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ABSTRACT 
 

Wave energy shows potential to provide electricity in a renewable 

manner. The TALOS WEC (Wave Energy Converter) is a unique design 

with six PTO (Power Take-Off) elements to provide six Degrees of 

Freedom (DOFs), which is potentially able to harvest energy more 

efficiently than traditional single-DOF devices. As a step towards its 

optimisation and control, a power prediction model is developed, using 

the wave elevation and motions of the WEC to predict the power output 

of each PTO. The results show that using LSTM (Long-Short Term 

Memory) has a higher prediction accuracy than the other approaches 

considered. 

 

KEY WORDS:  TALOS; WEC; power prediction; machine learning; 

LSTM 

 

INTRODUCTION 

 

Much research has been done on energy harvesting technologies over the 

past few decades, in part due to the incoming energy crisis. As a type of 

renewable energy, ocean waves provide significant energy via a 

sustainable and reliable approach. As a result, many different types of 

WECs have been designed and tested to produce clean and renewable 

energy (Li et al., 2012). Examples include Lancaster University’s PS 

Frog (Taylor et al., 2002; McCabe et al., 2006), AquaBuOy 

(AquaBuOy, 2016), and Powerbuoy (Powerbuoy, 2016).   

 

In general, WECs can be categorised as point absorbers, oscillating water 

columns, terminators, oscillating wave surge converters, attenuators, and 

submersed pressure differential devices (Aggidis and Taylor, 2017; 

Darwish and Aggidis, 2022). The majority of WECs are single-DOF 

devices, which means they could only extract energy from one direction 

of motion. Based on the single-DOF method, prototypes have been 

designed such as the Carnegie Wave Energy Limited prototypes (Wave 

Hub, 2016), the Archimedes Wave Swing (AWS Ocean, 2016), Oregon 

Limited’s multi-resonant chamber (Orecon, 2009), and Salter’s Duck 

(Salter, 1974). However, the kinetic power contained in the waves is in 

multiple directions. In hydrodynamic analysis, the waves have yaw, roll, 

and pitch motions in heave, surge, and sway axes, respectively. In total, 

there are six degrees of freedom in WECs that would be affected by the 

waves. Theoretically, if the device can extract energy from multiple 

DOFs, more energy can be thus generated. 

 

Despite of the majority designs being single-DOF, few multi-DOF 

WECs have been developed to date. One of the most famous designs is 

Pelamis, which is a snake shape device with several tubes that are 

connected by hydraulic rams. The electricity is generated from the 

hydraulic rams that connect the moving tubes. Pelamis prototypes have 

been deployed in Portugal and Scotland and fed electricity in national 

grids (Boyle and Duckers, 2012). 

 

Compared with single-DOF devices, multi-DOF WECs have seen much 

less research and prototype design. Development of Pelamis, for 

example, was cancelled because the company went into administration 

after being unable to secure the level of additional funding required for 

the further development of their technology (Wave power firm Pelamis 

calls in administrators, 2014). NHP-WEC (Novel High-performance 

Wave Energy Converter) is an ongoing project that aims to design a 

novel multi-DOF point absorber style WEC, called TALOS, built as a 

1/100th scale representation, with a solid outer hull containing all the 

moving parts. These include a ball mass and dampers (PTOs) that 

connect the ball and the hull as shown in Fig. 1.     

 

During the development of the prototype, ocean uncertainties threaten 

the reliability and stability of the ocean energy system, especially for 

WECs (Sanchez et al., 2018). Hence, it is necessary to forecast ocean 

wave energy to save construction and pilot project costs (Reikard et al., 

2015). Prediction of WEC power output can bring the following benefits: 

• Improve the design of the control system. 



  

• Improve power management abilities. 

• Improve the reliability of the condition monitoring system.  

 

 
Fig. 1 TALOS I photograph (left) and TALOS II prototype diagram, with 

cut away section to show the internal PTO components (from Bhatt et 

al., 2016). 

 

In existing research into ocean energy, most of the studies are focused 

on a wave prediction perspective. Desouky and Abdelkhalik (2019), for 

example, propose a method based on ANN (Artificial Neural Network) 

and NARX (nonlinear autoregressive network with exogenous inputs) to 

predict wave surface elevation. By contrast, considering the non-linearity 

of ocean waves, a variational Bayesian machine learning method is 

proposed to predict the wave elevation, uncertainty, and the predictable 

zone (Zhang et al., 2022). The latter results show that the prediction 

errors are 5.4% and 11.7% lower than linear wave theory and 

deterministic machine learning approaches, respectively.   

