters to be estimated, i.e., γ and the coefficients from each basis function sa.
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Estimation of ϕ is via a penalised log-likelihood approach, where roughness penalties are

imposed to ensure a smooth model fit. The link function hw(x) = log[{x−max(w, 1−

w)}/(1−x)] is used, resulting in fitted values contained in the interval [max(w, 1−w), 1].

However, this range is restrictive since λ(w) ≤ 1 implies positive extremal association.

In practice, Mhalla et al. (2019b) only applied model (4.2.6) along the ray w = 1/2,

corresponding to modelling non-stationarity in η only.

Non-stationary extensions to the Heffernan and Tawn (2004) model also exist:

Jonathan et al. (2014b) propose smooth covariate functions for a and b, while Guerrero

et al. (2023) allow these parameters to vary smoothly over time for blocks of obser-

vations via a penalised log-likelihood. However, we note that conditional extremes

techniques have been shown to create additional complexities during implementation,

requiring more steps compared to alternative approaches because of the need to condi-

tion on each variable being extreme separately; see Murphy-Barltrop et al. (2023). Our

proposed method is simpler to implement in practice compared to the those derived

under this framework.

4.3 Non-stationary angular dependence function

4.3.1 Introduction

We describe a non-stationary extension to the ADF λ of Wadsworth and Tawn (2013),

which is the key building block for estimating non-stationary return curves. We assume

stationary marginal distributions throughout this section, allowing us to separate out

the two forms of trends; further discussion on the separate treatment of these trends

can be found in Section 4.5.

Let {Xt, Yt} denote a non-stationary process with stationary margins and standard

exponential marginal distributions. If this is not the case in practice, standard exponen-

tial margins can be obtained by first fitting non-stationary marginal distributions, such
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as those described in Section 4.2.1, and then applying the probability integral trans-

form. Given an external g-dimensional covariate Zt, we assume that for all w ∈ [0, 1]

and t ∈ {1, 2, . . . , n},

Pr

(
min

{
Xt

w
,

Yt

1− w

}
> u | Zt = zt

)
= L(eu | w,Zt = zt)e

−λ(w|Zt=zt)u as u → ∞,

(4.3.1)

where L denotes a slowly varying function and λ(· | Zt = zt) denotes the non-stationary

counterpart of the ADF at time t. This amounts to assuming that the joint tail of

(Xt, Yt) | Zt can be captured by equation (4.2.5) for all t ∈ {1, 2, . . . , n}: this seems

reasonable, given the flexibility of the framework outlined in Wadsworth and Tawn

(2013).

DefineKw,t := min {Xt/w, Yt/(1− w)}: we refer to this variable as the min-projection.

Equation (4.3.1) implies that, for each w ∈ [0, 1], and t ≤ n,

Pr
(
Kw,t > v + u

∣∣∣Kw,t > u,Zt = zt

)
→ exp{−vλ(w | Zt = zt)} as u → ∞, v > 0.

However, unlike its stationary counterpart, the non-stationary ADF cannot be es-

timated via the Hill estimator; this is because we typically do not have repeated ob-

servations for a covariate realisation. Moreover, even with repeated observations, the

resulting sample sizes would typically be too small for reliable estimation. As such, a

new estimation procedure is required for this function. Given w ∈ [0, 1] and two quan-

tiles q1, q2 close to one with q1 < q2 < 1, we assume the existence of positive sequences

{uw,t}t≤n and {vw,t}t≤n such that

Pr (Kw,t ≤ uw,t | Zt = zt) = q1, Pr (Kw,t ≤ uw,t + vw,t | Zt = zt) = q2, (4.3.2)

for all t ≤ n. Assuming strict monotonicity of the cumulative distribution function for

Kw,t | (Zt = zt), we deduce that vw,t > 0 for all t ≤ n. Furthermore, the quantile
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q1 being close to one implies values of the sequence {uw,t}t≤n are large in magnitude.

Under the model assumptions, we can therefore deduce that

1− q2
1− q1

= Pr
(
Kw,t > vw,t + uw,t

∣∣∣Kw,t > uw,t, Zt = zt

)
≈ exp{−vw,tλ(w | Zt = zt)},

which is rearranged to give

λ(w | Zt = zt) ≈ − 1

vw,t

log

(
1− q2
1− q1

)
, (4.3.3)

for all t ≤ n. Hence, estimates of the sequence {vw,t}t≤n lead to a point-wise estimator

for the non-stationary ADF at a given angle w ∈ [0, 1]. We denote this estimator by

λ̂(· | zt), and describe improvements to its stability in Section 4.3.3.

4.3.2 Estimating quantiles of the min-projection

The sequence {vw,t}t≤n corresponds to differences in covariate-varying quantiles of the

univariate min-projection Kw,t | (Zt = zt) for each w ∈ [0, 1]. Quantile regression

methods therefore provide a natural solution to the problem of its estimation. Such

techniques have successfully been applied in a variety of contexts, ranging from ecology

(Cade and Noon, 2003) to growth charts (Wei et al., 2006). Here, we describe the

most commonly-used approach in terms of the min-projection variable. Given a value

q ∈ (0, 1), the q-th quantile of Kw,t | (Zt = zt) ∼ FKw,t|zt is

QKw,t|(Zt=zt)(q) = inf{x : FKw,t|zt(x | zt) ≥ q}.

We assume that the conditional quantile function is linear in zt, implyingQKw,t|(Zt=zt)(q) =

z′tπ, where π ∈ Rg denotes a vector of coefficients. The vector π is estimated through

a minimisation of a suitable loss function; see Koenker et al. (2017) for further details.

There is also a range of literature available on the topic of extremal quantile re-
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gression (Youngman, 2019; Velthoen et al., 2021), applicable when q is very close to

one. However, many of the derived extreme value laws involve unknown constants

which cannot be estimated without strong modelling assumptions (Chernozhukov et al.,

2017). Furthermore, applying the simple ‘rule-of-thumb’ proposed in Chernozhukov and

Fernández-Val (2011) for deciding between extreme value and normal quantile approx-

imations, the quantile levels considered in Sections 4.4 and 4.5 would not be deemed

extreme enough to warrant the former. Moreover, we have found standard quantile

regression techniques are able to produce accurate estimates of non-stationary ADFs

across a range of simulated examples.

4.3.3 Averaging over quantiles

Prior to applying the proposed model, one must first select q1 and q2 for estimating

quantiles of Kw,t. This selection represents a bias-variance trade off, as is often observed

in applications of extreme value theory: quantiles that are not sufficiently extreme

(close to one) will induce bias in results, while quantiles that are too large will result in

highly variable estimates. Moreover, considering only a single pair of quantiles will lead

to higher variability in ADF estimates. To address these issues, we consider a range

of quantile pairs simultaneously and compute an average estimator over these values.

Specifically, let {(q1,j, q2,j) | 1 ≤ j ≤ m} be quantiles near one, with q1,j < q2,j < 1 for

j = 1, . . . ,m. For each j, the pair (q1,j, q2,j) is used to derive an estimator λ̂j, as in

equation (4.3.3). Our final estimator is derived to be the average of these:

λ̄QR(w | zt) :=
1

m

m∑
j=1

λ̂j(w | zt),

for all w ∈ [0, 1] and t ≤ n. In unreported simulations, we have found this aggregated

estimator to outperform estimators obtained from any individual pair of quantiles con-

sidered. Our choices for m and {(q1,j, q2,j)} are detailed in Section 4.4.3.
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4.3.4 Bernstein-Bézier polynomial smooth estimator

One drawback of the average estimator λ̄QR proposed in Section 4.3.3 is that it is

pointwise for each ray w ∈ [0, 1]. This typically leads to non-smooth estimates of

the ADF that one would not expect to observe in practice. We therefore extend this

estimator to give smooth functional estimates using a parametric family derived from

the set of Bernstein-Bézier polynomials. These polynomials have been applied in many

approaches to estimate Pickands’ dependence function (Guillotte and Perron, 2016;

Marcon et al., 2016, 2017b), a quantity related to the spectral measure which bears

many similarities to the ADF (Wadsworth and Tawn, 2013). For the interval [0, 1], the

family of Bernstein-Bézier polynomials of degree k ∈ N is defined to be

Bk =

{
k∑

i=0

αi

(
k

i

)
wi(1− w)k−i : α ∈ [0, 1]k+1, w ∈ [0, 1]

}
.

We use this family of functions to approximate λ(· | Zt = zt). However, for any

f ∈ Bk, we have f(w) ≤ 1 for all w ∈ [0, 1]. As such, this family of polynomials

can only approximate ADFs representing non-negative dependence in the extremes.

Furthermore, we wish to allow for covariate influence in the dependence structure; this

corresponds to covariate influence in the coefficient vector α. We therefore propose

extending this family of polynomials to the following set:

B∗
k | (Zt = zt) =

{
k∑

i=0

βi(zt)

(
k

i

)
wi(1− w)k−i : β(zt) ∈ [0,∞)k+1, w ∈ [0, 1]

}
,

where βi : Rg → [0,∞) denote functions of the covariates. For any t ≤ n, let λBP (· |

zt) ∈ B∗
k | (Zt = zt) represent a form of the non-stationary ADF given by this family of

functions. Our objective is to find an estimator λ̄BP that minimises the equation

|λ(w | Zt = zt)− λBP (w | zt)| (4.3.4)

81



Chapter 4

over all rays w ∈ [0, 1] and zt for t ≤ n; this is achieved through estimation of the

coefficient functions βi. Since λ is unobserved in practice, we consider the objective

function

S(θ) :=
1

|W|n
∑
w∈W

n∑
t=1

∣∣λ̄QR(w | zt)− λBP (w | zt,θ)
∣∣ ,

with W := {0, 0.01, 0.02, . . . , 0.99, 1} defining a finite set spanning the interval [0, 1] and

θ denoting the parameter vector corresponding to the coefficient functions β0, β1, . . . , βk.

The intuition here is that S(θ) gives an approximation of the absolute value in (4.3.4)

integrated over w and t: it is therefore desirable to find a value of θ which minimises

S.

To estimate θ, we must specify the form of coefficient functions. To start, we

impose that β0(zt) = βk(zt) = 1 for all t ≤ n; any function f ∈ B∗
k | (Zt = zt)

satisfying these conditions has the property that f(0) = f(1) = 1, corresponding to

the theoretical end-points of the ADF: λ(0) = λ(1) = 1. For i ∈ {1, 2, . . . , k − 1},

we assume that βi(zt) = h(z′tθi), where h : R → [0,∞) denotes a link-function and

θi ∈ Rg denotes a vector of coefficients for each i. The entire parameter vector is

therefore θ := {θ1,θ2, . . . ,θk−1}, with an estimator defined as

θ̂ = argmin
θ∈Rg(k−2)

S(θ).

Finally, a smooth estimator of λ(· | Zt = zt) is given by λ̄BP (· | zt) := λBP (· | zt,θ = θ̂).

4.3.5 Incorporating theoretical properties

Wadsworth and Tawn (2013) show that the ADF is bounded from below, i.e, λ(w) ≥

max(w, 1 − w) for all w ∈ [0, 1]. This bound corresponds to asymptotic dependence,

with larger values corresponding to a form of asymptotic independence. Neither of our

estimators λ̄QR or λ̄BP are required to satisfy this constraint, and so we impose this
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bound retrospectively. In each case, we define λ̄∗
QR or λ̄∗

BP as

λ̄∗
QR(w | zt) = max

{
λ̄QR(w | zt),max(w, 1− w)

}
,

for all w ∈ [0, 1], and similarly for λ̄∗
BP . In unreported results, we found that incorporat-

ing this lower bound improves estimation quality within the resulting ADF estimates.

For λ̄∗
QR, we also impose end-point conditions retrospectively: λ̄∗

QR(0 | Zt = zt) =

λ̄∗
QR(1 | Zt = zt) = 1 for all t ≤ n. Recall that this requirement is already satisfied by

the smooth estimator by setting β0(zt) = βk(zt) = 1 for all t ≤ n.

4.3.6 Estimating non-stationary return curves

We now consider the problem of estimating RCzt(p) at some fixed t ≤ n using an

estimator of the non-stationary ADF. Let λ∗ denote either the estimator λ̄∗
QR or λ̄∗

BP .

Given the set of rays W defined in Section 4.3.4 and a quantile q1 close to one, we let

{uw,t}w∈W be defined as in equation (4.3.2). Then, for all w ∈ W , define {rw,t}w∈W as

rw,t := − 1

λ∗(w | zt)
log

(
p

1− q1

)
,

implying p/(1 − q1) = exp{−rw,tλ
∗(w | zt)} ≈ exp{−rw,tλ(w | Zt = zt)}. Define

(xw,t, yw,t) := (w(rw,t + uw,t), (1− w)(rw,t + uw,t)). We have

Pr(Xt > xw,t, Yt > yw,t | Zt = zt) = Pr(Kw,t > rw,t + uw,t | Zt = zt)

= Pr(Kw,t > rw,t + uw,t | Kw,t > uw,t,Zt = zt)

× Pr(Kw,t > uw,t | Zt = zt)

≈ exp{−rw,tλ
∗(w | zt)}Pr(Kw,t > uw,t | Zt = zt)

=
p

1− q1
× 1− q1 = p,
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meaning that the set {(xw,t, yw,t)}w∈W provides an approximation of RCzt(p). Simi-

larly to the estimation of λ̄∗
QR and λ̄∗

BP , as described in Sections 4.3.3 and 4.3.4, we

denote R̂C
j

zt(p) = {(xj
w,t, y

j
w,t)}w∈W for each quantile q1,j close to one, and take our final

estimator of the return curve to be RCzt(p) = {(
∑m

j=1 x
j
w,t/m,

∑m
j=1 y

j
w,t/m)}w∈W .

4.4 Simulation study

4.4.1 Overview

We use simulation to evaluate the properties of the estimators λ̄∗
QR and λ̄∗

BP derived

in Section 4.3. Section 4.4.2 introduces a range of examples exhibiting non-stationary

extremal dependence. The variation in dependence structures allows us to assess the

relative strengths and weaknesses of each estimator. In Section 4.4.3, we consider para-

metric forms for the covariate and link functions introduced in Section 4.3. In Section

4.4.4, we evaluate the bias and variability that arises from λ̄∗
QR and λ̄∗

BP , which we

find to outperform the corresponding estimator from Mhalla et al. (2019b). Finally, in

Section 4.4.5, we illustrate that our proposed estimators can be used to derive accurate

estimates of non-stationary return curves across each of the considered examples.

4.4.2 Simulated examples of non-stationary dependence struc-

tures

We introduce several examples exhibiting non-stationary extremal dependence under

asymptotic independence. In each case, the non-stationarity is over the time covariate

t ∈ {1, 2, . . . , n}, with n = 10, 000 denoting the sample size. The first two examples are

obtained using the bivariate normal copula, for which the dependence is characterised

by the coefficient ρ ∈ [−1, 1]. For the first example, we take ρ(t) = (t−1)/(n−1), so that

ρ(1) = 0 and ρ(n) = 1, i.e., moving from independence to perfect positive dependence.
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For the second example, we take ρ(t) = −0.9 + 0.9(t− 1)/(n− 1), giving ρ(1) = −0.9

and ρ(n) = 0, i.e., moving from a strong negative correlation to independence.

For the third, fourth and fifth examples, we use the inverted extreme value copula

(Ledford and Tawn, 1997) with logistic, asymmetric logistic and Hüsler-Reiss families,

respectively. For the logistic and asymmetric logistic, the dependence is characterised

by the parameter r ∈ (0, 1), with the degree of positive dependence increasing at r

approaches 0. We take r(t) = 0.01 + 0.98(t − 1)/(n − 1), hence moving from strong

positive dependence at t = 1 to close to independence at t = n. The asymmetric

logistic distribution also requires two asymmetry parameters (κ1, κ2) ∈ [0, 1]2 (Tawn,

1988): we fix (κ1, κ2) = (0.3, 0.7), noting this does not change the overall trend in

dependence. The Hüsler-Reiss family is characterised by the dependence parameter

s > 0, with independence and complete dependence obtained as s approaches 0 and

∞, respectively. We take s(t) = 0.01 + 9.99(t − 1)/(n − 1), resulting in increasing

dependence over time.

