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This thesis presents three pieces of work.

Within the first two thirds of the thesis, we study Arens regularity of Banach algebras.

We first study Arens regularity of weighted semigroup algebras that arise from

totally ordered semilattices. This is a natural continuation of [24], where they

focus on studying Arens regularity of the unweighted case. We provide a sufficient

condition for when a weighted semigroup algebra is not strongly Arens irregular and

a characterization of Arens regularity of the weighted semigroup algebra. We then

focus on three specific totally ordered semilattices, N∧, N∨ and Z∨ to obtain stronger

results than those obtained for a generic totally ordered semilattice.

Later on, we focus on two different Banach sequence algebras, the James pth algebra

and the Feinstein algebra. Amongst other properties, we prove that the Feinstein

algebra is Arens regular, which provides a second example of an Arens regular natural

Banach sequence algebra that is not an ideal in its bidual, the first one being the

remarkable example obtained in [7]. We study whether Jp is a BSE algebra with a

BSE norm, for 1 < p < ∞. We finish this part by studying the Arens regularity of

the tensor products of some of the algebras studied in this thesis.

In the final part of the thesis, we focus on Blaschke products. We study the

decomposability of a finite Blaschke product B of degree 2n into n degree-2 Blaschke
3



4 ABSTRACT

products, examining the connections between Blaschke products, the elliptical range

theorem, Poncelet theorem, and the monodromy group. We show that if the numerical

range of the compression of the shift operator, W (SB), with B a Blaschke product

of degree n, is an ellipse, then B can be written as a composition of lower-degree

Blaschke products that correspond to a factorization of the integer n. We also show

that a Blaschke product of degree 2n with an elliptical Blaschke curve has at most n

distinct critical values, and we use this to examine the monodromy group associated

with a regularized Blaschke product B. We prove that if B can be decomposed into

n degree-2 Blaschke products, then the monodromy group associated with B is the

wreath product of n cyclic groups of order 2. Lastly, we study the group of invariants

of a Blaschke product B of order 2n when B is a composition of n Blaschke products

of order 2.
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CHAPTER 1

Introduction

This thesis deals with two seemingly distant topics. Within the first two thirds of

the thesis, we are concerned with Banach algebras, and more specifically with Arens

regularity of Banach algebras. During the study of some specific Banach algebras,

we run into the Hardy space, and in the literature regarding this space there is a

notable amount of discussion about the relation between the compressions of the shift

operator and Blaschke products. This led to the interest in the research reflected in

the last third of the thesis, where we study some properties of Blaschke products.

1.1. Arens regularity of Banach algebras

More than 70 years ago, in [3] Richard Arens proved that, given a Banach algebra A,

its product can be naturally extended to its bidual A′′ in a way that A is a closed

subalgebra of A′′. This extension can be done in two completely symmetrical ways.

From these, the first (□) and second (♢) Arens products arise. These products are

one-sided σ(A′′, A′) continuous (each one on a different side). These two products

can be one in disguise, or they can be different products in A′′, which sparked the

need to know which algebras belonged to each of these groups. Arens proved in [4]

that the algebra ℓ1(N) with pointwise product is Arens regular, but that ℓ1(N) with

the convolution product is not Arens regular. In [11], it is shown that all C∗-algebras

are Arens regular and in [79] Young proved that L1(G) is not Arens regular for any

infinite G.

A natural question to ask when we are dealing with non-Arens regular algebras is

to what extent these products can differ from one another. The biggest set on which

these two products can agree is the whole bidual, while the smallest set in which they

have to be equal is A. This sparked the definition of Arens regularity, when the two

multiplications coincide in the whole bidual, and, later on, strong Arens irregularity

in [21], when both products are as different as possible. This leads naturally to the

definition of the left and right topological centres, introduced in [59], which we shall

see in Chapter 2.
12



1.1. ARENS REGULARITY OF BANACH ALGEBRAS 13

There is an important fact about Banach algebras that leads to a different way

of meassuring non-Arens regularity: The space WAP(A) of weakly almost periodic

functionals is precisely the subspace of A′ where the two Arens products coincide

(i.e. for λ ∈ WAP(A), ⟨M□N, λ⟩ = ⟨M♢N, λ⟩ (M,N ∈ A′′)). This follows from

Grothendieck’s double limit criterion (see for example [67]). Thus, when every

functional in A′ is weakly almost periodic, we know that A is Arens regular. With

this characterization of Arens regularity, it follows naturally that is possible to

measure the degree of non-Arens regularity of an algebra A by measuring the size

of the quotient space A′/WAP(A), i.e., by measuring the size of the space WAP(A)

against the size of A′. So, when A is Arens regular, A′/WAP(A) is trivial. The

other extreme case is when A′/WAP(A) is as large as A′. In [48], Granirer coined

the term extreme non-Arens regular for these algebras.

Strong Arens irregularity and extreme non-Arens regularity are not equivalent

properties. In fact, neither of them implies the other, as it was seen in [52]. In [34]

natural examples of algebras that are extreme non-Arens regular but not strongly

Arens irregular can be found. In this thesis, however, we shall not consider extreme

non-Arens irregularity.

As it has been pointed out before, the link between Arens regularity and convo-

lution algebras was identified at the birth of the two Arens products, as in [4] Arens

already discussed that ℓ1(N) with the convolution product is not Arens regular. This

just planted the seed for a very prolific research area.

The research about Arens regularity of (weighted) semigroup algebras is somehow

divided into studying the unweighted and the weighted cases. They are obviously

intertwined, but sometimes (as we shall see later on in this thesis), the results

obtained for one cannot be extrapolated to the other.

For example, in [22], they study the structure of the convolution algebra and of its

second dual. In order to do so, they use properties of the semigroup (βS,□) and, due

to the interweaving of mathematical concepts, some interesting questions about this

semigroup arise from the study of Banach algebras. The recently published paper

[24], which inspired some of the research of this thesis, considers totally ordered

semilattices (see definition in Chapter 2) and determines the centres of the bidual of

the unweighted convolution algebra, as well as the centres of βS.
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A seminal paper on Arens regularity of weighted semigroup algebras is that of

Craw and Young [13], where they introduced a criterion to know when a weighted

semigroup algebra is Arens regular, giving a characterization in the case that the

semigroup is (weakly) cancellative. In [20] they consider weighted convolution

algebras on discrete groups and semigroups, concentrating on the rationals with

addition and analogous semigroups in the real line. Although the main focus of [35]

are weighted group convolution algebras, they also provide some examples about

weakly cancellative and right cancellative discrete semigroups.

In [28], Daws provides some results regarding Arens regularity of weighted

semigroup algebras, although the main focus is dual Banach algebras as a way to

progress on the understanding of Connes-amenability. Duality of Banach algebras

also provides a natural context for the study of Arens regularity, since Banach

algebras that have the extra property of being dual Banach algebras can be Arens

regular under certain conditions. For example, when an algebra is a dual Banach

algebra and it is also an ideal in its bidual, it is immediately Arens regular. This

is why in this thesis we also study the duality of some of the Banach algebras. A

dual Banach algebra is an algebra that is not just dual as a Banach space, but

also the predual satisfies certain conditions related to the algebraic structure (see

the definition in Chapter 2). For example, von Neumann algebras are the only

C∗-algebras that are dual Banach algebras. In the case of semigroup convolution

algebras, it was seen in [22] that the unweighted convolution algebra is a dual Banach

algebra if and only if the semigroup is weakly cancellative. As we shall see later in

the thesis, this story is a bit more complicated when we add a weight.

Finally, other properties that can be linked with Arens regularity, and that will

be a focus of study for this thesis, are the notions of BSE algebra and BSE norm,

which were introduced in 1990 by Takahasi and Hatori in [74] as an abstraction of

the Bochner-Schoenberg-Eberlein theorem. Some documents that focus on these

properties in relation to Banach algebras are [25] and [57].

1.2. Blaschke products

Blaschke products are important functions for the study of bounded analytic functions.

They play the same role hyperbolically on the unit disc as polynomials play in the

Euclidean sense on the plane. Finite Blaschke products are n to 1 maps of the open

unit disk into itself, mapping the unit circle to itself. They are holomorphic on an
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open set containing the closed unit disk and have finitely many zeros in the open

unit disk.

More than 200 years ago J. V. Poncelet discovered that if there exists a polygon

of n-sides that is inscribed on a given conic and circumscribed about another conic,

then infinitely many such polygons exist. This theorem, which is sometimes called

Poncelet’s porism or Poncelet’s closure theorem, has been studied in several settings

(see, for example, [29, 32, 37, 49, 63], among others). Later, Darboux found a new

proof of the Poncelet closure theorem based on the properties of certain curves,

known as Poncelet–Darboux curves, [31]. These are the curves of degree n passing

through the intersection points of n+ 1 tangents to a given conic.

If A is a n× n matrix, then its numerical range W (A) is a convex subset of C

which contains the spectrum of A. Surprisingly, Blaschke products, the numerical

range, and Poncelet’s theorem are all connected. Roughly speaking, this connection

can be described by noting that the convex hull of each of the circumscribing polygons

with vertices on T represents the numerical range of a certain unitary matrix, which

is related to a Blaschke product via an operator that is a compression of the shift

operator. See, for example, [17] for an overview of these connections.

A Blaschke product is decomposable if it can be written as the composition of

two (or more) Blaschke products of degree greater than one (see Chapter 5 for the

formal definition). Whether or not a Blaschke product is decomposable is a topic

that has strongly drawn the attention of specialists. Amongst other things, this

is due to the link between decomposability and some other interesting properties

of Blaschke products. For example, in [77] and [14], a visual representation of

composition is discussed, and in [15] both algorithmic and geometric arguments are

presented, and the relationship between decomposable Blaschke products and curves

with the Poncelet property are examined. In [40, 41], Fujimura considered geometric

properties of Blaschke products of degree n and the line segments that are tangent

to the unit circle at the points B maps to λ on the unit circle, as well as the line

segments joining successive points. For degree-4 Blaschke products, she considered

those for which the trace of these lines is an ellipse. She showed that an ellipse is

inscribed in a quadrilateral that is inscribed in T if and only if the Blaschke product

is a composition of two degree-2 Blaschke products. In [47], the authors gave an

operator-theoretic proof of this result. They showed that an ellipse is a Poncelet
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ellipse (see Chapter 5 for a definition) inscribed in a quadrilateral inscribed in T

if and only if the ellipse is the Blaschke curve associated with a Blaschke product

B̂(z) = zB(z) and the compression of the shift operator associated with the Blaschke

product B has elliptical numerical range. Furthermore, the compression of the shift

operator associated with a Blaschke product B has elliptical numerical range if and

only if B̂ is a composition of two degree-2 Blaschke products. In [53] the authors

obtain a similar result for Blaschke products of degree 6. In [68], Ritt classifies

decomposability of B in terms of the monodromy group associated with B. See also

[12] and [77] for more recent developments.

Finally, the last notion that will be the concern of this thesis is the group of

invariants of a finite Blaschke product B. In [8] Cassier and Chalendar showed that

the group of invariants of a Blaschke product of degree n is a cyclic group of order n.

The group of invariants for infinite Blaschke products with finitely many singularities

was considered in [10].

1.3. Thesis outline and published work

The rest of this thesis consists of 4 chapters.

In Chapter 2, we start by discussing the relevant background that will be useful

during Chapter 3 and Chapter 4. This is divided in three sections: Preliminaries

from Banach spaces, preliminaries from Banach algebras and preliminaries from

weighted semigroup algebras.

Chapter 3 is based on a paper that, at the moment of submitting this thesis is

under review by the journal. In it, we study Arens regularity of weighted semigroup

algebras that arise from totally ordered semilattices. The restriction to cancellative

or weakly cancellative semigroups when studying Arens regularity of weighted semi-

group algebras is very common. However, the family of semilattices introduced in

this chapter includes examples that are not necessarily weakly cancellative. So, our

study includes a more general set-up in the study of Arens regularity. The inspiration

to consider this specific family of semigroups came from [24], where they focus on

studying Arens regularity of the unweighted case. Their main result is a characteri-

zation of the property of strong Arens irregularity in terms of some properties of S,

a totally ordered semilattice. However, we shall see that this characterization cannot

be translated to weighted semigroup algebras. We provide a sufficient condition for

when a weighted semigroup algebra is not strongly Arens irregular. In contrast with
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strong Arens irregularity, we provide a characterization of Arens regularity of the

weighted semigroup algebra that depends solely on the properties of the weight. We

shall focus afterwards on three specific totally ordered semilattices, N∧, N∨ and Z∨ to

obtain stronger results than those obtained for a generic totally ordered semilattice.

For these, we shall also study when they are BSE-algebras and when they have a

BSE norm.

Within Chapter 4, Section 4.2.1 on Arens regularity of the Feinstein algebra is

joint work with Yemon Choi. We start Chapter 4 by proving some results about

mixed identities that will be useful during the rest of the chapter. Later in this

chapter, we shall focus on two different Banach sequence algebras, the James pth

algebra, and what we call the Feinstein algebra. In this chapter, we study whether

Jp is a BSE algebra with a BSE norm. On the other hand, the Feinstein algebra

A appears in [19, Example 4.1.46], although it was introduced in a lecture by Joel

Feinstein. This algebra has very interesting properties. For example, it is a self-

adjoint Banach sequence algebra that is not separable, not Tauberian, not an ideal

in its bidual and without an approximate identity ([19, Example 4.1.46]). We shall

see that it is not weakly sequentially complete, and we shall also study whether it is

a BSE algebra and whether it has a BSE norm. However, the most interesting result

obtained is that A is Arens regular. This provides a second example of an Arens

regular natural Banach sequence algebra that is not an ideal in its bidual, the first

one being the remarkable example obtained in [7]. The method used to prove Arens

regularity can be extended to a more general setting, which is something we are

working on at the moment. We finish this chapter by studying the Arens regularity

of the tensor products of some of the algebras studied in this thesis.

Chapter 5 is based on the paper [1], which is joint work with Asuman Güven

Aksoy, Francesca Arici and Pamela Gorkin. We start by discussing the relevant

background in Section 5.1 and Section 5.2. Then, in Section 5.3, we study the

decomposability of a finite Blaschke product B of degree 2n into n degree-2 Blaschke

products, and we study how this is linked to the elliptical range theorem and Poncelet

theorem. We show that if the numerical range of the compression of the shift operator,

W (SB), with B a Blaschke product of degree n, is an ellipse, then B can be written

as a composition of lower-degree Blaschke products that correspond to a factorization

of the integer n. We provide some examples of Blaschke products that enlighten
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the result obtained. In Section 5.4, we see that a Blaschke product of degree 2n

with an elliptical Blaschke curve has at most n distinct critical values, and we use

this to study the monodromy group associated with a regularized Blaschke product

B, in Section 5.5. We prove that if B can be decomposed into n degree-2 Blaschke

products, then the monodromy group associated with B is the wreath product of n

cyclic groups of order 2. Finally, in Section 5.6, we study the group of invariants of

a Blaschke product B of order 2n when B is a composition of n Blaschke products

of order 2.



CHAPTER 2

Preliminaries

In this chapter, we shall introduce the background necessary for the rest of this

thesis. The content of this section is not original. We aim to introduce the notation

that we shall use during the rest of the thesis as well as give enough background to

make this thesis self-contained. In some places we shall introduce some results that

are not necessary for the thesis, but that would offer some more context about the

material.

2.1. Frequently used notation and definitions

We shall denote by N the set of the natural numbers and Nn := {k ∈ N : k ≤ n}.

By N∞ we mean N ∪ {+∞}. We consider that 0 /∈ N. We denote by Z the set of

integers, and similarly, we write Z∞ := Z ∪ {+∞} and Zn
m := {k ∈ Z : m ≤ k ≤ n}.

For us Q is the set of rational numbers and Q+• := {q ∈ Q : q > 0}, R is the set of

real numbers and C the set of complex numbers.

Let X be a set, and let Y = R or Y = C. If f : X → Y is a function, we write

supp f for the support of f .

Given an element x ∈ X, we denote by δx the characteristic function of x. For

n ∈ N, ∆n ∈ c00 is the element such that ∆n(k) = 1, for k ≤ n, and ∆n(k) = 0, for

k > n.

Finally, we shall write as c the cardinality of the continuum.

2.2. Preliminaries from Banach spaces

Let E be a Banach space. We shall denote the closed unit ball of E by E[1]. During

this thesis we shall write E ′ for the dual space, and E ′′ for the second dual, or the

bidual . The map κE : E → E ′′ denotes the canonical embedding. For a functional

λ ∈ E ′ and x ∈ E, ⟨x, λ⟩(E,E′) denotes the value of λ applied to x. Whenever the

context is clear we omit the subscript and we shall write ⟨x, λ⟩.

Let E,F be two Banach spaces. The set of bounded linear maps from E to F is

denoted by B(E,F ), and B(E) := B(E,E). For T ∈ B(E,F ), we write T ′ for the
19
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dual map from F ′ to E ′ and T ′′ := (T ′)′. The set of compact operators from E to F

is denoted by K(E,F ) and the set of finite-rank operators by F(E,F ). We denote

by W(E,F ) the set of weakly compact operators.

The following theorem is due to Mazur [61]:

Theorem 2.2.1. The closure and weak closure of a convex subset of a normed space

are the same. In particular, a convex subset of a normed space is closed if and only

if it is weakly closed. □

In 1927, J. Schauder introduced the concept of a Schauder basis:

Definition 2.2.2. Let E be a Banach space. A sequence (xn) in E is a Schauder

basis for E if for each x ∈ E there is a unique sequence (αn) of scalars such that

x = ∑
n∈N αnxn.

A property that will be useful in some sections is the Radon-Nikodým property.

Definition 2.2.3. A Banach space E has the Radon-Nikodým property (RNP) if

every closed, bounded subset of E is dentable.

We recall that a bounded subset B of E is dentable if, for each ε > 0 there exists

x ∈ B such that x /∈ c̄o(B \Bε(x)). For more about dentable subsets, we recommend

to have a look at [26, Section 1].

2.2.1. Tensor products. Let E and F be linear spaces. Then the tensor product

of E and F is denoted by E ⊗ F . For z ∈ E ⊗ F , there exist n ∈ N, x1, · · · , xn ∈ E

and y1, · · · , yn ∈ F such that

z =
n∑

i=1
xi ⊗ yi.

When z ̸= 0 we can suppose that {x1, · · · , xn} and {y1, · · · , yn} are linearly indepen-

dent.

When E and F are normed spaces, we can consider the projective tensor norm

∥z∥π = inf
{

n∑
i=1

∥xi∥∥yi∥ : z =
n∑

i=1
xi ⊗ yi, n ∈ N

}
(z ∈ E ⊗ F ),

where the infimum is taken over all representations of z as an element of E ⊗ F .

Then (E ⊗ F, ∥ · ∥π) is a normed space and it is complete if and only if either E or

F is finite-dimensional. This leads to the following definition.

Definition 2.2.4. Let E, F be normed spaces. Then the projective tensor product

of E and F is the completion of (E ⊗ F, ∥ · ∥π). We denote it by E ⊗̂F .
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2.2.2. Schur property. We shall talk about some properties of Banach spaces

that will be useful throughout this thesis.

Definition 2.2.5. Let E be a Banach space. We say that E is weakly sequentially

complete if every weakly Cauchy sequence in E is weakly convergent in E. We say

that E has the Schur property if given a sequence {xn} that converges weakly to x

in E implies that {xn} converges to x in norm in E.

Note that whenever a Banach space has the Schur property, then it is weakly

sequentially complete.

The main example of a Banach space with the Schur property is ℓ1. In fact, any

space with the Schur property contains a copy of ℓ1.

2.3. Preliminaries from Banach algebras

2.3.1. Approximate identities.

Definition 2.3.1. Let A be a Banach algebra. A left approximate identity for A is

a net (eν) in A such that

lim
ν
eνa = a (a ∈ A).

Symmetrically, a right approximate identity for A is a net (eν) in A such that

lim
ν
aeν = a (a ∈ A).

A net (eν) in A is an approximate identity if it is both a left and right approximate

identity.

Let (eν) be a left (respectively right) approximate identity. When (eν) is a sequence

indexed by N we say that is a left (respectively right) sequential approximate identity.

If there exists M > 0 such that supν ∥eν∥ ≤ M , then we say that (eν) is a left

(respectively right) bounded approximate identity.

2.3.2. Multiplier algebra. We proceed now to introduce the multiplier algebra of

an algebra A. This algebra was originally introduced by Hochschild in [51]. Let A

be an algebra. Then a left multiplier on A is a linear map L : A −→ A such that

L(ab) = L(a)b (a, b ∈ A).

Similarly, a right multiplier on A is a linear map R : A −→ A such that

R(ab) = aR(b) (a, b ∈ A).
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A multiplier is a pair (L,R) where L, R are left and right multipliers and

aL(b) = R(a)b (a, b ∈ A).

The set of all left multipliers is called the multiplier algebra of A, it is denoted

by M(A) and it is a unital subalgebra of L(A), where L(A) is the algebra of linear

maps from A to A.

An ideal I in A is said to be left faithful in A (respectively, right faithful in A) if,

for every a ∈ A, aI = 0 implies that a = 0 (respectively, Ia = 0 implies that a = 0).

An ideal I is faithful if it is both left and right faithful. A is said to be faithful if

it is faithful as an ideal in itself. In the case where A is faithful and commutative,

every left multiplier is also a right multiplier and vice versa, and so M(A) is the set

of all multipliers of A and it is also a commutative subalgebra of L(A).

Let A be an algebra. For every a ∈ A consider the linear map

La : A −→ A

b 7−→ ab.

The map

L : A −→ M(A)

a 7−→ La

is an embedding that identifies A as a subalgebra of M(A).

When A is a faithful, commutative Banach algebra, M(A) ⊂ B(A); we denote

the relative operator norm on M(A) as ∥ · ∥op and we set ∥a∥op = ∥La∥op for every

a ∈ A.

Note that A = M(A) if and only if A has an identity.

We conclude this subsection with a definition that will be useful later on:

Definition 2.3.2. Let A be a Banach algebra. Then A is compact if the maps La

and Ra are compact operators for each a ∈ A.

2.3.3. Arens products. We proceed to introduce the two Arens products, □ and

♢. These products provide the bidual of a Banach algebra A with a Banach algebra

structure in such a way that, when A is view as a subspace of A′′ via the canonical

embedding, the original multiplication on A coincides with the restriction of the new

multiplication provided to the bidual.
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There are two ways of defining the two Arens products. Originally, they were

introduce in 1951 by Arens in [4] and [3] and the definition was as follows:

Let A be a Banach algebra. The dual space A′ is a Banach A-bimodule. Then,

for a ∈ A, λ ∈ A′, a · λ, λ · a ∈ A′ such that ⟨b, a · λ⟩ = ⟨ba, λ⟩ and ⟨b, λ · a⟩ = ⟨ab, λ⟩

(b ∈ A). Also for a ∈ A and M ∈ A′′, we have that a · M,M · a ∈ A′′ with

⟨a · M,λ⟩ = ⟨M,λ · a⟩ and ⟨M · a, λ⟩ = ⟨M,a · λ⟩ (λ ∈ A′). Now, for λ ∈ A′ and

M ∈ A′′, we can define λ ·M and M · λ in A′ in the following way

⟨a, λ ·M⟩ = ⟨M,a · λ⟩, ⟨a,M · λ⟩ = ⟨M,λ · a⟩.

With this definition, we have that ∥λ ·M∥ ≤ ∥M∥ ∥λ∥ and ∥M · λ∥ ≤ ∥M∥ ∥λ∥. If

M ∈ A these new definitions agree with the original ones. The final step towards

defining the two Arens products is as follows. For M,N ∈ A′′, we define M□N and

M♢N in A′′ by

⟨M□N, λ⟩ = ⟨M,N · λ⟩, ⟨M♢N, λ⟩ = ⟨N, λ ·M⟩ (λ ∈ A′),

and we have that ∥M□N∥ ≤ ∥M∥ ∥N∥ and ∥M♢N∥ ≤ ∥M∥ ∥N∥ for M,N ∈ A′′.

When M or N is in A, these new definitions agree with the already existing ones.

It can be seen that this definition is the same as the following:

LetM,N ∈ A′′, and take (aα), (bβ) nets inA such that lim
α
aα = M and lim

β
bβ = N

in the weak-∗ topology. Then the two Arens product are

M□N = lim
α

lim
β
aαbβ, M♢N = lim

β
lim

α
aαbβ,

where the limits are again in the weak-∗ topology on A′′.

Following the notation in [26], for each N ∈ A′′, consider the maps

RN : M 7→ M□N, A′′ → A′′,

LN : M 7→ M♢N, A′′ → A′′.

It follows that, for every N ∈ A′′, RN is weak-∗ continuous on (A′′,□) while LN is

weak-∗ continuous on (A′′,♢). Throughout the rest of this thesis, unless specified

otherwise, whenever we talk about the bidual of a Banach algebra we are implicitly

talking about (A′′,□).

Definition 2.3.3. Let A be a Banach algebra. Then A is an ideal in its bidual A′′

whenever A is a closed ideal of (A′′,□).
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When A is an ideal in its bidual, for every M ∈ A′′, the maps LM : a 7→ M ·a and

RM : a 7→ a ·M are bounded linear operators on A, and so their duals are bounded

linear operators on A′.

The following theorem is due to Watanabe. For example, it can be found in [26].

Theorem 2.3.4. Let A be a Banach algebra. Then A is an ideal in its bidual if and

only if, for any a ∈ A, the maps La and Ra are weakly compact operators in B(A).□

We proceed to define the left and right topological centres of a Banach algebra.

Definition 2.3.5. Let A be a Banach algebra. The left topological centre of A′′ is

Z(ℓ)(A′′) = {M ∈ A′′ : M□N = M♢N (N ∈ A′′)}.

Symmetrically, we define the right topological centre of A′′ as

Z(r)(A′′) = {M ∈ A′′ : N□M = N♢M (N ∈ A′′)}.

These two topological centres might be different. However, in the case where A is

commutative, the right and the left topological centres are the same and we can

speak about the topological centre of A′′, which is

Z(A′′) = {M ∈ A′′ : M□N = M♢N (N ∈ A′′)}.

Since N□a = N♢a = N · a and a□N = a♢N = a · N , for a ∈ A and N ∈ A′′,

then A ⊂ Z(ℓ)(A′′) ⊂ A′′ and A ⊂ Z(r)(A′′) ⊂ A′′. It might be that the topological

centres are neither A nor A′′, which leads to the following two definitions:

Definition 2.3.6. Let A be a Banach algebra. We say A is Arens regular when

Z(ℓ)(A′′) = Z(r)(A′′) = A′′.

A Banach algebra A is said to be strongly Arens irregular if

Z(ℓ)(A′′) = Z(r)(A′′) = A.

In the special case when A is a commutative Banach algebra, A is Arens regular

if and only if Z(A′′) = A′′ and strongly Arens irregular if and only if Z(A′′) = A.

Thus, a commutative Banach algebra is Arens regular if and only if (A′′,□) is

commutative.

Note that with this definitions any reflexive Banach algebra will be Arens regular

and strongly Arens irregular at the same time.
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Let A be a Banach algebra. Given λ ∈ A′ we say that λ is weakly almost periodic

if

Rλ : A → A′

a 7→ a · λ

is weakly compact. Following [26] we write WAP(A) for the space of weakly almost

periodic functionals on A.

It is standard that A is Arens regular if and only if WAP(A) = A′. See [60].

Definition 2.3.7. Let A be a Banach algebra. Then a subset V of A′′ is determining

for the left topological centre (a DLTC set) of A′′ if, given M ∈ A′′ such that

M□N = M♢N (N ∈ V ), then M ∈ A. When the algebra A is commutative, we use

determining for the topological centre (a DTC set).

Whenever A′′ has a DTC set, A is strongly Arens irregular. We shall be interested

in finding small DTC sets of strongly Arens irregular Banach algebras.

The following results are known to specialists, but we also add the proof below

for completion of the text.

Lemma 2.3.8. Let A be a Banach algebra and B a closed subalgebra of A with finite

codimension. Then the Arens regularity of A is the same as the Arens regularity of

B.

Proof. Since B has finite codimension, then we can write

A = F ⊕B,

where F is finite dimensional subspace and we are writing the sum as Banach spaces.

Hence A′′ = F ⊕B′′. Thus, for M,N ∈ A′′, there exist a, b ∈ F and P,Q ∈ B′′ such

that M = a+ P , N = b+Q. Hence

M□N = (a+ P )□(b+Q) = ab+ a ·Q+ b · P + P□Q

M♢N = (a+ P )♢(b+Q) = ab+ a ·Q+ b · P + P♢Q.

Thus Z(ℓ)(A′′) = F ⊕ Z(ℓ)(B′′) and Z(r)(A′′) = F ⊕ Z(r)(B′′). □

Theorem 2.3.9. Let A be a strongly irregular Banach algebra. Let B be a closed

subalgebra and I a closed ideal of A such that A = B ⋉ I. Let VB be a DLTC set for

B′′ and VI a DLTC set for I ′′. Then V = VB ∪ VI is a DTC set for A′′.
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Proof. For every M ∈ A′′ there exist MB ∈ B, MI ∈ I such that M = MB +MI .

