
On Some Lower Bounds for the

Permutation Flowshop Problem
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Universidad de Santander, Cúcuta, Colombia
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Abstract

The permutation flowshop problem with makespan objective is a
classic machine scheduling problem, known to be NP-hard in the
strong sense. We analyse some of the existing lower bounds for the
problem, including the “job-based” and “machine-based” bounds, a
bound from linear programming (LP), and a recent bound of Kumar
and co-authors. We show that the Kumar et al. bound dominates
the machine-based bound, but the LP bound is stronger still. On the
other hand, the LP bound does not, in general, dominate the job-
based bound. Based on this, we devise simple iterative procedures for
strengthening the Kumar et al. and LP bounds. Computational results
are encouraging. In particular, we are able to obtain improved lower
bounds for the “hard, small” instances of Vallada, Ruiz and Framinan.

Keywords: flowshop scheduling; permutation flowshops; lower bounds

1 Introduction

Machine scheduling problems have received a great deal of attention from the
Operational Research and Optimisation communities, and there is a huge
literature on them, including several textbooks (e.g., [1, 2, 3, 21]). Here,
we focus on the permutation flowshop scheduling problem with makespan
objective, or PFM for short.

In the PFM, there are m machines numbered from 1 to m, along with
n jobs. Each machine can process only one job at a time, and each job
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Figure 1: Gantt chart.

must be processed on machine 1, then machine 2, and so on. The amount
of time taken to process job j on machine i is known and deterministic, and
denoted by pij . A feasible solution is a permutation of the set of jobs, or
sequence, and each machine must process the jobs in the order specified by
that sequence. The goal is to minimise the time taken to finish processing
the last job on the last machine, commonly called the makespan.

Let us suppose, for example, that m = n = 3, and the processing time
matrix is 3 3 2

1 2 2
3 1 2

 ,

where rows and columns correspond to machines and jobs, respectively. One
can check that an optimal solution, with makespan 11, is obtained by se-
quencing the jobs in the order 3, 1, 2. The Gantt chart that corresponds to
this solution is shown in Figure 1.

Johnson [14] showed that the PFM with m = 2 can be solved in poly-
nomial time. For general m, however, the PFM is NP-hard in the strong
sense [17]. A wide variety of heuristics have been proposed (see, e.g., the
surveys [9, 10, 19, 22]). There are also several exact approaches (e.g.,
[4, 6, 11, 13, 16, 20, 23, 25, 26]).

Here, however, we focus on lower-bounding procedures. In particular,
we consider the following four lower bounds:

1. The “machine-based” bound of Ignall and Schrage [12].

2. The “job-based” bound of McMahon and Burton [18].

3. A bound obtained by solving the linear programming (LP) relaxation
of a mixed-integer linear program (MILP) due to Stafford et al. [23].

4. A bound recently proposed by Kumar et al. [15].

We begin by analysing the four bounds from a theoretical point of view.
Amongst other things, we prove the following:
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• The Kumar et al. bound dominates the machine-based bound.

• The LP bound dominates the Kumar et al. bound.

• The job-based bound is in general incomparable with the other three
bounds.

After that, we propose some simple iterative procedures for strengthening
the Kumar et al. and LP bounds. These procedures ensure that the resulting
bounds are at least as strong as the job-based bound. Finally, we present
some computational results on benchmark PFM instances. The results are
rather encouraging. In particular, we are able to obtain improved lower
bounds for the “hard, small” instances of Vallada et al. [27].

The paper has the following structure. Section 2 gives a brief overview of
the relevant literature. Section 3 contains our results on the lower bounds.
Section 4 describes our strengthening procedures, and Section 5 presents the
computational results. Some concluding remarks are made in Section 6.

We assume throughout that the reader is familiar with the basics of
integer programming. For detailed treatments of the topic, see, e.g., the
books [5, 7]. We also assume without loss of generality that the processing
times are non-negative integers. Finally, we let OPT denote the optimal
makespan.

2 Literature Review

We now review the relevant literature. Subsection 2.1 recalls the machine-
based and job-based bounds. Subsection 2.2 presents the MILP formulation
from [23]. Finally, Subsection 2.3 describes the lower-bounding procedure
in [15]. For more on flowshop scheduling, see the book [8].

2.1 The machine-based and job-based bounds

We begin by recalling some simple lower bounds on the makespan. The first
bound, which we will call LM , is obtained by computing the load of each
machine and picking the largest:

LM = max
1≤i≤m


n∑

j=1

pij

 .

A way to improve LM was given in [12]. Consider a particular machine i.
If i > 1, then machine i cannot start processing its first job until that job
has been processed on the preceding machines. Also, if i < m then, after
machine i has finished processing its last job, that job must be processed on

3



the subsequent machines. Thus, the makespan must be at least:

Pi =
n∑

j=1

pij + min
1≤j≤n

{∑
r<i

prj

}
+ min

1≤j≤n

{∑
r>i

prj

}
.

This enables us to increase LM to:

L+
M = max

1≤i≤m

{
Pi

}
.

Another bound, which we will call LJ , is obtained by computing the
total processing time of each job and picking the largest:

LJ =
n

max
j=1

{
m∑
i=1

pij

}
.