For the final example, we start with a specified ADF and use a method given in Nolde

and Wadsworth (2022) to construct a copula with this ADF. Given the dependence

parameter c ∈ (0, 1), we take λ(w) = max{(2w − 1)/c, (1− 2w)/c, 1/(2− c)}, which is

the ADF of the density proportional to

exp(−max{(x− y)/c, (y − x)/c, (x+ y)/(2− c)}), (4.4.1)

and simulate from this density using MCMC. Such a distribution does not have exactly

exponential margins, however in this case the transformation to exponential margins,

via the probability integral transform, yields a density with the same ADF. We refer

to this example as the copula of model (4.4.1) henceforth and set c(t) = 0.1 + 0.8(t −

1)/(n− 1); this results in a similar dependence trend to the inverted logistic example.

Illustrations of the resulting ADFs over time for each example are given in Figure 4.4.1.
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Figure 4.4.1: Illustration of true ADFs over time for each copula example. Colour
change is used to illustrate trends in extremal dependence structure over the time frame,
with red and blue corresponding to the start and end of time frame, respectively.

4.4.3 Covariate and link functions

Both estimators derived in Section 4.3 require estimates of sequences obtained via a

quantile regression procedure. For this, one must first specify the functional form for

the relationship between quantiles and covariates zt. Since the data we have simulated

has a dependence structure directly related to the covariate t, we propose the covariate

set zt := {1, t, t2, t3}. For any given quantile q and ray w ∈ [0, 1], it is assumed that the

quantile function is given by QKw,t|Zt=zt(q) = z′tπ, where π ∈ R4. Additional polyno-

mial terms were considered, but we found that a cubic expression was flexible enough

to accurately capture quantiles trends for each of the studied examples. Applying the

methodology described in Koenker et al. (2017), estimates of the sequences described

in equation (4.3.2) can be obtained for any pair of quantiles q1, q2.

To selectm and {(q1,j, q2,j)}, a range of quantile sets were compared for the examples
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discussed in Section 4.4, with the resulting ADF estimates showing very little difference

in variability or accuracy. Consequently, the exact choice of quantile sets does not

appear to significantly alter the resulting ADF estimates, so long as a range of different

quantile pairs are considered. Therefore, for {q1,j}mj=1, we take m = 30 equally spaced

points in the interval [0.9, 0.95], and set q2,j = q1,j + 0.04 for j = 1, . . . ,m.

For λ̄∗
QR, estimates of non-stationary ADFs can be derived directly using estimated

sequences, while specification of coefficients functions is also required for λ̄∗
BP . Defining

zt := {1, t}, we set log(βi(zt)) = z′tψi, with ψi ∈ R2 for each i ∈ {1, 2, . . . , k − 1},

thereby ensuring positive coefficient functions. We found this form to be flexible enough

to capture the range of dependence trends considered in the study, though additional

polynomial terms and/or coefficient functions could be added for more complex data

structures.

4.4.4 Simulation study

We evaluate the properties of estimators proposed in Section 4.3 and compare these to

the estimator derived in Mhalla et al. (2019b), which we denote λ̄∗
GAM . For the latter

approach, the thresholds used to define exceedances of the min-projection are set to be

constant over the covariate space: this assumption is not required for λ̄∗
QR or λ̄∗

BP .

To obtain ADF estimates using λ̄∗
GAM , the same covariate set is used as for the quan-

tile regression procedure, i.e., zt = {1, t, t2, t3}. This link function proposed in Mhalla

et al. (2019b) imposes the lower bound of λ(w) = max(w, 1− w), but also imposes an

upper bound of λ(w) = 1, meaning negative dependence cannot be captured. To relax

this constraint, we instead consider the link function hw(x) = log(x−max(w, 1− w)),

x ∈ [max(w, 1−w),∞), w ∈ [0, 1] when estimating the ADFs for the negatively corre-

lated Gaussian example. This ensures the lower bound is still satisfied for each example,

while allowing all forms of extremal dependence to be captured. We also impose the

boundary conditions discussed in Section 4.3.5 for w = 0 and w = 1. Furthermore,
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to ensure comparability, the final estimator is obtained as an average over 10 equally

spaced quantiles in the interval [0.9, 0.95]. Such quantiles are used to define thresh-

old exceedances of the min-projection variable prior to GAM fitting. We observe that

imposing the upper bound λ(w) = 1 for λ̄∗
GAM in the majority of considered examples

results in this estimator having a practical advantage over λ̄∗
QR and λ̄∗

BP , since the latter

estimators can exceed this upper bound.

To evaluate the performance of the estimators, the mean integrated squared error

(MISE), alongside the integrated squared error (ISE) of a median estimator calculated

over 250 simulated examples, was computed for each simulated example at three fixed

time points; t = 1, t = n/2 and t = n. These results can be found in the Supple-

mentary Material. These metrics indicate a similar performance between our proposed

estimators and λ̄∗
GAM ; however, this is not the case if we consider the time frame as a

whole. For this, we fix rays w ∈ {0.1, 0.3, 0.5} and compute estimates of the ADF across

250 simulated examples. The median of the ADF estimates, alongside 0.025 and 0.975

quantiles, are calculated for each ray and time point t ∈ {1, . . . , n} and these estimates

are then plotted over time for fixed rays. The resulting plots for the inverted logistic

copula are illustrated in Figure 4.4.2. As can be observed, the median estimates appear

very close to the true ADF values for both our estimators proposed in Section 4.3. The

uncertainty is lower for λ̄∗
BP compared to λ̄∗

QR, owing to the former’s semi-parametric

form. Furthermore, both of our estimators appear to show lower bias on average com-

pared to λ̄∗
GAM , particularly for w = 0.3 and w = 0.5. Similar results are obtained for

each of the copula examples, with the exception of the negatively correlated Gaussian

copula: in this case, significant bias arises nearer the start of the time interval for each

estimator, owing to the infinite upper bound for λ as ρ → −1. The resulting plots can

be found in the Supplementary Material. These results suggest higher bias for λ̄∗
GAM

compared to the estimators proposed in Section 4.3.

Finally, we again fix the time points t = 1, t = n/2 and t = n and evaluate the vari-
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Figure 4.4.2: Plots of median and 95% confidence interval estimates over time at rays
w ∈ {0.1, 0.3, 0.5} for the inverted logistic copula. Red lines correspond to true ADF
values, while the black, green and blue lines correspond to the median estimates for
λ̄∗
QR, λ̄

∗
BP and λ̄∗

GAM , respectively, with the coloured regions representing the estimated
confidence intervals.

ability in ADF estimates. Median curve estimates, alongside pointwise 95% confidence

intervals, are obtained for each of the copula examples. As with the analysis of MISE

and ISE estimates, these results indicate similar performances across the three estima-

tors. Plots of the estimated median curves and confidence regions for each estimator

can be found in the Supplementary Material.

From these results combined, we conclude that the proposed estimators from Sec-

tion 4.3 outperform the GAM-based estimator λ̄∗
GAM in a wide range of scenarios. This

can be partly explained by the fact these estimators do not make the assumption of

a constant threshold over time for the min-projection variable, leading to more real-

istic estimates. Moreover, we note that these results hold even though λ̄∗
GAM has the

additional advantage of a link function which bounds the resulting ADF estimates for

examples exhibiting positive extremal dependence. We therefore choose not to consider

this GAM-based estimator further.

4.4.5 Return curve estimates

We now consider our ultimate goal of estimating return curves, RCzt(p), for extreme

survival probabilities. Curve estimates RCzt(p) at p = 1/n under λ̄∗
QR and λ̄∗

BP were
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Figure 4.4.3: Plots of median return curve estimates over time with p = 1/n for the
Gaussian copula with negative correlation. Colour change illustrates extremal depen-
dence trends over time, with red and blue corresponding to start and end of time frame,
respectively. True curves given in left panel, with estimated curves from the median
estimators of λ̄∗

QR and λ̄∗
BP given in centre and right panels, respectively.

obtained for 250 simulated examples from each copula. To give an overall impression

of the bias from each estimator, we fix a time point t and plot the median of the 250

estimates for RCzt(p). Specifically, since each coordinate of RCzt(p) is associated with

a ray w ∈ [0, 1], we take the median along each ray. Median curve estimates for the

negatively correlated Gaussian example are given alongside the true return curves in

Figure 4.4.3. As can be observed, the estimated curves in each case closely resemble the

true return curves. This is even true at the start of the observation period, for which

significant bias in ADF estimators was observed. Return curve estimates for each of

the other simulated examples were similar in accuracy; these plots can be found in the

Supplementary Material.

4.5 UKCP18 temperature and dryness data

4.5.1 Properties of data

We denote the dataset introduced in Section 4.1 as {Xt, Yt} for t ∈ {1, . . . , n}, with

Xt and Yt corresponding to the temperature and dryness variables, respectively. In

this case, we have n = 9000, corresponding to 100 years of summer projections from
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June 1981 to August 2080. We treat the time index t as a covariate for this data;

while this does not correspond to any physical process, it can be used to capture the

non-stationarity present in the data, which has been more fully explained by physical

inputs to the climate model. For the marginal time series, empirical evidence indicates

the presence of seasonal and long term trends within the main bodies of both variables.

Further exploratory analysis suggests the presence of non-stationary behaviour within

dryness extremes and that non-stationarity is present within the extremal dependence

structure, as evidenced by the trend in η in Figure 4.1.1. In this section, we attempt to

account for all three forms of non-stationary trends and produce return curve estimates

up to the end of the observation period.

4.5.2 Capturing marginal non-stationarity

To capture marginal non-stationarity, we extend the pre-processing technique described

in equation (4.2.3), with the goal of removing any marginal trends from the data. Rather

than specifying linear parametric forms for the covariate functions, as in Eastoe and

Tawn (2009), we instead assume the residual process Rt is a sequence of standard normal

variables and allow µ and σ to be general smooth functions of covariate vectors. These

functions can be estimated using a GAM framework, allowing for flexible modelling of

the marginal trends.

The time series in both cases appear to exhibit long term trends in location and

scale, along with seasonal behaviour within the former. Therefore, for the location

function µ, and scale function σ, we take zt = {1, t, dt} and zt = {1, t}, respectively,

where dt ∈ {1, 2, . . . , 90} denotes the day index of the process at time t. For example,

dt equals 1, 45, and 90 for June 1st, July 15th and August 30th, respectively. A thin

plate regression spline is used for the covariate t, while for dt, a cyclic cubic regression

spline of dimension 90 (corresponding to the number of data points in each year) is

used.
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The fitting of the location and scale covariate functions is carried out using the R

package mgcv (Wood, 2021), with a gaulss family. Model optimisation is achieved via

restricted maximum likelihood estimation, with smoothness penalties and knot quanti-

ties selected automatically using generalised cross validation. Further details for these

modelling procedures can be found in Wood (2017). The resulting fitted trends are in

good agreement with empirical estimates from the marginal time series: see the Supple-

mentary Material for the corresponding plots. Moreover, the transformed series appear

stationary, with no obvious long term or seasonal trends in either the location or scale.

With non-stationary trends in both marginal bodies accounted for, residual pro-

cesses can be obtained through the transformations RXt = [Xt − µX(zt)]/σX(zt) and

RYt = [Yt − µY (zt)]/σY (zt), where (µX , σX) and (µY , σY ) denote the estimated co-

variate functions for Xt and Yt, respectively. Assuming an accurate model fit, these

processes should be approximately stationary within the body of the data. However,

non-stationary trends are likely to remain in the tails since GAM fitting is driven by

the body. Following Eastoe and Tawn (2009), we fit the non-stationary GPD described

in equation (4.2.2) to capture any remaining trends. Significant linear and harmonic

trends are shown to exist within the scale parameter of the residual process for dryness,

while the shape parameter is assumed to be fixed over time. This assumption is common

within the analysis of non-stationary univariate extremes (e.g., Eastoe and Tawn, 2009;

Chavez-Demoulin and Davison, 2012), since the shape parameter is often seen seen as

an intrinsic property of a physical process. No significant trends were found for the scale

parameter corresponding to the temperature variable. Let {(rXt , rYt) : t = 1, . . . , n}

denote a data sample corresponding to the residuals vector (RXt , RYt). An estimate of

the marginal distribution function FRYt
is given by

F̂RYt
(r | Zt = zt) =


1− (1− qY ){1 + ξ̂Y (r − uY )/τ̂Y (zt)}−1/ξ̂Y for r > uY ,∑n

t=1 1(rYt ≤ r)/(n+ 1) for r ≤ uY ,
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where 1 denotes an indicator function, uY is the empirical qY quantile of RYt , and

(τ̂Y (zt), ξ̂Y ) are the MLEs of the GPD scale and shape parameters. The stationary

GPD, denoted in equation (4.2.1), is used to estimate the upper tail of FRXt
.

Finally, the data are transformed to standard exponential margins via the proba-

bility integral transform. To assess the outcome of the pre-processing procedure, ex-

ponential rate parameters were estimated over time for both marginal processes. The

resulting estimates remain approximately constant at one (the target value) throughout

the observation period; an illustrative plot can be found in the Supplementary Material.

4.5.3 Model fitting

With the data transformed to standard exponential margins, we apply the methodology

proposed in Section 4.3 for return curve estimation. The extremal dependence trend

observed in Figure 4.1.1 appears to suggest the extremes of the process are becoming

more positively dependent over the time frame; therefore, one may expect the ADF

estimates to tend towards the lower bound as t → n.

We set zt := {1, t} for both the quantile regression procedure and estimation of

Bernstein polynomial coefficients. This reduced covariate space was flexible enough to

capture the observed extremal dependence trend within the data. Moreover, the same

set of quantile pairs {q1,j, q2,j}mj=1 was considered as defined in Section 4.4.3. Two sets

of ADF estimates are obtained over the observation period corresponding to λ̄∗
QR and

λ̄∗
BP ; these are plotted in the left and centre panels of Figure 4.5.1, respectively. The

selected values of t for the plotted curves correspond to July 15th for an increasing

subset of equally spaced years between 1981-2080.

We observe that for both estimators, we obtain ADFs which exceed one at sev-

eral rays; this is unexpected, since exploratory analysis of the data appears to suggest

the presence of positive dependence over the entire time frame. This could indicate

the presence of some underlying issues within the proposed modelling framework; see
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Figure 4.5.1: Left, centre and right: ADF estimates over time for λ̄∗
QR, λ̄

∗
BP and con-

strained λ̄∗
BP , respectively. Curves change from red to blue over the observation period.

Section 4.6 for further discussion. While λ(w) < 1 or λ(w) > 1 for all w ∈ (0, 1)

indicate positive and negative extremal dependence, respectively, intermediate scenar-

ios where λ(w) > 1 for some rays and λ(w) < 1 for others are theoretically possible.

However, having investigated this aspect further, the evidence that λ(w) > 1 for small

w is not strong, and so we seek to implement an estimator which is bounded above by

one. We therefore re-apply the Bernstein polynomial estimator, this time constrain-

ing the coefficient functions to be in the interval [0, 1] via a logit link function, i.e.,

logit(βi(zt)) = z′tψi, ψi ∈ R2, i ∈ {1, 2, . . . , k − 1}. The resulting ADF estimates are

illustrated in the right panel of Figure 4.5.1. The estimated trends are again in good

agreement with what is observed in the data, and the estimates approach the lower

bound max(w, 1−w), w ∈ [0, 1], as t → n. This convergence to asymptotic dependence

is in agreement with the η estimates from Figure 4.1.1.

To evaluate uncertainty in estimates, we propose a block bootstrapping procedure.

First, the data on exponential margins is split into segments of size 450, corresponding

to five years of observations. The extremal dependence structure within such segments

is then assumed to be approximately stationary. Within each segment, data are then

resampled in blocks of size 15 with replacement to account for temporal dependence.

These blocks are combined to form a resampled segment, then each of the segments are

merged in order to obtain a new dataset. This process is repeated 250 times to generate
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sets of ADF estimates while accounting for complex structures in the data. The median

of the estimated ADFs for t = n/2, alongside 95% pointwise confidence intervals, are

illustrated in the left panel of Figure 4.5.2 for the Bernstein polynomial estimator with

constrained coefficients. Note that imposing the ADF lower bound, as described in

Section 4.3.5, constrains the range of the confidence intervals, thus explaining why the

median estimate appears close to the lower bound.

