
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 1

Multilayer Evolving Fuzzy Neural Networks
Xiaowei Gu, Plamen Angelov, Fellow, IEEE, Jungong Han and Qiang Shen

Abstract—It is widely recognised that learning systems have
to go deeper to exchange for more powerful representation
learning capabilities in order to precisely approximate nonlinear
complex problems. However, the best known computational
intelligence approaches with such characteristics, namely, deep
neural networks, are often criticised for lacking transparency.
In this paper, a novel multilayer evolving fuzzy neural network
(MEFNN) with a transparent system structure is proposed. The
proposed MEFNN is a meta-level stacking ensemble learning
system composed of multiple cascading evolving neuro-fuzzy
inference systems (ENFISs), processing input data layer-by-layer
to automatically learn multi-level nonlinear distributed repre-
sentations from data. Each ENFIS is an evolving fuzzy system
capable of learning from new data sample by sample to self-
organise a set of human-interpretable IF-THEN fuzzy rules that
facilitate approximate reasoning. Adopting ENFIS as its ensemble
component, the multilayer system structure of MEFNN is flexible
and transparent, and its internal reasoning and decision-making
mechanism can be explained and interpreted to/by humans. To
facilitate information exchange between different layers and at-
tain stronger representation learning capability, MEFNN utilises
error backpropagation to self-update the consequent parameters
of the IF-THEN rules of each ensemble component based on
the approximation error propagated backward. To enhance the
capability of MEFNN to handle complex problems, a nonlinear
activation function is introduced to modelling the consequent
parts of the IF-THEN rules of ENFISs, thereby empowering
both the representation and the reflection of nonlinearity in
the resulting fuzzy outputs. Numerical examples on a wide
variety of challenging (benchmark and real-world) classification
and regression problems demonstrate the superior practical
performance of MEFNN, revealing the effectiveness and validity
of the proposed approach.

Index Terms—evolving fuzzy system; fuzzy neural network;
self-organised; stacking ensemble.

I. INTRODUCTION

DEEP neural networks (DNNs, or artificial neural net-
works, ANNs) have demonstrated eye-catching successes

on a range of practical problems concerning image, video,
speech and text processing [1], [2]. Currently, DNNs are one
of the most popular computational intelligence approaches,
thanks to the state-of-the-art (SOTA) performances they have
offered in terms of prediction accuracy, and have been imple-
mented for many real-world applications such as autonomous
driving [3], drug discovery [4], stock prediction [5], etc.

X. Gu is with the School of Computing, University of Kent, Canterbury,
CT2 7NZ, UK. email: X.Gu@kent.ac.uk.

P. Angelov is with the School of Computing and Communi-
cations, Lancaster University, Lancaster, LA1 4WA, UK. email:
p.angelov@lancaster.ac.uk.

J. Han is with the Department of Computer Science, the University of
Sheffield, Sheffield, S10 2TN, UK. email: jungong.han@sheffield.ac.uk.

Q. Shen is with the Department of Computer Science, Aberystwyth Uni-
versity, Aberystwyth, SY23 3DB, UK. email: qqs@aber.ac.uk.

Corresponding author: Xiaowei Gu
Manuscript received XXXX XX, 2023; revised XXXX XX, 2023.

The success of DNNs is built upon their capability to
automatically learn multiple levels of nonlinear distributed
representations from raw data through a general-purpose learn-
ing procedure [6]. It is widely recognised that this powerful
representation learning ability of DNNs comes from their huge
amounts (millions or sometimes billions) of parameters that
are arranged in multiple layers and tuned to preserve abstract
information learned from training data [7], [8]. However,
DNNs are the typical type of “black box” models lack of
transparency. They are extremely complicated models, and
their parameters do not carry clear physical meanings that can
be linked to the practical problems directly. Consequently, their
internal reasoning processes are not interpretable by humans
and their decisions are not explainable [9]. Another critical
issue of DNNs is their vulnerability to real-world uncertainties.
DNNs are fragile to new samples of unfamiliar data patterns,
and they cannot be fixed easily because the training process is
computationally expensive and usually requires huge amount
of training data. These deficiencies have limited the wider
deployment of DNNs in real-world applications, particularly,
these high-stake ones [9]. It has also been shown by recent
studies that the huge increase in interest towards DNNs starts
to saturate [8].

Realising that the multi-level nonlinear distributed represen-
tations are the key to the success of DNNs, there have been
a few works published in recent years attempting to build
alternative multilayer stacking ensemble models that offer
competitive performance to DNNs but with less deficiencies
aforementioned [7], [10], [11]. Stacking is an ensemble learn-
ing scheme for minimising the prediction error of individual
base models by arranging them in multiple layers, such that
the outputs of the base models at a lower layer are used as
the inputs of the base models at the layer above [12]. In
this way, base models at upper layers learn to improve the
predictions made by base models at lower layers and achieve
improved prediction accuracy [13]. Unlike the alternative
better-known parallel ensemble schemes such as bagging [14],
[15] and boosting [16], [17], which attempt to increase the
diversity between base models to complement each other,
stacking constructs a meta-level learning model to learn multi-
level distributed representations from data, exploiting a more
sophisticated decision-making strategy than (weighted) major-
ity voting. Thanks to the outstanding performance on many
learning tasks, stacking has received increasing popularity in
recent years [18], [19].

On the other hand, existing ensemble learning approaches
(including the stacking ones) mainly focus on employing
mainstream learning models, such as decision tree (DT), ran-
dom forest (RF), k-nearest neighbour (KNN), support vector
machine (SVM), multilayer perception (MLP), long-short term
memory (LSTM), convolutional neural networks (CNN), etc.,

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 2

as base models to construct ensemble predictors [20]–[23].
Although such ensemble models have demonstrated great
performance, these models are typically limited to offline
scenarios and can only work with static data. In addition, many
of these mainstream base models (e.g., SVM, MLP, LSTM,
CNN) are often being criticised for lacking transparency. As
a result, there is a strong demand for utilising alternative
learning models in building ensemble models such that the
created ensembles are capable of self-updating from new data
whilst offering greater transparency and interpretability.

Evolving fuzzy systems (EFSs) are a special group of fuzzy
systems and can be implemented in the form of fuzzy rule-
based systems [24] or neuro-fuzzy systems [25]. EFSs are the
prominent methodology for real-time non-stationary problem
approximation [26]. They are capable of self-developing the
transparent system structure and self-updating the parameters
from data streams through a human-interpretable reasoning
process to capture the changing data patterns. EFSs are well
known for their strong capability to handle inherent uncertain-
ties in data, and they have been widely implemented for many
real-world applications concerning data stream processing
[27], [28]. As a hot research topic, a variety of EFSs have been
proposed in the literature since the underlying concepts being
introduced around the beginning of this century [25], [29]. The
most representative evolving fuzzy rule-based systems include,
but are not limited to, evolving Takagi-Sugeno system (eTS)
[29], sequential adaptive fuzzy inference system (SAFIS) [30],
evolving fuzzy rule-based classifiers (eClass0 and eClass1)
[24], extended sequential adaptive fuzzy inference system
(ESAFIS) [31], generalized smart evolving fuzzy systems
(Gen-Smart-EFS) [32], evolving fuzzy model (eFuMo) [33],
self-evolving fuzzy system (SEFS) [34], autonomous learn-
ing multi-model system (ALMMo) [35], recursive maximum
correntropy-based evolving fuzzy system (RMCEFS) [36],
evolving fuzzy system with self-learning/adaptive thresholds
(EFS-SLAT) [37], statistically evolving fuzzy inference system
(SEFIS) [38], etc. The most popular examples of evolving
neuro-fuzzy models include dynamic evolving neural-fuzzy
inference system (DENFIS) [25], self-organising fuzzy neural
network (SOFNN) [39], evolving granular neural network
[40], generic evolving neuro-fuzzy inference system (GENE-
FIS) [41], parsimonious network based on fuzzy inference
system (PANFIS) [42], correntropy-based evolving fuzzy neu-
ral system (CEFNS) [43], parsimonious learning machine
(PALM) [44], etc.

EFSs have demonstrated significant successes in a wide
variety of time-critical applications in dynamical environment
thanks to their simpler, highly flexible system structure and
transparent internal reasoning mechanism [45]. However, it is
also recognised that EFSs usually cannot reach the same level
of performance as DNNs on large-scale, high-dimensional,
complex problems (e.g., image classification, image segmen-
tation). Although there have been a number of EFS-based
ensemble models proposed in the recent years reaching greater
prediction performance on many challenging problems beyond
individual single-model EFSs, the vast majority of existing
works are focused on exploiting either parallel ensemble
architectures to enhance the diversity between base models

[14], [46]–[49] or sequential ensemble architectures to en-
hance the adaptability of the ensemble system towards data
pattern drifting in non-stationary environments by constructing
a new base model from each newly arrived data chunk [50].
There only exist very few works on exploring the potential
of building stacking ensemble models with EFSs to facilitate
multi-level distributed representation learning [11], [51]. On
the other hand, EFSs dominantly use the standard recursive
least squares (RLS) algorithm or its variants for consequent pa-
rameter learning [25], [29], [40], [52], [53], which requires the
error function to be explicitly defined. As a result, individual
EFS models in a standard stacking ensemble framework have
to learn from input data separately to minimise the differences
between their predictions and the ground truth in order to avoid
any ambiguity in defining the error functions for different
layers. The lack of interaction between base models greatly
restricts the capability of stacking ensemble models to learn
more informative and descriptive representations from data.

