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Abstract

The Mallows model is a widely used probabilistic model for analysing rank data. It

assumes that a collection of n items can be ranked by each assessor and then sum-

marised as a permutation of size n. The associated probability distribution is defined

on the permutation space of these items. A hierarchical Bayesian framework for the

Mallows model, named the Bayesian Mallows model, has been developed recently to

perform inference and to provide uncertainty estimates of the model parameters. This

framework typically uses Markov chain Monte Carlo (MCMC) methods to simulate

from the target posterior distribution. However, MCMC can be considerably slow

when additional computational effort is presented in the form of new ranking data.

It can therefore be difficult to update the Bayesian Mallows model in real time.

This thesis extends the Bayesian Mallows model to allow for sequential updates of

its posterior estimates each time a collection of new preference data is observed. The

posterior is updated over a sequence of discrete time steps with fixed computational

complexity. This can be achieved using Sequential Monte Carlo (SMC) methods.

SMC offers a standard alternative to MCMC by constructing a sequence of posterior

distributions using a set of weighted samples. The samples are propagated via a
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combination of importance sampling, resampling and moving steps.

We propose an SMC framework that can perform sequential updates for the pos-

terior distribution for both a single Mallows model and a Mallows mixture each time

we observe new full rankings in an online setting. We also construct a framework

to conduct SMC with partial rankings for a single Mallows model. We propose an

alternative proposal distribution for data augmentation in partial rankings that in-

corporates the current posterior estimates of the Mallows model parameters in each

SMC iteration. We also extend the framework to consider how the posterior is up-

dated when known assessors provide additional information in their partial ranking.

We show how these corrections in the latent information are performed to account for

the changes in the posterior.
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Chapter 1

Introduction

Preference data, or ranking data, occur when an assessor judges a collection of items

based on their personal preference or concerning some preference criterion. For ex-

ample, we may rank a group of candidates in an election in terms of suitability for

a role (Diaconis, 1988; Murphy and Martin, 2003). When handling lafrge volumes of

preference data, which are typically incomplete, we may be interested in summarising

the collected data in a meaningful way. This includes: finding the shared consensus

on the preference for a set of items amongst a group of individuals; predicting how an

individual may rate a particular item; or grouping a large group of individuals with

different preferences into several smaller groups who are like-minded with similar pref-

erences. These tasks come under the field of preference learning. The challenge in

preference learning is to be able to achieve one or more of these aims given the nature

and availability of the preference information observed from a group of individuals.

As a result, many probabilistic models have been proposed to model the different

types of preference data. These can be grouped into several classes: order statistics
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CHAPTER 1. INTRODUCTION 2

models (Thurstone, 1927); paired comparison models (Smith, 1950); distance-based

models (Diaconis, 1988) and multistage model (Luce, 1959; Plackett, 1975).

This thesis focuses on one particular example in the distance-based model class

called the Mallows model (Mallows, 1957). The Mallows model assumes that a set of

n distinct items can be compared to each other by an assessor as an overall set and

then summarised as a permutation of size n called a ranking. Its probabilistic density

is defined on the permutation space of n items and assumes that the probability of

observing a ranking decays as the distance between the ranking and the consensus

ranking increases.

Several methodological developments, both frequentist and Bayesian, have been

made to the Mallows model to perform inference using different types of preference

data. However, a lot of the literature surrounding the Mallows model poses similar

limitations. One of the main issues is that the proposed methods lack the flexibility

to handle different kinds of preference data and heterogeneous data. This key issue

has been mitigated using a hierarchical Bayesian model, named the Bayesian Mallows

model (Vitelli et al., 2018), which uses a Markov chain Monte Carlo scheme to sample

and learn the posterior distribution. Several extensions of this particular model have

also been proposed to consider different scenarios with preference data, including

clicking data in a recommender system style setting (Crispino et al., 2016), time-

varying rankings (Asfaw et al., 2017) and intransitive pairwise comparisons (Liu et al.,

2019b).

The extension we propose for the Bayesian Mallows Model addresses the following

research question: can we update the posterior distribution sequentially each time we
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receive new information effectively? If we have a large number of assessors and/or

items, we want to be able to update the posterior distribution sequentially each time

we receive new information quickly, otherwise the posterior may not model the exist-

ing preference data correctly as we perform inference. A possible option is to rerun

the MCMC algorithm from the beginning for every new piece of preference informa-

tion observed each time. However, this process is time-consuming if it is conducted

frequently with a high volume of data; MCMC has the typical setback of not knowing

how long to run the algorithm to achieve convergence. This motivates the need to

reduce computational cost. In this thesis, we attempt to develop a framework for per-

forming sequential posterior updates for the Mallows model using sequential Monte

Carlo (SMC) methods that will reduce the computational cost. No previous attempts

have been made to develop an SMC framework for the Bayesian Mallows model as a

viable alternative to MCMC sampling techniques.

This thesis is organised as follows. Chapter 2 reviews some of the attempts that

have been made to create preference learning models in each class. These models are

created based on the assumptions of how the preference data is created. We also see

the links that are shared between the preference learning model classes. Chapter 3

studies Monte Carlo methods to perform Bayesian inference and the classical cluster-

ing problem. We will see how SMC methods have evolved over nearly three decades.

Chapter 4 introduces the proposed SMC framework for approximating the Bayesian

Mallows model. We consider the simplest case of the main research question in this

thesis; when presented with a new collection of full rankings for a set of items over

time, can we perform sequential updates on the posterior estimate in an effective way
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compared to using typical MCMC methods? Chapter 5 builds upon Chapter 4 by

considering the same problem to handle new partial rankings over time. We propose

an alternative method for performing data augmentation on the missing components

of each partial ranking by considering the current parameter estimates of the poste-

rior. We investigate if this informed approach to data augmentation performs better

than augmenting the missing data via uniform sampling. We also consider performing

sequential updates of the posterior estimate each time we receive an updated partial

ranking from an existing assessor in Chapter 6. We discuss the theory for how to

perform these updates when we need to account for the potential corrections that

need to be made. Chapter 7 extends the SMC framework to clustering full rankings

and we see if we can perform sequential clustering for a mixture model with a known

number of components. The SMC framework described in Chapters 4-7 is then as-

sessed using simulated data and real data sets against the MCMC algorithm for the

Bayesian Mallows model of Vitelli et al. (2018).



Chapter 2

Probabilistic Models for Preference

Data

2.1 Introduction

Preference data are a type of qualitative data, that occur when an individual is asked

to judge a collection of items based on their personal preference or with respect to some

preference criterion. These data can be presented in a variety of formats; they can be

observed implicitly and explicitly and they are ubiquitous in modern society. Several

examples of preference data can be found in: education, where prospective Irish

college students are requested to select up to ten courses in order of preference in their

application (Gormley and Murphy, 2006); elections, such as ranking five candidates for

the American Psychological Association (Diaconis, 1988; Murphy and Martin, 2003);

bioinformatics, where we might be interested in finding a consensus list from several

independent studies which measure the level of differential gene expression between

5
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two conditions for a set of genes tested (Vitelli et al., 2018); sports tournaments,

such as NASCAR stock car racing in the United States where drivers participate in

multiple races and their finishing position in each race may be considered a ranking

(Hunter, 2004; Caron and Doucet, 2012); music, where we might be asked to listen

to a series of electronically synthesised sounds in pairs and select the sound that

was perceived as more human (Crispino et al., 2019). The recent development of

social media and online recommender systems means that preference data can now

be collected in abundance. This means that typical ranking problems now face the

additional challenge of handling many individuals’ preferences for a large number of

items, creating computationally difficult problems.

2.2 Aims of preference learning

The challenges we face in handling large volumes of preference data require methods

from the field of preference learning. Preference learning aims to create a predictive

model by utilising the data in a meaningful way such that we can summarise a group

of individuals’ preferences. Some of the aims of preference learning, as described in

Vitelli et al. (2018) and Liu et al. (2019a), include:

• Rank aggregation: this involves summarising a group of individuals’ prefer-

ences, assuming that the group is homogeneous where the preferences made by

each individual are similar amongst the group, by providing a shared consensus

preference of the items among the group.

• Individual preference learning: if an individual’s preferences are incomplete,
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that is, they specify their preferences for a subset of items, then we may be

interested in inferring the missing information for that individual.

• Clustering: a group of individuals may not share a common preference for a

set of items, even if each individual provides incomplete preferences. Instead,

we may find that preferences amongst the group are heterogeneous, where there

are several different levels of similarity among the group’s preferences. This

motivates the need to divide the group’s preferences into several smaller groups

of homogeneous preferences. The challenge is to determine the number of com-

ponents and then estimate the model parameters for each component. If appro-

priate, we might also want to perform individual preference learning.

2.3 Preference data

The challenge in preference learning is to be able to achieve one or more of these aims

given the nature and availability of the preference information observed from a group

of individuals. Typically, preference information can be collected in one of two ways;

it can be provided directly from each individual, or it can be inferred through user

interactions if we are collecting data through websites. We note that preference data

can appear in a variety of formats, but the challenges we face with preference learning

remain the same. We now introduce the notation for some forms of preference data;

in this thesis will consider preference data in the form of rankings.
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2.3.1 Implicit data

Implicit data are a form of feedback collected from an individual without having to ask

them directly to specify a preference. Examples of implicit data are purchase history,

watch times of media, and the number of views of a particular item. This feedback can

be represented as binary variables; usually, the value 1 indicates that a user liked an

item, while a value of 0 indicates that a user disliked an item. Instead of using binary

variables, we can collect the frequencies of user interactions, for example, by counting

the number of views for a particular item. This type of information is easy to collect

in vast quantities and can help companies to gain a better understanding of their

customers and to improve their recommendations to existing and future customers.

However, this type of information does provide a level of uncertainty when modelling

as the perceived preference the individual has for an item might not necessarily reflect

the magnitude of the individual’s preference.

2.3.2 Explicit data

Explicit data occur when an assessor gives a clear indication of how much they prefer

an item or a collection of items by using a numerical value to indicate the magnitude

of preference. Two common examples are providing a rating for a film out of 5 stars

or assigning a score for a competitor’s performance in a sport such as gymnastics.
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2.3.3 Pairwise comparisons

An individual does not necessarily have to provide a rating for a single item to indicate

a preference; they can also compare items as pairwise comparisons. This occurs when

an individual is presented with a pair of distinct items and is asked to select the item

in the pair that they prefer based on some attribute when making the comparison.

This is a binary choice, and no pair of items can be considered equally preferred. We

can express a pairwise comparison formally using the following notation. Given two

distinct items Ai and Aj (i 6= j), a pairwise comparison can be expressed as Ai ≺ Aj,

where ≺ means “is preferred over”. Typically, we assume that the pairwise compar-

isons we obtain from a group of individuals are transitive, i.e., that each individual

does not contradict themselves when specifying their preferences. For example, for

three distinct items {Ai, Aj, Ak} (i 6= j 6= k), if Ai ≺ Aj and Aj ≺ Ak, then it must

follow that Ai ≺ Ak.

2.3.4 Rankings

We can also compare items against each other in a set, rather than in pairs. If we

are given a set of n distinct items, A = {A1, . . . , An}, we can express a preference

order for them concerning some attribute to create a ranking. A ranking, represented

formally as a permutation R = (R1, . . . , Rn), is defined as a mapping R : A → Pn,

where Pn is the space of permutations of dimension n of ranks {1, . . . , n}. Each Ri ∈

{1, . . . , n} corresponds to the rank of an item Ai ∈ A. There are |Pn| = n! possible

permutations for ranking n items in A. Conventionally, the item most preferred in
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A has rank 1, while the least preferred item has rank n. For example, given a set

A = {A1, A2, A3, A4, A5} consisting of n = 5 items, then one possible ranking is,

R = (2, 4, 5, 1, 3), (2.3.1)

where R(A2) = R2 = 4 denotes that item A2 has rank 4.

Pairwise comparisons share a relationship with full rankings. Given a complete

ranking R ∈ Pn, we can deduce all possible pairings between items, of which there

are
(
n
2

)
= n(n−1)

2
in total, by the following rule:

(Ai ≺ Aj) ⇐⇒ Ri < Rj, i, j ∈ {1, . . . , n}, i 6= j.

In other words, an item with a higher rank (indicated by a low integer value for the

rank) is preferred to items with lower ranks.

We can also interpret preference information for a set of items as an ordering. An

ordering is the inverse of a ranking, that is, X = R−1 = (X1, . . . , Xn) where each Xi

represents the item assigned the rank i in the order. Each ordering belongs to the set

of permutations of the labels in A, denoted as X . So the ranking given in (2.3.1) has

the corresponding ordering

X = R−1 = (4, 1, 5, 2, 3),

where X(2) = X2 = R−1(2) = 1 means that the item of rank 2 is the item A1.

Often, if n is large, then a subset of items is ranked by each individual to give a
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partial ranking. The subset of items ranked by each individual is often their most

preferred items and rankings deduced in this manner are also referred to as top-k

rankings, where k < n. Partial rankings can also be generalised so that assessors do

not have to provide a top-k ranking for the same value of k. So for M assessors, each

individual can give their top-kj items, kj < n, j ∈ {1, . . . ,M}. We may also have

partial rankings in which, for some unspecified reason, we have some random missing

information from an individual’s full ranking, resulting in a partial ranking.

2.4 Probabilistic models for preference data

Many probabilistic models for preference data have been proposed in the statistical

and psychological literature. These are placed into four classes (Fligner and Verducci,

1986): order statistics models; paired comparison models; distance-based models and

multistage models. Several review papers discuss these models and their recent de-

velopments, including Fligner and Verducci (1986); Marden (1995); Yu et al. (2019)

and Liu et al. (2019a). We describe each class and provide some examples of the

preference models that belong to each of them. We also discuss the links that some

models share between classes.

2.4.1 Order statistics models

Order statistics models (Thurstone, 1927) assume that an ordering for a set of items

can be inferred based on the scores each individual assigns to each item. The scores for

each item are not observed and are treated as random variables. The relative ordering
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of these variables determines an individual’s ordering of the items. Thurstone (1927)

proposed a model to describe this behaviour and introduced the Law of Comparative

Judgement. As summarised by Liu et al. (2019a), each item Ai ∈ A, i ∈ 1 . . . n has a

random score variable Y1, . . . , Yn that is distributed according to Fi. The probability

of observing a ranking R in an order statistics model is

p(R) = P (YX1 > YX2 > · · · > YXn), R ∈ Pn. (2.4.1)

An alternative way to view the probability of observing the same ranking R is the

following,

p(R) = P
(
YR−1(1) > YR−1(2) > · · · > YR−1(n)

)
, R ∈ Pn, (2.4.2)

where Yi is the latent score of the item Ai. Note that R−1(1) is the item ranked first

and hence it should have the largest score. A simplification of (2.4.1) and (2.4.2) is to

define each score variable as Yi = µi + εi where µi and εi are the mean score and the

error for the item Ai, respectively, so that Fi(y) = F (y − µi). To deduce a consensus

ranking of the items in a group of individuals, the aim is to estimate each µi, and

then a ranking can be inferred by ordering the items in the descending order of the

values of µi.

Thurstone model and extensions

Several cumulative distribution functions for F have been discussed in the liter-

ature on preference learning. One example of an order statistics model is Thur-

stone’s model (Thurstone, 1927) where each Fi is assumed to follow a Gaussian dis-
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tribution. Another example is the Bradley-Terry-Luce model (Bradley and Terry

(1952); Luce (1959)) which assumes each Fi follows a Gumbel distribution so that

Fi(y) = 1−exp(− exp(y)). This gives equations (2.4.1) and (2.4.2) a closed form, and

we note that several extensions to this model have been proposed in the literature.

The inference to estimate each µi is difficult to do using maximum likelihood

estimation (MLE) methods because it requires high-dimensional numerical integration

to perform parameter estimation if we have a large number of items; early attempts

with the Thurstone model modelled at most four items (Yu et al., 2019). Instead,

some alternative methods using MCMC have been proposed for Thurstone models

(Stern, 1990; Yao and Böckenholt, 1999). See Yu et al. (2019) for more details.

2.4.2 Paired comparison models: Smith models

Alternatively, a probability model for rankings can be deduced from a model for

paired comparisons. This was first described by Smith (1950), where it is assumed

that the
(
n
2

)
= n(n−1)

2
possible pairwise comparisons for n items are independent and

are consistent with the transitivity property. For each pair of items Ai, Aj ∈ A (i 6= j),

let pij = p(Ai ≺ Aj) denote the probability that item Ai is preferred over item Aj.

Then, the probability of observing a ranking R under the Smith model is proportional

to the product of each pij required to generate the ranking, i.e.,

p(R|p) = C(p)−1
∏

R(Ai)<R(Aj)

pij, R ∈ Pn, (2.4.3)

where C(p) is the normalisation constant determined by
∑

r∈Pn
∏

r(Ai)<r(Aj)
pij.
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The number of parameters in the Smith model is
(
n
2

)
, making it difficult to work

with if we have a large number of items. This meant that some subclasses of the

Smith model, proposed by Mallows (1957), were introduced to place constraints on

the number of parameters to make it analytically tractable. We summarise some of

these subclasses.

Mallows-Bradley-Terry Model

In the Mallows-Bradley-Terry (MBT) model the pairwise comparison probabilities are

assumed to follow a Bradley-Terry (BT) model (Bradley and Terry, 1952). The BT

model, which was first proposed by Zermelo (1929), assumes that the probability that

an item Ai is preferred over another item Aj is

pij = p(Ai ≺ Aj) =
λi

λi + λj
, (2.4.4)

where each λk > 0, k = 1, . . . , n, such that
∑n

k=1 λk = 1, represents the item’s score

parameter. A higher value of λk indicates a stronger preference for item Ak; the

MBT model depends only on the n score parameters of the items. The probability of

observing a ranking under the MBT model is

p(R|λ) = C(λ)
n−1∏
i=1

λn−Rii , R ∈ Pn

where C(λ) is the normalisation constant.

The score parameters are estimated using iterative optimisation methods such as
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the majorised-minimisation algorithm (Hunter, 2004) which uses a surrogate function

to find the MLE. Recently, MCMC has been incorporated to evaluate the expectation

of the log-likelihood in the majorised-minimisation algorithm (Sawadogo et al., 2019).

Mallows φ and σ models

The second subclass of Smith models requires only two parameters. Mallows (1957)

assumes that any two rankings with the same distance from an assumed consensus

ranking ρ, which is the ranking with the highest probability of occurring, should

have the same probability of being observed. An additional assumption is that the

pairwise comparison probabilities are now dependent on their position in a ranking R.

Mallows (1957) suggests two distances; the Kendall distance which counts the number

of pairwise disagreements between R and ρ, giving dK(R,ρ) =
∑

i<j 1
{

(Ri−Rj)(ρi−

ρj)| < 0
}
, 1 ≤ i < j ≤ n, and the Spearman distance, known as the l2 distance,

which measures the sum of squared displacements in rank between R and ρ, giving

dS(R,ρ) =
∑n

i=1(Ri − ρi)2. It is shown in Mallows (1957) that the probability of a

ranking under the resulting model is

p(R|ρ, σ, φ) = C(σ, φ)σdS(R,ρ)φdK(R,ρ), R ∈ Pn,

where σ, φ > 0 and C(σ, φ) is the normalisation constant. If φ = 1, then we have the

Mallows σ model,

p(R|ρ, σ) = C(σ, 1)σdS(R,ρ), R ∈ Pn,
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which is the Mallows model with the Spearman distance where each pij is dependent

on whether (Ri −Rj) > 0. If σ = 1, we have the Mallows φ-model,

p(R|ρ, φ) = C(1, φ)φdK(R,ρ), R ∈ Pn,

which is the Mallows model with the Kendall distance metric where pij is dependent

on |Ri − Rj|. This subclass of models belongs to the general class of distance-based

models which we will discuss further in Section 2.4.3.

2.4.3 Distance-based models: Mallows model

The subclass of paired comparison models containing the Mallows φ and σ models

(Mallows, 1957) is generalised by Diaconis (1988) to give distance-based models. This

class creates a probabilistic model for ranking data over the permutation space Pn

rather than relying on scores for items or orders.

The Mallows model is parameterised by ρ ∈ Pn, known as the consensus ranking,

which is the permutation with the highest probability that an individual may rank

the set of items as R = ρ. It is also parameterised by α > 0, the scale parameter,

which controls the variability of the permutations around the consensus ranking. The

Mallows model assumes that the probability of an observed ranking decays as the

distance between the predicted ranking, R, and the consensus ranking increases. The

probability of observing a ranking R is defined as

p(R) = p(R|ρ, α) =
1

Zn(ρ, α)
exp

{
− α

n
d(R,ρ)

}
, R ∈ Pn, (2.4.5)
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where the partition function is defined as

Zn(ρ, α) =
∑
r∈Pn

exp
{
− α

n
d(r,ρ)

}
. (2.4.6)

The distance function, d(·, ·) : Pn × Pn → [0,∞), measures the “closeness” of a

ranking to the consensus ranking and is a key feature of the Mallows model. They

satisfy typical axioms:

d(ρ,ρ) = 0 ∀ρ ∈ Pn (reflexivity);

d(ρ,R) > 0 ∀ρ,R ∈ Pn such that ρ 6= R (positivity);

d(ρ,R) = d(R,ρ) ∀ρ,R ∈ Pn (symmetry).

The Mallows literature discusses the use of right-invariant distances, where for

every permutation σ,

d(R,ρ) = d(Rσ,ρσ).

If we set σ = ρ−1, then d(R,ρ) = d(Rρ−1,ρρ−1) = d(Rρ−1,1n), where 1n =

{1, 2, . . . , n} is the identity permutation. This means that the relabelling of items be-

tween two rankings is unaffected (Diaconis, 1988). This also means that the partition

function is, in fact, independent of the consensus ranking; no matter which ranking

we choose to set as ρ, the sum of the distances between ρ and each of the n! ranks in

Pn will remain the same. Therefore, we can redefine the partition function in (2.4.6)



CHAPTER 2. PROBABILISTIC MODELS FOR PREFERENCE DATA 18

as

Zn(ρ, α) = Zn(α) =
∑
r∈Pn

exp
{
− α

n
d(r,1n)

}
.

Various right-invariant distances have been described in Diaconis (1988) and Marden

(1995), these are:

• Cayley distance: Defined as dC(R,ρ), it counts the minimum number of trans-

positions to transform R to ρ.

• Kendall distance: This measures the number of adjacent transpositions that

convert R into ρ. Equivalently, this involves counting the number of pairwise

disagreements between R and ρ, giving dK(R,ρ) =
∑

i<j 1
{

(Ri−Rj)(ρi−ρj)| <

0
}
, 1 ≤ i < j ≤ n.

• Footrule (l1): This measures the sum of the displacements in rank between R

and ρ, giving dF (R,ρ) =
∑n

i=1 |Ri − ρi|.

• Spearman distance (l2): This measures the sum of squared displacements in

rank between R and ρ, giving dS(R,ρ) =
∑n

i=1(Ri − ρi)2.

• Hamming distance: This counts the number of items, which are not placed in

the same position, between R and ρ, giving dH(R,ρ) = n−
∑n

i=1 1ρi(Ri).

• Ulam distance: Defined as dU(R,ρ), it counts the length of the complement of

the longest common subsequence in R and ρ. Equivalently, this is the number

of deletion-insertion operations to convert R into ρ.
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Some of the distances, such as footrule and Kendall, satisfy the triangle inequality,

that is

d(R,ρ) ≤ d(ρ,σ) + d(σ,R) ∀ρ,R,σ ∈ Pn,

meaning that they are in fact distance metrics. However, this property is not nec-

essary for a distance to be right-invariant. We also note that the Mallows φ and σ

models in Section 2.4.2 are the Mallows models with Kendall and Spearman distances,

respectively, by substituting α = −n log φ and α = −n log σ in (2.4.5).

Some distances have previously been used for specific applications. For example,

the Cayley distance has been applied to computer vision and cryptography (Ziegler

et al., 2012), the Hamming distance has been studied in cryptography to measure

the distance between binary sequences and the Ulam distance has applied in DNA

research to measure the distance between molecule strings (Critchlow et al., 1991).

The Mallows model with the Kendall distance has been well-studied for two reasons

discussed in Busse et al. (2007). First, the distance is intuitive because rankings can

be inferred from pairwise disagreements; Mallows (1957) argues that the definition of

the Kendall distance reflects how a person ranks a set of items. Second, it can also

be computed efficiently; a closed form of the partition function is given in Fligner and

Verducci (1986). Currently, there is no guidance on which distance function to use

with the Mallows model given the application (Liu et al., 2019a).
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Approximating the partition function

The choice of distance gives the Mallows model some flexibility but affects the tractabil-

ity of computing the partition function for large n. We highlight that the partition

function can be analytically computed for certain right-invariant distances. For ex-

ample, the Kendall distance (Fligner and Verducci, 1986; Lu and Boutilier, 2014),

the Cayley distance (Irurozki et al., 2018) and the Hamming distance (Irurozki et al.,

2014a) have been shown to have a closed form. However, the right-invariant distances,

the footrule and the Spearman distances make the computation of the partition func-

tion NP-hard. So far, the partition function with these distances has been numerically

solved for very small values of n, but it is infeasible for larger n. In particular, an

exact approximation can be found for n ≤ 50 items for the footrule and n ≤ 14 for the

Spearman distances respectively (Vitelli et al., 2018). Recently, Vitelli et al. (2018)

suggested an importance sampling scheme to approximate Zn(α) with some arbitrary

precision for any right-invariant distance. Since it does not depend on ρ, Zn(α) can

be computed offline over a grid for α, given n. An iterative algorithm which gives

asymptotic approximation for Zn(α) as n → ∞ is proposed in Mukherjee (2016).

Further details on the Mallows model will be discussed in Section 2.5.

2.4.4 Multistage models

In a multistage model, a ranking is created using an iterative process. This is per-

formed by a sequence of independent stages in which the next preferred item is selected

among the remaining items in A each time.
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Plackett-Luce

The Plackett-Luce (PL) model (Luce (1959), Plackett (1975)) is a common example

of a multistage model. Given a set of score parameters for n items, λk, k = 1, . . . , n,

an ordering is constructed by the following process. In the first iteration, the item

with the highest ranking is selected with probability λk∑n
i=1 λi

, then in the remaining

iterations, the next item with the highest ranking is chosen from the collection of

items remaining to be selected in A with normalised selection probability. The process

occurs over n− 1 iterations to create an ordering with probability

p(X|λ) =
n−1∏
i=1

λi∑n
k=i λk

, X ∈ Xn.

Alternatively, the probability of observing a full ranking under the Plackett-Luce

model is

p(R|λ) =
n−1∏
i=1

λR−1(i)∑n
k=i λR−1(k)

, R ∈ Pn.

The PL model has been well-studied. To perform parameter inference, we can use

MLE using the majorise-minimisation algorithm (Hunter, 2004). Bayesian approaches

have also been considered, as in Guiver and Snelson (2009) and Caron and Doucet

(2012). In Guiver and Snelson (2009), the power expectation propagation algorithm

(EP) (Minka, 2004) is used instead of the expectation maximisation algorithm (EM)

Dempster et al. (1977) and apply the method to large data sets containing partial

rankings. In Caron and Doucet (2012), a data augmentation scheme is proposed using

conjugate priors (gamma distribution) for the likelihood to create a Gibbs sampler
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for the PL parameters.

Generalised Mallows model

The Mallows model (Mallows, 1957) is criticised for having only one parameter, α,

to handle the spread of the distribution of the ranking data since every possible

permutation at the same distance from the consensus ranking has the same probability

value (Yu et al., 2019). One way to avoid this is to incorporate scale parameters for

each position of the ranking to indicate uncertainty for these positions. A popular

extension is the generalised Mallows model (GMM) (Fligner and Verducci, 1986),

which considers n − 1 scale parameters (α1, α2, . . . , αn−1), each of which affects the

certainty of some positions of the permutation. Certain distances cannot be used

with the model; the footrule and Spearman distances cannot be decomposed into

n− 1 terms.

MLE for the GMM has been shown for Kendall (Mandhani and Meila, 2009),

Cayley (Irurozki et al., 2018), and Hamming distances (Irurozki et al., 2014a). This

collection of work has been implemented into the PerMallows R package (Irurozki

et al., 2016) which samples and learns the GMM with the Kendall, Cayley and Ham-

ming distances using several algorithms. Meilǎ and Bao (2010) considered a Bayesian

framework with Kendall distance with top-k rankings for an infinite number of items.

This was extended by Meilǎ and Chen (2010) to handle clustering using Dirichlet

processes.
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2.5 Inference with the Mallows model

We have seen that several attempts have been made to produce a model that best

summarises preference data in a meaningful way. These models can be grouped into

several classes (Fligner and Verducci, 1986), one of which was the distance-based

model in Section 2.4.3. In this class, we briefly introduced the Mallows model and

discussed one extension of the model, the Generalised Mallows Model, in Section 2.4.4.

The focus of this thesis is to apply sequential inference to the Mallows Model, so here

we provide further details of the literature surrounding the Mallows model and its

extensions. We will discuss the developments of the Mallows model when handling

different kinds of preference data, including full rankings, partial rankings, pairwise

comparisons and heterogeneous data.

2.5.1 Frequentist approaches

When discussing the Mallows model, we shall use the following definition

p(R) = p(R|ρ, α) =
1

Zn(ρ, α)
exp

{
− α

n
d(R,ρ)

}
, R ∈ Pn.

When estimating the model parameters given a set ofM observed rankings, {R1, . . . ,RM},

we find the maximum likelihood estimate for ρ (for a given α),

arg min
ρ∈Pn

M∑
j=1

d(Rj,ρ),
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is not straightforward to solve (Liu et al., 2019a) because the space of permutations

Pn has n! possible rankings, which for large n makes the problem of minimising the

sum of distances NP-hard (Bartholdi et al., 1989).

Inference from pairwise comparisons

An online learning setting has been considered to learn a single Mallows model with

pairwise preferences. Busa-Fekete et al. (2014) devise algorithms to find the most

probable top-ranked item, probable full ranking or estimate the Mallows model with

Kendall distance only. In each iteration t, the learner is allowed to gather information

by asking for a single pairwise comparison between two items (Ati, A
t
j) ∈ A. The

learner receives stochastic feedback on the outcome of each pairwise comparison: 1

if Ati ≺ Atj and 0 if Ati � Atj with probability pij and 1 − pij, respectively. Given

the result, the learner updates their estimations and decides whether to continue

learning or terminate with their prediction. The goal is to minimise the number of

iterations to learn whilst guaranteeing a certain level of confidence in the prediction.

This is one example of applying the Mallows model to an online setting; however,

the underlying assumption of the model is that the complete information of every

pairwise comparison is available which is not always possible.

Inference from partial rankings

Most applications of the Mallows model with partial rankings have typically been

used in the case of top-k rankings and with the Kendall distance. Busse et al. (2007)

use a maximum entropy approach to perform data augmentation for missing entries
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in the top-k rankings. This is where missing ranks in each observed partial ranking

are allocated to positions that have the highest entropy. The entropy values are

determined based on how often each item has been ranked in every position in the

observed data set. This approach removes any assumptions about how each item is

ranked.

Fligner and Verducci (1986) define a distribution on top-k rankings by considering

the marginals of all possible completions of the top-k rankings. This is extended by

Lebanon and Mao (2008) to general partial rankings and the distribution is estimated

by proposing a nonparametric kernel density estimator. However, the authors assume

that an underlying full ranking exists. Instead, Chierichetti et al. (2018) assume

the existence of a top-k list and construct a Mallows model for top-k lists that uses

a Kendall distance measure to measure between top-k lists. They considered two

learning problems: learning the consensus top-k list for a given top-k Mallows model

and learning a mixture of top-k Mallows models.

Clustering

The Mallows model has also been studied as a mixture model, where we assume that

a collection of ranking data was produced by a collection of several homogeneous

populations and each population can be modelled as an independent Mallows model.