Finally, to assess the quality of the ADF estimates, we have compared the model

estimates of η over time, obtained via the constrained version of λ̄∗
BP , to the empirical

estimates introduced in Section 4.1. For each rolling window, we have taken the average

η estimate from the fitted model. As illustrated in the centre panel of Figure 4.5.2, the

model estimates appear similar over time, suggesting we have accurately captured the

extremal dependence trend at this ray. Similar results were also observed for model

estimates at other rays.

4.5.4 Return curve estimates

We use our estimated ADFs to estimate return curves RCzt(p) up to the year 2080.

In the stationary setting, we define ‘1 in 10,000-year’ bivariate events to be those with

joint survival probability of p = 1/(10000×ny), where ny denotes the average number of

observations per year (Brunner et al., 2016). We therefore obtain return curve estimates

at this probability level for the vector (Xt, Yt) using the constrained version of λ̄∗
BP .

This is done in two steps: first, we apply the method introduced in Section 4.3.6 to

obtain return curve estimates on standard exponential margins. These curves are then

transformed back to the original scale by applying the the inverse of the semi-empirical

distribution given in equation (4.2.2), followed by the inverses of the transformations

used to obtain the variables RXt and RYt . The resulting curve estimates are illustrated

in the right panel of Figure 4.5.2, with the selected values of t for the plotted curves again

corresponding to July 15th for an increasing subset of years between 1981-2080. All of
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the theoretical properties for return curves introduced in Murphy-Barltrop et al. (2023)

have been imposed to ensure the resulting estimates are both theoretically possible and

realistic.

From these curve estimates, two conclusions of relevance to nuclear regulators are

evident. Firstly, clear marginal trends can be observed for both time series. For exam-

ple, the temperature values at the point where the curves intersect the x-axis, which

equate to (1−p)-th non-stationary quantile estimates (i.e., ‘1 in 10,000-year’ univariate

events), increase by over 15◦C through the observation period. This implies that the

regulatory design values will increase significantly over the time frame. Moreover, a de-

pendence trend is evidenced by the changing shape in return curve estimates over time,

with the curves becoming increasingly ‘square’ shaped from 1981-2080. This suggests

that joint extremes of temperature and dryness are becoming more likely to occur over

the observation period, implying drought-like conditions could be more common at the

end of the time frame.

To better illustrate the shift in joint extremal behaviour over the observation period,

consider the point labelled on the 1981 curve in green; this corresponds to the ray w =

0.5 when translated to standard exponential margins. These coordinates considered

in the year 2080 would equate to a one in 1.25-year joint survival event. Moreover,

the marginal return periods in 2080 would be 0.11 and 0.97 years for temperature and

dryness, respectively. These values are orders of magnitude different from the 10,000-

year regulatory standard. At the other end of the scale, values on the 2080 return curve

lie above the fitted upper endpoints of the 1981 marginal distributions.

The non-stationarity in these return curves should be taken into account when

considering the design basis for future nuclear installations - in particular, conservative

principles suggest designing to values occurring at the end of the time frame. Moreover,

due to the observed change in extremal dependence, future designs must be able to cope

with the most extreme values of temperature and dryness occurring simultaneously,
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Figure 4.5.2: Left: median ADF estimate for t = n/2 obtained through bootstrapping
procedure, with coloured region representing uncertainty bounds. Centre: Comparison
of averaged model η estimates for rolling windows to empirical estimates, with black,
green and dotted blue lines corresponding to empirical, model, and 95% confidence
interval estimates respectively. Right: Return curve estimates on original margins with
p = 1/n at July 15th over the observation period. Time is illustrated using a colour
transition, with the curves for the start and end of the time frame labelled. The green
point corresponds to the ray w = 0.5 when the 1981 curve is transformed to standard
exponential margins.

again resulting in a more complex design specification compared to the start of the

observation period.

We note that there is a large degree of uncertainty in these curve estimates which

cannot be quantified in a simple manner - see Section 4.6 for further discussion. Uncer-

tainty arises in every step of the estimation procedure; see, for example, the estimated

uncertainty for the fitted GAM functions illustrated in the Supplementary Material.

Marginal trends play a key role in the changing values of the return curves, and differ-

ences in these point estimates would naturally impact the estimated curves.

4.6 Discussion

We have proposed a novel method for capturing non-stationary extremal dependence

structures under asymptotic independence. Our method has been successfully applied

to heavily non-stationary data from the UKCP18, allowing us to obtain return curve

estimates up to the year 2080 and thereby illustrating how this framework could help
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improve practical risk management under future climate scenarios.

We have investigated the properties of our estimators via simulation and have ob-

served them generally perform well in terms of bias. While it would be desirable also

to have theoretical results on bias of the estimators, this is very challenging in practice

and is likely to require assumptions that are too strict to make the results worthwhile.

Potentially a more promising line of future work would be the development of diagnostic

plots for non-stationary ADF and return curve estimates. Our diagnostic procedures

were limited to comparison of rolling window η estimates against those derived from

the ADF. In general, diagnostic plots for return curves, such as those introduced in

Murphy-Barltrop et al. (2023), require stationarity assumptions.

For the sake of simplicity, we have restricted attention to the bivariate setting. How-

ever, it is worth noting that all methods could in principle be extended to the general

multivariate setting. This scenario results in additional complexities, since different ex-

tremal dependence regimes can exist within subvectors of a multivariate random vector,

and more sophisticated model formulations may be required to capture such dependence

structures. Moreover, applications of multivariate extremal risk measures are limited,

owing in part to the fact visualisation and interpretation becomes more challenging in

this setting.

As noted in Section 4.3.5, imposing the lower bound on the estimates of the ADF

was shown to improve the estimation procedure. This was an ad-hoc post-processing

step, with many of the obtained ADF estimates below the bound. Future work could

explore how this lower bound could be incorporated into the theoretical quantile regres-

sion framework, and whether this would further improve the quality of ADF estimates.

We note that when asymptotic dependence is present, λ(w | zt) = max(w, 1 − w) will

cease to depend on zt. However, return curve estimates RCzt(p) are also affected by

the sequences {uw,t} as described in Section 4.3.6, so will still capture non-stationarity.

Nonetheless, if asymptotic dependence is clearly present at all time points, other tech-
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niques for estimating non-stationarity may be preferable.

When estimating non-stationary ADFs for the case study data in Section 4.5.3, we

initially obtained ADFs which exceeded one for small w. While it is difficult to say

for certain why this unexpected result occurred, we suspect this could be related to a

marginal standardisation issue, i.e., the transformed margins are not exactly standard

exponential. This issue would alter the tail properties of the min-projection variable,

in-turn affecting the quality of the resulting ADFs estimates. Accurately accounting

for marginal non-stationarity in the analysis of non-stationary multivariate extremes

represents an important line of research.

We recognise that the method proposed for evaluating and representing uncertainty

in Section 4.5 relies on strong assumptions and is an approximation of the true un-

certainty. Theoretical derivation of uncertainty intervals for either of the estimators

proposed in Section 4.3 is not possible, meaning any evaluation of uncertainty must

be non-parametric. Uncertainty quantification is a general problem when modelling

non-stationary processes, since the underlying datasets cannot be resampled using a

straightforward bootstrapping procedure.

Finally, we note that the data within the climate projections exhibits non-negligible

temporal dependence. This feature decreases the amount of information available, and

we found that the ADF estimation procedures detailed in Section 4.3 performed worse

when this feature was present. This feature may also be part of the explanation for

the unexpected results discussed in Section 4.5.3. However, for ease of implementation,

we have assumed independence in both marginal distributions. Techniques for incor-

porating temporal dependence with quantile regression (Koenker et al., 2017) could be

incorporated into our methodology in future work.
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Improving estimation for

asymptotically independent

bivariate extremes via global

estimators for the angular

dependence function

5.1 Introduction

Bivariate extreme value theory is a branch of statistics that deals with the modelling

of dependence between the extremes of two variables. This type of analysis is useful

in a variety of fields, including finance (Castro-Camilo et al., 2018), engineering (Ross

et al., 2020), and environmental science (Brunner et al., 2016), where understanding

and predicting the behaviour of rare, high-impact events is important.

In certain applications, interest lies in understanding the risk of observing simul-

taneous extreme events at multiple locations; for example, in the context of flood risk
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modelling, numerous simultaneous floods can result in damaging consequences to prop-

erties, businesses, infrastructure, communications and the economy (Lamb et al., 2010;

Keef et al., 2013b). To support resilience planning, it it imperative to identify locations

at high risk of joint extremes.

Classical theory for bivariate extremes is based on the framework of regular varia-

tion. Given a random vector (X, Y ) with standard exponential margins, we say that

(X, Y ) is bivariate regularly varying if, for any measurable B ⊂ [0, 1],

lim
r→∞

Pr(V ∈ B,R > sr | R > r) = H(B)s−1, s ≥ 1, (5.1.1)

with R := eX + eY , V := eX/R and H(∂B) = 0, where ∂B is the boundary of B

(Resnick, 1987). Note that bivariate regular variation is most naturally expressed on

standard Pareto margins, and the mapping (X, Y ) 7→ (eX , eY ) performs this transfor-

mation. We refer to R and V as radial and angular components, respectively. Limit

(5.1.1) implies that for the largest radial values, the radial and angular components are

independent. Furthermore, the quantity H, which is known as the spectral measure,

must satisfy the moment constraint
∫ 1

0
vdH(v) = 1/2.

The spectral measure summarises the extremal dependence of (X, Y ), and a wide

range of approaches exist for its estimation (e.g., Einmahl and Segers, 2009; de Carvalho

and Davison, 2014; Eastoe et al., 2014). Equivalently, one can consider Pickands’

dependence function (PDF; Pickands, 1981), which has a direct relationship to H via

A(t) =

∫ 1

0

max{vt, (1− v)(1− t)}2dH(v), t ∈ [0, 1].

This function again captures the extremal dependence of (X, Y ), and many approaches

also exist for its estimation (e.g., Guillotte and Perron, 2016; Marcon et al., 2016;

Vettori et al., 2018). Moreover, estimation approaches for the spectral measure and PDF

encompass a wide range of statistical methodologies, with parametric, semi-parametric,
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and non-parametric modelling techniques proposed in both Bayesian and frequentist

settings.

However, methods based on bivariate regular variation are limited in the forms of

extremal dependence they can capture. This dependence can be classified through the

coefficient χ (Joe, 1997), defined as

χ := lim
u→∞

Pr(Y > u | X > u) ∈ [0, 1],

where this limit exists. If χ > 0, then X and Y are asymptotically dependent, and the

most extreme values of either variable can occur simultaneously. If χ = 0, X and Y

are asymptotically independent, and the most extreme values of either variable occur

separately.

Under asymptotic independence, the spectral measure H places all mass on the

points {0} and {1}; equivalently, A(t) = 1 for all t ∈ [0, 1]. Consequently, for this form

of dependence, the framework described in limit (5.1.1) is degenerate and is unable to

accurately extrapolate into the joint tail (Ledford and Tawn, 1996, 1997). Practically,

an incorrect assumption of asymptotic dependence between two variables is likely to

result in an overly conservative estimate of joint risk.

To overcome this limitation, several models have been proposed that can capture

both classes of extremal dependence. The first was given by Ledford and Tawn (1996),

in which they assume that as u → ∞, the joint tail can be represented as

Pr(X > u, Y > u) = Pr(min(X, Y ) > u) = L(eu)e−u/η, (5.1.2)

where L is a slowly varying function at infinity, i.e., limu→∞ L(cu)/L(u) = 1 for c > 0,

and η ∈ (0, 1]. The quantity η is termed the coefficient of tail dependence, with η = 1

and limu→∞ L(u) > 0 corresponding to asymptotic dependence and either η < 1 or η = 1

and limu→∞ L(u) = 0 corresponding to asymptotic independence. Many extensions to
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this approach exist (e.g., Ledford and Tawn, 1997; Resnick, 2002; Ramos and Ledford,

2009); however, all such approaches are only applicable in regions where both variables

are large, limiting their use in many practical settings. Since many extremal bivariate

risk measures, such as environmental contours (Haselsteiner et al., 2021) and return

curves (Murphy-Barltrop et al., 2023), are defined both in regions where both variables

are extreme and in regions where only one variable is extreme, methods based on

equation (5.1.2) are inadequate for their estimation.

Several copula-based models have been proposed that can capture both classes of

extremal dependence, such as those given in Coles and Pauli (2002), Wadsworth et al.

(2017) and Huser and Wadsworth (2019). Unlike equation (5.1.2), these can be used

to evaluate joint tail behaviour in all regions where at least one variable is extreme.

However, these techniques typically require strong assumptions about the parametric

form of the bivariate distribution, thereby offering reduced flexibility.

Heffernan and Tawn (2004) proposed a modelling approach, known as the condi-

tional extremes model, which also overcomes the limitations of the framework described

in equation (5.1.2). This approach assumes the existence of normalising functions

a : R+ → R and b : R+ → R+ such that

lim
u→∞

Pr [(Y − a(X))/b(X) ≤ z, X − u > x | X > u] = D(z)e−x, x > 0, (5.1.3)

for a non-degenerate distribution function D. Note that the choice of conditioning

on X > u is arbitrary, and an equivalent formulation exists for normalised X given

Y > u. This framework can capture both asymptotic dependence and asymptotic

independence, with the former arising when a(x) = x and b(x) = 1, and can also be

used to describe extremal behaviour in regions where only one variable is large.

Finally, Wadsworth and Tawn (2013) proposed a general extension of equation
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(5.1.2). As u → ∞, they assume that for each ray w ∈ [0, 1],

Pr(min{X/w, Y/(1− w)} > u) = L(eu;w)e−λ(w)u, λ(w) ≥ max(w, 1− w), (5.1.4)

where L(· ;w) is slowly varying for each w ∈ [0, 1] and λ is the angular dependence

function (ADF), which generalises the coefficient η = 1/{2λ(0.5)}. This extension

captures both extremal dependence regimes, with asymptotic dependence implying the

lower bound, i.e., λ(w) = max(w, 1 − w) for all w ∈ [0, 1]. Evaluation of the ADF for

rays w close to 0 and 1 corresponds to regions where one variable is larger than the

other.

The ADF can be viewed as the counterpart of the PDF for asymptotically indepen-

dent variables, and shares many of its theoretical properties (Wadsworth and Tawn,

2013). It can be used to differentiate between different forms of asymptotic indepen-

dence, with both positive and negative associations captured, alongside complete inde-

pendence, which implies λ(w) = 1 for all w ∈ [0, 1]. Figure 5.1.1 illustrates the ADFs

for three copulas. We observe a variety in shapes, corresponding to differing degrees of

positive extremal dependence in the underlying copulas. The weakest dependence is ob-

served for the inverted logistic copula, while the ADF for the asymptotically dependent

logistic copula is equal to the lower bound.

Despite these modelling advances, the majority of approaches for quantifying the

risk of bivariate extreme events still require bivariate regular variation. Many of the

approaches that do allow for asymptotic independence use the conditional extremes

model of equation (5.1.3) despite some well known limitations of this approach (Liu

and Tawn, 2014).

One particular application of the model described in equation (5.1.4) is the estima-

tion of so-called bivariate return curves, RC(p) := {(x, y) ∈ R2 : Pr(X > x, Y > y) = p},

which requires knowledge of extremal dependence in regions where either variable is

large; see Section 5.5.4. Murphy-Barltrop et al. (2023) obtain estimates of return
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Figure 5.1.1: The true ADFs (given in red) for three example copulas. Left: bivariate
Gaussian copula with coefficient ρ = 0.5. Centre: inverted logistic copula with depen-
dence parameter r = 0.8. Right: logistic copula with dependence parameter r = 0.8.
The lower bound for the ADF is denoted by the black dotted line.

curves, finding that estimates derived using equation (5.1.4) were preferable to those

from the conditional extremes model. Mhalla et al. (2019b) and Murphy-Barltrop and

Wadsworth (2022) also provide non-stationary extensions and inference methods for

the ADF.