If M is such that M□N = M♢N for every N ∈ V , then MB ∈ B and MI ∈ I, and

so M ∈ A. Hence V is a DLTC set for A′′. □

Finally, we end this section by adding two results that will be very useful during

the rest of the thesis.

The following can be found in [5, Theorem 2.1 iii)]

Theorem 2.3.10. Let A be a Banach algebra that is an ideal in its bidual, is weakly

sequentially complete and has a bounded approximate identity. Then A is strongly

Arens irregular. □

The following theorem can be found in [26, Theorem 2.3.48]:

Theorem 2.3.11. Let A be a Banach algebra such that B(A,A′) = W(A,A′). Then

A is Arens regular. In particular, A is Arens regular whenever A′ has the Schur

property. □

The following can be found in [26, Corollary 6.1.7]:

Corollary 2.3.12. Let (A, ∥·∥) be a Banach function algebra such that A is strongly

Arens irregular and has the Schur property. Then ∥ · ∥op and ∥ · ∥ are equivalent on

A. □

The following can be found in [26, Corollary 6.2.7 (ii)]:

Corollary 2.3.13. Let A and B be Arens regular Banach algebras. Suppose that

A′′ is a compact algebra, then A⊗̂B is Arens regular. □

2.3.4. Dual Banach algebras. Banach algebras that have the extra property of

being dual Banach algebras can be Arens regular under certain conditions. Hence it is

natural to study this property. We proceed to introduce the notions of Banach-algebra

predual and dual Banach algebra. For that, we shall start by the following:

Definition 2.3.14. Let E be a Banach space. Then a predual of E is a pair (F, T )

where F is a Banach space and T : E → F ′ is a linear homeomorphism. Whenever

T is an isometry, we say that F is an isometric predual. A concrete predual of E is a

closed subspace F of E ′ such that the map TF : E → F ′ defined by

(TFx)(λ) = ⟨x, λ⟩E,E′ (x ∈ E, λ ∈ F ), (2.3.1)
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is a linear homeomorphism.

It is standard that, for a Banach space E and a concrete predual F , we can write

E ′′ = E ⊕ F⊥.

Let A be a Banach algebra, with dual module A′, and let F be a concrete predual

as in the definition above. Hence the contraction TF : A → F ′ of equation (2.3.1) is

a linear homeomorphism such that T ′
F |F : F → A′ is the identity map. Whenever F

is a submodule of A′, TF is a module homomorphism.

Definition 2.3.15. Let A be a Banach algebra. A Banach-algebra predual for A is

a closed linear subspace F of A′ that is a concrete predual of A and a sub-bimodule

of A′. We say that A is a dual Banach algebra if it has a Banach-algebra predual.

A Banach-algebra predual is unique if it is the only closed submodule of A′ with

respect to which A is a dual Banach algebra.

The following result can be found in [26, Theorem 2.4.4]:

Theorem 2.3.16. Let A be a Banach algebra, and let F be a concrete predual of

A. Then F is a closed submodule of A′ if and only if the product in A is separately

σ(A,F )-continuous. □

The following proposition can be found in [26, Proposition 1.3.25] and it will be

useful in subsequent sections:

Proposition 2.3.17. Let E be a Banach space, and suppose that F and G are

concrete preduals of E such that F ⊂ G. Then F = G. □

2.3.5. Banach function algebras.

Definition 2.3.18. Let K be a non-empty, locally compact space. A Banach function

algebra on K is a function algebra on K with a norm ∥ · ∥ such that (A, ∥ · ∥) is a

Banach algebra. Where a function algebra on K is a non-zero subalgebra A of Cb(K)

that separates strongly the points of K, in the sense that, for each x, y ∈ K with

x ̸= y there exists f ∈ A such that f(x) = 0 and f(y) = 1.

For a Banach function algebra A, we recall that ΦA denotes the character space

of A and that the space of all continuous, complex-valued functions on ΦA that are

bounded is denoted by Cb(ΦA). We recall that L(A) = lin ΦA and we see it as a



28 2. PRELIMINARIES

linear subspace of A′. If the reader wants more details about φA, please refer to

Section 3.1.

When we say that A is a Banach function algebra without specifying K, we are

assuming that A is a Banach function algebra defined on ΦA.

Definition 2.3.19. Let A be a Banach function algebra on K, and let x ∈ K. The

evaluation character at x is the map

εx(f) = f(x) (f ∈ A).

We can regard K as a subset of ΦA by considering the inclusion map

x 7→ εx, K → ΦA.

Definition 2.3.20. Let A be a Banach function algebra defined on K. We say that

A is natural if K = ΦA.

Every Banach function algebra is a commutative, semisimple Banach algebra.

Conversely, every commutative, semisimple Banach algebra A can be identified with

a Banach function algebra via the Gel’fand transform.

Let A be a Banach function algebra on K. We denote by J∞ = A ∩ C00(K) the

functions in A of compact support. For x ∈ K, we set

Jx = {f ∈ J∞ : x /∈ supp f}.

Notice that Jx is an ideal for every x ∈ K.

Definition 2.3.21. Let A be a Banach function algebra on K. We say that A is

Tauberian if J∞ = A.

Definition 2.3.22. Let S be a non-empty set, and consider the discrete topology on

S. A Banach sequence algebra on S is a Banach function algebra A on S such that

c00(S) ⊂ A ⊂ ℓ∞(S),

where c00(S) is the algebra of all functions on S with finite support and ℓ∞(S) is

the Banach space of bounded functions on S with the uniform norm on S. We shall

denote the uniform norm on S as | · |S.

We recall that a Banach function algebra A on a non-empty, locally compact

space K is natural if each character on A is an evaluation character, so, in the
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particular case when A is a natural Banach sequence algebra on a non-empty set S,

then A is contained in c0(S), where c0(S) is the closure of c00(S) in ℓ∞(S). Also, a

Banach sequence algebra A on a non-empty set S is Tauberian if and only if c00(S)

is dense in A. Finally, if A is a Tauberian Banach sequence algebra, then it is also

natural and an ideal in its bidual.

The following can be found in [26, Corollary 3.2.4]:

Corollary 2.3.23. Let A be a Tauberian Banach sequence algebra that is a dual

Banach algebra. Then A is Arens regular, and A′′ is a compact algebra. □

2.3.6. BSE norm and BSE algebras. For this section we shall follow the con-

ventions of [26].

Before introducing the notion of BSE algebra, we need to talk about the quotient

algebra Q(A). For an introduction to this algebra, we recommend [25] and [26, §5.1].

Recall from the previous section that, for a Banach function algebra A, L(A) =

lin ΦA. Thus, we can see in [26, Theorem 5.1.3]:

Theorem 2.3.24. Let A be a Banach function algebra. Then L(A)⊥ is a closed ideal

in A′′, and the quotient space

Q(A) := A′′/L(A)⊥ ≡ L(A)′

is a commutative, semisimple Banach algebra.

It is seen in [26, Theorem 5.1.9] that Q(A) is an isometric dual Banach function

algebra, with Banach-algebra predual L(A).

Let A be a Banach function algebra and take f ∈ Cb(ΦA). Then, f can be

associated to a linear functional τf on L(A), where

⟨τf , λ⟩ =
n∑
i

αif(φi)
(
λ =

n∑
i

αiφi ∈ L(A), (φi distinct in L(A))
)
.

We define

∥τf∥ = sup{|⟨f, λ⟩| : λ ∈ L(A)[1]} (f ∈ Cb(ΦA)).

Then CBSE(A) is the set of bounded, continuous functions f ∈ Cb(ΦA) such that

∥τf∥ < ∞. For f ∈ CBSE(A),

∥f∥BSE = ∥τf∥.
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As it is seen in [26, § 5], (CBSE(A), ∥ · ∥BSE) is a Banach function algebra on ΦA that

contains A as a subalgebra. We shall use the following characterization that can be

found in [26, Theorem 5.2.9]:

Theorem 2.3.25. Let A be a Banach function algebra. Then CBSE(A) is the set

of functions f ∈ Cb(ΦA) for which there is a bounded net (fν) in A converging to

f pointwise in Cb(ΦA). For f ∈ CBSE(A) the infimum of the bounds of such nets

is equal to ∥f∥BSE. Further, for each f ∈ CBSE(A), there is a net (fν) in A with

lim
ν
fν = f pointwise in Cb(ΦA) such that

lim
ν

∥fν∥ = lim
ν

∥fν∥BSE = ∥f∥BSE.

□

As seen in [26, § 5], we have that A ⊂ CBSE(A). Also, CBSE(A) is a subalgebra

of Q(A).

Definition 2.3.26. A Banach function algebra A is said to be a BSE algebra when

M(A) = CBSE(A). We say that A has a BSE norm when the norms ∥ · ∥ and ∥ · ∥BSE

are equivalent on A.

The following result is within [26, Corollary 5.5.10]:

Corollary 2.3.27. Let A be a Banach function algebra that is an ideal in its bidual.

Then the following are equivalent:

(a) A is a BSE algebra;

(b) A has a bounded approximate identity.

In this case, A has a BSE norm. □

The following Proposition can be found in [26, Proposition 5.2.38]:

Proposition 2.3.28. Let A be a Banach algebra that is an ideal in its bidual or a

natural Banach sequence algebra. Then CBSE(A) = Q(A). □

The following Proposition is [26, Proposition 5.2.39]:

Proposition 2.3.29. Let A be a BSE algebra. Then A has a BSE norm if and only

if A is closed in (M(A), ∥ · ∥op). □

The following is [26, Proposition 5.1.17]:
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Proposition 2.3.30. Let A be a natural Banach sequence algebra on N, and let us

denote J∞ by A0. Suppose that A′′
0 has an identity E. Then

A′′ = A′′
0 ⋉ L(A)⊥, E□A′′ = A′′

0 and Q(A) = A′′
0. □

The following can be found in [26, Proposition 5.2.29]:

Proposition 2.3.31. Let A be a Banach function algebra. Then the following

conditions on A are equivalent:

(a) A has a BSE norm;

(b) A is closed as a subalgebra of CBSE(A). □

The following can be found in [26, Corollary 5.5.5]:

Corollary 2.3.32. Let A be a Tauberian Banach sequence algebra with a multiplier-

bounded approximate identity. Then A and A# have BSE norms. □

Where A# is the unitization of A

The following Corollary can be found in [26, Corollary 5.5.4]:

Corollary 2.3.33. Let A be a Banach function algebra that is an ideal in its bidual.

Then A = CBSE(A) if and only if A is a dual Banach algebra. □

The following can be found in [26, Corollary 5.2.27]:

Corollary 2.3.34. Let B be a Banach function algebra with a BSE norm, and

suppose that A is a closed subalgebra of B. Then A has a BSE norm. □

The following can be found within [26, Theorem 5.2.16]:

Theorem 2.3.35. Let A be a Banach function algebra and take m ≥ 1. Then the

following are equivalent:

(a) CBSE(A) has an identity 1 with ∥1∥BSE ≤ m;

(b) M(A)[1] ⊂ CBSE(A)[m];

(c) ∥f∥BSE ≤ m∥f∥op (f ∈ M(A)). □

For more details about BSE algebras and BSE norms see [26, Chapter 5].

2.4. Preliminaries from weighted semigroup algebras

We start this section by giving some definitions related to semigroups that will be

useful throughout this thesis. We shall continue with the definition of a semigroup

algebra and known results about them.
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2.4.1. Semigroups. Given S a semigroup, we denote the semigroup operation by

juxtaposition, unless stated otherwise.

Definition 2.4.1. We say that S is right cancellative (respectively, left cancellative)

if, for all a, s, t ∈ S, sa = ta (respectively, as = at) implies that s = t. When S is

both right and left cancellative we call it cancellative.

We say S is weakly right cancellative (respectively, weakly left cancellative) if, for

all s, t ∈ S, the set {u ∈ S : us = t} (respectively, {u ∈ S : su = t}) is finite. If S is

both right and left weakly cancellative, we say that S is weakly cancellative.

An element p ∈ S is an idempotent if p2 = p. We say that S is an idempotent

semigroup if every element of S is idempotent.

We say that a semigroup S is separating if s = t whenever s, t ∈ S such that

st = s2 = t2.

Whenever S is cancellative or idempotent, then S is separating.

In grouo theory, a semilattice is a partially ordered set such that every nonempty

finite subset has a greatest lower bound. In our context we have the following:

Definition 2.4.2. Let S be an abelian idempotent semigroup. Then we can define

a partial order ≤ in S by setting

s ≤ t ⇐⇒ st = s (s, t ∈ S).

For every s, t ∈ S, it can be seen that st is a greatest lower bound for {s, t}. Hence,

(S,≤) is a semilattice. Symmetrically, when we have a semilattice (S,≤), we can

define a semigroup operation by setting st as the greatest lower bound of {s, t}

(s, t ∈ S). Hence, from now on, we shall say that S is a semilattice when S is an

abelian idempotent semigroup.

We shall see now some examples of semigroups. In the cases where it makes sense

we shall also talk about the order induced.

Example 2.4.3. Let S = N together with the operation

m ∧ n = min{m,n} (m,n ∈ N),

Then N∧ is a semigroup and it is not weakly cancellative. However, it is an abelian

idempotent semigroup. Thus, it is a separating semigroup.
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The partial order defined as in Definition 2.4.2 is the standard ≤ in N. We can

see N∧ as a semilattice in the following way:

1 // 2 // 3 // 4 ... ∞
And supN∧ = ∞.

More generally, let S be an infinite subset of R, and consider the operation ∧

defined as above, i.e.,

s ∧ t = min{s, t} (s, t ∈ S).

We have that S∧ is an abelian idempotent semigroup and we can see it as a semilattice

in the same way as we did with N∧.

Example 2.4.4. Let S = N together with the operation

m ∨ n = max{m,n} (m,n ∈ N).

Then N∨ is an idempotent, weakly cancellative semigroup. Hence it is separating.

In this case, the partial order that arises from Definition 2.4.2 is ≥. So, we see

N∨ as a semilattice in the following way:

∞ ... 4 // 3 // 2 // 1
In this case, supN∨ = 1.

2.4.2. Weighted semigroup algebras. In order to talk about weighted semigroup

algebras, we first need to introduce the notion of a weight on a semigroup.

Definition 2.4.5. Let S be a semigroup. A function ω : S −→ (0,∞) is a weight

on S if it is submultiplicative, in the sense that

ω(st) ≤ ω(s)ω(t) (s, t ∈ S).

Whenever S has an identity e, we shall suppose that ω(e) = 1, unless we specify

otherwise.

Example 2.4.6. Let us consider the semilattice S = N∧ defined as in Example 2.4.3.

Then any sequence ω : N −→ [1,∞) is a weight on S.

More generally, for every semilattice S, any ω : S → (0,∞) is a weight on S if

and only if ω(s) ≥ 1 (s ∈ S).

Definition 2.4.7. Let S be a semigroup, and let ω be a weight on S. We shall

denote by δs the characteristic function of an element s ∈ S. Then we define the
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weighted semigroup algebra of S as the Banach space

Aω := ℓ1(S, ω) =
{
α =

∑
s∈S

α(s)δs : ∥α∥ω =
∑
s∈S

|α(s)|ω(s) < ∞
}

together with the convolution multiplication specified by

δs ⋆ δt = δst (s, t ∈ S).

For ω ≡ 1, this is the usual convolution algebra. We shall refer to this specific

situation as the unweighted case.

Weighted semigroup algebras have been broadly studied. Some of the main

references used for this document are [20], [19], [21], [22] and [23].

The dual of Aω as a Banach space is

A′
ω := ℓ∞(S, 1/ω) =

{
λ ∈ CS : sup{|λ(s)|/ω(s) : s ∈ S} < ∞

}
,

with the norm denoted by ∥ · ∥′
ω so that

∥λ∥′
ω := sup{|λ(s)|/ω(s) : s ∈ S} (λ ∈ ℓ∞(S, 1/ω)).

The duality ⟨·, ·⟩ω between Aω and A′
ω is given by

⟨f, λ⟩ω =
∑
s∈S

f(s)λ(s),

where f = ∑
s∈S f(s)δs ∈ Aω and λ ∈ A′

ω. The space

Eω := c0(S, 1/ω)

where c0(S, 1/ω) is the closure of c00(S, 1/ω) in ℓ∞(S, 1/ω). We have that Eω a

concrete predual of Aω.

In the following section we shall see that Eω is not necessarily a Banach-algebra

predual for Aω, and we shall study in which cases it is.

For λ = (λ(s)) ∈ ℓ∞(S, 1/ω) and δs ∈ Aω, the module operation is specified by

(δs · λ)(t) = λ(ts), (λ · δs)(t) = λ(st) (t ∈ S).

Definition 2.4.8. Let S be a semigroup, and let ω be a weight on S. For s ∈ S,

the normalised point mass at s is denoted by δ̃s and it is defined as

δ̃s = δs/ω(s).

The following lemma is straightforward, and we omit the proof. We add it here

to facilitate the reading of the document:
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Lemma 2.4.9. Let S be a semigroup, and let ω be a weight on S. Let

θω : α 7→ α/ω, ℓ1(S) −→ Aω .

Then θω is an isometric isomorphism of Banach spaces. Also, for every s ∈ S,

θω(δs) = δ̃s . □

Corollary 2.4.10. Let S be a semigroup, and consider ω a weight on S. Then

ℓ1(S, ω) has the Schur property. □

2.4.3. Stone-Čech compactification. We denote by βS the Stone-Čech compact-

ification of S, where S is a set with the discrete topology. We denote by S∗ the

growth of S, which is defined to be βS \ S. Given a weight ω : S −→ (0,∞), we

shall denote the weak-∗ closure of {δ̃s : s ∈ S} in A′′
ω by βSω, and so βSω is a closed

subset of the unit ball of A′′
ω with respect to the weak-∗ topology. We regard S as a

subset of βSω via the map s 7→ δs, and we set S∗
ω = βSω \ S. For more details about

βSω see [20, §3].

Let S be a semigroup. For each s ∈ S, the map

Ls : t 7→ st, S → S ⊂ βS,

has a continuous extension Ls : βS → βS. For each u ∈ βS, we define s□u = Ls(u).

Now, for u ∈ βS, let us consider

Ru : s 7→ s□u, S → βS,

which has a continuous extension Ru : βS → βS. We then set

u□v = Rv(u) (u, v ∈ βS).

The binary operation □ is such that the restriction to S×S is the original product in

S. For every u, v ∈ βS, there are nets (sα), (tβ) in S converging to u, v, respectively.

We can see that

u□v = lim
α

lim
β
sαtβ.

Symmetrically, we can define an operation ♢ such that

u♢v = lim
β

lim
α
sαtβ.

We shall speak about (βS,□), although symmetrical results are true for (βS,♢).

We have the following result, that can be found in [22, Theorem 6.1]:
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Theorem 2.4.11. Let S be a semigroup. Then (βS,□) and (βS,♢) are semigroups

containing S as a subsemigroup. Further:

(i) for each v ∈ βS, the map Rv : u 7→ u□v is continuous, and (βS,□) is a

compact, right topological semigroup;

(ii) for each s ∈ S, the map Ls : u 7→ s□u is continuous. □

For more details of the semigroup (βS,□), we recommend [22, Chapter 6].

The following definition can be found in [26]:

Definition 2.4.12. Let S be a semigroup. Then the left topological centre of βS is

Z
(l)
t (βS) = {u ∈ βS : u□v = u♢v (v ∈ βS)}.

Similarly, we define the right topological centre of βS as

Z
(r)
t (βS) = {u ∈ βS : v□u = v♢u (v ∈ βS)}.

We say S is Arens regular when Z
(l)
t (βS) = Z

(r)
t (βS) = βS, left (respectively, right)

strongly Arens irregular when Z
(l)
t (βS) = S (respectively, Z(r)

t (βS) = S) and strongly

Arens irregular when Z
(l)
t (βS) = Z

(r)
t (βS) = S.

Let S be an infinite semigroup. A subset V of S∗ is determining for the left

topological centre (a DLTC set) of M(βS) if u ∈ S whenever u□v = u♢v (v ∈ V ).

Hence, a subset V of S∗ is determining for the left topological centre of βS if

there are no elements u ∈ S∗ such that u□v = u♢v (v ∈ V ).



CHAPTER 3

Semigroup algebras

3.1. Initial results

This chapter is concerned with the study of weighted semigroup algebras. We shall

give some results regarding generic semigroups, but we shall mainly focus on totally

ordered semilattices. With this in mind, we give the following definition.

Definition 3.1.1. Let S be an infinite set. Let f : S −→ R. Given C ∈ R, we write

Lims f(s) = C

if, for each ε > 0, there is a finite set F of S such that

|f(s) − C| < ε (s ∈ S \ F ).

We write

Lims f(s) = ∞

if, for each M > 0, there is a finite set F of S such that

f(s) > M (s ∈ S \ F ).

We write

Lim infs f(s) < ∞

if and only if it is not true that Lims f(s) = ∞, i.e., there exists M > 0 such that

the set {s ∈ S : f(s) < M} is infinite. We write Lim inf f for the infimum of these

constants M .

Example 3.1.2 (Example 2.4.6 revisited). Let us consider the semigroup N∧ as in

Example 2.4.6. We see that Limn→∞ ω(n) = C (respectively, Limn→∞ ω(n) = ∞,

Lim infn→∞ ω(n) < ∞) whenever lim
n→∞

ω(n) = C (respectively, lim
n→∞

ω(n) = ∞,

lim inf
n→∞

ω(n) < ∞).

37
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Example 3.1.3. Let S = Q+• = {s ∈ Q : s > 0} with the semigroup operation ∧

defined as in Example 2.4.3. For clarity, during this example p, q ∈ N are coprime.

Then we define

ω(p/q) = p+ q.

Hence Lims ω(s) = ∞ in the sense of Definition 3.1.1. Indeed, let M > 0. Then the

set {p/q ∈ Q+• : ω(p/q) ≤ 2M} is strictly contained in

{p/q : p, q ∈ N, p ≤ M, q ≤ M},

which is finite.

Example 3.1.4. Let S = Q+•
∧ as above. Consider now ω : Q+• → [1,∞) such that

ω(s) = 1 for s ∈ (0, 1] and such that lim inf
s→∞

ω(s) = ∞ in the traditional sense. Then

Lim infs ω(s) < ∞.

We proceed to introduce two definitions that are key in the study of Arens

regularity of semigroup algebras.

Definition 3.1.5. Given a weight ω on S, we define Ω on S × S in the following

way:

Ω(s, t) = ω(st)
ω(s)ω(t) (s, t ∈ S).

Given a function f : S × S → R, we say that f clusters on S × S if, for (xn), (ym)

sequences of distinct elements of S, then

lim
n→∞

lim
m→∞

f(xn, ym) = lim
m→∞

lim
n→∞

f(xn, ym)

whenever both iterated limits exist.

We say that f 0−clusters on S × S if, for (xn), (ym) sequences of distinct elements

of S, then

lim
n→∞

lim
m→∞

f(xn, ym) = lim
m→∞

lim
n→∞

f(xn, ym) = 0

whenever both iterated limits exist.

The following result will be useful in the following section. It can be found in

[26, Proposition 6.3.23]:

Proposition 3.1.6. Let ω be a weight on a semigroup S, and let U and V be infinite

subsemigroups of S. Suppose that Ω 0−clusters on U ×V . Then M□N = M♢N = 0

whenever M ∈ ℓ1(U, ω)′′ ∩ E⊥
ω and N ∈ ℓ1(V, ω)′′ ∩ E⊥

ω . □
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As we shall see in the two results below, the case when S is a weakly cancellative

semigroup has been well studied.

It was proven in [22, Theorem 12.15] that whenever S is weakly cancellative and

nearly right cancellative, then the semigroup algebra is strongly Arens irregular. In

addition, they characterized the DTC of (ℓ1(S)′′,□). Due to the importance of this

theorem, we copy it below:

Theorem 3.1.7 (Dales-Lau-Strauss, 2010). Let S be an infinite semigroup such that

S is weakly cancellative and nearly right cancellative. Then there exists a and b in

S∗ that are right cancellable in (βS,□) and such that the two-element set {a, b} is

determining for the left topological centre of M(βS).

Where a semigroup S is said to be nearly right cancellative if there is a subset X

of S such that |X| = |S| and such that the set {x ∈ X : sx = tx} is finite for every

s, t ∈ S such that s ̸= t. This property is essential in the theorem. In [22, Example

12.21] provide an example of an infinite, countable, weakly cancellative semigroup

for which ℓ1(S) is not strongly Arens irregular.

In 1974 Craw and Young already studied Arens regularity of weighted semigroup

algebras in [13]. We provide a new proof of their main theorem ([13, Theorem 1])

below. The proof has been modified to match the terminology used here, which

resulted in a simpler version of the necessary part. A similar observation was made

in [28], however, we provide full details here.

Theorem 3.1.8 (Craw-Young, 1974). Let S be an infinite semigroup and ω a weight

on S. Then:

(a) If Ω 0−clusters on S × S, then Aω is Arens regular.

(b) If S is a weakly cancellative semigroup, then the Arens regularity of Aω

implies that Ω 0−clusters.

Proof. (a) Let λ ∈ Aω
′. Then λ ∈ WAP(Aω) if and only if

(i, j) 7→ ⟨Rλ(δ̃i), δ̃j⟩, tω : S × S → C.

clusters. This follows from Grothendieck’s double limit criterion and can be seen

in [28]. Since λ ∈ Aω
′, there exists λ0 ∈ A′ such that λ = ωλ0. The above then

translates to the fact that

tω(i, j) = ⟨δi · λ, δj⟩
ω(i)ω(j) = Ω(i, j)⟨λ0, δj ⋆ δi⟩
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clusters.

In particular, when Ω 0−clusters, tω also 0-clusters. Thus, for λ ∈ Aω
′, λ ∈ WAP(Aω).

Hence, Aω is Arens regular.

(b) Suppose that S is weakly cancellative. The following argument is very similar

to the one followed in [13, Theorem 1] but we provide full details for completeness.

Suppose that there exist (sn) and (tm) sequences of distinct elements of S and ε > 0

such that

lim
n→∞

lim
m→∞

Ω(sn, tm) > ε.

We shall see that there are two elements of the bidual such that the two Arens

products are different. We may suppose that

lim
m→∞

Ω(sn, tm) > ε > 0 (n ∈ N).

Let us choose two subsequences (s′
n) and (t′m) of (sn) and (tm), respectively, such

that Ω(s′
n, t

′
m) > ε for n ≤ m. Indeed, take s′

1 = s1 and take t′1 to be the first element

tm such that Ω(s1, tm) > ε. Let us suppose that we already have the first k elements

s′
1, ..., s

′
k−1 and t′1, ..., t

′
k−1. Since S is weakly cancellative the set

F = {u ∈ S : ut′l = s′
it

′
j, 1 ≤ l, i, j < k}

is finite. Hence we can chose as s′
k the first element sn such that sn /∈ F . Following

the same line of reasoning the set

E = {u ∈ S : s′
lu = s′

it
′
j, 1 ≤ j < k, 1 ≤ i, l ≤ k}

is finite, and so we can chose t′k as the first element tm such that

Ω(s′
i, tm) > ε (1 ≤ i ≤ k), tm /∈ E.

These subsequences are such that Ω(s′
n, t

′
m) > ε for n ≤ m and such that the

elements s′
nt

′
m are distinct for m,n ∈ N. Let αn and βm be the normalized point

masses at s′
n and t′m, respectively, and χ ∈ ℓ∞(S) the characteristic function of the

set {s′
nt

′
m : n ≤ m}. Then

⟨αn ⋆ βm, ωχ⟩ = Ω(s′
n, t

′
m) > ε (n ≤ m),

⟨αn ⋆ βm, ωχ⟩ = 0 (n > m).

Let M,N ∈ Aω
′′ be σ(Aω

′′,Aω
′)-accumulation points of (αn) and (βn), respectively.

By construction, ⟨M□N,ωχ⟩ ≥ ε and ⟨M♢N,ωχ⟩ = 0. Thus, Aω is not Arens

regular, as desired.
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When (sn) and (tm) are sequences of distinct elements of S and ε > 0 such that

lim
m→∞

lim
n→∞

Ω(sn, tm) > ε,

the argument is symmetrical. □

Consider Ω : S × S −→ R defined as above. Recall that, for s, t ∈ S, we have

0 ≤ Ω(s, t) ≤ 1. Let u, v ∈ βS. Then there are nets (sα), (tβ) in S such that

u = limα sα, v = limβ tβ. We define

Ω□(u, v) = lim
α

lim
β

Ω(sα, tβ), Ω♢(u, v) = lim
β

lim
α

Ω(sα, tβ).

The following result can be found in [21, Proposition 3.1]. We write it here for

completeness.

