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Abstract 

Fibre-reinforced polymer (FRP) composites have broad applications in automotive, 

aerospace, construction, and marine sectors due to their excellent physical and 

mechanical properties, such as lightweight, high strength, high stiffness, and corrosion 

resistance. Laminated FRP composites are among the most commonly used FRP 

composites that consist of several unidirectional (UD) FRP laminae, which were also 

widely used. However, predicting mechanical properties and damage progression of UD 

FRP composites at the laminae scale with high accuracy is still a challenging problem 

as the damage evolution and failure mechanism is obviously far more complex than 

those of monolithic materials, and a precise approach is usually time-consuming. 

In this thesis, firstly, a 2D plane strain computational micromechanics Discrete 

Element Method (DEM) model is used to investigate the mechanical behaviour of a UD 

FRP composite lamina subjected to transverse loading. The damage progression and 

stress-strain response of the laminae are analysed. The DEM simulation results agree 

with those from the FEM and experimental tests, which can offer accurate and reliable 

results for machine learning predictions. Thus, a deep neural network (DNN) model for 

predicting the macroscopic transverse mechanical properties of UD FRP lamina is 

investigated when considering the different fibre radii and ratios. The DNN model has 

a strong ability to predict both the transverse tensile strength and Young’s modulus of 

the UD FRP composite lamina accurately. Then the predictive models for predicting the 

microscopic cracks are constructed. Two simple ML models are first generated based 

on the data extracted from 500 DEM model simulations. However, the prediction results 

indicate that the relation to the target problem is complicated. The deep learning (DL) 

model is therefore developed to explore the complex inner relation of the prediction 

problem. Based on the results of 1600 DEM simulations, a multi-layer DNN model with 



IV 

 

back-propagation is constructed for the predictions of the crack areas of an FRP 

composite lamina. It can be found that most of the initial cracks and the overall trends 

of cracking paths can be predicted successfully. Then, a DNN model is applied to 

predict the initial and second crack in order in the FRP laminae to obtain a fast 

determination of the crack initiation, which results could demonstrate the feasibility and 

effectiveness of the method. 

In addition to the defect-free UD FRP lamina, the transverse mechanical response 

of defective lamina is studied using the DEM model. The DEM model is recalibrated 

for analysing the effects of the presence of defects in the RVE of the lamina. The crack 

initiation and propagation in defective RVEs with different fibre distributions are 

analysed and compared. In addition, the effects of the radii of matrix defects and the 

distribution of defects on stress-strain responses are also investigated, which shows 

excellent capabilities in predicting mechanical behaviour. It is found that the crack 

initiation is highly dependent on the defects. Therefore, back-propagation deep neural 

network (DNN) models are developed to quickly determine crack initiation and 

instantaneous critical load of the RVEs based on the data generated by 1000 DEM 

simulations. The results show that the initial crack and the critical stress of the laminae 

can be accurately and efficiently predicted by the data-driven DNN models with full 

consideration of randomly distributed defects.  
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Chapter 1 

1 Introduction 

1.1 Background 

Fibre-reinforced polymer (FRP) composites have been a popular research area for 

many years. They have many attractive material properties characterized by lightweight, 

high strength, high stiffness, and corrosion resistance, making them suitable for many 

structural applications such as the aerospace industry, the automotive industry, and wind 

power generation [1]. A major concern in the use of composite materials is the 

susceptibility to damage resulting from the intrinsic microstructures under complicated 

external loading. Due to the complex nature of fibre-reinforced composite materials, the 

onset of damage does not cause the instantaneous failure of the entire structure. 

Unidirectional fibre-reinforced polymer composite laminates (UD FRPs), as one type 

of FRP composites, have excellent physical and mechanical properties along the fibre 

direction. It was relatively difficult to study the microscope mechanisms (e.g., failure 

strength, damage evolution, etc.) of the UD FRPs in the plane perpendicular to the fibres 

through experimental tests due to the limitation of the testing environment, the complex 

implementation of loadings and the complex damage progression. To a certain level, 

this leads to the overestimation of damage evolution and the failure strength of 

composites, which means that the capture and usage of their excellent properties cannot 

be maximized. 