If we have C components, then the ranking model is

p(R|ρ1:C , α1:C , τ1:C) =
C∑
c=1

τc
Zn(αc)

exp
{
− αc

n
d(R,ρc)

}
, R ∈ Pn,
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where τc is the probability that an observation R belongs to a cluster c ∈ {1, . . . , C}.

The task is to determine the number of components, if this is unknown, as well as the

model parameters ρ1:C , α1:C and τ1:C .

To learn from a mixture model, a common method is to use the expectation

maximisation algorithm (EM) (Dempster et al., 1977) to find the maximum likelihood

for each parameter for different values of C and select the number of components that

maximise the log-likelihood (Busse et al., 2007). This approach has been studied by

Murphy and Martin (2003); Busse et al. (2007); Lu and Boutilier (2014); Stoyanovich

et al. (2016) with the Mallows model.

Murphy and Martin (2003) studied the Mallows mixture model with Kendall,

Cayley and footrule distances using full rankings. They use two different criteria to

choose the appropriate model for the heterogeneous data set. These are the Bayesian

information criterion (BIC) (Fraley and Raftery, 1998), defined as

BIC(C) = 2`(θ̂C) = v(C) log(M),

where `(θ̂C) and v(C) are the maximum log-likelihood and the number of free pa-

rameters, respectively, and the integrated complete likelihood (ICL) (Biernacki et al.,

2000)

ICL(C) = BIC(C) + 2
M∑
j=1

C∑
c=1

ẑ(j)c log ẑ(j)c

where ẑ
(j)
c are the latent membership variables, defined below. The model that max-

imises either criterion is selected.
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To learn the Mallows mixture in Murphy and Martin (2003), each ranking is

allocated latent indicator variables z = (z1, . . . , zc), defined such that zc = 1 means

that observation belongs to component c ∈ {1, . . . , C}. So, for M rankings, we have

the membership variables zM = (z(1), . . . , z(M)). The complete-data log-likelihood for

(2.5.1) can be expressed as

`(ρ1:C , α1:C , τ1:C |R1:M , zM) =
M∑
j=1

C∑
c=1

z(j)c

[
log τc − logZn(αc)−

αc
n
d(Rj,ρc)

]
.

In the E-step, the expected allocation variables are calculated; then in the M-step we

update the maxima of ρ1:C , α1:C and τ1:C . The EM algorithm is easy to implement

but can get stuck in local maxima, so Murphy and Martin (2003) recommend running

the algorithm from several starting points. Busse et al. (2007) extend this method to

handle partial rankings for the Mallows model with the Kendall distance and use the

same methods, as described in Murphy and Martin (2003) to select the number of

components. In both Murphy and Martin (2003) and Busse et al. (2007), the methods

are applied to the American Psychological Association data set (Diaconis, 1988). The

data set contains rankings for only five items, so the discussion on the difficulty in

estimating the partition function, particularly for footrule distance, is avoided.

Lu and Boutilier (2014) learn Mallows mixtures using their proposed generalised

repeated insertion model (GRIM) algorithm, an extension of the repeated insertion

model (RIM) (Doignon et al., 2004) for sampling for the Mallows model, which can

sample from the Mallows model with Kendall distance from a set of pairwise pref-

erences. The algorithm is used in the EM algorithm as part of a Gibbs sampler to
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generate a tractable approximate posterior to find the local maximum of the model

parameters. The authors perform preference learning and prediction with the Movie-

Lens (GroupLens) and Sushi (Kamishima, 2003) data sets. However, no uncertainty

estimates were provided. Stoyanovich et al. (2016) extend the work of Lu and Boutilier

(2014). Instead of trying to fit a mixture model for a varying number of components

before selecting the optimum, the authors use affinity propagation (Frey and Dueck,

2007), a message-passing clustering method, to identify an appropriate number of

Mallows models in a mixture. Affinity propagation finds assessors or “exemplars”

that are representative of clusters and iterates between assessors nominating another

assessor as their exemplar based on their similarity, which is the number of pairs of

matching comparisons that the two assessors share, and determining how appropri-

ate the assessor’s nomination for exemplar is given all the other nominations until

convergence.

Theoretical work that relates to clustering with the Mallows model includes Awasthi

et al. (2014), which provides theoretical identifiability of the model parameters of a

two-component mixture model. They create a polynomial-time algorithm which uses

tensor decomposition techniques to determine the component parameters. However,

identifying the consensus rankings of each component is poor when they are close

together; this is a typical problem in clustering. Chierichetti et al. (2015) show iden-

tifiability when the scale parameters are known and the same for all components. Liu

and Moitra (2018) show that we can learn the parameters of the mixture model with

a polynomial-time algorithm for any fixed number of components.
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R packages

Finally, several R packages have been developed that use the Mallows models and the

GMM (Mollica and Tardella, 2020). The RMallows R package (Gregory, 2012) uses

the EM algorithm to fit a Mallows model given a set of full or partial rankings, with or

without ties. The pmr R package (Lee and Yu, 2013) implements MLE functions for

the Mallows model and the GMM under the Kendall, Spearman and footrule distances

with full rankings. The package also provides descriptive statistics and visualisations

of the preference data. The PerMallows R package (Irurozki et al., 2016) samples

and learns the parameters of the Mallows model and the GMM with the Kendall,

Cayley (Irurozki et al., 2018), Hamming (Irurozki et al., 2014a) and Ulam (Irurozki

et al., 2014b) distances. It also provides distance-related functions and permutation-

based operations. However, each algorithm cannot be applied to every distance; the

package provides three different sampling algorithms (two exact, one approximate)

and two learning algorithms (one exact, one approximate). Finally, rankdist (Qian

and Philip, 2019) fits different distance-based ranking models to develop and test,

including the Mallows mixture model, with the Kendall, Spearman, footrule and

Hamming distances, given a set of full or partial rankings.

2.5.2 The Bayesian Mallows model

Several methodological developments have been made to the Mallows model to per-

form inference. However, there are some limitations to using the model. First, there

is a lack of flexibility in existing methods to handle different kinds of preference
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data including full rankings, partial rankings, pairwise comparisons and heteroge-

neous data. The partition function can be found exactly or estimated for some of the

right-invariant distances, but we notice that there appears to be no general approach

that can use every distance listed in Section 2.4.3; most papers only consider the

Kendall distance. Finally, the proposed algorithms discussed in the papers are tested

with synthetic and real-world data sets, but the size of these data sets is very small

in terms of the number of items.

Vitelli et al. (2018) provide a Bayesian hierarchical model for inference, which over-

comes the main criticisms given for earlier attempts with the Mallows model. First,

the Bayesian Mallows model can handle a variety of ranking data, such as a heteroge-

neous set of rankings, partial rankings, pairwise comparisons, and even implicit data.

The model can account for any right-invariant distance when sampling, learning the

parameters of the Mallows model and estimating the partition function, particularly

for the footrule and Spearman distances which had not been previously tackled in the

literature surrounding the Mallows model. Furthermore, the hierarchical Bayesian

model can handle large numbers of assessors and items and this is demonstrated with

a variety of examples with different preference data.

A key component of Bayesian models is the use of prior distributions to incorporate

subjective beliefs about the parameters of interest. Given the prior distributions π(ρ)

and π(α) and assuming prior independence of these variables, then the Bayesian
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Mallows model has the posterior density

π(ρ, α|R1, . . . ,RM) ∝ π(ρ)π(α)

[Zn(α)]M
exp

{
− α

n

M∑
j=1

d(Rj,ρ)

}
. (2.5.1)

In particular, Vitelli et al. (2018) specify a uniform prior for the consensus rank-

ing, π(ρ) = (n!)−11Pn(ρ) in the space Pn, recalling that Pn is the permutation

space of n items of size n!, and an exponential prior for α, with density π(α|λ) =

λ exp{−λα}1[0,∞)(α). The advantage of the Bayesian Mallows model is that we can

compute posterior summaries of interest, for example, the marginal posterior distri-

bution of ρ,

p(ρ|R1, . . . ,RM) ∝ π(ρ)

∫ ∞
0

π(α)

[Zn(α)]M
exp

{
− α

n

M∑
j=1

d(Rj,ρ)

}
dα,

as well as produce any uncertainty estimates.

2.5.3 Markov chain Monte Carlo for the Bayesian Mallows

model

The Metropolis-Hastings algorithm is used in Vitelli et al. (2018) to sample from

(4.2.1), assuming, for now, that we have a set of M full rankings. The Markov chain

Monte Carlo (MCMC) scheme begins with initial values ρ0 ∈ Pn and α0 ≥ 0 and

comprises two steps. In one iteration of the algorithm, a new consensus ranking ρ′ is

proposed to update ρ according to a distribution which is centred around the current

ranking ρ. The proposal step for ρ is computed using the leap-and-shift proposal
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algorithm of Vitelli et al. (2018). Similarly, a new value α′ is proposed from the

log-normal distribution to update the current value of α.

Sampling ρ using the leap-and-shift proposal

We first summarise how the proposal distribution for the consensus ranking is carried

out. The leap-and-shift algorithm begins by fixing a value L ∈ {1, . . . , bn−1
2
c}. This

is the leap size which determines the maximum number of positions that an item can

increase or decrease by in rank. Next, a position u ∈ U = {1, 2, . . . , n} is selected in

the current ranking ρ with probability 1
n
. This is the item in ρ whose current rank

ρu will change. Then, a support set S is defined which contains all possible ranks

that ρu can leap to by at most ±L in rank. A value r is drawn randomly from the

set S which is the rank that ρu will leap to. At the end of the leap step, we obtain an

intermediate consensus ranking ρ∗ which will contain elements ρ∗u = r and ρ∗i = ρi for

i ∈ {1, . . . , n}\{u}. Thus ρ∗ will contain two elements with value r and the element

ρu will be missing. Finally, during the shift step, the ranks of the items are adjusted

to create a valid consensus ranking ρ′. The procedure for the leap-and-shift algorithm

is given in Algorithm 1.

We demonstrate the leap-and-shift procedure with an example. Assuming we have

n = 5 items, the current consensus ranking is ρ = (2, 4, 1, 5, 3), and the fixed leap size

is L = 2. Then, using leap-and-shift could result in this potential outcome:

1. We draw u = 4 from the set {1, . . . , 5}.

2. Using ρu = 5, the set S contains the elements {3, 4}.
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3. We randomly draw r ∈ S, with the result r = 3.

4. We define ρ∗ = (2, 4, 1, 3, 3) as ρu = 5 when u = 4.

5. Since ρ∗u = 3 is fixed, the determined shifts we have to make sure that ρ′ contains

the elements {1, . . . , 5} result in ρ′ = (2, 5, 1, 3, 4).

Algorithm 1: Leap-and-shift (Vitelli et al., 2018)

Input: ρ, n.

Output: Proposal consensus ranking ρ′.

Fix L ∈ {1, . . . , b(n− 1)/2c} .

Draw u ∼ U{1, . . . , n}.
Define a set of integers

S = {max(1, ρu − L), min(n, ρu + L)}\{ρu}, S ⊆ {1, . . . , n}.
Draw r from S.

Let ρ∗ ∈ {1, . . . , n}n contain elements ρ∗u = r and ρ∗i = ρi for i ∈ {1, . . . , n}\{u},
constituting the leap step.

Set ∆ = ρ∗u − ρu and the proposed ρ′ ∈ Pn with elements

ρ′i =



ρ∗u if ρi = ρu

ρi − 1 if ρu < ρi ≤ ρ∗u and ∆ > 0

ρi + 1 if ρu > ρi ≥ ρ∗u and ∆ < 0

ρi else

,

for i = 1, . . . , n, constituting the shift step.

The probability mass function associated with the transition from current ρ to ρ′
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is calculated in Vitelli et al. (2018) as

pL(ρ′|ρ) =
n∑
u=1

pL(ρ′|U = u, ρ)P (U = u)

=
1

n

n∑
u=1

{
1ρ−u

(ρ∗−u) · 1{0<|ρu−ρ∗u|≤L}(ρ
∗
u) (2.5.2)

·

[
1{L+1,...n−l}(ρu)

2L
+

L∑
l=1

1{l}(ρu) + 1{n−l+1}(ρu)

L+ l − 1

]}

+
1

n

n∑
u=1

{
1ρ−u

(ρ∗−u) · 1{|ρu−ρ∗u|=1}(ρ
∗
u)

·

[
1{L+1,...n−l}(ρ∗u)

2L
+

L∑
l=1

1{l}(ρ
∗
u) + 1{n−l+1}(ρ

∗
u)

L+ l − 1

]}
.

Equation (2.5.2) simply accounts for all of the possible ways to transition from ρ to ρ′.

For any transition, (2.5.2) is the product of the probability of selecting u ∈ {1, . . . , n}

and the probability of selecting a given r ∈ S, 1
n
× 1
|S| . The final term in (2.5.2) is the

additional probability if the leap is of size 1 since there are two possible scenarios for

the result ρ′. A simpler way to interpret the transition probability is to consider the

probability of moving to ρ∗ from ρ. Since the mapping from ρ∗ to ρ′ is deterministic

and the candidate u is drawn randomly, the probability of moving to ρ∗ given ρ is

p(ρ∗|ρu) =



1
ρu−1+L

if ρu ∈ {1, . . . , L};

1
2L

if ρu ∈ {L+ 1, . . . , n− L};

1
n−ρu+L

if ρu ∈ {n− L+ 1, . . . , n}.

The probability of accepting the new proposed value of ρ in the Metropolis-
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Hastings MCMC algorithm is

min

{
1,

pL(ρ|ρ′)π(ρ′)

pL(ρ′|ρ)π(ρ)
exp

[
− α

n

N∑
j=1

(d(Rj,ρ
′)− d(Rj,ρ))

]}
.

Sampling α using the log-normal proposal distribution

When updating the value of α, the algorithm samples a proposal α′ from a log-normal

distribution logN (α, σ2
α) and is accepted with probability

min

{
1,

Zn(α)Mπ(α′)α′

Zn(α′)Mπ(α)α
exp

[
− (α′ − α)

n

M∑
j=1

d(Rj,ρ)

]}
.

The parameter σ2
a can be tuned to obtain a desired acceptance probability. When

sampling complete rankings, Vitelli et al. (2018) suggest using an integer-valued pa-

rameter, αjump, in the MCMC algorithm so that an α′ is proposed only every αjump

iterations. This is because in one MCMC iteration, ρ cannot explore the posterior dis-

tribution easily, whereas α can move around the parameter space much more. Again,

this parameter can be tuned to ensure better mixing of the MCMC algorithm.

2.5.4 Inference with the Bayesian Mallows model

Inference is performed using the MCMC scheme discussed in Section 2.5.3, but several

adaptations are made to incorporate a variety of preference data formats, particularly

if the observed information from each user is incomplete and/or heterogeneous. The

process of estimating the parameters of the Mallows model is then calculated with

the posterior summaries. This has been implemented in the BayesMallows R package
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(Sørensen et al., 2020) on CRAN. We summarise the adaptations for each type of

preference data, but further details can be found in Vitelli et al. (2018).

Inference from partial rankings

Vitelli et al. (2018) consider top-k rankings, where either each individual ranks a

subset Aj of k < n items from 1 to k or where item ranks are missing at random

meaning that each assessor has specified nj < n ranks for items but they have not

necessarily given their top-k items.

Data augmentation assigns the remaining ranks to unranked items to give full

augmented rankings R̃1, . . . , R̃M , so the posterior is now defined as

p(ρ, α|R1, . . . ,RM) =
∑

R̃1∈S1

· · ·
∑

R̃M∈SM

p(ρ, α, R̃1, . . . , R̃M |R1, . . . ,RM),

where each Sj = {R̃j ∈ Pn : R̃ij = X−1j (Ai) if Ai ∈ Aj, j = 1, . . . ,M} is the set of

possible augmented rankings that are compatible with the observed partial rankings.

In the MCMC algorithm, the augmented rankings are initialised by assigning missing

ranks to unranked items randomly with the allowable augmentations of the missing

ranks. The algorithm alternates between sampling R̃1, . . . , R̃M given the current α

and ρ, then sampling α and ρ given the current R̃1, . . . , R̃M . When sampling the

candidate augmented ranks, Vitelli et al. (2018) suggest to use a uniform proposal

distribution to sample each R̃′j from Sj, which is then accepted with probability

min

{
1, exp

[
− α

n

(
d(R̃′j,ρ)− d(R̃j,ρ)

)]}
.
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Inference from pairwise comparisons

If each assessor can specify preferences between pairs of items in A, then we can define

Bj to be the set of pairwise comparisons that each assessor j = 1, . . . ,M gives. The

size of each pairwise preference set is |Bj| ≤
(
n
2

)
. Then, we can define tc(Bj) as the

transitive closure of all possible valid pairwise comparisons generated in Bj; in other

words, tc(Bj) contains the pairwise comparisons in Bj and any additional pairwise

comparisons that involve elements in A that are compatible with in Bj.

Since each of the items in A do not necessarily have a fixed rank, the MCMC

algorithm needs to propose augmented complete rankings which will be compatible

with constraints provided by tc(Bj) for each assessor. This is carried out in Vitelli

et al. (2018) by using a modified leap-and-shift proposal step, which is now symmetric,

to sample augmented ranks R̃j for each assessor j that are compatible with tc(Bj).

The MCMC algorithm alternates between sampling R̃1, . . . , R̃M given the current α, ρ

and tc(Bj), then sampling α and ρ given the current augmented rankings R̃1, . . . , R̃M .

Clustering

We consider the Bayesian fitting of the Mallows mixture model in Section 2.5.1, where

we assume initially that the number of components C is known. Each ranking has

a cluster assignment {z1, . . . , zM} ∈ {1, . . . , C} to indicate the component that each

assessor is assigned. Assuming conditional independence across clusters, the likelihood

for observed full rankings R1, . . . ,RM under the Bayesian Mallows model can be
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expressed as

p(R1, . . . ,RM |{ρc, αc}c=1,...,C , z1, . . . , zM) =
M∏
j=1

1Pm(Rj)

Zm(αzj)
exp

{
−
αzj
m
d(Rj,ρzj)

}
,

The cluster assignments are distributed according to P (z1, . . . , zM |τ1, . . . , τC) =
∏N

j=1 τzj,

where τc is the probability of assigning an assessor to component c ∈ {1, . . . , C}. These

assignment probabilities have a standard symmetric Dirichlet prior π(τ1, . . . , τC) =

Γ(ψC)Γ(ψ)−C
∏C

c=1 τ
ψ−1
c , where Γ(·) is the gamma function. The MCMC algorithm

alternates between sampling ρ1, . . . ,ρC and α1, . . . , αC in a Metropolis-Hastings step

and τ1, . . . , τC and z1, . . . , zM in a Gibbs sampler step.

If the number of components is unknown then we can run a thinned subset of the

MCMC algorithm for clustering with different values of C and calculate the posterior

distance between the rankings of each assessor and their corresponding component’s

consensus ranking. This is known as the within-sum cluster distance. The results

are plotted in an elbow plot; the point at which an “elbow” occurs in the plot is

considered to be the optimal number of components.

2.5.5 Extensions of the Bayesian Mallows model

Several interesting extensions have been proposed with the Bayesian Mallows model.

We provide a summary of the existing developments.
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Handling intransitive pairwise comparisons

Handling intransitive pairwise comparisons to perform inference is one example of

a Bayesian Mallows model extension. To recall, a pairwise comparison is when an

individual selects an item from a pair of distinct items that they prefer based on

some attribute. It is assumed that each individual does not contradict themselves

when specifying their preferences between pairs of items within a set, however, if this

occurs, then the pairwise comparisons are intransitive. These can occur for several

reasons: there may be too many items to consider for a user to be aware of an overall

transitive ordering; several items are considered too similar by the user or the user

preferences may have changed over time.

In Crispino et al. (2016), the result of intransitive pairwise comparisons means

that we cannot obtain a latent ranking for each user. Here, Bj is defined as a set

of pairwise preferences specified by a user j on a set of n items, A1, . . . , An. It is

assumed that each user has a latent ranking R̃j ∈ Pn that follows a Mallows model

distribution. The likelihood for Bj in this scenario is

p(Bj|ρ, α) =
∑

Rj∈Pn

p(Bj|R̃j = Rj)π(R̃j = Rj|ρ, α).

The authors incorporate an additional layer of latent variables into the hierarchical

model to account for the mistakes that are assumed to be made by the assessor. They

propose two models: the Bernoulli model to handle random mistakes, and the logistic

model for mistakes from ordering similar items.

This particular model was used to carry out a case study on an experiment with
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acousmatic music (Crispino et al., 2019). Each assessor listened to pairs of different

abstract sounds, and were asked to choose which sound was perceived as more human.

Furthermore, each assessor only compared a subset of all possible pairs of sounds,

creating some sparsity in the data set. The study was tasked to perform inference at

an individual level and to cluster assessors.

Time-varying rankings

An alternative extension to the Bayesian Mallows model considers the situation where

the rankings are allowed to vary over time. Time dependence in preference data occurs

when assessors are asked to rank the same set of items repeatedly over time which

can result in an assessor’s preferences being altered. Asfaw et al. (2017) created

the framework for the Mallows model for time-dependent rank data. The consensus

ranking at each time ρt was assumed to change little between consecutive time steps

to allow the use of a smooth transition kernel between latent consensus rankings. This

is modelled under another Mallows model,

p(ρ(t)|ρ(t−1)) =
1

Zn(β)
exp

{
− β

n
d(ρ(t),ρ(t−1))

}
.

Similarly, for the scale parameters at each time step, a normal distribution acts as

the smoothing kernel between time steps. The inference is performed at the individ-

ual level by sampling from a posterior distribution using a Metropolis-within-Gibbs

algorithm. Asfaw et al. (2017) considered a case study for the model that focused

on updating the overall ranking of students based on their school performance test
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results over four years. The study also factored in the absence of students from the

tests, creating some missing data.

Eliciting Informative Priors

Some progress has been made in selecting informative priors for the consensus rank-

ing in the Mallows model with the Spearman distance (Crispino and Antoniano-

Villalobos, 2022) when the scale parameter is known or unknown. Typically, the

uniform distribution is the prior density for the consensus ranking. The use of differ-

ent informative priors for each distance function is still an ongoing research direction

for the Bayesian Mallows model.

Clicking data

The Bayesian Mallows model typically performs inference with explicit forms of data

rather than implicit data. Implicit data can be in the form of clicks, listens/watches,

purchases, likes, etc., and are interpreted to indicate a preference for a particular

item. Liu et al. (2019b) develop a Bayesian Mallows model for clicking data to perform

inference using click observations as preference data in a recommender system setting.

They assume that each user j has clicked on a subset of items Aj ⊆ A with |Aj| = cj

clicks. The number of times an item had been clicked indicates the popularity of the

item, so any clicked item is preferred over any unclicked item. This information can

be transformed into pairwise comparison data and full rankings. Each user j has a

set of possible full rankings based on their clicking data, Sj(Aj) = {R̃j ∈ Pn : R̃ij <

R̃kj if Ai ∈ Aj and Ak ∈ Acj, ∀i, k, i 6= k}. Therefore, the objective is to sample from
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the posterior distribution

p(ρ1:C , α1:C , z1:M |A1:M) =
∑

R̃1∈S1(A1)

· · ·
∑

R̃M∈SM (AM )

p(ρ1:C , α1:C , z1:M , R̃1:M |A1:M).

This particular model is an example of an alternative to using collaborative filtering

(Koren et al., 2009) in a personalised recommendation setting where we are interested

in providing accuracy and diversity in the recommendations for a particular user.



Chapter 3

Monte Carlo Methods

3.1 Introduction

A typical problem in statistics is to find the expectation of a function or a summary

statistic. Suppose that X is a random variable with probability density function f(x)

and that we are interested in evaluating the expectation of a measurable test function

h(x) : X → R with respect to f . The expected value of h(x), with respect to f , can

be found by evaluating the integral

f(h) = Ef [h(X)] =

∫
X
h(x)f(x)dx. (3.1.1)

However, in many cases, the integral (3.1.1) cannot be evaluated analytically, and

the use of deterministic numerical approximation methods is not feasible for high-

dimensional spaces; this problem is known as the curse of dimensionality.

Instead, we can use Monte Carlo methods, which are a class of numerical methods

43
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that use simulation and random sampling from probability densities to perform Monte

Carlo integration, such as evaluating (3.1.1). In this chapter, we review several Monte

Carlo methods that can be used to evaluate integrals of expectations of functions or

probability events. Many textbooks on this subject matter are available, and we refer

the reader to Robert and Casella (2004) for further details.

3.2 Perfect Monte Carlo

Perfect Monte Carlo assumes that if we can obtain a large number of independent

identically distributed (i.i.d.) samples, {x(i)}Ni=1 = x(1), . . . , x(N), from f(x), then we

can calculate the empirical approximation of the target density as

f̂(dx) =
1

N

N∑
i=1

δx(i)(dx), (3.2.1)

where δx(i)(dx) is the Dirac delta function located at x(i). Given the result from (3.2.1),

we can also evaluate (3.1.1) to obtain the Monte Carlo estimate of the expectation of

the test function

f̂(h) =

∫
X
h(x)f̂(dx) =

1

N

N∑
i=1

h(x(i)). (3.2.2)

There are several desirable properties of perfect Monte Carlo, which have been sum-

marised in Robert and Casella (2004). First, it can be shown that the Monte Carlo

estimate, f̂(h), is an unbiased estimator for Ef [h(X)] and the Monte Carlo variance

decreases as the sample size N increases. By the Strong Law of Large Numbers, as

the sample size increases then f̂(h) will converge almost surely (a.s.) to Ef [h(X)];
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that is,

f̂(h)
a.s.−−→ Ef [h(X)] as N −→∞. (3.2.3)

Furthermore, if we assume the variance is finite, i.e. Var(h(X)) <∞, then the Central

Limit Theorem implies that

√
N(f̂(h)− Ef [h(X)])

D−→ N (0,Var[h(X)]) as N −→∞,

where
D−→ denotes the convergence in distribution. Monte Carlo approximation is a

popular choice due to its simplicity and useful properties, but these results are only

possible if we are able to draw i.i.d. samples directly from the target distribution.

This is not always possible and so we need to consider alternative sampling methods.

3.3 Importance sampling

In some cases, the target density is not possible to sample directly from, but it can

be evaluated pointwise. When this occurs, we can use importance sampling which

generates i.i.d. samples from an alternative distribution, q(·), which is often referred

to as the proposal or importance distribution. The samples from the proposal density

are used to estimate the target density in (3.2.1) as

f̂(dx) =
1

N

N∑
i=1

f(x(i))

q(x(i))
δx(i)(dx). (3.3.1)
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Here, we can define the importance weight function as the ratio W (·) = f(·)/q(·). The

weight of each sample reflects its contribution to the target distribution, and we see

that the samples empirically estimate f̂(x) as a weighted sample {W (x(i)), x(i)}Ni=1, so

(3.3.1) can be rewritten as

f̂(dx) =
1

N

N∑
i=1

W (x(i))δx(i)(dx). (3.3.2)

We can also rewrite the Monte Carlo estimate in (3.1.1) as

Ef [h(X)] =

∫
X
h(x)

f(x)

q(x)
q(x)dx = Eq

[
h(x)

f(x)

q(x)

]
= Eq

[
h(x)W (x)

]
=

1

N

N∑
i=1

W (x(i))h(x(i)).

Sometimes the target distribution f(x) has an unknown normalisation constant, that

is, f(x) = f̃(x)/Z may be known up to a constant of proportionality, where f̃(x) is

the unnormalised density and Z is the normalisation constant. Under the importance

sampling scheme, we can rewrite the target density as

f(x) =
f̃(x)

Z
=
w(x)q(x)

Z
=

w(x)q(x)∫
w(x)q(x)dx

,

where w(x) = f̃(x)
q(x)

. Typically, the weights are normalised by prescribing W (x(i)) =

w(x(i))/
∑N

i=1w(x(i)), to ensure that Eq[w(X)] = 1. The approximate target density
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is (3.3.2), and the Monte Carlo estimate is

f̂(h) =

∑N
i=1 h(x(i))f(x(i))/q(x(i))∑N

i=1 f(x(i))/q(x(i))
=

N∑
i=1

W (x(i))h(x(i)).

The pseudocode for the importance sampler is provided in Algorithm 2.

Algorithm 2: Importance Sampling
Input: f, h, q, N .

Output: Monte Carlo estimate of f̂(h).

Draw i.i.d. samples {x(i)}Ni=1 ∼ q(·).
Calculate the importance weights w(i) = f(x(i))/q(x(i)) ∀i.
Normalise the importance weights W (i) = w(i)/

∑N
i=1w

(i) ∀i.
Calculate the Monte Carlo estimate f̂(h) =

∑N
i=1W (x(i))h(x(i)).

The main advantage of using importance sampling is that we can select a proposal

density that is easier to simulate than the target distribution, and given the same set

of samples {x(1), . . . , x(N)} ∼ q, we can potentially evaluate different test or target

distributions. Although there is bias in the Monte Carlo estimate, this decreases as

the number of samples increases by the Strong Law of Large Numbers.

The chosen proposal distribution should be easy to simulate, but the main con-

straint is that the support of q covers the support of f , i.e., f(x) > 0⇒ q(x) > 0, to

ensure that the expectation of the test function over f(x) can instead be evaluated

over q(x). An appropriate proposal distribution will achieve a consistent estimate of

f̂(h), but the variance of the estimator depends on the choice of q, since

Varq[f̂(h)] =
1

N
Varq[w(x)h(x)] =

1

N
Eq[w(x)2h2(x)]− Ef [h(x)]2. (3.3.3)
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To minimise (3.3.3), the term Eq[w(x)2h2(x)] must be minimised. Jensen’s inequality

shows that a lower bound is

Eq[w(x)2h2(x)] ≥ Eq[w(x)|h(x)|]2 =

(∫
X
|h(x)|f(x)dx

)2

and Geweke (1989) shows that the optimal choice of q which minimises the variance

of the estimator Ef [h(X)] and obtains the lower bound is

q∗(x) =
|h(x)|f(x)∫
X |h(z)|f(z)dz

.

The proof of these results is given in Robert and Casella (2004).

3.4 Markov chain Monte Carlo

In this section, we review Markov chain Monte Carlo (MCMC) methods which do not

use i.i.d. samples but dependent samples instead. These are generated in a Markov

chain to approximate the integrals of interest. A Markov chain contains a sequence

of samples x(1), x(2), . . . , x(N), where the probability distribution of each x(i) given the

previous samples depends only on the previous sample x(i−1); in other words,

p(x(i)|x(i−1), x(i−2), . . . , x(1)) = p(x(i)|x(i−1)).
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Each sample in the Markov chain is generated by sampling from a conditional distri-

bution

x(i) ∼ K(x(i−1), x(i)), i = 1, 2, . . . , N,

where K(·, ·) is known as the transition kernel. As the Markov chain advances, it

converges to a probability distribution known as the stationary distribution or invari-

ant distribution. If the target distribution f(x) is the invariant distribution, then

x(i−1) ∼ f(·)⇒ x(i) ∼ f(·), and the transition kernel satisfies the property

∫
X
K(x′, x)f(x)dx = f(x′).

Given a Markov chain that is irreducible, aperiodic and has a stationary distribution

f(x), then it has the ergodic property,

h̄N =
1

N

N∑
i=1

h(x(i))→ Ef [h(X)],

with probability 1 as N → ∞, where h̄N is the ergodic average. Further details on

the properties of Markov chains can be found in Robert and Casella (2004).

An MCMC sampler constructs a Markov chain that has the target distribution

as the invariant distribution. The sampler is designed so that it satisfies detailed

balance, that is, for a Markov chain, {x(i)}Ni=1, with a transition kernel, K(x, x′), then

K(x, x′)f(x) = K(x′, x)f(x′), for x, x′ ∈ X . (3.4.1)
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When designing a sampler, it must converge quickly. In practice, when the MCMC

sampler is run, the initial sample x(0) is set in a region of f(x) with high probability

to ensure that it converges quickly to the invariant distribution. However, this is

not always possible, so we obtain a large number of samples and discard the first

n < N samples as burn-in before calculating any summary statistics of interest. We

can also, if we have a large Markov chain, select every kth sample in the chain as a

post-processing step, known as thinning, to reduce the dependence between samples.