A way to improve LJ was given in [18]. Consider a particular job j. Every
other job either comes before or after j. Thus, the makespan must be at
least:

Qj =

m∑
i=1

pij +
∑
s ̸=j

min
{
p1s, pms

}
.

This enables us to increase LJ to:

L+
J =

n
max
j=1

{
Qj

}
.

2.2 The Stafford et al. formulation

Stafford et al. [23] formulated PFM as an MILP, by adapting the formulation
of the job-shop scheduling problem in [28]. We have a binary variable xjk for
j, k = 1, . . . , n, taking the value 1 if and only if job j is assigned to the k-th
position in the sequence. We also have non-negative continuous variables
fik, representing the time at which machine i finishes processing the k-th
job in the sequence. The formulation is:

min fmn (1)

s.t.
∑n

k=1 xjk = 1 (j = 1, . . . , n) (2)∑n
j=1 xjk = 1 (k = 1, . . . , n) (3)

f11 =
∑n

j=1 p1jxj1 (4)

fi,k+1 ≥ fik +
∑n

j=1 pijxj,k+1 (i = 1, . . . ,m; k = 1, . . . , n− 1) (5)

fi+1,k ≥ fik +
∑n

j=1 pi+1,jxjk (i = 1, . . . ,m− 1; k = 1, . . . , n) (6)

xik ∈ {0, 1} (i = 1, . . . ,m; k = 1, . . . , n) (7)

fik ≥ 0 (i = 1, . . . ,m; k = 1, . . . , n). (8)
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The objective function (1) is self-explanatory. The constraints (2) and (3)
are standard assignment constraints. The constraint (4) states that the
finishing time of the first job on the first machine is equal to the processing
time of that job. The constraints (5) state that, on any given machine, the
finishing time of a job is at least the finishing time of the previous job plus
the time taken to process the given job. The constraints (6) state that, for
any given job, the finishing time of that job on a machine is at least the
finishing time of that job on the previous machine plus the time taken to
process the given job. The constraints (7) and (8) are trivial.

2.3 The Kumar et al. bound

Very recently, Kumar et al. [15] presented a lower-bounding procedure for
the permutation flowshop problem with the objective of minimising the sum
of the completion times. We describe it here, because it also yields a lower
bound for PFM.

For each machine i, we sort the pij values in non-decreasing order.
The sorted values are then denoted by τi1, . . . , τin. We also let σik de-
note

∑k
k′=1 τi,k′ . That is, σik is the minimum time needed for machine i to

process k jobs.
Next, for i = 1, . . . ,m and k = 1, . . . , n, we compute a lower bound

γik on the time at which machine i finishes processing the k-th job in the
sequence. This is done as follows. For all k, γ1k is set to σ1k. For all i, γi1
is set to

min
j

{
i∑

i′=1

pi′,j

}
.

For i = 2, . . . ,m and k = 2, . . . , n, γik is set to the larger of the following
four values:

β1
ik = σik + γi−1,1

β2
ik = σi,k−1 + γi1

β3
ik = max

1≤i′≤i

{
γi′,k−1 +min

j

{
i∑

i′′=i′

pi′′,j

}}

β4
ik = max

1≤i′<i

{
γi′,k +min

j

{
i∑

i′′=i′+1

pi′′,j

}}
.

At the end of the procedure, γmn is a lower bound for the PFM.

3 Analysis of Existing Bounds

In this section, we analyse some of the existing lower bounds. Subsection
3.1 concerns the machine-based and job-based bounds. Subsection 3.2 con-
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cerns the Kumar et al. bound. Finally, Subsection 3.3 concerns the bound
obtained by solving the LP relaxation of the Stafford et al. MILP.

3.1 On the machine-based and job-based bounds

First, we prove some simple results about the “machine-based” bounds (LM

and L+
M ) and the “job-based” bounds (LJ and L+

J ).

Lemma 1 LM ≥ OPT/m.

Proof. We can obtain a feasible PFM solution by processing all of the
jobs on the first machine, then processing all of the jobs on the second
machine, and so on. The makespan of this solution is

∑m
i=1

∑n
j=1 pij , which

is no more than mLM by definition. Thus, OPT ≤ mLM or, equivalently,
LM ≥ OPT/m. □

Lemma 2 LJ ≥ OPT/n.

Proof. Similar to the previous lemma. □

Lemma 3 For any m,n ≥ 1, and any small ϵ > 0, there exists a PFM
instance such that L+

M < LJ/(m− ϵ).

Proof. Let m and n be given. Let b be a large positive integer. Suppose
that pi1 = b for all i, but all other processing times are equal to 1. One can
check that LJ = mb and L+

M = b+m+n−2. As b tends to infinity, LJ/L
+
M

tends to m from below. □

Lemma 4 For any m,n ≥ 1, and any small ϵ > 0, there exists a PFM
instance such that L+

J < LM/(n− ϵ).

Proof. Similar to the previous lemma, except that we set p1j = b for
all j, and all other processing times to 1. We then have LM = nb and
L+
J = b+m+ n− 2. □

Of course, these last two lemmas imply that L+
M and L+

J can be arbitrarily
close to OPT/m and OPT/n, respectively.

3.2 On the Kumar et al. bound

Next, we consider the Kumar et al. bound.