One way to study the transverse mechanical behaviour of a UD FRP lamina in the 

plane perpendicular to the fibres is to conduct experimental tests. However, these tests 

are typically costing, and the results may not be reliable due to the limitations in 
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implementing realistic environment and loading conditions and the complex and 

random nature of damage progression. Alternatively, analytical micromechanics 

models have been used to predict the mechanical properties of FRP composites. 

Typically, in an analytical micromechanics model, fibres and matrix are assumed to be 

homogeneous, linearly elastic and isotropic. More recently, various numerical methods 

have been used for the micromechanical analysis of composite laminae.  

However, it was found that numerical simulation from micromechanical analyses is 

a significant computational challenge for the computer. In recent years, the rapid 

development of data science and machine learning techniques has helped new 

engineering applications due to their high efficiency, great potential in dealing with big 

data and accurate prediction ability. A machine learning model, once it is properly 

trained, is very computationally efficient and requires only simple inputs with minimum 

human involvement. Machine learning (ML) has been used in various studies on 

composite materials based on either experimental or numerical simulation data. 

 

1.2 Aims and Objectives 

Understanding mechanical behaviour of composites is very important for using 

composites to the maximum potential. This thesis aims to provide accurate and robust 

data-driven models for predicting transverse mechanical response of unidirectional (UD) 

fibre-reinforced polymers (FRP) based on numerical simulation data. Machine learning 

(ML) has a wide range of applications in engineering sectors, which shows its efficiency 

and accuracy in dealing with complex engineering problems. ML technology analyses 

the features provided by the users, learns the relation from the inputs and output in the 

datasets, and then makes predictions for the unseen data. ML predictions depend heavily 

on the quality and size of data. Due to a lack of experimental data on transverse 
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mechanical responses of UD FRP, a computational micromechanical model needs to be 

developed first to provide accurate, experimentally validated data for machine learning 

models. The main aims and objectives of this study are as follows:  

1. To develop a 2D RVE-based DEM model for studying the transverse 

mechanical behaviour of both the defect-free and defective UD FRP laminae.  

2. To develop machine learning approaches based on the data obtained by DEM 

simulations to predict macroscopic mechanical properties and microscopic 

crack patterns in defect-free UD FRP laminae. 

3. To develop DNN predictive models based on the data obtained by DEM 

simulations to predict the crack initiation in UD FRP laminae. 

4. To develop DNN predictive models based on the data obtained by DEM 

simulations for the predictions of the initial crack and its instantaneous critical 

load in defective UD FRP laminae with two periodic distributions of fibres. 

In this thesis, the 2D RVE-based DEM model reveals advantages in both predicting 

mechanical properties and studying the crack evolution of UD FRP laminae. As there 

are no ML based studies on the stiffness, strength, initial crack patterns, and fracture of 

UD FRP composites with consideration of randomly distributed fibre or defect position 

in the literature, the developed data-driven predictive models based on the data of DEM 

simulation represent a pioneer investigation on predictions of mechanical properties and 

crack patterns in materials of random anisotropy.   

 

1.3 Thesis structures 

The thesis is divided into six chapters.  
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Chapter 1 demonstrates the background of the studies in composite materials and 

mentions the challenges and difficulties in precisely investigating its mechanical 

response. The methods and objectives for solving this problem are also addressed in 

this chapter. 

Chapter 2 contains a literature survey.  It starts with an introduction to composite 

materials. Then the micromechanical analytical and computational modelling of the 

mechanical behaviour in the UD FRP composite is presented and compared. Lastly, the 

framework of machine learning (ML) and its applications in composites are introduced 

and discussed. 

Chapter 3 presents the development of the 2D RVE-based DEM models for the UD 

FRP lamina, including the model calibration and the process of the RVE generation. 