 

However, predicting the power generation of a WEC is more 

complicated compared with wave prediction and can be a challenge since 

calculations involving the boundary condition equations are complex and 

time-consuming. Hence, researchers are seeking approaches to replace 

the numerical solutions (Mousavi et al., 2021). With the development of 

AI (Artificial Intelligence) and ML (Machine Learning) technologies, 

using ML to predict wave power has now became a reality (Bento et al., 

2021). Genetic algorithms are adapted to produce prediction models by 

using different wave periods, wave heights, and water depths in 

simulation (Liu et al., 2020). Other methods, such as reinforcement 

learning, K-means clustering, and CNN (Convolutional Neural Network) 

are also employed to predict the electricity power generated from the 

WEC (Zou et al., 2022; Wang, 2020; and Ni et al., 2018).  

 

In this context, the present paper proposes an LSTM based power 

prediction model for the multi-DOF TALOS device. The prediction 

results are compared with regression trees, SVR (Support Vector 

Regression) and ANN methods.  

 

TALOS WEC POWER GENERATION PREDICTION MODEL 

 

TALOS WEC model 

 

Fig. 2 demonstrates the PTO structure of TALOS. The PTO system is 

composed of a heavy ball at the centre. Six dampers (PTOs) are used to 

connect the outside hull and the ball inside. Due to the weight of the ball, 

the ball would have relative motions to the hull when the incoming wave 

hits the WEC. Hence, motions coming from different directions will 

cause tension and compression forces on the dampers.  

 

Fig. 2 TALOS II PTO system with six-degrees of freedom. 

 

TALOS numerical modelling is based on a full-sized physical model of 

the device (Sheng et al., 2022a). The incoming wave is generated with 

an average 10s time period. In the measurements, a total of 20 variables 

are monitored, which are water surface elevation, surge motion, heave 

motion, pitch motion, PTO force in the x direction, PTO force in the z 

direction, PTO moment in the y direction, forces applied on six PTOs, 

electric power generated by six PTOs, and total power, respectively. 

 

LSTM 

 

The LSTM network consists of stacks of LSTM nets. The basic structure 

of the LSTM network is shown in Fig.2 (Liu et al., 2019). One LSTM 

net includes input gates, forget gates, cell state, output gates, sigmoid 

gates, and tanh gates. Unlike other machine learning algorithms, the 

LSTM emphasises on the importance of relationship between previous 

state and current state. The output of current state is determined by the 

current input Xt and the previous outputs the ht-1, and ht-2. Note that the ht-

1, and ht-2 are the output from previous states. The previous cell state (Ct-

1) and the previous hidden state (ht) are preserved and passed to the 

current cell state (Ct) and the current hidden state (ht) without any losses. 

The sigmoid function (σ) which connects to previous states and current 

states is used to decide which input data need to be added or removed 

from cell state. Thus, the long-term dependency problem can be avoided. 

 
Fig.2 LSTM structure. 



  

 

To determine whether to keep or remove the input (Xt) at time t, the 

decision function of forget gate (ft) is considered. The decision function 

is ranged from 0 to 1 corresponding to the numbers in the cell state Ct-1, 

where the Wf and bf are the weight and bias of forget gate, respectively. 

 

𝑓𝑡 = σ（𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                                                                      (1) 

 

Then the sigmoid function is employed to decide whether the new 

information needs to be preserved or forgotten. Different with sigmoid 

function, the tanh function is used to determine the importance of the 

information to be transmitted from previous state. By multiplying the 

results from sigmoid function and tanh function, the new current state Ct 

is constructed from Ct-1. 

 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)                                                                                (2) 
𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑡𝑎𝑛ℎ⁡(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛)𝑖𝑡                                                   (3)  
 
The current input gate it is constructed from a sigmoid function, which is 

calculated from previous hidden state and input, where the Wi and bi are 

the weight and bias of the input gate. The current cell state Ct is 

determined by previous cell state Ct-1, forget gate ft and tanh function. 

 

The output of the LSTM is computed from the hidden state (ht) at the 

current time t based on the output gate Ot.   