Lemma 5 γmn ≥ L+
M .
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Proof. Consider a fixed machine i < m. We have:

γmn ≥ β4
mn

≥ γin +min
j


n∑

i′′=i+1

pi′′ ,j


≥ β1

in +min
j


n∑

i′′=i+1

pi′′ ,j


= σin + γi−1,1 +min

j


n∑

i′′=i+1

pi′′ ,j


=

n∑
j=1

pij +min
j


i−1∑
i′′=1

pi′′ ,j

+min
j


n∑

i′′=i+1

pi′′ ,j

 .

This last expression is equal to Pi for the given i. Moreover, we have γmn ≥
β1
mn = Pm. Thus, γmn ≥ Pi for all i. □

Together with Lemma 1, this implies that γmn ≥ OPT/m.
A natural question at this point is whether γmn can ever be larger than

L+
M . The following example shows that, in fact, it can be larger than both

L+
M and L+

J simultaneously:

Example 1: Suppose that m = n = 4, and let the matrix of processing
times be 

1 4 4 4
6 4 4 4
1 2 2 2
2 4 4 4

 .

One can check that OPT = 25, LM = 18, L+
M = 22, LJ = 14 and L+

J = 23.
One can also check that γ11 = 1, γ12 = 5, γ21 = 7, γ22 = 11, γ13 = 9,
γ31 = 8, γ32 = 13, γ23 = 15, γ33 = 17, γ14 = 13, γ24 = 19, γ34 = 21,
γ41 = 10, γ42 = 16, γ43 = 20, and γ44 = 24. Thus, the Kumar et al. bound
is 24 for this instance, which is greater than both L+

M and L+
J . □

On the other hand, we have the following negative result, concerning the
relationship between γmn and the “job-based” lower bound LJ .

Lemma 6 γmn can be smaller than LJ .

Proof. Consider again the PFM instance described in the proof of Lemma
3. One can check that LJ = mb for this instance. One can also check that (i)
γik = i+k−1 for i = 1, . . . ,m and k = 1, . . . , n−1, and (ii) γin = b+n+i−2
for i = 1, . . . , n. So γmn = b +m + n − 2 for this instance. Setting m to 2
yields the result. □
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3.3 On the LP bound

The continuous relaxation of the Stafford et al. formulation is obtained by
replacing the binary conditions (7) with the weaker conditions xjk ∈ [0, 1].
This relaxation is an LP, which can be solved efficiently. For brevity, we
will just call it “the LP”. We will also call the resulting lower bound the LP
bound, and we denote it by Lc.

We will show that the LP bound is stronger than the Kumar et al. bound.
To do this, we will need a series of lemmas.

Lemma 7 If a vector x ∈ [0, 1]n
2
satisfies equations (2) and (3), then

k∑
k′=1

(
n∑

j=1

pijxj,k′

)
≥ σik (9)

holds for i = 1, . . . ,m and k = 1, . . . , n.

Proof. We set up a minimum-cost flow problem to find a vector x that
minimises the left-hand side of (9). For j = 1, . . . , n, we have a source node
with a supply of 1. For k′ = 1, . . . , k, we have a sink node with a demand of
1. The flow in the arc from source j to sink k′ represents the value of xjk′ ,
and the cost of the arc is set to pij .

Since all supplies and demands are integral, the minimum-cost flow prob-
lem has an integral optimal solution. Moreover, since k ≤ n, such a solution
uses exactly k arcs. Now, observe that the cost of an arc does not depend
on the sink. Thus, an optimal solution is obtained by sending one unit of
flow from the source with the smallest pij value to the first sink, then one
unit of flow from the source with the second smallest pij value to the second
sink, and so on. This flow has a cost of σik. □

Lemma 8 If (x∗, f∗) is a feasible solution to the LP, then f∗
1k ≥ γ1k for

k = 1, . . . , n.

Proof. The LP contains the equation (4), along with the following con-
straints of type (5):

f1,k′+1 ≥ f1,k′ +
n∑

j=1

p1jxj,k′+1 (k′ = 1, · · · , k − 1).

Adding all of these and simplifying yields:

f1k ≥
k∑

k′=1

 n∑
j=1

p1jxj,k′

 ≥ σ1k = γ1k,

where the second inequality follows from Lemma 7. □

8



Lemma 9 If (x∗, f∗) is a feasible solution to the LP, then f∗
i1 ≥ γi1 for

i = 1, . . . ,m.

Proof. The LP contains the equation (4), along with the following con-
straints of type (6):

fi′+1,1 ≥ fi′,1 +

n∑
j=1

pi′+1,jxj1 (i′ = 1, · · · , i− 1).

Adding all of these and simplifying yields:

fi1 ≥
n∑

j=1

(
i∑

i′=1

pi′,j

)
xj1 ≥

n∑
j=1

γi1xj1 = γi1

n∑
j=1

xj1 = γi1,

where the second inequality follows from the definition of γi1 and the last
equation follows from (3). □

Lemma 10 If (x∗, f∗) is a feasible solution to the LP, then

fik ≥ β1
ik

holds for i = 2, . . . ,m and k = 2, . . . , n.

Proof. Note that the LP contains the following constraint of type (6):

fi1 ≥ fi−1,1 +
n∑

j=1

pijxj1,

along with the following constraints of type (5):

fi,k′ ≥ fi,k′−1 +
n∑

j=1

pijxj,k′ (k′ = 2, · · · , k).