Also, the simulation results of the mechanical responses in the UD FRP laminae 

obtained from the DEM model are analysed and discussed. Then a DNN regression 

model for predicting macroscopic transverse mechanical properties of FRP laminae is 

developed. The predictive model is based on a data set generated by 2000 

Representative Volume Element (RVE) based Discrete Element Method (DEM) 

simulations.  

Chapter 4 presents the constructions of the machine learning approaches for 

predicting the microscopic crack pattern of the UD FRP laminae. The first prediction 

problem is a first try at predicting the crack path based on the DEM simulations of a set 

of reduced-size RVEs. Two different machine learning models, the Gaussian Naïve 

Bayes classifier and Artificial Neural Networks (ANNs), will be used to give crack path 

prediction after training feature data. Then, an improved deep learning (DL) model, a 

back-propagation deep neural network (DNN) classification model based on the results 

of 1600 DEM simulations, is developed for predicting microscopic crack areas of the 
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FRP laminae. In order to obtain the position of initial cracks more efficiently, lastly, 

DNN models are developed for predicting the crack initiation in the UD FRP lamina. 

After training suitable and representative features obtained from the DEM simulations, 

the DNN model will be used for predicting the first and second cracks in the RVE in 

order. 

In Chapter 5, an RVE-based DEM model is developed to study the effect of defects 

on the transverse mechanical responses in defective UD FRP laminae. The defects in 

both the matrix and the fibre-matrix interfaces are considered in the RVE. The DNN 

prediction for the initial cracks in the UD FRP lamina with random fibre distribution 

shows great potential. Thus, multi-layer DNN regression models with back-propagation 

are generated to predict the position of the initial crack and the instantaneous critical 

load of defective FRP composite laminae with two periodic fibre distributions. The data 

is provided by 1000 RVE-based DEM simulations.   

In Chapter 6, conclusions and suggestions for future works are presented. The 

advantages of the developed DEM model for modelling the mechanical behaviour of 

UD FRP composite are shown and concluded. The efficiency and accuracy of the DL 

model for predicting the macroscopic and microscopic mechanical response in UD FRP 

composite are presented. The novelty of the works stated in the thesis is summarized. 

Finally, a promising trend of using the DEM and DL models for predicting the 

mechanical behaviour of composite materials is given. 
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Chapter 2 

2 Literature Review 

2.1 Introduction of composite materials 

A composite material is composed of two or more constituent materials. Every 

constituent material has its distinct chemical or mechanical features. Typical composite 

materials include reinforced concrete, fibre-reinforced metals and fibre-reinforced 

polymers. Compared to traditional materials, composite materials have excellent 

material properties for using widely in many structural applications [2-6]. 

As one type of composite, fibre-reinforced polymer (FRP) is defined as a polymer 

matrix that is reinforced with fibres. Fibres have excellent properties of high strength 

and stiffness, which makes FRP a material that has highly specific mechanical 

properties. There are four categories of FRPs according to their matrix types: polymer 

matrix composites, metal matrix composites, ceramic matrix composites and carbon 

matrix composites. According to the arrangement of the fibres embedded in the matrix, 

there are two categories of FRPs: continuous FRPs and discontinuous FRPs. Thin plies 

of FRP lamina of unidirectional or woven fibres are always assembled as an FRP 

laminate. These plies of the same matrix material with the same or different fibre 

orientations are usually bonded together.  

Laminated FRP composites (see Figure 2-1) are among the most commonly used 

ones. However, predicting mechanical properties and damage progression of UD FRP 

composites at the laminae scale with high accuracy is still a challenging problem as the 

damage evolution, and failure mechanism are far more complex than those of 

monolithic materials. One of the major concerns in using UD FRP composites is their 
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susceptibility to damage resulting from transverse loading, which results in transverse 

cracking and fibre-matrix debonding. They are complex processes developing 

simultaneously on all internal length scales, i.e., from micro to macro scales.   

