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Abstract

The directional wave spectrum (DWS) describes the energy of sea waves as a function of

frequency and direction. It provides useful information for marine studies and guides the

design of maritime structures. One of the challenges in the statistical estimation of DWS is

to account for the circular nature of direction. To address this issue, this paper considers

the 1-dimensional case of the direction-only DWS (DWSd) and applies the circular regres-

sion to smooth the DWSd observations. This paper then improves an existing clustering

algorithm by incorporating circular smoothing in the clustering algorithm, automating the

determination of the optimal number of clusters, and designing a more appropriate smooth-

ing parameter selection procedure for data with correlated errors. Our simulation studies

reveal an improvement in the performance of estimating the underlying DWSd using the

circular smoother. Finally, the linear and circular smoothers are compared by clustering two

real datasets, one from the Sofar Ocean network and the second from a buoy located at the

Red Sea. For the Sofar Ocean data, clustering with the two smoothers results in different

number of clusters. For the Red Sea data, a cluster with a peak at the boundary is only

identified when the circular smoother is used.
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1 Introduction

The directional wave spectrum (DWS) describes the energy of sea waves as a function of

frequency and direction. Real-time DWS can provide information for storm tracing (Hanson

& Phillips, 2001) and in-service monitoring systems on ships (Nielsen, 2006). Long-term

DWS data, on the other hand, is useful for the determination of dominant wave profiles

through cluster analysis (Euan & Sun, 2019). Usages of dominant wave profiles include

reducing the computational cost for the estimation of riser fatigue on deepwater floating

production systems (Vogel et al., 2016), guiding the design and construction of maritime

structures (Boukhanovsky & Guedes Soares, 2009), and helping the exploitation of wave

energy (Ribeiro et al., 2020). Furthermore, regional wave climates can be identified by clus-

tering DWS observations, benefiting the studies of coastal and marine processes (Mortlock

& Goodwin, 2015).

Despite the great efforts devoted into data collection and derivation of DWS (Benoit,

1993; Boukhanovsky & Guedes Soares, 2009; Hisaki, 1996; Nielsen, 2006; Nielsen & Dam,

2008; Waals et al., 2002; Young, 1994; Yurovskaya et al., 2013), these DWS are still ob-

servational and inevitably contain noise. This gives rise to the demand of estimating or

smoothing the DWS to better reflect the features of the sea state, for which available so-

lutions are scarce. Note that the derivation of DWS data is named by some authors as

“estimation”, whereas our aim is to develop a statistical method to estimate the underlying

DWS from the derived data via smoothing.

Pascoal & Guedes Soares (2008) presented a parametric method by imposing a parametric

constraint to smooth the DWS. Nevertheless, Hinostroza & Guedes Soares (2016) pointed

out that parametric modelling fits to the measurements a prescribed shape, which may not

be suitable for all scenarios. Therefore, it is of interest to introduce a more flexible non-
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parametric method for the estimation of the DWS. Through statistical estimation, our work

aims to improve the quality of existing DWS data, thus increase the value of DWS in its

various applications.

In real applications, when the DWS does not show interesting features in frequency, it

can be reduced to a direction-only DWS (DWSd) by integrating over frequencies. For ex-

ample, Gorman (2018) considered the derivation of DWSd data with multiple peaks (waves

coming from multiple directions) from a wave buoy deployment, and Euan & Sun (2019)

further developed a clustering algorithm for DWSd. Although the estimation of the DWSd

is a standard regression problem, one challenge in applying statistical tools to DWS is that

direction is a circular variable and needs proper treatment beyond classical Euclidean meth-

ods. This leads to a regression framework with a circular variable (direction) and linear

response (energy).

Di Marzio et al. (2009) introduced a local linear approach to handle kernel regression

when dealing with a circular covariate and a linear response. This method has not been

explored for estimating DWSd. Hence, the first goal of this paper is to evaluate the suitability

of this technique on DWS data by comparing against the ordinary linear kernel smoother

(that is, a Nadaraya-Watson smoother over the real line). The second goal of this paper

is to develop a clustering algorithm for smoothed DWSd, as most of previous studies have

applied cluster analysis on the “raw” DWS data without statistical estimation (Hamilton,

2010; Portilla-Yandún et al., 2015; Ribeiro et al., 2020). Euan & Sun (2019) developed a

clustering algorithm for smoothed DWSd using the classical non-parameric regression model

with linear covariates. In this work, we will improve the clustering algorithm with a novel

procedure to automate the determination of the optimal number of clusters and a more

appropriate method for selecting the smoothing parameter of kernel smoothing. With more

accurate estimation, better clustering results can be expected. Finally, we will develop
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visualization tools to visualize the identified DWSd clusters.