 

𝑂𝑡 = σ（𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)⁡                                                                   (4) 

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ⁡(𝐶𝑡)                                                                                                       (5) 

 

The output cell state is calculated from the sigmoid function of previous 

hidden state ht-1 and Xt, where the Wo and bo are the weight and bias of 

the output gate, respectively. The output/ current hidden state is decided 

by the current output gate Ot and tanh function of current cell sate Ct.  

  

The LSTM network is developed from RNN (Recurrent Neural 

Network). Thus, it has advantages in linking previous information to 

current state compared with other machine learning algorithms such as 

regression tress, SVR and ANN. Due to this characteristic, the LSTM is 

suitable for regression modelling for predicting and processing long-term 

time series data. This advantage has also been approved by many 

researchers (Jalayer et al., 2021; Abdul et al., 2020; and Zhao et al., 

2016).  

 

Power generation forecasting framework 

 

To implement the proposed model, a five-step modelling method is used. 

The details of the power generation forecasting framework are shown in 

the Fig.3. 

 

The raw data were acquired from the TALOS WEC numerical modelling 

in previous research with 0.05s sampling intervals, which included 20 

monitoring variables (Sheng et al., 2022b). The first step is to pre-process 

the raw data including separate data into inputs and targets for the 

training dataset, inputs and targets for testing data, and data 

normalisation. Considering the causality of the WEC system, water 

surface elevation, surge motion, heave motion, pitch motion, PTO force 

in the x direction, PTO force in the z direction, and overall moment in 

the y direction are used as the training input. The PTO forces in x and z 

direction are extracted from the relative motion between the ball and the 

hull. The six PTOs' forces are used as the target and forecasting output 

of the model. Another method is using all the inputs to predict the total 

power output. The six PTOs are working independently but might affect 

each other. For instance, if one damper was broken and stuck in a 

compression position, it would leave more space for other dampers’ 

movements. The extra electricity power produced by other dampers 

might compensate for the broken one. Hence, it is necessary to model the 

six PTOs’ forces separately.    

 

 
 Fig. 3. TALOS WEC power generation model. 

 

 

During the training process, the size of the dataset can affect training 

results significantly. Overtraining easily happens when the training set is 

too small. Larger datasets can help learning better but might consume 

massive computation resources. In this modelling, 12,0000 data were 

used with 90% data for training and 10% data for testing.  

 

The second to fourth steps are setting training parameters for the LSTM 

model. The LSTM network parameter setting was based on previous 

success (Wu and Ma, 2022) and several tests by using the same dataset. 

The final hyperparameters were set with 250 max epochs, 1 gradient 

threshold, 0.05 initial learning rate, 125 drop period, and 0.2 drop factor 

After the training process is completed, the remaining 10% of the data is 

used for testing to validate the accuracy of the model. The forces of six 

PTOs are further used for the power outputs calculation by using Eq. 6. 

 

𝑃 =
𝐹2

𝜆
                                                                                                                 (6) 

 

where P and F are the power output and force of one PTO and λ = 

250,000 is the power coefficient based on hydrodynamic modelling.  

 

Finally, the LSTM prediction accuracy is further compared with other 

machine learning algorithms. Both RMSE (root mean square error) in 

Eq. 7 and R2 (coefficient of determination) in Eq. 8 are calculated to 

evaluate the forecasting model accuracy.   

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑛)

2𝑁
𝑛=1

𝑁
⁡                                                                                    (7) 

where ŷn represents for the prediction value and yn represents for the 

measurement value. The RMSE value is ranged from 0 to +∞. Lower 

values indicate higher accuracy.  

 



  

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                                                                     (8) 

 

where SSres and SStot represent for the residual sum of squares and total 

sum of squares, respectively. Normally, the R2 value is ranged from 0-1. 

A value of 1 indicates the prediction model fits the data perfectly. If the 

value is calculated outside this range, that would indicate the prediction 

model does not fit the data at all.  

 

POWER GENERATION RESULTS AND ANALYSIS 

 

LSTM forecasting results 

 

The TALOS WEC consists of six PTOs, labelled from 1st to 6th. Each 

PTO force is predicted based on the proposed LSTM regression method 

and the six PTO power output are further calculated. The predicted PTO 

forces, power outputs, and their corresponding R2 values are 

demonstrated in Fig. 4-9.  

 

 
Fig.4 Forecasting results of first PTO force and power output. 