To learn more descriptive multi-level distributed representa-
tions with high-level transparency and interpretability, a novel
stacking ensemble fuzzy model named multilayer evolving
fuzzy neural network (MEFNN) is introduced in this paper.
The proposed MEFNN is a meta-level learning model con-
sisted of a number of evolving neuro-fuzzy inference systems
(ENFISs) cascading in multiple layers. Each layer of MEFNN
is based on a single ENFIS that takes the outputs from the
previous layer as its inputs, and passes its outputs to the next
layer as inputs. In this way, MEFNN processes input data
layer-by-layer to learn multi-level distributed representations.
Each ENFIS is a multiple-input multiple-output (MIMO) EFS
that self-organises and self-develops its system structure and
parameters from data streams on a sample-by-sample basis.
To enhance the capability of handling nonlinear problems, a
standard sigmoid function is introduced to the consequent parts
of the IF-THEN fuzzy rules used by ENFISs to empower
both the representation and the reflection of nonlinearity in
the resulting fuzzy outputs, thereby enhancing the capability
of MEFNN to handle complex problems. Unlike traditional
EFSs, MEFNN employs the error backpropagation algorithm
for updating the consequent parameters of its individual base
models, which effectively avoids ambiguity in defining the
error function for each individual layer by allowing the approx-
imation error to be propagated backward from the last layer
to the first layers. In this way, all the base models can interact
and communicate with each other to learn more descriptive
multi-level representations from data. Therefore, the proposed
MEFNN can also be viewed as a special type of ANN with
a highly flexible self-evolving multilayer structure (free from
the requirement of specifying the numbers of nodes for each
layer), human-interpretable internal reasoning mechanism and
meaningful parameters that can be directly linked to the
practical problems.

To summarise, key features of the proposed MEFNN in-
clude:

1) A meta-level ensemble architecture composed of mul-
tiple cascading base models with self-evolving system
structure and parameters to learn multi-level distributed
representations from data on a sample-by-sample basis;

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 3

2) The use of error backpropagation to sequentially update
the consequent parameters of the self-evolving base
models based on the error of the existing approximation,
facilitating information exchange between different lay-
ers to attain stronger representation learning capability;

3) The use of the sigmoid function in the consequent
parts of IF-THEN fuzzy rules to empower both the
representation and the reflection of nonlinearity in the
fuzzy outputs of the base models, thereby enhancing the
capability of the overall MEFNN to handle nonlinear,
complex problems.

The remainder of this paper is organised as follows. Techni-
cal details of MEFNN are presented in Section II. Numerical
examples on benchmark classification and regression problems
are given in Section III as the proof of concept. This paper is
concluded in Section IV.

II. PROPOSED MEFNN
A. General Architecture

The general architecture of MEFNN is depicted in Fig.
1. One can see from Fig. 1 that the proposed MEFNN is
a stacking ensemble composed of multiple ENFISs arranged
in layers (one ENFIS per layer). The inputs of MEFNN are
processed layer-by-layer until the final outputs are produced.
Each ENFIS takes the outputs of the previous layer as its
inputs (except for the first ENFIS) and uses its outputs as the
inputs of the next layer (except for the last ENFIS). Hence,
different layers are fully connected.

Fig. 1: General Architecture of MEFNN.

Assuming that MEFNN is composed of L cascading EN-
FISs, the input-output relationship of the ENFIS at the lth

layer can be defined by Eq. (1) (l = 1, 2, . . . , L):

yl = f l(xl) (1)

where xl = [xl
1, x

l
2, . . . , x

l
M l]

T is the M l× 1 dimensional in-
put vector; yl = [yl1, y

l
2, . . . , y

l
W l]

T is the W l×1 dimensional
output.

Since the lth layer takes the output of the l − 1th layer as
its input, namely, xl = yl−1 and M l = W l−1, the output of
the lth layer can also be defined by the following composite
function with respect to the input of the l − 1th layer, xl−1:

yl = (f l ◦ f l−1)(xl−1) = f l(f l−1(xl−1)) (2)

Similarly, the overall ensemble system with a L-layer struc-
ture can be formulated by the following composite function:

y = (fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1)(x) (3)

where x = [x1, x2, . . . , xM]T and y = [y1, y2, . . . , yW]T are
the respective input and output vectors of MEFNN as depicted

in Fig. 1. Note that the inputs to MEFNN are normalised to
the range of [0, 1] in advance [54].

Different from conventional ANNs, MEFNN does not re-
quire users to specify the numbers of nodes in each layer.
Instead, users only need to set the output sizes of the cascading
ENFISs (except for the final one) for MEFNN, namely, W 1,
W 2,. . . , WL−1. The inner structure of each individual base
model will automatically self-evolve from the input data to
incorporate the observed data patterns without relying on
any prior assumptions concerning data distribution and other
properties. The output sizes control the amounts of information
flowing between layers, and can be predefined based on users’
preferences in the absence of specialised expertise and prior
knowledge. In practice, the output size of a base model should
be no greater than its input size to avoid overfitting and also,
should be no less than the output size of the final layer to
avoid losing too much information during the transmission
between the layers. A detailed discussion on the parameter
settings of MEFNN, e.g., number of layers, output sizes of
cascading base models, and their influence on the prediction
performance of the system is presented in Section III.A. A
recommended parameter setting is also given in Section III.A.

Fig. 2: Inner architecture of the lth ENFIS

The inner architecture of the lth ENFIS is presented in Fig.
2. ENFIS is a MIMO neuro-fuzzy system composed of N l

first-order IF-THEN fuzzy production rules in the following
form (l = 1, 2, . . . , L):

Rl
n : IF (xl ∼ pl

n) THEN (yl
n = σ(Al

nx̄
l)) (4)

where Rl
n denotes the nth IF-THEN rule of lth ENFIS in

MEFNN; n = 1, 2, . . . , N l; N l is the number of rules; xl

is the M l × 1 dimensional input vector; x̄l = [1, (xl)T]T ;
“∼” denotes similarity; pl

n = [pln,1, p
l
n,2, . . . , p

l
n,M l]

T is the
M l × 1 dimensional prototype (antecedent parameters) of
Rl

n; Al
n = [al

n,1,a
l
n,2, . . . ,a

l
n,W l]

T is the W l × (M l +
1) dimensional consequent parameter matrix and there is
al
n,w = [aln,w,0, a

l
n,w,1, . . . , a

l
n,w,M l]

T (w = 1, 2, . . . ,W l);
yl
n = [yln,1, y

l
n,2, . . . , y

l
n,W l]

T is the W l × 1 dimensional
output of Rl

n and σ(·) denotes the standard activation function
used by ANNs [55]. The activation function is utilised in the
consequent part of the IF-THEN rules to add extra nonlinearity
to ENFIS. Compared with the first-order IF-THEN rules used
by conventional EFSs [24], [56], such modification (the util-
isation of activation function) greatly enhances the capability
of ENFIS to handle nonlinear, complex problems. In this

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 4

study, the classic sigmoid function, namely, σ(x) = 1
1+e−x

is employed. However, one may consider other types of
activation functions, such as hyperbolic tangent, rectified linear
unit.

Due to the utilisation of sigmoid function, each IF-THEN
rule of ENFIS becomes a nonlinear model, and the output
yl of ENFIS in response to a particular input vector xl is
produced as a weighted sum of the outputs generated by its
individual IF-THEN rules as Eq. (5):

yl = f l(xl) =

N l∑
n=1

λl
ny

l
n =

N l∑
n=1

λl
nσ(A

l
nx̄

l) (5)

where λl
n is the firing strength of xl to Rl

n, defined as follows
[26].

λl
n =

Dn(x
l)∑N l

j=1 Dj(xl)
(6)

and there is Dn(x
l) = e

− ||xl−pl
n||2

(τl
n)2 ; ||xl − pl

n|| =√
(xl − pl

n)
T (xl − pl

n); τ ln is the width of the exponential
kernel associated with Rl

n, and its value is derived directly
based on the mutual distances of data (as to be specified later
in Eq. (11)).

In the next subsection, the identification process of MEFNN,
which include structure evolving and parameter learning, is
presented. It is worth noting that all the cascading ENFISs
follow the exactly same identification and decision-making
procedures.

B. Identification Process

As aforementioned, MEFNN self-organises its multilayer
structure and parameters from the scratch by learning from
data on a sample-by-sample basis. The identification process
of MEFNN is composed of the following three stages repeated
for every input.

Stage 0. System Initialization. Given a particular input xk,
the system structures and parameters of the cascading ENFISs
in MEFNN will be initialised one-by-one from the first (l = 1)
layer to the last (l = L) layer if xk is the very first input,
namely, k = 1. Otherwise, the identification process enters
Stage 1 instead.