In this paper, we propose a global methodology for ADF estimation in order to

improve extrapolation into the joint upper tail for bivariate random vectors exhibiting

asymptotic independence. Until recently, the ADF has been estimated only in a point-

wise manner using the Hill estimator (Hill, 1975) on the tail of min{X/w, Y/(1− w)},

resulting in unrealistic rough functional estimates and, as we demonstrate in Section

5.4, high degrees of variability. Further, Murphy-Barltrop et al. (2023) showed that

pointwise ADF estimates result in non-smooth return curve estimates, which are again

unrealistic.

The first smooth ADF estimator was proposed in Simpson and Tawn (2022) based

on a theoretical link between a limit set derived from the shape of appropriately scaled

sample clouds and the ADF (Nolde and Wadsworth, 2022). The authors introduce

global estimation techniques for the limit set, from which smooth ADF estimates follow;

see Section 5.2 for further details.
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We introduce several novel smooth ADF estimators, and compare their performance

with the pointwise Hill estimator, as well as the estimator given in Simpson and Tawn

(2022). In Section 5.2, we review the literature on ADF estimation. In Section 5.3, we

introduce a range of novel estimators, and select tuning parameters for each proposed

estimation technique. In Section 5.4, we compare each of the available estimators

through a systematic simulation study, finding certain estimators to be favourable over

others. A subset of estimators are then applied to river flow data sets in Section 5.5

and used to obtain estimates of return curves for different combinations of river gauges.

We conclude in Section 5.6 with a discussion.

5.2 Existing techniques for ADF estimation

In this section, we introduce existing estimators for the ADF, with (X, Y ) denoting a

random vector with standard exponential margins throughout. To begin, for any ray

w ∈ [0, 1], define the min-projection at w as Tw := min{X/w, Y/(1 − w)}. Equation

(5.1.4) implies that for any w ∈ [0, 1] and t > 0,

Pr(Tw > u+ t | Tw > u) =
L(eu+t;w)

L(eu;w)
e−λ(w)t → e−λ(w)t = t−λ(w)

∗ , (5.2.1)

as u → ∞, with t∗ := et. Since the expression in equation (5.2.1) has a univariate

regularly varying tail with positive index, Wadsworth and Tawn (2013) propose using

the Hill estimator (Hill, 1975) to obtain a pointwise estimator of the ADF; we denote

this ‘base’ estimator λ̂H . A major drawback of this technique is that the estimator is

pointwise, leading to rough and often unrealistic estimates of the ADF. Furthermore,

this estimator need not satisfy the theoretical constraints on the ADF identified in

Wadsworth and Tawn (2013), such as the endpoint conditions λ(0) = λ(1) = 1. More-

over, no information is shared across different rays, increasing the variability in the

resulting estimates.
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Simpson and Tawn (2022) recently proposed a novel estimator for the ADF us-

ing a theoretical link with the limiting shape of scaled sample clouds. Let Cn :=

{(Xi, Yi)/ log n; i = 1, . . . , n} denote n scaled, independent copies of (X, Y ). Nolde

and Wadsworth (2022) explain how, as n → ∞, the asymptotic shape of Cn provides

information on the underlying extremal dependence structure. In many situations, Cn

converges onto the compact limit set Ḡ = {(x, y) : g(x, y) ≤ 1} ⊆ [0, 1]2, where g is the

gauge function of Ḡ. A sufficient condition for this convergence to occur is that the

joint density, f , of (X, Y ) exists, and that

− log f(tx, ty) ∼ tg(x, y), x, y ≥ 0, t → ∞. (5.2.2)

Following Nolde (2014), we also define the unit-level set G = {(x, y) : g(x, y) = 1} ⊂

[0, 1]2. Given fixed margins, the shapes of Ḡ and G are completely determined by the

extremal dependence structure of (X, Y ). Furthermore, Nolde and Wadsworth (2022)

show that the boundary set G is also directly linked to the modelling frameworks

described in equations (5.1.2), (5.1.3) and (5.1.4), as well as the approach of Simpson

et al. (2020). In particular, letting Rw := (w/max(w, 1−w),∞]× ((1−w)/max(w, 1−

w),∞] for all w ∈ [0, 1], we have that

λ(w) = max(w, 1− w)× r−1
w , (5.2.3)

where

rw = min{r ∈ [0, 1] : rRw

⋂
G = ∅}.

The boundary sets G for each of the copulas in Figure 5.1.1 are given in Figure 5.2.1,

alongside the coordinates (rww/max(w, 1− w), rw(1− w)/max(w, 1− w)) for all w ∈

[0, 1]; these coordinates represent the relationship between G and the ADF via equation

(5.2.3). One can again observe the variety in shapes. For the asymptotically dependent
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logistic copula, we have that (1, 1) ∈ G; this is true for all asymptotically dependent

bivariate random vectors.
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Figure 5.2.1: The boundary set G (given in red) for three example copulas, with co-
ordinate limits denoted by the black dotted lines and the blue lines representing the
coordinates (rww/max(w, 1 − w), rw(1 − w)/max(w, 1 − w)) for all w ∈ [0, 1]. Left:
bivariate Gaussian copula with coefficient ρ = 0.5. Centre: inverted logistic copula
with dependence parameter r = 0.8. Right: logistic copula with dependence parameter
r = 0.8.

In practice, both the limit set, Ḡ, and its boundary, G, are unknown. Simpson and

Tawn (2022) propose an estimator for G, which is then used to derive an estimator λ̂ST

for the ADF via equation (5.2.3). The resulting estimator λ̂ST was shown to outperform

λ̂H in a wide range of scenarios (Simpson and Tawn, 2022).

Estimation of G uses an alternative radial-angular decomposition of (X, Y ), with

R∗ := X + Y and V ∗ := X/(X + Y ). Simpson and Tawn (2022) assume the tail of

R∗ | V ∗ = v∗, v∗ ∈ [0, 1], follows a generalised Pareto distribution (GPD) (Davison and

Smith, 1990) and then use generalised additive models to capture trends over angles in

both the threshold and GPD scale parameter (Youngman, 2019). Next, high quantile

estimates from the conditional distributions R∗ | V ∗ = v∗, v∗ ∈ [0, 1] are computed

using the fitted GPDs. They are then transformed back to the original scale using

X = R∗V ∗ and Y = R∗(1 − V ∗) and finally scaled onto the set [0, 1]2 to give an

estimate of G; see Simpson and Tawn (2022) for further details.

Wadsworth and Campbell (2022) also provide methodology for estimation of G,

108



Chapter 5

though their focus is on estimation of tail probabilities more generally, including in

dimensions greater than two. Furthermore, their approach requires prior selection of a

parametric form for g. We therefore restrict our attention to the work of Simpson and

Tawn (2022) as their main focus is non-parametric estimation for G in two dimensions.

When applying the estimators λ̂H and λ̂ST in Section 5.4 and 5.5, we use the tuning

parameters suggested in the original approaches. In the case of λ̂H , we set u to be the

empirical 90% quantile of Tw. The default tuning parameters for λ̂ST can be found

in Simpson and Tawn (2022), and example estimates of the set G obtained using the

suggested parameters are given in the Supplementary Material.

5.3 Novel estimators for the ADF

Motivated by the goal of global estimation, we propose a range of novel estimators

for the ADF. Since the ADF and PDF bear many theoretical similarities, we begin

by reviewing estimation of the PDF. A smooth functional estimate for the ADF is

desirable, so we restrict attention to approaches for the PDF which achieve this: spline-

based techniques (Hall and Tajvidi, 2000; Cormier et al., 2014) and techniques that

utilise the family of Bernstein-Bézier polynomials (Guillotte and Perron, 2016; Marcon

et al., 2016, 2017b). In this paper, we focus on to the latter category, since spline-

based techniques typically result in more complex formulations and a larger number of

tuning parameters. Moreover, approaches based on Bernstein-Bézier polynomials have

been shown to improve estimator performance across a wide range of copula examples

(Vettori et al., 2018). For functions on the interval [0, 1], the family of Bernstein-Bézier

polynomials of degree k ∈ N is given by

Bk =

{
k∑

i=0

βi

(
k

i

)
wi(1− w)k−i

∣∣∣∣∣ βββ ∈ [0, 1]k+1, w ∈ [0, 1]

}
.
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Many approaches assume that the PDF A ∈ Bk and propose techniques for estimating

the coefficient vector βββ, resulting in an estimator β̂ββ. This automatically ensures A(t) ≤ 1

for all t ∈ [0, 1], thereby satisfying the theoretical upper bound of the PDF.

We make a similar assumption about the ADF, and use this to propose novel estima-

tors. However, unlike the PDF, the ADF is unbounded from above, meaning functions

in Bk cannot represent all forms of extremal dependence captured by equation (5.1.4).

Moreover, the endpoint conditions λ(0) = λ(1) = 1 are not necessarily satisfied by func-

tions in Bk. We therefore propose an alternative family of polynomials: given k ∈ N,

let

B∗
k =

{
(1− w)k +

k−1∑
i=1

βi

(
k

i

)
wi(1− w)k−i + wk =: f(w)

∣∣∣∣∣ w ∈ [0, 1],

βββ ∈ [0,∞)k−1 such that f(w) ≥ max(w, 1− w)

}
.

(5.3.1)

Functions in this family are unbounded from above, and f(0) = f(1) = 1 for all f ∈ B∗
k.

Furthermore, the parameter vector βββ is constrained such that each f ∈ B∗
k satisfies the

lower bound of the ADF.

For the remainder of this section, let λ(·; βββ) ∈ B∗
k represent a form of the ADF

from B∗
k. Interest now lies in estimating the coefficient vector βββ, which requires choice

of the degree k ∈ N. This is a trade-off between flexibility and computational com-

plexity; polynomials with small values of k may not be flexible enough to capture all

extremal dependence structures, resulting in bias, while high values of k will increase

computational burden and parameter variance.

5.3.1 Composite likelihood approach

One consequence of equation (5.2.1) is that, for all w ∈ [0, 1], the conditional variable

T ∗
w := (Tw − uw | Tw > uw) ∼ Exp(λ(w)), approximately, for large uw. The density

of this variable is fT ∗
w
(t∗w) ≈ λ(w)e−λ(w)t∗w , t∗w > 0, resulting in a likelihood function
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for min-projection exceedances of uw. Let (x,y) := {(xi, yi) : i = 1, . . . , n} denote n

independent observations from the joint distribution of (X, Y ). For each w ∈ W , where

W denotes some finite subset spanning the interval [0, 1], let tw := {min(xi/w, yi/(1−

w)) : i = 1, . . . , n} and take uw to be the empirical 100q% quantile of tw, with q close

to 1 and fixed across w. Letting t∗w := {tw − uw | tw ∈ tw, tw > uw}, we have a set of

realisations from the conditional variable T ∗
w.

One approach to obtain an estimate of λ(w) while considering all w ∈ W simulta-

neously is to use a composite likelihood, in which multiple likelihood components are

treated as independent whether or not they are independent. Provided each component

is a valid density function, the resulting likelihood function provides unbiased parame-

ter estimates; see Varin et al. (2011) for further details. For this model, the likelihood

function is given by

LC(βββ) =
∏
w∈W

∏
t∗w∈t∗w

λ(w; βββ)e−λ(w; βββ)t∗w =

[∏
w∈W

λ(w; βββ)|t
∗
w|

]
× e−

∑
w∈W

∑
t∗w∈t∗w

λ(w; βββ)tw ,

where |t∗w| denotes the cardinality of the set t∗w. This composite likelihood function has

equal weights across all w ∈ W (the ‘components’). An estimator of the ADF, λ̂CL, is

given by λ(·; β̂ββCL), where β̂ββCL is the maximum likelihood estimator of βββ.

To apply this method in practice, one must first select a set W and a value for the

probability q; see Section 5.3.4 for further details. The former is akin to selecting the

degree of smoothing, while the latter is analogous to selecting a threshold for the GPD

defined in Section 5.2 in the univariate setting.

5.3.2 Probability ratio approach

With W and tw defined as in Section 5.3.1, consider two probabilities q < p < 1,

both close to one. Given any w ∈ W , let uw and vw denote the 100q% and 100p%

empirical quantiles of tw, respectively. Assuming the distribution function of Tw is
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strictly monotonic, equation (5.2.1) implies that

1− p

1− q
= Pr(Tw > vw | Tw > uw) ≈ e−λ(w)(vw−uw) ⇒

∣∣∣∣1− p

1− q
− e−λ(w)(vw−uw)

∣∣∣∣ ≈ 0,

(5.3.2)

Similarly to Murphy-Barltrop and Wadsworth (2022), we exploit equation (5.3.2) to

obtain an estimator for the ADF. Firstly, we observe that this representation holds for

all w ∈ W , hence ∑
w∈W

∣∣∣∣1− p

1− q
− e−λ(w)(vw−uw)

∣∣∣∣ ≈ 0.

To ensure equation (5.3.2) holds requires careful selection of q and p. This selection also

represents a bias-variance trade off: probabilities too small (big) will induce bias (high

variability). Moreover, owing to the different rates of convergence to the limiting ADF

(Wadsworth and Tawn, 2013), a single pair (q, p) is unlikely to be appropriate across

all data structures. We instead consider a range of probability pairs simultaneously.

Specifically, letting {(qj, pj) | qj < pj < 1, 1 ≤ j ≤ m}, m ∈ N, be pairs of probabilities

near one, consider the expression

S(βββ) :=
∑
w∈W

m∑
j=1

∣∣∣∣[1− pj
1− qj

]
− e−λ(w; βββ)(vw,j−uw,j)

∣∣∣∣ ,
in which uw,j and vw,j denote 100qj% and 100pj% empirical quantiles of tw, respec-

tively, for each j = 1, . . . ,m. Since it is desirable for S(βββ) = 0, we set β̂ββPR =

argminβββ∈[0,∞)k−1 S(βββ) and denote by λ̂PR the estimator λ(·; β̂ββPR). Similarly to λ̂CL,

one must select the sets W and {(qj, pj) | qj < pj < 1, 1 ≤ j ≤ m}, m ∈ N prior to

applying this estimator; see Section 5.3.4.
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5.3.3 Incorporating knowledge of conditional extremes param-

eters

As noted in Section 5.2, the set G links different representations of bivariate extremes.

Recall the conditional extremes modelling framework described in equation (5.1.3). Let

ay|x and ax|y be the normalising functions for conditioning on the events X > t and

Y > t respectively, and let αy|x := limt→∞ ay|x(t)/t and αx|y := limt→∞ ax|y(t)/t, with

αy|x, αx|y ∈ [0, 1]. From Nolde and Wadsworth (2022), we have that g(1, αy|x) = 1 and

g(αx|y, 1) = 1, with g defined as in equation (5.2.2). Assuming that the values of αy|x

and αx|y are known, it follows from equation (5.2.3) that since the set R1/(1+α) will

always intersect the point (1, αy|x) ∈ G for any α ∈ [0, αy|x],

λ

(
1

1 + α

)
= max

(
1

1 + α
,

α

1 + α

)
× r−1

1/(1+α) =
1

1 + α
× 1−1 =

1

1 + α
, (5.3.3)

for all α ∈ [0, αy|x]. Similarly, λ(α/(1 + α)) = 1/(1 + α) for all α ∈ [0, αx|y]. Con-

sequently, for all w ∈ [0, α∗
x|y]
⋃
[α∗

y|x, 1], with α∗
x|y := αx|y/(1 + αx|y) and α∗

y|x :=

1/(1 + αy|x), λ(w) = max(w, 1− w).

This result is illustrated in Figure 5.3.1 for a Gaussian copula with ρ = 0.5. Here,

αx|y = αy|x = 0.25, implying λ(w, 1 − w) = max(w, 1 − w) for all w ∈ [0, 0.2]
⋃
[0.8, 1];

these rays correspond to the blue lines in the figure. One can observe that for any

region Rw defined along either of the blue lines (such as the shaded regions illustrated

for w = 0.1 and w = 0.9), we have that rw = 1, since these regions will intersect G at

either the coordinates (0.25, 1) or (1, 0.25).