Summing these together and simplifying yields

fik ≥ fi−1,1 +

k∑
k′=1

n∑
j=1

pijxj,k′ .

Together with Lemmas 7 and 9, this gives:

fik ≥ σik +min
j

{
i−1∑
i′=1

pi′,j

}
,

which proves the result. □
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Lemma 11 If (x∗, f∗) is a feasible solution to the LP, then

fik ≥ β2
ik

holds for i = 2, . . . ,m and k = 2, . . . , n.

Proof. Note that the LP contains the following constraints of type (5):

fi,k′+1 ≥ fi,k′ +

n∑
j=1

pijxj,k′ (k′ = 1, · · · , k − 1).

Summing these together and simplifying yields:

fik ≥ fi1 +
k∑

k′=2

n∑
j=1

pijxj,k′ . (10)

Now Lemma 9, together with the definition of γi1, shows that

fi1 ≥ min
j

{
i∑

i′=1

pi′,j

}
.

Moreover, the argument used in Lemma 7 shows that the second term on
the right-hand side of (10) is at least σi,k−1. Thus, we have

fik ≥ σi,k−1 +min
j

{
i∑

i′=1

pi′,j

}
which proves the result. □

Lemma 12 If (x∗, f∗) is a feasible solution to the LP, then

fik ≥ max
1≤i′<i

{
fi′,k +min

j

{
i∑

i′′=i′+1

pi′′,j

}}
(11)

holds for i = 2, . . . ,m and k = 2, . . . , n.

Proof. The LP contains the following constraints of type (6):

fi′′+1,k ≥ fi′′ ,k +

n∑
j=1

pi′′+1,jxjk (i
′′
= i′, · · · , i− 1)

Adding all of these and simplifying yields:

fik ≥ fi′,k +
n∑

j=1

( i∑
i′′=i′+1

pi′′ ,j

)
xj,k (12)

≥ fi′,k +min
j

{
i∑

i′′=i′+1

pi′′,j

}( n∑
j=1

xj,k

)

≥ fi′,k +min
j

{
i∑

i′′=i′+1

pi′′,j

}
.
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This inequality applies for every 1 ≤ i′ < i. Therefore, inequality (11) is
obtained. □

Lemma 13 If (x∗, f∗) is a feasible solution to the LP, then

fik ≥ max
1≤i′≤i

{
fi′,k−1 +min

j

{
i∑

i′′=i′

pi′′,j

}}
. (13)

holds for i = 2, . . . ,m and k = 2, . . . , n.

Proof. The LP contains the following constraint of type (5):

fi′,k ≥ fi′,k−1 +
n∑

j=1

pi′,jxj,k

Adding this to inequality (12) and simplifying yields:

fik ≥ fi′,k−1 +

n∑
j=1

( i∑
i′′=i′

pi′′ ,j

)
xj,k

≥ fi′,k−1 +min
j

{
i∑

i′′=i′

pi′′,j

}( n∑
j=1

xj,k

)

≥ fi′,k−1 +min
j

{
i∑

i′′=i′

pi′′,j

}

This inequality applies for every 1 ≤ i′ ≤ i. Therefore, inequality (13) is
obtained. □

Lemma 14 If (x∗, f∗) is a feasible solution to the LP, then f∗
22 ≥ γ22.

Proof. Lemma 10 tells us that f22 ≥ β1
22, and Lemma 11 tells us that

f22 ≥ β2
22. Moreover, Lemma 12 tells us that

f22 ≥ f12 +min
j

{p2,j} ≥ γ12 +min
j

{p2,j} = β4
22.

Finally, Lemma 13 tells us that

f22 ≥ max
1≤i′≤2

{
fi′,1 +min

j

{
2∑

i′′=i′

pi′′,j

}}

≥ max
1≤i′≤2

{
γi′,1 +min

j

{
2∑

i′′=i′

pi′′,j

}}
= β3

22.

□
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Armed with Lemmas 8 to 14, we can now present the main result of this
subsection:

Theorem 1 If (x∗, f∗) is a feasible solution to the LP, then f∗
ik ≥ γik for

all i and k.

Proof. Lemmas 8 and 9 show that the result holds for i = 1 and k = 1.
Together with Lemma 14, this implies that the result holds also for i+k ≤ 4.
To complete the proof, we will use induction on i+ k. That is, we will show
that, if (a) N is an integer between 4 and m+ n− 1, and (b) fik ≥ γik for
i+ k ≤ N , then fik ≥ γik also holds when i+ k = N + 1.

So, letN be given, and let i, k be integers such that 2 ≤ i ≤ m, 2 ≤ k ≤ n
and i+ k = N + 1. From Lemmas 10 and 11, we already know that

fik ≥ max
{
β1
ik, β

2
ik

}
. (14)

Now, Lemma 12 tells us that

fik ≥ max
1≤i′<i

{
fi′,k +min

j

{
i∑

i′′=i′+1

pi′′,j

}}
.