Once the lth (l = 1, 2, . . . , L) ENFIS receives its first input,
xl
k (xl

k = xk if l = 1 or xl
k = yl−1

k if l > 1), its global
parameters are set as [26]:

µl ← xl
k; X l ← ||xl

k||2 (7)

where µl is the global mean of all the input samples to the
lth ENFIS; X l is the global mean of the squared Euclidean
norms of all these input samples.

The first IF-THEN rule, Rl
N l (N l ← 1) is initialised in the

form of Eq. (4) with its antecedent (prototype) and consequent
parameters set by Eq. (8):

pl
N l ← xl

k; Al
N l ←

1

M l + 1
ϵo (8)

where ϵo = [ϵo,j,k]
j=1:W l

k=1:(M l+1)
is a randomly generated

W l × (M l + 1) dimensional matrix, whose elements equal

to either 0 or 1, namely, ϵo,j,k ∈ {0, 1} ∀ j, k, following the
symmetrical binomial distribution. This simple initialisation
strategy prevents the derivatives from always being zeros.

Parameters of the shape-free cluster formed around the
prototype pl

N l denoted by Cl
N l are initialised as follows [26].

clN l ← xl
k; χl

N l ← ||xl
k||2; Sl

N l ← 1 (9)

where clN l is the mean of data samples associated with Cl
N l ;

χl
N l is the mean of the squared Euclidean norms of these

samples; Sl
N l is the support (number of members) of Cl

N l .
After this, the lth ENFIS produces the output yl

k using Eq.
(5). The output yl

k is then used as the input of the ENFIS
at the next layer (xl+1

k ← yl
k). The same process repeats for

every individual ENFIS in the stacking ensemble until the last
(Lth) ENFIS is initialised and the final output of MEFNN is
produced (yk ← yL

k). Then, the identification process enters
Stage 2 for consequent parameter learning.

Stage 1. Structure Evolving and Output Generation. If k >
1, namely, xk is not the first input sample, the system structure
and parameters of MEFNN will be updated by adjusting the
cascading ENFISs layer-by-layer with respect to the input.

Given the corresponding input, xl
k (xl

k = xk if l = 1 or
xl
k = yl−1

k if l > 1), the global parameters of the lth ENFIS
are updated by Eq. (10) firstly [26]:

µl ← µl +
xl
k − µl

k

X l ← X l +
||xl

k||2 −X l

k

(10)

Then, the local density of xl
k at each cluster, denoted as

Dn(x
l
k), is calculated by Eq. (11) (n = 1, 2, . . . , N l) [26]:

Dn(x
l
k) = e

− ||xl
k−pl

n||2

(τl
n)2 (11)

where τ ln =

√
Xl−||µl||2+χl

n−||cl
n||2

2 .
Condition 1 is checked to see if xl

k represents a novel data
pattern unseen from the historical inputs [26]:

Cond. 1 : if
(

max
n=1,2,...,N l

(Dn(x
l
k)) < δo

)
then (xl

k becomes a new prototype)
(12)

where δo is a threshold to determine whether xl
k is sufficiently

different from the data patterns represented by existing proto-
types, and there is 0 < δo < 1. In this study, δo = e−3 is used.
According to the Chebyshev rule, the chance for the Euclidean
distance between xl

k and pl
n to be greater than

√
3τ ln is less

than 33.3%.
If Condition 1 is satisfied, it suggests that xl

k falls out of the
areas of influence of existing prototypes, showing a significant
departure from the existing local models in the lth ENFIS. In
other words, xl

k is distinctive from existing prototypes and
more likely to represent an unseen data pattern. Hence, a new
IF-THEN rule (N l ← N l +1) is introduced to the lth ENFIS
to incorporate this new data pattern represented by xl

k. The
antecedent and consequent parameters of the new rule RN l

n are
set by Eq. (8) and the parameters of the associated shape-free
cluster are initialised by Eq. (9).

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 5

However, if xl
k fails to meet Condition 1, xl

k is used for
updating the parameters of the cluster associated with the
nearest prototype, denoted by pl

n∗ via Eq. (13) [26].

cln∗ ← cln∗ +
xl
k − cln∗

Sl
n∗ + 1

χl
n∗ ← χl

n∗ +
||xl

k||2 − χl
n∗

Sl
n∗ + 1

Sl
n∗ ← Sl

n∗ + 1

(13)

where n∗ = argmaxn=1,2,. . . ,n∗(Dn(x
l
k)); c

l
n∗ , χl

n∗ and Sl
n∗

are the parameters of Cl
n∗ associated with pl

n∗ .
After the parameter updating and possible structure evolv-

ing, the lth ENFIS produces the output yl
k using Eq. (5).

The output yl
k is then used as the input of ENFIS at the

next layer (xl+1
k ← yl

k). The same updating process repeats
for each individual ENFIS until the last one (namely, the
Lth one) has been updated. The identification process enters
Stage 2 for consequent parameter learning once the final
output, yk of MEFNN in response to xk has been produced
(yk ← yL

k). Note that different from conventional EFSs, the
outputs of individual base models in MEFNN are produced
after structural evolving and antecedent parameter updating.
In so doing, the derivative of the measured prediction errors
with respect to the consequent parameters gives a better idea
regarding how to adjust the consequent parameters, in order to
minimise prediction errors given the current model structure
and antecedent parameters.

Stage 2. Consequent Parameter Updating. As aforemen-
tioned, MEFNN utilises error backpropagation for updating the
consequent parameters of its individual ensemble components
unlike conventional first-order EFSs. Backpropagation is com-
monly used by ANNs and neuro-fuzzy systems with prefixed
system structure [57]–[59]. The main reason for choosing
backpropagation rather than standard algorithms used by EFSs
such as RLS and its variants or least squares [25], [60] is
because only the last ENFIS in the stacking ensemble has
the target output. This makes it practically impossible to
define an error function for any layer except the final one.
Backpropagation, however, allows the error to be propagated
backwards from the final layer to the first layer by the use
of chain rule, greatly facilitating the information exchanging
between different layers. Due to the use of backpropagation,
MEFNN also removes the need of co-variance matrices by
conventional RLS-based algorithms for consequent parameter
updating, which greatly reduces the computational complexity
especially when the data dimensionality is high.

Once MEFNN generates the final output, yk in response
to the current input, xk, the corresponding loss function is
defined as:

ek =
1

2
(yk − rk)

T (yk − rk) (14)

where rk = [rk,1, rk,2, . . . , rk,W]T is the corresponding target
output. Note that for classification problems, rk is the vec-
torised class label of xk via dummy coding.

The derivative of the prediction error with respect to yk is
obtained as Eq. (15):

∂ek
∂yk

= yk − rk (15)

Then, the consequent parameter matrices of the cascading
ENFISs are updated one-by-one backwards from the Lth layer
to the 1st layer utilising the chain rule.

The derivative of the consequent parameter matrix of the
lth ENFIS is derived as follows (n = 1, 2, . . . , N l):

∂ek

∂Al
n

=
∂ek
∂yL

k

· ∂yL
k

∂yL−1
k

· · · · ·
∂yl+1

k

∂yl
k

· ∂y
l
k

∂Al
n

(16)

where l = 1, 2, . . . , L; yL
k = yk. Given yj

k = xj+1
k ,

∀j = 1, 2, . . . , L − 1. Eq. (16) can be reformulated as Eq.
(17) (l = 1, 2, . . . , L). The detailed derivations are presented
in Supplementary Section A.

∂ek

∂Al
n

= λl
n,k · (dl

k ⊗ σ′(Al
nx̄

l
k)) · (x̄l

k)
T (17)

where “⊗” denotes element-wise multiplication; σ′(Al
nx̄

l
k) =

σ(Al
nx̄

l
k)⊗(1−σ(A

l
nx̄

l
k)); d

l
k is the derivate of the loss with

respect to yl
k (l = 1, 2, . . . , L− 1):

dl
k =

∂ek
∂yL

k

· ∂yL
k

∂yL−1
k

· · · · ·
∂yl+1

k

∂yl
k

=

N l+1∑
n=1

(∂λl+1
n,k

∂xl+1
k

· σT (Al+1
n x̄l+1

k) · dl+1
k

+ λl+1
n,k · (Ã

l+1

n)T · (dl+1
k ⊗ σ′(Al+1

n x̄l+1
k))

)
(18)

Here, dL
k = ∂ek

∂yL
k

= yL
k − rk; Ã

l

n = [aln,w,m]w=1:W l

m=1:M l is the
W l ×M l dimensional consequent parameter matrix obtained
by removing the first column of Al

n; and there is:

∂λl
n,k

∂xl
k

= λl
n,k ·

(2(pl
n − xl

k)

(τ ln)
2

−
N l∑
i=1

(λl
i,k ·

2(pl
i − xl

k)

(τ li)
2

)
)

(19)

Based on the derivative ∂ek

∂Al
n

, the consequent parameter

matrix, Al
n can be updated by Eq. (20):

Al
n ← Al

n − γo ·
∂ek

∂Al
n

(20)

where γo is the learning rate. In this study, γo = 1 is used
by default. However, the learning rate of MEFNN can be
adjusted in the same way as the learning rate used in ANNs.
Experienced users may further specify a particular learning
rate for each layer of MEFNN.