In practice, α∗
x|y and α∗

y|x are unknown; however, estimates α̂y|x and α̂x|y are com-

monly obtained using a likelihood function based on a misspecified model for the dis-

tribution D in equation (5.1.3) (e.g. Jonathan et al., 2014a). The resulting estimates,

denoted α̂∗
x|y, α̂

∗
y|x, can be used to approximate the ADF for w ∈ [0, α̂∗

x|y)
⋃
(α̂∗

y|x, 1].

What now remains is to combine this with an estimator for λ(w) on [α̂∗
x|y, α̂

∗
y|x].
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Figure 5.3.1: Pictoral illustration of the result described in equation (5.3.3). The
boundary set G, given in red, is from the bivariate Gaussian copula with ρ = 0.5,
with the points (1, αy|x) and (αx|y, 1) given in green. The blue lines represent the rays
w ∈ [0, α∗

x|y]
⋃
[α∗

y|x, 1], while the yellow and pink shaded regions represent the set Rw

for w = 0.1 and w = 0.9, respectively.

A crude way to obtain an estimator via this framework would be to set λ(w) =

max(w, 1 − w) for w ∈ [0, α̂∗
x|y)
⋃
(α̂∗

y|x, 1] and λ(w) = λ̂H(w), λ̂CL(w) or λ̂PR(w) for

w ∈ [α̂∗
x|y, α̂

∗
y|x]. However, this results in discontinuities at α̂∗

x|y and α̂∗
y|x. Instead, for the

smooth estimators, we rescale B∗
k such that the resulting ADF estimate is continuous

for all w ∈ [0, 1]. Consider the set of polynomials given by

B′

k =

{
α̂∗
x|y (1− γ∗(v))k +

k−1∑
i=1

βi

(
k

i

)
γ∗(v)i (1− γ∗(v))k−i + α̂∗

y|xγ
∗(v)k =: f(v)∣∣∣∣∣v ∈ [α̂∗

x|y, α̂
∗
y|x],βββ ∈ [0,∞)k−1 such that f(v) ≥ max(v, 1− v)

}
,

(5.3.4)

with γ∗(v) := (v − α̂∗
x|y)/(α̂

∗
y|x − α̂∗

x|y). For all f ∈ B′

k, we have that f(α̂∗
x|y) = α̂∗

x|y

and f(α̂∗
y|x) = α̂∗

y|x, and each f is only defined on the interval [α̂∗
x|y, α̂

∗
y|x]. Letting
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λ
′
(· ;βββ) ∈ B′

k represent a form of the ADF for w ∈ [α̂∗
x|y, α̂

∗
y|x], the techniques introduced

in Sections 5.3.1 and 5.3.2 can be used to obtain estimates of the coefficient vectors,

which we denote β̂ββCL2 and β̂ββPR2, respectively. The resulting estimators for λ are given

by

λ̂CL2(w) =


λ

′
(w; β̂ββCL2) for w ∈ [α̂∗

x|y, α̂
∗
y|x],

max(w, 1− w) for w ∈ [0, α̂∗
x|y)
⋃
(α̂∗

y|x, 1],

with λ̂PR2 defined analogously. We lastly define the discontinuous estimator λ̂H2 as

λ̂H2 :=


λ̂H(w) for w ∈ [α̂∗

x|y, α̂
∗
y|x],

max(w, 1− w) for w ∈ [0, α̂∗
x|y)
⋃
(α̂∗

y|x, 1].

This is obtained by combining the pointwise Hill estimator with the information pro-

vided by the estimates α̂∗
x|y, α̂

∗
y|x. Illustrations of all the estimators discussed in this

section, as well as in Section 5.2, can be found in the Supplementary Material.

5.3.4 Tuning parameter selection

Prior to using any of the ADF estimators introduced in this section, we are required to

select at least one tuning parameter. For the probability values required by the estima-

tors introduced in Sections 5.3.1 and 5.3.2, we set q = 0.90, {qj}mj=1 := {0.87+(j−1)×

0.002}mj=1 and pj = qj + 0.05 for j = 1, . . . ,m, with m = 31. These values were chosen

to evaluate whether the resulting estimators improve upon the base estimator λ̂H using

(approximately) the same amount of tail information in all cases. We tested a range of

probabilities for both estimators and found that the overall quality of ADF estimates

was similar across different extremal dependence structures. For example, for λ̂CL, a

lower q resulted in mild improvements for asymptotically independent copulas, while

simultaneously worsening the quality of ADF estimates for asymptotically dependent

examples, while a higher q led to higher variance.
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We also set W := {0, 0.001, 0.002, . . . , 0.999, 1}, i.e., a finite set of equally spaced

rays spanning the interval [0, 1]. This set was sufficient to ensure a high degree of

smoothness in the resulting ADF estimates without too high a computational burden.

For each of the novel estimators (except λ̂H2), we must also specify the degree k ∈ N

for the polynomial families described by equations (5.3.1) and (5.3.4). In the case of

the PDF, studies have found that higher values of k are preferable for very strong

positive dependence, while the opposite is true for weak dependence (Marcon et al.,

2017b; Vettori et al., 2018). We prefer to select a single value of k that performs well

across a range of dependence structures, while minimising the computational burden;

this avoids the need to select this parameter when obtaining ADF estimates in practice.

To achieve this objective, we estimated the root mean integrated squared error

(RMISE), as defined in Section 5.4.1, of the estimators λ̂CL and λ̂PR with k = 2, 3, . . . , 11

using 200 samples from two Gaussian copula examples, corresponding to strong (ρ =

0.9) and weak (ρ = 0.1) positive dependence. Assessment of how the RMISE estimates

vary over k for both estimators suggests that k = 7 is sufficient to accurately cap-

ture both dependence structures. The full results can be found in the Supplementary

Material.

For each of the ‘combined’ estimators in Section 5.3.3, we take the same tuning

parameters as for the ‘non-combined’ counterpart, since the combined estimators have

near identical formulations only defined on a subset of [0, 1]. For example, the empir-

ical 90% threshold of the min-projection is used for both λ̂H and λ̂H2. Finally, when

estimating the conditional extremes parameters, empirical 90% conditioning thresholds

are used.
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5.4 Simulation Study

5.4.1 Overview

In this section, we use simulation to compare the estimators proposed in Section 5.3

to the existing techniques described in Section 5.2. For the comparison, we introduce

nine copula examples, representing a wide variety of extremal dependence structures,

and encompassing both extremal dependence regimes.

The first three examples are from the bivariate Gaussian distribution, for which the

dependence is characterised by the correlation coefficient ρ ∈ [−1, 1]. We consider ρ ∈

{−0.6, 0.1, 0.6}, resulting in data structures exhibiting medium negative, weak positive,

and medium positive dependence, respectively. Note that in the case of ρ = −0.6, the

choice of exponential margins will hide the dependence structure (Keef et al., 2013a;

Nolde and Wadsworth, 2022).

For the next two examples, we consider the bivariate extreme value copula with

logistic and asymmetric logistic families (Gumbel, 1960; Tawn, 1988). In both cases, the

dependence is characterised by the parameter r ∈ (0, 1]; we set r = 0.8, corresponding to

weak positive extremal dependence. For the asymmetric logistic family, we also require

two asymmetry parameters (k1, k2) ∈ [0, 1]2, which we fix to be (k1, k2) = (0.3, 0.7),

resulting in a mixture structure.

We next consider the inverted bivariate extreme value copula (Ledford and Tawn,

1997) for the logistic and asymmetric logistic families, with the dependence again char-

acterised by the parameters r and (r, k1, k2), respectively. We set r = 0.4, corresponding

to moderate positive dependence, and again fix (k1, k2) = (0.3, 0.7). Note that for this

copula, the model described in equation (5.1.4) is exact: see Wadsworth and Tawn

(2013).

Lastly, we consider the bivariate student t copula, for which dependence is charac-

terised by the correlation coefficient ρ ∈ [−1, 1] and the degrees of freedom ν > 0. We
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consider ρ = 0.8, ν = 2 and ρ = 0.2, ν = 5, corresponding to strong and weak positive

dependence.

Illustrations of the true ADFs for each copula are given in Figure 5.4.1, showing

a range of extremal dependence structures. For examples where the ADF equals the

lower bound, the copula exhibits asymptotic dependence. While the fifth copula exhibits

asymmetric dependence, the limiting ADF is symmetric; the same is not true for its

inverted counterpart.

To evaluate estimator performance, we use the RMISE

RMISE
(
λ̂−

)
=

(
E
[∫ 1

0

{
λ̂−(w)− λ(w)

}2

dw

])1/2

,

where λ̂− denotes an arbitrary estimator. Simple rearrangement shows that this metric

is equal to the square root of the sum of integrated squared bias (ISB) and integrated

variance (IV) (Gentle, 2002), i.e.,

RMISE
(
λ̂−

)
=

∫ 1

0

{
E
[
λ̂−(w)

]
− λ(w)

}2

dw︸ ︷︷ ︸
ISB

+

∫ 1

0

E
({

E
[
λ̂−(w)

]
− λ̂−(w)

}2
)
dw︸ ︷︷ ︸

IV


1/2

.

Therefore, the RMISE summarises the quality of an estimator in terms of both bias

and variance, and can be used as a means to compare different estimators.

5.4.2 Results

For the copulas described in Section 5.4.1, data from each copula example was simulated

on standard exponential margins with a sample size of n =10,000, and the integrated

squared error (ISE) of each estimator was approximated for 1, 000 samples using the

trapezoidal rule; see the Supplementary Material for further information. The square

root of the mean of these estimates was then computed, resulting in a Monte-Carlo

estimate of the RMISE. For each of the estimators λ̂CL, λ̂PR, λ̂CL2 and λ̂PR2, the opti-
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Figure 5.4.1: True ADFs (in red) for each copula introduced in Section 5.4.1, along
with the theoretical lower bound (black dotted line).

misation functions were constrained to ensure the resulting ADF estimates satisfy the

theoretical lower bound. The RMISE estimates for each estimator and copula combina-

tion are shown in Table 5.4.1. Tables for ISB and IV can be found in the Supplementary

Material. For each estimator, the bias varies significantly across the different copulas.

However, in the majority of cases, the bias/variance are similar across most of the

estimators.
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Table 5.4.1: RMISE values (multiplied by 100) for each estimator and copula combina-
tion. Smallest RMISE values in each row are highlighted in bold, with values reported
to 3 significant figures.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 61.1 61.3 66.2 61.4 61.9 66.7 63.7

Copula 2 3.55 3.33 3.64 3.51 3.33 3.63 2.95

Copula 3 3.78 3.48 3.84 3.27 3.22 3.57 1.09

Copula 4 4.9 4.79 6.92 4.28 4.25 6.17 2.77

Copula 5 14.1 14.1 17.1 14.1 14.1 17 12.1

Copula 6 2.51 1.97 2.15 2 1.74 1.9 2.12

Copula 7 2.93 2.64 2.88 2.87 2.66 2.89 3.96

Copula 8 2.49 2.72 2.95 0.66 0.6 0.789 1.87

Copula 9 12.1 12 14.9 12 12 14.9 11.1

While no estimator consistently outperforms the others, λ̂CL2 and λ̂ST tend to have

lower RMISE, ISB and IV values, on average. This is especially the case when com-

paring to the base estimator λ̂H . Furthermore, the ‘combined’ estimators outperform

their non-combined counterparts in many cases, suggesting that incorporating param-

eter estimates from the conditional extremes model can reduce bias and variance. The

Gaussian copula with ρ = −0.6 has significantly higher RMISE values, indicating that

none of the estimators capture negative dependence well, though this is in part due to

the choice of exponential margins.

Overall, these results indicate that no one estimator is preferable across all extremal

dependence structures. However, we suggest using the estimators λ̂CL2 and λ̂ST since,

on average, these appeared to result in less bias and variance. The form of extremal

dependence appears to affect the performance of both of these estimators; since this

is often difficult to quantify a priori, we suggest using both estimators and evaluating

relative performance via diagnostics, as we do in Section 5.5.
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5.5 Case Study

5.5.1 Overview

Understanding the probability of observing extreme river flow events (i.e., floods) at

multiple sites simultaneously is important in a variety of sectors, including insurance

(Keef et al., 2013b; Quinn et al., 2019; Rohrbeck and Cooley, 2021) and environmental

management (Lamb et al., 2010; Gouldby et al., 2017). Valid risk assessments therefore

require accurate evaluation of the extremal dependence between different sites.

In this section, we estimate the ADF of river flow data sets obtained from gauges in

the north of England, UK, which can be subsequently used to construct bivariate return

curves. Daily average flow values (m3/s) at six river gauge locations on different rivers

were considered. The gauge sites are illustrated in Figure 5.5.1. For each location, data

is available between May 1993 and September 2020; however, we only consider dates

where a measurement is available for every location. To avoid seasonality, we consider

the interval October-March only; from our analysis, it appears that the highest daily

flow values are observed in this period. This results in n = 4, 659 data points for each

site. Plots of the daily flow time series can be found in the Supplementary Material;

these plots suggest that an assumption of stationarity is reasonable for the extremes of

each data set.

We fix the site on the river Lune to be our reference site and consider the ex-

tremal dependence between this and all other gauges. We first estimate the extremal

dependence measure χ and the coefficient η using the upper 10% of the correspond-

ing joint tails. Both χ and η are limiting values; however, in practice, we are unable

to evaluate such limits without a closed form for the joint distribution. We there-

fore calculate these values empirically. Taking χ, for example, an estimate is given by

χ̂q = P̂r(X > x̂q, Y > ŷq)/P̂r(X > x̂q), where P̂r(·) denotes an empirical probability

estimate and x̂q and ŷq denote empirical 100q% quantiles estimates for the variables X

121



Chapter 5

●
●

●

●

●

●

53.0°N

53.5°N

54.0°N

54.5°N

55.0°N

3.5°W 3.0°W 2.5°W 2.0°W 1.5°W 1.0°W 0.5°W
Longitude

La
tit

ud
e

River

●

●

●

●

●

●

Lune

Wenning

Kent

Aire

Derwent

Irwell

Locations of river gauges

Figure 5.5.1: Locations of river gauges in the north of England, UK. Individual rivers
illustrated in blue alongside the corresponding gauge locations.

and Y , respectively, and q is some value close to 1. Specifically, we take q = 0.9. In

practice, we are unlikely to observe χ = χ̂q, even at the most extreme quantile levels,

i.e., as q → 1. This can be problematic when trying to quantify the form of extremal

dependence, since χ̂q > 0 may arise for asymptotically independent data sets (for ex-

ample). Therefore, the estimated coefficients should act only as a rough guide for this

quantification.

The dependence measure estimates and 95% confidence intervals are shown in Fig-

ure 5.5.2 as a function of distance from the reference site. Here and throughout, all

confidence intervals are obtained via block bootstrapping with block size b = 40; this

value appears appropriate to account for the varying degrees of temporal dependence

observed across the six gauge sites. These estimates suggest that asymptotic indepen-

dence may exist for at least three of the site pairings; therefore, modelling techniques
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based on bivariate regular variation would likely fail to capture the observed extremal

dependencies in this scenario.
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Figure 5.5.2: Estimated dependence coefficients as a function of distance from the
Lune gauge, with 95% pointwise confidence intervals given by the shaded regions. Left:
Estimates of χ (blue). Right: Estimates of η (grey).

5.5.2 ADF Estimation

We transform each marginal data set to exponential margins using the semi-parametric

approach of Coles and Tawn (1991), whereby a GPD is fitted to the upper tail and the

body is modelled empirically. The GPD thresholds are selected using the technique

proposed in Varty et al. (2021). Diagnostic plots found in the Supplementary Material

indicate good model fits. Since our results from Section 5.4 suggest that the estimators

λ̂CL2 and λ̂ST perform best overall, we used these, alongside the base estimator λ̂H ,

to estimate the ADF for each combination of the reference gauge and the other five

gauges. The resulting ADF estimates can be found in Figure 5.5.3.