The rest of the paper is organized as follows. Section 2 provides background on DWS

and how kernel regression for circular-linear systems can be used in this setting, followed by

an introduction to the proposed clustering algorithms for the smoothed DWSd. Section 3

first presents a simulation study where the performance of the circular-linear regression is

compared with other alternatives that ignore the circular nature of the direction, and then

illustrates how the clustering algorithm works in practice, in different simulated scenarios.

Two detailed real data analyses are presented in Section 4. Finally, Section 5 discusses the

limitations and possible extensions of the proposed methods.

2 Statistical methodology

This section is devoted to the introduction of the kernel regression approach for the DWSd

curves and to describe how these smooth estimates can be used for improving clustering

results.

2.1 Circular kernel regression for DWSd

The directional wave spectrum (DWS) denoted by S(ω, θ) describes the energy of sea waves

as a continuous function of frequency ω and direction θ. In this study, we define the direction-

only DWS (DWSd) according to (Euan & Sun, 2019) as

g(θ) =

∫
S(ω, θ)dω, ω > 0, θ ∈ [0, 2π) (1)

which represents the corresponding total energy in each direction. Suppose that for a col-

lection of directions {θl, l = 1, 2, . . . , nθ}, we observe the DWSd {gobs(θl), l = 1, 2, . . . , nθ}.
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These observations are assumed to be generated from the model

gobs(θl) = g(θl) + ϵl, l = 1, 2, . . . , nθ (2)

where g(θ) is the underlying DWSd and ϵl’s are random but correlated errors with mean zero

and variance σ2. To estimate g(θ) while accounting for the circular nature of the covariate

(direction), Di Marzio et al. (2009) proposed a local linear approach by fitting, locally, a

trigonometric polynomial β0+ β1 sin(· − θ). This local fit, for a fixed direction θ, is obtained

by solving a least squares problem and the corresponding parameter estimates are given by

(β̂0, β̂1) = argmin
(β0,β1)

{
nθ∑
l=1

Kν(θ − θl)[g
obs(θl)− (β0 + β1 sin(θ − θl))]

2

}
(3)

The local linear estimator of g(θ) for a certain θ is given by ĝν(θ) = β̂0. In expression (3),

Kν(· − µ) denotes a circular kernel: a circular density which is usually taken as a von Mises

model, centered at µ (in the least squares problem, centered at each observation θl) and with

concentration parameter ν. This parameter controls the smoothness of the estimator, with

large concentrations yielding very wiggly estimates of g and with small values of ν giving

too smooth curves. As in any other kernel smoothing setting, the selection of the smoothing

parameter ν is a crucial task. Note that the behavior of the smoothing parameter in circular

regression (a concentration) is opposite to the behavior of the smoothing parameter in linear

regression (a bandwidth). In general, we will refer to a smoothing parameter in both set-

tings. If instead of fitting locally a trigonometric polynomial one restricts the least squares

problem in (3) to squares differences between the response values and a (locally) constant

fit, then a Nadaraya-Watson type estimator is obtained. Despite for real-valued variables,

the local linear method usually outperforms Nadaraya-Watson (with most remarkable out-

put differences at the boundaries of the support of the real-valued explanatory variable),
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this is not the case for circular covariates, where no boundary effects are found and the two

estimators (local linear and local constant) present similar behaviors.

In this work, the kernel regression for circular-linear variables (KRCL) will be evaluated

and compared against the ordinary kernel regression smoother (KRL, where L stands for

linear) for the estimation of DWSd. The function in the package (Oliveira et al., 2014) and

the function in base R are used to perform KRCL and KRL, respectively. Both of them use

the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964).

2.2 Clustering algorithms

To investigate whether more accurate estimation leads to better clustering results, this

work employs the direction-only Hierarchical Directional Spectra-based (HDSd) clustering

algorithm proposed by Euan & Sun (2019). To classify a set of n DWSd observations

{gi(θ), i = 1, 2, . . . , n}, the algorithm runs as follows:

Step 1. Compute the normalized functions {gNi (θ), i = 1, 2, . . . , n}, where gNi (θ) =
gi(θ)∫
gi(θ)dθ

.

Define n clusters as Ci = {gNi } for i = 1, 2, . . . , n. The representative function of Ci

is gNi for i = 1, 2, . . . , n.

Step 2. Compute the dissimilarity between every pair of clusters. Examples of the dis-

similarity measure include the total variation distance (TVD) and the squared

Euclidean distance (SED), which are defined as

TVD(Ci, Cj) =
1

2

∫ ∣∣∣gi(θ)− gj(θ)
∣∣∣dθ

SED(Ci, Cj) =
∫ [

gi(θ)− gj(θ)
]2
dθ

where gi and gj are the representative functions of the clusters Ci and Cj, respec-
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tively.

Step 3. Find the most similar pair Ci and Cj according to the dissimilarity measure. Form

a new cluster Cnew = Ci ∪ Cj. Remove Ci and Cj from the collection of clusters.