Proposition 3.1.9. Let S and T be non-empty sets, and let

f : S × T → C

be a function. Suppose that (sα) and (tβ) are nets in S and T , respectively, such

that a = limα limβ f(sα, tβ) and b = limβ limα f(sα, tβ) both exist. Then there are

subsequences (sαm) and (tβm) of the nets (sα) and (tβ), respectively, such that a =

limm limn f(sαm , tβn) and b = limβ limα f(sαm , tβn). □

We can see that if we apply this Proposition to Ω□ and Ω♢ we can define them

in terms of sequences instead of nets.

When the situation requires it, we shall write □ω and ♢ω to specify that we are

in Aω
′′.

Corollary 3.1.10. Let S be a semigroup, and let ω be a weight on S. Consider

Ω : S × S −→ R defined as above, and let u, v ∈ βS. Let (sα), (tβ) be nets in S such

that u = limα sα, v = limβ tβ. Then there are subsequences (sm) and (tm) of (sα)

and (tβ), respectively, such that

Ω□(u, v) = lim
m

lim
n

Ω(sm, tn) and Ω♢(u, v) = lim
n

lim
m

Ω(sm, tn). □

Let S be a semigroup, and let ω be a weight on S. Let us consider θω as in

Lemma 2.4.9. Let u, v ∈ S∗. Then there are nets (sα) and (tβ) in S such that

u = limα sα and v = limβ tβ. Thus, for λ ∈ ℓ∞(S), we have

⟨θ′′
ω(δu)□ωθ

′′
ω(δv), ωλ⟩ = lim

α
lim

β
⟨θω(δsα) ⋆ θω(δtβ

), ωλ⟩
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= lim
α

lim
β

Ω(sα, tβ)⟨δsα ⋆ δtβ
, λ⟩

= Ω□(u, v)⟨δu□δv, λ⟩. (3.1.1)

Symmetrically we obtain that

⟨θ′′
ω(δu)♢ωθ

′′
ω(δv), ωλ⟩ = Ω♢(u, v)⟨δu♢δv, λ⟩. (3.1.2)

The following result can be found in [20, Proposition 4.8]:

Theorem 3.1.11. Let S an abelian semigroup, and let ω be a weight on S. For

s ∈ S, set

νs = inf{ω(sn)1/n : n ∈ N}.

Then ℓ1(S, ω) is semisimple if and only if S is separating and νs > 0 (s ∈ S). □

For the notions of character and semicharacter on S, we shall follow the conven-

tions of [22].

Definition 3.1.12. Let S be a semigroup. A semicharacter on S is a map

θ : S −→ D̄ such that θ ̸= 0 and

θ(st) = θ(s)θ(t) (s, t ∈ S).

We denote by ΦS the space of semicharacters on S.

A character on S is a map θ : S −→ T such that θ ̸= 0 and

θ(st) = θ(s)θ(t) (s, t ∈ S).

We denote by ΨS the space of characters on S. We have that ΨS ⊂ ΦS.

There is always at least one semicharacter on S, the augmentation character

1 : s 7→ 1, S → T.

It is possible that the augmentation character is the only semicharacter on a

semigroup. The space ΦS ∪ {0} is a compact space with respect to the topology of

pointwise convergence on S.

Let S be a semigroup and ω a weight on S. The character space of the weighted

semigroup algebra Aω is denoted by Φω. Thus, we have that ΦS ⊂ Φω as a closed

semigroup.
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Definition 3.1.13. The character in Φω associated to the augmentation character

on S is the augmentation character φS, where

φS :
∑
s∈S

α(s)δs 7→
∑
s∈S

α(s)

It is seen in [22, §6] that, given a semigroup S, the character space of the

semigroup algebra ℓ1(S) can be identified with the space of semicharacters of S. Let

ω be a weight on S such that ω(st) = ω(s)ω(t) for every s, t ∈ S. Then the above

result can be extended to Aω. Indeed, it is enough to consider that, for θ ∈ ΦS, the

map

∑
s∈S

α(s)δs 7→
∑
s∈S

ω(s)α(s)θ(s), Aω −→ C

is a character on Aω. Conversely, given a character φ on Aω, then θ(s) = φ(δ̃s) is a

semicharacter on S. The topology of pointwise convergence on ΦS coincides with the

Gel’fand topology when ΦS is viewed as the character space of Aω.

For a weight bounded below, we know that ΦS ⊂ Φω, but it is not necessarily

true that Φω = ΦS. For example, consider S = Z with addition and ω(n) = e|n|.

However, as we shall see in the result below, for the semigroups in this chapter this

problem does not arise.

Let S be a semigroup and ω a weight on S. Whenever ΦS = Φω, the Gel’fand

transform of an element α ∈ Aω has the following form

α̂ =
(∑

s∈S

α(s)θ(s)
)

θ∈ΦS

.

Proposition 3.1.14. Let S be a semilattice, and let ΦS be the semicharacter space

of S. Let ω : S → [1,∞) be a weight on S. Then Φω = ΦS.

Proof. We know that ΦS ⊂ Φω. Now let φ be a character on Aω and define

θφ(s) = φ(δs). Since φ is a character,

θφ(s) = φ(δs) = φ(δs ⋆ δs) = φ(δs)φ(δs) (s ∈ S),

and so θφ(s) ∈ {0, 1}. Also

θφ(st) = φ(δst) = φ(δs ⋆ δt) = φ(δs)φ(δt) = θφ(s)θφ(t) (s, t ∈ S).

Hence θφ is a semicharacter on S and so we can identify Φω with ΦS. □
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3.2. Totally ordered semilattices

Let (S,≤) be a semilattice, as described in Definition 2.4.2. Suppose also that the

order ≤ is a total order, meaning that, for any two elements s, t ∈ S, it is always

true that either s ≤ t or t ≤ s. We shall refer to (S,≤) with these characteristics

as a totally ordered semilattice. Totally ordered semilattices are the object of study

of this section. Conversely, any totally ordered set S becomes a semigroup if we

take st = min{s, t}; this semigroup is a semilattice and the partial order defined in

Definition 2.4.2 coincides with the original order on S.

Some preliminaries about semigroups of the form of S are in [69].

Remark 3.2.1. Notice that the natural numbers with the usual order (N,≤) belongs

to this family. As it was seen in Example 2.4.3, this semilattice arises from the

semigroup N with the minimum operation, which is not even weakly cancellative.

Thus, the family studied comprise a wide variety of examples with characteristics that

differ from those usually considered in the literature focused on weighted semigroup

algebras. We shall focus on this example in the following section.

3.2.1. Arens regularity. We shall assume from now on that there exists an

embedding from S into some infinite, semigroup T that contains S as a subsemigroup,

with the following additional characteristics:

• T must be a totally ordered set that preserves the order in S;

• T has a minimum and a maximum, which we shall call 0 and ∞, respectively;

• T is complete in the sense that every non-empty subset of T has a supremum

and an infimum;

• We consider the interval topology on T , in which case T is a compact

topological semigroup.

Note that in this case every strictly increasing, respectively, strictly decreasing,

net in S converges to its supremum, respectively, infimum.

In the following remark we shall see that given an infinite totally ordered semi-

lattice S, we can always find such a T . This is well-known to specialists, but we add

it to make it more accessible for the reader.

Remark 3.2.2. Since S is a semilattice, we know that ΦS separates the points of

S. Let Σ be a subset of ΦS that separates the points of S, and let κ = |Σ|. Since

every character of S maps into {0, 1}, (S,∧) can be embedded as a semigroup in
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C := ({0, 1}κ,∧). Let T be the closure of S in C. In this case, T is a complete totally

ordered lattice which is compact in its interval topology, as desired. For details, see

[24, §2].

Let S be a totally ordered semilattice and T as above. Let U be a subset of S,

we write as clT U and clβS U the closures of U in T and in βS, respectively. The

continuous extension of the inclusion map of S into T is denoted by

π : βS → T.

Thus π(βS) = clT S. For t ∈ clT S, we shall write Ft for the fibre {x ∈ βS : π(x) = t}

and F ∗
t = Ft ∩ S∗. Thus we have that

F ∗
t = Ft (t ∈ T \ S) and F ∗

t = Ft \ {t} (t ∈ S).

We shall denote by E the set of accumulation points of S in T . We have then

that E ̸= ∅. For t ∈ T , F ∗
t is a closed, compact subset of βS and F ∗

t ̸= ∅ if and only

if t ∈ E.

Consider Ω as in Definition 3.1.5. When S is a totally ordered semilattice,

Ω(s, t) = 1/ω(t) (s ≤ t). What is more, we can see that Ω 0−clusters if and only if

Lims ω(s) = ∞. Indeed Lims ω(s) = ∞ implies that Ω 0−clusters, since, for every

ε > 0, the set of elements s ∈ S such that 1
ω(s) > ε is finite.

Now suppose that Lim infs ω(s) < ∞. Then there exists M > 0 such that the set

{s ∈ S : ω(s) < M} is infinite. Hence, we can then take two sequences (sm), (tn) of

distinct elements belonging to that set and so Ω(sm, tn) ≥ 1/M2 > 0. Thus, Ω does

not 0−cluster.

Theorem 3.2.3. Let (S,∧) be an infinite, totally ordered semilattice. Let ω be a

weight on S. Then the following conditions are equivalent:

(a) the algebra Aω is Arens regular;

(b) Lims ω(s) = ∞;

(c) M□N = M♢N = 0 (M,N ∈ E⊥
ω ).

Proof. (a) ⇒ (b) Suppose that Lim infs→∞ ω(s) < ∞, and let M ≥ Lim inf ω .

Let U := {s ∈ S : ω(s) < M}. Take t ∈ E ∩ clβS U . By [24, Lemma 2.4], |F ∗
t | ≥ 2c.

Take p ∈ F ∗
t . If p ∈ F ∗

t ∩ clβS(U ∩ [0, t)), there exists q in F ∗
t ∩ clβS(U ∩ [0, t)) with

δp /∈ lin{δq}. Then

δp□δq = δp and δp♢δq = δq.
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Let us consider the isometric isomorphism θω as in Lemma 2.4.9. For λ ∈ C(βS),

we have

⟨θ′′
ω(δp)□ωθ

′′
ω(δq), ωλ⟩ = Ω□(p, q)⟨δp, λ⟩, (3.2.1)

and

⟨θ′′
ω(δp)♢ωθ

′′
ω(δq), ωλ⟩ = Ω♢(p, q)⟨δq, λ⟩. (3.2.2)

Take (sα), (tβ) nets in S converging to p and q, respectively. Observe that, since

1 ≤ ω(sα) ≤ M and 1 ≤ ω(tβ) ≤ M for all α, β, we have that

0 < 1/M2 ≤ Ω□(p, q) ≤ M and 0 < 1/M2 ≤ Ω♢(p, q) ≤ M.

Hence the equations (3.2.1) and (3.2.2) from above are equal for every λ ∈ C(βS) if

and only if δp = Ω♢(p,q)
Ω□(p,q)δq. But that is not possible as δp /∈ lin{δq}. Thus, Aω is not

Arens regular.

If p /∈ F ∗
t ∩ clβS(U ∩ [0, t)), as it is stated in [24], then p ∈ F ∗

t ∩ clβS(U ∩ (t,∞]),

and the argument is symmetrical.

(b) ⇒ (c) follows from Proposition 3.1.6.

(c) ⇒ (a) Since Eω is a concrete predual of Aω, we know that Aω
′′ = Aω ⊕E⊥

ω .

Since M□N = M♢N = 0 for every M,N ∈ E⊥
ω , the result follows. □

The next question would be which conditions on ω ensure that Aω is strongly

Arens irregular. In [24], they proved that the semigroup algebra (ℓ1(S), ⋆) is strongly

Arens irregular if and only if clT S is scattered. We shall see below that when we

add a weight the situation is more complex. We start by considering the simplest

case. When S is a semigroup and ω is a bounded weight on S, then the inclusion

map Aω ↪→ ℓ1(S) is a Banach algebra isomorphism, and so Aω is strongly Arens

irregular if and only if clT S is scattered.

However, we shall see below that if ω is not bounded we can have several different

options. The next provides a sufficient condition for Aω to not be strongly Arens

irregular.

Proposition 3.2.4. Let S be a totally ordered semilattice, and let ω be a weight on

S. Suppose that for every p ∈ F ∗
∞ and every net (sα) in S such that sα → p, the set

{ω(sα)} is unbounded. Then Aω is not strongly Arens irregular.
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Proof. Let p ∈ F ∗
∞. We shall see that θ′′

ω(δp) ∈ Z(Aω
′′). Take q ∈ S∗. If q ∈ F ∗

∞,

then Ω□(p, q) = Ω♢(p, q) = 0 and so

θ′′
ω(δp)□ωθ

′′
ω(δq) = 0 = θ′′

ω(δp)♢ωθ
′′
ω(δq).

Take now q ∈ S∗ such that q /∈ F ∗
∞, and let (sα) be a net in S converging to p and

(tβ) a net in S converging to q. Since π(q) < π(p), this implies that, passing to a

subnet if needed, we can suppose that tβ < sα for every α, β. Hence we have that

Ω(tβ, sα) = ω(tβ ∧ sα)
ω(tβ)ω(sα) = 1

ω(sα)

and so Ω□(p, q) = Ω♢(p, q) = 0 which gives us again that

θ′′
ω(δp)□ωθ

′′
ω(δq) = 0 = θ′′

ω(δp)♢ωθ
′′
ω(δq).

We conclude then that θ′′
ω(δp) ∈ Z(Aω

′′) but θ′′
ω(δp) /∈ Aω. Thus Aω is not strongly

Arens irregular. □

This previous result, together with Theorem 3.2.3, allow us to obtain plenty

of weighted semigroup algebras that are neither Arens regular nor strongly Arens

irregular. The following two examples portray two different semilattices, one of them

is such that clT S is scattered and the other one is such that clT S is not scattered.

In contrast with the unweighted case, we shall see that both of them are neither

Arens regular nor strongly Arens irregular.

Example 3.2.5. Let S = Z, and T = {−∞} ∪ R ∪ {∞}. Then, clT S = {−∞} ∪

Z ∪ {∞}, which is scattered.

Consider ω a weight on S such that limn→∞ ω(n) = ∞ and such that ω|(Z \ N)

is bounded. Then Aω is neither Arens regular nor strongly Arens irregular.

Example 3.2.6. Let S = Q+• = {p ∈ Q : p > 0}. Consider a weight ω : Q → [1,∞)

such that ω(p) = 1 (p ∈ [0, 1] ∩ S) and such that lim
p→∞

ω(p) = ∞. Then Aω is not

Arens regular, by Theorem 3.2.3 and it is also not strongly Arens irregular. This

follows from Proposition 3.2.4. However, in this case we shall find a concrete element

M ∈ Z(Aω
′′), but such that M /∈ Aω.

Since lim
p→∞

ω(p) = ∞, there exists (pn) a strictly increasing sequence such that

lim
n→∞

ω(pn) = ∞. For clarity we will call that sequence P . Consider u in the

growth of P , and let v ∈ S∗ a different element. By Proposition 3.1.9 there are two

sequences (sn), (tn) of elements of S such that Ω□(u, v) = lim
m→∞

lim
n→∞

Ω(sm, tn) and
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Ω♢(u, v) = lim
n→∞

lim
m→∞

Ω(sm, tn). As (sn) is unbounded, we have that Ω♢(u, v) = 0.

Now, if (tn) is also unbounded, then lim
n→∞

ω(tn) = ∞ too. Thus, Ω□(u, v) = 0. If (tn)

is bounded, then, for every n,m ∈ N (except maybe a finite number), sm ≥ tn, and

so

Ω♢(u, v) = lim
m→∞

lim
n→∞

ω(sm ∧ tn)
ω(sn)ω(tn) = lim

m→∞
lim

n→∞

1
ω(sn) = 0.

Hence

Ω□(u, v) = Ω♢(u, v) = 0. (3.2.3)

So, by (3.2.1), (3.2.2) and (3.2.3), δu ∈ Z(Aω
′′), but δu /∈ Aω. Thus Aω is not strongly

Arens irregular.

3.2.2. Approximate identities. The existence of approximate identities is an

interesting characteristic of Banach algebras. We shall see in the following subsection

that the existence of approximate identities is intrinsically linked to duality and to

Arens regularity.

In the following result we refer to a sequence (sn) of elements of S that tends to

supS. This means that, for any element r ∈ S, there exists N ∈ N such that r ≤ sn

for any n ≥ N.

Proposition 3.2.7. Let (S,∧) be an infinite, totally ordered semilattice and ω a

weight on S. Then, the weighted semigroup algebra Aω has an approximate identity.

The following are true:

(a) Aω has a bounded approximate identity if and only if there exists a net (sν)

tending to supS such that the set {ω(sν) : ν} is bounded.

(b) Suppose that for every strictly increasing net (tν) tending to supS, the set

{ω(tν) : ν} is unbounded. Then, Aω has a sequential approximate identity.

Aω always has a multiplier-bounded approximate identity.

Proof. Let ω : S → [1,∞), and let α ∈ Aω. Then, for s ∈ S, we have

α ⋆ δs =
∑
t<s

α(t)δt +
∑
t≥s

α(t)δs (3.2.4)

and

α− α ⋆ δs =
∑
t>s

α(t)(δt − δs). (3.2.5)
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Suppose that there exists a strictly increasing net (sν) tending to supS such that

the set {ω(sν) : ν} is bounded by M ≥ 1. Then, for α ∈ Aω, using (3.2.5) we see

that

∥α− α ⋆ δsν ∥ω ≤
∑
t>sν

|α(t)|ω(t) +
∣∣∣∣∣∑
t>sν

α(t)
∣∣∣∣∣ω(sν) ≤ (M + 1)

∑
t>sν

|α(t)|ω(t),

which tends to zero since ∥α∥ω < ∞ and sν → supS. Thus, (sν) is an approximate

identity. Since ∥δsν ∥ω = ω(sν), then it is a bounded approximate identity, with

bound M . From (3.2.4) we deduce that (sν) is a multiplier-bounded approximate

identity.

On the other hand, suppose that for every strictly increasing net (tν) tending

to supS, the set {ω(tν) : ν} is unbounded. In this case, we can choose a strictly

increasing sequence (sν) tending to supS and such that ω(sν) = inf{ω(t) : sν ≤ t}.

To see this, consider the map ω̃ : S −→ [1,∞) such that ω̃(s) = inf{ω(t) : s ≤ t}.

Since limν ω(tν) = ∞ for every (tν) tending to supS, this infimum exists. Let s1

such that ω(s1) = ω̃(1). Knowing sn, take sn+1 with sn < sn+1 and such that

ω(sn+1) = ω̃(sn + 1). This sequence is such that ω(sn) ≤ w(t) for all sn ≤ t, and so,

using (3.2.5), we have that

∥α− α ⋆ δsn∥ω ≤
∑
t>sn

|α(t)|ω(t) +
∣∣∣∣∣∑
t>sn

α(t)
∣∣∣∣∣ω(sn) ≤ 2

∑
t>sn

|α(t)|ω(t).

Using the same reasoning as before, we see that (sn) defined this way is an approximate

identity, and it is again a multiplier-bounded approximate identity.

Assume now towards contradiction that there is a bounded approximate identity in

Aω. Then ∥ · ∥ω and ∥ · ∥op are equivalent. However

lim
n→∞

∥δsn∥ω = lim
n→∞

ω(sn) = ∞

but ∥δsn∥op ≤ 1, for all n ∈ N. Thus, in this case Aω does not have a bounded

approximate identity, as desired. □

Note that [(b)] is not a characterization, since as long as we can take a sequence

(sn) tending to supS, we can have totally ordered semilattices with a bounded

sequential approximate identity. We shall see examples of this in the following

sections.

Notice that, when S is an infinite totally ordered semilattice such that the

supremum of S, r, belongs to S, then δr/ω(r) is an identity in Aω. In fact we have a

better result:
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Corollary 3.2.8. Let S be a totally ordered semilattice. Then Aω has an identity

if and only if supS ∈ S.

Proof. As seen above, if supS ∈ S, then Aω has an identity. Now suppose that

r = supS /∈ S and assume towards contradiction that Aω has an identity e. Let

us consider (sν) a net of elements in S such that (δsν ) is an approximate identity

defined as in Proposition 3.2.7. Recall that we can choose (sν) tending to supS.

Then we have that

e = lim
ν
δsν ⋆ e = lim

ν
δsν = δr

but we were supposing that r /∈ S, and so e = δr /∈ Aω. □

Corollary 3.2.9. Let (S,∧) be an infinite, totally ordered semilattice, and let

ω : S → [1,∞) be a weight on S. Suppose that Aω has a sequential approximate

identity. Then when we view Aω as a Banach function algebra on ΦS, it is Tauberian.

Proof. This follows from the fact that the sequential approximate identity of Aω

belongs to c00(S, 1/ω). □

3.2.3. (Non)-existence of Banach algebra preduals. As we have seen in Sec-

tion 2.4.2, the space Eω is a concrete predual of Aω. However, it is not true that

it is always a Banach-algebra predual. We shall study below in which situations

we can know that Eω is a predual of Aω and when it is unique. Also we shall give

characterizations of when Aω is not a dual Banach-algebra for any concrete predual.

We shall start with some results that refer to generic semigroups, and we shall

focus on totally ordered semilattices afterwards.

The following result is an extension of [22, Theorem 4.6], where they work only

with the unweighted case.

Proposition 3.2.10. Let S be an infinite semigroup, and let ω be a weight on S.

(a) Suppose that S is weakly cancellative. Then Eω is a Banach-algebra predual

of Aω.

(b) Suppose that S is not weakly cancellative. Suppose that there is a subset

U ⊂ S such that

(i) U is infinite;

(ii) ω|U is bounded;

(iii) there exist t, u ∈ S such that {r ∈ U : rt = u} is infinite.
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Then Eω is not the predual of Aω as a Banach algebra.

Proof. (a) Let S be a weakly cancellative semigroup. Let Eω = c0(S, 1/ω), and let

λ = (λ(s)) ∈ Eω and δ̃s ∈ Aω. Then δ̃s · λ ∈ Eω. Indeed, for ε > 0 we have that

there is a finite subset F of S such that∣∣∣∣∣λ(t)
ω(t)

∣∣∣∣∣ < ε (t ∈ S \ F ).

Hence, as S is weakly cancellative, the set Fs−1 = {r ∈ S : rs ∈ F} is finite too.

Thus ∣∣∣∣∣(δ̃s · λ)(r)
ω(r)

∣∣∣∣∣ =
∣∣∣∣∣ λ(rs)
ω(r)ω(s)

∣∣∣∣∣ ≤
∣∣∣∣∣λ(rs)
ω(rs)

∣∣∣∣∣ < ε (r ∈ S \ Fs−1).

The fact that λ · δ̃s ∈ Eω is symmetrical. And so Eω is a submodule of Aω
′. Thus

Aω is a dual Banach algebra as desired.

(b) Suppose now that S is not weakly cancellative and that U ⊂ S satisfies (i),

(ii) and (iii). Take s1, s2, ... ∈ U with snt = u for every n ∈ N.

Consider α(n) = 1
n

(
δ̃s1 + · · · + δ̃sn

)
for n ∈ N. Then (α(n)) is a sequence in Aω that

tends to zero in σ(Aω, Eω). Indeed, for λ ∈ Eω and for ε > 0 there exists a finite

subset F of S such that
∣∣∣ λ(s)

ω(s)

∣∣∣ < ε for s ∈ S \ F . Thus V = {s1, s2, ...} ∩ F is finite

and so ∑
s∈V

∣∣∣ λ(s)
ω(s)

∣∣∣ is bounded by K > 0. Then

∣∣∣⟨α(n), λ⟩
∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∣λ(si)
ω(si)

∣∣∣∣∣ ≤ K

n
+ ε.

Thus (α(n)) tends to zero in σ(Aω, Eω).

Let M < ∞ be a bound for ω(s) (s ∈ U), and take λ ∈ Eω such that ⟨δu, λ⟩ ≠ 0.

Then

∣∣∣⟨α(n) ⋆ δt, λ⟩
∣∣∣ ≥ 1

M
|⟨δu, λ⟩| > 0.

Thus the multiplication in Aω is not separately σ(Aω, Eω)-continuous, and so, by

Theorem 2.3.16, Eω is not a submodule of Aω
′. □

As we have pointed out before, even some of the simplest examples of totally

ordered semilattices are not weakly cancellative, so they are not covered by the

former result. In the rest of this section we shall study what can be said for totally

ordered semilattices.
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Proposition 3.2.11. Let (S,∧) be an infinite, totally ordered semilattice, and let

ω : S −→ [1,∞) be a weight on S. Suppose that Lims ω(s) = ∞. Then Aω is a dual

Banach algebra with Banach-algebra predual Eω.

Proof. Let λ = (λ(s)) ∈ Eω such that ∥λ∥′
ω = 1, and let δ̃t ∈ Aω be the normalised

point mass at t ∈ S defined as above. Then, for s ≥ t, we have

|(δ̃t · λ)(s)|
ω(s) = |λ(t)|

ω(s)ω(t) ≤ 1
ω(s) .

As in Definition 3.1.1, for every ε > 0, there is a finite subset U1 of S such that

ω(s) > 1/ε (s ∈ S \ U1). Hence in particular we have that |(δ̃t · λ)(s)|/ω(s) < ε

(s ∈ S \ U1). Now, for s < t, we have

|(δ̃t · λ)(s)|
ω(s) = |λ(s)|

ω(s)ω(t) ≤ |λ(s)|
ω(s) .

Since λ ∈ Eω, there exists U2 a finite subset of S such that |λ(s)|/ω(s) < ε for every

s ∈ S \ U2. Thus |(δ̃t · λ)(s)|/ω(s) < ε for every s ∈ S \ (U1 ∪ U2). It follows that

(δ̃s · λ) ∈ Eω. Since

⟨δ̃s · λ, δt⟩ = ⟨λ, δt∧s⟩
ω(s) = ⟨λ, δs∧t⟩

ω(s) = ⟨λ · δ̃s, δt⟩ (s, t ∈ S),

we have that (λ · δ̃s) ∈ Eω too, and so Eω is a closed submodule of Aω
′. Hence Aω is

a dual Banach algebra as desired. □

For an infinite semilattice (not necessarily totally ordered), the following result

give us a condition so that Eω is unique as a Banach-algebra predual. Here we make

use of previous results on the character space of Aω. We remind the reader that, for

a Banach algebra A, L(A) = lin ΦA and we see it as a linear subspace of A′.

Proposition 3.2.12. Let S be an infinite semilattice and let ω be a weight on

S. Suppose that for all x ∈ S the set xS = {xs : s ∈ S} is finite and that

Limt→∞ ω(t) = ∞. Then:

(a) For every x ∈ S, Lδx : Aω → Aω is compact.

(b) Suppose that Eω = L(Aω). Then Eω is the unique Banach-algebra predual

of Aω.

Proof. (a) Let x ∈ S, and let ε > 0. Let M = max{ω(xt) : t ∈ S}, which is well

defined since xS is finite. Since Limt→∞ ω(t) = ∞, there exists G a finite subset of
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S such that M/ω(t) < ε, (t ∈ S \G). Let F = xG, then

{t ∈ S : xt /∈ F} ⊆ {t ∈ S : t /∈ G}.

Let f ∈ Aω. Then,

∥πF (Lδx(f)) − Lδx(f)∥ω =
∑

u∈S\F

∣∣∣∣∣ ∑
t∈S:xt=u

f(t)
∣∣∣∣∣ω(u)

≤
∑

u∈S\F

∑
t∈S:xt=u

|f(t)|ω(u) =
∑

t∈S:xt/∈F

|f(t)|ω(xt)

≤ ∥f∥ω sup{ M

ω(t) : xt /∈ F} ≤ ε∥f∥ω,

where πF denotes the projection of ℓ1(S, ω) onto span{δs : s ∈ F}. Thus, since

πF ◦ Lδx is finite rank and therefore compact, we obtain that Lδx is also compact.

(b) Let W be a Banach-algebra predual of Aω. Assume towards contradiction

that there exists φ ∈ Φω \ W . Then there exists M ∈ Aω
′′ with ∥M∥ω ≤ 1 and

such that ⟨M,φ⟩ = 1 and ⟨M,λ⟩ = 0 (λ ∈ W ). Thus there is a net (fα) in Aω with

norm bounded by 1 such that limα fα(φ) = 1 and limα⟨fα, λ⟩ = 0 (λ ∈ W ). Since

W is a Banach-algebra predual of Aω, we may suppose that there exists f ∈ Aω

such that limα fα = f in σ(Aω,W ). Thus ⟨f, λ⟩ = 0 (λ ∈ W ). Hence f = 0. Let

s ∈ S such that δs(φ) = 1, which exists by Proposition 3.1.14. By part [(a)], Lδs

is compact and so δs is compact. Thus, limα δs ⋆ fα = δs ⋆ f in σ(W ′,W ′′). Since

we assumed that W is a Banach-algebra predual of Aω, σ(W ′,W ′′) = σ(Aω,Aω
′).

Hence, 1 = limα fα(φ) = f(φ), which is a contradiction, since f ≡ 0. Thus, Φω ⊂ W .