For the most part, there is decent agreement across the estimators. One can observe

contrasting shapes across the different pairs of gauges, illustrating the variety in the ob-

served extremal dependence structures. We note that the estimates obtained using λ̂H

123



Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

1.
1

Wenning vs Lune − original margins

w

λ(
w

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

1.
1

Kent vs Lune − original margins

w

λ(
w

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

1.
1

Aire vs Lune − original margins

w

λ(
w

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

1.
1

Derwent vs Lune − original margins

w

λ(
w

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

1.
1

Irwell vs Lune − original margins

w

λ(
w

)
Lower Bound
λH
λCL2
λST

Figure 5.5.3: ADF estimates for each pair of gauge sites. The purple, pink and green
lines represent the estimates from λ̂H , λ̂CL2 and λ̂ST , respectively, with the theoretical
lower bound denoted by the black dotted lines.

demonstrate some of the drawbacks mentioned in Section 5.2, such as non-smoothness

and not respecting theoretical results for the ADF. Moreover, these results illustrate

that on the whole, the estimator λ̂CL2 is very much a smoothed version of λ̂H , owing

to the form of likelihood function used.

5.5.3 Assessing goodness of fit for ADF estimates

Recall that, from equation (5.2.1), we have T ∗
w ∼ Exp(λ(w)) as uw → ∞ for all w ∈

[0, 1]. We exploit this result to assess the goodness of fit for ADF estimates.

Let λ̂(w), w ∈ [0, 1], denote an estimated ADF obtained using the sample {(xi, yi) :

i = 1, . . . , n}. Given w ∈ [0, 1], let uw denote some high empirical quantile from the

sample tw, and consider the sample t∗w, with tw and t∗w defined as in Section 5.3.2. If t∗w

is indeed a sample from an Exp(λ̂(w)) distribution, we would expect good agreement
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between the empirical and model quantiles. Letting nw = |t∗w| and t∗w(j) denote the j-th

order statistic of t∗w, we consider the set of pairs

{(
− log(1− j/(nw + 1))

λ̂(w)
, t∗w(j)

)
: j = 1, . . . , nw

}
,

for different rays w ∈ [0, 1], corresponding to a range of joint survival regions. With

uw fixed to be the 90% empirical quantile of tw, quantile-quantile (QQ) plots for five

individual rays, w ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, are given in Figure 5.5.4 for the first pair of

gauges and the λ̂CL2 estimator. Uncertainty intervals are obtained via block bootstrap-

ping. On the whole, the estimated exponential quantiles appear in good agreement with

the observed quantiles, indicating the underlying ADF estimate accurately captures the

tail behaviour for each min-projection variable. Analogous plots for λ̂H and λ̂ST are

given in the Supplementary Material. Similar plots were obtained when the other pairs

of gauges were considered.

5.5.4 Estimating return curves

To quantify the risk of joint flooding events across sites, we follow Murphy-Barltrop

et al. (2023) and use the ADF to estimate a bivariate risk measure known as a return

curve, as defined in Section 5.1. This measure is the direct bivariate extension of a

return level, which is commonly used to quantify risk in the univariate setting (Coles,

2001). Taking probability values close to zero gives a summary of the joint extremal

dependence, thus allowing for comparison across different data structures. In the con-

text of extreme river flows, return curves can be used to evaluate at which sites joint

extremes (floods) are more/less likely to occur. For illustration, we fix p to correspond

to a 5 year return period, i.e., p = 1/(5ny), where ny is the average number of points

observed in a given year (Brunner et al., 2016). Excluding missing observations, we

have 28 years of data, hence the resulting curve should be within the range of data

125



Chapter 5

0 2 4 6

0
2

4
6

ADF QQ Plot, w =  0.1

Threshold quantile = 0.9
Model

E
m

pi
ric

al

0 2 4 6 8 10

0
2

4
6

8
10

ADF QQ Plot, w =  0.3

Threshold quantile = 0.9
Model

E
m

pi
ric

al

0 2 4 6 8 10 12 14

0
2

4
6

8
10

14

ADF QQ Plot, w =  0.5

Threshold quantile = 0.9
Model

E
m

pi
ric

al

0 2 4 6 8 10 12

0
2

4
6

8
10

12

ADF QQ Plot, w =  0.7

Threshold quantile = 0.9
Model

E
m

pi
ric

al

0 2 4 6 8

0
2

4
6

8

ADF QQ Plot, w =  0.9

Threshold quantile = 0.9
Model

E
m

pi
ric

al

Figure 5.5.4: Individual ADF QQ plots for w ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for first pair of
gauges, using the ADF estimate obtained via λ̂CL2. Estimates given in black, with
95% pointwise confidence intervals represented by the grey shaded regions. Red lines
correspond to the y = x line.

whilst simultaneously representing the joint tail. The resulting return curve estimates

for each ADF estimator and pair of gauge sites can be found in Figure 5.5.5.

There is generally good agreement among the estimated curves. The almost-square

shapes of the estimates for the first two pairs of gauges indicate higher likelihoods of

observing simultaneous flood events at the corresponding gauge sites; this is as expected

given the close spatial proximity of these sites. In all cases, the curves derived via λ̂H

are quite rough and unrealistic, and are subsequently ignored. To assess the goodness

of fit of the remaining return curve estimates, we consider the first and fifth examples

and apply the diagnostic introduced in Murphy-Barltrop et al. (2023). Our results

suggest good quality model fits for both of the estimates obtained using λ̂CL2 and λ̂ST .

Furthermore, we also obtain 95% return curve confidence intervals for these examples.
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Figure 5.5.5: Estimated 5-year return curves (on original margins) for each pair of
gauges. The purple, pink and green lines represent the curve estimates from λ̂H , λ̂CL2

and λ̂ST , respectively.

The resulting plots illustrating the diagnostics and confidence intervals, along with a

brief explanation of the diagnostic tool, are given in the Supplementary Material.

5.6 Discussion

We have introduced a range of novel global estimators for the ADF, as detailed in

Section 5.3. We compared these estimators to existing techniques through a systematic

simulation study and found our novel estimators to be competitive in many cases. In

particular, the estimators derived via the composite likelihood approach of Section 5.3.1,

alongside the estimator of Simpson and Tawn (2022), appear to have lower bias and

variance, on average, compared to alternative estimation techniques. We also applied

ADF estimation techniques to a range of river flow data sets, and obtained estimates
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of return curves for each data set. The results suggest that our estimation procedures

are able to accurately capture the range of extremal dependence structures exhibited

in the data, allowing for a more robust risk analysis of joint flooding events.

From Section 5.4, one can observe that the ‘combined’ estimators proposed in Sec-

tion 5.3.3 outperform their ‘uncombined’ counterparts in the majority of instances. This

indicates that incorporating the knowledge obtained from the conditional extremes pa-

rameters leads to improvements in ADF estimates. Furthermore, in most cases, ADF

estimates obtained via approximations of the set G appeared to have lower bias com-

pared to alternative estimation techniques. More generally, these results suggest that

inferential techniques that exploit the results of Nolde and Wadsworth (2022) are su-

perior to techniques which do not. Estimation of G, and its impact on estimation of

other extremal dependence properties, represents an important line of research.

As noted in Section 5.1, few applications of the modelling framework described

in equation (5.1.4) exist, even though this model offers advantages over the widely

used approach of Heffernan and Tawn (2004) when evaluating joint tail probabilities.

Inference via the ADF ensures consistency in extremal dependence properties, and one

can obtain accurate estimates of certain risk measures, such as return curves.

For each of the existing and novel estimators introduced in Sections 5.2 and 5.3,

we were required to select quantile levels, which is equivalent to selecting thresholds of

the min-projection. With the exception of λ̂ST , similar quantile levels were considered

for each estimator so as to provide some degree of comparability. However, due to

variation in estimation procedures, we acknowledge that the selected quantile levels are

not readily comparable since the quantity of joint tail data used for estimation varies

across different estimators. Moreover, as noted in Section 5.3.4, trying to select ‘optimal’

quantile levels appears a fruitless exercise since the performance of each estimator does

not appear to alter much across different quantile levels.

Finally, we acknowledge the lack of theoretical treatment for the proposed ADF
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estimators which is an important consideration for understanding properties of the

methodology. However, theoretical results of this form typically require in-depth anal-

yses and strict assumptions, which themselves may be hard to verify, whilst in practice

one can only ever look at diagnostics obtained from the data. We have therefore opted

for a more practical treatment of the proposed estimators.
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Discussion

The aim of this thesis was to address two questions: how does one define extreme

risk in a bivariate setting, and how does one estimate such risks? We believe these

questions have been comprehensively addressed through the development of a number

of novel estimation techniques for extremal dependence structures and return curves.

Several of the modelling problems considered had previously been given little or no

attention within the literature, and where methodology existed, the proposed methods

were shown to outperform existing techniques in many cases.

This project was part-funded by the ONR, who provided the initial motivation

for investigating extreme risks in a bivariate setting. As discussed in Chapter 1.1,

accounting for joint risks from two (or more) variables is crucial for ensuring safe nuclear

operations. In this context, the methods introduced in this thesis could allow for a more

realistic and robust evaluation of joint extremes in a changing climate. For example,

return curve estimates could be used to inform the design basis for future nuclear

installations and thereby improve nuclear regulatory practices. An executive summary

of the thesis will be published on the ONR’s website upon completion, alongside a

software package for obtaining return curve estimates. We expect these outputs to

increase both the impact and exposure of the research.
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There are several ways in which our work could be extended. Perhaps most ob-

viously, we have restricted attention to the bivariate setting throughout. This choice

was made for practical reasons, not least because quantifying the extremal depen-

dence structures of multivariate random vectors becomes increasingly complicated as

the dimension d increases, since different m-dimensional sub-vectors, where m < d,

can exhibit different forms of extremal dependence. Furthermore, in the context of

nuclear regulation, the quantification of joint extreme risks is a relatively recent area of

consideration that has been largely motivated by the Blayais and Fukushima incidents.

Applying the principle of parsimony, it is therefore best to first thoroughly consider the

problem of joint risk quantification in the bivariate setting.

Given careful consideration, we believe all of the proposed methodology could be

extended to the general multivariate setting. Take the trivariate setting for example:

given a random vector (X, Y, Z) and small probability p, a p-probability return curve

is given by the set

RC(p) :=
{
(x, y, z) ∈ R3 : Pr(X > x, Y > y, Z > z) = p

}
.

Return curve definitions for higher dimensions (d ≥ 4) are analogous. However, we note

that both visualisation and interpretation become increasingly complex, especially for

dimension d ≥ 4. In such cases, one cannot produce meaningful return curve plots;

such plots are essential for illustrating extreme risks in practical settings. Furthermore,

as the dimension d increases, larger sample sizes are typically required to identify joint

extreme events due to more complex estimation procedures. This is not always possible

in practical settings, where sample sizes are often limited by observation periods.

These remarks raise several important questions: when is it beneficial to obtain

extremal risk measures for three (or more) variables, and how can one estimate, utilise

and interpret such measures? Of course, the answers to these questions are likely to be

highly context dependent, and also require some degree of expert judgement.
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Figure 6.0.1 illustrates a three-dimensional return curve for n = 3, 000 data points

simulated from a trivariate Gaussian copula on standard exponential margins with

covariance matrix

ΣΣΣ =



1 0.2 0.8

0.2 1 0.5

0.8 0.5 1


,

mean vector µµµ = (0, 0, 0), and p = 1/1000. In this case, the curve is given by a surface

in R3, and the probability of observing points in the joint survivor set (x,∞)×(y,∞)×

(z,∞) is equal to p for any point on the curve.
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Figure 6.0.1: True (left) and estimated (right) return curves for a trivariate Gaussian
sample on standard exponential margins with p = 1/1000.

By extending the modelling frameworks we have considered to the general mul-

tivariate setting, estimates of higher dimensional return curves can be obtained. In

particular, the model of Wadsworth and Tawn (2013), which has been central to the

methodology developed in this thesis, can be extended to an arbitrary number of di-

mensions under similar assumptions as in the bivariate case. In the trivariate case, for
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any random vector (X, Y, Z) on standard exponential margins and (w1, w2) ∈ [0, 1]2

satisfying w1 + w2 ≤ 1, the model is defined as

Pr(min{X/w1, Y/w2, Z/(1− w1 − w2)} > t) = L(et | w1, w2)e
−λ(w1,w2)t,

as t → ∞, with λ(w1, w2) ≥ max(w1, w2, 1 − w1 − w2). Here, λ denotes the two-

dimensional ADF describing the extremal dependence structure. Similar to the bivari-

ate setting, the Hill estimator can be used to estimate λ and hence approximate the

return curve. An example curve estimate is illustrated for the trivariate Gaussian cop-

ula in Figure 6.0.1; the curves appear similar in both shape and magnitude to the true

curve.

These observations lead us to believe that most of the statistical procedures we have

introduced, both for return curves and extremal dependence structures in both station-

ary and non-stationary settings, can be extended to higher dimensions. Of course, there

are many inferential challenges that are likely to arise due to the increased number of

parameters that must be estimated and the increased complexity of the extremal depen-

dence structures. Such challenges offer scope for both novel and invaluable statistical

techniques, thus presenting natural avenues for further work.

Alongside extensions to higher dimensions, there is also scope for further work on

the estimation of the non-stationary ADF. The techniques introduced in Chapter 4

account for the fact that, unlike in the stationary setting, we are unlikely to have

repeated observations of min-projection variables for a fixed covariate realisation. The

proposed framework uses quantile regression to obtain pointwise estimates, which are

then smoothed using Bernstein-Bézier polynomials and finally corrected in an ad-hoc

manner to ensure theoretical properties of the ADF still hold.

We believe that some of the techniques introduced in Chapter 5 may be useful

for improving estimation of the non-stationary ADF. In particular, in the stationary

setting, we found that ADF estimators derived via a composite likelihood approach were
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favourable in many cases. Since this approach involves multiplying different likelihood

components together, regardless of whether they are independent, it could potentially be

adapted for non-stationary case by multiplying likelihood functions over both rays and

covariates. Moreover, we believe there is scope to formalise the techniques introduced

in Chapter 4 for imposing the necessary theoretical constrains on the non-stationary

ADF.

Throughout this thesis, we have used the Wadsworth and Tawn (2013) framework

extensively for modelling the joint tail of bivariate data sets and estimating return

curves. In every such instance, we were required to select quantiles of the min-projection

variable prior to estimating the angular dependence function. This is analogous to

selecting a threshold for the peaks-over-threshold technique, since selecting quantiles

too low (high) will result in higher bias (variability). Statistical techniques for selecting

these quantiles remains an unexplored area of research, and several of the proposed

univariate threshold selection methods (e.g. Wadsworth, 2016; Varty et al., 2021) could

likely be adapted for this setting.

Chapter 5 provided the additional interesting and useful insight that exploitation of

the limit set theory developed by Nolde and Wadsworth (2022) leads to improved esti-

mates of the extremal dependence structure in a wide variety of settings. In particular,

the estimator of the ADF linked to G, where G denotes the unit level set defined in

chapter 5.2, was preferable when compared to many alternative estimators. Thus far,

only two approaches (Simpson and Tawn, 2022; Wadsworth and Campbell, 2022) exist

for estimating G. We hope our results will provide motivation for future research on

this topic, as well as further consideration of how the results of Nolde and Wadsworth

(2022) can be applied in practical settings.

Finally, throughout this thesis, we chose to exclusively consider the bivariate risk

measure known as a return curve. This was mainly because return curves provide a

natural extension to return levels, which are the most widely used risk measure in the
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univariate setting. However, as noted in Chapter 2.4, many alternative risk measures

have been proposed, such as those described in Serinaldi (2015) and Haselsteiner et al.

(2021). Similar to return curves, literature on the estimation of many of these risk

measures is sparse, and similar theory from bivariate extreme value theory is likely to

be applicable. Many avenues for future research therefore exist - though we recommend

that developments are made with caution to ensure the resulting estimates offer utility

within practical applications.
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Appendix

A.1 Return curve estimation via the Wadsworth

and Tawn (2013) model under asymptotic de-

pendence

As noted in Section 3.3.4.2, whilst asymptotic dependence represents a boundary case

for the Wadsworth and Tawn (2013) model, this framework can still be used to estimate

return curves for data sets exhibiting this form of dependence. To see this, first assume

that we have estimated λ̂(w) = max(w, 1− w) for all w ∈ [0, 1] and let p, p∗ and W be

defined as in Section 3.3.4.2. Given any w ∈ W , we set t = − log(p/p∗)/max(w, 1−w)

and compute a return curve point estimate as (w(t + u), (1 − w)(t + u)). Whilst the

values of t will, in theory, be the same for all asymptotically dependent data structures,

the same is not true for the values of u required for the return curve point estimates.