Record k, the number of remaining clusters and dk, the dissimilarity between Ci

and Cj for k = n− 1, n− 2, . . . , 1. The representative function for Cnew is the mean

of all functions in Cnew.

Step 4. Repeat steps 2 and 3 until there is only one cluster left.

Note that the algorithm depends on the distance between each pair of the input DWSd

and does not assume any chronological order on the data. This paper proposes two im-

provements to the algorithm: first, the determination of the optimal number of clusters is

automated; second, statistical estimation is incorporated into the process of clustering to

obtain a smoothed version of each DWSd in each cluster.

2.2.1 Determination of the Number of Clusters

A scree plot characterizing the clustering result can be obtained by plotting dk against k,

which are recorded in the HDSd algorithm. A sample scree plot is shown in Figure 1(a).

From this plot, the elbow method is considered to determine k, identifying the optimal

number of clusters as a small value of k where the dissimilarity does not present a relevant

change.

The elbow is determined according to the idea illustrated in Figure 1(b-d). First, a

reference line is formed by connecting the first point (1, d1) and the nref-th point (nref , dnref
).

Denote the height of the reference line at x = k as Dk The optimal number of clusters is

then selected as

kselected = argmax
k

{Dk − dk} , k = 1, 2, . . . , nref (4)
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The parameter nref is introduced because if we just use the rightmost point, the result of

kselected will be susceptible to the initial number of clusters. As shown in Figure 1, a bigger

nref may lead to a larger kselected (depending on the shape of the scree plot), and vice versa.

In practice, to choose nref given a new dataset, we suggest starting by choosing nref = 3-5

times of the number of clusters to expect based on the background knowledge about the

data (e.g., theory). If the dataset is noisy (for DWSd, we can check if there are fake peaks),

we can decrease nref by 10-20 percent. It is also recommended to double-check whether the

elbow determined is reasonable by plotting the scree plot (these steps will be demonstrated

in the Application section).

Hence, a larger number should be chosen for nref if more clusters are expected to be

identified. Conversely, if strong noise is present and/or the clusters are expected to be

distinctive, then a smaller nref is more suitable.

2.2.2 Incorporation of Estimation in Clustering

As pointed out in section 2.1, the smoothing parameter plays a key role in the estimation,

so it is crucial to consider an appropriate and data-driven smoothing parameter selection

procedure. The leave-one-out cross validation (LCV) ideas have been used both in linear

and circular contexts. However, in our setting, the LCV is precluded because the errors in

the same observation can be correlated, in which case the LCV smoothing parameter tends

to be too small (De Brabanter et al., 2011). Therefore, the following alternative is proposed.

First, the HDSd method is applied to the raw observations and the elbow method is used

to determine the clusters. The result is called an initial grouping. To distinguish between

the clusters in the initial grouping and the final clusters, in this paper we use “group” for

the former and “cluster” for the latter. Observations in each group are assumed to have the

same truth and identically distributed errors. Since the smoothing parameter should only
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max 𝐷𝑘 − 𝑑𝑘

𝑛ref = 20

Elbow = 4

(a) (b)

Reference Line

max 𝐷𝑘 − 𝑑𝑘

𝑛ref = 10

Elbow = 3

(c)

max 𝐷𝑘 − 𝑑𝑘

𝑛ref = 30

Elbow = 4

(d)

Figure 1. Sample scree plot (a) and the determination of elbow with nref = 20 (b), 10 (c),
and 30 (d). The elbow is determined as the number of clusters that maximizes the distance
between the reference line and the smallest distance between clusters.
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depend on the shape of the truth and the correlation of the errors, the same value shall

be selected for all observations in the same group. The proposed procedure is summarized

below:

Step 1. Let {gobsi (θ), i = 1, 2, . . . , n} be DWSd observations from the same group. Compute

the mean of the DWSd observations ḡobs(θ) = 1
n

∑n
i=1 g

obs
i (θ).

Step 2. Determine the smoothing parameter as

νselected = argmin
ν

{
n∑

i=1

∫ [
ĝi,ν(θ; ν)− ḡobs(θ)

]2
dθ

}
(5)

where ĝi,ν(θ; ν) denotes the estimated gi(θ) with concentration ν.

In this paper, initial groupings and final clusters with size smaller than a certain threshold

will be discarded as outlier groups. The threshold will be decided based on the size of the

data.

The following steps summarize the full clustering procedure proposed:

Step 1. Apply the HDSd algorithm to the DWSd observations. Use the elbow method to

determine the number of clusters and obtain an initial grouping of the observations.

Step 2. Select an appropriate smoothing parameter for each group.

Step 3. For each group, apply the non-parametric estimator with the selected smoothing

parameter to obtain a smoothed version of each observation that estimates the true

DWSd.