Once the consequent parameter matrices of all the ENFISs
in the stacking ensemble have been updated based on the loss
calculated with the current output (namely, Eq. (14)), MEFNN
can proceed to process the next input (k ← k + 1) and a
new learning cycle starts. The system identification process
of the proposed MEFNN is summarised by Supplementary
Algorithm S1 for clarity.

It has to be stressed that the main purpose of this study is
to demonstrate the proposed concept and general principles.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 6

Therefore, the operation mechanism of ENFIS is kept sim-
ple with only the essential rule adding scheme being used.
However, the proposed MEFNN and its base model, ENFIS
are, in fact, highly flexible. Alternative schemes such as rule
merging, pruning and splitting can be added to ENFIS to help
the model construct and maintain a more compact rule base
[37], thereby enabling MEFNN to achieve greater prediction
performance. More advanced MIMO EFSs may be employed
by MEFNN as base models as well.

C. Computational Complexity Analysis
A detailed analysis on the computational complexity of

MEFNN is presented as follows. Since MEFNN processes
the data on a sample-by-sample basis, it is assumed that the
analysis is performed at the kth time instance at which xk is
given as the input of MEFNN.

Stage 0 is for system initialisation and will not be repeated
again after the system has been initialised. Hence, the compu-
tational complexity of Stage 0 is negligible within the overall
learning process.

Stage 1 is for updating the system structure and produc-
ing the output. For the lth ENFIS (l = 1, 2, . . . , L), the
computational complexity of updating global parameters µl

and X l in response to xl
k is O(M l), and that of calculating

the local density value of xl
k at each cluster is O(N lM l).

The complexity of adding or updating a cluster is O(N lM l),
and that of output generation is O(N lM lW l). Therefore, the
computational complexity of the lth ENFIS at Stage 1 is
O(N lM lW l) and the overall computational complexity of
Stage 1 of MEFNN given the input xl

k is O(
∑L

l=1 N
lM lW l).

The consequent parameters of the individual ensemble
components are updated in response to xk at Stage 2. The
complexity of calculating ∂ek

∂Al
n

for the lth ENFIS (l =

1, 2, . . . , L) is O(N lM lW l) and that of deriving dl
k is

O(N l+1M l+1W l+1) for the lth ENFIS (l = 1, 2, . . . , L− 1).
Thus, the overall computational complexity of Stage 2 of
MEFNN is O(

∑L
l=1 N

lM lW l) as well.
Together, the computational complexity of the overall sys-

tem identification process of MEFNN given K input samples
is O(K

∑L
l=1 N

lM lW l).
In contrast, for a representative, conventional M -input W -

output EFS that uses the RLS-based algorithm for consequent
parameter learning, the overall computational complexity of
its system identification process given K input samples is
typically O(KNM2W) if the local learning approach is used
and O(KN2M2W) if the global learning approach is used
[24], where N denotes the number of rules in the model.

III. EXPERIMENTAL INVESTIGATION

In this section, numerical examples based on a variety
of benchmark problems are presented for demonstrating the
performance of the proposed MEFNN. The algorithms were
developed on Matlab2021b platform and the performance was
evaluated on a desktop with dual core i7 processor 3.80
GHz×2 and 32.0 GB RAM. Unless specifically declared
otherwise, the reported numerical results were obtained as the
average of 10 Monte Carlo experiments to allow a certain
degree of randomness and hence, a fair comparison.

A. Configuration

1) Data Description: In this study, a total of 24 popular
numerical benchmark datasets for classification from UCI
machine learning repository1 and KEEL-dataset repository2

are involved in performance evaluation, which include: 1) car-
diotocography (CA); 2) wall-following robot navigation (WF);
3) gesture phase segmentation (GP); 4) optical recognition of
handwritten digits (OR); 5) australia (AU); 6) balance (BA);
7) liver (LI); 8) magic (MG); 9) monk (MO); 10) pageblocks
(PB); 11) pima (PI); 12) seismic (SE); 13) sonar (SO); 14)
spectfheart (SH); 15) occupancy detection (OD); 16) multiple
features (MF); 17) pen-based recognition of handwritten digits
(PR); 18) abalone (AB); 19) image segmentation (IS); 20)
phishing websites (PW); 21) spambase (SP); 22) mammogra-
phy (MA); 23) texture (TE), and; 24) steel plates faults (SPF).

To evaluate the performance of MEFNN on high-
dimensional classification problems, the following four re-
mote sensing image sets for land-use classification are used,
namely, 1) OPTIMAL-31 (OPT)3; 2) WHU-RS19 (WHU)4;
3) UCMerced (UCM)5 and 4) RSSCN7 (RSS)6. Following the
same procedure as described in [61], in this study, three main-
stream DCNN models, namely, ResNet50 [62], DenseNet121
[63] and InceptionV3 [64], are employed for feature extraction
after being fine-tuned on the NWPU45 dataset7. In running
the experiments, each fine-tuned DCNN model will extract a
1024 × 1 dimensional feature vector from each image. The
arithmetic mean of the three feature vectors will be used as
the representation of the image for model training and testing.

To demonstrate the performance of MEFNN on large-scale,
nonstationary, complex problems, the following two popular
benchmark datasets for network intrusion detection, namely,
NSLKDD [65] and UNSWNB15 [66] are also involved in
experimental investigation. As a common practice, the cate-
gorical attributes of the two datasets have been converted to
numerical ones by one-hot mapping in advance.

Furthermore, six widely used benchmark datasets are em-
ployed to test the performance of MEFNN on regression
problems, which include four real-world regression problems,
one Mackey-Glass time series prediction problem and one
S&P500 closing price prediction problem. The four real-world
problems are: 1) autos; 2) autompg; 3) delta ailerons, and; 4)
california housing.

Key information of the 24 benchmark numerical classifica-
tion datasets, four image classification datasets, two network
intrusion detection datasets and six regression problems used
in the numerical examples presented in this study is sum-
marised in Supplementary Section C.

2) Parameter Setting for MEFNN: A key feature of
MEFNN is that its multi-layered system structure is highly
flexible and is self-evolving with data. Users are required to
predetermine the number of base models/layers in the stacking

1Available at: https://archive.ics.uci.edu/ml/index.php
2Available at: https://sci2s.ugr.es/keel/datasets.php
3Available at: https://1drv.ms/u/s!Ags4cxbCq3lUguxW3bq0D0wbm1zCDQ
4Available at: https://captain-whu.github.io/BED4RS/
5Available at: http://weegee.vision.ucmerced.edu/datasets/landuse.html
6Available at: https://github.com/palewithout/RSSCN7
7Available at: https://www.tensorflow.org/datasets/catalog/resisc45

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 7

ensemble, L, the output size for each individual base model
(except for the final one), namely, W 1, W 2, . . . , WL−1 and
the threshold δo that enables the base models to identify data
patterns different from previously observed ones. However, it
has to be stressed that these externally controlled parameters
can be determined based on the users’ preferences without any
prior knowledge of the problem. In this study, the output sizes
of the 1th to L− 1th base models are set uniformly the same
as W 1 = W 2 = . . . = WL−1 = Wo for simplicity.

To demonstrate the proposed concept and general principles,
in running the experiments, the number of layers, L of
MEFNN is set as 2 unless specifically declared otherwise, and
the other two externally controlled parameters, Wo and δo are
fixed as 3W and e−3, respectively. Due to its multilayer struc-
ture, MEFNN has stronger multi-level representation learning
ability and more trainable parameters. To ensure that the
stacking ensemble model is trained sufficiently, MEFNN is
trained on the same training sets with shuffling for 200 epochs
during the experiments.

It is worth noting that the parameter setting of MEFNN in
this study only serves as a feasible option for users’ consid-
eration. However, it will be demonstrated through numerical
examples presented in the rest of this section that MEFNN
can achieve superior prediction performance on a wide range
of benchmark classification and regression problems using
this set of parameters, outperforming the SOTA alternatives.
In practice, one can adjust the three externally controlled
parameters (namely, L, Wo and δo) to maximise the prediction
performance of MEFNN according to the nature of data.
More experienced users may further consider using different
output sizes for individual base models at different layers.
To understand the impacts of the three parameters on the
performance of MEFNN, a sensitivity analysis is carried out on
the following four benchmark datasets, namely, 1) CA; 2) WF;
3) GP, and; 4) OR. The detailed analysis results are presented
in Supplementary Section D. In addition, an ablation analysis
is performed and presented in Supplementary Section E to
demonstrate the performance improvement brought forward
by the sigmoid function used in the consequent part of IF-
THEN rules of MEFNN. Note that, the four datasets will not
be used for performance demonstration presented in the rest
of this section.

3) SOTA Methods for Comparison: In this study, the fol-
lowing 17 single-model SOTA algorithms are used for perfor-
mance comparison: 1) SVM [67]; 2) KNN [68]; 3) sequen-
tial classifier (SEQ) [69]; 4) sequence-dictionary-based KNN
classifier (SDKNN) [69]; 5) extreme learning machine (ELM)
[70]; 6) MLP; 7) LSTM [71]; 8) probabilistic neural network
(PNN) [72]; 9) eigenvalue classifier (EIG) [73]; 10) spherical
approximation classifier (SPA) [74]; 11) self-adaptive fuzzy
learning system (SALF) [26]; 12) multi-objective optimised
self-organising fuzzy inference system (MOOSOFIS) [75]; 13)
SEFIS [38]; 14) ESAFIS [31]; 15) PALM [44]; 16) eClass0
classifier [24], and; 17) eClass1 classifier [24].