We refer to u as the min-projection threshold since u is the value satisfying Pr(Tw >

u) = p∗, with Tw = min{X/w, Y/(1 − w)}. Consequently, u will vary depending on

the distribution of Tw, which in turn will vary depending on the underlying copula

distribution. In particular, unlike the angular dependence function, the distribution of
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Tw will not be constant for all asymptotically dependent data structures.

As a demonstration, let (X, Y ) be a random vector from the logistic distribution

(Gumbel, 1960) on standard exponential margins with dependence parameter α ∈ (0, 1);

see Section 2.2.3. For all α ∈ (0, 1), this random vector exhibits asymptotic dependence.

Furthermore, it is straightforward to show that

Pr(Tw > u) = e−wu + e−(1−w)u − 1

+ exp
{
−
[(
− log(1− e−wu)

)1/α
+
(
− log(1− e−(1−w)u)

)1/α]α}
.

Consequently, the min-projection quantiles will vary depending on the dependence pa-

rameter α. As such, return curve point estimates obtained using the Wadsworth and

Tawn (2013) modelling framework will not be constant for asymptotically dependent

data structures, even though the angular dependence function does not change in such

cases.

We note that this boundary case is also relevant for the curve estimates obtained

in Chapters 4 and 5. For the former chapter, where we consider non-stationarity in the

extremal dependence structure, min-projection thresholds are obtained using quantile

regression. In practice, this allows us to capture non-stationarity in return curves when

asymptotic dependence in present, i.e., when the non-stationary angular dependence

function is fixed at the lower bound.

On a final note, we remark that in cases where one suspects asymptotic dependence

may be present, it may be more appropriate to use return curve estimation techniques

based on the framework of regular variation. This is because we are unlikely to estimate

λ̂(w) = max(w, 1 − w) exactly for all w ∈ [0, 1] due to this being a boundary case

for the angular dependence function. This could result in the asymptotic behaviour

of the joint tail being misspecified, leading to poor quality return curve estimates.

As noted in Section 3.3.3, a range of techniques for return curve estimation using
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Figure A.2.1: Resulting line segments from a set of angles Θ with m = 25 for both
copula examples. True and estimated curves given in red and green, respectively.

the regular variation framework have been proposed; see, for instance, Salvadori and

Michele (2004), Marcon et al. (2017a) and Cooley et al. (2019).

A.2 Supplementary material for Chapter 3

A.2.1 Angles and lines

Examples of angles θ ∈ Θ and corresponding line segments Lθ are illustrated in Figure

A.2.1 for both copula examples discussed in Section 3.4.1. From Figure A.2.1, one can

observe that each line segment intersects both the estimated and true return curves

exactly once; this follows from the definition of a return curve. In this manner, each

angle and corresponding line segment represents a common feature of both curves.

A.2.2 Diagnostic example

In Figure A.2.2, we illustrate the diagnostic tool at different probabilities. The sample

size is fixed at n = 104 and four probabilities are considered (p ∈ {10−2, 10−3, 10−4, 10−5}).
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Figure A.2.2: Diagnostic tool for four p values with logistic copula sample and n =
10000. Red, black, and dotted blue lines represent true values, estimated medians, and
estimated 95% confidence intervals, respectively, for each probability and index j.

A.2.3 Summary statistic of integrated absolute difference

An example of the plot corresponding to the summary statistic used to evaluate bias

in return curve estimates is illustrated in the left panel of Figure A.2.3 for a standard

bivariate normal copula with ρ = 0.6, along with the median return curve estimates

from each model in the right panel. Letting dθj and d̂θj , j = 1, . . . , 150, denote the

l2-norm values of true and estimated median curves for angles θj ∈ Θ, the summary

statistic is given by

A(d, d̂) =
150∑
j=1

|dθj − d̂θj |.

The closer this quantity is to zero, the closer the norm values are to the truth and

hence the nearer the median curve estimates are to the true curve. Moreover, an area

of zero corresponds to an unbiased curve estimate since this implies there is no difference

between the estimated and true curves (at the points corresponding to angles in Θ).

One can observe the median curve estimate obtained using the Cooley et al. (2019)

framework appears to perform poorly for this particular example.
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Figure A.2.3: Left: median dθ estimates obtained using 50 simulated samples from
a standard bivariate normal copula with ρ = 0.6 and true norm values against angle
indices. Summary statistics given in plot legend. Right: median curve estimates from
each model against true curve for the same example. True values are given in red
while the estimated values from the Heffernan and Tawn (2004), Wadsworth and Tawn
(2013) and Cooley et al. (2019) models are given in green, dark blue and light blue,
respectively.

A.2.4 Illustration of procedure for estimating coverage

The left panel Figure A.2.4 illustrates the five angles used to evaluate coverage. We

label these angles 1-5, clockwise from the y-axis. Angle 3 is close in value to π/4,

resulting in a line similar in appearance to y = x. Angles 4 and 5 are obtained by

applying the function f(θ) = π/2 − θ to angles 1 and 2, respectively, and hence they

can, in a sense, be considered symmetric.

For each simulated sample and angle θ, a confidence region is obtained for estimated

coordinates on the line segment Lθ. One can record whether the true point at this angle

lies within the estimated region; for an unbiased curve estimate, this would be expected

100(1−α)% of the time. An example confidence region is illustrated in the right panel

of Figure A.2.4; we note that the true point (pink) lies within the region. Repeating this

procedure over the 500 simulated samples, the proportion of times the true points lie
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Figure A.2.4: Left: Line segments, Lθ, corresponding to the angles considered for
evaluating coverage. Right: Confidence region computed for one sample at the third
angle. The blue line represents the estimated 95% confidence region for l2-norm values
along the corresponding line segment. True return curve (red) in both plots obtained
from the logistic copula with dependence parameter 0.5 and p = 10−3.

within the estimated confidence regions can be computed, giving an estimated measure

of coverage at each of the angles 1-5.

A.2.5 Additional coverage results

Table A.2.1 gives the additional coverage results for each copula considered in Section

3.5, with p = 10−4.

A.2.6 Estimated dependence parameters for metocean data

sets

Figure A.2.5 illustrates block bootstrapped α and β parameter estimates for both of

the data sets considered in the case study of the article. Here, the parameters α

and β correspond to the formulation of the conditional extremes model given in Keef

et al. (2013a), for which we set the normalising functions a(x) = αx, α ∈ [−1, 1], and
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Figure A.2.5: Boxplots of block bootstrapped α and β parameter estimates for both
metocean data sets. In both cases, the subscripts 1 and 2 correspond to the variable
selected for conditioning: specifically, 1 (2) indicates that the variable plotted on the x-
axis (y-axis) of Figure 3.1.2 was used for conditioning. The orange and brown shadings
correspond to the α and β parameters, respectively.

b(x) = xβ, β ∈ (−∞, 1]. For both data sets, 95% empirical quantiles of the conditioning

variables were used for model fitting. As can be observed, the variability in parameter

estimates makes it difficult to identify the form of extremal dependence present within

each data set. In particular, it is not clear whether either data set exhibits asymptotic

dependence, i.e., α = 1 and β = 0, from these parameter estimates.

Block bootstrapping was also used to obtain median and 95% confidence interval

estimates of the angular dependence function described in Equation (3.2.3); these esti-

mates are illustrated in Figure A.2.6 for both metocean data sets. As noted in Section

3.3.4.2, estimation of the angular dependence function is carried out pointwise using

the Hill estimator. Similarly to the conditional extremes parameters, it is difficult to

identify the exact forms of extremal dependence exhibited by each data set. One can

conclude, however, that a higher degree of positive dependence is present for the hind-

cast data set, as evidenced by the estimates angular dependence functions being closer

to the lower bound. This is what one might expect given the shapes of the data clouds
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Figure A.2.6: Median and 95% confidence interval estimates of the angular dependence
function obtained using block bootstrapping for both metocean data sets. In both
panels, the orange thick and black dotted lines represent the median estimate and
lower bound max(w, 1−w), w ∈ [0, 1], respectively, while the grey regions illustrate the
95% confidence intervals.

in Figure 3.1.2. Furthermore, one can observe the contrast in variability between the

two data sets that arises due to differences in sample sizes.

A.2.7 Illustration of reference points and corresponding line

segments

Figure A.2.7 illustrations the reference points (x0, y0) and corresponding line segments

for both data sets considered in the case study of the article. The points at which

the line segments intersect return curve estimates are used to quantify uncertainty and

define joint survival regions for the diagnostic tool. One can observe that in both cases,

defining line segments from the origin (0, 0) would result in procedures whereby return

curve estimates are evaluated outside of the region where data has been observed: such

an evaluation is not meaningful in practice.
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Figure A.2.7: Reference points (x0, y0) (red) for measured (left) and hindcast (right)
data sets, alongside corresponding line segments (black) L′

θ for θ ∈ Θ, with m = 25.
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Table A.2.1: Coverage values of 95% confidence regions for p = 10−4. ‘HT’ and ‘WT’ correspond to the Heffernan and Tawn
(2004) and Wadsworth and Tawn (2013) models, respectively.

Copula
Probability p = 10−4

Model HT WT

BEV Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.010 0.970 0.688 * * 0.844 0.554 0.846 * *

BEV Asymmetric Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.592 0.936 0.496 0.846 0.954 0.902 0 0.008 0.718 0.948

Bivariate Normal 1
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.474 0.946 0.964 * * 0.868 0.936 0.906 * *

Bivariate Normal 2
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.942 0.928 0.936 * * 0.936 0.938 0.934 * *

Inverted BEV Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.850 0.928 0.944 * * 0.860 0.946 0.946 * *

Inverted BEV Asymmetric Logistic
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.938 0.928 0.952 0.954 0.902 0.936 0.936 0.954 0.946 0.916

Bivariate T 1
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.481 0.933 0.419 * * 0.920 0.672 0.834 * *

Bivariate T 2
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.765 0.756 0.854 * * 0.938 0.554 0.176 * *

Frank
Angle 1 2 3 4 5 1 2 3 4 5

Coverage 0.902 0.816 0 * * 0.920 0.024 0.01 * *
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A.3 Supplementary material for Chapter 4

A.3.1 Varying extremal dependence structures across seasons

for UKCP18 dataset

Trends in the extremal dependence structure for the UKCP18 projections were consid-

ered across each of the meteorological seasons independently. For a given season, the

corresponding subset of data was transformed to exponential margins using the same

techniques as described in the case study of the main text (Section 5). The coefficient

η was then estimated across ±15 year rolling windows over the observation period; the

resulting plots for Autumn, Winter and Spring are given in the left, centre and right

panels of Figure A.3.1. These plots illustrate significantly different behaviour across

these seasons, justifying our choice to just consider summer data within the case study.

Moreover, summer is likely to correspond to the highest temperature and dryness values,

hence it makes most sense to consider joint extremal behaviour for this season.
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Figure A.3.1: Trends in η parameter estimates (solid black lines) over ±15 year rolling
windows for autumn, winter and spring, alongside 95% pointwise confidence intervals
(dotted blue lines).
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A.3.2 Additional simulation study results

A.3.2.1 MISE values of estimators

To evaluate the performance of the estimators, estimates of the mean integrated squared

error (MISE) were obtained using 250 samples from each copula. Given an estimator

λ̄∗, the MISE at time t is given by

MISE(λ̄∗(· | zt)) = E
(∫ 1

0

[
λ̄∗(w | zt)− λ(w | Zt = zt)

]2
dw

)
,

with smaller MISE values corresponding to estimators with lower bias and variance.

Three different time points, t = 1, t = n/2 and t = n, were considered, corresponding

to the start, middle and end of the simulated time frame, respectively.

Table A.3.1 gives MISE values for each estimator and copula example at each time

point. One can observe the lowest MISE values are always for λ̄∗
BP or λ̄∗

GAM ; this is

likely due to the reduced variance of these estimators compared to λ̄∗
QR, owing to their

semi-parametric forms.

A.3.2.2 ISE values of median estimators

Using 250 samples from each copula, median ADF estimators were computed pointwise

over the set W = {0, 0.01, 0.02, . . . , 0.99, 1} for three different time points: t = 1, t =

n/2 and t = n, corresponding to the start, middle and end of the simulated time frame,

respectively. The integrated squared error (ISE) of the median estimators is used to

compare performance across λ̄∗
QR, λ̄

∗
BP and λ̄∗

GAM . Although these median estimators

are not computable in a given application, understanding their properties gives an

insight into the bias of the estimators. Letting medtλ̄
∗ denote a median estimator at

time t, the ISE is given by

ISE(medtλ̄
∗(· | zt)) =

∫ 1

0

[
medtλ̄

∗(w | zt)− λ(w | Zt = zt)
]2
dw,
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Table A.3.1: MISE values for each estimator at start, middle and end of simulated time
frame. Smallest MISE values in each row are highlighted in bold.

Copula Times MISE - λ̄∗
QR MISE - λ̄∗

BP MISE - λ̄∗
GAM

Gaussian (Positive Correlation) Start 0.03375 0.01012 0.00497

Gaussian (Positive Correlation) Middle 0.00356 0.0021 0.00229

Gaussian (Positive Correlation) End 0.01978 0.00407 0.00143

Gaussian (Negative Correlation) Start 32.24126 35.76231 30.10062

Gaussian (Negative Correlation) Middle 0.08607 0.08646 0.06309

Gaussian (Negative Correlation) End 0.02546 0.00849 0.00611

Inverted Logistic Start 0.02075 0.00541 0.00315

Inverted Logistic Middle 0.00209 0.00107 0.00627

Inverted Logistic End 0.03539 0.00893 0.02744

Inverted Hüsler-Reiss Start 0.05748 0.02017 0.03849

Inverted Hüsler-Reiss Middle 0.00177 0.00065 0.00089

Inverted Hüsler-Reiss End 0.01741 0.0057 0.00367

Inverted Asymmetric Logistic Start 0.02771 0.00602 0.01863

Inverted Asymmetric Logistic Middle 0.00279 0.00142 0.01995

Inverted Asymmetric Logistic End 0.02956 0.00641 0.01406

Copula of model (4.4.1) Start 0.0156 0.00621 0.00683

Copula of model (4.4.1) Middle 0.00208 0.00088 0.01775

Copula of model (4.4.1) End 0.04873 0.01486 0.00392

with smaller ISE values corresponding to an estimator with lower bias. Table A.3.2

gives the ISE values for each median estimator and copula example at each of the three

time points. As can be observed, the ISE values are very similar for both λ̄∗
QR and λ̄∗

BP ,

indicating similar bias for these estimators. Moreover, λ̄∗
QR often results in the lowest

ISE values compared to the other two estimators.

We observe that the MISE and ISE values for the negatively correlated Gaussian

copula at the start of the interval (t = 1) are significantly larger than other values. This

is due to the fact that for strongly negatively dependent data structures, the value of

the true ADF tends towards infinity as ρ approaches −1 for any ray w ∈ (0, 1), which

is difficult to capture in practice. However, we note that while significant bias appears

to exist in ADF estimates, we are still able to obtain accurate return curve estimates.
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Table A.3.2: ISE values for median estimators at start, middle and end of simulated
time frame. Smallest ISE values in each row are highlighted in bold.