But this implies that L(Aω) ⊂ W . Hence, by Proposition 2.3.17, W = L(Aω) = Eω

and so Eω is the unique Banach-algebra predual of Aω. □

In Proposition 3.3.4 we shall see that N with the minimum operation is in this

situation and so we shall be able to identify when the Banach-algebra predual Eω is

unique.

Under certain conditions, Aω is not a dual Banach algebra for any predual.

Proposition 3.2.13. Let (S,∧) be an infinite, totally ordered semilattice. Suppose

that Lim infs ω(s) < ∞. Suppose there exists an embedding of S in T as specified in

Section 3.2.1, and that the set {s ∈ S : ω(s) ≤ Lim inf ω} has an accumulation point

r ∈ T \ S. Then the Banach algebra Aω is not a dual Banach algebra with respect to

any predual.
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Proof. Let U = {s ∈ S : ω(s) ≤ Lim inf ω}, and let us assume towards a contra-

diction that there exists a Banach-algebra predual W for Aω.

Suppose that r = supS. Then, by Proposition 3.2.7, Aω has a bounded approxi-

mate identity (δsν ), with (sν) tending to r. Since Aω is a dual Banach algebra, there

exists a subnet (δα) converging in the topology σ(Aω,W ) to an identity e ∈ Aω, but

this is a contradiction with Corollary 3.2.8.

Suppose that r ̸= supS. Then there exists a net (sβ) in U monotone decreasing

or increasing converging to r. Suppose that (sβ) is decreasing. Since sup{∥δsβ
∥ω : β}

is bounded, there exists a subnet (δα) that converges to an element f ∈ Aω in the

topology σ(Aω,W ). Let s ∈ S such that s > r. Then δs ⋆ δα = δα for every α large

enough. Since the multiplication is separately σ(Aω,W )-continuous, δs ⋆ f = f . This

implies that supp f ⊂ (0, s] ∩ S for every s > r. Thus, supp f ⊂ (0, r] ∩ S. Now let

s ∈ S such that s < r. Then δs ⋆ δα = δs. Thus δs ⋆ f = δs, which implies that f is

not zero and that supp f ⊂ [s, supS) ∩ S. Since this is true for every s < r, then

supp f ⊂ [r, supS) ∩ S. We conclude that supp f ⊂ {r} ∩ S. But {r} ∩ S = ∅, and

so there is no such f ∈ Aω. The case where (sβ) is increasing is symmetrical. Thus

Aω is not a dual Banach algebra. □

Example 3.2.14. Let us consider again the semigroup and weight defined in Ex-

ample 3.2.6, Q+•
∧ . In this case, T = R+• ∪ {∞}, and clT S = R+• ∪ {∞}. Thus, by

Proposition 3.2.13, Aω is not a dual Banach algebra.

3.3. Semigroup S = N∧

3.3.1. Arens Regularity and strong Arens irregularity, DTC sets. Consider

the semigroup S := N with the semigroup operation

m ∧ n = min{m,n} (m,n ∈ N),

which is a particular case of the above. Throughout this section we shall write

Dω = ℓ1(N∧, ω).

We shall give below some results that improve what we have obtained in the

more generic case.

In the previous section we have seen when a weighted semigroup algebra is not

strongly Arens irregular, however we do not have a characterization of when it is

strongly Arens irregular. In the following result we shall see that for S = N∧, not

only we can see when Dω is strongly Arens irregular, but we can also determine the
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smallest DTC set. In [22, Example 7.33] they work with the unweighted case and

they prove that it is strongly Arens irregular, which also follows from [24, Theorem

2.14]. The argument followed here is very similar to the one followed in [22]. Note

that smallest might suggest that it is unique, however, we mean that the size is as

small as possible, but there might be several DTC sets with the same size (as small

as possible). This terminology follows that of [22].

Proposition 3.3.1. Let S = N with the semigroup operation ∧ defined as above.

Then whenever lim infn→∞ ω(n) < ∞ the Banach algebra Dω is strongly Arens

irregular. Furthermore, there is a two-point DTC set of D′′
ω.

Proof. Consider the isometric isomorphism θω : ℓ1(N) → Dω defined in Lemma 2.4.9.

We have that

δu□δv = δu, (u ∈ βN, v ∈ N∗);

δu♢δv = δv, (u ∈ N∗, v ∈ βN).

Let u, v ∈ βN and (sα), (tβ) nets in N such that u = limα sα and v = limβ tβ.

Thus, for λ ∈ C(βN), we have

⟨θ′′
ω(δu)□ωθ

′′
ω(δv), ωλ⟩ = lim

α
lim

β
⟨θ′′

ω(δsα)□ωθ
′′
ω(δtβ

), ωλ⟩

= Ω□(u, v)⟨δu□δv, λ⟩ = Ω□(u, v)⟨δu, λ⟩.

Symmetrically we obtain that

⟨θ′′
ω(δu)♢ωθ

′′
ω(δv), ωλ⟩ = Ω♢(u, v)⟨δv, λ⟩.

Consider ψω ∈ ℓ∞(N) defined as ψω(n) = 1/ω(n), (n ∈ N). Let u ∈ N∗, v ∈ βS

and say u = limα sα, v = limα tβ where (sα), (tβ) are nets in N. Then,

Ω□(u, v) = lim
β

1/ω(tβ) = lim
α

⟨δtβ
, ψω⟩ = ⟨δv, ψω⟩.

Let v ∈ βN, g ∈ ℓ1(N∗) and λ ∈ C(βN). Then

⟨θ′′
ω(δv)□ωθ

′′
ω(g), ωλ⟩ = ⟨

∑
u∈N∗

g(u)(θ′′
ω(δv)□ωθ

′′
ω(δu), ωλ⟩

= ⟨
∑

u∈N∗
Ω□(v, u)g(u)δv, λ⟩ = ⟨g, ψω⟩⟨δv, λ⟩.

Thus, for µ ∈ M(βN), ν ∈ M(N∗), we have

θ′′
ω(µ)□ωθ

′′
ω(ν) = ⟨ν, ψω⟩µ. (3.3.1)
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Symmetrically, we obtain

θ′′
ω(ν)♢ωθ

′′
ω(µ) = ⟨µ, ψω⟩ν (ν ∈ M(βN), µ ∈ M(N∗)) (3.3.2)

Hence θ′′
ω(M(N∗)) is a closed subalgebra of D′′

ω. Also for µ ∈ M(βN) and f ∈ ℓ1(N),

we have

θω(f) · θ′′
ω(µ) = θ′′

ω(µ) · θω(f) = ⟨µ, ψω⟩f.

Hence Dω is an ideal in its bidual and we can write

D′′
ω = θ′′

ω(M(N∗)) ⋉Dω.

Let (sn) be a sequence in N such that sup{ω(sn) : n ∈ N} < ∞ and let a be in

the growth of this sequence, so that ⟨δa, ψω⟩ is not zero. Let b ∈ N∗ different from a.

Take µ ∈ M(N∗) such that

θ′′
ω(µ)□ωθ

′′
ω(δa) = θ′′

ω(µ)♢ωθ
′′
ω(δa) and θ′′

ω(µ)□ωθ
′′
ω(δb) = θ′′

ω(µ)♢ωθ
′′
ω(δb).

By (3.3.1),

θ′′
ω(µ)□ωθ

′′
ω(δa) = ⟨δa, ψω⟩µ

and by (3.3.2), we have that

θ′′
ω(µ)♢ωθ

′′
ω(δa) = ⟨µ, ψω⟩δa. (3.3.3)

Since θ′′
ω(µ)□ωθ

′′
ω(δa) = θ′′

ω(µ)♢ωθ
′′
ω(δa), we have

⟨δa, ψω⟩µ = ⟨µ, ψω⟩δa.

Repeating exactly the same calculations for µ and δb we obtain

⟨δb, ψω⟩µ = ⟨µ, ψω⟩δb.

Hence ⟨δb, ψω⟩⟨µ, ψω⟩δa = ⟨δa, ψω⟩⟨µ, ψω⟩δb. Since ⟨δa, ψω⟩ ̸= 0, we must have

⟨µ, ψω⟩ = 0. Thus, by substituting this in (3.3.3) we obtain that µ = 0 and so

θ′′
ω(µ) = 0. Thus Dω is strongly Arens irregular and

V = {θ′′
ω(δa), θ′′

ω(δb)}

is a DTC set for D′′
ω. □
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Remark 3.3.2. In [20, Example 9.13] it is observed that Dω is Arens regular for any

weight ω such that ω(n) → ∞ when n → ∞. However, the authors justify this by

appealing to a theorem only stated for cancellative semigroups, while N∧ is not even

weakly cancellative. By applying our Theorem 3.2.3 the desired result follows.

Thus we obtain the following characterization of Arens regularity for Dω:

Theorem 3.3.3. Let ω : N → [1,∞). Then:

(a) Dω is Arens regular if and only if lim infn→∞ ω(n) = ∞;

(b) Dω is strongly Arens irregular if and only if lim infn→∞ ω(n) < ∞. □

3.3.2. Duality of Dω. We shall now look at the duality of Dω.

Proposition 3.3.4. Let ω : N → [1,∞). Then Dω is a dual Banach algebra if and

only if limn→∞ ω(n) = ∞. In this case, Eω is the unique Banach-algebra predual.

Proof. When lim inf
n→∞

ω(n) < ∞ the Banach algebra Dω is not a dual Banach algebra,

as follows from Proposition 3.2.13. The fact that Dω is a dual Banach algebra with

predual Eω when lim
n→∞

ω(n) = ∞ follows from Proposition 3.2.11.

Let us see now that Eω is unique. Let φ ∈ Φω. Then there exists k ∈ N such that

φ = φk where

φk(α) =
∞∑

n=k

α(n) (α = (α(n)) ∈ Dω). (3.3.4)

When limn→∞ ω(n) = ∞, we have that φ ∈ Eω and so Φω ⊂ Eω. Hence L(Dω) ⊂ Eω.

Let us see now that Eω ⊂ L(Dω). Since Eω is the closure of c00 in ℓ∞(N, 1/ω), it is

enough to see that c00 ⊂ L(Dω). For k ∈ N, consider ρ(k) defined as follows:

ρ(k) = φk − φk+1,

where φk is defined in (3.3.4). Then c00 = span{ρ(k) : k ∈ N}. Also, we have that

ρ(k) ∈ Φω and so, c00 ⊂ L(Dω) as needed. We conclude then that Eω ⊂ L(Dω) as

desired.

Finally, we see that, for s ∈ N,

sN = {s ∧ n : n ∈ N} = {n ∈ N : n ≤ s},

which is finite. So, we can apply Proposition 3.2.12 to obtain that Eω is the unique

Banach-algebra predual of Dω. □
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To conclude the study of Dω, notice that by Proposition 3.2.7, we obtain that

Dω has a bounded approximate identity if and only if lim inf
n→∞

ω(n) < ∞ and that it

always has a multiplier-bounded approximate identity.

3.3.3. Weighted bounded variation algebras.

These algebras were first studied in [33]; for an account see [26, Example 3.2.12].

Let ω = (ω(i)) be a sequence in [1,∞), and, for n ∈ N, α ∈ CN, define

pn
ω(α) =

n∑
i=1

ω(i)|α(i+ 1) − α(i)|,

so (pn
ω(α) : n ∈ N) is increasing.

Set pω(α) = lim
n→∞

pn
ω(α), and consider

Bω = {α ∈ ℓ∞ : pω(α) < ∞}

with the norm in Bω defined as follows:

|||α|||ω = |α|N + pω(α) (α ∈ Bω).

Then (Bω, |||·|||ω) is a self-adjoint Banach sequence algebra on N, and it is natural on

N∞. In the case where ω(n) = 1 for all n ∈ N, the elements of Bω are the sequences

of bounded variation, and we denote (Bω, |||·|||ω) by (bv, |||·|||bv) and pω as pbv. As it is

seen in [26, Example 3.2.12] for any sequence ω : N −→ [1,∞) we have that Bω ⊂ bv

and |||α|||bv ≤ |||α|||ω. If ω is bounded by c ≥ 1, then, bv = Bω and the norms |||·|||ω
and |||·|||bv are equivalent in Bω as |||α|||ω = |α|N + pω(α) ≤ |α|N + cpbv(α) ≤ c|||α|||bv.

Set Mω = Bω ∩ c0. Then Mω is a maximal ideal in Bω, as it is the kernel of a

character, namely the evaluation at ∞. Hence, Mω is a natural Banach sequence

algebra on N. In particular, bv0 = bv ∩ c0 is a natural Banach sequence algebra on N.

The following result can be found in [23, § 3.2]:

Proposition 3.3.5. Let ω be a sequence such that ω ≥ 1. Then the algebra Mω is

the Gel’fand transform of Dω.

Proof. By Proposition 3.1.14 the character space of Dω is Φω = N. The Gel’fand

transform α̂ of an element α = (α(n)) ∈ Dω is a sequence such that

α̂(n) =
∞∑

i=n

α(i) (n ∈ N).

Take α̂ defined in this way. Then, we have that
n∑

i=1
ω(i)|α̂(i+ 1) − α̂(i)| =

n∑
i=1

ω(i)|α(i)| ≤ ∥α∥ω.
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and so pω(α̂) is bounded. Also,

|α̂(n)| ≤
∞∑

i=n

|α(i)| → 0 (n → ∞).

Thus, α̂ ∈ Mω.

Now, given an element β = (β(n)) ∈ D̂ω, the element α ∈ Dω such that α̂ = β is

defined as

α(n) = β(n+ 1) − β(n) (n ∈ N).

Then we have that

D̂ω = {α ∈ c0 :
∞∑

n=1
|α(n+ 1) − α(n)|ω(n) < ∞} = Mω,

together with the norm ∥α∥ = ∑∞
n=1 |α(n+ 1) − α(n)|ω(n) < ∞.

Finally, we see that ∥α∥ ≤ |||α|||ω ≤ 2∥α∥ for every α ∈ Mω. □

From this result, and taking into account the results from last section, we

can obtain some conclusions for Mω. For example, we see that it has a bounded

approximate identity if and only if lim inf ω(n) < ∞. It always has a multiplier-

bounded approximate identity. Consider δ̂n = ∆n. We can find a subsequence that

is an approximate identity for Mω, and so we deduce that Mω is Tauberian.

Regarding Arens regularity, when lim inf ω(n) = ∞ we see that Mω is Arens

regular; and Mω is strongly Arens irregular when lim infn→∞ ω(n) < ∞. This follows

from Proposition 3.3.1 and Remark 3.3.2.

We proceed to study now whether Mω is a BSE algebra or not and whether it

has a BSE norm.

Proposition 3.3.6. Let ω : N → [1,∞) be a sequence, and consider Mω defined as

above. Then:

(a) Suppose that lim infn→∞ ω(n) < ∞. Then Bω = CBSE(Mω) = M(Mω), and

so Mω is a BSE algebra.

(b) Suppose lim infn→∞ ω(n) = ∞, then Mω = CBSE(Mω), and so Mω is not a

BSE algebra.

In these cases Mω has a BSE norm.

Proof. Let ω : N → [1,∞) be a sequence, then CBSE(Mω) ⊂ Bω. Indeed, for

β ∈ CBSE(Mω) there exists a net (α(ν)) in Mω converging to β pointwise with∣∣∣∣∣∣∣∣∣α(ν)
∣∣∣∣∣∣∣∣∣

ω
≤ C for a given C. Let n ∈ N be fixed. Then |α(ν)(n)| +pn

ω(α(ν)) ≤ C for all
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ν. Taking limits when ν → ∞ we have that |β(n)| + pn
ω(β) ≤ C, and so we have that

β ∈ Bω with |||β|||ω ≤ C. We conclude that |||β|||ω = ∥β∥BSE. Hence we have that

Mω ⊂ CBSE(Mω) ⊂ Bω. As Mω is a maximal ideal in Bω, either Mω = CBSE(Mω)

or Bω = CBSE(Mω).

Since Mω is a Tauberian banach sequence algebra (recall (∆−n) is an approximate

identity in Mω), and so an ideal in its bidual, we can apply Corollary 2.3.33, and

so Mω = CBSE(Mω) if and only if it is dual. We know that Mω is a dual Banach

algebra if and only if limω(n) = ∞. So, we conclude that Mω = CBSE(Mω) if and

only if limω(n) = ∞. In this case, Mω is not a BSE algebra.

Now suppose that lim infn→∞ ω(n) ≤ c for c ≥ 1, then M(Mω) ⊂ Bω. Indeed, for

β = (βn) in M(Mω) we have that

max{|β(i)| : i ∈ Nnk
} +

nk−1∑
i=1

ω(i)|β(i+ 1) − β(i)| + ω(nk)|β(nk)|

= |||∆nk
β|||ω ≤ |||∆nk

|||ω∥β∥op ≤ (1 + c)∥β∥op.

Hence, |||β|||ω ≤ (1 + c)∥β∥op, and so for ω bounded we have that M(Mω) = Bω and

so Mω is a BSE algebra.

Since for any ω, Mω as a multiplier-bounded approximate identity, by Corol-

lary 2.3.32, Mω has a BSE norm. □

Remark 3.3.7. Note that, since Bω = M#
ω , by Corollary 2.3.32, Bω also has a BSE

norm.

3.4. Semigroup N∨

During this section we shall study the weighted semigroup algebra that arises from

the semigroup N∨. This semigroup is very similar to the one studied in the previous

section. However, there are important differences between both semigroups, as we

shall see below, and so the reasonings used, although similar, are not identical.

3.4.1. BSE algebras and BSE norms. Consider the semigroup S := N with the

semigroup operation

m ∨ n = max{m,n} (m,n ∈ N).

Every sequence ω : N −→ [1,∞) is a weight on N∨. During this section we shall

denote by Cω the semigroup algebra ℓ1(N∨, ω).
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As it was seen in Example 2.4.4, N∨ is a semilattice as in Definition 2.4.2, and

so, results from Section 3.2 apply to it. However, as it was the case with N∧, we can

provide stronger results in this situation.

The Banach algebra Cω has an identity, namely δ1. Note that this agrees with

Corollary 3.2.8, since when we consider the semilattice structure that follows from

this multiplication the supremum of the semilattice N∨ is 1.

The main difference with the case N∧ is that the semigroup N∨ is weakly cancella-

tive. We shall see that this difference creates some variations in the characteristics

of Cω and Dω. However, some properties, like Arens regularity, are very similar.

For example, since N∨ is weakly cancellative we obtain the following result, in

contrast with the one obtained for Dω.

Corollary 3.4.1. Let ω : N −→ [1,∞). Then Cω is a dual Banach algebra with

predual Eω.

Proof. This follows from Proposition 3.2.10. □

Note that since, for x ∈ N, xN = {xn : n ∈ N} = {n ≥ s} is infinite, we cannot

apply Proposition 3.2.12.

We shall continue studying whether Cω is a BSE algebra and whether it has a

BSE norm.

Proposition 3.4.2. Let ω be a weight on S. The Gel’fand transform of Cω is a

BSE algebra with a BSE norm, with CBSE(Ĉω) = Ĉω.

Proof. Given θ ∈ ΦN \ {1}, there exists k ∈ N such that θ(n) = 1 (n ≤ k) and

θ(n) = 0 (n > k). As above, the augmentation character on Cω is

(α(n)) 7→
∞∑

n=1
α(n), Cω → C.

Hence, we can identify ΦN with N∞. So, by Proposition 3.1.14, Φω = N∞ and the

Gel’fand transform is the map

α = (α(n)) 7→ α̂ = (α̂(k)) =
(

k∑
n=1

α(n) : k ∈ N∞

)
, Cω → C(N∞).

Also, given an element β = (β(n)) ∈ Ĉω, then the element α ∈ Cω such that α̂ = β

is defined as

α(1) = β(1), α(n+ 1) = β(n+ 1) − β(n) (n ≥ 1).
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Then we have that

Ĉω = {α ∈ C(N∞) :
∞∑

n=1
|α(n+ 1) − α(n)|ω(n+ 1) < ∞}

together with the norm ∥α∥ω = |α(1)|ω(1) +∑∞
n=1 |α(n+ 1) − α(n)|ω(n+ 1).

Consider now β ∈ CBSE(Ĉω). Then there is a net (α(ν)) in Ĉω converging

to β pointwise. Also ∥α(ν)∥ω ≤ C for a given C. Let n ∈ N be fixed. Then

ω(1)|α(ν)(1)|+∑n
k=1 |α(ν)(k+1)−α(ν)(k)|ω(k+1) ≤ C for all ν and hence, by taking

limits,

|β(1)|ω(1) +
n∑

k=1
|β(k + 1) − β(k)|ω(k + 1) ≤ C. (3.4.1)

Since β verifies (3.4.1), then it belongs to Ĉω and ∥β∥ω = ∥β∥BSE. So, Ĉω is a BSE

algebra, and by Proposition 2.3.31, it also has a BSE norm. □

3.4.2. Arens regularity and strongly Arens irregularity, DTC sets. We

proceed now to study the Arens regularity of Cω. The case where ω = 1 has been

studied before, see for example [22, Example 7.32]. We study here the Arens regularity

of Cω when ω is a generic weight on N. Similarly to the previous section, we will have

to differentiate between lim infn→∞ ω(n) < ∞ or limn→∞ ω(n) = ∞. The following

result is a generalisation of the procedure followed in [22, Example 7.32]. It also has

some similarities with Proposition 3.3.1, although since the structure of Cω and Dω

is not the same, it is not possible to follow exactly the same reasoning.

Proposition 3.4.3. Let ω be a weight on N∨ such that lim infn→∞ ω(n) < ∞. Then

Cω is strongly Arens irregular. Moreover, there is a two-point DTC set of C ′′
ω.

Proof. Let θω : α 7→ α/ω, ℓ1(N) −→ Cω as in Lemma 2.4.9.

We have that

δu□δv = δv (u ∈ βN, v ∈ N∗) and δu♢δv = δu (u ∈ N∗, v ∈ βN).

Let u ∈ βN, v ∈ N∗. Then there are nets (sα) and (tβ) in N such that u = limα sα

and v = limβ tβ. Thus, for λ ∈ C(βN), we have

⟨θ′′
ω(δu)□ωθ

′′
ω(δv), ωλ⟩ = lim

α
lim

β
⟨θω(δsα) ⋆ θω(δtβ

), ωλ⟩

= lim
α

lim
β

Ω(sα, tβ)⟨δsα ⋆ δtβ
, λ⟩

= Ω□(u, v)⟨δu□δv, λ⟩ = Ω□(u, v)⟨δv, λ⟩.
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Symmetrically, for u ∈ N∗, v ∈ βN, we obtain that

⟨θ′′
ω(δu)♢ωθ

′′
ω(δv), ωλ⟩ = Ω♢(u, v)⟨δu, λ⟩.

Consider ψω ∈ ℓ∞(N) defined as ψω(n) = 1/ω(n), (n ∈ N). Let u ∈ βN, v ∈ N∗,

and say u = limα sα, v = limβ tβ. Then we have

Ω□(u, v) = lim
α

lim
β

Ω(sα, tβ) = lim 1/ω(sα) = lim
α

⟨δsα , ψω⟩ = ⟨δu, ψω⟩.

Let µ ∈ M(βN), v ∈ N∗ and λ ∈ C(βN). Then

⟨θ′′
ω(µ)□ωθ

′′
ω(δv), ωλ⟩ = ⟨

∑
u∈βN

µ(u)θ′′
ω(δu)□ωθ

′′
ω(δv), ωλ⟩

= ⟨
∑

u∈βN
Ω□(u, v)µ(u)δv, λ⟩ = ⟨µ, ψω⟩⟨δv, λ⟩.

Hence, for µ ∈ M(βN), ν ∈ M(N∗). Then

θ′′
ω(µ)□ωθ

′′
ω(ν) = ⟨µ, ψω⟩ν. (3.4.2)

Symmetrically, we obtain

θ′′
ω(µ)♢ωθ

′′
ω(ν) = ⟨ν, ψω⟩µ (µ ∈ M(N∗), ν ∈ M(βN)). (3.4.3)

Thus θ′′
ω(M(N∗)) is a closed ideal of C ′′

ω such that Cω ∩ θ′′
ω(M(N∗)) = {0}, and so

C ′′
ω = Cω ⋉ θ′′

ω(M(N∗)).

Let (sn) be a sequence in N such that limn→∞ ω(sn) < ∞ and let a in the growth

of this sequence, so that ⟨δa, ψω⟩ is not zero. Let b ∈ N∗ different from a. Let us take

µ ∈ M(N∗) such that

θ′′
ω(µ)□ωθ

′′
ω(δa) = θ′′

ω(µ)♢ωθ
′′
ω(δa), and θ′′

ω(µ)□ωθ
′′
ω(δb) = θ′′

ω(µ)♢ωθ
′′
ω(δb).

Thus , by (3.4.2)

θ′′
ω(µ)□ωθ

′′
ω(δa) = ⟨µ, ψω⟩δa

and by (3.4.3)

θ′′
ω(µ)♢ωθ

′′
ω(δa) = ⟨δa, ψω⟩µ.

Since we are assuming that θ′′
ω(µ)□ωθ

′′
ω(δa) = θ′′

ω(µ)♢ωθ
′′
ω(δa), we have

⟨µ, ψω⟩δa = ⟨δa, ψω⟩µ. (3.4.4)
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Identically for δb we obtain

⟨µ, ψω⟩δb = ⟨δb, ψω⟩µ.

Hence ⟨δb, ψω⟩⟨µ, ψω⟩δa = ⟨δa, ψω⟩⟨µ, ψω⟩δb. Since ⟨δa, ψω⟩ ̸= 0, we must have

⟨µ, ψω⟩ = 0. By substituting this in (3.4.4), we see that θ′′
ω(µ) = 0. Thus Z(C ′′

ω) = Cω,

Cω is strongly Arens irregular and

V = {θ′′
ω(δa), θ′′

ω(δb)}

is a DTC set for it. □

Corollary 3.4.4. Let ω be a weight on N such that limn→∞ ω(n) = ∞. Then Cω

is Arens regular.

Proof. Let (xn), (ym) be sequences of distinct elements of N. We have that both

sequences are unbounded. Then, for xn ≤ ym we have

Ω(xn, ym) = ω(xn ∨ ym)
ω(xn)ω(ym) = ω(ym)

ω(xn)ω(ym) = 1
ω(xn) ,

and so

lim
n→∞

lim
m→∞

Ω(xn, ym) = 0.

Similarly,

lim
m→∞

lim
n→∞

Ω(xn, ym) = 0.

Thus, by Theorem 3.1.8, Cω is Arens regular. □

3.5. Semigroup Z∨

We finish this chapter by studying the semigroup Z∨. In contrast with the semigroup

N∨ previously studied, Z∨ does not have an identity and it is not weakly cancellative.

3.5.1. Character space, Gel’fand transform and approximate identities.

Consider the semigroup S := Z with the semigroup operation

m ∨ n = max{m,n} (m,n ∈ Z).

Every sequence ω : Z → [1,∞) is a weight on Z∨. During this section we shall

denote Zω = ℓ1(Z∨, ω). As opposite to the case N∨, this semigroup is not weakly

cancellative and the Banach algebra Z∨ does not have an identity.
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When we regard Z∨ as a semilattice as in Definition 2.4.2, the order obtained is

≥, supZ∨ = −∞ and inf Z∨ = ∞. As a graphic representation:

∞... 2 // 1 // 0 // −1 // −2... − ∞
So, we can apply some of the results obtained in Section 3.2. However, we shall

provide some stronger results in this case.

Lemma 3.5.1. Let S = Z∨ described as above. Consider the semigroup algebra

Z1 = ℓ1(S). Then ΦZ1 = ΦS = Z∞. Furthermore, for m ∈ Z, consider

(m,∞] = {n ∈ Z : n > m} ∪ {∞}.

Then the Gel’fand topology of ΦS has a basis the singletons {m} for every m ∈ Z

together with the intervals (m,∞] for every m ∈ Z.

Furthermore, for ω : Z → [1,∞) a weight on Z, Φω = ΦS = Z∞.

Proof. For k ∈ Z, we define

χk(m) = 1 (m ∈ Z,m ≤ k), χk(m) = 0 (m ∈ Z,m > k). (3.5.1)

Also we take χ∞(m) = 1 for every m ∈ Z. It is a routine check that all these

functions are semicharacters on S.

Now let θ ∈ ΦS. Since S is idempotent we have that θ(m) ∈ {0, 1} for every

m ∈ Z. If θ(m) = 1 for all m ∈ Z, then θ = χ∞. Suppose now that there exists

m ∈ Z such that θ(m) = 0. Then, for n ≥ m, we have that

θ(m)θ(n) = θ(m ∨ n) = θ(n).

Thus θ(n) = 0 whenever n ≥ m. Since θ ̸= 0 there must be k such that θ(k) = 1,

and so by a similar reasoning of the above θ(n) = 1 for every n ≤ k. Hence, there is

k ∈ Z such that θ = χk. Thus, by Proposition 3.1.14, ΦZ1 = ΦS = Z∞.

Finally it is enough to remember that a basis of the Gel’fand topology is given

by the sets defined as follows: For φ0 ∈ ΦZ1 , si ∈ S (1 ≤ i ≤ n) and ε > 0,

V (φ0; s1, · · · , sn; ε) = {φ ∈ ΦS : |φ(si) − φ0(si)| < ε}.