In addition, the following five ensemble learning approaches
are involved for performance comparison, which include: 1)
random forest (RF) [21]; 2) stagewise additive modelling
using a multi-class exponential loss function (SAMME) [17];

3) fuzzily weighted adaptive boosting (FWAdaBoost) [49];
4) XGBoost [76], and; 5) eEnsemble [46]. In this study,
XGBoost uses decision tree (DT) as its base classifiers; two
ensemble models are created with SAMME by using DT
and KNN as the base classifiers, denoted as SAMMED and
SAMMEK, respectively. Hence, a total of six ensemble models
are involved in this study.

The parameter settings of the 17 single-model predictors
and six ensemble models used for numerical experiments are
given in Supplementary Section F.

B. Performance Demonstration on Numerical Classification
Problems

First, the performance of MEFNN is evaluated on 10
benchmark classification datasets from KEEL, which include
1) AU; 2) BA; 3) LI; 4) MG; 5) MO; 6) PB; 7) PI; 8) SE;
9) SO, and; 10) SH. Following the common practice [77],
[78], the maximum accuracy, mean accuracy and standard
deviation obtained by MEFNN from ten-fold cross-validation
on each dataset are tabulated in Supplementary Table S8.
The following six algorithms: 1) EIG; 2) SPA; 3) SAFL;
4) MOOSOFIS; 5) SEFIS, and; 6) PALM, are involved in
performance comparison under the same experimental protocol
and the results are given in Supplementary Table S8. For
better comparison, the results obtained by the three state-of-
the-art classification approaches in the literature, namely, 7)
Chebyshev polynomial broad learning system (CPBLS) [77],
8) compact fuzzy broad learning system (CFBLS) [78] and 9)
highly interpretable deep fuzzy classifier (HIDFC) [79], are
also reported in the same table. In addition, the performances
of MEFNN with a three-layer structure (L = 3), denoted
as MEFNN3, on the 10 benchmark datasets are reported in
Supplementary Table S8 to better demonstrate the proposed
concept. The best results per datasets in terms of maximum
accuracy and mean accuracy are highlighted in Supplementary
Table S8 for visual clarity.

It can be observed from Supplementary Table S8 that
MEFNN outperforms the nine alternative classification ap-
proaches in terms of maximum accuracy on five out of the
10 benchmark problems (namely, BA, MG, MO, PI and SO)
and its mean accuracy surpasses others on two out of the 10
problems (namely, MG and MO). The average classification
accuracy of MEFNN over the 10 problems is 0.8684, which is
ranked the first place among the 10 classification approaches
involved in this numerical example. With a three-layer struc-
ture, MEFNN3 achieves greater mean accuracy than MEFNN
on three benchmark problems (namely, BA, MG and MO)
and its maximum accuracy surpasses MEFNN on SH dataset.
Its average classification accuracy over the 10 problems is
0.8596, which is slightly lower than the two-layer MEFNN
but greater than the nine competitors. In contrast, CPBLS
and CFBLS are the two best performing ones among the
nine competitors, respectively, with the average classification
accuracies of 0.8558 and 0.8544.

Next, the classification performance of MEFNN is evaluated
on the following 10 benchmark problems from UCI: 1) OD;
2) MF; 3) PR; 4) AB; 5) IS; 6) PW; 7) SP; 8) MA; 9) TE,

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 8

TABLE I
OVERALL CLASSIFICATION PERFORMANCES AND THE

RESPECTIVE RANKS OF THE 23 CLASSIFICATION
APPROACHES ON 10 BENCHMARK CLASSIFICATION

PROBLEMS FROM UCI

Algorithm Acc Bacc
Mean Rank Mean Rank

MEFNN 0.8928 5.00 0.8686 5.30
MEFNN3 0.8861 7.80 0.8543 8.90

SVM 0.8874 7.10 0.8525 9.40
KNN 0.8773 10.45 0.8570 9.65
SEQ 0.7902 14.40 0.8033 12.60

SDKNN 0.7930 16.60 0.8081 15.00
ELM 0.7170 15.40 0.7008 14.40
MLP 0.8554 13.80 0.8197 14.60

LSTM 0.8832 7.80 0.8559 8.60
PNN 0.8477 14.15 0.8616 10.00
EIG 0.8413 15.70 0.8150 16.00

SAFL 0.8882 6.50 0.8561 7.65
MOOSOFIS 0.8731 12.70 0.8526 11.00

SEFIS 0.6711 21.70 0.6223 22.00
ESAFIS 0.8828 9.10 0.8501 9.75
PALM 0.8580 12.50 0.8053 13.90
eClass0 0.7350 20.90 0.7604 18.80
eClass1 0.8620 12.60 0.8111 13.90

RF 0.8679 9.00 0.8299 11.10
FWAdaBoost 0.8783 10.40 0.8312 11.00
SAMMED 0.8401 14.50 0.8070 14.90
SAMMEK 0.8754 11.25 0.8550 10.45
XGBoost 0.9001 6.65 0.8773 7.10

and; 10) SPF, and compared with the 21 single-model and
multi-model classification approaches mentioned in Section
III.A (SPA is not involved in this example due to its extremely
low computational efficiency on high dimensional problems).
In running the experiments, for OD, PR and IS datasets,
their original training-testing splits are used. For the other
seven datasets, 50% of data samples are randomly selected
to construct the training sets and the remaining 50% are used
as the validation sets [75]. The detailed classification results
in terms of accuracy (Acc) and balanced accuracy (BAcc)
are given in Supplementary Tables S9 and S10, respectively.
Similarly, the results obtained by MEFNN3 are also reported in
Supplementary Tables S9 and S10. The mean accuracies and
mean balanced accuracies of the 23 classification approaches
(including MEFNN and MEFNN3) and their respective ranks
from the best to the worst over the 10 benchmark problems
are given by Table I.

One can see from Table I that MEFNN outperforms 20
single-model and multi-model classification approaches on
the 10 benchmark problems in terms of average accuracy
and average balanced accuracy, and is only outperformed
by XGBoost. Meanwhile, MEFNN is ranked the top place
on both accuracy measures, suggesting that the predicted
labels produced by MEFNN are more accurate than other
approaches in the majority of cases. On the other hand,
despite that MEFNN3 outperforms MEFNN on a number of
benchmark problems in terms of mean (balanced) accuracy
and maximum accuracy, it can be seen from this numerical
example that its average classification accuracy over the 20
benchmark problems is slightly lower than MEFNN. This

suggests that, with the recommended parameter setting, the
two-level distributed representations learned by MEFNN from
data are sufficiently discriminative for accurately classifying
the unlabelled testing data of the 20 benchmark datasets used
for performance demonstration. However, it has to be stressed
that the optimal parameter setting for MEFNN always varies
from problem to problem depending on the nature of data.

To examine the statistical significance of the superior per-
formance achieved by MEFNN, over the 21 comparative
approaches involved in this example (excluding MEFNN3),
pairwise Wilcoxon rank tests [80] are conducted, and the
outcomes in terms of p-value are reported in Supplementary
Table S11, where the cascaded classification results by each
classification approach across the 10 Monte-Carlo experiments
are used. One can see from Supplementary Table S8 that
86.19% of the p-values returned by the pairwise Wilcoxon
tests are below the level of significance specified by α = 0.05.
The statistical analysis demonstrates that the performance of
MEFNN is, indeed, significantly better than the 21 alternative
classification approaches.

C. Performance Demonstration on Image Classification Prob-
lems

Then, the performance of MEFNN on high-dimensional
problems are tested on the four image classification problems.
In running the experiments, the training-testing split ratio of
OPT is set to 8:2; and for WHU, UCM and RSS datasets,
two different split ratios are considered for each, namely,
4:6 and 6:6, 5:5 and 8:2, and, 2:8 and 5:5, respectively,
by following the common practice in the literature [81].
The classification accuracies of MEFNN on the four visual
benchmark problems under different split ratios are reported
in Table II. The results obtained by MEFNN (in terms of
average classification accuracy and standard deviation) and a
selected group of the SOTA approaches from the literature
are given in Table II for comparison. Note that the results by
comparative approaches are obtained from [75], [82] directly.
It can be seen from Table II that MEFNN is able to achieve
great classification performance on these visual classification
problems, outperforming many DNN-based approaches.