Step 4. Apply the HDSd algorithm to the smoothed observations. Use the elbow method

to determine the number of clusters and obtain the final results.
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2.2.3 Visualization of the Identified Clusters

In this study, the functional boxplot proposed by Sun & Genton (2011) will be adopted

to visualize the identified clusters. Let {g1(θ), g2(θ), . . . , gn(θ)} be a set of DWSd and

{g[1](θ), g[2](θ), . . . , g[n](θ)} be the corresponding ordered set according to the decreasing val-

ues of the modified band depth (MBD) introduced by López-Pintado & Romo (2009). The

MBD measures the centrality of each g(θ) with respect to the whole set. The curve with

the largest depth value (g[1](θ)) is the median. The upper and lower borders of the box are

given by the boundaries of the 50% deepest curves min
r=1,2,...,⌈n/2⌉

g[r](θ) and max
r=1,2,...,⌈n/2⌉

g[r](θ).

To visualize the distribution of energy over different directions, the functional boxplots will

be presented using polar coordinates, where the angle corresponds to the direction. Figure

2 shows an example of functional boxplot and directional functional boxplot produced using

the same data.
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Figure 2. Sample functional boxplot (left) and directional functional boxplot (right) of the
total energy g(θ) in direction θ. The same set of simulated observations are used to generate
the two plots. The black curve is the median observation, and the colored area indicates the
inter-quartile range. The “energy” scale is equivalent to g(θ). The numbers correspond to
the radius at 90 degrees.
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3 Simulation Studies

Two simulation studies are conducted using R (version 4.0.2) (R Core Team, 2020). The

first assesses the performance of kernel regression for circular-linear variables (KRCL) in

estimating the true DWSd from observations. The second apply KRCL for clustering DWSd

observations. Both studies compare KRCL against the ordinary kernel regression smoother

(KRL).

To obtain the simulated DWSd observations we consider a stochastic model for wave

systems (Alliot et. al, 2013). The DWS observations are simulated as

Sobs(ωq, θl) = S(ωq, θl) + ϵ(ωq, θl), q = 1, 2, . . . , nω, l = 1, 2, . . . , nθ (6)

where ϵ(ω, θ) ∼ N(0, σ2) unconditionally with

Cor{ϵ(ωi, θi), ϵ(ωj, θj)} = exp

[
−λ1

∣∣∣∣ 1ωi

− 1

ωj

∣∣∣∣− λ2(1− cos(θi − θj))

]
(7)

where σ, λ1 and λ2 are parameters. Following Alliot et. al (2013) and Ochi (1998), we use

the model S(ω, θ) = f(ω)D(ω, θ) where f(ω) is formulated using the Joint North-Sea Wave

Project (JONSWAP) spectral family (Hasselmann et al., 1973)

f(ω) ∝ ω5 exp(−5ω4
p/4ω

4)γexp(−(ω−ωp)2/(2ω2
pr

2) (8)

and the directional spreading function given by Longuet-Higgins et al. (1963)

D(ω, θ) ∝ cos2m
(
θ − θ0

2

)
(9)

In (8), r = 0.07 if ω ≤ ωp and r = 0.09 otherwise; ωp = π/Tp with Tp being the spectral peak

period. Both Tp and γ are parameters. In (9), θ0 is the peak direction, m = mmax(ω/ωp)
5 if
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ω < ωp and m = mmax(ω/ωp)
−5/2 otherwise, and mmax is a parameter. This representation

is a modelling strategy that is useful for the physical interpretation and simulation of ocean

waves.

Each simulated Sobs has nω = 40 frequency levels and nθ = 40 directions. Note that

S(ω, θ) + ϵ(ω, θ) may contain negative values. Since this study focuses on the 1-dimensional

situation, the negative values are handled with respect to the corresponding DWSd of the

observations gobs(θ), i.e.,

gobs(θl) = max{0,
∫

Sobs(ω, θl)dω}· (10)

3.1 Estimation
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Figure 3. Target DWS and the corresponding DWSd designed for estimation. Each column
represents one target. The first row shows the DWS in polar coordinates, where the radius
represents the frequency ω, the angle represents the direction θ, and the color scale represents
the value of S(ω, θ). The second row shows the corresponding DWSd. The “energy” scale
is equivalent to g(θ). The numbers correspond to the radius at 90 degrees.
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Figure 4. Sample simulated DWSd observations under different choices of σ. Black dots
represents the truth (g2(ω)); pink lines represent the simulated observations.
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Figure 5. Sample auto-correlation functions under different choices of λ2. Lag is in terms
of θ. An ACF bar longer than the blue dotted line indicates a significant correlation.
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Three target DWS S1, S2 and S3 and the corresponding DWSd g1, g2 and g3 are shown in

Figure 3. We consider 3 noise levels σ = 0.75, 1, 1.25 and 3 correlation levels λ2 = 5, 20, 1000.