 

Figure 2-1: Stacking of a number of laminae makes up a laminate [7].  

 

2.2 Analytical models for studying the mechanical properties of 

FRP composites 

2.2.1. Micromechanical analytical modelling of stiffness 

Analytical methods are convenient and fast for studying the mechanical properties 

of the composite from its constituent volume fraction and properties. Transverse 

properties of UD FRP composites are defined as properties in the direction 

perpendicular to the fibres (see Figure 2-2). A load of transverse tension is also shown 

in Figure 2-2.  
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Figure 2-2: UD FRP composite under the loading of transverse tension 

 

2.2.1.1. The slab model 

The reinforcements are slabs but not fibres (see Figure 2-3). Thus, this analytical 

model is called the ‘slab’ model. It is also called the rule of mixtures method. As shown 

in Figure 2-3, there is one reinforcement layer between two matrix layers. The total 

thickness of the composite is 𝑡𝑐 , the thickness of the reinforcement is 𝑡𝑓 , and the 

thickness of the matrix is 𝑡𝑚. The transverse elastic modulus 𝐸𝑇 given by the slab model 

is  

 𝐸𝑇

𝐸𝑚
=  

𝐸𝑓

𝑉𝑓𝐸𝑚  +  𝑉𝑚𝐸𝑓
 (2-1) 

where 𝐸𝑚 and 𝑉𝑚 are the elastic modulus and volume fraction of matrix, 𝐸𝑓 and 𝑉𝑓 are 

the elastic modulus and volume fraction of fibres. 
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Figure 2-3: The slab model for describing the transverse behaviour of the composite. 

 

2.2.1.2. Halpin-Tsai Equations 

The assumptions of the slab model for computing the transverse elastic modulus are 

relatively too strict, which results in a semi-empirical approach known as the Halpin-

Tsai equations. The Halpin-Tsai equations, as the most will-known semi-empirical 

method, are proposed by Halpin and Kardos [8, 9], and Halpin and Tsai [9],  

The transverse Young’s modulus is computed as 

 𝐸𝑇

𝐸𝑚
=  

1 +  𝜉𝜂𝑉𝑓

1 − 𝜂𝑉𝑓
 (2-2) 

where 

 

𝜂 =  

𝐸𝑓

𝐸𝑚
− 1

𝐸𝑓

𝐸𝑚
 +  𝜉

 (2-3) 

and 𝜉 = 2(𝑎/𝑏) 

The ratio 𝑎/𝑏 is the cross-sectional aspect ratio of the reinforcement (see Figure 2-4). 
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Figure 2-4: The cross-sectional aspect ratio of the reinforcement. 

The direction of a is the loading direction. The direction of b is normal to the load. 

For example, Figure 2-5 shows a rectangular cross-section reinforcement. 

 

Figure 2-5: An example of a rectangular cross-section reinforcement. 

In the case of 𝜉 =  0,  𝑎 → 0, and 𝑏 →  ∞. Figure 2-6 shows this arrangement of the 

reinforcement. 

 

Figure 2-6: The arrangement of the reinforcement for the case of 𝜉 =  0. 
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It can be seen that Figure 2-6 shows the reinforcement shape of the slab model for 

transverse properties. If substituting 𝜉 =  0 into (2-2) 

 𝐸𝑇

𝐸𝑚
=  

1

1 − 𝜂𝑉𝑓
 (2-4) 

and 

 𝜂 = 
𝐸𝑓 − 𝐸𝑚

𝐸𝑓
 (2-5) 

Therefore, 

 𝐸𝑇

𝐸𝑚
=  

𝐸𝑓

𝑉𝑓𝐸𝑚  +  𝑉𝑚𝐸𝑓
 (2-6) 

It can be found that this result is identical to that of the slab model. 

 

2.2.2. Micromechanical analytical modelling of strength 

The transverse strength of a UD FRP lamina could also be obtained using a 

micromechanics approach considering the properties of fibre and matrix constituents. 