We just proved that ΦS = Z∞, and so we can rewrite these sets in the following way.

Let n ∈ N, and take m0, s1, ..., sn ∈ Z and ε > 0. Then

V (m0; s1, · · · , sn; ε) = {m ∈ Z : |χm(si) − χm0(si)| < ε}.
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Whenever ε > 1, for any combination of integers m0, s1, ...sn ∈ Z we have that

V (m0; s1, ..., sn; ε) = Z∞.

Now let ε ≤ 1. For m0, s1 < ... < sn ∈ Z, we can write

V (m0; s1, · · · , sn; ε) = {m ∈ Z : χm(si) = χm0(si) (1 ≤ i ≤ n)}.

Suppose there exists i such that si ≤ m0 < si+1. Then

V (m0; s1, ..., sn; ε) =
⋃

si≤m<si+1

{m},

in particular when si+1 = si+1 we have the singletons. When s1 > m0, V (m0; s1, ..., sn, ε) =

(−∞, s1) ∩Z. But this can be written as the union of single points below s1. Finally,

whenever m0 ≥ sn,

V (m0; s1, ..., sn, ε) = (sn,∞].

The last part of the theorem now follows from Proposition 3.1.14. □

Lemma 3.5.2. Let ω : Z → [1,∞). Then the weighted semigroup algebra Zω has a

sequential approximate identity. It has a bounded approximate identity if and only if

lim infn→−∞ ω(n) < ∞. It always has a multiplier-bounded approximate identity.

Proof. We can apply Proposition 3.2.7. Recall that supZ∨ = −∞. Thus, there

exists a sequence (sn) tending to supZ∨ with {ω(sn) : n ∈ N} bounded if and only if

lim infn→−∞ ω(n) < ∞. □

3.5.2. Arens regularity. We proceed to study the Arens regularity of Zω.

Corollary 3.5.3. Let ω : Z → [1,∞). Then Zω is Arens regular whenever

lim infn→∞ ω(n) = ∞ and lim infn→−∞ ω(n) = ∞.

Proof. It follows from Theorem 3.2.3, since we have that lim infn→∞ ω(n) = ∞

and lim infn→−∞ ω(n) = ∞ is equivalent to Lims→∞ ω(s) = ∞ when S = Z∨. □

We shall proceed now to study non-Arens regularity. This example provides more

cases than those seen in previous sections. Consider

B ={α = (α(n)) ∈ Zω : α(n) = 0 (n ∈ Z \ N)},

G ={α = (α(n)) ∈ Zω : α(n) = 0 (n ∈ N)},

respectively, a closed ideal and a closed subalgebra of Zω with the restriction of the

norm of Zω such that Zω = B ⊕G.
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Lemma 3.5.4. Let ω : Z → [1,∞). Consider B and G defined as above. Then for

M ∈ B′′ and N ∈ G′′ we have that M□N = M♢N.

Proof. Since Zω = B ⊕ G, we have that Z ′′
ω = B′′ ⊕ G′′. Let M ∈ B′′ \ B and

N ∈ G′′ \G. There exist a bounded net (f (α)) in B converging to M in the weak-∗

topology and a bounded net (g(β)) in G converging to N in the weak-∗ topology.

Then

f (α) ⋆ g(β) =
∑

n∈N
f (α)(n)δn

 ⋆
 ∑

n∈Z\N
g(β)(n)δn

 =
 ∑

n∈Z\N
g(β)(n)

 f (α).

Let χ0 be the semicharacter defined as in 3.5.1 and note that ∑
n∈Z\N

g(β)(n) = χ0(g(β)).

Since (g(β)) → N in the weak-∗ topology, limβ χ0(g(β)) = N(χ0) = ζ and so

M□N = ζM = M♢N.

□

Proposition 3.5.5. Let ω : Z → [1,∞), and let B and G as above.

(a) Suppose that lim infn→−∞ ω(n) < ∞ and lim infn→∞ ω(n) = ∞. Then

Z(Z ′′
ω) = B′′ ⊕G.

(b) lim infn→−∞ ω(n) = ∞ and lim infn→∞ ω(n) < ∞. Then Z(Z ′′
ω) = B ⊕G′′.

Proof. Since B ∩G = {0} and M□N = M♢N , (M ∈ B,N ∈ G), by Lemma 3.5.4,

we have that Z(Z ′′
ω) = Z(B′′) ⊕ Z(G′′).

(a) Consider ω1 the weight on N∨ such that ω1(n) = ω(n) (n ∈ N). B is

isometrically isomorphic as a Banach algebra to Cω1 . Since lim infn→∞ ω(n) = ∞,

then lim infn→∞ ω1(n) = ∞. By Corollary 3.4.4, Cω1 is Arens regular, and so is B.

Similarly, consider ω2 the weight on N∧ such that ω2(n) = ω(1 − n) (n ∈ N).

Then G is isomorphic to Dω2 . Thus, by Proposition 3.3.1, Z(G′′) = G, since

lim infn→−∞ ω(n) < ∞ implies that lim infn→∞ ω2(n) < ∞, and so the result follows.

(b) This case is symmetrical to (a). Since lim infn→−∞ ω(n) = ∞, Z(B′′) = B and

lim infn→∞ ω(n) < ∞ implies that Z(G′′) = G′′. Thus, the desired result follows. □

Note that the fact that Zω is neither Arens regular nor strongly Arens irregular

when ω : Z → [1,∞) is such that lim infn→−∞ ω(n) < ∞ and lim infn→∞ ω(n) = ∞

also follows from Theorem 3.2.3 and Proposition 3.2.4.
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Corollary 3.5.6. Let ω : Z → [1,∞) such that lim infn→−∞ ω(n) < ∞ and

lim infn→∞ ω(n) < ∞. Then Zω is strongly Arens irregular with a four point DTC

set.

Proof. As above we can write it as Zω = B⊕G, and following a similar reasoning, we

can see that B and C are isometrically isomorphic as Banach algebras to Dω1 and Cω2 ,

with lim infn→∞ ω1(n) < ∞ and lim infn→∞ ω2(n) < ∞. Hence, by Theorem 2.3.9,

Proposition 3.3.1 and Proposition 3.4.3, Zω has a 4-point DTC set. □

We present a table below to summarize the results about Arens regularity of Zω.

Conditions on ω Arens regularity

lim infn→∞ ω(n) = ∞,

lim infn→−∞ ω(n) = ∞
AR, Corollary 3.5.3

lim infn→∞ ω(n) < ∞,

lim infn→−∞ ω(n) = ∞

Neither AR nor SAI, Proposi-

tion 3.5.5

lim infn→∞ ω(n) = ∞,

lim infn→−∞ ω(n) < ∞

Neither AR nor SAI, Proposi-

tion 3.5.5

lim infn→∞ ω(n) < ∞,

lim infn→−∞ ω(n) < ∞
SAI Corollary 3.5.6

3.5.3. BSE algebra, BSE norm and other properties. We shall study now

when Zω is a BSE algebra and when it has a BSE norm. In order to do so, we

shall introduce the following Banach algebra. Let ω : Z → [1,∞). For n ∈ N and

α ∈ ℓ∞(Z), consider

pn
ω(α) =

∑
−n≤i≤n

ω(i)|α(i) − α(i− 1)|.

Set pω(α) = limn→∞ pn(α), and consider

Bω = {α ∈ ℓ∞(Z) : pω(α) < ∞}

with the norm on Bω defined as follows:

∥α∥ω = |α|Z + pω(α) (α ∈ Bω).

Then, Bω equipped with pointwise multiplication is a unital Banach sequence algebra

on Z. Also, for every α ∈ Bω and every p ≥ q ∈ N we have that

|α(p) − α(q)| ≤ pp
ω(α) − pq

ω(α), |α(−p) − α(−q)| ≤ pp
ω(α) − pq

ω(α).
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Since pω(α) < ∞, this shows that for every α ∈ Bω the following two limits exist

α(−∞) = lim
n→−∞

α(n), α(∞) = lim
n→∞

α(n).

Thus, the character space of Bω is {−∞} ∪ Z ∪ {∞}.

Consider now Gω = {α ∈ Bω : α(−∞) = 0}, which is a maximal ideal of Bω with

character space Φω = Z∞. Also, let Mω = Gω ∩ c0(Z), a maximal ideal of Gω. Recall

that the norm is given by

∥α∥ω = |α|Z + pω(α), (α ∈ Gω, respectively, α ∈ Mω).

We see that Mω is a Banach sequence algebra on Z. So it is an ideal of Bω of

codimension 2.

Proposition 3.5.7. Let ω : Z → [1,∞). Then Gω is the Gel’fand transform of

Zω. Furthermore, the Banach algebra Mω is the Gel’fand transform of the maximal

modular ideal {α = (α(n)) ∈ Zω : ∑n∈Z α(n) = 0}.

Proof. Let α = ∑
n∈Z α(n)δn ∈ Zω. The Gelf’and transform α̂ of α is such that,

for m ∈ Z,

α̂(m) =
∑

n≤m

α(n), (3.5.2)

and its value at ∞ is given by

α̂(∞) =
∑
n∈Z

α(n).

Using 3.5.2, we can see that pω(α̂) = ∥α∥ω < ∞, and so α̂ ∈ Bω. Also, we see that

limn→−∞ α̂(n) = 0. Thus Ẑω ⊂ Gω. Let us see now that Gω ⊂ Ẑω. Given an element

β = (β(n)) in the Gel’fand transform of Zω, the element α ∈ Zω such that α̂ = β is

defined as

α(n) = β(n) − β(n− 1) (n ∈ Z).

Thus, the Gel’fand tranform of Zω is

Ẑω = {β ∈ ℓ∞(Z) : pω(β) < ∞, lim
n→−∞

β(n) = 0} = Gω,

with the norm ∥β∥ = ∑
n∈Z |β(n)−β(n−1)|ω(n) < ∞ (β ∈ Gω). Finally, for β ∈ Gω,

we have

∥β∥ ≤ ∥β∥ω ≤ 2∥β∥.

Whenever α ∈ Mω we have that limn→∞ α(n) = 0 too. Thus the Gel’fand

transform of {α = (α(n)) ∈ Zω : ∑n∈Z α(n) = 0} is Mω. □
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The following lemma will be useful for later results.

Lemma 3.5.8. Let ω : Z → [1,∞). Then, we can always find two sequences of

increasing positive integers (mk) and (nk) such that, for α ∈ Mω,

ω(nk)|α(nk)| → 0 and ω(−mk)|α(−mk)| → 0 (k → ∞). (3.5.3)

Proof. Suppose that lim infn→∞ ω(n) < ∞. Then there exists (nk) a strictly

increasing sequence of positive integers such that

lim
k→∞

ω(nk) = lim inf
n→∞

ω(n).

In particular, this implies that there exists M ≥ 1 such that ω(nk) ≤ M for every

k ∈ N. Hence, for α ∈ Mω, we have

ω(nk)|α(nk)| ≤ M |α(nk)| → 0 (k → ∞). (3.5.4)

Following a similar reasoning, when lim infn→−∞ ω(n) < ∞, we can take a strictly

increasing sequence of positive integers (mk) such that

lim
k→∞

ω(−mk) = lim inf
n→−∞

ω(n)

and so

ω(−mk)|α(−mk)| → 0 (k → ∞). (3.5.5)

Suppose now that lim infn→∞ ω(n) = ∞. In this case we can construct (nk) a

sequence of strictly increasing positive integers such that

ω(nk) ≤ ω(n) (n ≥ nk).

Indeed, consider ω̃+ : N → [1,∞) defined as ω̃+(n) = inf{ω(k) : k ≥ n}. Now let n1

such that ω(n1) = ω̃+(1). Knowing nj define nj+1 such that ω(nj+1) = ω̃+(nj + 1).

These infima exist since lim infn→∞ ω(n) = ∞. Thus, for α ∈ Mω we have that

ω(nk)|α(nk)| ≤
∑

i>nk

ω(i)|α(i) − α(i− 1)| → 0. (3.5.6)

Symmetrically,when lim infn→−∞ ω(n) = ∞, we can construct (mk) a sequence

of strictly increasing positive integers such that

ω(−mk) ≤ ω(−n) (n ≥ mk).
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We proceed as above, but in this case we consider ω̃− : N → [1,∞) defined as

ω̃−(n) = inf{ω(−k) : k ≥ n}. Thus we obtain a sequence (mk) such that, for any

α ∈ M ,

ω(−mk)|α(−mk)| ≤
∑

i<−mk

ω(i)|α(i) − α(i− 1)| → 0. (3.5.7)

□

Proposition 3.5.9. Let ω : Z → [1,∞). The Banach algebra Mω is a Tauberian

Banach sequence algebra. It has a bounded approximate identity if and only if

lim infn→∞ ω(n) < ∞ and lim infn→−∞ ω(n) < ∞ and it always has a multiplier-

bounded approximate identity.

Proof. For m,n ∈ N, consider ξn
−m ∈ Mω such that ξn

−m(k) = 1, for k ∈ Zn
−m and 0

otherwise. For α ∈ Mω, we have

∥α− αξn
−m∥ω = sup{|α(k)| : k /∈ Zn

−m} (3.5.8)

+
∑

k /∈Zn
−m

ω(k)|α(k) − α(k − 1)| + ω(−m)|α(−m)| + ω(n)|α(n)|.

By Lemma 3.5.8, we can always find two sequences (nk), (mk) of increasing positive

integers such that ∥α− ξnk
−mk

α∥ω → 0 (k → ∞), for every α ∈ Mω. Thus, for this

selection of (nk) and (mk), (ξnk
−mk

: k ∈ N) is an approximate identity. We conclude

that Mω is Tauberian for any weight ω.

By the uniform boundness theorem, (ξnk
−mk

: k ∈ N) is a multiplier-bounded

approximate identity. When lim infn→∞ ω(n) < ∞ and lim infn→−∞ ω(n) < ∞, we

can chose (nk) and (mk) so that ω(nk) and ω(−mk) are bounded by M ≥ 1. and

so (ξnk
−mk

: k ∈ N) is a bounded approximate identity with bound 1 + 2M . Suppose

now that lim infn→∞ ω(n) = ∞ or lim infn→−∞ ω(n) = ∞ and assume that there is

a bounded approximate identity in Mω. In this case ∥ · ∥op and ∥ · ∥ω are equivalent,

but ∥ξnk
−mk

∥ω → ∞ at the same time as it is a multiplier-bounded approximate

identity, which is a contradiction. Hence, Mω does not have a bounded approximate

identity. □

Corollary 3.5.10. Let ω : Z → [1,∞), and Mω be the Banach sequence algebra

defined as above. Then Mω has a BSE norm. Mω is a BSE algebra if and only if

lim infn→∞ ω(n) < ∞ and lim infn→−∞ ω(n) < ∞.

Proof. Let ω : Z → [1,∞). Since Mω is a Tauberian Banach sequence algebra with

a multiplier-bounded approximate identity, by Corollary 2.3.32, it has a BSE norm.
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By Proposition 3.5.9, Mω has a bounded approximate identity if and only if

lim infn→∞ ω(n) < ∞ and lim infn→−∞ ω(n) < ∞. Thus by Corollary 2.3.27 this is a

necessary and sufficient condition to be a BSE algebra. □

Proposition 3.5.11. Let ω : Z → [1,∞) such that lim infn→∞ ω(n) < ∞ and

lim infn→−∞ ω(n) < ∞. Let Mω and Bω be the Banach sequence algebras defined as

above. Then CBSE(Mω) = M(Mω) = Bω.

Proof. We have that Bω ⊂ M(Mω) since Mω is an ideal in Bω. Now let us take

β ∈ CBSE(Mω). By Theorem 2.3.25 there exists a net (α(ν)) of elements of Mω that

converges to β pointwise and such that

lim
ν

∥α(ν)∥ω = ∥β∥BSE.

Let ε > 0. For n ∈ N, there exists ν0 such that for any ν ≥ ν0 we have

max{|α(ν)(i)| : −n ≤ i ≤ n} +
∑

−n≤i≤n

ω(i)|α(ν)(i− 1) − α(ν)(i)| ≤ ∥β∥BSE + ε.

By taking limits in ν we obtain that

max{|β(i)| : −n ≤ i ≤ n} +
∑

−n≤i≤n

ω(i)|β(i− 1) − β(i)| ≤ ∥β∥BSE + ε.

Thus we can conclude that β ∈ Bω and ∥β∥BSE = ∥β∥ω. By Corollary 3.5.10, Mω

is a BSE algebra when lim infn→∞ ω(n) < ∞ and lim infn→−∞ ω(n) < ∞. Thus

M(Mω) = CBSE(Mω) = Bω. □

Corollary 3.5.12. Let ω : Z → [1,∞), and Gω be the Banach sequence algebra

defined as above. Gω is a BSE algebra if and only if lim infn→−∞ ω(n) < ∞.

Proof. By Theorem 2.3.35, we know that M(Gω) ⊂ CBSE(Gω) if and only if

lim infn→−∞ ω(n) < ∞. Hence, repeating almost the same argument as above we

obtain that CBSE(Gω) = M(Gω) = Bω, and so Gω is a BSE algebra if and only if

lim infn→−∞ ω(n) < ∞.

□



CHAPTER 4

Banach sequence algebras

Some of the results of this chapter will appear in the forthcoming monograph [26].

4.1. Mixed identities

We shall now see some results about mixed identities that will be useful in the

following sections. For more information concerning mixed identities, see [19], [66].

Definition 4.1.1. Let A be a Banach algebra, and let E ∈ A′′. We say E is a mixed

identity for A if E ̸= 0 and, for all M ∈ A′′, we have

M□E = E♢M = M.

The set of all mixed identities for A is denoted as EA.

Note that this is equivalent to

a · E = E · a = a (a ∈ A).

The existence of mixed identities and Arens regularity have a strong connection.

We shall see the link in the following results. The first one, is a direct conclusion

from the definition of mixed identity and Arens regularity. It is known to specialists,

but we add it here for completion.

Proposition 4.1.2. Let A be a Banach algebra with a mixed identity. A is Arens

regular. Then EA has a unique element.

Proof. Let E,F ∈ EA and suppose that A is Arens regular. Since E ∈ E(A),

F□E = F.

Since F ∈ EA,

F♢E = E.

Therefore, as A is Arens regular, E = F . □

73
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As we can imagine, approximate identities, in particular bounded ones, are also

linked to mixed identities. When A has a bounded approximate identity, then EA ̸= ∅.

In fact, we have the following result, that can be found in [19, Corollary 2.9.15]:

Corollary 4.1.3. Let A be a Banach algebra. Then A has a mixed identity E ∈ EA

if and only if it has a bounded approximate identity. □

Let us recall that we define the set A ·A′ := {a · λ : a ∈ A, λ ∈ A′} and that AA′

is the linear span of A · A′. We define the sets A′ · A and A′A symmetrically.

Proposition 4.1.4. Let A be a Banach algebra with a bounded approximate identity,

and let E be a weak-∗ accumulation point of it. Then

EA = {E} + (AA′)⊥ ∩ (A′A)⊥.

Proof. Let F ∈ EA and define M = F − E. Then, for a ∈ A and λ ∈ A′, we have

⟨M,a · λ⟩ = ⟨(F − E) · a, λ⟩ = ⟨(F · a− E · a), λ⟩ = 0.

Thus M ∈ (AA′)⊥. Symmetrically, M ∈ (A′A)⊥.

Let N ∈ (AA′)⊥ ∩ (A′A)⊥. For a ∈ A and λ ∈ A′, ⟨a ·N, λ⟩ = ⟨N, λ · a⟩ = 0, so

M□N = 0 for all M ∈ A′′. Thus M□(E +N) = M . Following a similar reasoning,

we can see that (E +N)♢M = M . Thus E +N is a mixed identity for A. □

Corollary 4.1.5. Let A be a Banach algebra with a bounded approximate identity.

Suppose that AA′ = A′A. Let E ∈ EA. Then the following are equivalent:

(a) EA has a unique element;

(b) A′ · A = A′;

(c) E is an identity for (A′′,□) and for (A′′,♢).

Proof. (a) ⇒ (b) Let E be a weak-∗ accumulation point of the bounded approximate

identity. By Proposition 4.1.4, EA = {E} + (AA′)⊥ ∩ (A′A)⊥. If E is the only

element of EA, then (AA′)⊥ ∩ (A′A)⊥ = {0}. Since by hypothesis we have that

(AA′)⊥ ∩ (A′A)⊥ = (A′A)⊥, then A′A = A′. But by Cohen’s factorization Theorem

A′A = A′ · A. Hence A′ · A = A′.

(b) ⇒ (c) Let E ∈ EA and suppose it is not an identity for (A′′,□). Then there

exists M ∈ A′′ such that E□M ̸= M . Consider F = M − E□M ≠ 0. Then, for

a ∈ A and λ ∈ A′, we have

⟨F, λ · a⟩ = ⟨a ·M − a · E□M,λ⟩ = ⟨a ·M − a ·M,λ⟩ = 0.
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Thus F ∈ (A′A)⊥. But this implies that A′ ·A ̸= A′. Following a symmetric argument,

we can see that if E is not an identity for (A′′,♢), then A′ · A′ ̸= A again.

(c) ⇒ (a) Let F ∈ EA. As E is an identity for (A′′,□), we have that

F = E□F = E,

and so E is unique. □

Finally, we shall apply all these results to a Banach algebra A that is an ideal in

its bidual, since it will the case we shall focus on in the following subsections. The

following theorem can be found in [26, Theorem 2.3.44] and will be key for that.

Theorem 4.1.6. Let A be a Banach algebra that is an ideal in its bidual. Suppose it

has a bounded approximate identity . Then A ·A′ = A′ ·A = A ·A′ ·A = WAP(A). □

We know that when a Banach algebra A is Arens regular WAP(A) = A′, thus

WAP(A) = A′ = A ·A′ = A′ ·A = A ·A′ ·A when A is also an ideal in its bidual, and

so the following is an immediate conclusion of Corollary 4.1.5 and Proposition 4.1.2.

Corollary 4.1.7. Let A be a Banach algebra with a bounded approximate identity

and such that A is an ideal in its bidual. Let E ∈ EA. Then the following are

equivalent:

(a) EA has a unique element;

(b) E is the identity of A′′;

(c) A′ · A = A′;

(d) A is Arens regular. □

4.2. The Feinstein algebra

We proceed to introduce now the Feinstein algebra. This algebra appears in [19,

Example 4.1.46] and some of the initial results that we shall introduce now are proved

there. Let α ∈ CN and, for n ∈ N, consider

pn(α) =
n∑

k=1

k

n
|αk+1 − αk|.

We define A := {α ∈ c0 : p(α) < ∞} where

p(α) = sup{pn(α) : n ∈ N}.

Consider the following norm in A:

∥α∥ = |α|N + p(α) (α ∈ A).
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Then (A, ∥ · ∥) is a Banach space, and it is a Banach algebra when we consider the

pointwise product. Following [19], we call (A, ∥ · ∥) the Feinstein algebra, since it

was introduced by Joel Feinstein in a lecture.

We shall introduce now a subalgebra of A that will be of interest. Let A0 := J∞(A).

It is seen in [19, Example 4.1.46] that

A0 = {α ∈ c0 : pn(α) → 0}.

Then A0 is a Tauberian Banach sequence algebra and (∆n) is a bounded approximate

identity for A0 with ∥∆n∥ = 2.

These two algebras present some very interesting characteristics. For example, it

can be seen that A2 = A2
0 = A0 and that A0 is separable while A is not. Thus A2 is

a closed subspace of infinite codimension in A. Also, A is not Tauberian and it does

not have an approximate identity.

4.2.1. Study of Arens regularity. We proceed to study the Arens regularity of

A and A0. In order to do so, we shall construct a new Banach algebra B which is

Arens regular, and we shall see that A0 can be seen as a closed subalgebra of B.

This method can be extended to a more generic setting and this is something we are

working on at the moment.

Let j ∈ N. For α ∈ C2j−1+2 consider

gj(α) =
2j−1+1∑

k=2
|αk − αk+1|.

Let B(j) = C2j−1+2 with the norm in B(j) defined as follows:

∥α∥j = max{|α1|, ..., |α2j−1+2|} + gj(α).

Lemma 4.2.1. For every j ∈ N, the space (B(j), ∥ · ∥j) is a unital Banach algebra

with pointwise multiplication.

Proof. For j ∈ N, the space (B(j), ∥ · ∥j) is a Banach space. Let us take two

elements α, β ∈ B(j). Then αβ ∈ B(j) and

∥αβ∥j = max{|αkβk| : k ≤ 2j−1 + 2} + gj(αβ)

≤ max{|αk| : k ≤ 2j−1 + 2} max{|βk| : k ≤ 2j−1 + 2}

+ max{|βk| : k ≤ 2j−1 + 2} gj(α)

+ max{|αk| : k ≤ 2j−1 + 2} gj(β) ≤ ∥α∥j∥β∥j,
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and so (B(j), ∥ · ∥j) is a Banach algebra as desired. Since ∥1∥j = 1, we have that B(j)

is unital. □

Let us consider B = c0(B(j)). This is the space of sequences α = (α(j)) where

α(j) ∈ B(j), such that

|||α||| = sup{∥α(j)∥j : j ∈ N} < ∞ (α = (α(j)) ∈ B)

and such that

lim
j→∞

∥α(j)∥j = 0.

For α = (α(j)) ∈ B, we define g(α) := sup{gj(α(j)) : j ∈ N}, which shall be useful

for some calculations below. Note that g(α) ≤ |||α|||, for α ∈ B.

Lemma 4.2.2. The space (B, |||·|||) is a Banach algebra with pointwise multiplication.

Proof. Let α = (α(j)), β = (β(j)) ∈ B. Then, by the calculation above,

∥α(j)β(j)∥j ≤ ∥α(j)∥j∥β(j)∥j ≤ |||α||||||β|||.

Thus |||αβ||| ≤ |||α||||||β|||. □

Since B(j) is finite dimensional for every j ∈ N, we know that the dual is Ej with

dimEj = dimB(j). Hence the following result follows.

Lemma 4.2.3. The dual space of B is B′ = ℓ1(Ej). □

The following lemma can be found in [26]:

Lemma 4.2.4. Let (En, ∥ · ∥n) be a finite-dimensional space for each n ∈ N. Let

E = ℓ1(En). Then E has the Schur property. □

Corollary 4.2.5. The Banach algebra B is Arens regular.

Proof. By Theorem 2.3.11, if B′ has the Schur property, then B is Arens regular.

It follows from Lemma 4.2.4 and Lemma 4.2.3 that the dual of B has the Schur

property, and so the result follows. □

We shall see now that A0 is a closed subalgebra of B. In order to do so, we shall

define an equivalent norm in A0, which will facilitate the process.

Let r ∈ (0, 1). For n ∈ N, consider the set H(r)
n = (rn, n] ∩ N and define

h(r)
n (α) =

∑
k∈H

(r)
n

|αk − αk+1|.
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Consider the norm in A0 defined as

∥α∥(r)
1 = |α|N + h(r)(α), (α ∈ A0)

where h(r)(α) = sup{h(r)
n (α) : n ∈ N}.

Lemma 4.2.6. Let r ∈ (0, 1). Let α ∈ CN. If pn(α) → 0 (n → ∞), we have that

h(r)
n (α) → 0 (n → ∞). In addition, the norms ∥ · ∥ and ∥ · ∥(r)

1 are equivalent in A0.

In particular

r∥α∥(r)
1 ≤ ∥α∥ ≤ 1

1 − r
∥α∥(r)

1 , (α ∈ A0).

Proof. Let α ∈ CN such that pn(α) → 0 when n tends to ∞. Let n ∈ N and take

m ∈ N such that m− 1 ≤ rn < m. Then H(r)
n = {m, . . . , n}, and

pn(α) ≥
n∑

k=m

k

n
|αk − αk+1| ≥ r

n∑
k=m

|αk − αk+1| = r h(r)
n (α).

Thus h(r)
n (α) tends to zero when n tends to ∞. In particular, h(r)(α) is finite and

p(α) ≥ r h(r)(α). (4.2.1)

On the other hand, for n ∈ N we define m ∈ N to satisfy m− 1 ≤ rn < m. Then

H(r)
n = {m, · · · , n}. Hence

pn(α) =
m−1∑
k=1

k

n
|αk − αk+1| +

n∑
k=m

k

n
|αk − αk+1|

≤
m−1∑
k=1

k

n
|αk − αk+1| + h(r)(α).