By the induction hypothesis, the term fi′,k on the right-hand side is at least
as large as γi′,k, since i′ + k ≤ N . From this, we conclude that

fik ≥ β3
ik. (15)

Similarly, Lemma 13 tells us that

fik ≥ max
1≤i′≤i

{
fi′,k−1 +min

j

{
i∑

i′′=i′

pi′′,j

}}

By the induction hypothesis, the term fi′,k−1 on the right-hand side is at
least as large as γi′,k−1, since i′ + k − 1 ≤ N . From this, we conclude that

fik ≥ β4
ik. (16)

The result then follows from (14), (15) and (16). □

Corollary 1 Lc ≥ γmn, i.e., the LP bound dominates the Kumar et al.
bound.

Together with the previous results, this gives the following chain of in-
equalities:

OPT ≥ Lc ≥ γmn ≥ L+
M ≥ LM ≥ OPT/m.
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A natural question at this point is whether Lc can ever be larger than
γmn. It turns out that Lc can be larger than both γmn and L+

J simultane-
ously:

Example 1 (cont.): Recall that, for this instance, we have OPT = 25,
L+
J = 23 and γmn = 24. One can check that Lc = 25 for this instance. □

On the other hand, we have the following negative result:

Proposition 1 For any m,n ≥ 2, and any small ϵ > 0, there exists a PFM
instance such that Lc/LJ < ϵ+ (m+ n− 1)/mn.

Proof. Consider once more the PFM instance described in the proofs of
Lemmas 3 and 6, and recall that LJ = mb. We can obtain a feasible LP
solution by setting every x variable to 1/n and setting fik to (i+ k− 1)(b+
n− 1)/n for all i and k. Thus, Lc ≤ (m+ n− 1)(b+ n− 1)/n. As b tends
to infinity, the ratio Lc/LJ tends to (m+ n− 1)/mn from above. □

We remark that, by setting m to a large value, the ratio (m+n−1)/mn
can be made to approach 1/n. Similarly, by setting n to a large value, the
ratio can be made to approach 1/m. Note also that Lc ≥ L+

M ≥ LJ/m. We
suspect that Lc ≥ LJ/n as well. In fact, we make the following conjecture.

Conjecture 1 Lc ≥ OPT/n.

To close this section, we remark that Lc does not always take integer
values. This is shown in the following example.

Example 2: Suppose that m = n = 3, and let the matrix of processing
times be 2 1 3

3 4 5
4 3 5

 .

One can check that Lc = 17.5 for this example. □

4 Improved Bounds

In this section, we present some improved bounding procedures. First, in
Subsection 4.1, we show how to implement the Kumar et al. procedure so
that it runs in O

(
m2n+mn log n

)
time. Then, in Subsection 4.2, we present

a bounding procedure that is slightly slower than the one of Kumar et al.,
but yields a stronger lower bound in some cases. Finally, in Subsection 4.3,
we use the output from the procedure in Subsection 4.2 to strengthen the
LP bound.
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4.1 Efficient implementation

Observe that, in the definition of both β3
ik and β4

ik, we take a maximum over
i′ and a minimum over j. Thus, if the Kumar et al. procedure is implemented
in a naive way, it takes O

(
m2n2

)
time. A more efficient implementation is

given in Algorithms 1 and 2. Algorithm 1 computes the σik values. It also
computes values called αij , where

αij =

i∑
i′=1

pi′,j
(
i = 1, . . . ,m; j = 1, . . . , n

)
.

Algorithm 2 then uses those values to compute the β and γ values.
One can check that Algorithm 1 runs in in O(mn log n) time and O(mn)

space, whereas Algorithm 2 runs in O
(
m2n

)
and O(mn) space. We remark

that, in practice, m tends to be smaller than n.

Algorithm 1: Computing the σ and α values

input : number of machines m, number of jobs n, processing times pij
1 for i = 1, . . . ,m do
2 Sort the pij values in O(n log n) time;
3 Let τi1 to τin be the sorted values;
4 Set σi1 to τi1;
5 for k = 2, . . . , n do
6 Set σik to σi,k−1 + τik;
7 end

8 end
9 for j = 1, . . . , n do

10 Set α1j to p1j ;
11 end
12 for i = 2, . . . ,m do
13 for j = 1, . . . , n do
14 Set αij to αi−1,j + pij ;
15 end

16 end
output: Arrays containing the σik and αij values

4.2 Strengthened procedure

Now, recall from Subsection 3.2 that γmn is not guaranteed to be as strong
as LJ . In this subsection, we will improve the Kumar et al. procedure in
such a way that the resulting bound is guaranteed to be at least as large as
L+
J .
We will need a little additional notation. For i = 1, . . . ,m and j =

1, . . . , n, we define
λ(i, j) = min

{
p1j , pij

}
.
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Algorithm 2: Computing the β and γ values

input : number of machines m, number of jobs n,
arrays containing the σik and αik values

1 for k = 1, . . . , n do
2 Set γ1k to σ1k;
3 end
4 for i = 1, . . . ,m do
5 Set γi1 to minj

{
αij

}
;

6 end
7 for i = 2, . . . ,m do
8 for k = 2, . . . , n do
9 Let β1

ik = σik + γi−1,1;
10 Let β2

ik = σi,k−1 + γi1;
11 Set γik to the larger of β1

ik and β2
ik;

12 end

13 end
14 for i = 2, . . . ,m do
15 for i′ = 1, . . . , i do
16 for j = 1, . . . , n do
17 Let δj = αij − αi′−1,j ;
18 end
19 Let ∆ = minj{δj};
20 for k = 2, . . . , n do
21 if γi′,k−1 +∆ > γik then
22 Increase γik to γi′,k−1 +∆;
23 end

24 end

25 end
26 for i′ = 1, . . . , i− 1 do
27 for j = 1, . . . , n do
28 Let δj = αij − αi′,j ;
29 end

30 Let ∆ = minj
{
δj
}
;

31 for k = 2, . . . , n do
32 if γi′,k +∆ > γik then
33 Increase γik to γi′,k +∆;
34 end

35 end

36 end

37 end
output: Array containing the γik values
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We then have the following lemma.