3.4.1 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984), also known as alternating conditional

sampling, is one example of an MCMC algorithm that is often used for multivari-

ate problems where we have several variables x = (x1, . . . , xk) to sample from. To

start the Gibbs sampler we an initial value for each component is selected, i.e.,

x(0) = (x
(0)
1 , . . . , x

(0)
k ). Then, in each iteration, we sample a new value of each com-

ponent x
(i)
j conditional on the remaining components f(xj|x(i−1)

−j ), where x
(i−1)
−j =

(x
(i−1)
1 , . . . , x

(i−1)
j−1 , x

(i−1)
j+1 , . . . , x

(i−1)
k ). The sampling steps in each iteration are often re-

ferred to as Gibbs updates, and when we update each variable, we use the most recent

values of the other components. The pseudocode for the Gibbs sampler is provided

in Algorithm 3.
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Algorithm 3: Gibbs Sampling
Input: f, h, N .

Output: Monte Carlo estimate of f̂(h).

Initialise: x(0) = (x
(0)
1 , . . . , x

(0)
k ).

for i = 1, . . . , N do

Generate x
(i)
1 ∼ f(x1|x(i−1)2 , . . . , x

(i−1)
k ).

Generate x
(i)
2 ∼ f(x2|x(i)1 , x

(i−1)
3 , . . . , x

(i−1)
k ).

. . .

Generate x
(i)
k ∼ f(xk|x

(i)
1 , . . . , x

(i)
k−1).

end

3.4.2 Metropolis-Hastings

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is another

example of an MCMC algorithm. A key aspect of the algorithm is the proposal

distribution q(x′|x), which draws new samples, x′, given the current value in the

Markov chain, x. The proposal distribution is easy to sample from and is known

up to a constant of proportionality; however, it is not necessarily symmetric, that is,

q(x′|x) 6= q(x|x′). At the ith iteration, given the current value in the Markov chain,

x(i−1) = x, we propose a new sample x′ using q(x′|x), and it is either accepted with

probability

α(x, x′) = min

{
1,
f(x′)q(x|x′)
f(x)q(x′|x)

}
, (3.4.2)

as the next value in the Markov chain, meaning x(i) = x′, or rejected. If the proposal

is rejected, we set x(i) = x as the next value in the Markov chain. The pseudocode

for the Metropolis-Hastings algorithm is provided in Algorithm 4.
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Algorithm 4: Metropolis-Hastings
Input: f, h, q, N .

Output: Monte Carlo estimate of f̂(h).

Initialise: x(0).

for i = 1, . . . , N do

Sample proposal x′ ∼ q(x′|x(i−1))

Calculate acceptance probability α(x(i−1), x′) = min

{
1, f(x′)q(x(i−1)|x′)

f(x(i−1))q(x′|x(i−1))

}
Accept x′ with probability α(x(i−1), x′) and set x(i) = x′. Otherwise, set

x(i) = x(i−1)

end

The Metropolis-Hastings algorithm is a generalised version of the Gibbs sampler,

but the two algorithms are popular variants of MCMC. If we consider the Gibbs

sampler for the multivariate problem and imagine that we are aiming to update each

component of f(x) individually, then we can rewrite f(x) = f(x′j|x−j)f(x−j) be-

cause only the jth component can vary. We can also set the proposal q(x′|x) =

q(x′j,x
′
−j|xj,x−j) = f(x′j|x−j) which results in the following acceptance probability

α(x, x′) = min

{
1,
f(x′)q(x|x′)
f(x)q(x′|x)

}
= min

{
1,
f(x′j|x′−j)f(x′−j)q(xj,x−j|x′j,x′−j)
f(xj|x−j)f(x−j)q(x′j,x

′
−j|xj,x−j)

}
= min

{
1,
f(x′j|x′−j)f(x′−j)f(xj|x−j)
f(xj|x−j)f(x−j)f(x′j|x′−j)

}
(3.4.3)

= 1.

We see that the terms in (3.4.3) cancel because x′−j = x−j. This means that we always

accept the proposal in the Gibbs sampler as only the jth component is updated.

The Metropolis-Hastings algorithm creates a Markov chain which is guaranteed
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to converge to a unique stationary distribution that is the target density. This is

shown using detailed balance. If f(x) is the stationary distribution of a Markov

chain with transition kernel K(x, x′), then it can be shown that (3.4.1) is satisfied.

The transition kernel for the Metropolis-Hastings algorithm is defined as K(x, x′) =

q(x′|x)α(x, x′) +
(
1 −

∫
α(x, y)q(y|x)dy

)
δx(dx

′), where the acceptance probability is

defined as (3.4.2). If we reject x′, then it is trivial to show that

(
1−

∫
α(x, y)q(y|x)dy

)
δx(dx

′) =

(
1−

∫
α(x′, y)q(y|x′)dy

)
δx′(dx)

satisfies detailed balance. Otherwise, if we accept x′, then it can be shown that

K(x, x′)f(x) = q(x′|x)α(x, x′)f(x)

= q(x′|x) min

{
1,
f(x′)q(x|x′)
f(x)q(x′|x)

}
f(x)

= min{f(x)q(x′|x), f(x′)q(x|x′)}

= min

{
f(x)q(x′|x)

f(x′)q(x|x′)
, 1

}
f(x′)q(x|x′)

= α(x′, x)q(x|x′)f(x′)

= K(x′, x)f(x′).

3.5 Sequential Monte Carlo methods

We have shown how Monte Carlo methods can be employed to evaluate integrals of

interest in statistics. MCMC samplers are a widely-used Monte Carlo method for

Bayesian inference when we are interested in quantifying aspects of posterior distri-
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butions that cannot be directly calculated. However, there are some drawbacks to

using MCMC. First, the method can suffer from slow convergence, making it difficult

to know low long to run the chain if it is slow-mixing. If we have an online problem,

where we observe a data stream from a target distribution, then we cannot use MCMC

to perform recursive estimation; the last MCMC sample cannot be used, and so we

have to rerun the sampler each time we receive new data. This motivates the need for

sequential Monte Carlo (SMC) methods that can perform Monte Carlo integration on

a sequential basis.

SMC methods are a class of sampling algorithms that estimate a target distribution

of interest sequentially. Each target distribution is approximated by a collection of

random samples, defined as particles. The particles evolve at each iteration using

importance sampling and resampling steps. An introduction to SMC methods can be

found in Doucet et al. (2001), and summaries on their development are discussed in

Del Moral et al. (2006); Doucet and Johansen (2009); Naesseth et al. (2019).

The literature on SMC typically discusses how these methods obtain approxi-

mations of the filtering densities in state-space models and are often referred to as

particle filters in this context. In standard Bayesian inference problems, SMC meth-

ods have also been considered as an alternative method to using MCMC (Neal (2001);

Chopin (2002); Del Moral et al. (2006)) to estimate a sequence of posterior distribu-

tions in an online setting. In this thesis, we are interested in the latter application,

so we acknowledge that the review of SMC methods for state-space models is not

fully comprehensive, but the methods illustrate how SMC methods have developed

over time. We begin by introducing the main two concepts, sequential importance
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sampling and resampling, and describe the applications, where these methods have

been used, before summarising the general SMC framework.

3.5.1 Sequential importance sampling

First, we describe how importance sampling (see Section 3.3) is applied sequentially

to estimate a sequence of target densities. In sequential importance sampling (SIS)

(Liu and Chen, 1998), we denote a sequence of target distributions to estimate as

ft(·), t = 1, . . . , T . A sequence of proposal distributions is also constructed with the

following recursion,

qt(x1:t) = qt−1(x1:t−1)qt(xt|x1:t−1)

= q1(x1)
t∏

k=2

qk(xk|x1:k−1).

At time t−1, we have N samples, henceforth referred to as particles, and their associ-

ated normalised importance weights in a particle set {x(i)t−1,W
(i)
t−1}Ni=1 that approximate

the density ft−1(x1:t−1). The assumption in SIS is that if any two consecutive dis-

tributions ft−1 and ft are relatively similar, then we should be able to propagate

the particles appropriately (Del Moral et al., 2006). The next target distribution,

ft(x1:t), is estimated by sampling the new particle values {x(i)t }Ni=1 from the proposal

distribution qt(·|x(i)1:t−1), storing the paths of each particle, x
(i)
1:t = {x(i)1:t−1, x

(i)
t }Ni=1, and

adjusting the weights accordingly to reflect the current target density. The unnor-
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malised importance weights can also be calculated as a recursion

wt(x1:t) =
f̃t(x1:t)

qt(x1:t)

=
f̃t−1(x1:t−1)

qt−1(x1:t−1)

f̃t(x1:t)

f̃t(x1:t−1)qt(xt|x1:t−1)

= wt−1(x1:t−1)
f̃t(x1:t)

f̃t(x1:t−1)qt(xt|x1:t−1).

Typically the particle weights are normalised after the adjustment, W
(i)
t = w

(i)
t /
∑N

i=1w
(i)
t ,

and we repeat the procedure for each time step. We present the algorithm for SIS in

Algorithm 5.

Algorithm 5: Sequential Importance Sampling

Input: f̃1:T , h, q1:T , N .

Output: Monte Carlo estimate of f̂(h).

for t = 1 do

Sample particles, {x(i)1 }Ni=1 ∼ q1(·).
Calculate importance weights, w

(i)
1 = f̃1(x

(i)
1 )/q1(x

(i)
1 ) ∀i.

Normalise the importance weights W
(i)
1 = w

(i)
1 /

∑N
i=1w

(i)
1 ∀i.

end

for t = 2, . . . , T do

Sample particles, {x(i)t }Ni=1 ∼ qt(·|x
(i)
1:t−1).

Calculate importance weights, w
(i)
t = Wt−1(x1:t−1)

f̃t(x1:t)

f̃t(x1:t−1)qt(xt|x1:t−1),
∀i.

Normalise the importance weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t ∀i.

end

Particle degeneracy

With each iteration, the variance of the importance weights will increase over time.

This can result in a few particles, or even a single particle, being assigned significant
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weight to approximate the target density whilst an increasing number of particles will

have negligible weight. This problem is known as particle degeneracy and causes the

accuracy of the approximation of the target distribution to deteriorate with each iter-

ation. In practice, a resampling step is incorporated to replicate the heavier weighted

particles and discard the particles with negligible weight.

3.5.2 Sequential importance resampling

Resampling (with replacement) is used in SMC to overcome the problem of particle

degeneracy, as resampling aims to improve the approximation of the target distribu-

tion by taking a sample of the current approximation (Doucet and Johansen, 2009).

We resample N times from the particle set, {x(i)t ,W
(i)
t }Ni=1, to obtain a new equally

weighted particle set, reducing the variance of the weights. The particles with negli-

gible weights are discarded, and those with heavier weights are replicated. The main

advantage of resampling particles is that when calculating estimates of interest, the

computational cost of particles with negligible weights is removed whilst we can use

the more informative particles. This step is incorporated into the SIS scheme after

the particles have been reweighted from ft−1 to ft, creating the sequential importance

resampling (SIR) framework (see Algorithm 6).

Several resampling schemes have been considered in the SMC literature. Gordon

et al. (1993) uses multinomial resampling where the expected number of copies of

a particle is proportional to its weight. Since then, alternative resampling schemes

have been proposed, such as systematic (Kitagawa, 1996), residual (Liu and Chen,

1998), and stratified resampling (Carpenter et al., 1999), and are described in Douc
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and Cappé (2005); Doucet and Johansen (2009). It is shown in Douc and Cappé

(2005) that residual and stratified resampling improves over multinomial resampling

by having a lower conditional variance. Although systematic resampling lacks full

theoretical analysis, it is also preferred over multinomial resampling because it can

give comparable results, and is easier to implement.

There may be a possibility that resampling is unnecessary. In some cases, repeated

resampling can lead to particle impoverishment (Berzuini and Gilks, 2003) on the set

of particles, which occurs when too few distinct particle values represent the given

target distribution. This can be avoided by carefully choosing how and when we

resample. One option is to observe the variance of the importance weights; a small

variance indicates a good approximation of the target distribution. Another option is

to monitor the effective sample size (ESS) (Kong et al., 1994),

ESS =
1∑N

i=1(W
(i)
t )2

.

ESS can take a value between 1 and N , and we typically resample when it is below

a specified threshold. A typical suggestion, proposed by Liu (2001), is to resample if

ESS < N/2.
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Algorithm 6: Sequential Importance Resampling

Input: f̃1:T , h, q1:T , N .

Output: Monte Carlo estimate of f̂(h).

for t = 1 do

Sample particles, {x(i)1 }Ni=1 ∼ q1(·).
Calculate importance weights, w

(i)
1 = f̃1(x

(i)
1 )/q1(x

(i)
1 ) ∀i.

Normalise the importance weights W
(i)
1 = w

(i)
1 /

∑N
i=1w

(i)
1 ∀i.

if Resampling condition is met then

Resample particles to obtain {x(i)1 ,W
(i)
1 = 1/N}Ni=1.

end

end

for t = 2, . . . , T do

Sample particles, {x(i)t }Ni=1 ∼ qt(·|x
(i)
1:t−1).

Calculate importance weights, w
(i)
t = f̃t(x

(i)
1:t)/qt(x

(i)
1:t) ∀i.

Normalise the importance weights W
(i)
t = Wt−1(x1:t−1)

f̃t(x1:t)

f̃t(x1:t−1)qt(xt|x1:t−1),
∀i.

if Resampling condition is met then

Resample particles to obtain {x(i)t ,W
(i)
t = 1/N}Ni=1.

end

end

3.5.3 Particle filters

State space models

The original application for SMC methods was to perform analysis on state space

models (SSMs), known in this context as particle filters. SSMs are a class of mod-

els for time series data. They represent a sequence of observations, {yt}Tt=1, which

are conditionally independent given a sequence of latent variables {xt}Tt=0 and are

generated by the observation density gθ(yt|xt). The unobserved states of the system

{xt}Tt=0 are dependent on their previous states and are generated by the state evolu-

tion density fθ(xt|xt−1) with an initial latent state density µθ(x0). Both densities are
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dependent on the model parameters θ which are assumed to be known. The Marko-

vian dependencies in a general SSM can be represented graphically as in Figure 3.5.1

and algebraically,

X0 ∼ µθ(x0),

Xt|Xt−1 = xt ∼ fθ(xt|xt−1), for t = 1, . . . , T,

Yt|Xt = yt ∼ gθ(yt|xt), for t = 1, . . . , T.

Figure 3.5.1: A graphical representation of the dependence structure between the
states and the observations in a general SSM.

In this framework, we are interested in inference about {xt}Tt=1 given the sequence

of observations {yt}Tt=1. This is conducted using the posterior distribution pθ(x0:t|y1:t)

which is proportional to the joint distribution pθ(x0:t, y1:t),

pθ(x0:t|y1:t) =
pθ(x0:t, y1:t)

pθ(y1:t)

∝ µθ(x0)
t∏

k=1

fθ(xk|xk−1)
t∏

k=1

gθ(yk|xk).

Typically, we are interested in estimating the marginal posterior, or filtered densities,
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{pθ(xt|y1:t)}Tt=1. Alternatively, we may be interested in estimating the smoothing den-

sities, {pθ(xt|y1:T )}Tt=1. Using Bayes’ theorem, the posterior can be updated through

the recursion

pθ(xt|y1:t) =

∫
fθ(xt|xt−1)gθ(yt|xt)

pθ(yt|y1:t−1)
pθ(xt−1|y1:t−1)dxt−1 (3.5.1)

∝
∫
fθ(xt|xt−1)gθ(yt|xt)pθ(xt−1|y1:t−1)dxt−1,

where the predictive likelihood is given as

pθ(yt|y1:t−1) =

∫
fθ(xt|xt−1)gθ(yt|xt)pθ(xt−1|y1:t−1)dxt−1:t.

Inference for SSMs was first discussed by Kalman (1960), where fθ(xt|xt−1) and

gθ(yt|xt) are Gaussian models. These are known as Kalman filters and an exact

expression for (3.5.1) can be calculated. If instead fθ(xt|xt−1) and gθ(yt|xt) are not

Gaussian, then it is difficult to find an analytical expression for (3.5.1). This has

encouraged the use of Monte Carlo methods, such as MCMC and SMC, to estimate

each latent state xt given the observations y1:t. SMC methods were first introduced

in Gordon et al. (1993) and improvements in the methodology are given, for example,

in Kitagawa (1996); Liu and Chen (1998); Pitt and Shephard (1999); Carpenter et al.

(1999); Doucet et al. (2001); Fearnhead (2002). A review of these methods is presented

in Godsill and Clapp (2001); Cappé et al. (2007); Doucet and Johansen (2009).

In each iteration of SMC, we have a weighted particle set {W (i)
t−1, x

(i)
t−1}Ni=1 that
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approximates the marginal posterior or filtered density,

p̂θ(xt|y1:t) ∝
N∑
i=1

W
(i)
t−1fθ(x

(i)
t |x

(i)
t−1)gθ(yt|x

(i)
t ).

To approximate the next latent state upon observing yt, the particles are propagated

from time t− 1 to t by sampling {x(i)t }Ni=1 from a proposal distribution qθ(xt|x1:t−1, yt)

so that the paths of the particles can be updated x
(i)
1:t = {x(i)1:t−1, x

(i)
t }. The particle

weights are also updated,

w
(i)
t ∝ W

(i)
t−1

gθ(yt|x(i)t )fθ(x
(i)
t |x

(i)
t−1)

qθ(x
(i)
t |x

(i)
1:t−1, yt)

, i = 1, . . . , N,

and are normalised after each iteration. The pseudocode for the general particle filter

is presented in Algorithm 7.

Algorithm 7: General Particle Filter
Input: f1:T , g, µ, q1:T , N .

Output: Monte Carlo estimate of p̂θ(xt|y1:t) ∝
∑N

i=1W
(i)
t fθ(x

(i)
t |x

(i)
t−1)gθ(yt|x

(i)
t ).

Sample particles, {x(i)0 }Ni=1 ∼ µ0(·) and set {w0 = 1/N}Ni=1.

for t = 1, . . . , T do

Sample particles, {x(i)t }Ni=1 ∼ qθ(·|x
(i)
1:t−1, yt).

Calculate importance weights, w
(i)
t ∝W

(i)
t−1

gθ(yt|x
(i)
t )fθ(x

(i)
t |x

(i)
t−1)

qθ(x
(i)
t |x

(i)
1:t−1,yt)

∀i.

Normalise the importance weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t ∀i.

if Resampling condition is met then

Resample particles to obtain {x(i)t ,W
(i)
t = 1/N}Ni=1.

end

end
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Parameter estimation of θ

In Section 3.5.3 it was assumed that the model parameters, θ, were known and the

focus was to estimate the latent states given a sequence of observations. However,

in some cases, the model parameters θ used to generate the latent states and the

observations are unknown. Several approaches, both Bayesian and frequentist, have

been considered for this problem, depending on whether data are observed in an

offline or online manner. In a Bayesian approach, the unknown parameter is assigned

a prior distribution, so the posterior density of θ given the observations is p(θ|y1:t).

Inference for θ is performed using the joint posterior density in the offline case or

by using the sequence of posterior densities in the online case as more observations

become available. If we can compute p(x1:t, y1:t), and in turn p(xt|y1:t), then we can

sequentially update the marginal likelihood

pθ(y1:t) = pθ(y1)
t∏

k=2

pθ(yk|y1:k−1),

and the model parameters can be estimated as follows

p(θ|y1:t) =
p(θ)p(y1:t|θ)∫
p(θ)pθ(y1:t)dθ

∝ p(θ)pθ(y1:t).

This problem has been considered in Gordon et al. (1993); Berzuini and Gilks (2001);

Liu and West (2001); Storvik (2002); Fearnhead (2002) and an overview of existing

methods is provided in Goel et al. (2005); Cappé et al. (2007); Kantas et al. (2009,

2015). However, the online Bayesian inference problem remains a challenge because
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the methods suffer from the degeneracy problem since θ does not evolve through time

(see Section 3.5.1 for more details).

3.5.4 Sequential Monte Carlo for Bayesian inference

The same methods employed for SSMs can be applied to a different Bayesian setting,

where we now have a collection of i.i.d. observations, y1, . . . , yn, generated from a

probability distribution with density, f(y|θ). The parameter θ represents the density

model parameters and given the prior density for the model parameters, π(θ), the

objective is to calculate the posterior density

π(θ|y1:n) ∝ π(θ)
n∏
i=1

f(yi|θ).

Usually π(θ|y1:n) is analytically intractable, but a common approach is to use

Monte Carlo methods, such as MCMC, which only require the calculation of the

product of the prior and the likelihood to estimate the posterior distribution and

other summary statistics of interest. However, a weakness of MCMC is when we

consider the target distribution to evolve as we receive new observations over time.

Hence, we now have a sequence of target distributions, πt(·), t = 1, . . . , T , varying

over time, that we wish to approximate. This suffers from a growing computational

cost whenever a new observation is received. We can use SMC methods to propagate

the particles we have from one distribution to the next in a way that admits fixed

computational complexity at each time step. This application of SMC methods is a

particular focus of this thesis.
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3.5.5 Sequential Monte Carlo framework

We introduce the general framework for SMC for an arbitrary set of target distribu-

tions and a set of proposal distributions that do not always need to have a density.

Here, we closely follow the methodology and notation in Del Moral et al. (2006). In

this section, we define the target distribution as

πt(x1:t) =
γt(x1:t)

Zt
,

where γt is known pointwise, but the normalisation constant Zt might be unknown.

The goal is to be able to sample the target distributions sequentially. If we were to use

SIS, then we would sample from an importance distribution qt(x1:t) and the associated

unnormalised weights would be computed recursively using the decomposition

wt(x1:t) =
γt(x1:t)

qt(x1:t)

=
γt−1(x1:t−1)

qt−1(x1:t−1)

γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)

= wt−1(x1:t−1)
γt(x1:t)

γt−1(x1:t−1)qt(xt|x1:t−1)
.

If the density qt(xt|x1:t−1) does not have a closed form solution, then we cannot calcu-

late the weights at this step, as we would have to account for every possible path that

each particle could take up to time t− 1. The solution is to introduce auxiliary vari-

ables. Therefore, instead of approximating πt(xt), which depends on every possible

particle path, we use π̃t(xt) which depends on the particle path we have generated.
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Introducing backward kernels

For any general γt, we want to be able to sample from some approximate γ̃t that

admits γt as a marginal distribution, so the sequence of joint target distributions can

be defined as

π̃t(x1:t) =
γ̃t(x1:t)

Zt
.

Let {Lk}t−1k=1 represent a sequence of artificial backward Markov kernels such that each

Lt(xt+1, xt) is the probability density of moving from xt+1 to xt. These kernels can

be defined arbitrarily, and we can redefine the joint distribution of the unnormalised

likelihood as the recursive decomposition,

γ̃t(x1:t) = γt(xt)
t−1∏
k=1

Lk(xk+1, xk)

=
γt(xt)

γt−1(xt−1)
Lt−1(xt, xt−1) γt−1(xt−1)

t−2∏
k=1

Lk(xk+1, xk)

=
γt(xt)

γt−1(xt−1)
Lt−1(xt, xt−1) γ̃t−1(x1:t−1).

Within this framework, we can summarise a generic SMC sampler. In each itera-

tion, we begin with a set of weighted particles {x(i)1:t−1,W
(i)
t−1}Ni=1. At the next iteration,

t, we extend the path of each particle with some forward Markov kernel, denoted

Kt(xt−1, xt), to obtain {x(i)1:t}Ni=1. The discrepancy between the proposal distribution

qt(x1:t), now defined as

qt(x1:t) = q1(x1)
t∏

k=2

Kk(xk−1, xk),
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and the estimated joint target distribution π̃t(x1:t) is calculated by importance sam-

pling. The result is a new approximation of the unnormalised particle weights,

wt =
γ̃(x1:t)

qt(x1:t)
= Wt−1(x1:t−1)w̃t(xt−1, xt)

where the unnormalised incremental weights are

w̃t(xt−1, xt) =
γt(xt)Lt−1(xt, xt−1)

γt−1(xt−1)Kt(xt−1, xt)
.

After the reweighting step, we normalise the particle weights.

Since the discrepancy between the target distribution π̃t and the proposal qt in-

creases with t, the variance of the unnormalised importance weights increases as well,

leading to a degeneracy of the particle approximation. This can be mitigated using re-

sampling based on some specified decision criterion and resetting the particle weights

to be equally weighted.

Optimal and sub-optimal backward kernels

The backward kernel is arbitrary; however, it should be selected with respect to the

forward kernels to optimise the performance of the SMC sampler. Proposition 1 of

Del Moral et al. (2006) shows that the sequence of backward kernels {Lk}tk=1, which

minimises the variance of the unnormalised particle weights wt(x1:t), is given by

Lk−1(xk, xk−1) =
qk−1(xk−1)Kk(xk−1, xk)

qk(xk)
, (3.5.2)
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and in this case, the weights are

wt(x1:t) =
γt(xt)

qt(xt)
,

where γt(xt) is the target marginal distribution at time t. It is typically impossible to

use the sequence of optimal kernels in practice because the kernels rely on marginal

distributions that do not admit any closed-form expression.

Instead, a suboptimal alternative is to substitute πt−1 for qt−1 in (3.5.2) as an

approximation to the optimal kernel, that is,

Lt−1(xt, xt−1) =
πt−1(xt−1)Kt(xt−1, xt)∫

X πt−1(xt−1)Kt(xt−1, xt)dxt−1
, (3.5.3)

which results in the unnormalised incremental weight update as

w̃t(xt−1, xt) =
γt(xt)∫

X γt−1(xt−1)Kt(xt−1, xt)dxt−1
.

Del Moral et al. (2006) claim that the suboptimal kernel (3.5.3) is a good choice of

kernel since γt is known analytically, whilst qt is not.

Choosing backward kernel when using a forward MCMC kernel

If we select Kt to be an MCMC kernel that is invariant to πt to act as a transition

kernel, then we can use an alternative approximation to (3.5.3). Substituting πt for
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πt−1, equation (3.5.3) becomes

Lt−1(xt, xt−1) =
πt(xt−1)Kt(xt−1, xt)∫

πt(xt−1)Kt(xt−1, xt)dxt−1

=
πt(xt−1)Kt(xt−1, xt)

πt(xt)
,

which is a good approximation of the backward kernel, provided that the discrepancy

between πt−1 and πt is small. We see that when this backward kernel is used, the un-

normalised incremental weights in iteration t now depend on the particles in iteration

t− 1; that is,

w̃t(xt−1, xt) =
γt(xt−1)

γt−1(xt−1)
. (3.5.4)

This calculation of the weights in (3.5.4) is easy to compute; however, if the discrep-

ancy between πt−1 and πt is not small, then the variance of the incremental weights will

be large. Incorporating MCMC kernels has been explicitly proposed in Neal (2001);

Fearnhead (2002); Chopin (2002); Storvik (2002). Berzuini and Gilks (2001) also

discuss applying MCMC moves within SMC, typically after resampling, to introduce

particle diversity as the particles will still be a representation of the target density.

This is known as the resample-move SMC framework. We can apply the MCMC ker-

nel as many times as we would like and there is no need to specify a burn-in period,

as would be the case in a standard MCMC scheme. This is because before moving,

the set of equally weighted particles can be viewed as an approximated sample of the

target density, πt, which is preserved regardless of the number of times we apply the

transition kernel. A graphical representation of the SMC sampler can be found in
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Figure 3.5.2 and the corresponding pseudocode can be found in Algorithm 8.

In this thesis, we apply the resample-move framework of Berzuini and Gilks (2001)

to the Mallows model to study the cases where we receive new full rankings for a single

model (Chapter 4), new partial rankings and updated partial rankings for existing

assessors in a single model (Chapters 5 and 6), and new full rankings for mixture

model (Chapter 7). The resample-move pseudocode is presented in Algorithm 9.

Figure 3.5.2: A graphical representation of a general SMC sampler adapted from
Doucet et al. (2001). Each particle is propagated through a series of importance
sampling, resampling and move stages.
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Algorithm 8: Sequential Monte Carlo

Input: π = γ/Z, q1:T , N .

Output: Monte Carlo estimate of π̂(·).
for t = 1 do

Sample particles, {x(i)1 }Ni=1 ∼ q1(·).
Calculate importance weights, w

(i)
1 = γ1(x

(i)
1 )/q1(x

(i)
1 ) ∀i.

Normalise the importance weights W
(i)
1 = w

(i)
1 /

∑N
i=1w

(i)
1 ∀i.

if Resampling condition is met then

Resample particles to obtain {x(i)1 ,W
(i)
1 = 1/N}Ni=1.

Sample x
(i)′

1 ∼ K1(x
(i)
1 , ·).

end

end

for t = 2, . . . , T do

Sample particles, {x(i)t }Ni=1 ∼ qt(·|x
(i)
1:t−1).

Calculate importance weights, w
(i)
t = W

(i)
t−1

γt(x
(i)
1:t)

γt−1(x
(i)
1:t−1)qt(x

(i)
t |x

(i)
1:t−1)

∀i.

Normalise the importance weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t ∀i.

if Resampling condition is met then

Resample particles to obtain {x(i)1:t,W
(i)
t = 1/N}Ni=1.

Sample x
(i)′

t ∼ Kt(x
(i)
t , ·).

end

end
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Algorithm 9: Resample-move

Input: π = γ/Z, q1:T , K, N .

Output: Monte Carlo estimate of π̂(·).
for t = 1 do

Sample particles, {x(i)1 }Ni=1 ∼ q1(·).
Calculate importance weights, w

(i)
1 = γ1(x

(i)
1 )/q1(x

(i)
1 ) ∀i.

Normalise the importance weights W
(i)
1 = w

(i)
1 /

∑N
i=1w

(i)
1 ∀i.

Resample particles to obtain {x(i)1 ,W
(i)
1 = 1/N}Ni=1.

for k = 1, . . . ,K do

Sample x
(i)′

1 ∼ K1(x
(i)
1 , ·) ∀i.

end

end

for t = 2, . . . , T do

Sample particles, {x(i)t }Ni=1 ∼ qt(·|x
(i)
1:t−1).

Calculate importance weights, w
(i)
t = W

(i)
t−1

γt(x
(i)
1:t)

γt−1(x
(i)
1:t−1)qt(x

(i)
t |x

(i)
1:t−1)

∀i.

Normalise the importance weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t ∀i.

Resample particles to obtain {x(i)1:t,W
(i)
t = 1/N}Ni=1.

for k = 1, . . . ,K do

Sample x
(i)′

t ∼ Kt(x
(i)
t , ·) ∀i.

end

end

3.6 Clustering

In some situations, we may find that a collection of observations, y1, . . . , yn, is not

generated from a single model but from a multi-model, often referred to as a mixture

model. This means that each observation yi, i = 1, . . . , n is sampled from one of the

C components in the mixture model. We assign a latent variable zi ∈ {1, . . . , C} to

each observation to indicate which component of the mixture they belong to. The
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probability density function of the mixture model can be expressed as

π(y1:n|θ1:C , z1:n) =
n∏
i=1

C∑
c=1

τc p(yi|zi = c, θc),

where p(yi|zi = c, θc) is the mixture component and τc, c = 1 . . . , C is the component

weight representing the probability that an observation belongs to the cth mixture

component. The proportions of the mixture are non-negative such that
∑C

c=1 τc =

1. We assume that each component follows the same distributional form f(yi|θc).

Typically, it is assumed that the number of components, C, is known. However, in

the case that this is unknown, we note that several methods exist for determining C.

These are discussed in McLachlan et al. (2019).