The strength was found to be sensitive to different parameters, such as fibre distribution, 

the fibre-matrix interface, etc. Several different methods were proposed for obtaining 

the tensile strength of a UD FRP lamina [7]. One is called the strength of materials 

approach. In this approach, assumptions were considered. The transverse tensile 

strength is computed as the production of the transverse elastic modulus and the ultimate 

transverse failure strain. The ultimate transverse failure strain is obtained in terms of 

the transverse properties of the fibres and matrix. In addition, there is another model 

called the Bridging model. Huang [10] derived the ultimate tensile strength by assuming 

that fibres and matrix are linear elastic until rupture and elastic-plastic, respectively. 

The stress in the matrix is related to the corresponding stress of the fibres by using the 
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bridging matrix. In this way, the stresses in fibres and matrix, and the tensile strength 

can be obtained by determination of the bridging matrix. 

 

2.3 Micromechanical computational models used in FRP 

composites  

In addition to the analytical methods for studying the mechanical behaviours of the 

composites, micromechanical computational models can also be used to accurately 

predict the effective properties of composites and simulate the stress-strain responses, 

the damage evolution, and the failure strength under a specific loading. In a 

micromechanical computational analysis, fibres in the UD FRP lamina with their 

distribution embedded in the matrix are generated in a representative volume element 

(RVE) (see Figure 2-7). The influence of the geometry and spatial distribution of the 

constituents of the composite can be accurately considered.  

 

Figure 2-7: The microstructure and micro mechanism of UD FRP composites 

 

2.3.1. Development of the representative volume element (RVE) 

With the development of computer-based simulation, the mechanical behaviour of 

composites has been studied using the micromechanical computational model in the last 
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few decades. It is usually analysed through a representative volume element (RVE). 

RVE was first introduced by Hill [11], which is a small sub-region of the composites. 

The RVE of the composite needs to be small but contains sufficient information, for 

example, enough fibres within the RVE, for analysing its behaviour.  

The development of RVE allows the random generation of fibres with their 

distribution embedded in the matrix according to a specific fibre volume fraction. 

Several approaches have been presented in the literature for generating the statistically 

equivalent RVEs (SERVEs) of composites with uniform or non-uniform distributions 

of fibres. A SERVE is the smallest sub-region of the composite, and its mechanical 

behaviour is the same as that of the entire composite [12]. Therefore, the RVE size 

should be suitable for the computational simulation.  Some recent studies found that a 

few dozen fibres in the RVE were sufficient for studying the micromechanical 

behaviour of UD FRP lamina [13-16].  

For the generation of SERVEs of UD FRP composites, experimental image-based 

models have been presented in the last few decades [17-18]. In the generation process, 

digital images of the cross-section of the composite are first obtained by scanning 

electron microscopy (SEM) or high-resolution light microscopy. Then, computer 

software is used to locate the fibres according to the digital images. The image-based 

approach showed its advantage in generating exactly the same microstructure as the 

cross-sectional area of the composites. However, it always costs much more computer 

time for image processing.  

In addition to the experimental image-based models, there were also numerical 

approaches. The hard-core model, which is simple to achieve, was commonly used. In 

the hard-core model, the fibres are distributed randomly without overlap in the domain 

of a SERVE. The limitation of this model is that it cannot generate SEREVs with a fibre 
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volume fraction higher than 50% due to a jamming limit [19]. To overcome this 

limitation, Wongsto and Li [20] developed a method that allowed uniformly arranged 

fibres to collide with each other to achieve a higher volume fraction and random 

distribution. Melro et al. [21] constructed a relatively complex algorithm that used the 

classical hard-core model to generate an initial fibre distribution. Then, they applied 

very small displacements to the fibres for their random distribution with higher fibre 

volume fractions. However, this algorithm was complex in implementing the movement 

of fibres in the domain. Then Yang et al. [22] developed a simpler algorithm called 

random sequential expansion (RSE) based on the hard-core model. The limitation of 

this approach was that the radii of fibres must be constant. Moreover, the inter-fibre 

distance had to be zero if the fibre volume fraction was 68%. This may result in 

difficulties in the computational simulations of RVEs because there needs to be a certain 

distance between two adjacent fibres. 