Lemma 15 Consider a fixed triple (i, j, k). If job j is one of the first k
jobs in the sequence, then the time at which machine i finishes processing
the k-th job in the sequence must be at least

µ(i, j, k) = αij +min

∑
j′∈S

λ(i, j′) : S ⊆ {1, . . . , n} \ {j}, |S| = k − 1

 .

Proof. By definition, the total amount of time needed to process job j on
the first i machines is αij . Now, consider any job j′ ̸= j that is also one of
the first k jobs in the sequence. This job must come either before or after
job j. If it comes before j, then machine 1 must process it before it starts
processing job j. If it comes after job j, then machine imust process it before
it finishes the k-th job in the sequence. In either case, job j′ contributes at
least λ(i, j′) to the time at which machine i finishes the k-th job. The result
then follows from the fact that there are k − 1 candidates for j′. □

This means that, for a given i and k, the time at which machine i finishes
the k-th job must be at least the k-th smallest value of µ(i, j, k). Let us call
this value β5

ik. We can then improve the Kumar et al. procedure as follows.
In Algorithm 2, instead of setting γik to the larger of β1

ik and β2
ik, we set it

to the larger of β1
ik, β

2
ik and β5

ik.
One can check that

β5
mn = max

j

αmj +
∑
j′ ̸=j

λ(i, j′)

 = L+
J .

Thus, at the end of the improvement procedure, we can be sure that γmn

will be no smaller than L+
J .

To compute the β5 coefficients efficiently, we use Algorithm 3. One can
check that the algorithm runs in O

(
mn2 log n

)
time and O(mn) space.

We will call the strengthened lower bound γ+mn. From the above discus-
sion, it follows that γ+mn ≥ max

{
γmn, L

+
J

}
. Interestingly, the inequality can

be strict. This is shown in the following example.

Example 3: Suppose that m = 4 and n = 3, and let the matrix of process-
ing times be 

99 73 84
91 10 72
94 94 96
29 3 33

 .

One can check that γmn = 370, L+
J = 349 and γ+mn = 444. □
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Algorithm 3: Computing the β5
ik values

input : number of machines m, number of jobs n, processing times pij
1 for i = 1, . . . ,m do
2 for j = 1, . . . , n do
3 Let λ(i, j) = min

{
p1j , pij

}
;

4 end
5 Sort the λ(i, j) values in non-decreasing order;
6 for k = 1, . . . , n do
7 Let λ′(i, k) be the k-th value in the sorted list;
8 end

9 end
10 Create a 1-dimensional array MU of size n;
11 for i = 2, . . . ,m do
12 Set SUM to λ′(i, 1);
13 for k = 2, . . . , n do
14 for j = 1, . . . , n do

15 Set MU[j] to αij +max
{
SUM,SUM+ λ′(i, k)− λ(i, j)

}
;

16 end
17 Sort the array MU in non-decreasing order;
18 Set β5

ik to the k-th element in the array MU;
19 Increase SUM by λ′(i, k);

20 end

21 end
output: Array containing the β5

ik values
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4.3 Strengthening the LP relaxation

Observe that the procedure in Subsection 4.2 attempts to increase not only
γmn, but also γik for all i and k. Let us call the strengthened values γ+ik. By
definition, in any feasible solution to the Stafford et al. MILP, fik must be
at least γ+ik for all i and k. Accordingly, we can strengthen the LP relaxation
by adding the trivial constraint fik ≥ γ+ik for i = 1, . . . ,m and k = 1, . . . , n.
We will call the resulting lower bound L+

c .
From the previous results, we have L+

c ≥ Lc ≥ γmn ≥ L+
M and L+

c ≥
γ+mn ≥ L+

J . It turns out that L+
c can be strictly larger than both Lc and

γ+mn simultaneously.

Example 3 (cont): Recall that γ+mn = 444. One can check that Lc ≈
434.11 and L+

c ≈ 448.98. □

This example also shows that L+
c can be fractional.

5 Computational Results

In order to gain further insight into the relative strengths and weaknesses of
the various lower bounds, we conducted some computational experiments on
benchmark PFM instances. Subsection 5.1 gives the results for the classical
instances of Taillard [24], and Subsection 5.2 gives the results for the “small,
hard” instances presented in Vallada et al. [27].

All algorithms were coded in C#, compiled with Visual Studio 2022,
and run on a 2.4GHz Intel i5-1135G7 processor with 16GB of RAM under
Windows 10. To solve the LPs, we used the simplex solver of CPLEX v. 12.10,
with default settings.