Standard frequentist and Bayesian approaches can be applied to the clustering

problem. The EM algorithm (Dempster et al., 1977) can find the MLE of each com-

ponent of the mixture by finding the maximum of the complete log-likelihood function

given the expected values of the latent variables, including the cluster assignment for

each observation. In the Bayesian framework for clustering, several priors are specified

for the latent variables, and we are interested in estimating the posterior density of the

mixture model. This involves not only estimating the model parameters for each com-

ponent θ1:C but also the weights of the components τ1:C and the cluster assignments

for each observation z1:n. We can use MCMC methods such as the Gibbs sampler

(Geman and Geman, 1984), which performs augmentation the observable variable of

the cluster assignments for each observation. These approaches have been applied

to clustering with the Mallows model (see Chapter 2 for more details). Alternative
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Bayesian approaches for clustering have been studied, such as variational Bayes (Blei

and Jordan, 2006), which can handle high-dimensional mixture models and large data

sets well but lacks an exact approximation of the mixture distribution.

3.6.1 Dirichlet process mixture model

It is also possible to construct a mixture without knowing the number of components

to begin with. These can be constructed using Dirichlet process mixture (DPM) mod-

els (Antoniak, 1974). We assume that each yi from a set of observations, y1, . . . , yn, is

drawn independently from one of the components of the mixture, f(yi|θc), where θc

is the unknown cluster parameters. The cluster parameters are independently drawn

from the prior, π(θ), and a Dirichlet prior is also elicited for the cluster assignments

π(z1:n). Hence, the posterior density function for the mixture model is defined as

π(z1:n, θ1:c|y1:n) ∝ π(z1:n)
c∏
j=1

π(θj)
n∏
i=1

f(yi|θzi).

The Dirichlet prior for the cluster assignments z1:n is defined by the following recur-

sion,

p(zi+1 = j|z1:i) =


nj/(i+ αDPM) for j = 1, . . . , ci

α/(i+ αDPM) for j = ci + 1

,

where: nj is the number of observations that z1:i assigns to component j; ki is the

number of components in the assignment z1:i, and αDPM is the concentration param-

eter in the DPM which controls the number of clusters.
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3.6.2 Sequential Monte Carlo for mixture models

In Chapter 7, we consider SMC methods to fit a Mallows mixture model with full

rankings. Mixture models have been studied in the SMC framework (Chopin, 2002;

Del Moral et al., 2006) for finite mixture models. However, there has been a focus on

applying SMC methods to DPM models. These were first developed by Liu (1996) and

MacEachern et al. (1999) where observations are allocated to unobserved clusters in

the particles in SIS. This was extended by Fearnhead (2004) to consider particle filters,

which specified Dirichlet conjugate priors such that many parameters in the model

can be integrated out to perform efficient estimation. Ulker et al. (2010) elaborates on

Fearnhead (2004) and shows how the DPM model is presented under the general SMC

sampler framework of Del Moral et al. (2006). A summary on how SMC methods can

be applied to a variety of mixture models can be found in Carvalho et al. (2010).

3.6.3 Label switching

When applying Bayesian methods, such as MCMC, to explore the posterior of the

mixture model, the permutation labels for the components can change multiple times

between iterations as a result of the algorithm exploring one mode in the posterior to

the next. This is known as label switching (Redner and Walker, 1984).

The challenge with label switching is that the likelihood,

p(y1:n|θ1:C , z1:n) =
n∏
i=1

C∑
c=1

τc p(yi|zi = c, θc),

is invariant to the set PC which contains C! permutations to order C component la-
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bels. When estimating the component-specific parameters of the model or calculating

the marginal posterior distributions, the parameters are not identifiable because the

marginal posterior distributions will be identical for each mixture component. This

may happen because when analysing the data, each data point assigned to component

1, for example, may not have the same corresponding model parameters for that par-

ticular component labelled component 1 across all Monte Carlo samples. To resolve

this, we need to relabel the components during post-processing so that the compo-

nents are in the same order at every iteration. We summarise the standard strategies

for handling label switching problems.

Relabelling strategies

Sperrin et al. (2010) provides a summary of the strategy categories that exist to

resolve the label switching problem. Recently an R package for handling the label

switching problem with MCMC outputs, named label.switching was created by

Papastamoulis (2016) which lists several algorithms under the following three cate-

gories.

A simple approach would involve creating identifiability constraints on the component-

specific parameters (Peel and MacLahlan, 2000), e.g., π1 < π2 for a mixture model

made up of two components, such that there exists a unique permutation that satisfies

the constraints for each MCMC iteration. However, if we have many modes or the

component-specific parameters are multi-dimensional, then it can be difficult to cor-

rectly select the constraints since we do not know how to distinguish the components.

Deterministic relabelling algorithms select a particular permutation of the compo-
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nents at each iteration of the MCMC output that minimises the posterior expectation

of some loss function (Stephens, 2000). The component permutations are chosen based

on some characteristics of each iteration to measure the closeness of each pair of order

permutations. It is recommended to run the algorithm from multiple starting points

to guarantee convergence at the global maximum rather than at a local maximum.

Lastly, the probabilistic relabelling approach (first introduced by Jasra et al.

(2005)) assumes that instead of being able to determine the permutation at each

iteration, we assign a probability density over all possible permutations at each iter-

ation. In other words, the authors acknowledge the uncertainty in their relabelling.

Stephens (2000) show that this approach can be viewed as an application of the EM

algorithm (Dempster et al., 1977), where the available data are the MCMC output

and the missing data are component permutations at each MCMC iteration.



Chapter 4

Sequential Monte Carlo for the

Mallows Model with Full Rankings

4.1 Introduction

In this chapter, we introduce an SMC algorithm for approximating the Bayesian

Mallows model posterior sequentially when we observe full rankings on a discrete

timeline to perform inference. No previous attempts to use SMC methods for the

Mallows model have been made in the literature. A typical approach would be to

rerun the MCMC algorithm for the Bayesian Mallow model, such as the one described

in Vitelli et al. (2018), to update the estimate of the posterior distribution for every

additional ranking or collection of rankings observed. This is a viable option, but it is

computationally intensive if we frequently need to update the posterior estimate each

time we receive new information in a high volume; a typical problem with MCMC is

to determine when to stop sampling the Markov chain. This motivates the need to

78
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reduce the computational effort between runs of the MCMC scheme for the Bayesian

Mallows model when we observe new rankings. We aim to update the posterior

distribution sequentially each time we receive new information quickly otherwise the

posterior may not model the information correctly as we perform inference. One way

to reduce computational effort would be to propagate the samples we have from one

distribution to the next in such a way that has a fixed computational complexity at

each time step.

The structure of this chapter is as follows. In Section 4.2, we formulate the problem

and introduce the proposed SMC algorithm for estimating the Mallows posterior

sequentially given that we observe complete rankings in each time step. The behaviour

of the proposed algorithm is explored in Section 4.3 using a range of simulation studies

in Section 4.3.1 before being assessed using real data sets against the MCMC algorithm

for the Bayesian Mallows model (Vitelli et al., 2018) in Section 4.3.2.

4.2 Proposed method

4.2.1 Problem outline

Suppose that we are interested in performing inference with the Bayesian Mallows

model,

p(ρ, α|R1, . . . ,RM) ∝ π(ρ)π(α)

[Zn(α)]M
exp

{
− α

n

M∑
j=1

d(Rj,ρ)

}
,

where: M represents a fixed number of observed rankings; π(ρ) = (n!)−11Pn(ρ)

is the uniform prior for the consensus ranking with support |Pn|; and π(α|λ) =
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λ exp{−λα}1[0,∞)(α) is the exponential prior distribution for the scale parameter,

as specified by Vitelli et al. (2018). Then consider the situation where each new rank-

ing, or a collection of rankings, is observed over a sequence of time steps t = 1, . . . , T .

We assume that each complete ranking R, expressed by each assessor, is drawn from

a single Mallows model. Let R1:Mt represent the rankings observed up to time t and

assume that they remain fixed through the discrete-time sequence. We also define the

likelihood for Mt observations as p(R1:Mt|ρ, α). The task is to estimate the posterior,

πt(ρ, α|R1:Mt) ∝ π(ρ)π(α)p(R1:Mt|ρ, α),

sequentially each time we receive new observations.

4.2.2 Methodology

The proposed SMC algorithm for the Mallows model with complete rankings follows

the resample-move scheme (Berzuini and Gilks, 2001) which incorporates MCMC

moves with SMC after resampling. The methodology is as follows. The algorithm

starts at time t = 0 and draws N particles, each containing a sample of ρ
(i)
t and

α
(i)
t i = 1, . . . , N , to form the particle set {θ(i)

0 = (ρ
(i)
0 , α

(i)
0 )}Ni=1. The set can be

generated by one of two methods: If M0 is empty, then the posterior is the product

of the priors, so we draw the values for {ρ(i)
0 }Ni=1 and {α(i)

0 )}Ni=1 using the specified

prior distributions described in Section 4.2.1. If we have an initial set of rankings of

size M0 > 0 to define the initial posterior at time t = 0, then we can run an MCMC

algorithm and take a thinned set of samples generated after the burn-in period to
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create the particle set.

The algorithm iterates through a discrete-time sequence, t = 1, . . . , T . In each

iteration, we observe (Mt −Mt−1) new complete rankings, and so we need to calcu-

late the updated weights to account for the contributions each new observation has

to the current estimated posterior distribution. At the start of iteration t − 1, we

have the particle set and their associated normalised weights {θ(i)
t−1,W

(i)
t−1}Ni=1 which

approximate the density πt−1(ρ, α|R1:Mt−1). To estimate the next updated target

distribution based on the new observed ranking, πt(ρ, α|R1:Mt), we propagate the

particles {θ(i)
t−1}Ni=1 using a proposal distribution qt(·|θ(i)

t−1), and adjust the weights

accordingly to reflect the current posterior density. In SMC theory, the unnormalised

incremental weight for each particle at iteration t is

w̃t(θ
(i)
t ) =

πt(θ
(i)
t )

πt−1(θ
(i)
t−1)qt(θ

(i)
t |θ

(i)
t−1)

, (4.2.1)

where πt(·) represents some general target density at time t. In this scenario, the

proposal distribution depends on the collection of new observed rankings at time t,

but since we have no latent information to consider and the particles not moving at this

stage of the proposed algorithm, we find qt(θ
(i)
t |θ

(i)
t−1) = pt(θ

(i)
t |θ

(i)
t−1,RMt−1+1:Mt) = 1.

Therefore, the incremental weight update is the ratio of the new and current target
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distributions, and we can also rewrite (4.2.1) as

w̃t(θ
(i)
t ) =

πt(θ
(i)
t )

πt−1(θ
(i)
t−1)

=
π(θ

(i)
t )p(R1:Mt |θ

(i)
t )/p(R1:Mt)

π(θ
(i)
t−1)p(R1:Mt−1 |θ

(i)
t−1)/p(R1:Mt−1)

(4.2.2)

=
p(RMt−1+1:Mt|θ

(i)
t )p(R1:Mt−1)

p(R1:Mt)
(4.2.3)

∝ p(RMt−1+1:Mt |θ
(i)
t )

= (Zn(α
(i)
t−1))

−(Mt−Mt−1) exp

{
−
α
(i)
t−1

n

Mt∑
j=Mt−1+1

d(Rj,ρ
(i)
t−1)

}
,

where α
(i)
t−1 and ρ

(i)
t−1, i = 1, . . . , N are the current values of the parameter values of

the Mallows posterior. We can simplify (4.2.2) to (4.2.3) because at this stage of the

SMC algorithm θ
(i)
t = θ

(i)
t−1, so the priors for the model parameters cancel and we

can focus on calculating the likelihood for the new observed rankings. The particle

weights at time t are the product of the incremental weights and the particle weights

from the previous time step w
(i)
t (θt) = W

(i)
t−1(θt−1)w̃

(i)
t (θt). These are then normalised

to obtain Wt(θt).

Next, the particles are resampled using multinomial resampling to discard the

particles with negligible weight and replicate the heavier weighted particles. At this

point, we will have an equally weighted particle set, denoted {θ̄(i)
t ,W

(i)
t = 1

N
}Ni=1.

Lastly, we explore the current posterior density using the Metropolis-Hastings

MCMC move kernel Kt(θ̄
(i)
t ,θ

(i)
t ) to perturb the particle values for each parameter.

In particular, we use the proposal distributions for sampling values of ρ and α, as

suggested by Vitelli et al. (2018), for the Bayesian Mallows model. We use the leap-
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and-shift proposal distribution (Vitelli et al., 2018) to propose ρ
′(i)
t and the log-normal

distribution to propose α
′(i)
t . Further details on this proposal can be found in Section

2.5.3 of Chapter 2. In theory, we can apply the MCMC move kernel as many times as

we wish as we are invariant to the current target distribution πt. However, we should

not be heavily reliant on this aspect of the algorithm; we do not want to exceed the

number of iterations it would take to run an MCMC chain for each iteration of SMC,

otherwise the computational cost will not be reduced.

At the end of each iteration, the proposed SMC algorithm for the Mallows model

will generate an equally weighted set of N samples of {ρ(i)
t , α

(i)
t }Ni=1, which represents

the posterior density given all observed data. The pseudocode for the SMC algorithm

for the Mallows model with full rankings can be found in Algorithm 10.
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Algorithm 10: Sequential Monte Carlo for the Mallows Model with Full
Rankings

Input: λ, σα, d(·, ·), K, L, N, M1, . . . ,MT ; R1, . . . ,RMT
; T, Zn(α).

Output: Posterior distributions of ρ, α.

Initialisation of SMC: randomly generate ρ
(i)
0 , α

(i)
0 for i = 1, . . . , N .

for t = 1, . . . , T do
Observe RMt−1+1:Mt .
for i = 1 : N do

Compute

w̃
(i)
t = (Zn(α

(i)
t−1))

−(Mt−Mt−1) exp
{
− α

(i)
t−1

n

∑Mt
j=Mt−1+1 d(Rj ,ρ

(i)
t−1)

}
.

Compute w
(i)
t = W

(i)
t−1w̃

(i)
t .

end

Normalise the weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t .

Resample (k1, . . . , kN ) ∼M(W
(1)
t , . . . ,W

(N)
t ) and set

{θ̄(1:N)
t ,W

(i)
t } ← {θ

(k1:kN )
t , 1

N }.
for i = 1 : N do

for k = 1, . . . ,K do

M-H step: update ρ
(i)
t using the leap-and-shift proposal

(ρ′ ∼ L&S(ρ
(i)
t , L)).

M-H step: update α
(i)
t with log-normal proposal (α′ ∼ logN (α

(i)
t , σ

2
a)).

end

end

end

4.3 Experimental analyses

4.3.1 Exploratory analysis

First, we are interested in observing the general performance of the proposed SMC

framework when certain variables and parameters in the algorithm are altered. We be-

gin by describing the general default experiment set-up before explaining the variables

we test to observe their behaviour. The results of these experiments are presented in

Figure 4.3.1.

We analyse the behaviours for a different number of items, n ∈ {10, 20, . . . , 50}, in
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the synthetic data sets, each of which are generated using the function sample mallows

in the BayesMallows R package (Sørensen et al., 2020). In particular, we specify rho 0

= c(1:n items) and alpha 0 = 2 as the underlying parameters of the Mallows model

to generate the data set.

With each data set, we run the SMC algorithm by propagating N = 1, 000 particles

over T = 10 time steps, each time introducing ten new rankings and performing a

sequential update of the estimate of the posterior given the new observed rankings.

As a default, we specify ten applications of the MCMC move kernels for each model

parameter for each particle after resampling. In total, we apply 100,000 MCMC

kernels in total for each parameter in the particle set. We set the leap-size parameter

in the leap-and-shift proposal for ρ to be L = bn/5c, and we set the hyperparameter

and the standard deviation for the exponential proposal distribution for α to be

λ = 0.1 and σα = 0.5 respectively. We use the footrule distance when measuring the

distances between rankings throughout this chapter.

To measure the spread of the sampled values of ρ in the MCMC chain or particle

set from the “true” parameter, we use the posterior expected mean squared error

(MSE), defined in Liu et al. (2019a) as

mse = E
( 1

n
||ρ− ρ∗|| |R1, . . . ,RM

)
=

1

n

n∑
i=1

n∑
r=1

(r − ρ∗i )2p(ρi = r|R1, . . . ,RM),

since the shared consensus ranking is the parameter we are most interested in estimat-

ing. The MSE is an indicator of how close the sampler approximated the distribution

that was used to generate the data set if we know the true consensus ranking and the
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scale parameter, denoted here as ρ∗ and α∗, respectively. The sample spread may not

be close to ρ∗, but we expect the MSE to be the same for different samplers of the

same posterior distribution given the data. We ran ten repetitions of the algorithm

for each data set and calculated the 95% confidence interval of the MSE values.

We first look at allowing the scale parameter to vary. Each data set that we create

is generated by considering a different value of α ∈ {0.5, 1, . . . , 4.5, 5} to change the

level of variability in rankings around the consensus ranking. The results of this

experiment are provided in Figure 4.3.1a. The behaviour observed is based on what

we would expect: a high value of α would generate a data set with rankings that are

close to the consensus ranking in distance, so the MSE would likely be smaller than if

we estimated the MSE of a data set with a low value of α. This behaviour is clearly

shown when we used data sets containing rankings for a larger number of items as α

increases from 0.5 to 2.5.

Next, we assess the SMC algorithm with a different number of particles, N ∈

{500, 1000, 2500, 5000, 7500, 10000}, for each data set in Figure 4.3.1b. Given the

total number of rankings, we find that a significantly larger number of particles does

not affect the MSE value as we would expect. This also means that we can reduce

the computational effort if we want to limit the total computation.

In Figure 4.3.1c, we inspect the number of applications of the MCMC move kernels

{1, 2, 5, 10, 20} to see if there is an ideal range that provides a sufficient exploration of

the target posterior density at each time step in SMC. Each iteration of the proposed

SMC algorithm has a resampling step, so we need to apply some move steps to

replenish the diversity lost in resampling. Ideally, we do not want the total number of
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MCMC move kernels applied across the particles in one SMC iteration to exceed the

number of iterations to run a new MCMC chain each time we observe new rankings

otherwise the proposed SMC methodology is not computationally effective compared

to MCMC methods. The MSE decreases significantly when we increase the number

of MCMC moves from 1 to 10, then it decreases gradually as the number of moves

increases even more. This implies that incorporating some move kernels helps the

spread of the particle values to move closer to the “true” parameter.

Then, we consider how the number of new observations and the number of MCMC

moves, in each iteration affects the MSE estimation if we have a fixed amount of

computational effort allowed. For this experiment, we generate several data sets

containing 1,000 rankings for various numbers of items and consider the number of

new rankings in each iteration to be 5, 10, 20, 25, 50 and 100. This means that there

will be 200, 100, 50, 40, 20 and 10 times steps respectively for each case we consider.

To keep an overall fixed computational cost for MCMC iterations we use 1, 2, 4,

5, 10, and 20 MCMC kernel moves in each iteration of each experiment. We see in

Figure 4.3.1d, that for small numbers of items in the rankings, we do not see any major

difference in the MSE. However, for larger numbers of items, if we increase the number

of observations too much then we observe a lower value. This behaviour does match

with the SMC theory that assumes that so long as each sequential posterior does not

vary too much from the previous time step, then we should be able to update the

posterior estimate accordingly. A large number of new rankings would risk changing

the posterior distribution significantly and the particles will risk not being able to

estimate the evolving posterior.
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(a) Scale parameter value. (b) Number of particles.

(c) MCMC move kernel applications. (d) Number of rankings observed.

Figure 4.3.1: Summary plots containing the 95% confidence intervals of the MSE
for ten runs of each experiment for each synthetic data set containing n =
{10, 20, 30, 40, 50} items. The parameter or variable investigated is included in the
captions.
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4.3.2 Real data experiments

Potato data

We illustrate the performance of the SMC method against the MCMC method for the

Bayesian Mallows model with an example data set from the BayesMallows R package

(Sørensen et al., 2020) called potato visual. This data set has been studied in Liu

et al. (2019a) and contains M = 12 peoples’ assessments of the weights of n = 20

potatoes that were obtained by visually inspecting them. A true ranking was also

obtained by weighing the items to give potato true ranking.

In both methods, we set the exponential hyperparameter and the standard devi-

ation for the proposal distribution for α to be λ = 0.1 and σα = 0.15 respectively.

We ran the MCMC algorithm of Vitelli et al. (2018) for 10,000 iterations with the

complete data set as the observed data and discarded the first 5,000 as burn-in. In the

SMC algorithm, we propagated N = 1000 particles and performed sequential model

parameter updates each time we received a new ranking in the data set for T = 12

time steps. At each SMC iteration, we performed five applications of the MCMC

move kernels for ρ and α for each particle. This experiment is referred to as SMC-1

in the analysis provided in Figure 4.3.2 and Tables 4.3.1-4.3.2. Specifically, we set

L = 2 in the leap-and-shift proposal for ρ.

We use several estimates to assess the performance of each sampler. We can use

the output of the MCMC and SMC algorithms to calculate the marginal posterior

distributions of ρ and α. Due to the nature of ρ being represented as a vector, we use

a heat plot to illustrate the marginal posterior probabilities of ranking each item in A
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as rank i ∈ {1, 2, . . . , n} in ρ. We can also report the posterior density of ρ as a single

point estimate of a data set according to the maximum a posteriori (MAP) estimate.

Alternatively, we can report the cumulative probability (CP) consensus ranking. This

is determined by the procedure, as described in Vitelli et al. (2018): select the item

which has the maximum a posteriori marginal probability of being ranked 1st, then

the item which has the maximum a posteriori marginal posterior probability of being

ranked 1st or 2nd among the remaining ones, etc. The MSE is another single point

estimate that can be used to assess how well the sampler approximates the distribution

of the data. We can also report the cumulative probability of each item to be ranked

in shared consensus position, or higher, p(ρi ≤ i) and the 95% highest posterior

density interval (HPDI) for each item to show the posterior uncertainty. For the scale

parameter, we report the 95% confidence interval estimate.

Figure 4.3.2 shows the marginal posterior distribution of ρ and α with both meth-

ods. In Figures 4.3.2a-4.3.2b, the x-axis of the heat plots has the items are ordered

according to their true ranking, ρ∗ = potato true ranking, representing the pota-

toes in descending order of weights. The heat plot obtained by SMC appears to have

similar posterior probabilities, which have high accuracy, as the MCMC heat plot for

the heaviest items (P12, P13, P9) and the lightest items (P3 and P8) whilst there is

some variation between the two methods, in terms of accuracy, for the middle-range

items. This is supported by the estimation of the CP consensus and the 95% HDPIs

in Table 4.3.1. However, item P17 is shown in both methods to have a high posterior

probability of being ranked higher than its actual weight, but the MCMC algorithm is

more certain that P17 is likely to be ranked 5 whereas the SMC method could assign
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P17 a rank of either 4 or 5. The MCMC method does have a lower MSE value than

SMC due to displaying more certainty for the items to be allocated their “true” rank.

At this point, we want to see if increasing the computational effort of the proposed

SMC sampler will give a similar posterior approximation to MCMC. We increase the

number of MCMC move kernels from five to ten in each iteration. This experiment is

referred to as SMC-2 in Figure 4.3.2 and Tables 4.3.1-4.3.2. The marginal posterior

distributions of ρ are shown in Figures 4.3.2c with the MSE and posterior estimates

for α, and the additional posterior estimates of these experiments are given in Table

4.3.1. We see that an increase in the computational effort does obtain a posterior

estimate similar to that of MCMC. We obtain similar values of the MSE and the

estimated scale parameter in Figures 4.3.2a- 4.3.2c. The CP consensus for this SMC

experiment does produce slightly different ranks for items in ρ compared to the CP

consensus obtained by MCMC, except for the ranks for middle-ranked items being

swapped in pairs. The posterior densities for α in Figures 4.3.2a and 4.3.2c also appear

to give a similar estimate.

We also perform ten runs of each experiment and record the MSE and time taken

to run each algorithm. We record the time taken to run the MCMC algorithm with

the full data set of twelve rankings whereas we record the time taken to run the SMC

algorithm for the complete twelve iterations. This is summarised in Table 4.3.2. We

notice that the MCMC algorithm produces a consistent and more accurate estimate

of the MSE with a narrow confidence interval compared to both SMC experiments.

We expect the MSE values in MCMC and SMC to be the same and it is clear that

the SMC-2 experiment achieves a closer MSE result to the MCMC. The MCMC
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and the first SMC experiment take an equal amount of time to process the data set

whereas the second SMC experiment takes more than twice as long to run in time.

This is expected because we have twice as many MCMC moves iterations to process.

However, if we were to observe several more rankings, then it would take the MCMC

algorithm at least 0.2 seconds to run the chain for 10,000 iterations with the existing

and new rankings, whereas the two SMC experiments would take ∼0.02 and ∼0.05

seconds respectively to perform one iteration to update the particles with the new

ranking and apply 5,000 and 10,000 MCMC move iterations across 1,000 particles. In

this experiment, we see that the proposed SMC methodology can perform sequential

posterior updates in less computational time compared to running a new MCMC

chain for the same amount of computational effort in terms of the number of MCMC

iterations applied.

(a) MCMC: MSE = 1.07,
α̂ = 10.76 (9.55, 12.34).

(b) SMC-1: MSE = 1.39,
α̂ = 10.44 (9.96, 11.88).

(c) SMC-2: MSE = 1.07,
α̂ = 10.78 (9.34, 12.22).

Figure 4.3.2: Heat plots of the posterior probabilities, for n = 12 potatoes, for being
ranked as the kth most preferred, for k = 1, ..., 12 using the MCMC algorithm (left),
the SMC algorithm with five MCMC move kernel steps in each time step (middle),
and the SMC algorithm with ten MCMC move kernel steps in each time step (right).
On the x-axis, the items are ordered according to their true consensus. The MSE
value and the mean estimate of α with its corresponding 95% HDPI are included in
the captions.
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CP p(ρi ≤ i) 95% HDPI
ρ MCMC SMC-1 SMC-2 MCMC SMC-1 SMC-2 MCMC SMC-1 SMC-2

ρ1 P12 P12 P12 1 1 1 [1] [1] [1]
ρ2 P13 P13 P13 1 1 1 [2] [2] [2]
ρ3 P9 P9 P9 1 0.97 0.98 [3] [3] [3]
ρ4 P10 P10 P10 0.97 0.59 0.92 [4] [3,6] [4,5]
ρ5 P17 P17 P17 0.90 0.71 0.89 [4,6] [4,6] [4,6]
ρ6 P7 P7 P7 0.92 0.85 0.89 [5,7] [4,7] [5,7]
ρ7 P14 P14 P14 1 0.99 1 [6,7] [5,7] [6,7]
ρ8 P16 P16 P16 0.98 0.87 0.98 [8] [8,9] [8]
ρ9 P5 P11 P1 0.40 0.67 0.46 [9,12] [9,11] [9,12]
ρ10 P1 P19 P5 0.80 0.57 0.69 [9,11] [8,12] [10,12]
ρ11 P11 P1 P11 0.96 0.84 0.96 [9,12] [9,12] [9,12]
ρ12 P19 P5 P19 0.99 1 0.99 [10,12] [10,12] [10,12]
ρ13 P18 P20 P20 0.68 0.85 0.58 [13,14] [13,14] [13,14]
ρ14 P20 P18 P18 1 1 1 [13,14] [13,14] [13,14]
ρ15 P6 P6 P6 0.98 0.94 0.99 [15] [15,16] [15]
ρ16 P4 P2 P4 0.66 0.49 0.79 [16,18] [16,18] [16,18]
ρ17 P2 P15 P2 0.83 0.79 0.81 [16,18] [16,18] [16,18]
ρ18 P15 P4 P15 1 1 1 [17,18] [15,18] [17,18]
ρ19 P3 P3 P3 1 1 1 [19] [19] [19]
ρ20 P8 P8 P8 1 1 1 [20] [20] [20]

Table 4.3.1: Posterior estimates of the items in the Potato data set. Items are ar-
ranged according to the CP consensus ranking with their corresponding cumulative
probabilities and 95% HDPIs.

MCMC SMC-1 SMC-2

Method Mean 95% CI Mean 95% CI Mean 95% CI
MSE 1.05 (1.03, 1.08) 1.45 (1.29, 1.61) 1.12 (1.05, 1.18)

Time (s) 0.21 (0.20, 0.22) 0.24 (0.23, 0.25) 0.52 (0.52, 0.52)

Table 4.3.2: Summary table of the MSE and time taken to perform ten experiment
runs of the MCMC and SMC algorithms with the Potato data set.

Sushi data

Next, we study the benchmark Sushi data set (Kamishima, 2003) that contains M =

5000 full rankings over n = 10 varieties of sushi indicating sushi preferences. This

data set has typically been studied for the clustering problem (Lu and Boutilier, 2014;

Vitelli et al., 2018) as it represents a sample of sushi preferences collected across

Japan, and so there may be differences amongst the different regions of Japan and

hence several different shared consensus rankings.



CHAPTER 4. SMC MALLOWS WITH FULL RANKINGS 94

The experiment conditions are the same as those provided in Section 4.3.2 except

that for the SMC experiments, given the number of rankings in the Sushi data set,

we observe 100 rankings in each iteration for T = 50 iterations in total and the

standard deviation for the scale parameter is set to σα = 0.5. The posterior estimates

of the Mallows model parameters are displayed in Figure 4.3.3. We find that the

estimated shared consensus ranking is determined with a small number of iterations

in the MCMC chain and the SMC method after a few time steps; since we have a large

number of rankings for a small number of items, it is likely to achieve convergence

quickly. The heat plots in Figures 4.3.3a-4.3.3b show that both methods estimate

the shared consensus ranking with very high certainty: the MAP and CP consensus

rankings are the same and the 95% HDPI intervals do not include other possible

positions for each sushi item. We have also used the shared consensus ranking in

Table 4.3.3 as the x-axis for the heat plots in Figures 4.3.3a-4.3.3b. The posterior

estimate of the scale parameter obtained by SMC is comparable to that of the MCMC

method.

We also ran ten repeated experiments to see if the two methods were consistent

in the time taken to process the ranking data and can produce a consistent estimate

of the shared consensus ranking for the sushi items. These results can be seen in

Table 4.3.3. Notably, the SMC algorithm is consistent with its MSE value, implying

that it achieves the same estimated shared consensus ranking, whereas the mean MSE

obtained from the MCMC algorithm is 1.32. In three out of ten experiment runs, the

MSE was 4.40, which implies that the MCMC algorithm may converge to an alternate

estimate of ρ. The SMC algorithm appears to process the Sushi data set in a fraction
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of the time compared to the MCMC algorithm. Again, similar to the discussion in

Section 4.3.2, if we were to observe additional rankings, then the MCMC algorithm

would need to process the existing rankings in the Sushi data set again along with

the new rankings to create an MCMC chain 10,000 iterations long. With the SMC

algorithm, though it would take several seconds longer than the MCMC algorithm to

run, it would take half the computational effort in terms of the number of MCMC

move kernel applications in one iteration of SMC to update the posterior estimates

with the new rankings. In this experiment, the SMC algorithm is able to perform

inference with less computational effort than MCMC.

(a) MCMC: MSE = 0.00, α̂ =
1.72 (1.68, 1.76).

(b) SMC: MSE = 0.00, α̂ =
1.72 (1.68, 1.76).

Figure 4.3.3: Heat plots of the posterior probabilities, for n = 10 sushi items, for being
ranked as the kth most preferred, for k = 1, ..., 10 using the MCMC algorithm (left)
and the SMC algorithm (right). On the x-axis, the items are ordered according to their
CP consensus. The MSE value and the mean estimate of α with its corresponding
95% HDPI are included in the captions

ρ ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10
Item Fatty tuna Salmon roe Tuna Shrimp Sea eel Tuna roll Squid Sea urchin Egg Cucumber roll

Table 4.3.3: The CP consensus ranking of the sushi items in the Sushi data set.
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MCMC SMC

Method Mean 95% CI Mean 95% CI
MSE 1.32 (0.00, 2.84) 0.00 (0.00, 0.00)

Time (s) 6.60 (6.55, 6.64) 98.59 (98.37, 98.82)

Table 4.3.4: Summary table of the MSE and time taken to perform ten experiment
runs of the MCMC and SMC algorithm with the Sushi data set.