If m = 1, the first term on the right hand side vanishes, so it is bounded above by

rp(α). If m ≥ 2, then this term can be rewritten as m−1
n
pm−1(α), which once again

is bounded above by rp(α). Thus pn(α) ≤ rp(α) + h(r)(α) for all n ∈ N. Hence

p(α) ≤ rp(α) + h(r)(α) and so

(1 − r)p(α) ≤ h(r)(α). (4.2.2)

Combining (4.2.2) and (4.2.1) we see that, for α ∈ A0,

r∥α∥(r)
1 ≤ ∥α∥ ≤ 1

1 − r
∥α∥(r)

1 ,

as desired. □

Proposition 4.2.7. The algebra A0 can be identified with a closed subalgebra of B.
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Proof. Let j ∈ N. Take α = (αn) ∈ A0, and consider θ(j) : A0 −→ B(j), such that

θ(1)(α) = (α1, α2, α3), θ(2)(α) = (α2, α3, α4, α5), θ(3)(α) = (α4, α5, α6, α7, α8, α9) and

so on. So, for j ∈ N, θ(j) is such that the k − th coordinate of θ(j)(α) is given by

θ(j)(α)k = α2j−1+k−1, for k = 1, · · · , 2j−1 + 2. Note that H(1/2)
2j = {2j−1 + 1, · · · , 2j},

and so

gj(θ(j)(α)) =
2j−1+1∑

k=2
|θ(j)(α)k − θ(j)(α)k+1| (4.2.3)

=
2j−1+1∑

k=2
|α2j−1+k−1 − α2j−1+k| =

2j∑
k=2j−1+1

|αk − αk+1| = h
(1/2)
2j (α).

Hence, by Lemma 4.2.6, we have

∥θ(j)(α)∥j ≤ ∥α∥(1/2)
1 ≤ 2∥α∥. (4.2.4)

Thus θ(j) : A0 −→ B(j) is bounded for every j. Also θ(j)(αβ) = θ(j)(α)θ(j)(β), for

α, β ∈ A0, and so θ(j) is an algebra homomorphism, for every j ∈ N.

Consider now the linear operator

θ : α 7→ θ(α) = (θ(j)(α)), (α ∈ A0).

Since α ∈ A0, limn→∞ |αn| = 0 and so

lim
j→∞

max{|αk| : 2j−1 ≤ k ≤ 2j + 2} = 0.

In addition, since pn(α) tends to zero when n tends to ∞, by Lemma 4.2.6, h(1/2)
2j (α)

also tends to zero when j tends to ∞. Thus limj→∞ ∥θ(j)(α)∥j = 0, and so θ(α) ∈ B.

Thus θ(A0) ⊂ B and, from (4.2.4), we obtain that

|||θ(α)||| ≤ 2∥α∥.

Hence θ is bounded.

For n = 1, since H(1/2)
1 = {1} and θ(1)(α) = (α1, α2, α3), using (4.2.3) we see

h(1/2)
1 (α) = |α1 − α2| ≤ |α1| + |α3| + |α2 − α3| ≤ 2 max{|α1|, |α2|, |α3|} + g1(θ(1)(α))

In general, given n ∈ N with n ≥ 2, let m ∈ N satisfy m − 1 ≤ n/2 < m. There

exists j ∈ N such that 2j−1 ≤ n/2 and n ≤ 2j+1. We have

H(1/2)
n = {m, · · · , n} ⊆ {2j−1 + 1, · · · , 2j+1}
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hence

hn
(1/2)(α) ≤

2j∑
k=2j−1+1

|αk − αk+1| +
2j+1∑

k=2j+1
|αk − αk+1|

= gj(θ(j)(α)) + gj+1(θ(j+1)(α)),

where we have used (4.2.3). Combining these inequalities, we obtain

h(1/2)(α) ≤ sup{hn
(1/2)(α) : n ∈ N} ≤ 2 sup{gj(θ(j)(α)) : j ∈ N} = 2 g(θ(α)).

Thus ∥α∥(1/2)
1 ≤ 2|||θ(α)|||. Hence by the above and Lemma 4.2.6, we have that

∥α∥ ≤ 4|||θ(α)|||.

Thus A0 can be identified with a closed subalgebra of B, as desired. □

Theorem 4.2.8. The algebra A0 is Arens regular.

Proof. This follows from the fact that B is Arens regular, by Corollary 4.2.5, and

that, by Proposition 4.2.7, A0 can be identified with a closed subalgebra of B. □

We know now that A0 is Arens regular, and it has a bounded approximate identity.

By Proposition 4.1.2 it follows that A′′
0 has a unique mixed identity.

We proceed now to see that the Feinstein algebra A is Arens regular. For this, the

following proposition will be key. This proposition can be found in [26, Proposition

2.3.4]

Proposition 4.2.9. Let A be a Banach algebra with a closed subalgebra B and

suppose that A2 ⊂ B. Then A′′□A′′ ⊂ B′′. □

Theorem 4.2.10. The Feinstein algebra A is Arens regular

Proof. Let E ∈ A′′
0 be the (unique) mixed identity of A′′

0. We shall see first that

E ∈ Z(A′′). Indeed, for M ∈ A′′, by Proposition 4.2.9, we have that E□M ∈ A′′
0, as

well as M□E ∈ A′′
0. Then

E□M = (E□M)□E = E□(M□E) = M□E.

Thus E ∈ Z(A′′) as desired. Now, let M,N ∈ A′′. Since A0 is commutative and

Arens regular, A′′
0 is commutative. Hence

M□N = E□(M□N)□E = (E□M)□(N□E)

= (N□E)□(E□M) = N□E□M = E□(N□M) = N□M,
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where we have used again that A′′□A′′ ⊂ A′′
0. Thus A is Arens regular as desired. □

4.2.2. Study of other properties. We proceed now to study some interesting

properties of these algebras. We shall firstly focus on A0, since some of the properties

of A can be deduced from those of A0.

Proposition 4.2.11. There exists a Banach-algebra isomorphism from c0 onto a

closed subalgebra of A0.

Proof. Let (nj) be a sequence in N such that nj+1 ≥ 2nj + 1 (j ∈ N), and consider

the following linear operator:

T :(αn) 7−→
∞∑

j=1
αjδnj

(α = (αn) ∈ c0).

We see that T (αβ) = T (α)T (β).

Let us verify that the range of T is contained in A0. Let α ∈ c0. For ε > 0 there

exists k ∈ N such that |αj| < ε whenever j ≤ k. Consider

K =
k∑

j=1
j|αj+1 − αj|.

For n ≥ nk, there exists q ≥ k such that nq ≤ n < nq+1, and so

pn(T (α)) ≤ K

n
+ 1
nq

q∑
j=k

2nj|αnj
| ≤ K

n
+ 4ε.

Hence pn(T (α)) tends to zero when n tends to infinity. Thus the image of c0 by T is

contained in A0.

Let us see now that T is bounded. Let n ∈ N, and consider k ∈ N such that

nk ≤ n < nk+1. Then

pn(T (α)) ≤ 1
nk

k∑
j=1

2nj|αnj
| ≤ 2|α|N

k∑
j=1

nj

nk

≤ 2|α|N
k∑

j=1

( 1
2j

)
≤ 4|α|N,

and so ∥T (α)∥ ≤ 5|α|N.

Since |α|N = |T (α)|N ≤ ∥T (α)∥, the image of c0 by T is injective with closed

range. □

Corollary 4.2.12. The space A0 is not weakly sequentially complete. The Feinstein

algebra A is not weakly sequentially complete. □
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Consider now

C = {α ∈ ℓ∞ : p(α) < ∞}

with the norm defined as ∥β∥ = |β|N + p(β) for β ∈ C.

Theorem 4.2.13. Consider A0 the Banach sequence algebra defined before. Then

C = M(A0) = CBSE(A0) = Q(A0).

Proof. By Corollary 2.3.27, since A0 is a Tauberian Banach sequence algebra with

a bounded approximate identity, we have that A0 is a BSE algebra with a BSE norm.

Thus M(A0) = CBSE(A0).

Take β ∈ C, α ∈ A0. Let ε > 0. Then there exists n1 ∈ N such that |αi| < ε for

all i ≥ n1. There exists n2 ≥ n1 such that pn(α) < ε and such that, for all n ≥ n2,

n2ε >
n1∑

k=1
k|αk+1βk+1 − αkβk| . Then, for n ≥ n2, we have

pn(αβ) ≤
n1∑

k=1

k

n
|βk+1αk+1 − βkαk|

+
n∑

k=n1+1

k

n
|βkαk+1 − βkαk| +

n∑
k=n1+1

k

n
|βk+1αk+1 − βkαk+1|

≤ n2ε

n
+ |β|Npn(α) + sup{|αk| : k > n1}pn(β) ≤ ε(1 + ∥β∥).

Thus pn(αβ) → 0 when n tends to infinity, and so αβ ∈ A0. Hence β ∈ M(A0).

Thus C ⊂ M(A0) = CBSE(A0).

Now consider β ∈ CBSE(A0). Then there exists a net (β(ν)) in A0 that is bounded

by K and such that it converges pointwise to β. Hence, for each ε > 0 and each

n ∈ N it is possible to find νn such that
n∑

i=1
|βi − β

(νn)
i | < ε and

n∑
i=1

|βi+1 − β
(νn)
i+1 | < ε.

Consider ε < 1
2 . Then

pn(β) ≤
n∑

i=1

i

n
|βi+1 − β

(νn)
i+1 | +

n∑
i=1

i

n
|βi − β

(νn)
i | + pn(β(νn))

≤ 2ε+ ∥β(νn)∥ ≤ K + 1,

for every n ∈ N and so β ∈ C.

Finally, by Proposition 2.3.28, Q(A0) = CBSE(A0). □

An almost identical proof shows that CBSE(A) ⊂ C ⊂ M(A), since CBSE(A) has

an identity, then M(A) ⊂ CBSE(A), and so CBSE(A) = C = M(A). Thus A is a BSE

algebra too. In addition, since A is closed in C, Proposition 2.3.29 applies and so A

has a BSE norm.
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Corollary 4.2.14. The bidual of the Banach algebra A0 is A′′
0 = C.

Proof. Since A0 is Tauberian and Arens regular we can apply Corollary 4.1.7 and

so A′′
0 has a unit. Thus we can apply Proposition 2.3.30 and the result follows. □

4.3. James pth algebra

The James space J2 was introduced in [55] and [56]. In these, James constructed a

separable Banach space such that there is an isomorphism onto its bidual J ′′
2 but

such that J2 is not reflexive. A study of this space as a Banach algebra was made in

[2]. Properties like amenability and weak amenability of the pth James space as a

Banach algebra were studied in [78].

For 1 < p < ∞, we define the pth James space in the following way. Let F be the

set of all finite, strictly increasing subsets of N containing at least two points. Then,

for each α = (αn) ∈ CN and F = {n1, ..., nk} ∈ F, we define

Np(α, F ) = 2−1/p

[
k−1∑
i=1

|αni+1 − αni
|p + |αnk

− αn1|p
]1/p

.

Then the pth James space is

(Jp, Np) = {α ∈ c0 : Np(α) = sup
F ∈F

Np(α, F ) < ∞}.

As it is shown in [78], Jp with pointwise product is a Banach algebra under the

equivalent norm ∥ · ∥p defined by

∥α∥p := sup{Np(αβ) : β ∈ Jp with Np(β) = 1} (α ∈ Jp).

Recall that, for n ∈ N, ∆n ∈ c00 is the element such that ∆n(k) = 1 (k ≤ n) and

∆n(k) = 0 (k > n). It was seen in [78] that

Np(α) = lim
n→∞

Np(∆nα) ≤ ∥α∥p ≤ 2Np(α), (α ∈ Jp).

Hence (∆n) is an approximate identity for Jp with ∥∆n∥p = 1, for every n ∈ N. Thus

Jp is a Tauberian Banach sequence algebra on N, and (δn) is a Schauder basis for Jp.

Regarding Arens regularity, it follows from [2] that J2 is Arens regular. For this,

they proved that J ′′
2 is isometrically isomorphic to J#

2 , which is commutative. The

same argument can be followed to prove that, for 1 < p < ∞, Jp is Arens regular.

We shall see below that the unitization of Jp also plays a role when we study if Jp is

a BSE algebra.
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For 1 ≤ p < ∞, let us consider the linear space Bp = Jp ⊕ C1 ⊂ ℓ∞, so that

Bp = {α ∈ ℓ∞ : Np(α) < ∞},

with the norm defined as

∥α∥p := sup{Np(αβ) : β ∈ Jp with Np(β) = 1} (α ∈ Bp).

Sometimes it can be useful to calculate the norm of elements of Bp using just

elements of Jp with finite support. We shall see below that this is possible.

Lemma 4.3.1. Let 1 ≤ p < ∞, and let α ∈ Bp. Then

∥α∥p = sup{Np(αβ) : β ∈ Jp ∩ c00 with Np(β) = 1} (α ∈ Bp).

Proof. Let α ∈ Bp. It follows from the definition of ∥α∥p that

sup{Np(αβ) : β ∈ Jp ∩ c00 with Np(β) = 1} ≤ ∥α∥p.

Let ε > 0. Then there exists β ∈ Jp with Np(β) = 1 such that

∥α∥p ≤ Np(αβ) + ε/2.

For β ∈ Jp, we know that Np(∆nβ) −→ Np(β) and Np(∆nβ) increases with n. Since

Jp is an ideal in Bp, αβ ∈ Jp. Thus there exists n0 ∈ N such that, for n ≥ n0,

Np(αβ) −Np(∆nαβ) < ε/2.

So, we have that

∥α∥p ≤ Np(αβ) + ε/2 ≤ Np(α∆nβ) + ε.

Thus ∥α∥p ≤ sup{Np(αβ) : β ∈ Jp ∩ c00 with Np(β) = 1}, as desired. □

Lemma 4.3.2. Let 1 ≤ p < ∞ and α ∈ CN. Then

(a) the sequence (∥∆nα∥p) is increasing;

(b) for α ∈ Bp, (∥∆nα∥p) converges to ∥α∥p;

(c) α ∈ Bp if and only if (∥∆nα∥p) is bounded.

Proof. (a) Let α ∈ CN and β ∈ c00 with Np(β) = 1. Since αβ ∈ Jp, for m ≤ n,

Np(∆mαβ) ≤ Np(∆nαβ) ≤ Np(αβ). Thus, by Lemma 4.3.1,

∥∆mα∥p ≤ ∥∆nα∥p ≤ ∥α∥p (m ≤ n). (4.3.1)



4.4. TENSOR PRODUCTS 85

(b) For α ∈ Bp and β ∈ c00, there exists n0 ∈ N such that, for n ≥ n0, ∆nαβ = αβ,

and so lim
n→∞

∥∆nα∥p = ∥α∥p.

(c) If α ∈ Bp, ∥α∥p < ∞, and it follows from (4.3.1) that (∥∆nα∥p) is bounded.

On the other hand, let α ∈ CN such that (∥∆nα∥p) is bounded. By (b), (∥∆nα∥p)

converges to ∥α∥p and so ∥α∥p < ∞. Thus α ∈ Bp. □

Proposition 4.3.3. Let 1 < p < ∞. The Banach algebra Jp is a BSE algebra with

a BSE norm. What is more, we have that

Bp = CBSE(Jp) = M(Jp) = Q(Jp).

Proof. By Corollary 2.3.27, since Jp is a Tauberian Banach sequence algebra with

a bounded approximate identity, we have that Jp is a BSE algebra with a BSE norm.

Thus M(Jp) = CBSE(Jp). By Proposition 2.3.28, Q(Jp) = CBSE(Jp). Also, since

Jp is an ideal in Bp, we have that Bp ⊂ M(Jp). Finally, let β ∈ M(Jp). Then, for

n ∈ N, ∥∆nβ∥p ≤ ∥β∥op∥∆n∥p = ∥β∥op, and so by Lemma 4.3.2, β ∈ Bp. □

4.4. Tensor products

In this section we shall study the Arens regularity of tensor products of some of

the algebras we have studied in previous sections. We shall start with some generic

results that will be useful later. We shall proceed later to see some partial results for

the tensor products of James pth algebras. Finally, we proceed to study the tensor

product of weighted bounded variation algebras, studied in Section 3.3.3.

4.4.1. General results. The following result can be found in [71, Theorem 5.33].

We add it here to facilitate the reading of the document.

Theorem 4.4.1. Let X and Y be Banach spaces such that X ′ has the Radon-Nikodým

property and either X ′ or Y ′ has the approximation property. Then
(
X⊗̌Y

)′
= X ′⊗̂Y ′.

□

Proposition 4.4.2. Let A and B be dual Banach algebras, with preduals E and F ,

respectively, such that A has the Radon-Nikodým property and either A or B has the

approximation property. Then A⊗̂B is a dual Banach algebra with Banach-algebra

predual E⊗̌F .
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Proof. We can apply Theorem 4.4.1 and we see that

(E⊗̌F )′ = E ′⊗̂F ′ = A⊗̂B.

Specifically, the canonical embedding from A⊗̂B to (E⊗̌F )′ is an isometric isomor-

phism. As (E⊗̌F )′′ = (A⊗̂B)′, then E⊗̌F is closed in (A⊗̂B)′.

Let us see now that E⊗̌F is a left-submodule of (A⊗̂B)′. Let us consider a, c ∈ A,

b, d ∈ B and x ∈ E, y ∈ F . Then, as x ⊗ y ∈ A′ ⊗ B′ ⊂ (A⊗̂B)′ we have that

⟨a⊗ b, x⊗ y⟩ = ⟨a, x⟩⟨b, y⟩. Hence

⟨a⊗ b, (c⊗ d) · (x⊗ y)⟩ = ⟨(a⊗ b)(c⊗ d), x⊗ y⟩

= ⟨ac, x⟩⟨bd, y⟩ = ⟨a, c · x⟩⟨b, d · y⟩ = ⟨a⊗ b, (c · x) ⊗ (d · y)⟩.

In particular, as E is a submodule of A′ and F is a submodule of B′, we have that

(c · x) ⊗ (d · y) ∈ E⊗̌F.

Take now M0 = ∑m
i=1 ci ⊗ di ∈ E ⊗ F and N0 = ∑n

j=1 xj ⊗ yj ∈ E ⊗ F , then

M0 ·N0 =
m∑

i=1

n∑
j=1

(ci · xj) ⊗ (di · yj) ∈ E ⊗ F.

Now let M ∈ A⊗̂B, N ∈ (A⊗̂B)′. Let (Mn) be a sequence in A ⊗ B such

that Mn → M in A⊗̌B, and let (Nn) be a sequence in E ⊗ F with Nn → N in

E⊗̌F ⊂ (A⊗̂B)′. Since the action of any Banach algebra on its dual is (jointly)

continuous, and E⊗̌F is closed in (A⊗̂B)′, we have

M ·N = lim
n
Mn ·Nn ∈ E⊗̌F.

The proof that E⊗̌F is a right submodule is symmetrical. □

If A and B are Tauberian Banach sequence algebras, this property is transmitted

to the tensor product under certain circumstances. The following result can be found

in [26, Proposition 3.3.4]:

Proposition 4.4.3. Let A and B be natural Banach sequence algebras on S and

T , respectively, and suppose that either A or B has the approximation property.

Then A⊗̂B is a natural Banach sequence algebra on S × T , and A⊗̂B is Tauberian

whenever both A and B are Tauberian. □

The following result is [71, Corollary 5.42, Corollary 5.45]:

Corollary 4.4.4. Every separable dual space and every reflexive Banach space have

the Radon-Nikodým property. □
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4.4.2. James pth algebra tensor products. We have not been able to discern if

given 1 < p, q < ∞, the Banach algebra Jp⊗̂Jq is Arens regular. However, we have

some results that might lead to a better understanding of Jp⊗̂Jq in the future.

Proposition 4.4.5. Let 1 < p, q < ∞. Then Bp⊗̂Bq is a dual Banach algebra.

Proof. The fact that it is a dual Banach algebra follows from Proposition 4.4.2 and

the following: Bp and Bq are dual Banach algebras, they are separable dual spaces

and so they have the Radon-Nikodým property, and they have the approximation

property. □

4.4.3. Weighted bounded variation algebras. In this section we shall study

the Arens regularity of the tensor products of the algebras studied in Section 3.3.3.

Note that the set {δn : n ∈ N} is a Schauder basis for Mω, and so Mω has the

approximation property.

Proposition 4.4.6. Let ω1, ω2 : N −→ [1,∞) be sequences. Consider the algebras

Mω1 and Mω2. Then the tensor product Mω1⊗̂Mω2 is a Tauberian Banach sequence

algebra on N × N.

Proof. Since Mω is Tauberian for any ω and it has the approximation property,

the conclusion follows from Proposition 4.4.3. □

Proposition 4.4.7. Let ω1, ω2 : N −→ [1,∞) be sequences such that lim inf ωi(n) <

∞, (i = 1, 2). Then the Banach algebra Mω1⊗̂Mω2 is strongly Arens irregular.

Proof. By Proposition 3.3.5, Mωi
∼ ℓ1 for i = 1, 2, and so, Mω1⊗̂Mω2 ∼ ℓ1(N × N).

Hence Mω1⊗̂Mω2 has the Schur property (and so it is weakly sequentially complete).

Mω1⊗̂Mω2 has a bounded approximation identity, since we saw in Section 3.3.3

that for lim inf ω(n) < ∞, Mω has a bounded approximate identity. Finally, by

Proposition 4.4.6, Mω1⊗̂Mω2 is an ideal in its bidual. Thus, by Theorem 2.3.10, it is

strongly Arens irregular as desired. □

Proposition 4.4.8. Let ω1, ω2 : N −→ [1,∞) be sequences such that, for i = 1, 2,

lim inf ωi(n) = ∞. Then the Banach algebra Mω1⊗̂Mω2 is Arens regular.

Proof. Since for ω such that lim inf ω(n) = ∞ we know that Mω is also a dual

Banach algebra, by Corollary 2.3.23 we know that M ′′
ω is compact. In this case, by

Corollary 2.3.13, Mω1⊗̂Mω2 is Arens regular. □
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Proposition 4.4.9. Let ω1, ω2 : N −→ [1,∞) such that lim inf ω1(n) = ∞ and

lim inf ω2(n) < ∞. Then Mω1⊗̂Mω2 is neither Arens regular nor strongly Arens

irregular.

Proof. By Proposition 4.4.6, Mω1⊗̂Mω2 is again a Tauberian natural Banach

sequence algebra on N × N. It is isometrically isomorphic to ℓ1(N × N) as a Banach

space. Thus it also has the Schur property. In this case (∆n ⊗ ∆n) is an unbounded

approximate identity, as otherwise we would have that (∆n) is bounded in Mω1 . Also,

(∆n ⊗ ∆n) is a multiplier-bounded approximate identity, so ∥ · ∥π and ∥ · ∥op are

not equivalent on Mω1⊗̂Mω2 . By Corollary 2.3.12, the algebra is not strongly Arens

irregular. Now, as Mω2 is strongly Arens irregular, by [75, Corollary 3.5], Mω1⊗̂Mω2

is not Arens regular. □



CHAPTER 5

Decomposable Blaschke products of degree 2n

5.1. An overview of the new results

For a brief introduction about Blaschke products and their relevance, see Section 1.2.

Let D denote the open unit disk and T denote the unit circle. A finite Blaschke

product B of degree n is a function of the form

B(z) = γ
n∏

j=1

z − aj

1 − ajz
,

where aj ∈ D for j = 1, . . . , n and γ ∈ T. Note that Blaschke products of degree 1

are the disk automorphisms. Finite Blaschke products are n to 1 maps of the open

unit disk D into itself and the unit circle T to itself. They are holomorphic on an

open set containing the closed unit disk and have finitely many zeros in D. We will

consider the set of points in T that the Blaschke product identifies; in other words,

we will be interested in the solutions of B(z) = λ for λ ∈ T. Since the constant γ

will not play a role in the solution, we will take γ = 1 in the above description of

Blaschke product.

Definition 5.1.1. We say a Blaschke product B is decomposable if there exist

Blaschke products C and D both of degree n > 1 such that

B(z) = C(D(z)) = (C ◦D)(z)

and B is indecomposable otherwise.

If the degree of C and D equals k and m respectively, then the degree of B equals

km. Observe that if B is of prime degree, then B is indecomposable.

It is worth noting that in this chapter langle·, ·⟩ is the (sesquilinear) inner product

in ℓn
2 and ∥ · ∥ is the associated norm. With this in mind, given an n× n matrix A,

the numerical range W (A) is defined by

W (A) := {⟨Ax, x⟩ : x ∈ Cn, ||x|| = 1} .

The set W (A) contains the spectrum of A, it is a convex set, and its outer boundary

is a convex curve. In particular if A is a 2 × 2 matrix, then its numerical range is
89
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either a point, a line segment, or an elliptical disk – all of these can be thought of as

elliptical disks. This is called the elliptical range theorem [17]. Although this is a

theorem about 2 × 2 matrices, it also sheds light on the numerical range of n × n

matrices.

Let H2 denote the classical Hardy space, i.e. the set of functions of the form

f(z) = ∑∞
n=0 anz

n where ∑∞
n=0 |an|2 < ∞. An important operator in the Hardy space

is the shift operator, which is defined by [S(f)](z) = zf(z) and its adjoint is S∗

defined by [S∗(f)](z) = (f(z) − f(0))/z. The following can be defined in a more

generic set-up, but we are going to restrict ourselves to the case of a Blaschke product.

Definition 5.1.2. Let B be a Blaschke product, then the model space is

KB = H2 ⊖BH2,

where ⊖ is the orthogonal complement of BH2 in H2, and BH2 is the image of H2

by the Blaschke product B.

The compression of the shift is an operator defined on the model space KB as

follows:

SB := PBS|KB
,

where PB is the orthogonal projection from H2 onto KB.

In this chapter, we consider a Blaschke product B of degree n = 2k − 1 and

B̂ := zB(z) throughout the chapter. For each λ ∈ T we let z1,λ, . . . , zn+1,λ denote

the points on T that B̂ maps to B(λ) ordered by increasing argument. By [43, 63]

each convex polygon connecting these points circumscribes a convex smooth curve

that we call the Blaschke curve, see Definition 5.3.1. In Section 5.3 we show that if

the numerical range, W (SB), is an elliptical disk, then every lower degree curve in

the Poncelet package (see that section for a definition) for B̂(z) := zB(z) is an ellipse

and B̂ is a composition of k degree-2 Blaschke products. Here, the boundary of

the numerical range is the Blaschke curve associated with B̂. This statement about

composition can be generalized to Blaschke products of degree n; see Theorem 5.3.5

below. We also give an example of a Blaschke product of degree-8 for which W (SB)

is elliptical and a “non-example” of a Blaschke product of degree-8 that factors into

three degree-2 Blaschke products, but such that W (SB) is not an elliptical disk.

In Section 5.4, we turn our attention to a deep theorem of Ritt [68] that classifies

decomposability of B in terms of the monodromy group associated with B. See
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also [12, 77] for more recent developments. For this purpose, we start by examining

critical values of Blaschke products with elliptical Blaschke curve. As usual, by the

set of critical values of B we mean {w ∈ D : w = B(z) and B′(z) = 0}. We prove

that if one writes a Blaschke product B of degree 2n as composition of n degree-2

Blaschke products, then B has at most n distinct critical values. After obtaining a

description of a Blaschke product of degree-n with one critical value, we deduce that

if B is such a Blaschke product of degree n = p1p2 . . . pm, then B can be factored in

any order as a composition of m Blaschke products of degree p1, p2, . . . , pm.

In Section 5.5, we describe the monodromy group of B assuming that B is

a normalized Blaschke product (see Section 5.5 for this definition) that is the

composition of n degree-2 Blaschke products with n critical values. We prove that in

this case the monodromy group associated with B is the wreath product of n cyclic

groups of order 2.

In Section 5.6, letting C(T) denote the space of continuous functions from the

unit circle to itself, we study the group of invariants of a finite Blaschke products B;

that is, the group

GB = {u ∈ C(T) : B ◦ u = B|T}.

In [8] Cassier and Chalendar showed that the group of invariants of a Blaschke product

of degree n is a cyclic group of order n. The group of invariants for infinite Blaschke

products with finitely many singularities was considered in [10]. Here we show that

if B is a composition of n degree-2 Blaschke products, say B = Cn ◦ Cn−1 ◦ · · · ◦ C1,

then the group of invariants of Cj ◦ · · · ◦ C1 is of index 2 (and hence normal) in the

group of invariants of Cj+1 ◦ · · · ◦ C1. From this, we are able to obtain a connection

between elements of the group and a particular automorphism of the unit disk of the

form

φa(z) = (z − a)/(1 − az) (5.1.1)

for a ∈ D. From now on, this will be the notation that we shall use for an automor-

phism of the unit disk unless specified otherwise.

5.2. Closure results

We begin by discussing the background required in projective geometry. Given a

field K, for x, y, z ∈ K, we have an equivalence relation defined on K3 \ {(0, 0, 0)}

by (x, y, z) ≃ (x′, y′, z′) if there exists a scalar λ ̸= 0 such that x′ = λx, y′ = λy, and
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z′ = λz. The projective plane P2(K) is defined as the set of equivalence classes for

the relation ≃. In this chapter, our field will be R or C. Points in the real (complex)

projective plane P2(R) are equivalence classes of triples of real (respectively complex)

numbers for the relation above. The real projective plane P2(R) is embedded in the

complex projective plane P2(C).