For each σ, the extent of noise is illustrated in Figure 4. For each λ2, the auto-correlation

function is plotted in Figure 5. Since the frequency dimension is ignored in DWSd, we fix

λ1 = 3 throughout the simulation.

We first show the estimations of one randomly generated DWSd observation from g2 and

g3 by KRCL and KRL in Figure 6. The estimates of KRCL and KRL only differ near the

boundary (when θ is close to 0 or 2π). Since KRCL treats the support as circular, it utilizes

the information near both boundaries for its estimation. Hence, the KRCL estimates near

θ = 0 and θ = 2π are “adjusted” by each other. While this effect may improve the average

performance of KRCL estimation, it does not necessarily lead to an estimation closer to the

truth in all cases. For example, the sample KRCL estimate for g2 is only closer to the truth

compared to KRL near θ = 2π but not near θ = 0 (Figure 6a).

Figure 6. Sample DWSd estimations of g2 (a) and g3 (b) using KRCL (blue) and KRL
(yellow). The smoothing parameters are selected according to the method described in
Section 2.2.2.

For g3 (Figure 6b), the difference between the KRCL and KRL estimates near the bound-

14



ary is less prominent. This is because g3 has narrow peaks, leading to small bandwidths /

large concentrations being selected (so that the two peaks are preserved in the estimates).

With a small bandwidth / large concentration, the information used for the estimation at

each point is more concentrated. Hence, KRCL utilize less information from the other side of

the boundary. As a result, the KRCL estimate becomes more similar to the KRL estimate.

Now we consider replicates. For each combination of S(ω, θ), σ and λ2, M = 100 obser-

vations are generated. After selection of smoothing parameters (according to Section 2.2.2),

KRCL and KRL are applied to the observations to obtain an estimate from each observation.

The performance is represented by the error, which is measured by the mean of the squared

Euclidean distance between the estimates and the truth

1

M

M∑
j=1

∫
[ĝi,j,νi(θ)− gi(θ)]

2dθ, i = 1, 2, 3

where νi is the smoothing parameter selected for group i and ĝi,j,νi(θ) are the estimates from

each observation. In order to determine whether KRCL is significantly better than KRL,

the Wilcoxon signed rank test is applied to the M pairwise differences in the errors. The

alternative hypothesis is that for the same observation, the error of KRCL estimation is less

than that of KRL. Since the test is one-sided, a p-value smaller than 0.05 favors KRCL. The

results are summarized in Table 1.

For g1 and g2, the consistent small p-values indicate that KRCL does give better estimates

than KRL. For g3, however, the performances of the two techniques do not differ significantly.

A possible explanation is as follows: non-parametric smoothers tend to underestimate sharp

peaks and troughs, because the highest or lowest point is always adjusted by its neighbors.

Since KRCL uses also information from the other side of the boundary, its estimates for the

two narrow peaks will be more flat compared to KRL. This introduces errors that offset the
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advantage of KRCL mentioned before, which is already small due to the small bandwidth /

large concentration selected.

Table 1. Median errors between the true g(θ) and the estimates obtained using KRCL and
KRL. The parameters σ and λ2 indicate the noise level and the within-observation correlation
level of the simulated DWSd observations. For each setting, M = 100 observations are
simulated, and the median error is reported. The Wilcoxon signed rank test is then applied
to test against the hypothesis that for each simulated DWSd observation, the KRCL estimate
has a higher error than KRL. The p-values are given in brackets.

(a) Median errors of estimating g1 using KRCL and KRL.

KRCL/KRL (p-value)
λ2 (correlation)

5 (strong) 20 (moderate) 1000 (very weak)

σ
0.75 (weak noise) 0.044/0.044 (0.006) 0.034/0.034 (0.002) 0.015/0.015 (<0.001)
1 (moderate noise) 0.133/0.134 (0.003) 0.081/0.082 (0.001) 0.044/0.044 (0.006)
1.25 (strong noise) 0.264/0.264 (0.001) 0.162/0.162 (0.010) 0.095/0.095 (0.004)

(b) Median errors of estimating g2 using KRCL and KRL.

KRCL/KRL (p-value)
λ2 (correlation)

5 (strong) 20 (moderate) 1000 (very weak)

σ
0.75 (weak noise) 0.172/0.181 (0.003) 0.149/0.160 (<0.001) 0.080/0.088 (<0.001)
1 (moderate noise) 0.465/0.528 (<0.001) 0.410/0.436 (<0.001) 0.211/0.220 (<0.001)
1.25 (strong noise) 1.078/1.151 (0.002) 0.792/0.865 (<0.001) 0.421/0.462 (<0.001)

(c) Median errors of estimating g3 using KRCL and KRL.