Reduced Sushi data

Based on the analysis of the full Sushi data set, we considered another experiment

using the first M = 250 rankings of the data set. This is because we are interested to

see how the SMC algorithm performs against the MCMC algorithm when having a

reasonable number of rankings such that we can create some variability in the inference

of the parameter estimates. We introduced 25 new rankings in each of the T = 10

iterations of the SMC algorithm and performed five MCMC move kernel iterations

after resampling, whereas we ran the MCMC algorithm with the full data set of 250

rankings for 10,000 iterations and discarded the first 5,000 as burn-in.

Figure 4.3.4 presents the heat plots of the marginal posterior for the consensus

ranking from the output of the MCMC and SMC algorithms, the MSE value and the

posterior estimate of α. It is clear in both methods that there is more uncertainty

in the sushi items ranked 3-7. This suggests that in the data set many assessors will

have been similar in their choice of items they ranked top and bottom, leading to

higher variability for middle-ranked items. The MSE and the posterior estimates for

the scale parameter are close to matching. We found that the estimated CP consensus

ranking and the corresponding 95% HDPI intervals were also the same between both

methods in Table 4.3.5. We performed ten repetitions of each experiment and recorded
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the MSE and run time. The results are summarised in Table 4.3.6 and we see that

the SMC method on average obtains a slightly higher MSE than MCMC. It takes

on average 0.45 seconds to run the MCMC algorithm for 10,000 iterations, whilst

it takes 1.15 seconds to perform ten time steps of the SMC algorithm, where each

iteration performs 5,000 MCMC moves across 1,000 particles. If we were to observe

another 25 complete rankings from the original Sushi data set, then an additional

iteration of SMC would take ∼0.12 seconds to run with 5,000 applications of MCMC

move kernels, whereas the MCMC algorithm would take at least 0.45 seconds to

perform 10,000 MCMC iterations. In this instance, we see that we can save time and

computational cost by using SMC to perform sequential inference.

(a) MCMC: MSE = 0.60, α̂ =
1.75 (1.59, 1.92).

(b) SMC: MSE = 0.60, α̂ =
1.75 (1.58, 1.92).

Figure 4.3.4: Heat plots of the posterior probabilities, for n = 10 sushi items in the
reduced Sushi data set, for being ranked as the kth most preferred, for k = 1, ..., 10
using the MCMC algorithm (left) and the SMC algorithm (right). On the x-axis, the
items are ordered according to their CP consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.
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p(ρi ≤ i) 95% HDPI
ρ CP MCMC SMC MCMC SMC

ρ1 Fatty tuna 1.00 1.00 [1] [1]
ρ2 Tuna 1.00 1.00 [2] [2]
ρ3 Sea eel 0.44 0.38 [3,5] [3,5]
ρ4 Shrimp 0.91 0.88 [3,5] [3,5]
ρ5 Salmon roe 1.00 1.00 [3,5] [3,5]
ρ6 Tuna roll 0.88 0.86 [6,7] [6,7]
ρ7 Squid 0.99 0.95 [6,7] [6,7]
ρ8 Sea urchin 1.00 1.00 [8] [8]
ρ9 Egg 1.00 1.00 [9] [9]
ρ10 Cucumber roll 1.00 1.00 [10] [10]

Table 4.3.5: Posterior estimates of the items in the reduced Sushi data set. Items are
arranged according to the CP consensus ranking with their corresponding cumulative
probabilities and 95% HDPIs.

MCMC SMC

Method Mean 95% CI Mean 95% CI
MSE 0.61 (0.58, 0.65) 0.63 (0.59, 0.67)

Time (s) 0.45 (0.44, 0.45) 1.25 (1.24, 1.26)

Table 4.3.6: Summary table of the MSE and time taken to perform ten experiment
runs of the MCMC algorithm and SMC algorithm with the reduced Sushi data set.

4.4 Conclusion

In this chapter, we have developed an SMC algorithm to update the estimated pos-

terior distribution of a single Mallows model in an online setting where we receive

a collection of complete rankings over a discrete-time sequence. This has not been

previously explored in the Mallows literature. SMC can be utilised as an alternative

to MCMC to estimate the posterior distribution sequentially each time we receive

a new full ranking, or a batch of new rankings, to reduce the computational effort.

MCMC can still be used for sequential inference, but for every observational update of

rankings, we would need to re-run the MCMC chain with all of the existing and new
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full rankings to estimate the new posterior. This can be computationally demanding

and time-consuming.

We investigated the proposed SMC algorithm by conducting a range of simulation

studies to study the overall behaviour of the method when we adjust the scale param-

eter or the number of rankings when generating the data set to perform inference on,

or when we alter the number of particles, the number of rankings observed at each

time step or the number of times we apply MCMC move kernels when running the

SMC algorithm. We find that the general behaviour of the proposed method is as

expected under the general SMC theory. We also applied the SMC method to some

example data sets, including the benchmark Sushi data set, and we conclude that find

that the SMC method can save time and computational effort to perform sequential

inference and gives posterior estimates similar to that found when employing MCMC

methods. We also found that although the MCMC algorithm has an edge in estimat-

ing the shared consensus ranking with a higher level of accuracy, converges to more

than one solution.



Chapter 5

Sequential Monte Carlo for the

Mallows Model with Partial

Rankings

5.1 Introduction

In Chapter 4 we considered the problem of performing sequential inference with the

Mallows model each time we observed a collection of new full rankings. In particular,

we highlighted that the application of SMC methods can be used as an alternative to

MCMC to perform inference with the Bayesian Mallows model in an online setting.

We consider the problem addressed in Chapter 4 again except, this time, we aim

to update the estimate of the posterior distribution for every additional partially

observed ranking or collection of rankings. These are known as partial rankings and

are how preference data is often presented, particularly when we have a large number

100
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of items. The partial rankings may contain an assessor’s top-k preferred items, but

they may also be rankings with some ranks missing at random. When handling

partial rankings within an SMC framework, data augmentation is required before we

can reweight the particles to be a representative sample of the new target posterior.

This can be handled easily in the Bayesian framework and we can use a proposal

distribution to create the auxiliary components of each new partial ranking.

The structure of this chapter is as follows. In Section 5.2, we formulate the problem

that first considers the observation of new partial rankings. The proposed distribu-

tions that we use for data augmentation on the missing components of each partial

ranking are discussed in Section 5.2.1. In particular, we consider the uniform proposal

method and the pseudo-likelihood augmentation method, a new proposal distribution,

that considers the current model parameters values of each particle to inform the aug-

mentation process. The proposed SMC methodology is presented in Section 5.2.2 and

is tested with simulated and real data sets in Section 5.3.

5.2 Proposed method

We assume that R now represents a partial ranking for n distinct items, and over a

discrete timeline, t = 1, . . . , T , we observe in total MT partial rankings R1, . . . ,RMT
.

We assume that each partial ranking Rj, j = 1, . . . ,MT , expressed by each assessor, is

drawn from a single Mallows model. The missing components of each partial ranking

can be augmented to obtain an auxiliary full ranking, defined as R̃, from a set Sj =

{R̃j ∈ Pn : R̃ij = X−1j (Ai) if Ai ∈ Aj}, j = 1, . . . ,MT , which represents the set of
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possible complete rankings that are compatible with R. Here, X = R−1 is an ordering

for a set of items A = {A1, . . . , An}. The task is to estimate the sequence of Mallows

posterior distributions for Mt partial rankings over a discrete timeline t = 1, . . . , T ,

defined as

πt(ρ, α|R1, . . . ,RMt) = π(ρ)π(α)
∑

R̃1∈S1

· · ·
∑

R̃Mt∈SMt

p(ρ, α, R̃1, . . . , R̃Mt|R1, . . . ,RMt).

We assume throughout that the partial rankings expressed by each user remain

fixed and we do not receive any further information over time. This is the simplest

case to consider because we only need to incorporate a proposal for augmenting the

missing components of each ranking which is then accounted for in the particle weight

updates of the SMC algorithm.

5.2.1 Data augmentation methods

The proposed SMC algorithm for the Mallows model with partial rankings follows

the resample-move framework of Berzuini and Gilks (2001). However, when handling

partial rankings, we cannot perform an iteration of SMC unless we have full rankings

to calculate the incremental weights of each particle during the reweighting stage. To

overcome this issue, a key component of the methodology for this chapter is how the

latent components of each partial ranking are augmented. The augmentation step is

performed before we reweight the particles to perform the remaining steps of SMC.

This approach has been discussed in Berzuini and Gilks (2003) to handle partially

observed data within the resample-move framework. We describe two methods for
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creating auxiliary complete rankings given an observed partial ranking.

The uniform augmentation method

In the MCMC algorithm of Vitelli et al. (2018), the latent components of the partial

rankings are initialised by assigning missing ranks to unranked items uniformly at

random with the allowable augmentations of the missing ranks. A uniform proposal

is then used to update the candidate augmented rankings in each MCMC iteration.

We will use this method for data augmentation in the proposed SMC framework. Let

nu < n be the number of unranked items in a partial ranking R, then we select a

possible augmentation from the set S with probability q(R̃|R) = 1
nu!

. This approach

is simple, but it does not take into account any existing information that we may

have from the particle set in the SMC algorithm, such as the current estimates of the

consensus ranking and the scale parameter of the Mallows model. It is likely that the

uniform proposal distribution will not be effective in the proposed SMC framework.

This motivates the need to propose another augmentation method that would improve

the proposed auxiliary rankings with the current estimated posterior distribution.

The pseudo-likelihood augmentation method

We propose the pseudo-likelihood augmentation method as an alternative method

that can make an informed choice of how each partial ranking’s missing information is

completed using the current estimated values of the Mallows model parameters. This

is done by constructing several univariate Mallows distributions to sample a rank

for each unranked item conditioned on the item’s rank in the estimated consensus
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ranking, the scale parameter and the set of possible ranks. This approach is similar

to the approximation of the partition function in Vitelli et al. (2018). We note that

this particular method for assigning ranks only applies if d(·, ·) is either the footrule or

the Spearman distance. This is because we cannot use alternative distance functions

to measure the distances between the consensus ranking and the observed ranking for

one item.

We describe the augmentation method formally. We define Su = {r1, . . . , rnu} as

the set of missing ranks in R. Before we perform the augmentation, we specify an

item ordering, O = {o1, . . . , onu}, that determines the order in which we assign the

ranks in Su to the set of unranked items, denoted I = {i1, . . . , inu}. The item order

can be viewed as a permutation of the elements in I and it can be chosen randomly

with the elements in I or in some deterministic way, e.g., we select the order by the

unranked item’s rank in ρ.

The augmentation process iterates through the elements in O and as we advance

through each iteration, there will be one less option of a rank that an item in I can be

assigned to. In other words, the first item in the item ordering will have all remaining

possible ranks in Su it can be assigned to, and the second item in the ordering will

have nu − 1 remaining possible ranks in Su that it can be assigned to, and so on. To

assign an item in O to a rank in Su, we need to calculate the probability of sampling

each available rank, that has not been previously sampled for another item earlier in

O, for that item. We construct a Mallows model which has the item’s rank in the

consensus ranking as the consensus rank ρok , k ∈ {1, . . . , nu}, the scale parameter, α,

and the number of unranked items nu. Then, the probability observing each potential
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item rank R̃ok is

p(R̃ok |ok, α,ρo1 , . . . ,ρok−1
, R̃o1 , . . . , R̃ok−1

) =
exp{− α

nu
d(R̃ok ,ρok)}∑

r̃ok∈Su\{r̃o1 ,...,r̃ok−1
} exp{− α

nu
d(r̃ok ,ρok)}

.

Then, we sample a rank multinomially using the normalised probabilities from the

proposal distribution. The selected rank is assigned and removed from Su before we

assign a rank for the next item O. We repeat the process until we have iterated

through every element in the item ordering. The final item in the ordering to be

assigned a rank is deterministic since we only have one remaining rank left. There-

fore, the probability of creating a particular augmented ranking is the product of the

marginal probabilities

q(R̃|i1, . . . , imu , α,ρ) = q(R̃|o1, . . . , omu , α,ρ)

= p(R̃o1|o1, α,ρo1) · p(R̃o2|o2, α,ρo1 , R̃o1) · . . . ·

p(R̃omu−1|omu−1, α,ρo1 , . . . ,ρomu−2
, R̃o1 , . . . , R̃omu−2)·

p(R̃omu |omu , α,ρo1 , . . . ,ρomu−1
, R̃o1 , . . . , R̃omu−1).

The pseudo-likelihood augmentation method is presented in Algorithm 11.
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Algorithm 11: Pseudo-likelihood Augmentation Method

Input: α,ρ, nu, R, O = {o1, . . . , onu}, Su = {r1, . . . , rnu}.
Output: Complete augmented ranking R̃.
for k = 1 : nu do

Sample R̃ok ∈ Su with probability

p(R̃ok |ok, α,ρ, R̃o1 , . . . , R̃ok−1
) =

exp{− α
nu
d(R̃ok ,ρok)}∑

r̃ok∈Su\{r̃o1 ,...,r̃ok−1
} exp{− α

nu
d(r̃ok ,ρok)}

.

Redefine Su = Su\{R̃ok}.
end

5.2.2 Methodology

The methodology for this problem closely follows the SMC algorithm for full rankings

in Chapter 4. If we begin with no observed rankings at time t = 0, that is, M0 = 0,

then we generate an equally weighted particle set {θ(i)
0 = (ρ

(i)
0 , α

(i)
0 )}Ni=1 using the prior

distributions for the parameters of the Mallows model. Otherwise, if M0 > 0, we can

run an MCMC sampler with M0 rankings to obtain a thinned sample (after burn-in)

of size N , that can be utilised as an initial particle set. At iteration t−1, each particle

contains the following information: the model parameter values, θ
(i)
t−1 = (ρ

(i)
t−1, α

(i)
t−1),

the particle weights w
(i)
t−1, and a complete updated ranking set R̃

(i)
1:Mt−1

.

At iteration t, we observe (Mt−Mt−1) new partial rankings and perform data aug-

mentation using either the uniform or the proposed pseudo-likelihood augmentation

methods to obtain R̃Mt−1+1:Mt . Next, we adjust the particle weights that currently

approximate the density πt−1(ρ, α, R̃1:Mt−1|R1:Mt−1) so that they are now weighted
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with respect to πt(ρ, α, R̃1:Mt |R1:Mt). The incremental weight for each particle is now

w̃t(θ
(i)
t , R̃

(i)
1:Mt

) =
πt(θ

(i)
t , R̃

(i)
1:Mt

)

πt−1(θ
(i)
t−1, R̃

(i)
1:Mt−1

)qt(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)
t−1, R̃

(i)
1:Mt−1

)

=
π(θ

(i)
t , R̃

(i)
1:Mt
|R1:Mt)

π(θ
(i)
t−1, R̃

(i)
1:Mt−1

|R(i)
1:Mt−1

)q(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)
t−1, R̃

(i)
1:Mt−1

)

=
π(θ

(i)
t )p(R̃

(i)
1:Mt
|θ(i)
t ,R1:Mt)/p(R1:Mt)

π(θ
(i)
t−1)p(R̃

(i)
1:Mt−1

|θ(i)
t−1,R1:Mt−1)/p(R1:Mt−1)

× 1

q(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)
t−1, R̃

(i)
1:Mt−1

)
(5.2.1)

=
p(R̃

(i)
Mt−1+1:Mt

|θ(i)
t ,RMt−1+1:Mt)p(R1:Mt−1)

q(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)
t−1, R̃

(i)
1:Mt−1

)p(R1:Mt)
(5.2.2)

∝
p(R̃

(i)
Mt−1+1:Mt

|θ(i)
t ,RMt−1+1:Mt)

q(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)
t−1, R̃

(i)
1:Mt−1

)
. (5.2.3)

Equation (5.2.1) simplifies to (5.2.2) we use the estimated model parameters from the

previous time step to calculate the new weights, so that the priors π(θ
(i)
t ) and π(θ

(i)
t−1)

cancel. We also only need to consider the likelihood for the new observed rankings at

time t. However, we also need to account for the data augmentation for the missing

components of each partial ranking with a proposal distribution. This is defined

as q(θ
(i)
t , R̃

(i)
1:Mt
|θ(i)

1:t−1, R̃
(i)
1:Mt−1

) = q(R̃
(i)
Mt−1+1:Mt

|θ(i)
t−1,RMt−1+1:Mt) and we consider the

uniform and the pseudo-likelihood augmentation methods in the proposal distribution.

Therefore, (5.2.3) can be rewritten as

w̃t(θ
(i)
t , R̃

(i)
1:Mt

) =

exp

{
− α

(i)
t−1

n

∑Mt

j=Mt−1+1 d(R̃
(i)
j ,ρ

(i)
t−1)

}
Zn(α

(i)
t−1)

(Mt−Mt−1)qt(R̃
(i)
Mt−1+1:Mt

|θ(i)
t−1,RMt−1+1:Mt)

,

where α
(i)
t−1 and ρ

(i)
t−1, i = 1, . . . , N are the values of the parameter estimates of the
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Mallows posterior before reweighting. The particle weights are updated, w
(i)
t (θt) =

W
(i)
t−1(θt−1)w̃

(i)
t (θt), and are normalised to obtain Wt(θt). We now have the follow-

ing information in the particle set: {θ̄(i)
t , R̃

(i)
1:Mt

, W
(i)
t }Ni=1. Then, we resample using

multinomial resampling and propagate the particles using the Metropolis-Hastings

MCMC move kernel Kt(θ̄
(i)
t ,θ

(i)
t ). Specifically, we use leap-and-shift proposal distri-

bution (Vitelli et al., 2018) to propose ρ
′(i)
t ; log-normal distribution to propose α

′(i)
t ,

and either the uniform or the pseudo-likelihood proposal distribution to propose new

augmented rankings R̃
′
1:Mt

conditioned on the observed components of each ranking

R1:Mt . The pseudocode for SMC with the Mallows model for new partial rankings is

presented in Algorithm 12.
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Algorithm 12: Sequential Monte Carlo for the Mallows Model with Partial
Rankings

Input: λ, σα, d(·, ·), K, L, N, M1, . . . ,MT ; R1, . . . ,RMT
; T, Zn(α).

Output: Posterior distributions of ρ, α.

Initialisation of SMC: randomly generate ρ
(i)
0 , α

(i)
0 for i = 1, . . . , N .

for t = 1, . . . , T do
Observe RMt−1+1:Mt .
for i = 1 : N do

for j = Mt−1 + 1 : Mt do

Sample R̃
(i)
j with proposal R̃j ∼ q(R̃j |Rj ,ρ

(i)
t , α

(i)
t ).

end

Compute w̃
(i)
t =

exp

{
−
α
(i)
t−1
n

∑Mt
j=Mt−1+1 d(R̃j ,ρ

(i)
t−1

}
Zn(α

(i)
t−1))

Mt−Mt−1
∏Mt
j=Mt−1+1 q(R̃j |Rj ,ρ

(i)
t ,α

(i)
t )
.

Compute w
(i)
t = W

(i)
t−1w̃

(i)
t .

end

Normalise the weights W
(i)
t = w

(i)
t /

∑N
i=1w

(i)
t .

Resample (k1, . . . , kN ) ∼M(W
(1)
t , . . . ,W

(N)
t ) and set

{θ̄(1:N)
t ,W

(i)
t } ← {θ

(k1:kN )
t , 1

N }.
for i = 1 : N do

for k = 1, . . . ,K do

M-H step: update ρ
(i)
t using the leap-and-shift proposal

(ρ′ ∼ L&S(ρ
(i)
t , L)).

M-H step: update α
(i)
t with log-normal proposal (α′ ∼ logN (α

(i)
t , σ

2
a)).

for j = 1 : Mt do

M-H step: update R̃
(i)
j with proposal R̃′j ∼ q(R̃j |Rj ,ρ

(i)
t , α

(i)
t ).

end

end

end

end

5.3 Experimental analyses

We assess the proposed SMC sampler using simulated and real data. The simulated

data sets were created using the function sample mallows in the BayesMallows R

package (Sørensen et al., 2020). The parameters we used to generate the data set

were rho 0 = c(1:n items) and alpha 0 = 2, as the underlying parameters of the
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Mallows model, and simulated a data set of 100 complete rankings. The simulated

and real data sets are filtered so that only the top-n
2

ranked items could be observed

in each ranking.

We describe the default experiment set-up. We ran the MCMC algorithm of

Vitelli et al. (2018) using the function compute mallows in the BayesMallows R

package for 10,000 iterations with the full partial data set and we discarded the first

5,000 iterations as burn-in. In the SMC algorithm, we used N = 1000 particles and

the latent components of each partial ranking were sampled using either the uniform

or the pseudo-likelihood augmentation method before reweighting and resampling.

We specified ten applications of the MCMC move kernels for ρ, α and R̃1:Mt for each

particle after resampling in each SMC iteration. For both methods, we set as a default:

the leap-size parameter in the leap-and-shift proposal for ρ to be L = bn/5c; the

hyper-parameter and the standard deviation for the exponential proposal distribution

for α to be λ = 0.1 and σα = 0.5 respectively; and the measured distance between

rankings as the footrule distance.

The SMC algorithm with both augmentation methods is assessed in comparison

to the MCMC algorithm using the same metrics as discussed in Chapter 4. The SMC

algorithm with the uniform augmentation method is referred to as SMC-U in each

figure and table in this chapter, whilst the SMC algorithm with the pseudo-likelihood

augmentation method is referred to as SMC-P. Heat plots were used to visualise the

marginal posterior probabilities of ranking each item in ρ. The posterior expected

mean squared error (MSE) was reported to indicate the spread of the sampled values

for ρ from each of the Bayesian methods given the true consensus ranking. We
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also reported the posterior estimate of α and its 95% HDPI. When relevant, we also

provided the CP consensus ranking; the cumulative probability of each item to be

ranked in shared consensus position, or higher, p(ρi ≤ i); and the 95% HDPI for each

item in ρ.

5.3.1 Simulated data: 10 items

In the first experiment, we propagated N = 1000 SMC particles over T = 10 time

steps by introducing ten new top-5 rankings in each iteration. In total, 100,000

applications of MCMC move kernels were applied to each parameter in the particle set

in the SMC algorithm. We ran the MCMC algorithm for 10,000 iterations to sample

proposals for ρ, α and R̃1:100. Figure 5.3.1 shows the marginal posterior distribution

of ρ and α of the output from the MCMC algorithm and the SMC algorithm with

both augmentation methods. The items in the heat plots in Figures 5.3.1a-5.3.1c are

ordered according to ρ∗ = (1, 2, . . . , 10), which happened to be the CP consensus for

all three methods. Table 5.3.1 shows the CP consensus estimate given the partial data

set, the cumulative probability of each item ranked in the shared consensus position, or

higher, p(ρi ≤ i) and the 95% highest HPDI for each item across all three methods.

The MSE for the MCMC and the SMC with the pseudo-likelihood augmentation

method produce similar values whereas the SMC with the uniform augmentation

method has a smaller MSE value. However, if we are assuming that SMC is to be

used as an alternative to MCMC, then SMC with the uniform augmentation method

is not estimating this posterior well. The MSE represents the sample spread around a

reference point ρ∗. The spread may not be close to ρ∗, resulting in a value of 0, but we



CHAPTER 5. SMC MALLOWS WITH PARTIAL RANKINGS 112

expect the MSE to be the same for different samplers of the same posterior distribution

given the data. The small MSE value indicates a higher value in the posterior estimate

for α as this implies that the particle set values for ρ have a small variation around the

“true” consensus ranking in distance, resulting in the lower MSE value. The marginal

posterior probabilities for the top-5 ranked items in the heat plots in Figures 5.3.1a-

5.3.1c are similar across all three methods. We also see more uncertainty across the

lowest five ranked items in ρ. This is expected because these items will have been

less likely to have been assigned a top-5 rank in the partially observed data set. The

lowest-ranked item in ρ has a higher marginal posterior probability of being ranked

the lowest rank in comparison to the items ranked 6-9 because this item will have

received the least number of observed ranks in the data set, so we can be more certain

that it is likely to be the lowest-ranked item.

The cumulative probabilities and HDPIs in Table 5.3.1 are very similar across all

three methods for the top-5 ranked items. However, there is a significant increase

in certainty for items 6-10 when using the uniform augmentation method in SMC

whilst the HDPIs for items 6-10 remain similar with the MCMC method and the

SMC method with the pseudo-likelihood augmentation method.

We also repeated each experiment ten times and recorded the MSE and time taken

to run each algorithm. This is summarised in Table 5.3.2. The MCMC algorithm

takes, on average, 0.6 seconds to run with the full data set of 100 partial rankings,

whereas the SMC algorithm takes, on average, 70 seconds (with the uniform augmen-

tation method) and 103 seconds (with the pseudo-likelihood augmentation method)

to perform ten sequential updates of the posterior estimate for every ten new rankings



CHAPTER 5. SMC MALLOWS WITH PARTIAL RANKINGS 113

observed. If we were to observe an additional ten new rankings, then the MCMC al-

gorithm would take at least 0.5 seconds to run whereas the SMC algorithm with each

augmentation method would take approximately ∼7 and ∼10 seconds respectively to

update the posterior for a similar amount of computation effort. The SMC algorithm

takes longer to run because we are applying significantly more MCMC move kernels

than the number of iterations in the MCMC algorithm itself. Further optimisation

of the SMC code could improve the run time. In Table 5.3.2 the confidence interval

for the MSE for the SMC with the pseudo-likelihood augmentation method is close

to that of the MCMC.

We conclude from this experiment that the pseudo-likelihood augmentation has a

slight improvement over the uniform approach because we are able to achieve marginal

posterior estimates for Mallows model parameters that are closer to the estimates

achieved through MCMC. It is clear that the SMC methods suffer from slow com-

putational speed for the same amount of computational effort in each iteration in

comparison to MCMC.
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(a) MCMC: MSE = 0.36, α̂
= 2.00, (1.70, 2.29).

(b) SMC-U: MSE = 0.14, α̂
= 2.07 (1.74, 2.37).

(c) SMC-P: MSE = 0.32, α̂
= 2.01 (1.71, 2.37).

Figure 5.3.1: Top: Heat plots of the posterior probabilities, for n = 10 items, for being
ranked as the kth most preferred, for k = 1, ..., 10 using the MCMC algorithm (left),
the SMC algorithm with the uniform augmentation method (middle), and the SMC
algorithm with the pseudo-likelihood augmentation method (right). On the x-axis,
the items are ordered according to their true consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.

p(ρi ≤ i) 95% HDPI
ρ CP MCMC SMC-U SMC-P MCMC SMC-U SMC-P

ρ1 1 0.81 0.84 0.85 [1,2] [1,2] [1,2 ]
ρ2 2 0.99 1.00 0.99 [1,2] [1,2] [1,2]
ρ3 3 1.00 1.00 1.00 [3] [3] [3]
ρ4 4 1.00 1.00 1.00 [4] [4] [4]
ρ5 5 0.78 0.80 0.80 [5,6] [5,6] [5,6]
ρ6 6 0.97 0.94 0.94 [5,6] [5,7] [5,7]
ρ7 7 0.72 0.93 0.78 [7,10] [6,8] [6,8]
ρ8 8 0.69 0.89 0.64 [7,10] [7,9] [7,10]
ρ9 9 0.77 0.95 0.75 [8,10] [8,10] [8,10]
ρ10 10 1.00 1.00 1.00 [9,10] [9,10] [8,10]

Table 5.3.1: Posterior estimates of the ten items in the partially observed simulated
data set. Items are arranged according to the CP consensus ranking with their cor-
responding cumulative probabilities and 95% HDPIs.

We reduce the number of MCMC kernel applications during the move stage of

the proposed SMC algorithm to see if we can perform inference with SMC for less

computational effort than using MCMC. Currently, in each iteration of the SMC

algorithm, we apply as many MCMC iterations to sample for the consensus ranking,
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MCMC SMC-U SMC-P
Method Mean 95% CI Mean 95% CI Mean 95% CI

MSE 0.31 (0.29, 0.34) 0.13 (0.12, 0.13) 0.33 (0.31, 0.35)
Time (s) 0.57 (0.56, 0.58) 69.63 (69.31, 69,94) 102.62 (102.11, 103.13)

Table 5.3.2: Summary table of the MSE and time taken for the ten experiment runs
of the MCMC algorithm and the SMC algorithm with both augmentation methods
for the partially observed simulated data set of n = 10 items.

the scale parameter and the set of observed partial rankings across the particle set

in SMC as we would if we were to run the MCMC sampler with the same set of

partial rankings. We repeated the experiment and applied for each particle: five

MCMC applications of the leap-and-shift proposal for sampling ρ; one application

of the exponential proposal for α; and one application to sample new augmentations

for R1:Mt . We also introduced one new ranking at a time for 100 iterations in total.

Therefore, for each new ranking introduced, we applied 7,000 MCMC move kernels.

The results for the estimated marginal posterior distributions for ρ and α are

provided in Figure 5.3.2. We note that the results from the MCMC experiment are

the same as the results from the previous experiment. The MSE for MCMC and SMC

with the pseudo-likelihood sampler still produce similar values whereas SMC with the

uniform augmentation method has a much smaller MSE, resulting in a higher value in

the posterior estimate for α. The posterior probabilities for items 7 and 9 in ρ with the

SMC algorithm with uniform augmentation method are different to those obtained

with the pseudo-likelihood method and this is reflected in the different HDPIs for

these items in Table 5.3.3. However, the posterior estimate for α is reasonable. We

repeated this experiment ten times and recorded the MSE and time taken to run each

algorithm in Table 5.3.4. As we would expect, by reducing the number of MCMC
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move kernels, particularly for R1:Mt , the time taken to run 100 iterations of the SMC

algorithm takes longer than to run one MCMC chain with the full data set of 100

partial rankings. If we were to observe an additional new ranking, then the MCMC

algorithm would take at least 0.5 seconds to run whereas the SMC algorithm with each

augmentation method would take approximately ∼0.8 and ∼1.1 seconds respectively

to perform the sequential posterior update the posterior with less computation effort.

Further optimisation with the algorithm could reduce computational time.

(a) MCMC: MSE = 0.36, α̂
= 2.00, (1.70, 2.29).

(b) SMC-U: MSE = 0.17, α̂
= 2.12 (1.84, 2.44).

(c) SMC-P: MSE = 0.32, α̂
= 2.01 (1.74, 2.34).

Figure 5.3.2: Top: Heat plots of the posterior probabilities, for n = 10 items, for
being ranked as the kth most preferred, for k = 1, ..., 10 using the MCMC algo-
rithm (left), the SMC algorithm with the uniform augmentation method and reduced
computational effort (middle), and the SMC algorithm with the pseudo-likelihood
augmentation method (right) and reduced computational effort. On the x-axis, the
items are ordered according to their true consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.

5.3.2 Real data: Sushi data

We modified the benchmark Sushi data set (Kamishima, 2003) so that we only observe

the first M = 100 rankings, each with their top-5 sushi preferences, and ran the

algorithms with the default experiment set-up. The heat plots in the Figures 5.3.3a-
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p(ρi ≤ i) 95% HDPI
ρ CP MCMC SMC-U SMC-P MCMC SMC-U SMC-P

ρ1 1 0.81 0.86 0.82 [1,2] [1,2] [1,2]
ρ2 2 0.99 1.00 1.00 [1,2] [1,2] [1,2]
ρ3 3 1.00 1.00 1.00 [3] [3] [3]
ρ4 4 1.00 1.00 1.00 [4] [4] [4]
ρ5 5 0.78 0.83 0.78 [5,6] [5,6] [5,6]
ρ6 6 0.97 0.96 0.96 [5,6] [5,6] [5,7]
ρ7 7 0.72 0.89 0.70 [7,10] [7,8] [6,9]
ρ8 8 0.69 0.71 0.77 [7,10] [7,9] [7,10]
ρ9 9 0.77 0.97 0.77 [8,10] [8,10] [8,10]
ρ10 10 1.00 1.00 1.00 [9,10] [10] [9,10]

Table 5.3.3: Posterior estimates of the ten items in the partially observed simulated
data set. Items are arranged according to the CP consensus ranking with their cor-
responding cumulative probabilities and 95% HDPIs.