An algebraic curve in P2(C) is the set of zeros of a homogeneous polynomial f

with complex coefficients. A real algebraic curve is an algebraic curve in the complex

projective plane given by an equation f(x, y, z) = 0, where f is a homogeneous

polynomial with real coefficients. The set of real points of a curve Γ will be denoted

by ΓR and is defined by ΓR = Γ ∩ P2(R).

Since polynomial rings over a field are unique factorization domains, every

algebraic curve C is the union of finitely many irreducible curves, called its irreducible

components. If C1, . . . , Ck are the irreducible components of C with irreducible

defining polynomials f1, . . . , fk, then f = f1 · · · fk is the minimal polynomial defining

C.

5.2.1. Duality and reciprocation about T. If Γ is a real algebraic curve in

P2(C), then the dual of Γ is denoted by Γ∗, where the points correspond to the

tangent lines to Γ.

Note that the dual curve of a general plane algebraic curve Γ is the union of the

dual curves of its irreducible components. In particular, Γ and Γ∗ have the same

number of irreducible components. Moreover, note that the dual to a conic (i.e. a

plane algebraic curve of degree 2) is a conic and the dual to a line is a point. By [36,

Theorem 5.1], duality is involutive, that is (Γ∗)∗ = Γ. Note that the result is stated

under the assumption that the curve has no lines as components, because a point is

not an algebraic curve.

5.2.2. Poncelet’s porism. As we mentioned in Section 1.2, Poncelet discovered

that if there exists a polygon of n-sides that is inscribed in a given conic and

circumscribed about another conic, then infinitely many such polygons exist. The

two conics are said to be n-Poncelet related.

Suppose that an ellipse E1 is inscribed in a convex n-gon that is itself inscribed

in the unit circle; that is, E1 and the unit circle are Poncelet related. Consider the

diagonals that connect vertex k−1 to vertex k+m, for k = 1, . . . , n. Then [6, p. 208]

the envelope of these diagonals is again an ellipse, Em+1, for m = 1, . . . , [n/2] − 1,
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where [x] denotes the greatest integer less than or equal to x. Below are different

versions of the theorems that we use later. These are often referred to as Darboux’s

theorem. The one we will use can be found in [64] or [6, p. 208].

Theorem 5.2.1. Let E1 be an ellipse inscribed in a convex n-gon that is, in turn,

inscribed in T. Consider the diagonals of the Poncelet polygons that leap over m

vertices (i.e., all such diagonals that connect vertex k − 1 with vertex k +m where

k = 1, 2, . . . , n and the vertex numbers are taken modulo n). The envelope of these

diagonals is also an ellipse Em+1 for m = 1, . . . , [n/2] − 1.

These curves were also studied in [31], where the author looks at Poncelet–

Darboux theorems. There, the relevant result relies on the notion of a conic and

a curve being Poncelet–Darboux related, an extension of the notion for two conics

being Poncelet related.

The result from Darboux’s theorem, and the notion of being Poncelet related,

can be extended to the setting of a conic C and a curve S of degree n− 1 (cf. [31,

Subsection 2.1]).

Definition 5.2.2. Let S a curve of degree n− 1 and C be a conic together with a

set of n lines tangent to C. We say that S and C are Poncelet–Darboux n-related, if

S contains all the intersection points of the n tangents to C.

Note that the above definition implicitly includes the main result of a theorem by

Darboux ([27], [31, Theorem 1]): If S contains all the intersection points of n given

tangents, then it will contain the intersection points of any other set of n tangents.

Theorem 5.2.3 (Darboux’s Theorem, cf. [31, Theorem 5]). If a curve S of degree

n− 1 is n-Poncelet–Darboux related to a conic K and if there is a conic C that is

a component of S which is n-Poncelet related to the conic K, then for n odd, the

curve S can be completely decomposed into (n− 1)/2 conics, and for n even, it can

be decomposed into (n− 2)/2 conics and a line.

In other words, the minimal homogeneous polynomial defining the curve S factors

as a product of (n− 1)/2 degree-2 irreducible polynomials if n is odd, and (n− 2)/2

degree-2 irreducible polynomials and a degree one polynomial if n is even.

In the case where K is an ellipse, and hence also for K = T, the tangency

condition in the theorem above implies that S lies outside K. As we are interested in
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studying curves inside the unit circle, we need a dual formulation to Theorem 5.2.3.

This can be obtained by considering C = T and S as the “dual curve” to a closed

convex curve in D. By reciprocation, S will lie outside of T.

Theorem 5.2.4 (cf. [54, Theorem B]). Let C be a closed convex curve in D and

suppose that there is an n-sided polygon inscribed in T and circumscribed about C.

Assume further that C is a connected component of a real algebraic curve Γ in D of

class n− 1 such that each diagonal of the polygon is tangent to Γ. Then for every

point λ of T there is an n-sided convex polygon that is inscribed in T, circumscribed

about Γ, and has λ as a vertex. In the special case when C is an ellipse, the curve Γ

decomposes into (n− 1)/2 ellipses if n is odd, and (n− 2)/2 ellipses and an isolated

point if n is even.

Motivated by the above formulation, and in accordance with Mirman [64], we

have the following definition.

Definition 5.2.5. A smooth closed curve Γ contained in D is an n-Poncelet curve

if for every point λ of T there is an n-sided convex polygon that is inscribed in T,

circumscribed about Γ, and has λ as a vertex.

If we begin with a Poncelet curve that is inscribed in a convex n-gon, Mirman

considers the diagonals of these polygons and denotes the envelope of the diagonals

that skip m vertices, with m ≤ [n/2] − 1, by Km+1. The set K1, . . . , K[n/2] is called

a package of Poncelet curves. Two recent papers [54], [53] provide many details and

examples relevant to Mirman’s work as well as this chapter. In our setting, the Kj

will be ellipses and for j > 1 we sometimes refer to these as lower-degree curves.

Thus, ⋃[n/2]
j=1 Kj is the package of Poncelet curves generated by the convex n-gons.

We will speak of a package of Poncelet curves associated to a Blaschke product B

whenever the vertices of the polygon come from the function B̂(z) := zB(z).

5.2.3. Poncelet, Darboux and the numerical range. Given an n× n matrix A

we let the real part of A and the imaginary part be the self-adjoint matrices defined

by

Re(A) = A+ A∗

2 and Im(A) = A− A∗

2i .

Of course, A = Re(A) + iIm(A). By [58], we may associate a curve Γ of class n in

homogeneous line coordinates via the function fA(u, v, w) = det(uRe(A)+v Im(A)+



5.3. ELLIPSES, NUMERICAL RANGE, AND THE BLASCHKE CURVE 95

w I). Consider the algebraic curve C(A) determined by fA = 0 in P2(C); that is

C(A) = {(u, v, w) ∈ P2(C) : ux+ v y+w z = 0 is a tangent line to fA(x, y, z) = 0}.

Kippenhahn’s theorem says that W (A) is the convex hull of the real points of C(A).

This curve, CR(A), is called the Kippenhahn curve of A.

We will be interested in the numerical range of compressions of the shift operator

associated with finite Blaschke products, see Definition 5.1.2. If we consider SB,

the vertices of each polygon are determined by the function B̂(z) := zB(z) as

follows: Given λ ∈ T, the vertices of the corresponding polygon are the solutions

of B̂(z) = B̂(λ). Such operators have no unitary summand, so by [58, Theorem 2]

their eigenvalues are interior to W (A) and the boundary of W (A) is smooth (see,

for example, [58, Theorem 12]). Our curves have the property that for λ ∈ T the

two sides of the polygons with vertex at λ are tangent to Γ, and every point of Γ

is such a point of tangency, [43]. We see from the expression for fA that fA is a

homogeneous polynomial of degree n with real coefficients, which tells us that the

dual of Γ, denoted by Γ∗, is a real algebraic curve in P2(C). It is known [54, Lemma

3.10] that if Γ is a real algebraic curve of class n− 1, then
[n/2]⋃
j=1

Kj = Γ.

5.3. Ellipses, Numerical Range, and the Blaschke curve

5.3.1. Blaschke products and composition. We begin by considering the

Blaschke curve, which is defined as follows.

Definition 5.3.1. Let B be a Blaschke product of degree n+ 1. Then the Blaschke

curve C associated with this Blaschke product is a curve inscribed in the convex

polygons with vertices at the solutions zj ∈ T of B(zj) = λ for each λ ∈ T. Each

point on the curve is the point of tangency of such a circumscribing convex polygon.

Note that a Blaschke curve is assumed to be contained in D. It is known that the

line joining the zj to zj+1 is tangent to C at a single point, the curve contains no line

segments, is a differentiable algebraic curve, and every point on the curve C can be

obtained using the Blaschke product as described in the definition. See [43, 45, 18].

Note that a Blaschke curve is determined by the values the Blaschke product B

identifies. The actual value λ associated with a polygon is irrelevant. Therefore, if
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φ is an automorphism of the disk and B is a Blaschke product, since φ ◦B and B

identify the same points on the circle, the two Blaschke curves will be the same, but in

general different Blaschke products produce different Blaschke curves. Furthermore,

even though a Blaschke curve is a Poncelet curve, not all Poncelet curves are Blaschke

curves, [62]. The relationship between the geometry of the numerical range (elliptical

numerical range) and composition of degree two Blaschke products is given in [47].

When we assume that B(0) = 0, writing B(z) = zB1(z), it can be shown that the

Blaschke curve is the smooth convex curve in D that is the boundary of the numerical

range of an operator that is unitarily equivalent to the compressed shift operator SB1

as defined in Definition 5.1.2 (see [17, 43, 45].) This class consists of contractions T

with eigenvalues inside the open unit disk D, that satisfy rank (I − T ⋆T ) = 1.

The proof that an elliptical numerical range implies that Blaschke products are

compositions is an extension of theorems for degree-4 Blaschke products [40, 47],

and degree-6 Blaschke products in [53]. We will use the following theorem:

Theorem 5.3.2. [15, Theorem 2.3] Given two sets of points z1, . . . , zn and z′
1, . . . , z

′
n

interlaced on the unit circle, there is a Blaschke product B of degree n such that

B(0) = 0, B(zj) = B(zk) and B(z′
j) = B(z′

k) for all j and k. This Blaschke product

B is unique up to a rotation factor λ with |λ| = 1.

Theorem 5.3.3. Let B be a Blaschke product of degree 2n − 1. If W (SB) is an

elliptical disk then every lower degree curve in the Poncelet package for B̂(z) := zB(z)

is an ellipse or a point and B̂ is a composition of n degree-2 Blaschke products.

Proof. By [43, Theorem 2.1], the boundary of W (SB) is circumscribed by a 2n-sided

convex polygon. Applying Darboux’s theorem as given in Theorem 5.2.1 implies,

among other things, that all curves inscribed in the appropriate convex polygons

with 2m sides, m = 2, 3, . . . , n are elliptical or a point. In addition, by Theorem 5.2.4,

since the degree of the dual curve is odd, the algebraic curve in question, which is

the dual of the dual, will decompose into conics and a point. The set of diagonals

joining vertex k with vertex k + 2n−1 (mod 2n) will yield the point. It is shown in

[47] that if B̂ has degree 4 and elliptical numerical range then B̂ is the composition

of two degree-2 Blaschke products. We prove the rest by induction.

So suppose that if B̂1, defined by B̂1(z) = zB1(z), is a Blaschke product with

corresponding Blaschke curve (that is, the boundary of W (SB1)) elliptical and the
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degree of B̂1 is equal to 2n1 with 2 ≤ n1 < n, then B̂1 is the composition of n1 degree-2

Blaschke products. Now consider B̂ of degree 2n. According to Theorem 5.2.1, if

we have an ellipse that is inscribed in a convex n-gon that is itself inscribed in T,

then the diagonals of the circumscribing polygons (that connect vertex k − 1 with

vertex k +m for k = 1, 2, . . . , 2n and indices chosen modulo 2n), have as envelope

an ellipse Em. Take the vertices of two polygons, Pz and Pw, and denote them

by {z0, . . . , z2n−1} and {w0, . . . , w2n−1}. If we skip a point when connecting points

identified by B̂ on T, Theorem 5.2.1 tells us that we will see a Poncelet ellipse and

since these polygons have 2n−1 interlaced vertices, these line segments will produce a

closed convex polygon. So, skipping a point in each set {zj} and {wj}, we obtain

four convex polygons with 2n−1 vertices {z2j}, {z2j+1}, {w2j}, and {w2j+1}. By

Theorem 5.2.1, there is one ellipse inscribed in these convex polygons. That ellipse

is a Poncelet ellipse and therefore, by [44, p. 219] it is also a Blaschke curve. Thus,

there is a Blaschke product D of degree 2n−1 with D(0) = 0 that identifies each point

in a set with every other point in the same set: For j ̸= l,

D(z2j) = D(z2l) = λ1, D(z2j+1) = D(z2l+1) = λ2,

and

D(w2j) = D(w2l) = γ1, and D(w2j+1) = D(w2l+1) = γ2.

Now because the points are interlaced and a Blaschke product has increasing argument

on the unit circle, we may assume without loss of generality that

arg(λ1) < arg(γ1) < arg(λ2) < arg(γ2).

Therefore, by [46, Theorem 9] there is a degree-2 Blaschke product C mapping 0 to

0 such that

C(λ1) = C(λ2) and C(γ1) = C(γ2).

Thus C ◦ D identifies the vertices of Pz and C ◦ D identifies the vertices of Pw.

Further C ◦D(0) = 0.

By the uniqueness guaranteed by Theorem 5.3.2, there exists λ ∈ T such that

B̂ = λ(C ◦ D). Since D is degree 2n−1 with D(0) = 0 that identifies every other

point in our sets, Theorem 5.2.1 applies to D and therefore the induction hypothesis

applies to D. Thus D factors into a composition of n− 1 Blaschke products of degree

2 and therefore the result holds. □
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Remark 5.3.4. If all the lower-degree curves (that is, when we skip at least one

vertex) are ellipses, one can use a counting argument to show that the curve that we

obtain by connecting successive points is also a conic: Consider the boundary of the

numerical range. By Kippenhahn’s theorem [58, Theorem 10] this is an algebraic

curve and the dual curve Γ has degree 2n − 1. Since the degree of the dual curve is

odd, and we assume that each lower-degree component is an ellipse, no component

will be a point. Given our assumptions, the numerical range is contained in the open

unit disk and the lower-degree curves are all ellipses. Therefore, since the ellipses

skipping more than 2n−1 points can be matched with one of those skipping fewer

than 2n−1 points and the one skipping exactly 2n−1 points yields a single point, we

get 2n−1 − 2 ellipses for the lower-degree cases. (For example, in case we have 8 = 23,

we have ellipses when we join every 2nd or 3rd point, and we get a point when we

join every 4th point. The case when we join every 5th point is the same as joining

every 3rd point and joining every 6th point is the same as joining every second point.

The case when we join subsequent points is the one we are trying to determine.)

There are 2n−1 − 2 ellipses, a line, and the curve we are trying to identify. Now the

dual of an algebraic curve of degree 2 maintains the same degree and the dual of a

line is a point, so the degrees of the dual curves corresponding to components that

we obtain by skipping at least one point therefore total 2(2n−1 − 2) = 2n − 4 for

those corresponding to ellipses and 1 for the line, or 2n − 3. But we should have

degree 2n − 1, so the component of Γ that we have not yet counted, namely the one

corresponding to the curve in which we do not skip any points, must have degree 2.

Therefore, it must be a conic and the dual of the dual (the original curve) is contained

in the boundary of the numerical range and is a compact convex subset of D. Since

the dual of a degree-2 curve is a conic, it must be an ellipse. In Example 5.3.7 we

present a Blaschke product of degree 2n such that W (SB) is not elliptical, but all

lower-degree curves corresponding to polygons that are Poncelet curves inscribed in

convex polygons with 2m sides with m < n are elliptical. Of course, Theorem 5.2.3

tells us that none of the curves that are 2n-Poncelet can be elliptical. This is also

illustrated in this example.

The proof of Theorem 5.3.3 works in greater generality, as indicated below. We

have stated it in this way because of our focus on Blaschke products that have degree

a power of 2.
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Theorem 5.3.5. Let B be a degree n Blaschke product with an elliptical Blaschke

curve. Then for each factor k > 1 of n, there are Blaschke products C of degree k

and D of degree n/k such that B = C ◦D.

The proof is essentially the same as that of Theorem 5.3.3 above. We provide a

brief outline of the proof, indicating places where the proof will be slightly different.

Proof. Suppose n = km, with k,m ∈ N \ {1}. Let P1 and P2 denote two Poncelet

polygons with n vertices, z1, . . . , zn and w1, . . . , wn. Using every k-th point as a

vertex, we get k convex m-gons and, applying Theorem 5.2.1, we may conclude that

they circumscribe the same ellipse. Since this ellipse is a Poncelet curve contained

in D inscribed in a convex polygon that has all of its vertices on T, as above there

is a Blaschke product D of degree m that maps 0 to 0 and identifies each set of m

vertices of each of the respective polygons. That is, these m-gons are the convex

polygons circumscribing the Blaschke curve of D. Now there are k polygons with

m vertices and D is exactly m-to-1, so D takes k values on the k sets, {zj}, and k

other values on the {wj}. This gives us two sets of k values that can be ordered to

be interspersed on the unit circle. Therefore, we may choose a Blaschke product C

of degree k such that C(0) = 0 and C identifies these two sets of k values. Thus

C ◦D maps 0 to 0 and identifies the same two sets of points as B. As in the previous

theorem, Theorem 5.3.2 implies that B = C ◦D. □

5.3.2. Examples of elliptical and non-elliptical curves. In this section, we

provide an example of a Blaschke product of degree 8 with an elliptical Blaschke

curve as well as a Blaschke product of degree 8 with non-elliptical Blaschke curve.

Example 5.3.6. We begin with an example of a Blaschke product C of degree 8 with

an elliptical Blaschke curve. To connect this to the numerical range of a compression

of the shift, we need C(0) = 0. Then W (SC(z)/z) will have elliptical numerical range.

Let a ∈ D. Let φa(z) as in (5.1.1) and consider the automorphism φ(z) =

φa(z) ◦ eiπ/4z ◦ φa(z), which has the property that the composition φ[8](z) = z for

all z ∈ C and no lower-degree composition satisfies φ[j](z) = z for all z ∈ C. The

Blaschke product B(z) = (φ(z))8 is degree 8 and [16, Corollary 11 ] shows that for

each λ ∈ D, the line segments joining the points for which B(z) = λ circumscribe

an ellipse. By Theorem 5.2.1 we expect that the polygons produced by connecting
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vertices, as described in that theorem, will also have an ellipse (or point) as their

envelope.

To obtain a Blaschke product that maps the origin to itself, we consider the

automorphism φα(z) := α−z
1−αz

where α = B(0), and note that since the Blaschke

product C = φα ◦B identifies the same points on the unit circle as B, the Blaschke

product C has an ellipse as Blaschke curve. It is easy to see that C factors into a

composition of degree-2 Blaschke products; for example, we may take (φα ◦ z2) ◦ z2 ◦

(φa(z))2. (It is shown in [16] that the curves corresponding to skipping 2 and 4 points

also product Poncelet ellipses, but this follows directly from Darboux’s theorem as

well.) When we take a = .5 we obtain the pictures below. Note that each of the

ellipses in the family has two of the zeros of the Blaschke product as foci; see [64] for

more information on the location of foci. The zeros of the Blaschke product C are

obtained using Mathematica:

− 0.158011 + 0.369131i, 0.0141808 + 0.629309i, 0.241238 + 0.685693i,

0.401172−0.0169046i, 0.42801+0.619984i, 0.555657+0.468632i, 0.58342+0.236332i

plus one zero at zero.

Figure 1. Degree-8 Blaschke product example

We say more about this in Proposition 5.4.8.

Example 5.3.7. We now turn to an example of a “non-example”; that is, we give an

example of a Blaschke product of degree 8 that factors into three degree-2 Blaschke

products but such that the Blaschke curve is not elliptical. See Figure 2.

Let a = .844 and consider the Blaschke product

B(z) = z4
(
z4 − a

1 − az4

)
.
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This Blaschke product has four zeros at .84,−.84, .84i,−.84i and a zero of order 4 at

zero. It is also clear that B = B2 ◦ B1 ◦ B1 where B1(z) = z2 and B2(z) = z(z−a)
1−az

.

Due to the symmetry of the problem, we obtain vertical and horizontal tangent lines

to the Blaschke curve when B(z) = −1. The solutions to this equation are denoted

by z1, z2, . . . , z8. Using Mathematica we obtain the eight solutions and we are able

to compute the semi-major and semi-minor axis and we find that they are both equal

to .965767. Therefore, if this were an ellipse, the equation would be

x2 + y2 = .9657672.

By construction this circle will be tangent to the horizontal and vertical segments in

the circumscribing polygon, but it must be tangent to all other sides as well. Since

it must be tangent to the line segment joining z1 and z2, we compute the distance

from the origin to this line segment. The line segment has equation:

x+ y = 1.22518.

The distance from the origin to this line is
1.22518√

2
= .866333 ̸= .965767.

Therefore, our assumption that this is a Poncelet ellipse must be incorrect. When

we connect every third point, things look quite different, see Figure 3.

Recall [54, Theorem 3.8], which says that if d is a divisor of n and d ≥ 3, then

the number of curves Ck, 1 ≤ k ≤ [n/2], that have the d-Poncelet property is Φ(d)/2,

where Φ is Euler’s totient function, counting the positive integers up to d that are

relatively prime to d. This implies that for n = 8, if Γ is a complete Poncelet curve,

then C1, C3 are 8-Poncelet curves, C2 is a 4-Poncelet curve and C4 a 2-Poncelet curve,

possibly consisting of a single point (cf. [54, Example 3.12]). Thus, Theorem 5.2.3

does not apply in this setting.

Figure 2. Degree-8 Blaschke product Poncelet curves (or point)
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Figure 3. Degree-8 Blaschke product non-conics

Now suppose that we connect every other point, which yields a convex quadrilat-

eral. Solving

z4(z4 − a)/(1 − az4) = 1,

we see that four vertices are 1, i,−1,−i. The other four are ±1/
√

2 ± 1/
√

2i. Both

of these quadrilaterals circumscribe the circle |z| = 1/
√

2. In this case, D(z) = z4

identifies two sets of vertices of circumscribing quadrilaterals. Since two such sets of

points determine such a Poncelet curve [45], D identifies all points in a set of vertices

and we see that the circle is the Blaschke curve associated with D. As a consistency

check, the matrix associated with SD(z)/z is the 3 × 3 Jordan block and its numerical

range is the closed disk of radius cos(π/4).

5.4. Critical Values of Blaschke Products with Elliptical Blaschke Curve

In this section, we study results that follow from understanding the critical values of a

Blaschke product. That this is connected to composition of Blaschke products follows

from results of Ritt [68] and Cowen [12], and this will be discussed in Section 5.5. A

discussion of this also appears in the book, [42]. Note that by Theorem 5.3.3, if B

is of degree 2n and has an elliptical Blaschke curve, then B is a composition of n

degree-2 Blaschke products.

The next theorem is useful when we count the number of critical points of a

Blaschke product in D.

Theorem 5.4.1 (Walsh’s Blaschke product theorem [73, p. 377]). Let B be a Blaschke

product of degree m with zeros a1, . . . , am ∈ D. Then B has exactly m − 1 critical

points in D and they lie in the convex hull of the set {0, a1, . . . , am}. The critical

points of B outside D are the conjugates, relative to T, of those in D.
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5.4.1. Blaschke product with few critical values. The following shows that

when we have a Blaschke product of degree 2n that has a Blaschke curve that is

an ellipse, then we have far fewer critical values than 2n − 1. Recall that the set of

critical values is the set

{w ∈ D : w = B(z) and B′(z) = 0},

and the set of critical values is

{z ∈ D : B′(z) = 0}.

Example 5.4.2. Suppose B = C ◦ D with C and D degree 2. Then, because

B is degree 4, we know that there are 3 critical points in D (for example, see

Theorem 5.4.1) and, therefore, at most 3 critical values. Let z0 be the point with

D′(z0) = 0 and w0 the point with C ′(w0) = 0. Let D(z1) = D(z2) = w0. Computing

B′(z) = C ′(D(z))D′(z), we get critical points of B at z0, where D′(z0) = 0, and

at z1, z2 where C ′(D(z1)) = C ′(D(z2)) = C ′(w0) = 0. But B(z0) is one critical

value and B(z1) = C(D(z1)) = C(D(z2)) = B(z2) is the only possibility for the

second. So B has at most two critical values. We generalize this argument below in

Proposition 5.4.3.

Proposition 5.4.3. Let B = B1 ◦B2... ◦Bn be a composition of n Blaschke products

with degBj = kj for j = 1, . . . , n. Then B has at most ∑n
i=1(ki −1) (distinct) critical

values.

Proof. We shall prove this by induction. For n = 1, the proposition is true. Suppose

that the statement is true for B = B1 ◦ ... ◦Bn−1, a composition of n− 1 Blaschke

products with degBj = kj where 1 ≤ j ≤ n − 1; that is, B has a maximum of∑n−1
j=1 (kj − 1) critical values. Let p = Πn−1

j=1kj denote the degree of B and consider

C = Bn ◦ B, with degBn = kn. Since C ′(z) = B′
n(B(z))B′(z), all the critical

points of B are critical points of C that generate at most ∑n−1
j=1 (kj − 1) critical

values of C. We know that Bn has kn − 1 critical points and we denote them by

w1, ..., wkn−1. Since B is a p to 1 map, there are p values z(wj)
1 , ..., z

(wj)
p such that

B(z(wj)
j ) = wj for every j. Hence, z(wj)

1 , ..., z
(wj)
p−1 are critical points of C for every wj,

but C(z(wj)
1 ) = ... = C(z(wj)

k1−1) = Bn(wj), and so these critical points generate at most

kn − 1 critical values. Then C has a maximum of (kn − 1) +∑n−1
j=1 (kj − 1) critical

values, as desired. □
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Corollary 5.4.4. Let B be a composition of n-degree 2 Blaschke products. Then B

has at most n (distinct) critical values.

The following results will be useful in this section (see also [72, 80]):

Theorem 5.4.5. [50] Let z1, . . . , zd denote (not necessarily distinct) points in D.

Then there exists a unique finite Blaschke product of degree d + 1 with B(0) = 0,

B(1) = 1 and critical points at zj.

Corollary 5.4.6. Two proper holomorphic maps f, g : D → D have the same

critical points, counted with multiplicity, if and only if f = τ ◦ g for some conformal

automorphism τ of D.

The following theorem will be useful in Section 5.5 when we discuss the monodromy

group associated with Blaschke products with one critical value. We have been unable

to locate a reference for this exact result in the literature, so we present the proof

below. (A related result can be found in [38].)

Theorem 5.4.7. Let B be a Blaschke product of degree n with one critical value,

w. Then all critical points of B are equal to a point a ∈ D, and there exists an

automorphism τ such that

B(z) = τ
(
z − a

1 − az

)n

.

Proof. There exist critical points z1, . . . , zn−1 such that B(zj) = w. There are n

points (possibly the same) satisfying B(z) = w, so we let these be denoted z0, and

zj for j = 1, . . . , n− 1. Let

C(z) = B(z) − w

1 − wB(z) =
(
z − z0

1 − z0z

)(
z − z1

1 − z1z

)
· · ·

(
z − zn−1

1 − zn−1z

)
.

Now,

C ′(z) = (1 − |w|2)B′(z)
(1 − wB(z))2 ,

so C ′(zj) = 0 for j = 1, . . . , n − 1. So, C has the same critical points as B and

therefore each zero, z1, . . . , zn−1, is a zero of order greater than 1, and we may write

C as

C(z) =
(
z − zm1

1 − zm1z

)j1

· · ·
(
z − zml

1 − zml
z

)jl

,

where l < n− 1 and zm1 , . . . , zml
distinct. (If no zj = z0 for j ≥ 1, then one jk = 1

and zmk
= z0.)
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Now let us write C(z) =
(

z−zm1
1−zm1 z

)j1 ×D(z), where D(zm1) ̸= 0. Then C ′(z) has

a zero at zm1 of at least order j1 − 1. Suppose it has a zero of order strictly greater

than j1 − 1. Then

C ′(z) = j1

(
z − zm1

1 − zm1z

)j1−1

×D(z) +
(
z − zm1

1 − zm1z

)j1

×D′(z).

Since C ′ is assumed divisible by
(

z−zm1
1−zm1 z

)j1 , we would have D divisible by
(

z−zm1
1−zm1 z

)
.

But this is impossible because D(zm1) ̸= 0.

Applying this argument to each factor involving zmk
for k = 1, . . . , l, we see that

each such zmk
can contribute at most jk − 1 critical points, so the total number

of critical points that we get from the zmk
is ∑l

k=1(jk − 1) = n − l. But there are

n − 1 critical points, so we must have l = 1; in other words, all zj must be equal.

Thus, C has the same critical points as
(

z−z1
1−z1z

)n
and by Corollary 5.4.6, there is an

automorphism τ1 such that

C(z) = τ1 ◦
(
z − z1

1 − z1z

)n

.