KRCL/KRL (p-value)
λ2 (correlation)

5 (strong) 20 (moderate) 1000 (very weak)

σ
0.75 (weak noise) 0.266/0.266 (0.592) 0.213/0.213 (0.508) 0.194/0.183 (0.999)
1 (moderate noise) 0.680/0.672 (0.657) 0.651/0.635 (0.981) 0.508/0.504 (0.581)
1.25 (strong noise) 1.375/1.313 (0.323) 1.503/1.475 (0.343) 1.088/1.077 (0.071)

3.2 Clustering

Two sets of the true DWS and the corresponding DWSd are designed for clustering (Figures

7 and 8). For this simulation study, we choose 10 to be the threshold for outlier groups and

nref = 20. We consider 3 noise levels σ = 0.75, 1, 1.25 and 3 correlation levels λ2 = 5, 20, 1000.

For each setting, M = 50 simulations are conducted. In each iteration, the number of

observations simulated from each true DWSd is a random integer between 5 and 50. The
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performance is represented by the similarity index between the result and the true clusters,

which is given by (Euan & Sun, 2019):

sim(C,G) = 1

B

B∑
i=1

max
1≤j≤k

sim(Cj,Gi) (11)

where G = {G1,G2, . . . ,GB} are the true clusters (B clusters in total) and C = {C1, C2, . . . , Ck}

is a k-cluster solution and

sim(Cj,Gi) =
2|Cj ∩ Gi|
|Cj|+ |Gi|

(12)

where |C| is the number of observations in cluster C.
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Figure 7. First set of target DWS and the corresponding DWSd designed for clustering.
The first row shows the DWS in polar coordinates, where the radius represents the frequency
ω, the angle represents the direction θ, and the color scale represents the value of S(ω, θ).
The second row shows the corresponding DWSd. The “energy” scale is equivalent to g(θ).
The numbers correspond to the radius at 90 degrees.

To determine whether KRCL is more helpful than KRL in clustering, the Wilcoxon signed

rank test is applied to the M pairwise differences in the similarity indeces. The alternative
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hypothesis is that for the same observation, the similarity index using KRCL is higher than

using KRL. Since the test is one-sided, a p-value smaller than 0.05 favors KRCL. As shown

by the boxplots of the resulting similarity indeces in Figures 9 and 10, the similarity index

is greater than 0.7 most of the time, suggesting effective clustering even when the noise and

the correlation are strong. However, the p-value of the Wilcoxon test is not significant for

the majority scenarios. This shows that the difference between using KRCL and KRL is

small.
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Figure 8. Second set of target DWS and the corresponding DWSd designed for clustering.
The first row shows the DWS in polar coordinates, where the radius represents the frequency
ω, the angle represents the direction θ, and the color scale represents the value of S(ω, θ).
The second row shows the corresponding DWSd. The “energy” scale is equivalent to g(θ).
The numbers correspond to the radius at 90 degrees.

For each set, we also present a sample clustering result (Figures 11 and 12). For each

DWSd, 50 observations are simulated with σ = 1 and λ2 = 20. The directional functional

boxplots depict the estimated truth as well as the uncertainty in the estimation.

In the sample result for the first set (Figure 11), both algorithms with KRCL and KRL
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Figure 9. Boxplots of similarity indeces between the true clusters of the first set and the
output of the HDSd algorithm when using KRCL / KRL for smoothing. The parameters σ
and λ2 indicate the noise level and the within-observation correlation level of the simulated
DWSd observations. For each setting, the Wilcoxon signed rank test is applied to test the
hypothesis that the similarity index when using KRL for smoothing is higher than that
when using KRCL for smoothing, and the p-value is given in each plot. The p-value for (c)
is removed because the results from KRCL and KRL are exactly the same, in which case the
Wilcoxon test is not applicable.
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Figure 10. Boxplots of similarity indeces between the true clusters of the second set and
the output of the HDSd algorithm when using KRCL / KRL for smoothing. The parameters
σ and λ2 indicate the noise level and the within-observation correlation level of the simulated
DWSd observations. For each setting, the Wilcoxon signed rank test is applied to test the
hypothesis that the similarity index when using KRL for smoothing is higher than that when
using KRCL for smoothing, and the p-value is given in each plot. The p-values for (a) and
(c) are removed because the results from KRCL and KRL are exactly the same, in which
case the Wilcoxon test is not applicable.
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Figure 11. Directional functional boxplots of the clusters obtained by the HDSd algorithm
with KRCL / KRL smoothing on a set of 200 observations simulated based on the first set
of true DWSd (Figure 7). 50 observations are simulated from each profile. The percentage
in the title of each diagram indicates the percentage of observations that belong to this
cluster. Similar clusters obtained with KRCL and KRL smoothing are given the same color.
The percentages do not sum up to 100% due to removal of outliers. The “energy” scale is
equivalent to g(θ). The numbers correspond to the radius at 90 degrees.
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Figure 12. Directional functional boxplots of the clusters obtained by the HDSd algorithm
with KRCL / KRL smoothing on a set of 200 observations simulated based on the second set
of true DWSd (Figure 8). 50 observations are simulated from each profile. The percentage
in the title of each diagram indicates the percentage of observations that belong to this
cluster. Similar clusters obtained with KRCL and KRL smoothing are given the same color.
The percentages do not sum up to 100% due to removal of outliers. The “energy” scale is
equivalent to g(θ). The numbers correspond to the radius at 90 degrees.
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fail to separate g6 and g7. This is expected as the directions of the peaks only differ by