D. Performance Demonstration on Network Intrusion Detec-
tion Problems

Furthermore, the performance of MEFNN on large-scale,
nonstationary and complex problems is evaluated on the two
aforementioned network instruction detection datasets and
compared with six single-model EFS models and two ensem-
ble EFS models aforementioned. In running the experiments,
the original training-testing splits of the two datasets are
kept. To facilitate simulation, 10% of the training and testing
samples are randomly selected and used in each experiment.
The numerical results obtained by MEFNN and the eight
competitors on the two datasets are reported in Table III in
terms of Acc and BAcc. One can see from Table III that
MEFNN outperforms all its EFS competitors by offering the
greatest Acc and BAcc on both datasets, showing its stronger
capability to handle highly challenging problems.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 9

TABLE II
PERFORMANCE COMPARISON ON FOUR VISUAL CLASSIFICATION PROBLEMS

Algorithm OPT WHU UCM RSS
4:6 6:4 5:5 8:2 2:8 5:5

MEFNN 1.0000 0.9713 0.9791 0.9650 0.9743 0.9169 0.9287
MOOSOFIS [75] 0.9989 0.9630 0.9749 0.9598 0.9693 0.8908 0.9157

CaffeNet [81] - 0.9511 0.9624 0.9398 0.9502 0.8557 0.8826
VGG-VD-16 [81] - 0.9544 0.9605 0.9414 0.9521 0.8398 0.8718
GoogLeNet [81] - 0.9312 0.9471 0.9370 0.9431 0.8255 0.8584

SalM3LBP-CLM [83] - 0.9421 0.9575 0.9535 0.9638 -
ARCNet-VGG16 [84] 0.9270 0.9750 0.9975 0.9681 0.9912 - -

GBNet [85] 0.9328 0.9705 0.9857 0.9732 0.9925 - -
EfficientNet-B3-Basic [86] 0.9476 0.9728 0.9768 0.9763 0.9873 0.9206 0.9439
EfficientNet-B3-Attn-2 [86] 0.9586 0.9860 0.9868 0.9790 0.9921 0.9330 0.9617

MSDS [87] - - 0.9761 - 0.9696 - -
MLDS [87] - - 0.9829 - 0.9788 - -
RANet [82] 0.9461 0.9798 0.9897 0.9780 0.9927 - -

TABLE III
PERFORMANCE COMPARISON ON TWO BENCHMARK
PROBLEMS FOR NETWORK INTRUSION DETECTION

Algorithm NSLKDD UNSWNB15
Acc BAcc Acc BAcc

MEFNN 0.7861 0.8029 0.8334 0.8163
SAFL 0.7737 0.7918 0.8139 0.7932
SEFIS 0.7721 0.7874 0.7430 0.7234

ESAFIS 0.7421 0.7704 0.7714 0.7456
PALM 0.7644 0.7842 0.8068 0.7847
eClass0 0.7177 0.7470 0.7250 0.7129
eClass1 0.5668 0.5000 0.5511 0.5000

eEnsemble 0.7018 0.7321 0.7223 0.7090
FWAdaBoost 0.7741 0.7924 0.8301 0.8136

E. Performance Demonstration on Regression Problems

In this section, the regression performance of MEFNN is
examined on widely used benchmark problems and compared
with a variety of mainstream EFSs.

The performances of MEFNN on the four real-world
benchmark problems, namely, 1) autos; 2) autompg; 3) delta
ailerons, and; 4) california housing, in terms of root mean
squared error (RMSE) and number of rules in the rule
base (#(Rules)) are reported in Supplementary Table S12,
where the results by comparative approaches, including 1)
PSO-ALMMo [35]; 2) SB-ALMMo [88]; 3) CEFNS [43]; 4)
DENFIS [25]; 5) eTS [29]; 6) ESAFIS [31]; 7) SAFIS [30];
8) RMCEFS [36], and; 9) OS-Fuzzy-ELM [89], are obtained
from the literature.

One can see from Supplementary Table S12 that MEFNN
outperforms all nine mainstream EFSs on the automgp and
california housing problems by producing the most accurate
predictions (with lowest RMSE), and its performance on
the other two datasets are also well above the average. This
example demonstrates the great potential of MEFNN on real-
world regression problems.

Next, the performance of MEFNN is evaluated on the
widely-used Mackey-Glass chaotic time series problem fol-
lowing the standard experimental protocol [34], [36], [90].
The result obtained by MEFNN is reported in Table IV in
terms of non-dimensional error index (NDEI), number of

TABLE IV
PERFORMANCE COMPARISON ON MACKEY-GLASS TIME

SERIES PROBLEM

Algorithm NDEI #(Rules) texe
MEFNN 0.0914 (4.4, 13.1) 164.2392

PSO-ALMMo 0.1910 8 314.3214
SAFL 0.1048 20 0.1868

CEFNS 0.2635 5 0.4368
eTS 0.2141 4 21.9745

ESAFIS 0.2487 6 2.7656
SAFIS 0.2925 4 0.4375

RMCEFS 0.1172 5 0.3432
OS-Fuzzy-ELM 0.2991 5 0.9253

PANFIS 0.2847 33 4.8679
GENEFIS 0.1198 42 4.9694

PALM 0.1380 18 0.7771
eFuMo 0.1388 41 -

EFS-SLAT 0.1140 8 -
SEFS 0.1287 4 0.3510

LEOA [90] 0.2480 42 144.7818
eGAUSS+ [91] 0.2728 25 ∼5

HiPCA [92] 0.2495 25 ∼14
InFuR [93] 0.1545 22 -

rules in the rule base (#(Rules)) and execution time (texe).
The results by the mainstream EFSs are obtained directly from
the literature [26], [34], [36], [91]–[93] and reported in the
same table. It is shown by Table IV that MEFNN surpasses
the SOTA competitors on the Mackey-Glass problem with the
lowest NDEI (0.0914), which further demonstrates that its
superior performance on regression tasks.

Finally, MEFNN is tested on the S&P500 problem. The
prediction performance of MEFNN on the testing data follow-
ing the standard test-then-train protocol is reported in Supple-
mentary Table S13 (in terms of NDEI and #(Rules)). The
prediction performance of MEFNN without online training
(following the same setting used in other examples presented
in this section) is also reported in the same table for compar-
ison. To differentiate between the two results, MEFNN that
follows the test-then-train protocol is re-denoted as MEFNN*.
The prediction results by MEFNN and MEFNN are depicted
in Supplementary Fig. S2 for better comparison. In addition,
results by selected SOTA approaches on this problem follow-

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 10

ing the commonly used test-then-train protocol are tabulated
in Table Supplementary Table S13 for comparison.

Supplementary Table S13 shows that MEFNN* demon-
strates greater prediction performance on the S&P500 problem
with a lower NDEI value of 0.0162, which is ranked the
third place among the regression approaches involved in this
example. In addition, it can be seen from Supplementary
Table S13 and Fig. S2 that MEFNN can effectively utilise
new streaming data samples to self-update its knowledge
base and self-improve its predictions with the NDEI value
improved from 0.0200 to 0.0162. This example demonstrates
the potential of MEFNN as a powerful tool for handling
data streams. The IF-THEN rules learned by MEFNN from
S&P500 problem during one particular experiment are pre-
sented in Supplementary Table S14, where one can see that
the learned meta-level knowledge base of MEFNN can be
visualised in a meaningful, human-interpretable form thanks
to the use of ENFISs as its base components. This is useful
for developing transparent inference tools.

To summarise, the systematic experimental studies over
a wide variety of benchmark classification and regression
problems presented in this section collectively and consistently
demonstrate the superior performance of MEFNN in compar-
ison to the SOTA approaches in terms of prediction accuracy.
Numerical examples based on 20 popular numerical problems
presented in Section III.B demonstrate that MEFNN with the
default parameter setting can achieve great classification accu-
racy surpassing, or at least on par with the SOTA competitors.
Numerical examples on four visual classification problems
and two network intrusion detection problems presented in
Sections III.C and III.D show the strong capability of MEFNN
to handle high-dimensional, large-scale, complex problems.
Thanks to the multi-level distributed representation learned
from data, MEFNN achieves greater classification accuracy on
these challenging benchmark problems than alternative EFS-
based comparative models involved in experimental compar-
ison. Last, MEFNN is tested on six benchmark regression
problems, and numerical results show the great potential
of MEFNN in solving real-world regression problems whist
offering high-level transparency and interpretability. On the
other hand, as the main purpose of this paper is to demonstrate
the concept and general principles of the proposed stacking
ensemble model, all the numerical results of MEFNN are
obtained with the same parameter setting, thereby ensuring
a fair comparison. The structure of MEFNN is, in fact, highly
flexible, one can easily increase the depth by adding more
base models in the stacking ensemble, control the size of each
layer by changing the threshold, δo and increase/reduce the
amount of information exchanged between successive layers
by adjusting Wo. Therefore, there is still a large space for per-
formance improvement by adjusting the externally controlled
parameters according to the nature of data.

IV. CONCLUSION

This paper has presented a new meta-level ensemble learn-
ing model, composed of multiple cascading simpler EFSs
to learn multi-level nonlinear distributed representation from

data. The resultant multilayer evolving fuzzy neural network
(MEFNN) learns from data on a sample-by-sample basis to
self-organise the underlying multilayer system structure and
self-update the network parameters. Systematic comparative
investigations have demonstrated the superior performance of
MEFNN on various challenging classification and regression
problems, outperforming the SOTA approaches.