5.1 Taillard instances

The Taillard instances have n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}.
There are ten instances for each combination of n andm with n ∈ {20, 50, 100}
and m ∈ {5, 10, 20}. There are also ten instances for each of the following
combinations of n and m: (200, 10), (200, 20) and (500, 10). This makes 120
instances in total. The optimal values for the instances with m ∈ {5, 10}
can be found in [24]. At the time of writing, the best known lower and
upper bounds for the other instances were available on Taillard’s personal
web site.1

For each instance, we computed the following six lower bounds: L+
J , L

+
M ,

γmn, γ
+
mn, Lc and L+

c . Then, for each instance and each bound, we com-
puted the gap between the lower bound and the best known upper bound,
expressed as a percentage of the upper bound. Table 1 shows the average

1http://mistic.heig-vd.ch/taillard/ (accessed 16/12/22)
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Table 1: Average percentage gaps for Taillard instances

m n L+
J L+

M γmn γ+
mn Lc L+

c

20 13.88 2.35 2.35 2.35 1.70 1.68
5 50 26.39 0.80 0.80 0.80 0.59 0.59

100 28.82 1.06 1.06 1.06 0.64 0.64

20 16.07 8.48 8.48 8.13 6.48 6.31
10 50 21.84 2.10 2.10 2.10 1.68 1.65

100 26.88 0.80 0.80 0.80 0.56 0.55
200 28.49 0.66 0.66 0.66 0.45 0.45

20 14.73 17.00 17.00 14.25 13.30 12.50
50 22.17 8.17 8.17 8.17 6.99 6.99

20 100 25.79 3.74 3.74 3.74 3.00 3.00
200 28.60 1.54 1.54 1.54 1.18 1.18
500 31.12 0.54 0.54 0.54 0.44 0.44

percentage gap for each set of ten instances and each bound. (The detailed
results will be made available at the Lancaster University Data Repository,
under the heading “Permutation Flowshop Problem”.)2

We see that L+
J was extremely weak compared to the other bounds, with

the single exception of the case m = n = 20, where it was slightly stronger
than L+

M and γmn. Remarkably, the bounds L+
M and γmn were identical for

all 120 instances. Moreover, γ+mn was better than γmn only for some of the
instances with m ∈ {10, 20} and n = 20. (In fact, γ+mn was better on only
9 out of 120 instances.) As for the LP-based bounds, we see that Lc was
always stronger than γmn, which is consistent with Corollary 1. We also see
that L+

c was a little stronger than Lc in some cases. (In fact, it was better
on only 8 out of 120 instances.) We remark that both Lc and L+

c reached
the optimal value for the tai-20-5-7 instance.

It is also apparent in the table that all bounds apart from L+
J tend to

get weaker as m increases. Interestingly, however, all bounds apart from L+
J

tend to get stronger as n increases. We do not have a convincing explanation
for this phenomenon.

Table 2 shows the average running times in seconds. As before, each
figure is the average over ten instances of the given size. A first observation
is that the running times for the first three bounds are negligible. Computing
γ+mn takes slightly longer, but still takes less than one second even for the
larger instances.

As for the LP-based bounds, the running time seems to grow only linearly
as m increases, but grows rapidly as n increases. This is probably because
the number of variables in the LP is n(n + m). We remark that, in the

2http://www.research.lancs.ac.uk/portal/en/datasets/search.html
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Table 2: Average running times (seconds) for Taillard instances

m n L+
J L+

M γmn γ+
mn Lc L+

c

20 0.002 0.006 0.016 0.018 0.132 0.134
5 50 0.002 0.007 0.016 0.020 0.430 0.434

100 0.004 0.007 0.016 0.022 0.857 0.920

20 0.002 0.007 0.018 0.021 0.260 0.264
10 50 0.003 0.007 0.016 0.021 0.505 0.584

100 0.004 0.007 0.016 0.026 1.769 1.872
200 0.011 0.009 0.018 0.048 11.216 11.659

20 0.002 0.007 0.016 0.021 0.352 0.429
50 0.002 0.008 0.022 0.032 1.108 1.206

20 100 0.005 0.010 0.024 0.047 5.829 6.202
200 0.014 0.013 0.031 0.101 62.795 71.432
500 0.075 0.024 0.056 0.463 2396.341 2407.510

majority of practical applications, n is likely to be larger than m.

5.2 Vallada et al. instances

Vallada et al. [27] gave some evidence that the Taillard instances are rel-
atively easy for their size. They created some smaller instances that were
designed to be hard for the exact techniques that existed at the time. These
instances have n ∈ {10, 20, 30, 40, 50, 60} and m ∈ {5, 10, 15, 20}. There
are ten instances for each combination of n and m, making 240 instances
in total. At the time of writing, these instances were also available on the
web.3

As well as creating the instances and making them available on the web,
Vallada et al. [27] computed lower bounds for them. We will call their lower
bound LV .

Table 3 shows the average percentage gap for each set of ten instances
and each of seven bounds. The table has an identical format to Table 1,
except for the third column showing the percentage gaps for LV . We see
that, as before, L+

M and γmn are identical for all instances. Moreover, LV is
only slightly stronger.