15 degrees, which is small compared to the width of the peaks. Both KRCL and KRL

removes one observation from cluster 3 (corresponding to g6 and g7) as an outlier, hence

the percentages do not sum up to 100%. In contrast, the sample result for the second

set identifies all clusters correctly, as the peaks have very different directions. Again, two

observations are treated as outliers by both KRCL and KRL and removed from cluster 3

(corresponding to g10).

4 Application

In this section, we apply the proposed clustering method to two DWS datasets, one from the

Sofar Ocean network1, and the other collected from a buoy located at the Red Sea (Farrar

et al., 2009). The corresponding DWSd are calculated and used for this investigation.

4.1 Sofar Ocean Data

The data from Sofar Ocean consists of the predicted DWS of each hour from 7 Dec to 14

Dec 2021 at 34.5°N, 20°E. Since this is a small set with just 168 observations, we choose a

smaller number of 5 to be the threshold for outlier groups. We expect to have 3 to 4 clusters

within one week of observations, so we choose nref = 10.

The directional functional boxplots of the identified clusters are displayed in Figure 13.

It can be observed that the first and the last two clusters are consistently identified by both

methods. However, while KRL separates clusters 2 and 3, KRCL merges them into a single

cluster (cluster 2). The scree plots show that the elbows are chosen appropriately: increasing

the number of clusters does not lead to a significant change in the smallest dissimilarity. The

selected bandwidths/concentrations are given in Table 2.

1https://docs.sofarocean.com/wave-spectra
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Figure 13. Directional functional boxplots (upper) and scree plots (lower) obtained by the
HDSd algorithm with KRCL / KRL smoothing on the Sofar Ocean data. The percentage in
the title of each boxplot indicates the percentage of observations that belong to this cluster.
Similar clusters obtained with KRCL and KRL smoothing are given the same color. The
“energy” scale is equivalent to g(θ). The numbers correspond to the radius at 90 degrees.
The dashed blue lines in the scree plots indicate the elbows determined.
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Figure 14. Color-coded calendar plot of the clusters in the Sofar Ocean data obtained by
the HDSd algorithm with KRCL / KRL smoothing. Each color represents a cluster. Similar
clusters obtained with KRCL and KRL smoothing are given the same color.

Figure 14 plots the identified cluster of each hour, with each color representing one cluster.

For most hours, the two methods appear to be consistent. This can be attributed to the

fact that no peaks in this dataset appear at the boundary, so the advantages of KRCL have

little effect.

Table 2. Selected concentration parameter for KRCL and bandwidth for KRL for clustering
Sofar data. Note that the groups are initial groups, not final clusters (see Section 2.2.2).

Group ν for KRCL Bandwidth for KRL
1 16.5 0.610
2 444 0.276
3 261 0.247
4 545 0.156

4.2 Red Sea Data

This data consists of the observed DWS on the Red Sea near Thuwal (22.2°N, 38.5°E) from

January to March 2010. The buoy was installed in 2009 and was the first structure that

measures the wind and wave on the Red Sea (Farrar et al., 2009). The DWS, S(ω, θ), where

ω ∈ (0, 0.5] and θ ∈ [0, 2π), are derived from buoy data recorded at a frequency of 2 Hz
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during the first 17 minutes of each hour. The Red Sea data contains DWSd from more

directions, including the boundary (in the direction of the east), which will be a challenge

for both methods. Since this dataset is larger, we choose 10 to be the threshold for outlier

groups. We choose nref = 30 as we expect to have 5 to 8 clusters.

Table 3. Selected concentration parameter for KRCL and bandwidth for KRL for clustering
Red Sea buoy data. Note that the groups are initial groups, not final clusters (see Section
2.2.2).

Group ν for KRCL Bandwidth for KRL
1 691 1.14
2 0.733 10.0
3 719 1.21
4 13.4 0.683
5 12.6 0.721
6 12.8 0.729

The directional functional boxplots of the identified clusters are displayed in Figure 15.

The calendar plots are shown in Figure 16. The selected bandwidths/concentrations are

given in Table 3. Compared to the Sofar Ocean dataset, more differences appear between

the results of KRCL and KRL.