A number of open issues remain that require further con-
siderations. First, theoretical analysis on the stability and
convergence of the proposed MEFNN is not conducted in
this study. Although there have been a number of works
analysing the convergence of backpropagation and the stability
of EFSs, the use of backpropagation in EFS-based meta-level
ensemble models has not been explored before. Thus, this
will be an important direction for future research. Second,
compared with single-model EFSs, MEFNN requires larger
amounts of training data (or being trained repeatedly with the
same data) to reach practically excellent performance. This is
fundamentally due to the use of the error backpropagation al-
gorithm for consequent parameter updating, a limitation shared
with many SOTA methods. As the ambiguity in defining the
error functions for individual layers poses a challenge to the
use of RLS-based algorithms in MEFNN, it would be worth
exploring different options to address this aspect, better fa-
cilitating the consequent parameter training. Third, numerical
examples presented in this study demonstrate that MEFNN
with the same fixed parameter setting outperforms the SOTA
approaches on many classification and regression problems
in terms of prediction accuracy. However, predetermining the
externally controlled parameters for MEFNN may still be a
challenging task, especially for these less experienced users.
Therefore, it would be helpful to explore the possibilities
of deriving some of the parameters directly from data, for
example, MEFNN may self-determine to increase or decrease
the number of layers based on the nature of data. Fourth,
this study only explores the use of sigmoid function in the
consequent part of IF-THEN rules of MEFNN and compared
it with the classical linear function. It would be interesting to
see how MEFNN might perform with other types of nonlinear
activation function, particularly, rectified linear unit, which is
computationally cheaper and converges faster than sigmoid.
Fifth, the base model ENFIS employed in this research only
possesses the essential rule adding scheme. It would be helpful
to introduce other potentially useful schemes such as pruning,
merging and splitting in an effort to learn a more compact,
meaningful rule base from data, thereby improving the overall
prediction performance of MEFNN. Last, the numerical results
presented in this paper are focused on classification and regres-
sion problems. MEFNN, in fact, is a generic, flexible approach
for multi-level representation learning and has great potential
for solving more complex problems concerning visual and
audio information. The utilisation of MEFNN in other types of
applications, such as dimensionality reduction, image feature
extraction, etc., will be further explored in future works.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol.
13, no. 1, pp. 35–35, 2015.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 11

[2] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its
applications,” Comput. Sci. Rev., vol. 40, p. 100379, 2021.

[3] G. Li et al.,“A deep learning based image enhancement approach for au-
tonomous driving at night,” Knowledge-Based Syst., vol. 213, p. 106617,
2021.

[4] H. Chen et al., “The rise of deep learning in drug discovery,” Drug Discov.
Today, vol. 23, no. 6, pp. 1241–1250, 2018.

[5] X. Ding et al., “Deep learning for event-driven stock prediction,” in Inter-
national Joint Conference on Artificial Intelligence, 2015, pp. 2327–2333.

[6] G. Hinton, “Learning multiple layers of representation,” Trends Cogn.
Sci., vol. 11, no. 10, pp. 428–434, 2007.

[7] Z. Zhou and J. Feng, “Deep forest,” Natl. Sci. Rev., vol. 6, no. 1, pp.
74–86, 2019.

[8] P. Angelov et al., “Explainable artificial intelligence: an analytical re-
view,” WIREs Data Min. Knowl. Discov., pp. 1–13, 2021.

[9] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nat. Mach. Intell.,
vol. 1, no. 5, pp. 206–215, 2019.

[10] J. Feng, Y. Yu, and Z. Zhou, “Multi-layered gradient boosting decision
trees,” in Advances in Neural Information Processing Systems, 2018, pp.
3551–3561.

[11] X. Gu, “Multilayer ensemble evolving fuzzy inference system,” IEEE
Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2425–2431, 2021.

[12] D. Wolpert, “Stacked generalization,” Neural Netw., vol. 5, no. 505, pp.
241–255, 1992.

[13] A. Pernia-Espinoza et al., “Stacking ensemble with parsimonious base
models to improve generalization capability in the characterization of steel
bolted components,” Appl. Soft Comput., vol. 70, pp. 737–750, 2018.

[14] E. Lughofer, M. Pratama, and I. Skrjanc, “Online bagging of evolving
fuzzy systems,” Inf. Sci. (Ny)., vol. 570, pp. 16–33, 2021.

[15] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 421, pp.
123–140, 1996.

[16] Y. Jung, J. Goetz, and A. Tewari, “Online multiclass boosting,” in
Advances in Neural Information Processing Systems, 2017, pp. 920–929.

[17] J. Zhu et al., “Multi-class AdaBoost,” Stat. Interface, vol. 2, no. 3, pp.
349–360, 2009.

[18] Y. Xia, K. Chen, and Y. Yang, “Multi-label classification with weighted
classifier selection and stacked ensemble,” Inf. Sci. (Ny)., vol. 557, pp.
421–442, 2021.

[19] P. Vincent et al., “Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising criterion,” J.
Mach. Learn. Res., vol. 11, pp. 3371–3408, 2010.

[20] M. Akhtar, A. Ekbal, and E. Cambria, “How intense are you? predicting
intensities of emotions and sentiments using stacked ensemble,” IEEE
Comput. Intell. Mag., vol. 15, no. 1, pp. 64–75, 2020.

[21] L. Breiman, “Random forests,” Mach. Learn. Proc., vol. 45, no. 1, pp.
5–32, 2001.

[22] A. Taherkhani, G. Cosma, and T. McGinnity, “AdaBoost-CNN: an
adaptive boosting algorithm for convolutional neural networks to classify
multi-class imbalanced datasets using transfer learning,” Neurocomputing,
vol. 404, pp. 351–366, 2020.

[23] M. Ribeiro and L. dos Santos Coelho, “Ensemble approach based on
bagging, boosting and stacking for short-term prediction in agribusiness
time series,” Appl. Soft Comput., vol. 86, p. 105837, 2020.

[24] P. Angelov, Autonomous learning systems: from data streams to knowl-
edge in real time. John Wiley & Sons, Ltd., 2012.

[25] N. Kasabov, Evolving connectionist systems: the knowledge engineering
approach. Springer Science & Business Media, 2007.

[26] X. Gu and Q. Shen, “A self-adaptive fuzzy learning system for streaming
data prediction,” Inf. Sci. (Ny)., vol. 579, pp. 623–647, 2021.

[27] I. Skrjanc et al., “Evolving fuzzy and neuro-fuzzy approaches in
clustering, regression, identification, and classification: a survey,” Inf. Sci.
(Ny)., vol. 490, pp. 344–368, 2019.

[28] E. Lughofer, “Evolving fuzzy and neuro-fuzzy systems: fundamentals,
stability, explainability, useability, and applications,” in HANDBOOK
ON COMPUTER LEARNING AND INTELLIGENCE: Volume 2: Deep
Learning, Intelligent Control and Evolutionary Computation, 2022, pp.
133–234.

[29] P. Angelov and D. Filev, “An approach to online identification of Takagi-
Sugeno fuzzy models,” IEEE Trans. Syst. Man, Cybern. - Part B Cybern.,
vol. 34, no. 1, pp. 484–498, 2004.

[30] H. Rong et al., “Sequential adaptive fuzzy inference system (SAFIS)
for nonlinear system identification and prediction,” Fuzzy Sets Syst., vol.
157, no. 9, pp. 1260–1275, 2006.

[31] H. Rong et al., “Extended sequential adaptive fuzzy inference system
for classification problems,” Evol. Syst., vol. 2, no. 2, pp. 71–82, 2011.

[32] E. Lughofer et al., “Generalized smart evolving fuzzy systems,”Evol.
Syst., vol. 6, no. 4, pp. 269–292, 2015.

[33] D. Dovzan, V. Logar, and I. Skrjanc, “Implementation of an evolving
fuzzy model (eFuMo) in a monitoring system for a waste-water treatment
process,” IEEE Trans. Fuzzy Syst., vol. 23, no. 5, pp. 1761–1776, 2015.

[34] D. Ge and X. Zeng, “A self-evolving fuzzy system which learns dynamic
threshold parameter by itself,” IEEE Trans. Fuzzy Syst., vol. 27, no. 8,
pp. 1625–1637, 2018.

[35] X. Gu, Q. Shen, and P. Angelov, “Particle swarm optimized autonomous
learning fuzzy system,” IEEE Trans. Cybern., vol. 51, no. 11, pp.
5352–5363, 2021.

[36] H. Rong, Z. Yang, and P. Wong, “Robust and noise-insensitive recursive
maximum correntropy-based evolving fuzzy system,” IEEE Trans. Fuzzy
Syst., vol. 28, no. 9, pp. 2277–2284, 2019.

[37] D. Ge and X. Zeng, “Learning data streams online - an evolving fuzzy
system approach with self-learning/adaptive thresholds,” Inf. Sci. (Ny).,
vol. 507, pp. 172–184, 2020.

[38] Z. Yang et al., “Statistically evolving fuzzy inference system for non-
Gaussian noises,” IEEE Trans. Fuzzy Syst., vol. 30, no. 4, pp. 2649–2664,
2022.

[39] G. Leng, T. McGinnity, and G. Prasad, “An approach for on-line
extraction of fuzzy rules using a self-organising fuzzy neural network,”
Fuzzy Sets Syst., vol. 150, no. 2, pp. 211–243, 2005.

[40] D. Leite, P. Costa, and F. Gomide, “Evolving granular neural networks
from fuzzy data streams,” Neural Networks, vol. 38, pp. 1–16, 2013.