MCMC SMC-U SMC-P
Method Mean 95% CI Mean 95% CI Mean 95% CI

MSE 0.31 (0.29, 0.34) 0.18 (0.17, 0.19) 0.31 (0.30, 0.32)
Time (s) 0.57 (0.56, 0.58) 78.66 (78.08, 79.24) 108.35 (107.89, 108.81)

Table 5.3.4: Summary table of the MSE and time taken for the ten experiment runs of
the MCMC algorithm and the SMC algorithm with both augmentation methods and
reduced computational effort for the partially observed simulated data set of n = 10
items.

5.3.3c show that the SMC algorithm with the pseudo-likelihood augmentation method

produces a similar marginal posterior for ρ that is obtained from the MCMC output.

This behaviour is also shown in their respective marginal posteriors for α in the

captions of Figures 5.3.3a-5.3.3c and their estimated CP consensus rankings in Table

5.3.5 are the same. We reach the same conclusions as described in the first simulated

data set experiment in Section 5.3.1.

Similarly, after performing ten runs of this experiment with both algorithms, we

see in Table 5.3.6 that all three methods give similar MSE values. We also see that if

we were to introduce ten new rankings, then MCMC would take at least 0.5 seconds



CHAPTER 5. SMC MALLOWS WITH PARTIAL RANKINGS 118

to run whilst the SMC algorithm would take approximately ∼7 and ∼10 seconds with

each augmentation method to update the posterior estimate for the same amount of

computational effort.

(a) MCMC: MSE = 1.06,
α̂ = 1.71, (1.40, 1.99).

(b) SMC-U: MSE = 1.07,
α̂ = 1.74, (1.43, 2.02).

(c) SMC-P: MSE = 1.04,
α̂ = 1.71, (1.41, 2.05).

Figure 5.3.3: Top: Heat plots of the posterior probabilities, for n = 10 sushi items, for
being ranked as the kth most preferred, for k = 1, ..., 10 using the MCMC algorithm
(left), the SMC algorithm with the uniform augmentation method (middle), and the
SMC algorithm with the pseudo-likelihood augmentation method (right). On the x-
axis, the items are ordered according to their CP consensus. The MSE value and the
mean estimate of α with its corresponding 95% HDPI are included in the captions.

p(ρi ≤ i) 95% HDPI
ρ CP MCMC SMC-U SMC-P MCMC SMC-U SMC-P

ρ1 Fatty tuna 1.00 1.00 1.00 [1] [1] [1]
ρ2 Tuna 0.82 0.89 0.85 [2,3] [2,3] [2,4]
ρ3 Shrimp 0.43 0.44 0.45 [3,5] [3,5] [2,5]
ρ4 Salmon roe 0.62 0.56 0.59 [3,6] [3,5] [2,5]
ρ5 Sea eel 0.92 0.94 0.92 [3,6] [3,6] [3,6]
ρ6 Sea urchin 0.61 0.53 0.56 [5,8] [6,8] [5,8]
ρ7 Squid 0.84 0.96 0.89 [5,8] [5,7] [5,8]
ρ8 Tuna roll 0.94 0.63 0.88 [7,9] [7,9] [7,9]
ρ9 Egg 0.88 0.97 0.85 [8,10] [8,9] [8,10]
ρ10 Cucumber roll 1.00 1.00 1.00 [9,10] [10] [9,10]

Table 5.3.5: Posterior estimates of the items in the modified Sushi data set. Items are
arranged according to the CP consensus ranking with their corresponding cumulative
probabilities and 95% HDPIs.

We repeated the experiment using the proposed SMC algorithm by reducing the
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MCMC SMC-U SMC-P
Method Mean 95% CI Mean 95% CI Mean 95% CI

MSE 1.11 (1.06, 1.15) 1.09 (1.06, 1.12) 1.10 (1.03, 1.16)
Time (s) 0.56 (0.56, 0.57) 72.42 (72.20, 72.64) 105.29 (104.98, 105.60)

Table 5.3.6: Summary table of the MSE and time taken for the 10 experiment runs of
the MCMC algorithm and SMC algorithm with both augmentation methods for the
modified Sushi data set.

number of new rankings from ten to one in each iteration. We applied: five MCMC

iterations for ρ; one MCMC iteration to sample α; and one MCMC iteration to sample

new augmentations for R1:Mt for each particle. In total, we apply 7,000 applications

of MCMC move kernel in each SMC iteration to the particle set. The experiment

with the MCMC algorithm remained unchanged.

The estimated marginal posterior distributions for Mallows model parameters in

Figure 5.3.4 appear to be similar for all three methods in terms of MSE values and

the marginal posterior probabilities for the top-5 ranked items. However, SMC with

the uniform augmentation shows slightly more certainty in the lower-ranked items.

This can be seen in the corresponding cumulative probabilities for items ranked 7

and 9 in Table 5.3.7. The summary of the MSE and run time from ten repetitions

of each algorithm is presented in Table 5.3.8. It takes ∼80 and ∼105 seconds to run

the SMC algorithm with both augmentation methods respectively. If an additional

ranking was observed, then another iteration of SMC would take approximately ∼0.8

and ∼1.1 seconds respectively to perform the sequential posterior update. Overall,

similar conclusions with the Sushi data set can be made with the second experiment

with the simulated data set of ten items in Section 5.3.1.
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(a) MCMC: MSE = 1.06,
α̂ = 1.71, (1.40, 1.99).

(b) SMC-U: MSE = 1.08,
α̂ = 1.77, (1.48, 2.01).

(c) SMC-P: MSE = 1.09,
α̂ = 1.71, (1.35, 1.99).

Figure 5.3.4: Top: Heat plots of the posterior probabilities, for n = 10 sushi items,
for being ranked as the kth most preferred, for k = 1, ..., 10 using the MCMC algo-
rithm (left), the SMC algorithm with the uniform augmentation method and reduced
computational effort (middle), and the SMC algorithm with the pseudo-likelihood
augmentation method (right) and reduced computational effort. On the x-axis, the
items are ordered according to their CP consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.

p(ρi ≤ i) 95% HDPI
ρ CP MCMC SMC-U SMC-P MCMC SMC-U SMC-P

1 Fatty tuna 1.00 1.00 1.00 [1] [1] [1]
2 Tuna 0.82 0.88 0.87 [2,3] [2,3] [2,3]
3 Shrimp 0.43 0.44 0.44 [3,5] [2,5] [3,5]
4 Salmon roe 0.62 0.64 0.60 [3,6] [3,5] [2,5]
5 Sea eel 0.92 0.89 0.89 [3,6] [3,6] [2,6]
6 Sea urchin 0.61 0.63 0.60 [5,8] [5,8] [5,8]
7 Squid 0.84 0.96 0.89 [5,8] [6,8] [6,8]
8 Tuna roll 0.94 0.77 0.86 [7,9] [7,9] [7,9]
9 Egg 0.88 0.97 0.90 [8,10] [8,9] [8,10]
10 Cucumber roll 1.00 1.00 1.00 [9,10] [10] [9,10]

Table 5.3.7: Posterior estimates of the ten items in the modified Sushi data set.
Items are arranged according to the CP consensus ranking with their corresponding
cumulative probabilities and 95% HDPIs.

5.3.3 Simulated data: 20 items

We test the SMC algorithm with a larger number of items in each ranking to ob-

serve the resulting behaviour when the size of the permutation space for the latent
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MCMC SMC-U SMC-P
Method Mean 95% CI Mean 95% CI Mean 95% CI

MSE 1.11 (1.06, 1.15) 1.09 (1.05, 1.12) 1.07 (1.05, 1.09)
Time (s) 0.56 (0.56, 0.57) 79.55 (78.98, 80.12) 105.29 (107.93, 109.29)

Table 5.3.8: Summary table of the MSE and time taken for the ten experiment runs
of the MCMC algorithm and SMC algorithm with both augmentation methods and
reduced computational effort for the modified Sushi data set.

components of each partial ranking is increased. We use a simulated data set con-

taining M = 100 rankings of the top-10 rankings of n = 20 items. In the SMC

algorithm, we introduced ten new rankings at a time for T = 10 time steps in total

with the default experiment settings. In Figure 5.3.5 we have provided the heat plots

for the posterior probabilities for the items using the MCMC algorithm of Vitelli

et al. (2018), the proposed SMC algorithm with the uniform augmentation kernel and

the pseudo-likelihood augmentation kernel. Figures 5.3.5a-5.3.5c contain the posterior

probabilities for ρ given the observed data of top-10 rankings. The potential ranks for

items 1-10 in ρ given the MCMC output are captured by the SMC algorithm with the

uniform augmentation kernel approach, but the posterior probabilities vary. Despite

not being able to capture the overall behaviour of the posterior obtained by MCMC,

resulting in a larger MSE value and more options for potential ranks for items 1-10,

the SMC algorithm with the pseudo-likelihood augmentation approach does capture

the variability of the posterior for lower-ranked items compared to using the uniform

augmentation kernel.

We increase the proportion of observed data in the simulated data set to see if the

posterior estimates improve. Figures 5.3.5d-5.3.5f contain the posterior probabilities

for ρ given the observed data of top-12 rankings and Figures 5.3.5g-5.3.5i contain the
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posterior probabilities for ρ given the observed data of top-15 rankings. We notice

that the posterior estimate and 95% HDPI for α are now consistent across all three

methods so the variability is captured. We also see an improved MSE value for the

SMC algorithm with the pseudo-likelihood kernel and an increased MSE when using

the uniform augmentation method. As we increase the amount of known information

in each ranking, the possible ranks that each item could be in the shared consensus

ranking are similar across all three methods, but there is variation in the certainty of

these posterior probabilities resulting in different MSE values.
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(a) MCMC: MSE = 4.93, α̂
= 2.06 (1.82, 2.27).

(b) SMC-U: MSE = 4.28, α̂
= 2.17 (1.89, 2.42).

(c) SMC-P: MSE = 8.48, α̂
= 2.04 (1.80, 2.25).

(d) MCMC: MSE = 4.63, α̂
= 2.00 (1.74, 2.18).

(e) SMC-U: MSE = 4.97, α̂
= 1.99 (1.75, 2.19).

(f) SMC-P: MSE = 9.11, α̂
= 1.92 (1.72, 2.13).

(g) MCMC: MSE = 4.76, α̂
= 1.95 (1.78, 2.17).

(h) SMC-U: MSE = 5.24, α̂
= 1.96 (1.74, 2.15).

(i) SMC-P: MSE = 5.67, α̂
= 1.93 (1.72, 2.15).

Figure 5.3.5: Heat plots of the posterior probabilities, for n = 20 items, for being
ranked as the kth most preferred, for k = 1, ..., 20 using the MCMC algorithm (left),
the SMC algorithm with the uniform augmentation method (middle), and the SMC
algorithm with the pseudo-likelihood augmentation method (right). On the x-axis,
the items are ordered according to their true consensus. The top row is obtained using
the observations of the top-10 ranked items, the middle row with the top-12 ranked
items and the bottom row with the top-15 ranked items. The MSE value and the
mean estimate of α with its corresponding 95% HDPI are included in the captions.
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Next, we investigated the particle set in each SMC algorithm to diagnose the

shortcomings of the method. Table 5.3.9 provides additional information about the

particle set in each iteration of the proposed methods for each partial data set. The

ESS is very low throughout; this implies that incorporating a threshold for resampling,

such as ESS< N/2, would not improve the approximation of the posterior as we would

never reach the threshold. The variance of the normalised importance weights does

not differ greatly between both methods, though we would expect a smaller variance

with the pseudo-likelihood approach because we are making informed proposals for

the latent components of the partial rankings. The general pattern of behaviour we

can observe is that the lower the particle weight variance, then the more likely we are

to resample a larger number of particles. There are two instances where the number of

particles resampled is a single digit when we observe the top-10 rankings and use the

uniform augmentation approach, but overall we do not suffer from particle degeneracy.
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Time

Method Observed Data Observation 1 2 3 4 5 6 7 8 9 10

SMC-U Top 10 ESS 1.30 5.68 3.18 8.52 1.00 1.14 2.07 10.82 2.65 9.99

Var(Wt) 7.72e-04 1.75e-04 3.14e-04 1.16e-04 9.96e-04 8.80e-04 4.84e-04 9.15e-05 3.77e-04 9.92e-05

# resampled particles 6 76 65 61 3 25 75 92 51 203

SMC-P Top 10 ESS 3.47 9.23 13.35 1.41 8.39 1.71 5.69 12.52 4.68 9.15

Var(Wt) 2.88e-04 1.07e-04 7.40e-05 7.07e-04 1.18e-04 5.84e-04 1.75e-04 7.90e-05 2.13e-04 1.08e-04

# resampled particles 32 75 59 41 43 31 132 121 105 137

SMC-U Top 12 ESS 1.44 2.76 10.22 4.23 6.04 1.63 12.32 5.07 4.94 8.50

Var(Wt) 6.95e-04 3.61e-04 9.69e-05 2.36e-04 1.65e-04 6.12e-04 8.03e-05 1.97e-04 2.02e-04 1.17e-04

# resampled particles 12 64 83 63 56 36 114 100 56 120

SMC-P Top 12 ESS 4.89 8.77 1.56 6.09 6.22 1.14 18.21 2.03 7.61 5.45

Var(Wt) 2.04e-04 1.13e-04 6.41e-04 1.63e-04 1.60e-04 8.74e-04 5.40e-05 4.93e-04 1.31e-04 1.83e-04

# resampled particles 35 100 28 72 44 19 188 47 60 104

SMC-U Top 15 ESS 1.40 1.68 9.12 5.89 2.93 5.01 83.34 7.52 2.38 22.31

Var(Wt) 7.15e-04 5.97e-04 1.09e-04 1.69e-04 3.40e-04 1.99e-04 1.10e-05 1.32e-04 4.19e-04 4.39e-05

# resampled particles 26 20 80 73 33 55 281 34 56 152

SMC-P Top 15 ESS 3.32 11.32 1.35 9.72 4.49 3.91 36.36 5.85 21.81 15.06

Var(Wt) 3.00e-04 8.74e-05 7.41e-04 1.02e-04 2.22e-04 2.56e-04 2.65e-05 1.70e-04 4.49e-05 6.55e-05

# resampled particles 39 52 37 149 26 28 130 72 203 66

Table 5.3.9: A summary of the state of the particles in each iteration of the SMC
algorithm with the uniform augmentation method and the pseudo-likelihood aug-
mentation method for when we have observed data sets of the top-10, top-12 and
top-15 rankings for n = 20 items. The ESS, the variance of the normalised particle
weights and the number of particles resampled are provided.

The possible limitation of the proposed SMC algorithm is that it struggles to

find a good augmentation for the initial set of partial rankings. For each top-10

ranking, there are 10! options for completing the latent components of each ranking.

If we do not have a good set of augmented rankings when we perform the remaining

stages of the SMC algorithm, we will find that few particles are resampled and we

may struggle to move the particles to the areas of the posterior distribution with

high density unless we use a sufficient number of applications of the MCMC move

kernels. However, this implies that SMC is an ineffective method to use because we
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can use the MCMC sampler for less computational effort. The MCMC algorithm uses

a uniform augmentation method to propose possible augmentations of each partial

ranking. Despite the naive approach, it is able to obtain a good estimate of the

posterior because the updates for each R̃ are done sequentially for 10,000 iterations.

In the SMC algorithm, we are effectively running 1,000 shorter chains in parallel that

do not get updated sequentially for ten iterations.

Then, we reduce the number of new observations in each SMC iteration to see if

the posterior estimation improved. In each SMC iteration, we introduced one new

partial ranking for 100 iterations instead of ten rankings for ten iterations. No other

experiment variables were altered. The heat plots, the MSE for ρ and the summary

statistics for α are presented in Figure 5.3.6. The marginal posterior probabilities

for the top-10 items in ρ and α are captured across all three methods. We observe

an unexpectedly high level of certainty for posterior probabilities for the two lowest-

ranked items in ρ with the SMC algorithm with the uniform augmentation method.

The SMC method with the pseudo-likelihood augmentation method can replicate the

posterior estimation as with MCMC. Table 5.3.10 provides the results of 10 repetitions

of the experiments of running both Bayesian methods where the MSE and time elapsed

were recorded. We notice that if we introduced another new ranking then it would take

SMC ∼9 and ∼16 seconds to run with uniform and pseudo-likelihood augmentation

methods respectively whereas the MCMC algorithm would take at least ∼1.1 seconds

to perform a new posterior estimate.
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(a) MCMC: MSE = 4.93,
α̂ = 2.06 (1.82, 2.27).

(b) SMC-U: MSE = 3.87,
α̂ = 2.07 (1.81, 2.27).

(c) SMC-P: MSE = 5.32,
α̂ = 2.06 (1.86, 2.30).

Figure 5.3.6: Top: Heat plots of the posterior probabilities, for n = 20 items, for being
ranked as the kth most preferred, for k = 1, ..., 20 using the MCMC algorithm (left),
the SMC algorithm with the uniform augmentation method (middle), and the SMC
algorithm with the pseudo-likelihood augmentation method (right). On the x-axis,
the items are ordered according to their true consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.

MCMC SMC-U SMC-P

Method Mean 95% CI Mean 95% CI Mean 95% CI
MSE 5.09 (4.89, 5.29) 4.10 (3.99, 4.21) 5.20 (5.08, 5.31)

Time (s) 1.08 (1.07, 1.08) 911.38 (908.74, 914.01) 1621.52 (1617.31, 1625.73)

Table 5.3.10: Summary table of the MSE and time taken for the ten experiment runs
of the MCMC algorithm and the SMC algorithm with both augmentation methods
for the partially observed simulated data set of n = 20 items.

For the final test with the simulated data set, we reduced the number of MCMC

move kernel applications in each SMC iteration. We applied: five MCMC iterations

for ρ; one MCMC iteration to sample α; and one MCMC iteration to sample new

augmentations for R1:Mt for each particle to reduce the computational effort. The

results of the experiment are presented in Figure 5.3.7 and Table 5.3.11.

The SMC algorithm with the uniform augmentation method shows a higher cer-

tainty for the lowest three ranked items in ρ in Figure 5.3.7b. This contributes to

a significantly lower MSE value and a higher value for the posterior estimate for α.
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Though the MSE value for the SMC algorithm with the pseudo-likelihood augmen-

tation method in Figure 5.3.7c is higher than that of the MCMC method in Figure

5.3.7a, the heat plot shows that the overall level of uncertainty for each item potential

rank in ρ appear relatively similar, particularly for the top-15 ranked items. Table

5.3.11 shows that the computational time for each SMC algorithm has reduced to

about one-ninth of the previous experiment times in Table 5.3.10. One sequential

posterior update, based on observing a new partial ranking, would now take approx-

imately ∼1.1 and ∼1.8 seconds respectively with each augmentation method.

(a) MCMC: MSE = 4.93,
α̂ = 2.06 (1.82, 2.27).

(b) SMC-U: MSE = 2.79,
α̂ = 2.40 (2.10, 2.64).

(c) SMC-P: MSE = 5.48,
α̂ = 2.04 (1.84, 2.28).

Figure 5.3.7: Top: Heat plots of the posterior probabilities, for n = 20 potatoes,
for being ranked as the kth most preferred, for k = 1, ..., 20 using the MCMC algo-
rithm (left), the SMC algorithm with the uniform augmentation method and reduced
computational effort (middle), and the SMC algorithm with the pseudo-likelihood
augmentation method (right) and reduced computational effort. On the x-axis, the
items are ordered according to their true consensus. The MSE value and the mean
estimate of α with its corresponding 95% HDPI are included in the captions.

5.3.4 Real data: Potato data

Finally, we studied a modified version of the Potato data set (Liu et al., 2019a),

which presents M = 12 rankings of the top-10 ranked items out of a possible n = 20
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MCMC SMC-U SMC-P

Method Mean 95% CI Mean 95% CI Mean 95% CI
MSE 5.09 (4.89, 5.29) 3.07 (2.93, 3.21) 5.31 (5.07, 5.55)

Time (s) 1.08 (1.07, 1.08) 109.10 (108.69, 109.51) 182.69 (182.04, 183.33)

Table 5.3.11: Summary table of the MSE and time taken for the ten experiment runs
of the MCMC algorithm and the SMC algorithm with both augmentation methods
and reduced computational effort for the partially observed simulated data set of
n = 20 items.

items. For this experiment the proposal distribution for the scale parameter was set

to σα = 0.15. Each SMC iteration introduced one new ranking, propagated N = 1000

particles, and performed ten applications of the MCMC move kernels for ρ, α and

R̃1:Mt .

Figure 5.3.8 displays the marginal posterior distributions of ρ and α with all three

methods. The MSE and the HDPIs for α are also provided in the captions. The heat

plot in Figure 5.3.8a, which was obtained using an MCMC chain of 5,000 iterations

(after burn-in), appears to have not converged: it appears to display a high level of

certainty for the lowest ranked items despite that no known rankings for these items

are observed in the original data set. A longer MCMC chain was run with the same

modified data set for 100,000 iterations with the first 50,000 discarded as burn-in.

This result is presented in Figure 5.3.8b. The marginal posterior probabilities for the

top-8 heaviest potatoes are captured across all three methods. For lower-ranked items,

there is more variation in the marginal posterior probabilities. The heat plot obtained

by SMC with the uniform augmentation method in Figure 5.3.8c is not able to capture

the general behaviours of the remaining items in ρ as that obtained by MCMC in

Figure 5.3.8b; it has not converged to the posterior obtained by MCMC. The heat

plot obtained by the pseudo-likelihood augmentation in Figure 5.3.8d captures the
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general uncertainty about the possible ranks of the middle-ranked items (P11, P5,

P1, P19), but cannot replicate the same behaviour as MCMC for the lower-ranked

items in ρ. This observation is supported by the estimation of the CP consensus in

Table 5.3.12.

We investigated the output of each iteration of SMC with each augmentation

method in a similar manner as described in Section 5.3.3. Table 5.3.13 provides a

record of the ESS, the variation of the normalised particle weights and the number

of particles resampled at each iteration. The ESS is consistently higher throughout

when using the SMC algorithm with the pseudo-likelihood augmentation method,

but it is still not high enough to incorporate a threshold for resampling unless we

specify a threshold of ESS < N/4. The variance of the normalised importance weights

does not differ greatly between both methods, though we still observe the general

pattern of behaviour of a lower particle weight variance likely results in a larger

number of particles being resampled. There is no case where the SMC algorithm

suffers from particle degeneracy. We repeated the experiments ten times and recorded

the total time to run the MCMC algorithm with the full data set and the SMC

algorithms, where we introduce one new ranking at a time, in Table 5.3.14. If we

were to introduce another new ranking then the SMC algorithms would take ∼1.8

and ∼3.1 seconds respectively whereas the MCMC algorithm would have to run for

at least ∼2.7 seconds to run and update the posterior estimate. Since the data set

is small and the number of MCMC move kernel applications that are applied to the

particle set in one iteration of SMC is about one-tenth of the number of MCMC

iterations used to run the longer MCMC chain. We also find that the SMC algorithm
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runs for a similar amount of computation time with fewer MCMC iterations. We

conclude that the pseudo-likelihood augmentation method has been able to make

reasonable proposals for the latent components of each new observed partial ranking

and it can maintain a good representative sample of the posterior distribution. The

uniform augmentation method, on the other hand, makes initial bad proposals and

struggles to keep up with the sequential updates when incorporating new rankings.
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(a) MCMC: MSE = 4.53, α̂ =
10.30 (8.72, 11.74).

(b) MCMC: MSE = 4.26, α̂ =
10.02 (8.25, 11.77).

(c) SMC-U: MSE = 11.88, α̂ =
8.58 (7.38, 10.02).

(d) SMC-P: MSE = 4.49, α̂ =
10.01 (8.36, 11.63).

Figure 5.3.8: Top: Heat plots of the posterior probabilities, for n = 20 potatoes, for
being ranked as the kth most preferred, for k = 1, ..., 20 using the MCMC algorithm
(top) with 10,000 (5,000 burn-in, left) and 100,000 (50,000 burn-in, right) iterations,
the SMC algorithm (bottom) with the uniform augmentation method (left) and the
pseudo-likelihood augmentation method (right). On the x-axis, the items are ordered
according to their true consensus. The MSE value and the mean estimate of α with
its corresponding 95% HDPI are included in the captions.

5.4 Conclusion

In this chapter, we extended the resample-move SMC algorithm for the Mallows

model to make sequential updates of the estimated posterior distribution in an online
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CP p(ρi ≤ i) 95% HDPI
ρ MCMC SMC-U SMC-P MCMC SMC-U SMC-P MCMC SMC-U SMC-P

ρ1 P12 P12 P12 1.00 1.00 1.00 [1] [1] [1]
ρ2 P13 P13 P13 1.00 1.00 1.00 [2] [2] [2]
ρ3 P9 P9 P9 0.98 0.98 0.93 [3] [3] [3,4]
ρ4 P10 P10 P10 0.95 0.96 0.89 [4,5] [4,5] [3,5]
ρ5 P17 P7 P17 0.88 0.57 0.89 [4,6] [5,7] [4,6]
ρ6 P7 P17 P7 0.89 0.87 0.91 [5,7] [5,7] [5,7]
ρ7 P14 P14 P14 1.00 1.00 1.00 [6,7] [6,7] [6,7]
ρ8 P16 P16 P16 0.99 0.96 0.98 [8] [8] [8]
ρ9 P1 P5 P1 0.49 0.75 0.55 [9,11] [8,10] [9,11]
ρ10 P5 P1 P19 0.56 0.94 0.55 [9,12] [9,11] [9,12]
ρ11 P19 P2 P5 0.85 0.67 0.62 [9,12] [11,12] [9,13]
ρ12 P11 P3 P11 0.97 0.54 0.73 [9,12] [9,14] [9,14]
ρ13 P20 P19 P20 0.58 0.68 0.79 [13,17],[19] [12,13] [11,15]
ρ14 P18 P4 P18 0.37 0.98 0.44 [14,19] [13,14] [12,16]
ρ15 P3 P6 P15 0.53 0.84 0.51 [13,19] [14,16] [13,18]
ρ16 P15 P8 P3 0.77 0.72 0.56 [13,18],[20] [15,17] [13,20]
ρ17 P2 P11 P2 0.65 1.00 0.49 [13,20] [11,12], [14,17] [16,20]
ρ18 P4 P15 P8 0.58 0.94 0.84 [15,20] [17,19] [15,19]
ρ19 P6 P18 P6 0.78 0.99 0.70 [13],[15,20] [18,19] [16,20]
ρ20 P8 P20 P4 1.00 1.00 1.00 [16,20] [20] [18,20]

Table 5.3.12: Posterior estimates of the items in the modified Potato data set. Items
are arranged according to the CP consensus ranking with their corresponding cumu-
lative probabilities and 95% HDPIs.

Iteration
Method Observation 1 2 3 4 5 6 7 8 9 10 11 12

SMC-U ESS 346.01 202.37 69.33 37.45 56.26 2.62 51.41 67.80 113.18 43.32 79.44 80.90
Var(Wt) 1.89e-06 3.95e-06 1.34e-05 2.57e-06 1.68e-05 3.81e-04 1.85e-05 1.38e-05 7.84e-06 2.21e-05 1.16e-05 1.14e-05

# resampled particles 510 464 318 195 301 139 284 353 318 266 435 286

SMC-P ESS 397.36 47.03 114.24 84.13 56.02 88.51 13.45 38.67 73.89 13.71 97.00 122.96
Var(Wt) 1.52-06 2.03e-05 7.76e-06 1.09e-05 1.69e-05 1.03e-05 7.34e-05 2.49e-05 1.25e-05 3.22e-05 9.32e-06 7.14e-06

# resampled particles 516 386 351 310 260 262 167 237 260 280 320 327

Table 5.3.13: A summary of the state of the particles in each iteration of the SMC
algorithm with the uniform augmentation method and the pseudo-likelihood aug-
mentation method with the modified Potato data set. The ESS, the variance of the
normalised particle weights and the number of particles resampled are provided.

setting when we receive partially observed data. We assume that we observe new

partial rankings from individuals and these remain unchanged over time.

We considered two proposal distributions to augment the missing components of

each observed partial ranking before performing the reweighting stage of the SMC

framework. The uniform augmentation method samples the latent components of the

partial ranking uniformly at random with the allowable augmentations of the missing

ranks. The pseudo-likelihood augmentation method makes an informed choice of the
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MCMC SMC-U SMC-P

Method Mean 95% CI Mean 95% CI Mean 95% CI
MSE 3.76 (3.30, 4.22) 10.44 (9.99, 10.88) 3.96 (3.36, 4.56)

Time (s) 2.97 (2.95, 2.99) 18.71 (18.48, 18.93) 31.00 (30.59, 31.32)

Table 5.3.14: Summary table of the MSE and time taken for the ten experiment runs
of the MCMC algorithm and SMC algorithm with both augmentation methods with
the modified Potato data set.

augmentation using the current estimated values of the Mallows model parameters.

It samples each missing rank for each unranked item using several univariate Mallows

distributions each conditioned on the item’s rank in the estimated consensus ranking,

the scale parameter and the set of remaining possible ranks. However, this particular

method can only be utilised if the distance between rankings is measured with either

the footrule or the Spearman distance.

We tested the proposed SMC algorithm for the Mallows model with partial rank-

ings using simulated and real data to study the overall behaviour of the SMC algorithm

against the MCMC algorithm for the cases considered. We discovered that for small

examples where the size of the sampling space for the latent components of each par-

tial ranking is small, the SMC algorithm with the pseudo-likelihood augmentation

method is able to estimate the posterior given a set of partial rankings. However,

when the number of missing components in each item is increased in the experiments

related to new partial rankings, we notice that the estimation deteriorates. We con-

clude that the main reason that the SMC sampler struggles with larger examples is

that the augmentation methods can struggle to make proposals that reflect the cur-

rent posterior with a set of partial data. This means that potentially an insufficient

number of particles are resampled or that we may struggle to propagate the particles
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to areas of the posterior distribution with high density without a heavy reliance on

the MCMC move kernels to help mitigate this. Although the MCMC algorithm pro-

posed possible augmentations for the latent components of the partial rankings using

a uniform augmentation method as well, the algorithm also proposes these updates for

each R̃ sequentially for the same number of times as the length of the MCMC chain.

The SMC algorithm suffers from running N chains in parallel, which do not necessar-

ily update each R̃ as often as MCMC before they are potentially discarded through

resampling. The posterior estimation with the SMC methodology is improved when

we reduce the number of new rankings to account for in each update, as this reduces

the number of latent components to consider in the particle set.



Chapter 6

Sequential Monte Carlo for the

Mallows Model with Updated

Partial Rankings

6.1 Introduction

In Chapter 5, we developed an initial framework to perform SMC with the Mal-

lows model given a collection of partial rankings on a discrete timeline, making the

assumption that we could only observe new partial rankings and any previously ob-

served rankings would remain unchanged. Now, we assume that for a given set of

partial rankings, we may find that each assessor in the data set may want to provide

an update to their existing information at some later stage in time. This means that

the current SMC framework needs to be altered to account for these changes. The

challenge is to “correct” the latent components of the ranking data in the particle set

136
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such that they are consistent with the new observed components of the updated par-

tial rankings over time. We note that this cannot be termed a full correction since we

may find that the latent components of each ranking may contradict the new observed

information in future iterations.

The structure of this chapter is as follows. We formulate the updated partial

ranking problem from existing individuals over a discrete time sequence in Section

6.2. The methodology is presented in Section 6.2.1, and then assessed in Section 6.3

with simulated and real data sets.

6.2 Proposed method

The context remains the same as in Section 5.2 of Chapter 5, except we now assume

that we have observed a total of M partial rankings. The task is to estimate the

sequence of Mallows posterior distributions for the evolving M partial rankings over

a discrete timeline t = 1, . . . , T , defined as

πt(ρ, α|R1, . . . ,RM) =
∑

R̃1∈S1

· · ·
∑

R̃M∈SM

p(ρ, α, R̃1, . . . , R̃M |R1, . . . ,RM).