First, the DWSd identified by KRL are broken at the boundary, as shown in Figure

15, KRL clusters 1 to 3. This is expected, as KRL does not model direction as a circular

variable, which means there is little relationship between the energy at the boundaries θ = 0

and θ = 2π. On the other hand, KRCL treats θ = 0 and θ = 2π as connected and leads to

continuous estimates at the boundaries.

Next, we compare each cluster identified by KRCL and KRL. Notably, cluster 3 of KRCL

is not identified by KRL. Further inspection (clues can also be found in Figure 16, the

calendar plot) suggests that in the results of KRL, this cluster is absorbed into cluster 2,

which seems to be a mix of DWSd in different directions.

Moreover, clusters 4 and 5 of KRL match exactly to cluster 5 of KRCL. This observation
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Figure 15. Directional functional boxplots (upper) and scree plots (lower) obtained by
the HDSd algorithm with KRCL / KRL smoothing on the Red Sea buoy data. For KRL,
one of the clusters determined is treated as an outlier due to a size smaller than 10. The
percentage in the title of each boxplot indicates the percentage of observations that belong
to this cluster. Similar clusters obtained using KRCL and KRL smoothing are given the
same color. The “energy” scale is equivalent to g(θ). The numbers correspond to the radius
at 90 degrees. The dashed blue lines in the scree plots indicate the elbows determined.
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Figure 16. Color-coded calendar plot of the clusters in the Red Sea buoy data obtained by
the HDSd algorithm with KRCL / KRL smoothing. Each color represents a cluster. Similar
clusters obtained with KRCL and KRL smoothing are given the same color. White cells
represent missing data.
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is similar to the case for the Sofar Ocean data, where cluster 2 and 3 of KRL is merged

into cluster 2 of KRCL. A possible explanation for the separations in KRL’s results is that

the clusters’ profiles at the boundary are modelled inaccurately, which leads to exaggerated

within-group differences.

Finally, the scree plots show that the smallest dissimilarity continues to decrease beyond

the selected number of clusters. Based on our choice of nref = 30, our procedure (as described

in Section 2.2.1) decides that the decrease does not have a relevant meaning, because the

clusters are not so distinct. A larger nref should be chosen if those not-so-distinct clusters

are expected. In the supplementary code, different choices of nref are explored for both the

Sofar and Red Sea data, and the scree plots are obtained.

5 Conclusion

In this paper, we applied the kernel smoother for circular-linear variables (circular regression)

proposed by Di Marzio et al. (2009) for the estimation of direction-only directional wave

spectrum (DWSd) data. The circular regression is compared against the ordinary linear

kernel smoother in the estimation of circular-linear data. The circular regression takes into

account the circular nature of the support (boundaries are connected), while the ordinary

kernel smoother does not. A procedure for smoothing parameter selection is developed for

DWSd data with correlated errors in each observation. The results from the simulation

study suggest that the estimates from circular regression have significantly lower errors than

ordinary kernel regression.

Our study is then extended to the clustering of DWSd data. We expected that the

accuracy of clustering would be improved with a better estimation technique, as it helps to

remove the noise in the observations. To utilize the estimation techniques for noise removal
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during the clustering process, a clustering workflow is developed based on the Hierarchical

Directional Spectra-based (HDSd) algorithm proposed by Euan & Sun (2019). For fair

comparisons, the determination of the optimal number of clusters based on the scree plot is

automated.

Finally, we applied our proposed clustering procedure to two sets of real data – the Sofar

Ocean data (168 predicted DWSd) and the Red Sea buoy data (2137 DWSd observations

collected at the Red Sea). Differences are observed in the clustering results of both datasets.

For the Sofar Ocean data, clustering with circular regression results in fewer clusters (4 clus-

ters) compared to the ordinary kernel smoother (5 clusters), which is due to the combination

of two similar clusters determined by the kernel smoother. For the Red Sea buoy data, the

ordinary kernel smoother misses a cluster at the boundary (that is, close to 0 and 2π) and

splits a cluster (southwest) into two compared to the circular regression. In addition, the

profiles of the clusters smoothed by the ordinary kernel smoother are discontinuous at the

boundary. This suggests that the circular regression may be a more appropriate technique

for such circular-linear data.

As a first attempt, this study only applies the circular regression to 1-dimensional DWSd

data. An extension to the 2-dimensional case is desirable where the circular regression

methodology needs developing. Considering both ω and θ would require to perform non-

parametric regression on a cylinder. In this case, the nonparametric regression method would

involve cylindrical kernels, but a simple way to approach this would be to consider product

kernels, as suggested by Garćıa-Portugués et al. (2013). Another possible extension is to

consider a different model of the noise, such as the multiplicative noise model. Further re-

search is required to evaluate the effectiveness of the method on other types of real data. For

the selection of smoothing parameter and determination of the optimal number of clusters,

the procedures proposed in this paper are among many other possibilities, which also worth
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investigating.
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