Letting τw(z) = z−w
1−wz

, we have C = τw ◦B. Thus, B = τ−1
w ◦ C and

B(z) = τ−1
w ◦ C(z) = τ ◦

(
z − z1

1 − z1z

)n

,

with τ = τ−1
w ◦ τ1.

□

Proposition 5.4.8. Let B be a Blaschke product of degree n with one critical value.

Then B has an elliptic Blaschke curve.

Proof. By Theorem 4.7, B can be written as

B(z) = τ ◦
(
z − a

1 − āz

)n

,

where τ is an automorphism. But by [16, Corollary 10] a Blaschke product of the

form
(

z−a
1−āz

)n
has an elliptic Blaschke curve, and this does not change by composing

with automorphisms. □

Corollary 5.4.9. Suppose B is a Blaschke product of degree n = p1p2 . . . pm with

one critical value. Then B can be factored in any order as a composition of m

Blaschke products of degree p1, . . . , pm.

Proof. This follows from the form of B in Theorem 5.4.7. □
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5.5. The monodromy group and compositions of Blaschke products

We begin by considering the following from Cowen’s paper [12], [42, Chapter 9], or

[77]. This is closely related to a theorem of Ritt.

5.5.1. The decompositions of Ritt and Cowen. The decompositions of Ritt

and Cowen require consideration of the critical values and a normalization of the

Blaschke product. In general, if a Blaschke product has degree n, there are at most

n− 1 critical points in D (as is the case for polynomials) and at most n− 1 critical

values. However, as we have seen in Section 5.4, when the Blaschke product is a

composition, there are fewer critical values. Following Cowen, we say that a finite

Blaschke product is normalized if B(0) = 0, B′(0) > 0, and B(a) = 0 implies that

B′(a) ̸= 0. Given a Blaschke product B it is always possible to find α, β ∈ D and

λ ∈ T so that

λφα ◦B ◦ φβ

is in normalized form; see [42, Proposition 9.2.6] for details. Let S denote the set of

critical points, so that B(S) denotes the critical values. The oriented closed loops

in D \B(S) based at the point 0 form a group. Given two loops γ, δ, the product

γ · δ is obtained by “gluing” them; that is, since they both start and end at zero,

we begin by following δ and then continue with γ. We consider homotopy classes of

such loops, recalling that loops are homotopy equivalent if one can be deformed to

another in D \B(S). We denote by γ∗ the equivalence class of the curve γ. Since we

assume that 0 is not a critical point, B−1 has n branches at 0 that will be denoted

by g1, g2, . . . , gn, where g1(0) = 0. We let GB be the group associated with B that

consists of the set of permutations of {g1, . . . , gn} induced by the loops in D \B(S)

based at 0. The connection to composition (or, more precisely, decomposition) is

described in Theorem 5.5.1. We say that a group G respects a partition P if for each

g ∈ G and P ∈ P, there exists P ′ ∈ P so that gP ⊂ P ′. If G respects a partition,

then each element of the partition will have the same cardinality and this is called

the order of P.

For a given Blaschke product B, we consider the set, B(S), of critical values of B

and by LB we mean the set of continuous curves in D\B(S) for which γ(0) = γ(1) = 0.

Cowen showed [12] that the monodromy group

GB := {γ∗ : γ ∈ LB}
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can be computed from a given Blaschke product B and its local inverses; the

precise statement appears in Theorem 5.5.1. He states that if one knows all of the

normal subgroups of the group GB then one can construct all possible non-trivial

compositional factorization of B, but that this association of normal subgroups and

compositions is more complicated than “one would hope.” Thus, we focus on the

generators, rather than the group itself.

Theorem 5.5.1 (Ritt, Cowen). Let B be a finite normalized Blaschke product. If

P is a partition of the set of branches of B−1 at 0, {g1, g2, . . . , gn} that GB respects,

then there are finite Blaschke products JP and bP with the order of bP the same as the

order of P so that B = JP ◦ bP. Conversely, if J and b are finite Blaschke products

so that B = J ◦ b then there is a partition Pb of the set of branches at 0 that GB

respects such that the order of Pb is the same as the order of b.

Cowen makes no claim about the equivalence of factorizations, though that is

discussed in [65]. Obviously, we may write B = (C ◦ φa) ◦ (φ−1
a ◦ D) where φa

is an automorphism. But what is perhaps less obvious is that the degrees of the

decompositions may vary. For example,
(

z−a
1−az

)6
= z2 ◦

(
z−a
1−az

)3
= z3 ◦

(
z−a
1−az

)2
.

However, there is a notion of length for a Blaschke product (which requires factoring

into prime factors) and the length in this case is an invariant under such factorizations,

[65, p. 24]. Decompositions were also considered in [77], where a method to visualize

the monodromy group is presented. We give a sense of the main ideas here.

5.5.2. Visualizing the monodromy group. Following Wegert, we consider the

basins of attraction, Zk, for the Blaschke product and their images, Dk. Recall

that the basins are simply connected and their boundaries are formed by the stable

manifolds Sj of the critical values and arcs on the unit circle. Then B(Sj) is a radial

segment that has one endpoint at the critical value and B maps each basin Zk in a

one-to-one fashion onto slit disks Dk = D \ Rk, where Rk denotes the union of all

radial slits B(Sj) of stable manifolds Sj that belong to the boundary of Zk. The

Riemann surface is obtained from the Dk as follows: two slit disks are connected if

Zk and Zj have a common boundary component; we glue Dk and Dj along the image

of the common component; that is, along the slit. Because Wegert’s description

depends on the phase plot, it is not possible to distinguish points that are sent to

values with the same argument. To handle this problem, in what follows we will
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assume that the Blaschke product B under consideration is regularized; that is, B

maps zero to zero, has simple zeros, and has the property that whenever z1 and z2

are critical points that satisfy B(z1)/B(z2) > 0, then B(z1) = B(z2). A Blaschke

product B can be regularized by composing with a disk automorphism, φ ◦B.

We have the following theorem from [77].

Theorem 5.5.2. Let B be a regularized Blaschke product and let S denote the union

of all stable manifolds of all saddle points of B. Then the basins Z1, . . . , Zn of the

zeros z1, . . . , zn of B are the simply connected components of D \ S. The restriction

Bk of B to an arbitrary basin Zk maps Zk bijectively and conformally onto D \Rk,

the unit disk with some radials slits, denoted here by Rk.

Example 5.5.3. Consider a degree-8 Blaschke product B. In visualizing what is

happening using Wegert’s method, due to the coloring, we assume the Blaschke

product is regularized. To visualize the monodromy group, we consider loops (one

from each homotopy equivalence class) that encircle the critical value exactly once.

Wegert’s idea is to show how the generators of the monodromy group can be read off

the phase plot.

Figure 4. Blaschke product tiling and a possible generator

Consider a Blaschke product with a 0 at 0 and seven other zeros. Figure 4 is

obtained via a coloring and tiling of the plane. It shows the pullback of the plane

under B or the phase plot of B. There are seven critical points counted according to

multiplicity, eight zeros, and one critical value in the red region. On a plot such as

the one in this example, one can spot a critical point in the grid as a point where the

grid does not form a square; that is, where the function is not conformal. These tiles,

with more than four vertices, are referred to as the exceptional tiles. In this case, we

see the critical value in red. To compute the monodromy group, one needs to find

the eight zeros. They are generally easy to spot because they are the places where all
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the colors come together. Thus, we see a critical point surrounded by 8 zeros. Now

a loop in the plane either circles the critical value or misses it. As in the particular

degree-4 case in [12] (see also [42]), not circling the critical value corresponds to the

identity map in the monodromy group. If the map circles the critical value, then

when we compute the final element of the continuation, each zero will move to the

next one and we obtain the generator (12345678) of the cyclic group on 8 elements.

Essentially, zeros that are associated to critical points corresponding to the same

critical value are moved simultaneously.

5.5.3. Computing monodromy groups. To illustrate this method and for later

reference, we provide a detailed proof that generalizes an example of Cowen. We

use his construction for Blaschke products here. We note that this also follows

immediately from an observation in [77, p. 970] that generators of GB are in a

one-to-one correspondence with the critical values of B.

Proposition 5.5.4. Let B be a normalized Blaschke product of degree n with one

critical value. Then the monodromy group associated with B is a cyclic group of

order n.

Proof. The proof is illustrated in Figure 5 and Figure 6. For each Blaschke product

with a single critical value, we know from Theorem 5.4.7 that there will be one

critical point of order n− 1 in D. Let A and B be two generic points. Draw a path

starting at A, through the critical value and ending at B (picture on the right). If the

Blaschke product is of degree n, the inverse image will have n curves, each passing

through the critical point (picture on the left). Note that because the argument of

the Blaschke product is increasing, the inverse images (A) and (B) of the points A

and B are interlaced. The inverse image of a loop based at the origin will begin at

a zero of the Blaschke product and, if oriented counterclockwise, will always pass

through the curve associated with (A), that is, the curve from the critical point

to (A) (drawn in purple in Fig. 5.) The inverse image of the loop must then pass

between the critical point and B and it must end at a zero. Thus, it has moved from

a zero z1 to a zero z2. This will be repeated until the curve returns to z1. Thus,

the permutation associated with this is (123 . . . n). If the loop does not contain the

critical value, then we obtain the identity. So the monodromy group is the cyclic

group on n elements. □
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Figure 5. Inverse image. Figure 6. Loop.

We begin with more discussion of Blaschke products of degree 4. These will also

serve as the first step of the induction in Theorem 5.5.8.

In Figure 7, we illustrate the effect of composing two Blaschke products C and

D that vanish at 0. The tiled phase plots of D and C are shown on the left and in

the middle, respectively, and on the right, we see their composition, B = C ◦D. For

further information on phase plots see [72].

Figure 7. Composition of two Blaschke products

The zeros are represented by the black dots and the critical points (which lie on

the black lines) are represented by gray dots. In the first picture on the left, the

Blaschke product D has two zeros and there are two basins each of which is mapped

by D onto the unit disk. When composed with C, we obtain the Blaschke product B,

which is illustrated on the right. Note that B has four zeros and because C(0) = 0,

two of these are the zeros of D. We see that one zero has been added to each of

the two basins that appear in the first picture on the left (note that the common

boundary of the basins of D is not a boundary of the basins of B; see Figure 8). We

are really grateful to Elias Wegert for providing us with Figures 7 and 8.
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Figure 8. Basins of the Blaschke products

Considering this example in more detail, we impose a grid on the phase plot of

B obtaining Figure 9.

Figure 9. Phase plot with grid

Here, we see that when a loop based at 0 circles the critical value associated with

the critical points labelled C2 and C3 in the figure, the inverse image will produce

two loops, one moving from one of the zeros of D (labeled (1)) to a zero introduced

by composition that is labeled (3) and, simultaneously, the second loop will move

from the zero (2) of D to the newly introduced zero (4). This yields the product of

the two transpositions, (13)(24).

Note that there is a difference between our work here and that in [77] in that we

assume that B(0) = 0 and base our loops at 0, while the loops in [77] are arbitrarily

small loops about critical points, labeled in blue.

Example 5.5.5. Let B be a normalized Blaschke product of degree 4 with B = C ◦D

with B(0) = 0. As in [15, Proposition 2.1] we may assume that B(0) = C(0) =
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D(0) = 0, C and D degree 2, and B,C, and D regularized. In [42, Section 9.4] two

(modified) examples of Cowen’s Blaschke products of degree 4 that are compositions

are presented. In one case, the group is computed to be the cyclic group of order 4

generated by (1234). This example has one critical value. The second example has

two critical values. Here, the monodromy group is shown to be the dihedral group

on 4 elements (order 8). We show that this works in general, for regularized Blaschke

products of degree 4 that are compositions of two (regularized) degree-2 Blaschke

products and have two distinct critical values. We consider two cases.

(1) If B has one critical value, then by Proposition 5.5.4, the monodromy group

is cyclic and generated by the permutation (1234).

(2) Suppose that B has two critical values. Note that since we assume D(0) = 0

we must have D(z) = z(a − z)/(1 − az) = zφa(z) for some a ∈ D. Since

we assume that B has simple zeros, we may assume that a ̸= 0. So,

D(φa(z)) = φa(z) (φa(φa(z))) = zφa(z) = D(z). Therefore,

B(φa(z)) = C ◦D(φa(z)) = C ◦D(z) = B(z).

So,

B′(φa(z))φ′
a(z) = B′(z).

But φa has no critical point in D so we have B′(z) = 0 if and only if

B′(φa(z)) = 0.

Since the set of critical points {z1, z2, z3} must be invariant under φa

and φa is self-inversive, either φa(z3) = zj for j ∈ {1, 2} or φa(z3) = z3.

If the critical points are distinct, then we may assume that z2 = φa(z1).

Because we assume the points are distinct, we can only have φa(z3) = z3. A

computation shows that, since a ̸= 0, we have z3 = 1−
√

1−|a|2
a

= a⋆.

If the critical points are not distinct, then two must be equal, say

z1 = z2. If φa(z1) ̸= z1, then the third must be φa(z1) = z3. But then

B(z1) = B(z2) = B(φa(z1)) = B(z3) and there is only one critical value,

which is the case that we have already handled. Therefore z1 = z2 = a⋆

and either φa(z3) = z3 or φa(z3) = z1. Either way, all three points must be

equal and B would have only one critical value.

We now turn to the monodromy group in this case. We know that B has

three critical points z1, φa(z1), and a⋆ and four zeros. In this case, a loop



5.5. THE MONODROMY GROUP AND COMPOSITIONS OF BLASCHKE PRODUCTS 113

circling a critical value corresponding to one critical point (the critical point

of D) will yield a transposition. (See the detailed discussion above.) We

assume, upon re-numbering, that it is (12). We know that there are just two

critical values and therefore two generators. Each zero of D will remain when

we compose with C and we add two more zeros, one to each basin, and two

more critical points. Thus, a loop circling one critical value corresponding to

two critical points will move points simultaneously about the other critical

points and therefore will yield a generator that is a product of transpositions,

say (13)(24), while a generator circling both will yield (1324), which is the

product of these two. We may choose either as our second generator, since

(12)(13)(24) = (1423) = (1324)−1 and (12)(1324)−1 = (12)(1423) = (13)(24),

so both groups will be the same. Thus we can replace these three generators

with just two, namely (13) and (12)(34), which is the number of critical

values.

This second set of generators yields a group that is isomorphic to the wreath product

of two cyclic groups of order two; that is, the group, Z2 ≀ Z2. We say more about

this below.

5.5.4. Wreath products and trees. The theory of wreath products is often

explained by thinking of them as groups acting on a finite rooted tree. We are

grateful to Peter Brooksbank for providing this background on wreath products.

Let T = Tk denote a binary tree of height k, where k ≥ 1 and let n = 2k. Setting

Ω = Ωk = {1, . . . , 2k}, one can label nodes and leaves of the tree as follows: start

labelling the root node by Ω and rest of the nodes of T with subsets of Ω. If a node

at level 0 ≤ j < k is labelled with {m + 1,m + 2, . . . ,m + 2k−j} for some integer

m, one can label its left child at the level j + 1 with {m+ 1, . . . ,m+ 2k−(j+1)} and

the right child with {m+ 2k−(j+1) + 1, . . . ,m+ 2k−j}. In this manner the leaves of

the tree are labelled from left to right with {1}, . . . , {n} or, equivalently, 1, . . . , n.

Let Γ = Γk denote the group of automorphisms of the binary tree T and let Sym(Ω)

be the symmetric group on Ω. One can identify Γ with its image in Sym(Ω) by

noticing that the action of Γ on Ω gives a faithful representation Γ → Sym(Ω) (See

[30, Pp. 45-50] for the definition of wreath product). Additionally, since Γ permutes

the nodes at each level, the block labels are permuted in the action at each level

making it possible to view Γ and its iterated wreath product structure.
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Consider the following elements of Sym(Ω)

σk := (12), σk−1 = (13)(24), . . . , σ1 :=
2k−1∏
l=1

(l(l + 2k−1)).

Then each σj is an automorphism of the labelled tree T; in fact σj is an automorphism

of the leftmost subtree rooted on level j − 1.

For example, the tree for k = 3 is presented in Figure 10. The group is a

semi-direct product generated by σ3 = (12), σ2 = (13)(24), σ1 = (15)(26)(37)(48) and

has 128 = 21+2+4 elements.

�1

�2

�3

Figure 10. Tree for k = 3

Next we present a well-known result on three basic properties of the group of

automorphisms of T (see, for example, [70, p. 140] for ((2)) and ((3))). We include

a short proof.

Proposition 5.5.6. The following hold true for the group of automorphisms of T:

(1) Γ = ⟨σ1, . . . σk⟩;

(2) Γ is an iterated wreath product of k cyclic groups of order 2;

(3) Γ is a Sylow 2-subgroup of Sym(Ω)

Proof. The proof of ((1)) is done by induction on k, which is the height of the tree.

Since the result is clear for k = 1, let us assume k > 1 and assume the result holds

true for trees of height less than k. Notice that each automorphism α ∈ Γ permutes

the two nodes on level 1; these two nodes are the children of the root node. Observe

that α either fixes both children or interchanges them and we want to prove that

α ∈ ⟨σ1, . . . σk⟩. If α interchanges the children, replace α with ασ1 so that α now

fixes both children. We may now write

α = βγ = γβ,
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where β is an automorphism of the left subtree that is the identity on {n
2 + 1, . . . , n}

and γ is an automorphism of the right subtree that is the identity on {1, . . . , n
2 }.

By induction, β ∈ ⟨σ2, . . . , σk⟩. Additionally, σ1γσ1 is an automorphism of the

left subtree and it is the identity on the right subtree. Therefore σ1γσ1 ∈ ⟨σ2, . . . , σk⟩.

Hence,

α = βγ ∈ ⟨σ1, . . . σk⟩.

That Γ is an iterated wreath product of k cyclic groups of order 2 follows from the

construction. To check that Γ is a Sylow 2-subgroup of Sym(Ω), we have only to

compute the order of Γ, which is

|Γ| = 21+2+···+2k−1 = 22k−1.

□

Remark 5.5.7. Consider a Blaschke product of the form B(z) = z2
(

a−z
1−az

)2
with

a ∈ (0, 1]. After normalizing to obtain a Blaschke product with two critical values,

it follows from Example 5.5.5 that the monodromy group is the dihedral group D8.

Thus, its order is 8 and this group is non-abelian. It has two subgroups, H = {1, s}

of order 2 and K = {1, r, r2, r3} of order 4. Since all groups of order at most 5 are

abelian, we know both H and K are abelian. Since the direct product of two abelian

groups is abelian, D8 cannot be a direct product of its subgroups (this shows that [77,

Theorem 4] is not correct as stated (see [76])). However, D8 is a semidirect product

of the same subgroups H (reflection over the diagonal) and K (rotation by an angle

π/2). Furthermore, since every subgroup of index 2 is a normal subgroup, K is a

normal subgroup. Since the wreath product is a special combination of two groups

based on the semidirect product, it is also possible to express D8 as the wreath

product of Z/2Z ≀ Z/2Z. By the definition of the wreath product this means:

(Z/2Z × Z/2Z) ⋊ Z/2Z.

If we think ofD8 as the group of automorphisms of the square, the term (Z/2Z×Z/2Z)

corresponds to the swapping the sides of the square (rotations) and the term at the

end Z/2Z corresponds to swapping through the diagonals (reflections).

Before we prove the next theorem, we note that an example from [47] shows that

even if a Blaschke product is decomposable, the order of the composition matters

and can change the shape of the boundary of W (SB). In fact, in [53, Theorem 10],
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Figure 11. The tree for S2 ≀ S3 (left) and S3 ≀ S2 (right).

the authors show that for a degree-6 Blaschke product, the numerical range being

elliptical is equivalent to the corresponding Blaschke product B̂ having the property

that it factors as C1 ◦ D1 with C1 degree-2 and D1 degree 3 and it also factors as

D2 ◦ C2 with C2 degree 2 and D2 degree 3. For example, if we let B̂1 be a Blaschke

product of degree-6 such that B̂1 = C1 ◦D1 where

C1(z) = z
(
z − a

1 − az

)2
and D1(z) = z2.

then one can show W (SB1) is an elliptic disk, where B̂1(z) = zB1(z). Note that

B̂1(z) = z2
(
z2 − a

1 − az2

)2

= z2 ◦ z
(
z2 − a

1 − az2

)
= z

(
z − a

1 − az

)2
◦ z2.

On the other hand, if we consider B̂2 = C2 ◦D2 where

C2(z) = z
(
z − .5
1 − .5z

)
and D2(z) = z3,

then letting B̂2(z) = zB2(z), it turns out that W (SB2) is not an elliptical disk.

As discussed above, the groups that we consider will have monodromy groups

that can be represented by trees. Here we see the same effect on order: Suppose we

have a Blaschke product of degree 6 decomposed as C of degree 2 and D of degree 3.

The tree representation of the wreath product S2 ≀ S3 of the monodromy group GB

with B = C ◦D is quite different from the tree representation of the wreath product

of S3 ≀ S2 of the group GB when B = D ◦ C as shown in the Figure 11.

Theorem 5.5.8. Let B be a regularized Blaschke product with distinct critical points

and n distinct critical values that is the composition of n degree-2 regularized Blaschke

products; that is, B = Bn ◦ · · · ◦B1 with Bj regularized for each j. Further assume

that Bj(0) = 0 for j = 1, . . . , n. Then the monodromy group associated with B is the

wreath product of n cyclic groups of order 2, or Z2 ≀ Z2 · · · ≀ Z2︸ ︷︷ ︸
n times

.
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The general form of an element in such a wreath product, depending on the

numbering, would be
1∏
1

(i(i+ 1)) = (12),
2∏

i=1
(i(i+ 2)) = (13)(24), . . . ,

2n−1∏
i=1

(i(i+ 2n−1)).

Proof. Note that the assumption that Bj(0) = 0 for each j implies that Bj ◦ · · ·◦B1

is a subfactor of Bj+1 ◦ · · · ◦B1 for each j. Thus, the zeros of Bj ◦ · · · ◦B1 are a subset

of the zeros of Bj+1 ◦Bj ◦ · · · ◦B1 and all such zeros are simple. We have shown in

Example 5.5.5 that the result is true for the composition of two degree-2 Blaschke

products. So suppose that it is true whenever we have the composition of n − 1

degree-2 Blaschke products. Consider Bn ◦Bn−1 ◦ · · · ◦B1. Now by our assumption,

each Bj must give rise to a distinct critical value. Notice that B1 will correspond to

one critical point, B2 to two additional critical points, and, in general, Bj will add

2j−1 critical points to those obtained from Bj−1 ◦ · · · ◦B1. Considering the loops that

do not circle the critical value associated with Bn we obtain, by induction, n − 1

generators that yield the group Z2 ≀ Z2 · · · ≀ Z2︸ ︷︷ ︸
n−1 times

. If a loop circles the new critical value

that we obtain from Bn, then with an appropriate numbering, all critical points that

are added are associated with the same critical value and so the action on each will

be simultaneous. Note that the additional composition with Bn adds a zero to each

basin and a critical point, which is the one that will be encircled. Thus each new

zero is paired with a zero that was in the previous basin and we obtain a generator

(1(2n−1 + 1)) · · · (2n−12n) as our generator. Since the number of generators is the

same as the number of critical values, we now have the complete set of generators.

Thinking of our wreath product as a group acting on a finite rooted tree, [9, Theorem

2.1.6] completes the proof of the theorem. □

Remark: As in Example (2), this is not the only generator one can choose. With

proper ordering, there is a cycle of length n that serves as generator.

5.6. Groups of invariants

Given a finite Blaschke product B of degree n, denote the set of continuous functions

u : T → T by C(T) and consider the group of invariants of u defined by

GB = {u ∈ C(T) : B ◦ u = B|T}.
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This set GB is a group under the operation of composition; that is, the composition of

two functions in GB is again in the set, the identity is in the set and the operation is

associative. We also note that in order to be in the group of invariants a continuous

function u must be a bijective mapping of the circle (see [10, Lemma 4.1], where

these results are extended to infinite Blaschke products) and, for later reference, we

note that the argument of B (appropriately chosen) is increasing on the unit circle

and therefore the zeros of B(z) − λ are simple for every point λ ∈ T. (This is well

known; for a reference see for example, [10, Remark 2.1]). Thus, each element in

GB has an inverse. Cassier and Chalendar showed [8] that GB is a cyclic group of

order n. In this section, we consider composition and its relation to the group of

invariants. One such theorem is given below.

Theorem 5.6.1. [15, Theorem 5.13] A Blaschke product B of degree n = mk with

m > 1 is a composition of two non-trivial Blaschke products if and only if there

exists a Blaschke product D of degree k > 1 such that GD is generated by gm for some

generator g of GB.

The authors of [15] note that if the Blaschke product D exists, then there is a

finite Blaschke product C such that B = C ◦ D. If D has degree 2, then GD has

order 2. A generator of the group can be found using an observation of Frantz [39]:

Let a ∈ D. If z ∈ T and consider the line through z and a. Since this is not tangent

to T, Frantz shows that φa(z) = (a− z)/(1 − az) is the other point of intersection of

the line joining z and a with T. We use this in Theorem 5.6.2.

For compositions of degree-2 Blaschke products, it’s possible to say more. For

example, if Cj are degree-2 Blaschke products for j = 1, 2, 3 and B = C3 ◦ C2 ◦ C1,

there is a generator w such that the corresponding group is ⟨w⟩ where w2 = v is

the generator of GC2◦C1 , and w4 = v2 = u is the generator of GC1 . We extend this

observation below.

Note that we may write a factorization of B as B = Cn ◦ Cn−1 ◦ · · · ◦ C1 =

Cn ◦ Cn−1 ◦ · · · ◦ φC1 ◦ φC1 ◦ C1, where φC1 is an automorphism, and φC1 ◦ C1 has

the same group of invariants as C1. Thus, we may assume that C1(0) = 0.

Theorem 5.6.2. Let B be a Blaschke product of order 2n and let g denote a generator

of GB. If B = Cn ◦ Cn−1 ◦ · · · ◦ C1 is a composition of n Blaschke products of order

2, then the group of invariants of Cj ◦ · · · ◦ C1 is a normal subgroup of index 2 of
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the group of invariants of Cj+1 ◦ Cj ◦ · · · ◦ C1 for each j. If C1(z) = z
(

a−z
1−az

)
, then

g2n−1 = φa.

Proof. The first statement follows by using the fact that the group of invariants

of Cj ◦ · · · ◦ C1 is a cyclic group of order 2j: Every subgroup of a cyclic group is

normal and using Lagrange’s theorem we conclude that the index is 2. Therefore, the

group of invariants of Cj ◦ · · · ◦ C1 is a normal subgroup of index two of the group

of invariants of Cj+1 ◦ Cj ◦ · · · ◦ C1. We also know that since GB is a cyclic group,

if g is a generator of GB and H is a non-trivial subgroup, then gm is a generator of

H, where m is the smallest positive integer with gm in H. In our case, we take the

subgroup Hj corresponding to the group of invariants of Cj ◦ · · · ◦ C1, which has

order 2j. Thus, if gm generates GCj◦···◦C1 , then m is the smallest integer such that

(gm)2j = e = g2n . So, m = 2n−j.

To prove the remaining assertion, first suppose that B has degree 2; that is, that

n = 1. As above, we may assume that B(0) = 0 and we may write B(z) = λz
(

a−z
1−az

)
.

We will suppose that λ = 1.

We have for every a ∈ D, φa ̸= id and B ◦ φa(z) = φa(z)(φa ◦ φa)(z) = B(z).

Thus φa is a generator of GB. Note that φa has no fixed point on the unit circle and

maps a point of w1 ∈ T to a second (distinct) point w2 on T. Since B ◦ φa = B, we

see that B(w1) = B(w2).

Now suppose that u ̸= e is another generator of GB, and consider two points

z1, z2 that B identifies. Either u(z1) = z2 = φa(z1) and u(z2) = z1 = φa(z2), or there

exist z1, z2 with u(z1) = z1 and u(z2) = z2. If the latter case occurs for some z1 and

z2, then this divides the unit circle into two arcs, ℓ1 and ℓ2 with endpoints z1 and z2,

see Figure 12. Now either u(ℓ1) ⊆ ℓ1 or u(ℓ1) ⊆ ℓ2. In the first case, all points in ℓ1

would be mapped to themselves under u and the same is true for u(ℓ2). So u = e.

Thus, u must interchange the two arcs. Choose a sequence (wn) in ℓ2 tending to

z1. Then, by the discussion above, (see also [39]) u(wn) is equal to the endpoint of

the line segment on T that passes through the point a. Therefore u(wn) → z2. So

u(z1) = z2 = φa(z1). Since this is true for all points on T, we see that φa is the only

generator of GB = GC1 .

Now suppose that n > 1 and B = Cn ◦ · · · ◦ C1. Then by our work thus far, GB

has a generator g of order n and g2n−1 is a generator of GC1 . But every generator of

GC1 must identify the same points as φa. Thus, g2n−1 = φa.
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Figure 12. Arcs ℓ1, ℓ2 and points z1, z2

□
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