Each partial ranking has had its missing components filled in via data augmen-

tation during the SMC process. We assume that we receive updates from known

assessors in the form of a change to their given partial ranking. Specifically, the up-

date we observe is a rank for an item that was previously not ranked by the known

assessor. The previously observed elements of each ranking remain unchanged. For
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example, we may have observed a ranking

R = (5, 3, ·, ·, ·).

from an assessor. Using SMC, we may predict the complete auxiliary ranking is

R̃ = (5, 3, 1, 2, 4).

However, at a future point in time, we observe some new additional information about

the assessor’s ranking, for example,

R = (5, 3, 2, ·, ·),

which contradicts the predicted full ranking at the previous time step. This is a

contrived example; it is very unlikely that we will have guessed every single latent

item rank correctly during the augmentation stage, assuming that we will observe the

true latent ranks in the future. This is difficult within the SMC framework because we

cannot perform the remaining stages of the algorithm until we address the problem of

correcting the auxiliary components of the augmented rankings to be compatible with

the new observed components of each partial ranking. The task is to reweight the

particles to account for the updated partial rankings from known assessors such that

we are able to perform the other stages of the SMC process and obtain an updated

estimation of the posterior sequentially.
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6.2.1 Methodology

We assume that a total of M partial rankings have been observed over t − 1 itera-

tions. The missing components of each ranking are augmented to achieve R̃1:M,t−1

which form part of the particle set containing a representative sample of the Mallows

posterior πt−1(ρ, α|R1:M,t−1). However, at some future time step, say t, we observe

Rj,t, j ∈ {1, . . . ,M} which provides an update about an assessor’s ranking Rj: we

observe a rank for an item that was previously unobserved. Any previously observed

elements in any ranking remain unchanged as we new information is observed over

time. However, this additional information also means that the observed ranks for

items in Rj,t may not be coherent with the auxiliary components of the item ranks in

R̃j,t−1.

For each updated ranking received, the latent components of the partial rankings

are corrected to be consistent with the observed components of the updated partial

rankings. Here, each updated ranking is viewed as a known assessor being removed

from the observed data set and re-entering as a new assessor with their new partial

ranking. Formally, the ranking R̃j,t−1 is removed just before time t before they present

their updated preferences. This result is defined as R̃1:M\{j},t−1 to account for the

removal of R̃j,t−1. The weight adjustment for each particle, θ(i), i ∈ {1, . . . , N}, at
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this stage within the SMC framework is

π(θ
(i)
t−1, R̃

(i)
1:M\{j},t−1|R1:M\{j},t−1)

π(θ
(i)
t−1, R̃

(i)
1:M,t−1|R1:M,t−1)

=
π(θ

(i)
t−1)p(R̃

(i)
1:M\{j},t−1|θ

(i)
t−1,R1:M\{j},t−1)

π(θ
(i)
t−1)p(R̃

(i)
1:M,t−1|θ

(i)
t−1,R1:M,t−1)

× p(R1:M,t−1)

p(R1:M\{j},t−1)

=
p(Rj,t−1|R1:M\{j},t−1)

p(R̃
(i)
j,t−1|θ

(i)
1:t−1,Rj,t−1)

∝ 1

p(R̃
(i)
j,t−1|θ

(i)
t−1,Rj,t−1)

. (6.2.1)

Then, at time t, Rj,t enters the system with its updated partial ranking. Assuming

the assessor’s new ranking is independent of the existing rankings, the weight update

for the next stage is

π(θ
(i)
1:t, R̃

(i)
1:M,t|R1:M,t)

π(θ
(i)
1:t, R̃

(i)
1:M\{j},t|R1:M\{j},t)q(R̃

(i)
j,t |θ

(i)
1:t,Rj,t)

∝
p(R̃

(i)
j,t |θ

(i)
t ,Rj,t)

q(R̃
(i)
j,t |θ

(i)
t ,Rj,t)

, (6.2.2)

where q(R̃
(i)
j,t |θ

(i)
t ,Rj,t) is the proposed augmentation kernel. The total incremental

particle weight update at time t is therefore the product of (6.2.1) and (6.2.2),

w̃t(θ
(i)
t , R̃

(i)
1:M , t) =

p(R̃
(i)
j,t |θ

(i)
t ,Rj,t)

p(R̃
(i)
j,t−1|θ

(i)
t−1,Rj,t−1)q(R̃

(i)
j,t |θ

(i)
1:t,Rj,t)

.

After the reweighting stage, we can perform the remaining stages of the SMC algo-

rithm. The pseudocode for the SMC algorithm for the Mallows model with updated

partial rankings is given in Algorithm 13.
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Algorithm 13: Sequential Monte Carlo for the Mallows Model with Updated
Partial Rankings

Input: λ, σα, d(·, ·), K, L, N, R1, . . . ,RM ; T, Zn(α).
Output: Posterior distributions of ρ, α and R̃1:M .
Initialisation of SMC: generate particle set from MCMC or SMC

ρ
(i)
0 , α

(i)
0 , R̃1:M,t for i = 1, . . . , N .

for t = 1, . . . , T do
Observe R1:M,t

for i = 1 : N do
for j = 1 : M do

if Rj,t not compatible with R̃j,t−1 then

Sample R̃
(i)
j,t with proposal R̃j,t ∼ q(R̃j,t|Rj,t,ρ

(i)
t , α

(i)
t ).;

else

R̃
(i)
j,t = R̃

(i)
j,t−1 and q(R̃j,t|Rj,t,ρ

(i)
t , α

(i)
t ) = 1.

end

end

Compute w̃t =

Mt∏
j=1

p(R̃j,t|ρt,αt)
p(R̃j,t−1|ρt−1,αt−1,Rj,t−1)q(R̃j,t|ρt−1,αt−1,Rj,t)

.

end

Resample (k1, . . . , kN ) ∼M(w
(1)
t , . . . , w

(N)
t ) and set

{θ(1:N)
t , w

(i)
t } ← {θ

(k1:kN )
t , 1

N }.
for i = 1 : N do

for k = 1, . . . ,K do

M-H step: update ρ
(i)
t using the leap-and-shift proposal

(ρ′ ∼ L&S(ρ
(i)
t , L)).

M-H step: update α
(i)
t with log-normal proposal (α′ ∼ logN (α

(i)
t , σ

2
a)).

for j = 1 : M do

M-H step: update R̃
(i)
j,t with proposal R̃′j,t ∼ q(R̃j |Rj,t,ρ

(i)
t , α

(i)
t ).

end

end

end

end

6.3 Experimental analyses

We assessed the proposed SMC methodology with synthetic and real data. We note

that each experiment with the SMC algorithm with the uniform augmentation method

is referred to as SMC-U in each figure and table in this chapter, whilst the SMC
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algorithm with the pseudo-likelihood augmentation method is referred to as SMC-P.

6.3.1 Simulated data: 10 items

We generated M = 100 full rankings of n = 10 items and filtered the data set such

that we observe only the top-5 ranked items. The SMC algorithm is initialised with

this data set by re-running the experiment described in Section 5.3.1 in Chapter 5

with N = 1000 particles to obtain an initial estimate of the posterior. We receive the

next top-ranked item from ten assessors at a time in decreasing rank order from 6 to 9

for a total of T = 40 iterations. In each iteration, we correct each augmented ranking

if it is not consistent with the newly observed components of each assessor’s partial

ranking. We consider the uniform and pseudo-likelihood augmentation methods to

augment the partial rankings which will affect the calculations for the particle weights

given the proposed correction. Finally, we resampled and applied the MCMC move

kernels for ρ, α and R̃1:M for ten iterations at each SMC iteration. In total, 10,000

applications of MCMC move kernels were applied to each parameter in the particle

set in each iteration. The MCMC algorithm cannot update the chain to account

for any updated partial rankings, so as a reference of comparison with the results

obtained from SMC, we ran the MCMC algorithm several times, each with the top-k,

k = 5, . . . , 9, rankings in the simulated data set for 10,000 iterations and discarded

the first 5,000 as burn-in.

The results from the proposed SMC methodology with both augmentation meth-

ods and the MCMC method are compared by observing the heat plot, the MSE for ρ,

the mean estimate and the HDPI of α in Figure 6.3.1. The first column of heat plots
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shows the initial marginal posterior distributions for ρ when we observe the top-5

rankings. These results were also shown in Figure 5.3.1 and discussed in Section 5.3.1

in Chapter 5. We see that the SMC method with both augmentation methods pro-

vides similar estimated posterior distributions as the one obtained by MCMC. There

are some discrepancies in the posterior probabilities for certain items in ρ∗ in the heat

plots, but the suggestions about which rank to assign to each item in the consensus

look relatively similar across all three methods.

Table 6.3.1 presents the average MSE and time elapsed to run ten repetitions of

the MCMC algorithm with each top-k, k = 5, . . . , 9, data set and the SMC algorithm

with both augmentation methods when we reach the iterations where we observe the

top-k, k = 6, . . . , 9, ranked items for all assessors in the data set. The time taken

to run the MCMC algorithm decreases as we observe more information about the

full data set. In SMC, to perform one sequential update of ten updated rankings,

the algorithm takes ∼14 seconds with the uniform and ∼20 seconds with the pseudo-

likelihood augmentation method respectively.

Next, we repeat the experiment with a reduced number of MCMC move kernel

applications to assess whether SMC can perform sequential posterior estimations for

less computational effort well in comparison to using MCMC. We specified five appli-

cations of the MCMC move kernels for each parameter in each iteration of SMC, so a

total of 5,000 MCMC move kernels were applied to each particle. The results of this

experiment are presented in Figure 6.3.2. After we have observed the top-6 rankings

from each individual, we notice that more uncertainty is shown for the lower-ranked

items in ρ when using the SMC algorithm with the uniform augmentation method in
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Method Observation Metric Mean 95% CI

MCMC Top-5 Time (s) 0.55 (0.55, 0.55)
MSE 0.32 0.30, 0.34)

Top-6 Time (s) 0.53 (0.52, 0.53)
MSE 0.23 (0.17, 0.29)

Top-7 Time (s) 0.51 (0.50, 0.51)
MSE 0.19 (0.18, 0.20)

Top-8 Time (s) 0.48 (0.48, 0.49)
MSE 0.18 (0.17, 0.19)

Top-9 Time (s) 0.24 (0.24, 0.25)
MSE 0.17 (0.15, 0.18)

SMC-U Top-6 Time (s) 138.63 (137.97, 139.30)
MSE 0.34 (0.27, 0.40)

Top-7 Time (s) 276.14 (275.33, 276.95)
MSE 0.23 (0.17, 0.28)

Top-8 Time (s) 411.81 (410.47, 413.14)
MSE 0.17 (0.16, 0.17)

Top-9 Time (s) 545.40 (544.38, 546.42)
MSE 0.16 (0.15, 0.16)

SMC-P Top-6 Time (s) 210.97 (210.04, 211.89)
MSE 0.29 (0.20, 0.38)

Top-7 Time (s) 410.28 (408.81, 411.75)
MSE 0.21 (0.17, 0.24)

Top-8 Time (s) 597.57 (596.18, 598.96)
MSE 0.18 (0.17, 0.19)

Top-9 Time (s) 761.45 (759.23, 763.66)
MSE 0.16 (0.15,0.17)

Table 6.3.1: Summary table of the MSE and time taken for ten experiment runs of the
MCMC algorithm with the top-k, k = 5, . . . , 9, rankings of the complete simulated
data set of ten items and SMC algorithm with the uniform (SMC-U) and the pseudo-
likelihood (SMC-P) augmentation methods when we reach the iterations where we
have observed the top-k, k = 6, . . . , 9, rankings for all assessors.

Figure 6.3.2g. Greater certainty in posterior probabilities for some items to be allo-

cated certain ranks in ρ with the SMC algorithm with the pseudo-likelihood augmen-

tation method can be observed in Figure 6.3.2l. The marginal posterior probabilities

for the top-4 ranked items in ρ appear to be similar across all three methods in the

heat plots. In addition, the point estimate and 95% HDPIs for the scale parameter
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remain relatively similar across all three methods. After observing the top-6 rank-

ings, the SMC algorithm with the pseudo-likelihood augmentation method can obtain

similar MCMC posterior estimates as MCMC by the time we have observed the top-7

rankings, whilst SMC with the uniform augmentation method can also similar MCMC

posterior estimates as MCMC by the time we have observed the top-8 rankings.

6.3.2 Real data: Sushi data

We tested the SMC algorithm with a modified Sushi data set (Kamishima, 2003)

of the first M = 100 rankings and used the same experimental set-up as the first

experiment described in Section 6.3.1.

The results from this experiment are presented in Figure 6.3.3. The top row

shows the output of the MCMC algorithm for each model run with the top-5,. . . ,

top-9 rankings of the modified data set. The middle and bottom rows show the

initial marginal posterior distributions for ρ, which are obtained by the output of

SMC with both augmentation methods when we observe the top-5 rankings in the

modified data set. The analysis for this initial phase is discussed in Section 5.3.2

of Chapter 5. The remaining heat plots in Figure 6.3.3 show the estimated marginal

posterior distributions of the Mallows model parameters after we have reached certain

iterations in the SMC algorithm where we have observed the top-k, k = 6, . . . , 9,

rankings for all assessors. We notice that the trajectory of the estimation for α

remains consistent across all three methods by observing the captions in each heat plot

in Figure 6.3.3. The possible ranks for items in ρ∗ with non-zero posterior probability

are similar between the MCMC and SMC methods, but there are discrepancies in
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these probabilities, particularly for SMC with the uniform augmentation method.

With this method, we also note that the MSE increases suddenly when we observe

the top-8 rankings in Figure 6.3.3i; this is a result of some posterior probability being

allocated to items that are not close to the ρ∗. When we have observed the top-9

rankings we effectively know what the full data set would look like, so the marginal

posteriors for ρ and α are the same across all three methods. Overall, the SMC method

with the pseudo-likelihood augmentation method has achieved sequential marginal

posterior estimations of ρ that are closer to the results obtained by MCMC. To

perform an update with ten updated partial rankings in one iteration of SMC it

can be inferred from Table 6.3.2 that this takes approximately 14 and 20 seconds

with the uniform and pseudo-likelihood augmentation methods respectively whilst it

takes a fraction of a second to run MCMC with each updated data set. We conclude

from this experiment that the SMC methods do not perform faster than the MCMC

algorithm. The computational cost, in terms of MCMC move kernels, to perform one

iteration of SMC is the same as the number of iterations to run MCMC sampler.

We repeat this experiment to see whether the proposed SMC algorithm could

replicate the posterior estimates obtained using MCMC with less computational ef-

fort. We reduce the number of MCMC move kernel applications across all variables

and parameters in the particle set from ten to five in each iteration of SMC giving

a total of 5,000 move kernels applied to each parameter in the particle set. The re-

sults are presented in Figure 6.3.4 and we note that the results obtained from MCMC

are repeated from Figure 6.3.3. The potential selection of ranks for items in ρ are

captured by both SMC methods, but the posterior probabilities vary greatly. Items
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Method Observation Metric Mean 95% CI

MCMC Top-5 Time (s) 0.56 (0.56, 0.56)
MSE 1.09 (1.01, 1.16)

Top-6 Time (s) 0.53 (0.53, 0.53)
MSE 0.96 (0.90, 1.02)

Top-7 Time (s) 0.51 (0.51, 0.51)
MSE 0.65 (0.62, 0.69)

Top-8 Time (s) 0.49 (0.48, 0.49)
MSE 0.65 (0.60, 0.71)

Top-9 Time (s) 0.26 (0.24, 0.25)
MSE 0.67 (0.62, 0.72)

SMC-U Top-6 Time (s) 138.90 (138.32, 139.48)
MSE 1.35 (0.62, 2.08)

Top-7 Time (s) 276.99 (276.24, 277.74)
MSE 0.76 (0.59, 0.93)

Top-8 Time (s) 414.30 (413.48, 415.12)
MSE 0.72 (0.55, 0.88)

Top-9 Time (s) 546.09 (544.37, 547.81)
MSE 0.67 (0.65, 0.69)

SMC-P Top-6 Time (s) 210.73 (210.23, 211.22)
MSE 1.35 (0.68, 2.03)

Top-7 Time (s) 410.09 (409.03, 411.15)
MSE 0.70 (0.60, 0.80)

Top-8 Time (s) 599.11 (597.75, 600.46)
MSE 0.74 (0.56 0.92)

Top-9 Time (s) 763.33 (760.52, 766.16)
MSE 0.66 (0.64, 0.68)

Table 6.3.2: Summary table of the MSE and time taken for ten experiment runs of
the MCMC algorithm with the top-k, k = 5, . . . , 9, rankings of the complete modified
Sushi data set of ten items and SMC algorithm with uniform (SMC-U) and the pseudo-
likelihood (SMC-P) augmentation methods when we reach the iterations where we
have observed the top-k, k = 6, . . . , 9, rankings for all assessors.

which have a higher posterior probability that does not align with ρ∗ contribute to

a larger MSE value. By the time we have observed the top-9 we effectively have

the determined complete data set. At this point, using the SMC algorithm with the

pseudo-likelihood augmentation method, we see that the posterior probabilities for the

highest and lowest-ranked items are captured but the probabilities for middle-ranked
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items diverge from the marginal posterior estimate obtained by MCMC. However,

the posterior estimate of α with SMC remains somewhat consistent with MCMC de-

spite the different posterior estimate of ρ. We conclude that the SMC is not able

to match the MCMC method’s sequential posterior estimations and we would recom-

mend implementing MCMC when we observe updated partial rankings from existing

assessors.

The intuition for why this behaviour occurs with SMC is because the modified

Sushi data set is shown to have large variation (a low value of α indicates high vari-

ability) which makes the estimation more challenging. Each correction required for

an updated partial ranking in a particle will reduce that particular particle’s weight.

Therefore, if several corrections are made for a particle then it is likely to be dis-

carded during the resampling stage. The resampled particles rely heavily on more

applications of the MCMC move kernel to explore the current posterior.

6.4 Conclusion

In this chapter, we applied the SMC framework for the Mallows model for partial

rankings to consider an alternative scenario in the online setting. Instead of observing

a new ranking from a new assessor, we receive an updated ranking from a known

assessor. The update considered is a new rank to a previously unranked item by the

known assessor whilst all of the remaining observed components of the ranking remain

unchanged.

We considered how to correct the particle weights to account for the updated
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information of the observed components of the partial rankings. The proposed SMC

algorithm would otherwise break because the estimated augmented rankings from

the previous time step are not compatible with updated observed partial rankings.

In both cases, we augment the latent components of each partial ranking using the

uniform and pseudo-likelihood augmentation approaches.

From the experiment results, we conclude that although we can correct the aux-

iliary components of each updated partial ranking and adjust the particle weights to

account for this, currently, the proposed SMC methodology does not compute faster

than if we were to rerun the MCMC algorithm with each newly updated data set.

We conclude that the SMC is not able to match the MCMC’s sequential posterior

estimations and we would recommend that MCMC is implemented when we observe

updated partial rankings from existing assessors.
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Chapter 7

Sequential Monte Carlo for the

Mallows Mixture Model with Full

Rankings

7.1 Introduction

In this chapter, we extend the work of Chapter 4 again to consider the sequential

clustering problem with full rankings in an online setting. We assume that the col-

lection of observed rankings is no longer generated from a single Mallows model, but

from a Mallows mixture model consisting of several components, each with its own

unique model parameters. Within the Bayesian framework for clustering, we are inter-

ested in estimating the posterior density of the Mallows mixture model. This includes

the parameter estimation of the model parameters for each component but also the

component weights and the cluster assignments for each observation.
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The chapter is structured as follows. In Section 7.2, we formally describe the

problem and propose the methodology to perform sequential clustering with a mixture

model with a fixed number of components each time we observe a collection of new

full rankings. The method is tested with synthetic data in Section 7.3.1 and with a

benchmark Sushi data set in Section 7.3.2.

7.2 Proposed method

7.2.1 Problem outline

We define the Mallows mixture model consisting of C components. Each ranking

is assigned a cluster label {z1, . . . , zM} ∈ {1, . . . , C} to indicate which component

it belongs to. The resulting likelihood of the Mallows mixture model is, assuming

conditional independence across clusters, given M rankings is

p(R1, . . . ,RM |{ρc, αc}c=1,...,C , z1, . . . , zM) =
M∏
j=1

1Pm(Rj)

Zm(αzj)
exp

{
−
αzj
m
d(Rj,ρzj)

}
.

The cluster labels, z1, . . . , zM , are indicator variables that assign each ranking to one

of C components and are distributed a priori according to p(z1, . . . , zM |τ1, . . . , τC) =∏N
j=1 τzj , where τc is the probability of assigning an assessor to cluster c ∈ {1, . . . , C}.

These assignment probabilities have a standard symmetric Dirichlet prior π(τ1, . . . , τC) =

Γ(ψC)Γ(ψ)−C
∏C

c=1 τ
ψ−1
c , where Γ(·) is the gamma function.

Similar to Chapter 4, we assume the collection of full rankings is observed over a

discrete timeline t = 1, . . . , T . Each ranking remains unchanged and is drawn from
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one of several Mallows models. We express the likelihood for Mt rankings, where Mt

is the number of rankings observed up to time t, under the Mallows mixture model

now as p(R1:Mt|ρ1:C , α1:C , z1:Mt). The task is to perform sequential clustering, that is

to update the posterior estimate

πt(ρ1:C , α1:C |R1:Mt) ∝ π(ρ1:C)π(α1:C)π(τ1:C)p(z1:Mt|τ1:C)p(R1:Mt |ρ1:C , α1:C , z1:Mt),

each time we receive new rankings. Here, π(ρ) = (n!)−11Pn(ρ) is the uniform prior

for the consensus ranking, and π(α|λ) = λ exp{−λα}1[0,∞)(α) is the exponential prior

distribution for the scale parameter, as specified by Vitelli et al. (2018).

7.2.2 Methodology

The proposed SMC methodology for clustering continues to follow the resample-move

SMC framework (Berzuini and Gilks, 2001). If we have no initial observed rank-

ings at time t = 0, that is, M0 = 0, then we generate the model parameter values

for each particle using specified prior distributions for ρ1:C , α1:C and τ1:C and as-

sign these an equal weight. Alternatively, if we have initial observation then we

can take the output of an MCMC or SMC sampler to create the particle set. At

time t − 1, each particle now contains: a set of consensus rankings, ρ1:C,t−1; a set

of scale parameters, α1:C,t−1; a set of components weights, τ1:C,t−1; a set of clus-

ter labels, z1:Mt−1 ; and a weight Wt−1. This can be represented as the particle set

{θ(i)
t−1 = (ρ

(i)
1:C,t−1, α

(i)
1:C,t−1, τ

(i)
1:C,t−1), z

(i)
1:Mt

,W
(i)
t−1}Ni=1. In one iteration of the SMC sam-

pler, we observe (Mt −Mt−1) new full rankings. We propose the cluster allocation
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zMt−1+1:Mt by calculating the contribution that each ranking RMt−1+1:Mt would con-

tribute to the likelihood of each component of the mixture model in each particle.

These contributions are normalised and we sample the assignment via a multinomial

distribution using these normalised contributions as the multinomial probabilities.

The proposal density in each SMC iteration is therefore defined as cluster assignment

probability for a batch of (Mt −Mt−1) rankings for each particle can be expressed as

qt(θ
(i)
t , z

(i)
1:Mt
|θ(i)
t−1, z

(i)
1:Mt−1

R1:Mt) = qt(z
(i)
Mt−1+1:Mt

|θ(i)
t ,RMt−1+1:Mt)

=

Mt∏
j=Mt−1+1

τ
(i)
zj

Zn(α
(i)
zj

)
exp

{−α(i)
zj

n
d(Rj,ρzj)

}
C∑
c=1

τ
(i)
c

Zn(α
(i)
c )

exp
{
− α

(i)
c

n
d(Rj, ρ

(i)
c )
} .

After the cluster allocations are proposed, the particle weights are adjusted to account

for the contribution that each new ranking has to their selected cluster component us-

ing the approximated likelihood p(R1:Mt−1|ρ1:C , α1:C , z1:Mt−1) so that the particles are

now weighted with respect to p(R1:Mt |ρ1:C , α1:C , z1:Mt). Under importance sampling,

the weight update for each particle is
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w̃t(θ
(i)
t , z

(i)
1:Mt

) =
πt(θ

(i)
t , z

(i)
1:Mt
|R1:Mt)

πt−1(θ
(i)
t−1, z

(i)
1:Mt−1

|R1:Mt−1)qt(θ
(i)
t , z

(i)
1:Mt
|θ(i)
t−1, z

(i)
1:Mt−1

R1:Mt)

=
π(θ

(i)
t )p(z

(i)
1:Mt
|θ(i)
t )p(R1:Mt |θ

(i)
t , z

(i)
1:Mt

)

π(θ
(i)
t−1)p(z

(i)
1:Mt−1

|θ(i)
t−1)p(R1:Mt−1|θ

(i)
t−1, z

(i)
1:Mt−1

)

×
p(R1:Mt−1)

p(R1:Mt)
× 1

qt(θ
(i)
t , z

(i)
1:Mt
|θ(i)
t−1, z

(i)
1:Mt−1

R1:Mt)

=
p(z

(i)
Mt−1+1:Mt

|θ(i)
t )p(RMt−1+1:Mt|θ

(i)
t , z

(i)
Mt−1+1:Mt

)/p(R1:Mt)

qt(θ
(i)
t , z

(i)
1:Mt
|θ(i)
t−1, z

(i)
1:Mt−1

R1:Mt)/p(R1:Mt−1)

∝
p(z

(i)
Mt−1+1:Mt

|θ(i)
t )p(RMt−1+1:Mt|θ

(i)
t , z

(i)
Mt−1+1:Mt

)

qt(θ
(i)
t , z

(i)
1:Mt
|θ(i)
t−1, z

(i)
1:Mt−1

R1:Mt)

=
∏Mt

j=Mt−1+1

τ
(i)
zm exp

{
−α(i)

zm

n
d(Rj,ρ

(i)
zm)
}

Zn(α
(i)
zm)

×

C∑
c=1

τ
(i)
c

Zn(α
(i)
c )

exp
{
− α

(i)
c

n
d(Rj, ρ

(i)
c )
}

τ
(i)
zm

Zn(α
(i)
zm )

exp
{
−α(i)

zm

n
d(Rj,ρ

(i)

z
(i)
j

)
}

=
∏Mt

j=Mt−1+1

C∑
c=1

τ
(i)
c

Zn(α
(i)
c )

exp
{
− α

(i)
c

n
d(Rj, ρ

(i)
c )
}
.

Multinomial resampling is employed to discard the lower-weighted particles whilst

replicating the particles with greater weighting.

Finally, the moving stage consists of several steps. First, we use the proposal

distributions suggested in Vitelli et al. (2018) to sample new values of ρ1:C and α1:C .

These updates are conditioned on the rankings that have been assigned to each cluster.

Next, we perform a Gibbs update of the component weights τ1:C by counting the

number of rankings that are assigned to each cluster, denoted nc, c = 1, . . . , C which
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updates the Dirichlet prior parameters to sample a new value for τc. Finally, we

may perform a Gibbs update of allocations of the rankings to clusters. To reduce

computational effort we may only reallocate the recently observed rankings. The

pseudocode for the proposed SMC sampler for clustering with complete rankings is

provided in Algorithm 14.
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Algorithm 14: Sequential Monte Carlo for the Mallows Mixture Model with
Full Rankings

Input: C, ψ, λ, σα, d(·, ·), L, N, M1, . . . ,MT ; R1, . . . ,RM ; T, Zn(α).
Output: Posterior distributions of ρ1, . . . ,ρC ; α1, . . . , αC ; τ1, . . . , τC ; z1, . . . , zM .

Initialisation of SMC: randomly generate ρ
(i)
1,0, . . . ,ρ

(i)
C,0; α

(i)
1,0, . . . , α

(i)
C,0;

τ
(i)
1,0, . . . , τ

(i)
C,0 for i = 1, . . . , N .

for t = 1, . . . , T do
Observe RMt−1+1:Mt

for i = 1 : N do
for j = Mt−1 + 1 : Mt do

for c = 1 : C do

Compute pcj =
τ
(i)
c,t

Zn(α
(i)
c,t)

exp
{
− α

(i)
c,t

n d(Rj , ρ
(i)
c,t)
}

.

end

Sample z
(i)
j,t ∼M(p1j , . . . , pCj).

end

Compute w
(i)
t =

Mt∏
j=Mt−1+1

C∑
c=1

τ
(i)
c

Zn(α
(i)
c )

exp
{
− α

(i)
c
n d(Rj , ρ

(i)
c )
}

.

Compute w
(i)
t = W

(i)
t−1w̃

(i)
t .

end

Resample (k1, . . . , kN ) ∼M(W
(1)
t , . . . ,W

(N)
t ) and set

{θ(1:N)
t , w

(i)
t } ← {θ

(k1:kN )
t , 1

N }.
for i = 1 : N do

for c = 1 : C do

M-H step: update ρ
(i)
c,t with the leap-and-shift proposal

(ρ′ ∼ L&S(ρ
(i)
c,t, L)).

M-H step: update α
(i)
c,t with log-normal proposal (α′ ∼ logN (α

(i)
c,t , σ

2
a)).

Gibbs step: compute nc =
∑Mt

j=1 1c(z
(i)
j ) and sample

τ
(i)
1,t , . . . , τ

(i)
C,t ∼ D(ψ + nc).

end
for j = Mt−1 + 1 : Mt do

for c = 1 : C do

Compute pcj =
τ
(i)
c,t

Zn(α
(i)
c,t)

exp
{
− α

(i)
c,t

n d(Rj , ρ
(i)
c,t)
}
.

end

Gibbs step: sample z
(i)
j,t ∼M(p1j , . . . , pCj).

end

end

end
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7.3 Experimental analyses

7.3.1 Simulated data: 20 items

We examine the proposed SMC methodology with a simulated data set contain-

ing M = 1500 rankings for n = 20 items. The data set is generated using the

sample mallows function in the BayesMallows R package (Sørensen et al., 2020) to

create five data sets containing 500, 400, 300, 200 and 100 rankings, each with their

own randomly generated consensus ranking but the same scale parameter, α1:5 = 5.

These data sets were concatenated and rearranged to create the final data set with

an underlying distribution of a Mallows mixture model consisting of five components.

The SMC algorithm propagates N = 2000 particles for T = 15 iterations by

introducing 100 new rankings at a time. In each iteration, the sample values for ρ1:5

and α1:5 in the particle set are updated with five applications of the MCMC move

kernels. For every five SMC iterations, we update the cluster assignments z1:Mt for the

rankings that had been observed up until that time. The MCMC algorithm of Vitelli

et al. (2018) is run for 20,000 iterations with the first 10,000 iterations as burn-in. In

both methods, we set the leap-size parameter in the leap-and-shift proposal for ρ to

be L = bn/5c, and we set the hyper-parameter and the standard deviation for the

exponential proposal distribution for α to be λ = 0.1 and σα = 0.5 respectively. We

use the footrule distance throughout these experiments.

First, we inspected the cluster assignments of the rankings across the final MCMC

chain and the SMC particles in their final iteration to see if label switching had

occurred in Figure 7.3.1. Label switching is indicated if the cluster labels for any
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two rankings appear to swap between two components across either the final MCMC

chain or SMC particle set. If label switching is observed, then we could perform a

post-processing stage where we reallocate each ranking to its corrected cluster label

based on the values of τ1:5 arranged in descending order. Alternatively, we could

measure the distance from each of the shared consensus rankings of each component

to some reference ranking and rearrange the allocations by considering the distances

in descending order. There is no sign that label switching has occurred in Figure

7.3.1 and we see that nearly all of the rankings have been allocated to their matching

component that was used to simulate the data set. This is likely due to the high value

of the scale parameter, that was used to generate the simulated data set, so there

is low variability around the consensus rankings. The cluster labels in the MCMC

output need to be relabelled to match the cluster labels of the original data set and

the output from the SMC algorithm.