To overcome these limitations, a new numerical model based on the Discrete 

Element Method (DEM) and experimental data of fibre diameter distribution was 

proposed by Ismail et al. [23]. This approach was implemented in the DEM software 

package ‘PFC 2D’. The diameters of the fibre followed a normal distribution with a 

mean of 6.6𝜇𝑚 and standard deviation of 0.3106 [16]. The generation process is as 

follows: 

1. Considering a fibre volume fraction of 60%, the required number of fibres, 

𝑁𝑓, is approximated calculated by: 

 
𝑁𝑓 =  

4𝑉𝑓𝐿2

𝜋�̅�𝑓
2  (2-7) 

where �̅�𝑓 is the mean of the fibre diameter. The diameter of the generated 

fibres is calculated using a random number, 𝛼, in the range of [−1, 1] as: 
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 𝐷𝑓 =  �̅�𝑓 +  𝛼𝛿𝑓 (2-8) 

where 𝛿𝑓 is the standard deviation of the fibre diameter.  

2. The fibres are initially packed in a rectangular arrangement (see Figure 

2-8(a)). The fibre volume fraction may be smaller than the target fibre 

volume fraction as the diameters of the generated fibres are not identical. 

As shown in Figure 2-8(b), more fibres will then be added to achieve the 

target volume fraction. A random velocity is applied to the fibres like the 

Brownian motion, which may move some fibres outside the domain of the 

RVE. To solve this problem, the same number of fibres are added to the 

RVE from the opposite boundary of the domain to compensate the fibres 

that have moved outside the domain. This process is called applying the 

periodic condition in the DEM software package ‘PFC 2D’. As shown in 

Figure 2-8(c), the blue and red fibres are the paired fibres following the 

periodic condition. 

3. As the fibres are randomly moved, some overlaps between fibres may occur. 

Thus, the radii of the fibres are increased by half the required minimum 

distance between two neighbouring fibre surfaces before applying the 

velocity to the fibres. After the distribution of fibres stabilises, the radii of 

the fibres are reduced to return to the initial values.  
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Figure 2-8: Procedure for generating random fibre distributions using DEM. (a) Initial 

fibre distribution rectangular arrangement. (b) More fibres are added in. (c) Periodic 

boundary condition is applied to maintain the constant fibre volume fraction [23]. 

This approach overcomes the jamming limit and can be used to generate randomly 

distributed fibres with high-volume fractions and any specified inter-fibre distances. In 

addition, the RVE generated by this approach showed good agreement with experiments 

in all statistical analyses. The elastic properties of the generated RVEs are better than 

those of the RVEs obtained by previous approaches. The developed algorithm can be 

suitable for the computational micromechanical modellings of the elasticity, strength, 

failure, and damage progression. 
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2.3.2. Micromechanical computational modelling for FRP 

composites 

The multi-scale computational homogenization modelling approach is an alternative 

approach to studying the mechanical behaviour of heterogeneous materials, such as 

composite materials. In contrast to the analytical and semi-analytical models, the 

behaviour of each constituent and the interactions between them can be studied within 

the computational homogenization modelling. 

In the last two decades, many studies have been presented on predicting  mechanical 

properties of UD composites using micromechanical computational modelling, 

including strength, stiffness and failure [7]. For instance, Sun and Vaidya [24] 

determined the elastic constants of unidirectional fibre composites using finite element 

analysis of a representative volume element (RVE). The simulated elastic constants 

agreed well with existing theoretical predictions and available experimental data. Gusev 

et al. [25] employed the Monte Carlo procedure to generate periodic computer models 

with unit cells containing randomly distributed fibres and used Monte Carlo models to 

calculate the composite elastic constants. It was found that the fibre distribution affected 

the transverse composite elastic constants more than the fibre diameter did.  