[41] M. Pratama, S. Anavatti, and E. Lughofer, “Genefis: toward an effective
localist network,” IEEE Trans. Fuzzy Syst., vol. 22, no. 3, pp. 547–562,
2014.

[42] M. Pratama et al., “PANFIS: a novel incremental learning machine,”
IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 55–68,
2014.

[43] R. Bao et al., “Correntropy-based evolving fuzzy neural system,” IEEE
Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1324–1338, 2018.

[44] M. Ferdaus et al., “PALM: an incremental construction of hyperplanes
for data stream regression,” IEEE Trans. Fuzzy Syst., vol. 27, no. 11, pp.
2115–2129, 2019.

[45] X. Gu et al., “Autonomous learning for fuzzy systems: a review,” Artif.
Intell. Rev., pp. 1–47, 2022.

[46] J. Iglesias, A. Ledezma, and A. Sanchis, “Ensemble method based on
individual evolving classifiers,” in IEEE Conference on Evolving and
Adaptive Intelligent Systems, 2013, pp. 56–61.

[47] M. Pratama, W. Pedrycz, and E. Lughofer, “Evolving ensemble fuzzy
classifier,” IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2552–2567, 2018.

[48] M. Pratama et al., “Online tool condition monitoring based on parsi-
monious ensemble+,” IEEE Trans. Cybern., vol. 50, no. 2, pp. 664–677,
2020.

[49] X. Gu and P. Angelov, “Multi-class fuzzily weighted adaptive boosting-
based self-organising fuzzy inference ensemble systems for classifica-
tion,” IEEE Trans. Fuzzy Syst., vol. 30, no. 9, pp. 3722–3735, 2022.

[50] E. Lughofer and M. Pratama, “Online sequential ensembling of predic-
tive fuzzy systems,” Evol. Syst., vol. 13, no. 2, pp. 361–386, 2022.

[51] M. Pratama, W. Pedrycz, and G. Webb, “An incremental construction
of deep neuro fuzzy system for continual learning of nonstationary data
streams,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1315–1328, 2020.

[52] F. Bordignon and F. Gomide, “Uninorm based evolving neural networks
and approximation capabilities,” Neurocomputing, vol. 127, pp. 13–20,
2014.

[53] H. Huang et al., “Recursive least mean dual p-power solution to the
generalization of evolving fuzzy system under multiple noises,” Inf. Sci.
(Ny)., vol. 609, pp. 228–247, 2022.

[54] Z. Sun, K. Au, and T. Choi, “A neuro-fuzzy inference system through
integration of fuzzy logic and extreme learning machines,” IEEE Trans.
Syst. Man, Cybern. Part B Cybern., vol. 37, no. 5, pp. 1321–1331, 2007.

[55] B. Ding, H. Qian, and J. Zhou, “Activation functions and their char-
acteristics in deep neural networks,” in Chinese control and decision
conference, 2019, pp. 1836–1841.

[56] C. Garcia et al., “Evolvable fuzzy systems from data streams with
missing values: with application to temporal pattern recognition and
cryptocurrency prediction,” Pattern Recognit. Lett., vol. 128, pp. 278–282,
2019.

[57] J. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE
Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[58] C. Lin and Y. Lu, “A neural fuzzy system with linguistic teaching
signals,” IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 169–189, 1995.

[59] R. Yin et al., “A rule-based deep fuzzy system with nonlinear fuzzy
feature transform for data classification,” Inf. Sci. (Ny)., vol. 633, pp.
431–452, 2023.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. XX, XX 2023 12

[60] P. de Campos Souza, E. Lughofer, and A. Guimaraes, “An interpretable
evolving fuzzy neural network based on self-organized direction-aware
data partitioning and fuzzy logic neurons,” Appl. Soft Comput., vol. 112,
p. 107829, 2021.

[61] X. Gu et al., “A self-training hierarchical prototype-based ensemble
framework for remote sensing scene classification,” Inf. Fusion, vol. 80,
pp. 179–204, 2022.

[62] K. He et al., “Deep residual learning for image recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[63] G. Huang et al., “Densely connected convolutional networks,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
4700–4708.

[64] C. Szegedy et al., “Rethinking the inception architecture for computer
vision,” in IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2818–2826.

[65] M. Tavallaee et al., “A detailed analysis of the KDD CUP 99 data set,” in
IEEE Symposium on Computational Intelligence for Security and Defense
Applications, 2009, pp. 1–6.

[66] N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: statistical analysis of the UNSW-NB15 data set and the com-
parison with the KDD99 data set,” Inf. Secur. J., vol. 25, no. 1–3, pp.
18–31, 2016.

[67] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based learning methods. Cambridge: Cam-
bridge University Press, 2000.

[68] P. Cunningham and S. Delany, “K-nearest neighbour classifiers,” Mult.
Classif. Syst., vol. 34, pp. 1–17, 2007.

[69] R. Patro et al., “Dictionary-based classifiers for exploiting feature
sequence information and their application to hyperspectral remotely
sensed data,” Int. J. Remote Sens., vol. 40, no. 13, pp. 4996–5024, 2019.

[70] G. Huang et al., “Extreme learning machine for regression and multiclass
classification,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 42,
no. 2, pp. 513–529, 2012.

[71] S. Hochreiter and J. Urgen Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[72] D. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no.
1, pp. 109–118, 1990.

[73] U. Erkan, “A precise and stable machine learning algorithm: eigenvalue
classification (EigenClass),” Neural Comput. Appl., vol. 33, no. 10, pp.
5381–5392, 2021.

[74] D. Li and D. Dunson, “Classification via local manifold approximation,”
Biometrika, vol. 107, no. 4, pp. 1013–1020, 2020.

[75] X. Gu et al., “Multi-objective evolutionary optimisation for
prototype-based fuzzy classifiers,” IEEE Trans. Fuzzy Syst., DOI:
10.1109/TFUZZ.2022.3214241, 2022.

[76] T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting system,”
in ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 785–794.

[77] S. Feng, B. Wang, and C. Chen, “Chebyshev polynomial broad learning
system,” in IEEE International Conference on Information, Cybernetics,
and Computational Social Systems, 2021, pp. 1–6.

[78] S. Feng et al., “On the accuracy-complexity trade-off of fuzzy broad
learning system,” IEEE Trans. Fuzzy Syst., vol. 29, no. 10, pp. 2963–2974,
2021.

[79] Y. Zhang, H. Ishibuchi, and S. Wang, “Deep Takagi-Sugeno-Kang fuzzy
classifier with shared linguistic fuzzy rules,” IEEE Trans. Fuzzy Syst., vol.
26, no. 3, pp. 1535–1549, 2018.

[80] F. Wilcoxon, “Individual comparisons of grouped data by ranking
methods,” J. Econ. Entomol., vol. 39, no. 6, pp. 269–270, 1946.

[81] G. Xia et al., “AID: a benchmark dataset for performance evaluation of
aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, 2017.

[82] X. Wang et al., “Relation-attention networks for remote sensing scene
classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15,
pp. 422–439, 2022.

[83] X. Bian et al., “Fusing local and global features for high-resolution scene
classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10,
no. 6, pp. 2889–2901, 2017.

[84] Q. Wang, S. Liu, and J. Chanussot, “Scene classification with recurrent
attention of VHR remote sensing images,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 2, pp. 1155–1167, 2019.

[85] H. Sun et al., “Remote sensing scene classification by gated bidirectional
network,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 82–96,
2020.

[86] H. Alhichri et al., “Classification of remote sensing images using
EfficientNet-B3 CNN model with attention,” IEEE Access, vol. 9, pp.
14078–14094, 2021.

[87] F. Hu et al., “Mining deep semantic representations for scene classifica-
tion of high-resolution remote sensing imagery,” IEEE Trans. Big Data,
vol. 6, no. 3, pp. 522–536, 2020.

[88] X. Gu and P. Angelov, “Self-boosting first-order autonomous learning
neuro-fuzzy systems,” Appl. Soft Comput., vol. 77, 2019.

[89] H. Rong et al., “Online sequential fuzzy extreme learning machine for
function approximation and classification problems,” IEEE Trans. Syst.
Man, Cybern. Part B Cybern., vol. 39, no. 4, pp. 1067–1072, 2009.

[90] D. Ge and X. Zeng, “Learning evolving T-S fuzzy systems with both
local and global accuracy - a local online optimization approach,” Appl.
Soft Comput., vol. 86, pp. 795–810, 2018.

[91] I. Skrjanc, “Cluster-volume-based merging approach for incrementally
evolving fuzzy Gaussian clustering-eGAUSS+,” IEEE Trans. Fuzzy Syst.,
vol. 28, no. 9, pp. 2222–2231, 2020.

[92] D. Dovzan and I. Skrjanc, “Fuzzy space partitioning based on hyper-
planes defined by eigenvectors for Takagi-Sugeno fuzzy model identifi-
cation,” IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 5144–5153, 2020.

[93] S. Blazic and I. Skrjanc, “Incremental fuzzy c-regression clustering from
streaming data for local-model-network identification,” IEEE Trans. Fuzzy
Syst., vol. 28, no. 4, pp. 758–767, 2020.