We assess the performance of the Bayesian methods in Table 7.3.1 which contains a

summary of the posterior estimates for ρ1:5, α1:5 and τ1:5 from both experiments. The

parameters, that were used to create the data set, are also provided. The component

weights, τ1:5, match the posterior estimates using both methods and the estimates for

α1:5 are similar and show variation from the underlying scale parameter value that was

used to generate the rankings. The estimated consensus rankings in each component

are also similar between both Bayesian methods with more differences in the item

ranks occurring in the smallest components as we would expect.

The heat plots in Figure 7.3.2 show the posterior probabilities of assigning the

rankings to each of the cluster components. Again, similarly to the heat plots in
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Figure 7.3.1, there is certainty in which rankings belong to each component.

(a) MCMC. (b) SMC.

Figure 7.3.1: Heat plots of the cluster labels for each ranking in the first simulated
data set across the MCMC chain after burn-in (left) and the particles in the final time
step (right) respectively. It is clear that there are no signs of label switching and the
cluster components between the MCMC and SMC algorithm can be paired as 5-1,
1-2, 4-3, 3-4 and 2-5.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

MCMC SMC MCMC SMC MCMC SMC MCMC SMC MCMC SMC

τ 0.33 0.33 (0.31, 0.35) 0.33 (0.31, 0.35) 0.26 0.26 (0.24, 0.29) 0.26 (0.24, 0.29) 0.20 0.20 (0.18, 0.22) 0.20 (0.18, 0.22) 0.14 0.14 (0.12, 0.15) 0.14 (0.12, 0.15) 0.07 0.07 (0.06, 0.08) 0.07 (0.06, 0.08)

α 5 5.10 (4.97, 5.22) 5.12 (4.95, 5.21) 5 4.84 (4.71, 4.98) 4.82 (4.64, 4.98) 5 4.91 (4.75, 5.07) 4.88 (4.72, 5.04) 5 5.10 (4.89, 5.29) 5.09 (4.92, 5.29) 5 4.75 (4.49, 5.05) 4.73 (4.45, 5.02)

ρ1 16 16 16 3 3 3 17 17 17 13 13 13 20 20 20

ρ2 5 5 5 4 4 4 6 6 6 3 3 3 17 17 17

ρ3 12 12 12 5 5 5 19 19 19 18 18 18 6 6 6

ρ4 15 15 15 2 2 2 20 20 20 6 6 6 18 18 18

ρ5 9 9 9 14 14 14 13 13 13 12 12 12 5 5 5

ρ6 19 19 19 15 15 15 1 1 1 4 4 4 16 16 16

ρ7 6 6 6 8 8 8 9 9 9 9 9 9 13 14 14

ρ8 4 4 4 11 11 11 8 8 8 7 7 7 1 1 1

ρ9 2 2 2 19 19 19 10 10 10 19 19 19 2 3 3

ρ10 7 7 7 20 20 20 15 15 15 17 17 17 19 19 19

ρ11 14 14 14 7 7 7 16 16 16 5 5 5 10 10 10

ρ12 10 10 10 9 9 9 18 18 18 8 8 8 12 12 12

ρ13 11 11 11 13 13 13 3 3 3 14 14 14 15 15 15

ρ14 20 20 20 6 6 6 11 11 11 15 15 15 3 2 2

ρ15 13 13 13 12 12 12 12 12 12 1 1 1 4 4 4

ρ16 8 8 8 17 17 17 7 7 7 20 20 20 11 11 11

ρ17 17 17 17 16 16 16 2 2 2 16 16 16 7 7 7

ρ18 1 1 1 18 18 18 14 14 14 10 10 10 9 9 9

ρ19 18 18 18 1 1 1 4 4 4 11 11 11 8 8 8

ρ20 3 3 3 10 10 10 5 5 5 2 2 2 14 13 13

Table 7.3.1: Results summary of the first simulated data experiment. The cluster
components are labelled from left to right in descending order of the component
weights. The posterior estimates for τ and α, with their 95% HDPIs in parenthesis,
and each ρc, c = 1, . . . , 5 that was used to generate the data set and the MAP
consensus ranking estimates of the cluster components obtained from the MCMC and
SMC experiments are provided.

(a) MCMC. (b) SMC.

Figure 7.3.2: Heat plots of the posterior probabilities for each of the 1,500 assessors
in the first simulated data set being assigned to each of the five clusters using the
Bayesian methods.
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We perform the same simulated data experiment again, but this time we reduce

the scale parameter for all cluster components to α1:5 = 2. This will result in higher

variability in the rankings generated around each of the component’s “true” consensus

rankings.

We check for any indication that label switching has occurred by observing the

cluster assignments for each ranking from the MCMC and SMC output with the

heat plots in Figure 7.3.4. Again, we do not see any sign of label switching in this

instance and the cluster labels from the MCMC output must be relabelled so that

they match the original labels of the simulated data set. The small scale parameter

value has resulted in a significant number of rankings being allocated to more than

one component or to a component that is not the same component it was generated

from.

Table 7.3.2 presents the estimates of the mixture model posterior. The posterior

estimates for τ1:5 are relatively similar, but we do see a slightly higher weight for

the smaller components in the SMC output. The estimates for α1:5 vary much more

between both methods for the three smallest components in the cluster. Despite this,

we see that the estimates for ρ1:5 are a close match between both methods with only

some small variation from the underlying values of ρ∗1:5 that were used to generate

the simulated data set.

The cluster assignment plots in Figure 7.3.4 show a greater variation in the pos-

terior probabilities for assigning rankings to clusters. We would expect this since

there is a higher variance in how much the generated ranking differs from their “true”

consensus ranking, so we could justify a ranking possibly belonging to more than
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one component. Overall, there is a reasonable amount of certainty on which cluster

component a ranking belongs to.

We also created several confusion matrices to see how often SMC replicates the

cluster assignments matches that MCMC achieves and with the generated data set.

These results are provided in Figure 7.3.3. It appears that the number of correct

matches between both methods and with each method in comparison to the cluster

labels of the generated data set seems to be similar. Any misallocation is likely due

to a ranking being allocated to a cluster component which has the smallest distance

between its shared consensus ranking and the ranking itself. If a tie occurs between

two or more components with the same distance to a ranking, then the cluster label

is sampled using the component weights as the likelihood of allocations.

(a) MCMC. (b) SMC.

Figure 7.3.3: Heat plots of the cluster labels for each ranking in the second simulated
data set across the MCMC chain after burn-in (left) and the particles in the final time
step (right) respectively. It is clear that there are no signs of label switching and the
cluster components between the MCMC and SMC algorithm can be paired as 5-1,
1-2, 4-3, 3-4 and 2-5.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

MCMC SMC MCMC SMC MCMC SMC MCMC SMC MCMC SMC

τ 0.33 0.32 (0.29, 0.35) 0.31 (0.28, 0.33) 0.26 0.23 (0.20, 0.27) 0.23 (0.21, 0.25) 0.20 0.22 (0.19, 0.26) 0.19 (0.17, 0.21) 0.14 0.15 (0.12, 0.19) 0.16 (0.14, 0.18) 0.07 0.08 (0.05, 0.11) 0.11 (0.09, 0.13)

α 2 2.20 (2.06, 2.32) 2.25 (2.18, 2.35) 2 1.85 (1.69, 2.03) 1.87 (1.76, 1.97) 2 1.92 (1.72, 2.09) 2.17 (2.03, 2.30) 2 1.86 (1.64, 2.13) 1.82 (1.64, 1.96) 2 2.20 (1.74, 2.64) 1.61 (1.44, 1.81)

ρ1 16 16 16 3 3 3 17 18 18 13 8 9 20 20 20

ρ2 5 5 5 4 5 4 6 5 6 3 4 3 17 15 16

ρ3 12 12 12 5 4 5 19 17 17 18 17 17 6 6 6

ρ4 15 15 15 2 2 2 20 20 20 6 3 5 18 18 18

ρ5 9 9 9 14 14 14 13 13 13 12 15 13 5 5 5

ρ6 19 19 19 15 17 16 1 2 3 4 5 4 16 16 17

ρ7 6 6 6 8 9 10 9 11 10 9 10 12 13 14 15

ρ8 4 3 3 11 12 13 8 7 8 7 9 7 1 1 1

ρ9 2 2 2 19 18 19 10 8 7 19 19 19 2 3 3

ρ10 7 7 7 20 20 20 15 15 15 17 18 18 19 19 19

ρ11 14 14 14 7 6 7 16 16 16 5 6 6 10 9 8

ρ12 10 11 10 9 8 8 18 19 19 8 7 8 12 8 11

ρ13 11 10 11 13 13 12 3 3 2 14 14 16 15 14 14

ρ14 20 20 20 6 7 6 11 9 9 15 16 15 3 2 2

ρ15 13 13 13 12 11 10 12 12 12 1 1 1 4 7 9

ρ16 8 8 8 17 15 15 7 10 11 20 20 20 11 13 10

ρ17 17 17 17 16 16 17 2 1 1 16 13 14 7 4 4

ρ18 1 1 1 18 19 18 14 14 14 10 11 10 9 11 12

ρ19 18 18 18 1 1 1 4 4 4 11 12 11 8 10 7

ρ20 3 4 4 10 10 11 5 6 5 2 2 2 14 12 13

Table 7.3.2: Results summary of the second simulated data experiment. The cluster
components are labelled from left to right in descending order of the component
weights. The posterior estimates for τ and α, with their 95% HDPIs in parenthesis,
and each ρc, c = 1, . . . , 5 that was used to generate the data set and the MAP
consensus ranking estimates of the cluster components obtained from the MCMC and
SMC experiments are provided.

(a) MCMC. (b) SMC.

Figure 7.3.4: Heat matrices of the posterior probabilities for each of the 1,500 assessors
in the second simulated data set being assigned to each of the five clusters using the
Bayesian methods.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 433 18 13 23 13
Cluster 2 23 302 18 39 18
Cluster 3 14 11 243 14 18
Cluster 4 11 25 18 137 9
Cluster 5 5 10 6 7 72

(a) Simulated data vs. MCMC.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 433 19 20 24 4
Cluster 2 27 303 24 41 4
Cluster 3 12 11 260 11 6
Cluster 4 10 21 24 137 8
Cluster 5 7 10 7 6 70

(b) Simulated data vs. SMC.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 478 0 0 3 8
Cluster 2 1 349 0 3 11
Cluster 3 6 2 296 8 23
Cluster 4 0 14 2 203 0
Cluster 5 1 1 0 3 88

(c) MCMC vs. SMC.

Table 7.3.3: Confusion plots of the number of correct cluster allocation matches in
the second simulated data set between the Bayesian methods and with each other.

7.3.2 Real data: Sushi data

Finally, we assess the performance of the proposed SMC framework using the bench-

mark Sushi data set (Kamishima, 2003) which contains M = 5000 rankings of n = 10

sushi items. This has been analysed in Vitelli et al. (2018), but these results were

obtained whilst there was a coding error in the function for sampling cluster prob-

abilities from the Dirichlet distribution (Sørensen et al., 2020). For this reason, we

shall use the experiment set-up suggestions from Sørensen et al. (2020) to compare

the proposed SMC method against the MCMC algorithm of Vitelli et al. (2018).

We assume that there are C = 5 components in the mixture model following the

observation of the elbow plot in Sørensen et al. (2020). In both methods, the leap-size

parameter is set to L = 1, and the hyper-parameter and the standard deviation for

the exponential proposal distribution for α to be λ = 0.1 and σα = 0.5 respectively.

For the SMC experiment, we propagate N = 2000 particles over T = 50 iterations by

introducing 100 new rankings at a time. We propose the sample values for ρ1:5 and

α1:5 in the particle set with five applications of the MCMC move kernels in each SMC

iteration during the move stage of the algorithm. After every five SMC iterations, the
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cluster assignments for the Mt rankings are sampled once during the move stage as

well. We run the MCMC algorithm for 27,000 iterations and discard the first 25,000

as burn-in.

When we ran both Bayesian samplers, we observed a range of results for the

posterior estimation of the Mallows mixture model. We replicated each experiment ten

times and reported the log-likelihood at each run to assess if each sampler converges

to different posterior modes. A summary of the log-likelihood values of the resulting

posterior distributions from ten experiments is presented in Figure 7.3.5. A higher

log-likelihood value indicates that a proposed method has reached a higher mode of

possible solutions for the posterior distribution. In three out of ten cases, MCMC

reaches a higher mode in runs 2, 5 and 10, but SMC achieves a slightly higher log-

likelihood value on average compared to MCMC.

Next, we pooled the log-likelihood values from the ten experiment runs with both

samplers to create two additional box plots in Figure 7.3.5c to show the overall be-

haviour of each Bayesian method. SMC has a higher mean and tighter quartile range,

but it does obtain significantly lower values than MCMC, whereas MCMC can reach

higher log-likelihood values. Overall, though MCMC can obtain solutions in higher

modes of the posterior, sub-optimal solutions are found more often compared to the

solutions obtained through SMC.

We view the mean posterior estimates of the component weights for each experi-

ment run with each method to see which results obtain a higher mode of the posterior

distribution. Table 7.3.4 shows the corresponding estimated component weights of the

five components in the mixture model from each experiment run in Figure 7.3.5. Gen-
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erally, there appear to be two solutions for the mixture model. The optimal solution

consists of one component that accounts for approximately 40-50% of the rankings,

with four smaller components that each contribute 10-20% of the remaining posterior.

The sub-optimal solution consists of one component that accounts for 30-35% of the

rankings, another with 20-25% and the remaining three with 10-20%.

Based on these observations we decided to inspect the remaining posterior esti-

mates to see how similar are the outputs from the two Bayesian methods when we

have a solution in the higher and lower mode of the posterior distribution. We present

the results of the experiment runs, that returned the highest and lowest average log-

likelihood values from each method in Table 7.3.5. In particular, Tables 7.3.5a and

7.3.5b are the results with the highest average log-likelihood values from MCMC and

SMC respectively whilst Tables 7.3.5c and 7.3.5d contains the results with the lowest

average log-likelihood values. We find that the pairwise comparison of the component

weights, represented as a proportion, of each solution in descending order does not

vary by more than 0.06. The consensus ranking for the smallest cluster is captured

across all four summary tables. However, for the remaining clusters, there is vari-

ation in the estimates of ρ in both methods. In Tables, 7.3.5c and 7.3.5d we see

that the likely matching component label pairs are 1-2, 2-1, 3-4 and 4-3. In Tables

7.3.5a and 7.3.5b 4-3 is also a matching component label pair. The SMC solution

has more component weight assigned to cluster 3 than to clusters 4 and 5, whereas

MCMC has distributed the weightings across these three clusters more evenly. This

has a significant effect on the differences in parameter estimates between the meth-

ods. The overall patterns that we can see in Table 7.3.5 are that the fatty tuna sushi
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item is strongly preferred by the vast majority of assessors whilst the cucumber roll

is strongly least preferred.

This particular data set is a challenging clustering problem because both Bayesian

methods give a range of solutions to the estimated posterior and neither method is

successfully sampling from the full posterior distribution. This could be because there

are a small number of items in each ranking, which can make it difficult to determine

the cluster labels for each ranking if the measured ranking distance between more

than one component consensus ranking is similar compared to clustering rankings for

a larger number of items.
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(a) MCMC. (b) SMC.

(c) Pooled results.

Figure 7.3.5: Boxplots of the log-likelihood of the posterior distributions obtained from
ten experiment runs of the MCMC (top left) and SMC (top right) algorithms with
the Sushi data set, and a summary box plot from each Bayesian method (bottom).

Run τ1 τ2 τ3 τ4 τ5

1 0.32 0.22 0.20 0.17 0.10
2 0.47 0.21 0.12 0.10 0.10
3 0.32 0.22 0.20 0.17 0.10
4 0.33 0.23 0.16 0.15 0.13
5 0.47 0.19 0.16 0.09 0.08
6 0.36 0.31 0.16 0.10 0.07
7 0.33 0.23 0.16 0.15 0.13
8 0.35 0.33 0.12 0.11 0.09
9 0.31 0.24 0.17 0.15 0.13
10 0.49 0.21 0.11 0.10 0.08

(a) MCMC.

Run τ1 τ2 τ3 τ4 τ5

1 0.39 0.23 0.18 0.11 0.09
2 0.33 0.24 0.19 0.16 0.08
3 0.31 0.23 0.21 0.17 0.08
4 0.39 0.25 0.16 0.11 0.09
5 0.39 0.22 0.20 0.12 0.08
6 0.33 0.24 0.18 0.09 0.06
7 0.30 0.26 0.18 0.17 0.09
8 0.38 0.24 0.19 0.11 0.08
9 0.41 0.26 0.13 0.11 0.08
10 0.39 0.23 0.18 0.11 0.09

(b) SMC.

Table 7.3.4: Summary table with the corresponding MAP estimates of the component
weights τc, c = 1 . . . 5, from each of the ten experiment runs with the MCMC (left)
and SMC (right) methods with the Sushi data set.
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7.4 Conclusion

In this chapter, we extended the SMC algorithm for a single Mallows model which

receives only full rankings as new observations to handle several Mallows models in a

mixture. The proposed extension benefits by being able to process a larger batch of

new observations at a time because the algorithm makes an informed initial cluster

assignment for each ranking. This is done by considering the likelihood of assigning

the ranking to each cluster given each particle’s current parameter estimates and

uniformly with these normalised probabilities. The effect of incorporating this stage

is that although we need to account for these calculations for each new observed

ranking in the particle weights, it reduces the number of MCMC move kernels applied

to each particle after the resampling stage across all of the particles. We chose to

update the cluster assignments once we processed a few SMC iterations instead of

every iteration. This has greatly reduced the computational effort when we perform

sequential updates of the Mallows mixture posterior for inference.

The experiments with the simulated data sets confirm that the value of the scale

parameter has a greater effect on how well the MCMC and SMC algorithms can per-

form clustering. A larger value for α means that it is much easier to determine which

component each ranking belongs to. A smaller scale parameter value will likely cause

more uncertainty in a ranking’s cluster label. We also found that the SMC algorithm is

able to give similar posterior estimates as MCMC for less computational cost. Smaller

components may vary in their estimate between both methods but this is likely due

to the number of rankings allocated to a smaller component influencing the estimate
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of ρ and α. However, when we applied the SMC method to the benchmark Sushi

data set, we discovered that both MCMC and SMC provided more than one possible

solution to the clustering problem. Since both Bayesian methods find a variety of

very different solutions, it is clear that neither method is successfully sampling from

the full posterior distribution.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

τ 0.47 (0.45, 0.49) 0.21 (0.19, 0.23) 0.12 (0.10, 0.13) 0.10 (0.09, 0.12) 0.10 (0.08, 0.11)
α 3.11 (3.03, 3.18) 2.55 (2.46, 2.65) 3.20 (3.01, 3.40) 3.45 (3.29, 3.60) 2.25 (2.07, 2.42)
ρ1 Fatty tuna Fatty tuna Fatty tuna Fatty Tuna Shrimp
ρ2 Sea urchin Salmon roe Tuna Sea eel Sea eel
ρ3 Salmon roe Tuna Tuna roll Tuna Egg
ρ4 Sea eel Shrimp Shrimp Shrimp Squid
ρ5 Tuna Squid Squid Tuna roll Cucumber roll
ρ6 Shrimp Tuna roll Tuna roll Egg Tuna
ρ7 Tuna roll Sea eel Cucumber roll Squid Tuna roll
ρ8 Squid Egg Sea eel Cucumber roll Fatty tuna
ρ9 Egg Cucumber roll Salmon roe Salmon roe Salmon roe
ρ10 Cucumber roll Sea urchin Sea urchin Sea urchin Sea urchin

(a) Results from run 2 of the MCMC experiment in Figure 7.3.5a.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

τ 0.43 (0.40, 0.45) 0.24 (0.21, 0.27) 0.18 (0.16, 0.20) 0.09 (0.08, 0.10) 0.06 (0.05, 0.07)
α 3.29 (3.19, 3.39) 2.50 (2.37, 2.65) 2.94 (2.80, 3.12) 2.77 (2.58, 3.01) 2.53 (2.28, 2.77)
ρ1 Fatty tuna Fatty tuna Fatty tuna Sea urchin Shrimp
ρ2 Sea urchin Tuna Sea eel Sea eel Egg
ρ3 Salmon roe Shrimp Tuna Shrimp Squid
ρ4 Tuna Tuna roll Shrimp Salmon roe Sea eel
ρ5 Sea eel Squid Tuna roll Squid Cucumber roll
ρ6 Shrimp Salmon roe Squid Fatty tuna Salmon roe
ρ7 Tuna roll Egg Egg Tuna Tuna roll
ρ8 Squid Sea eel Cucumber roll Tuna roll Fatty tuna
ρ9 Egg Cucumber roll Salmon roe Egg Tuna
ρ10 Cucumber roll Sea urchin Sea urchin Cucumber roll Sea urchin

(b) Results from run 6 of the SMC experiment in Figure 7.3.5b.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

τ 0.32 (0.30, 0.34) 0.22 (0.20, 0.24) 0.20 (0.18, 0.22) 0.17 (0.15, 0.19) 0.10 (0.09, 0.11)
α 3.41 (3.32, 3.39) 3.68 (3.47, 3.81) 3.37 (3.26, 3.56) 2.85 (2.67, 3.00) 2.07 (1.88, 2.27)
ρ1 Fatty tuna Fatty tuna Fatty tuna Fatty Tuna Shrimp
ρ2 Tuna Sea urchin Sea urchin Sea eel Sea eel
ρ3 Shrimp Salmon roe Salmon roe Tuna Egg
ρ4 Tuna roll Sea eel Tuna Salmon roe Squid
ρ5 Squid Shrimp Shrimp Sea urchin Salmon roe
ρ6 Sea eel Tuna Squid Tuna roll Cucumber roll
ρ7 Egg Squid Tuna roll Shrimp Fatty tuna
ρ8 Cucumber roll Tuna roll Sea eel Egg Tuna roll
ρ9 Salmon roe Egg Cucumber roll Squid Tuna
ρ10 Sea urchin Cucumber roll Egg Cucumber roll Sea urchin

(c) Results from run 3 of the MCMC experiment in Figure 7.3.5a.
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

τ 0.33 (0.31, 0.35) 0.24 (0.22, 0.26) 0.19 (0.17, 0.21) 0.16 (0.14, 0.17) 0.08 (0.07, 0.09)
α 3.41 (3.32, 3.39) 2.81 (2.70, 2.92) 2.45 (2.31, 2.58) 3.08 (3.07, 3.28) 2.25 (2.03, 2.46)
ρ1 Fatty tuna Fatty tuna Fatty tuna Fatty Tuna Shrimp
ρ2 Sea urchin Tuna Sea eel Salmon roe Sea eel
ρ3 Salmon roe Shrimp Tuna Sea urchin Egg
ρ4 Sea eel Tuna roll Shrimp Tuna Squid
ρ5 Tuna Squid Salmon roe Squid Cucumber roll
ρ6 Shrimp Egg Tuna roll Shrimp Salmon roe
ρ7 Tuna roll Sea eel Squid Tuna roll Tuna roll
ρ8 Squid Cucumber roll Egg Sea eel Fatty tuna
ρ9 Egg Salmon roe Sea urchin Egg Tuna
ρ10 Cucumber roll Sea urchin Cucumber roll Cucumber roll Sea urchin

(d) Results from run 2 of the SMC experiment in Figure 7.3.5b.

Table 7.3.5: Summary of the posterior estimates from several experiment runs in
Figure 7.3.5 with the Sushi data set. Each column contains the posterior estimates of
τc, αc, with their corresponding 95% HDPIs, and the MAP for ρc for each component
c = 1, . . . , 5.



Chapter 8

Conclusions

This thesis has focused on the development of an SMC framework for the Bayesian

Mallows model. Specifically, we used the resample-move framework of Berzuini and

Gilks (2001) to address the following research question: can we update the posterior

distribution effectively to model the existing and new ranking data that we receive on

a sequential basis? We believed that using SMC methods would mitigate the issues of

increasing computational effort that typical MCMC methods for Bayesian inference

would possess when addressing this problem. MCMC can be used for sequential in-

ference, but for every observational update of rankings, we would need to rerun the

MCMC chain from scratch with the existing and new rankings to estimate the new

posterior. Instead, SMC methods can take the current posterior estimate given a set

of existing rankings and update it based on the new rankings for a fixed computa-

tional complexity. There does not exist a previous extension of the Bayesian Mallows

model that has focused on applying SMC methods as an alternative to typical MCMC

sampling procedures.

176
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Chapter 4 introduced the SMC framework for the Bayesian Mallows model to

perform sequential updates of the estimated posterior distribution of a single Mallows

model in an online setting where a collection of full rankings are received over a discrete

timeline. The simulation studies revealed the overall behaviour of the method when

various parameters and variables are adjusted. We compared how effective SMC was

at performing inference against MCMC with real data sets. In this scenario, we were

able to demonstrate that SMC methods can perform sequential inference and give

posterior estimates similar to that of MCMC with less computational effort and time.

Chapter 5 built upon Chapter 4 by amending the proposed SMC framework to

consider latent information, in the form of new partial rankings, to perform sequen-

tial updates of a single Mallows posterior. We considered two methods to perform

data augmentation on the missing components of each partial ranking: a uniform

augmentation, which selects the positions for the unallocated item ranks at random,

and a pseudo-likelihood augmentation approach, which makes an informed allocation

by considering the current Mallows model parameter estimates in each particle. We

find that the pseudo-likelihood augmentation approach performs better than the uni-

form sampler as it can replicate the posterior estimates that are generated by the

MCMC approach. Other augmentation methods could also be considered for future

work. However, it was shown that the SMC algorithm performs better if we reduce

the batch size of the number of new rankings to account for in each posterior update.

If there are too many new partial rankings, then we reduce the chances of obtaining

a particle set with decent augmentations being carried forward in the algorithm.

We also considered applying SMC to the scenario where existing assessors make
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additions to their partial ranking in Chapter 6. We discussed the theory of how to

perform these updates when we need to account for the potential corrections for each

particle’s set of augmented rankings. We were able to show for small synthetic data

examples how this approach can obtain a good posterior estimate. However, a large

amount of computational effort is still required. We conclude that the SMC is not

able to match the MCMC’s sequential posterior estimations unless we rely on a large

number of move kernel applications. We would recommend to use MCMC methods

when we observe updated partial rankings from existing assessors.

Finally, Chapter 7 extended the SMC framework from Chapter 4 to the clustering

setting where we perform sequential posterior updates for a Mallows mixture model

with a known number of components. By making informed initial allocations for

each new ranking, we have been able to significantly reduce the computational ef-

fort required to perform clustering compared to using MCMC. The proposed SMC

methodology can provide similar inferences to MCMC for synthetic data sets with

high and low variation in the generated data sets. The MCMC method was able to

provide solutions considered optimal but the SMC method was able to provide slightly

more consistent solutions than MCMC given their overall log-likelihood values range

in repeated experiment runs. A small number of items in each ranking made it difficult

to determine the cluster labels if one component has a similar ranking distance be-

tween each assessor’s ranking and the consensus ranking for a particular component.

We conclude that neither Bayesian method can reliably sample from the posterior

because a number of different solutions are found when using each method.
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8.1 Future work

Given the work conducted in this thesis, particularly in Chapter 6, we believe that

further investigation should take place in this area. We outline some suggestions for

future work related to this project.

8.1.1 Sequential Monte Carlo for Mallows mixture model

with partial rankings

Sequential clustering could naturally be extended to handle partial rankings. This

task would be similar to the problem addressed in Chapter 5, but extended to handle

multiple Mallows models in Chapter 6. The particle set would contain the values for

the Mallows mixture model {θt = (ρ
(i)
1:C,t, α

(i)
1:C,t, τ

(i)
1:C,t)}Ni=1, the cluster assignments for

the rankings {z(i)1:Mt
}Ni=1, the particle weights {w(i)

t }Ni=1 and the set of augmented rank-

ings {R̃(i)
1:Mt
}Ni=1 which represents the target posterior distribution pt(ρ1:C , α1:C |R̃1:Mt).

We would need to adapt the SMC clustering algorithm to determine how the

missing components of the partial ranking are augmented to obtain a full ranking as

well as the component label. Also, we would need to decide when data augmentation

is performed: we can propose a component label before performing augmentation, or

an augmentation before proposing a component label for the assessor’s ranking.

In Chapter 6, we made an informed proposal for the cluster allocation for each

new full ranking by considering the likelihood of allocating the ranking to each of

the cluster components. Ideally, this stage would be incorporated into the proposed

framework for clustering with partial rankings. One solution is to extend each particle
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multiple times by proposing all possible cluster assignments for the new observation,

as in Fearnhead (2004). That is, we perform data augmentation on the new ranking

for each cluster component before we then sample a component label and the match-

ing auxiliary complete ranking. The component label is sampled by calculating the

contribution of each augmented ranking to the likelihood of its respective component

of the mixture. Then we sample the assigned component label multinomially using

the normalised contributions as the multinomial probabilities. However, this means

that when calculating the assignment probability, we would have to marginalise all of

the possible augmentations, given the current estimated values of ρ and α for each

cluster. This is computationally challenging.

8.1.2 Clustering with an unknown number of components

It is quite common for a multi-modal data set to not necessarily have a known number

of components. Typically, the number of components is predetermined using the

complete data set before performing clustering. However, within an SMC framework,

in theory, we do not know the size of the “complete” data set as we are in an online

setting. It would be appropriate to update the number of components on a sequential

basis as well as the model parameter estimates of the mixture model posterior. At

several points in time, we may find that it is appropriate to propose a new cluster

component for the posterior given that a new observation may be better represented

in the new component rather than be assigned to an existing cluster component.
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Proposed model

We apply the DPM model to the SMC framework for the Mallows mixture model in

Chapter 6. We consider for now the task of clustering full rankings on a sequential

basis to update the number of components as well as the model parameter values in

the SMC particles.

To account for the variable number of components across the particle, let c
(i)
t be the

total number of components in a particle i ∈ {1, . . . , N} at time t. In this model, we

assume that we now observe one new full ranking at a time, so the rankings and cluster

assignment labels are also indexed by t. At iteration t − 1, each one of N particles

now contains: a set of the cluster components, θ(i) = {ρ(i)
1:ct−1

, α
(i)
1:ct−1
}, a set of cluster

labels z
(i)
1:t−1, and particle weights w

(i)
t−1. At iteration t, we observe one new ranking

at a time and the probability of assigning a cluster label to the observation given all

previous cluster labels for each particle p(z
(i)
t |z

(i)
1:t−1) is defined by the recursion

p(z
(i)
t = j|z(i)1:t−1) =


nj/(c

(i)
t−1 + αDPM) for j = 1, . . . , c

(i)
t−1

αDPM/(c
(i)
t−1 + αDPM) for j = c

(i)
t−1 + 1

,

where: nj is the number of observations that z1:t assigns to cluster j and αDPM is the

concentration parameter in the DPM.

The SMC-DPM model extends the particle to each existing component and a

potential new component. The probability of proposing the cluster label has the

same likelihood,

π(z
(i)
t |z

(i)
1:t−1) =

1

c
(i)
t−1 + 1

.
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If the ranking is assigned to an existing cluster, then the incremental weight is simply

w̃
(i)
t =

p(Rt|θ(i)
t , z

(i)
t )

c
(i)
t−1 + 1

.

If, however, the ranking is assigned to a new component, then we need to select a

distribution that proposes the model parameters of the new component. This would

require further consideration as the choice of the proposal distribution would affect

the incremental weight calculation for a particle.

The cluster label is sampled multinomially using the normalised likelihood contri-

butions of proposing the ranking to each component. We can iterate between sampling

allocations and resampling particles if we have a batch of new rankings to process be-

fore we can incorporate the move stage of the SMC algorithm by using MCMC move

kernels to propose new values for each {ρ(i)
1:ct , α

(i)
1:ct}

N
i=1. Jump parameters can also be

incorporated into the move stage of the algorithm to reduce computational effort.

When using the DPM model for clustering, the number of components after T

iterations will likely be higher than the number of components used to generate the

multi-model data set. In addition, the final number of components could vary be-

tween particles. Further work will be required to decide how best to post-process the

experiment output so that the clustering analysis remains meaningful.
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