Copula Times ISE - λ̄∗
QR ISE - λ̄∗

BP ISE - λ̄∗
GAM

Gaussian (Positive Correlation) Start 0.00084 0.00138 0.00167

Gaussian (Positive Correlation) Middle 0.00115 0.00110 0.00103

Gaussian (Positive Correlation) End 0.00010 0.00035 0.00016

Gaussian (Negative Correlation) Start 33.12202 36.09158 31.43350

Gaussian (Negative Correlation) Middle 0.08161 0.08196 0.05865

Gaussian (Negative Correlation) End 0.00040 0.00116 0.00025

Inverted Logistic Start 0.00086 0.00041 0.00007

Inverted Logistic Middle 0.00001 0.00009 0.00654

Inverted Logistic End 0.00144 0.00145 0.01910

Inverted Hüsler-Reiss Start 0.00582 0.00142 0.03454

Inverted Hüsler-Reiss Middle 0.00001 0.00006 0.00037

Inverted Hüsler-Reiss End 0.00026 0.00097 0.00019

Inverted Asymmetric Logistic Start 0.00123 0.00033 0.01837

Inverted Asymmetric Logistic Middle 0.00002 0.00002 0.01942

Inverted Asymmetric Logistic End 0.00073 0.00038 0.00965

Copula of model (4.4.1) Start 0.00084 0.00069 0.00405

Copula of model (4.4.1) Middle 0.00004 0.00013 0.01519

Copula of model (4.4.1) End 0.00888 0.00596 0.00381

A.3.2.3 Non-stationary ADF estimates over time

Figures A.3.2 - A.3.6 illustrate median estimates, alongside 0.025 and 0.975 quantile

estimates, of the ADF at fixed rays over time for each copula example, excluding the

inverted logistic copula which has already been considered in the main text. In each

case, the rays w = 0.1, w = 0.3 and w = 0.5 have been considered and the black, green

and blue lines correspond to the median estimates for λ̄∗
QR, λ̄

∗
BP and λ̄∗

GAM , respectively,

with the coloured regions representing the area between the pointwise 0.025 and 0.975

quantiles. For the inverted asymmetric logistic copula, two additional rays (w = 0.7

and w = 0.9) have been considered to account for the asymmetry within this example.
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Figure A.3.2: Non-stationary ADF estimates over time for the Gaussian copula with
positive correlation.
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Figure A.3.3: Non-stationary ADF estimates over time for the Gaussian copula with
negative correlation.
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Figure A.3.4: Non-stationary ADF estimates over time for the inverted Hüsler-Reiss
copula.
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Figure A.3.5: Non-stationary ADF estimates over time for the inverted asymmetric
logistic copula.
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Figure A.3.6: Non-stationary ADF estimates over time for the copula of model (4.4.1)

A.3.2.4 Non-stationary ADF estimates at fixed time points

Figures A.3.7 - A.3.12 illustrate median estimates, alongside 0.025 and 0.975 quantile

estimates, of the ADF at three fixed time points (t = 1, t = n/2 and t = n) over all rays

w ∈ [0, 1] for each copula example. In each case, the red lines represent the true ADF

functions, while the black, green and blue lines correspond to the median estimates

for λ̄∗
QR, λ̄

∗
BP and λ̄∗

GAM , respectively, with the coloured regions representing the area

between the pointwise 0.025 and 0.975 quantiles.
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Figure A.3.7: Non-stationary ADF estimates at three fixed time points for the Gaussian
copula with positive correlation.
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Figure A.3.8: Non-stationary ADF estimates at three fixed time points for the Gaussian
copula with negative correlation.
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Figure A.3.9: Non-stationary ADF estimates at three fixed time points for the inverted
logistic copula.
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Figure A.3.10: Non-stationary ADF estimates at three fixed time points for the inverted
Hüsler-Reiss copula.
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Figure A.3.11: Non-stationary ADF estimates at three fixed time points for the inverted
asymmetric logistic copula.

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

t = 1

w

λ 
*

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

t = n/2

w

λ 
*

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

t = n

w

λ 
*

Figure A.3.12: Non-stationary ADF estimates at three fixed time points for the copula
of model (4.4.1).
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A.3.2.5 Non-stationary return curve estimates

Figures A.3.13 - A.3.17 illustrate median estimates of RCzt(p) at p = 1/n obtained

under λ̄∗
QR and λ̄∗

BP for each of the copula examples, excluding the Gaussian copula

with negative correlation which has already been considered in the main text. In each

case, the true return curves are given in the left panels, while the curves corresponding

to λ̄∗
QR and λ̄∗

BP are given in the centre and right panels, respectively. Time is illustrated

using a smooth curve colour change, with red and blue curves corresponding to the start

and end of the time frame, respectively. We observe that the quality of the median curve

estimates appear to be worse near both the start and end of the time frame. This is

likely due to the larger degree of variability that arises at such time points, as exhibited

in Figures A.3.2 - A.3.6.
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Figure A.3.13: Non-stationary return curve estimates over time for the Gaussian copula
with positive correlation.
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Figure A.3.14: Non-stationary return curve estimates over time for the inverted logistic
copula.

0 2 4 6 8

0
2

4
6

8

λTrue

X

Y

0 2 4 6 8

0
2

4
6

8

λ *QR

X

Y

0 2 4 6 8

0
2

4
6

8

λ *BP

X

Y

Figure A.3.15: Non-stationary return curve estimates over time for the inverted Hüsler-
Reiss copula.

0 2 4 6 8

0
2

4
6

8

λTrue

X

Y

0 2 4 6 8

0
2

4
6

8

λ *QR

X

Y

0 2 4 6 8

0
2

4
6

8

λ *BP

X

Y

Figure A.3.16: Non-stationary return curve estimates over time for the inverted asym-
metric logistic copula.
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Figure A.3.17: Non-stationary return curve estimates over time for the copula of model
(4.4.1).

A.3.3 Additional case study figures

A.3.3.1 Fitted pre-processing trend functions

Figure A.3.18 compares empirical estimates of the mean and standard deviations for

both sets of projections against fitted location and scale functions, alongside estimated

95% confidence regions. Empirical estimates are obtained using the data for fixed years

over the observation period. The fitted location and scale functions are then averaged

over each year and compared to the empirical estimates. One can observe very similar

trends for both variables, indicating the pre-processing technique is accurately capturing

the marginal non-stationary trends within the body of data. Note that the estimated

confidence regions are likely to be an under-representation of the true uncertainty due to

the fact we have assumed independence between observations when fitting the GAMs.
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Figure A.3.18: Comparison of estimated location and scale function values (red and
green for temperature and dryness, respectively) with 95% confidence intervals (shaded
regions) against empirical mean and standard deviation estimates (black). For the fitted
functions, the average value for a given year has been taken to ensure correspondence
with the empirical values.

A.3.3.2 Estimated rate parameters

Figure A.3.19 illustrates exponential rate parameter estimates for the pre-processed

data, alongside 95% pointwise confidence intervals, for ±15 year rolling windows over

the observation period. As can be observed, the rate parameter estimates remain

approximately constant at one throughout the entire observation period, suggesting a

successful transformation to exponential margins.
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Figure A.3.19: Estimated exponential rate parameters (black) with 95% pointwise con-
fidence intervals (dotted blue) over the time period. The target rate parameter is given
in red.

A.4 Supplementary material for Chapter 5

A.4.1 Example ADF estimates

Examples of ADF estimates obtained using each of the estimators discussed in the

main article are given in Figure A.4.1 for a bivariate Gaussian copula with ρ = 0.5.

The different estimates are in good agreement, and one can observe the roughness in

estimates obtained via the Hill estimator.

A.4.2 Example boundary set estimates

Figure A.4.2 illustrates estimates of the boundary set G obtained using the technique

proposed in Simpson and Tawn (2022) for three copula examples.
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Figure A.4.1: ADF estimates from each of the estimators discussed in the main article.
Red represents the true ADF, with the theoretical lower bound given by the dotted
black lines.
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Figure A.4.2: The boundary set G (given in red) for three copula examples, with esti-
mates from Simpson and Tawn (2022) given in green. Left: bivariate Gaussian copula
with correlation coefficient ρ = 0.5. Centre: inverted logistic copula with dependence
parameter r = 0.8. Right: logistic copula with dependence parameter r = 0.8. In each
plot, the coordinate limits of G are denoted by the black dotted lines.

A.4.3 Tuning parameter selection

Figures A.4.3 and A.4.4 illustrate plots of scaled RMISE estimates against the poly-

nomial degree k for the estimators λ̂CL and λ̂PR, respectively. RMISE was estimated
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using Monte-Carlo techniques: first, for each j = 1, 2, . . . , N , where N = 200 denotes

the number of samples, the ISE was estimated via the trapezium rule, i.e.,

ÎSE
(
λ̂j

)
=

0.001

2

(λ̂j(0)− λ(0))2 +
∑

w∈W\{0,1}

2(λ̂j(w)− λ(w))2 + (λ̂j(1)− λ(1))2

 ,

where λ̂j denotes the ADF estimate for sample j andW denotes the set of rays spanning

the interval [0, 1], as defined in Section 3.4 the main article. An estimate of the RMISE

is then given by

R̂MISE =

√√√√ 1

N

N∑
j=1

ÎSE
(
λ̂j

)
.

For the polynomial degree, we considered k ∈ {2, 3, . . . , 11}; higher values of k were

not considered due to computational complexity. The left and right panels of Figures

A.4.3 and A.4.4 correspond to Gaussian copulas exhibiting strong (ρ = 0.9) and weak

(ρ = 0.1) positive dependence, respectively.
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Figure A.4.3: RMISE estimates (multiplied by 100) over k obtained for λ̂CL using
N = 200 from Gaussian copulas with strong (left, ρ = 0.9) and weak (right, ρ = 0.1)
positive dependence.

One can observe that, for the strongly dependent example, the RMISE estimates
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Figure A.4.4: RMISE estimates (multiplied by 100) over k obtained for λ̂PR using
N = 200 from Gaussian copulas with strong (left, ρ = 0.9) and weak (right, ρ = 0.1)
positive dependence.

tend to decrease as the value of k increases. This is in agreement with findings for

the PDF (e.g., Marcon et al., 2017b; Vettori et al., 2018); strongly dependent copulas

require a higher degree of flexibility to capture the triangle-like shapes of the resulting

dependence functions.

On the other hand, for the weakly dependent Gaussian copula, the value of k made

little difference to the resulting RMISE estimates. There is even a slight increase in

RMISE estimates for higher values of k; this suggests that having a higher polynomial

degrees for such data structures may lead to over-fitting.

In practice, we set k = 7; this value is sufficient for obtaining low RMISE estimates

under both copula examples. Furthermore, for the strongly dependent Gaussian copula,

the reduction in RMISE values above this value of k are very marginal. This polynomial

degree therefore appears to offer sufficient flexibility without high computational burden

and/or parameter variability.
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A.4.4 Additional simulation study results

The ISB and IV estimates for each estimator are given in Tables A.4.1 and A.4.2. One

can observe that, while the λ̂ST appears to perform best in terms of ISB, the estimators

derived using the composite likelihood function (λ̂CL and λ̂CL2) exhibit the least IV for

eight out of the nine copula examples. For the most part, one can observe similar ISB

and IV values across the different estimators.

Table A.4.1: ISB values (multiplied by 1,000) for each estimator and copula combina-
tion. Smallest ISB values in each row are highlighted in bold, with values reported to
3 significant figures.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 371 374 436 374 380 442 402

Copula 2 0.361 0.378 0.468 0.34 0.338 0.416 0.00815

Copula 3 0.779 0.883 1.07 0.762 0.771 0.946 0.0181

Copula 4 1.74 1.95 4.25 1.5 1.49 3.22 0.299

Copula 5 19.2 19.3 28.4 19.1 19.1 28.1 13.6

Copula 6 0.0012 0.0526 0.0683 0.000954 0.00324 0.00531 0.0045

Copula 7 0.000917 0.00709 0.0131 0.00161 0.00276 0.00467 0.55

Copula 8 0.047 0.622 0.664 0.00728 0.00903 0.0186 0.0755

Copula 9 13.8 13.8 21.3 13.7 13.7 21.1 10.9

A.4.5 Additional case study figures

This section contains additional figures for the case study detailed in Section 4 of the

main article. Figure A.4.5 illustrates daily river flow time series for each of the six

gauges in the north of England, UK. These series suggest a stationarity assumption is

reasonable for the extremes of each data set.

Figure A.4.6 illustrates the QQ plots from the fitted GPDs at each of the six gauges.

One can observe that, in each case, the majority of points lie close to the y = x line,
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Table A.4.2: IV values (multiplied by 1,000) for each estimator and copula combina-
tion. Smallest IV values in each row are highlighted in bold, with values reported to 3
significant figures.

Copula λ̂H λ̂CL λ̂PR λ̂H2 λ̂CL2 λ̂PR2 λ̂ST

Copula 1 2.6 2.02 2.11 3.51 3.29 3.18 4.7

Copula 2 0.9 0.732 0.859 0.889 0.769 0.904 0.863

Copula 3 0.652 0.328 0.401 0.311 0.267 0.33 0.1

Copula 4 0.657 0.352 0.536 0.324 0.315 0.588 0.468

Copula 5 0.808 0.651 0.841 0.793 0.707 0.933 1.07

Copula 6 0.628 0.337 0.395 0.4 0.299 0.356 0.445

Copula 7 0.855 0.692 0.817 0.821 0.702 0.831 1.02

Copula 8 0.571 0.119 0.206 0.0363 0.0269 0.0437 0.273

Copula 9 0.799 0.696 0.895 0.839 0.761 0.98 1.28
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Figure A.4.5: Daily river flow time series for the six gauges in the north of England,
UK.
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indicating the fitted models capture the upper tails well.
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Figure A.4.6: QQ plots for each of the fitted GPDs at each of the six gauges. Estimates
are given in black, with 95% pointwise confidence intervals represented by the grey
shaded regions. The red line corresponds to the y = x line. The corresponding threshold
quantile levels are given in the subtitle of each plot.

Figures A.4.7 and A.4.8 illustrate the ADF QQ plots for the first pair of gauges

using the estimates obtained via λ̂ST and λ̂H , respectively. The estimated and observed

quantiles appear in good agreement at each of the considered rays.

Figures A.4.9 and A.4.10 illustrate the return curve diagnostic of Murphy-Barltrop

et al. (2023) for the estimators λ̂ST and λ̂CL2, respectively. For this diagnostic, a subset

of points are selected on a return curve estimate; these points correspond to a set of

m = 150 equally spaced angles θ in the interval [0, π/2], i.e., given (x, y) ∈ RC(p), we

have θ = tan−1(y/x). Empirical estimates of the joint survival function are computed

for each point and bootstrapping is used to evaluate uncertainty. Finally, the median

empirical estimates, alongside 95% pointwise confidence intervals, are plotted against
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Figure A.4.7: Individual ADF QQ plots for w ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for first pair of
gauges, using the ADF estimate obtained via λ̂ST . Estimates are given in black, with
95% pointwise confidence intervals represented by the grey shaded regions. The red
line corresponds to the y = x line.

the angle index and compared to the true probability; see Murphy-Barltrop et al. (2023)

for further details.

Both estimators appear to give a similar level of accuracy, though for the fifth gauge

site pairing, both λ̂ST and λ̂CL2 fail to capture the true probability at all angles.

Finally, Figures A.4.11 and A.4.12 illustrate estimated return curve uncertainty

intervals obtained using the λ̂ST and λ̂CL2 estimators, respectively, for the first and

fifth gauge site pairings. In both figures, one can observe the contrast in shapes of the

uncertainty regions between the two site pairings.
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Figure A.4.8: Individual ADF QQ plots for w ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for first pair of
gauges, using the ADF estimate obtained via λ̂H . Estimates are given in black, with
95% pointwise confidence intervals represented by the grey shaded regions. The red
line corresponds to the y = x line.
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Figure A.4.9: Diagnostic plots of the return curve estimates from the λ̂ST estimator for
the first and fifth gauge site pairings. The black and red lines indicate the empirical
median and true survival probabilities, respectively, with 95% bootstrapped confidence
intervals denoted by the shaded regions.
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Figure A.4.10: Diagnostic plots of the return curve estimates from the λ̂CL2 estimator
for the first and fifth examples. The black and red lines indicate the empirical median
and true survival probabilities, respectively, with 95% bootstrapped confidence intervals
denoted by the shaded regions
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Figure A.4.11: Median and mean return curve estimates in orange and brown, respec-
tively, obtained using the λ̂ST estimator for the first and fifth examples. The black
dotted lines indicate 95% confidence intervals.
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Figure A.4.12: Median and mean return curve estimates in orange and brown, respec-
tively, obtained using the λ̂CL2 estimator for the first and fifth examples. The black
dotted lines indicate 95% confidence intervals.
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