 

 
Fig. 5 Forecasting results of second PTO force and power output. 

 

 
Fig. 6 Forecasting results of third PTO force and power output. 

 

 
Fig. 7 Forecasting results of fourth PTO force and power output. 

 

 
Fig. 8 Forecasting results of fifth PTO force and power output. 

 

 
Fig. 9 Forecasting results of sixth PTO force and power output. 

 

The six figures show the LSTM forecasting test results. Totally 1200 

rows of data are used (10% of 12,000). In each case, the top-left subplot 

of the figures are the PTO forces predicted by the model. The top-right 

of the figures are the R2 values calculated by the Eq.7. The bottom-left of 

the figures are the PTO power outputs produced from PTO forces. The 

bottom-right of the figures are the R2 values based on power outputs 

calculation.  

 

It can be observed from the figures that the overall performance of the 

prediction model is relatively high. However, when the measurement 

data change sharply, the model cannot capture the change instantly. 

Besides, the overall R2 value graphs show how the R2 value changes 

when the input data are increasing. The overall R2 value is the average 

for all the testing data. It is also noticed that the power prediction 

accuracy is slightly lower than forces predictions. This is due to the non-

linear calculation process that enlarges the prediction error.  



  

 

Power output forecasting accuracy comparison 

 

The LSTM is a type of deep learning algorithms. Hence, the complexity 

of its structure will cause heavier computation load and thus increase the 

processing time compared to other methods. Compared with LSTM, the 

regression tree, SVR and ANN have simpler structure and thus lead to 

faster processing speeds. Hence, it is necessary to compare the 

forecasting accuracy with other machine learning algorithms. In this 

paper, the overall R2 values and RMSE values of the four mentioned 

algorithms are compared in Table.1. 

 

Table 1. Prediction accuracy of four algorithms.  

 LSTM Regression 

tree 

SVR ANN 

1st PTO R2 0.67 0.44 0.78 0.56 

2nd PTO R2 0.49 0.56 0.67 0.45 

3rd PTO R2 0.83 0.75 0.74 0.78 

4th PTO R2 0.93 0.74 0.74 0.77 

5th PTO R2 0.92 0.52 0.81 0.83 

6th PTO R2 0.92 0.79 0.89 0.80 

1st PTO RMSE 0.13 0.17 0.13 0.16 

2nd PTO RMSE 0.15 0.16 0.14 0.17 

3rd PTO RMSE 0.11 0.14 0.13 0.13 

4th PTO RMSE 0.08 0.13 0.13 0.13 

5th PTO RMSE 0.09 0.13 0.12 0.12 

6th PTO RMSE 0.09 0.13 0.11 0.12 

 

Table.1 shows the accuracy of four algorithms including both overall R2 

values and overall RMSE values of six PTOs’ power output prediction. 

It can be observed from the table that some of the predictions produced 

by other algorithms have better accuracy. For example, in Table 1, in the 

case of the 2nd PTO, SVR makes the best prediction (smallest RMSE), 

while in the case of the 1st PTO, both SVR and LSTM have the same 

accuracy. However, the LSTM has the best performance in overall 

predictions. Among the four algorithms, the regression tree has the least 

complicated structure and the worst performance. Meanwhile, SVR and 

ANN have similar performance and are slightly worse than LSTM. In 

other words, the other three algorithms also prove the superior LSTM 

prediction ability.   

 

CONCLUSIONS 

 

This article has compared a novel LSTM approach with several other 

ML approaches for the prediction of power generation from a multi-DOF 

WEC presently in development. The work is presently limited to the 

analysis of simulated data. It is concluded from the results that LSTM 

offers a feasible approach for such power generation forecasting. On the 

basis of two types of tests and metrics, the LSTM algorithm yields 

improved performance compared to several other, more conventional 

machine learning algorithms. With the development of power prediction 

methods, better design of WEC control systems and power management 

becomes feasible, especially for offshore power management.  

 

The current work on hyperparameter selection for LSTM networks is 

based on prior knowledge and commonly used parameters. In other 

words, it selects hyperparameters manually, which might cause extra 

errors in the prediction. The next steps will consider algorithm 

optimisation work related to hyperparameter selection for the training 

model. Also, investigations into other potential algorithms might be 

suitable for power prediction in this multi-DOF WEC context. 
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