As one might expect, L+
J was useful only when the number of jobs is

small relative to the number of machines. Interestingly, for these instances,
L+
J was better than L+

M if and only if n < 2m (80 instances out of 240).
Similarly, γ+mn tended to be better than γmn when n ≤ 2m (81 instances);
and L+

c tended to be better than Lc under the same condition (59 instances).
We remark that optimal or best-known upper bounds were reached for the

3http://soa.iti.es/problem-instances (accessed 16/12/22)
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Table 3: Average percentage gaps for Vallada et al. instances

m n LV L+
J L+

M γmn γ+
mn Lc L+

c

10 18.72 6.16 19.33 19.33 5.64 14.09 5.51
20 7.06 16.14 7.16 7.16 7.08 4.85 4.85

5 30 3.72 24.29 3.78 3.78 3.78 2.73 2.73
40 3.08 20.47 3.32 3.32 3.32 2.06 2.06
50 2.17 26.12 2.18 2.18 2.18 1.34 1.34
60 1.78 26.30 1.78 1.78 1.78 1.18 1.18

10 25.41 7.26 27.23 27.23 7.18 18.44 7.12
20 14.68 14.32 15.32 15.32 12.15 10.54 9.79

10 30 10.50 17.56 10.65 10.65 10.65 7.46 7.46
40 6.70 19.39 6.76 6.76 6.76 4.99 4.99
50 5.44 21.75 5.48 5.48 5.48 3.66 3.66
60 4.39 20.20 4.58 4.58 4.58 2.88 2.88

10 27.76 9.14 29.62 29.58 7.43 18.48 7.37
20 19.31 15.58 20.24 20.24 13.60 13.60 11.60

15 30 14.97 17.04 15.53 15.53 14.11 11.65 11.38
40 11.41 20.51 11.63 11.63 11.63 8.84 8.84
50 9.04 21.16 9.20 9.20 9.20 6.98 6.98
60 7.63 23.93 7.77 7.77 7.77 5.91 5.91

10 26.18 11.07 27.61 27.61 9.80 17.20 9.79
20 22.00 13.27 23.08 23.08 12.27 16.20 12.08

20 30 17.86 17.38 17.92 17.92 15.68 13.65 12.99
40 15.69 19.55 15.97 15.97 15.21 12.40 12.40
50 13.08 22.19 13.40 13.40 13.40 10.61 10.61
60 10.76 22.31 10.87 10.87 10.87 8.76 8.76

VFR-10-5-1 and VRF-10-5-10 instances when using L+
J , γ

+
mn and L+

c .
As before, all bounds apart from L+

J tend to get weaker as m increases,
but stronger as n increases. We remark that, in the majority of practical
applications, n is likely to be larger than m.

Finally, Table 4 shows the average running times in seconds for the
Vallada et al. instances. Here, the running times for the first four bounds
are negligible. Computing the LP-based bounds takes slightly longer, but it
still only takes a few seconds, even for the largest instances.

6 Concluding Remarks

The permutation flowshop problem with makespan objective is a classic
problem in machine scheduling. We analysed some of the existing lower
bounds and proved several dominance relations. We also showed how to
strengthen two of the lower bounds: the one obtained by solving the LP
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Table 4: Average running times (seconds) for Vallada et al. instances

m n L+
J L+

M γmn γ+
mn Lc L+

c

10 0.002 0.006 0.010 0.011 0.053 0.054
20 0.002 0.006 0.010 0.011 0.067 0.069

5 30 0.002 0.006 0.011 0.011 0.124 0.125
40 0.002 0.007 0.011 0.012 0.204 0.208
50 0.002 0.006 0.011 0.012 0.237 0.240
60 0.002 0.006 0.010 0.012 0.234 0.243

10 0.003 0.008 0.014 0.012 0.083 0.091
20 0.002 0.007 0.011 0.012 0.104 0.112

10 30 0.002 0.006 0.010 0.012 0.458 0.461
40 0.002 0.006 0.011 0.013 1.177 1.181
50 0.002 0.006 0.010 0.013 0.315 0.342
60 0.002 0.006 0.010 0.014 0.424 0.458

10 0.001 0.006 0.010 0.012 0.057 0.065
20 0.002 0.006 0.010 0.013 0.133 0.165

15 30 0.002 0.006 0.010 0.013 0.538 0.586
40 0.002 0.006 0.011 0.014 3.195 3.203
50 0.003 0.007 0.012 0.015 0.545 0.588
60 0.003 0.007 0.011 0.017 0.831 0.889

10 0.002 0.006 0.010 0.012 0.061 0.077
20 0.002 0.006 0.010 0.013 0.178 0.430

20 30 0.002 0.006 0.011 0.014 0.759 0.983
40 0.002 0.007 0.012 0.016 3.040 3.051
50 0.002 0.007 0.013 0.017 0.559 0.622
60 0.003 0.007 0.013 0.019 1.112 1.190
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relaxation of the Stafford et al. [23] integer programming model, and the one
of Kumar et al. [15]. The computational results, on the instances of Taillard
[24] and Vallada et al. [27], show that our strengthened procedures lead
to improved bounds when the number of jobs is relatively small compared
to the number of machines. Moreover, our improvements incur negligible
additional computing time.

An interesting topic for future research is the development of strong
cutting planes for the Stafford et al. formulation. (See [5, 7] for details on
cutting-plane approaches to integer programming.) We hope to work on this
topic in a future paper.
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