Computational micromechanics using the finite element method (FEM) has been 

widely employed for studying damage evolution and failure. Several studies began with 

the micromechanical analyses of unit cells. Li [26] generated square and hexagonal unit 

cells of the fibre arrangements and employed the FEM to model their mechanical 

behaviours with appropriate boundary conditions. Zhang et al. [27] developed a 

micromechanical FEM model for investigating the damage evolution of unidirectional 

fibre-reinforced polymer laminates. They also generated a three-dimensional periodic 

unit cell containing a fibre embedded in the matrix. The nonlinear viscoelastic and 



18 

 

cohesive models were used to study the deformation of matrix and the progressive 

interface debonding. Numerical results were obtained to reveal the local and global 

response of the laminate, including the damage mechanism. The simulated damage 

progression was in good agreement with that of the experimental test.  

Wongsto and Li [20] studied the effects of incorrectly prescribed boundary 

conditions on the behaviour of UD FRP. They first used micromechanical finite element 

analyses of ‘unit cells’ of UD composites. Correct deformation and stress distribution 

were obtained from a sub-domain of the unit cell with incorrectly prescribed boundary 

conditions. Then they extended to study the behaviour and effective properties of UD 

composites with fibres distributed randomly over the transverse cross-section, which 

results were also reliable. 

Then, using micromechanical FEM models to study the mechanical behaviour of 

UD composites with randomly distributed fibres over the transverse cross-section 

started attracting attention [14, 15, 28-32]. The studies include the stress-strain response, 

damage evolution ductility, effects of fibre–matrix debonding, etc. Specifically, 

Gonzalez and Llorca [28] studied the mechanical behaviour of UD FRP composites 

under the loading of compression perpendicular to the fibres by means of the finite 

element analysis of an RVE of the composite microstructure. In their study, the matrix 

was assumed isotropic and its behaviour was modelled by elasto-plastic constitutive 

model following the Mohr-Coulomb yield criterion. The fibre-matrix interface was 

modelled by cohesive zone model. It was found that the mechanical properties under 

transverse compression were mainly controlled by interface strength and matrix yield 

strength in uniaxial compression. Other parameters, such as matrix friction angle, 

interface fracture energy and thermo-elastic residual stresses, played a secondary role 

in the composite mechanical behaviour.  
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To examine the influence of the interface properties on the transverse mechanical 

behaviour of composites, Wang et al. [29] developed a two-dimensional (2D) finite 

element analysis to study the effects of the interphase properties on both the effective 

transverse properties and damage behaviour of composites. The results showed that 

effective transverse properties, damage initiation, and evolution depended highly on the 

interphase properties. Vaughan et al. [14] also developed a finite element model to study 

the influence of the intra-ply properties on the transverse shear deformation of a carbon 

fibre/epoxy composite material, which showed similar behaviour to the in-situ 

experimental observations.   

Yang et al. [15] studied the microscopic failure mechanisms of UD FRP composites 

under transverse tension and compression using micromechanical FEM analysis. They 

used the Drucker-Prager yield criterion, rather than Mohr-Coulomb yield criterion to 

predict yielding of the epoxy matrix, which can take into account the progressive failure 

behaviour of the matrix. The simulated stress-strain responses gave reasonable results 

of the tensile and compressive strength of the composites. The failure mechanisms of 

the composites under transverse tension and transverse compression obtained using the 

FEM are discussed and compared. It was concluded that the tension fracture started 

from interfacial debonding and propagated along with matrix plastic deformation, while 

the compression failure was mainly caused by matrix plastic damage. It was also found 

that the damage behaviour was affected by the interfacial properties (including the 

interfacial stiffness, interfacial strength, and interfacial fracture energy), which 

provided useful information on the selection of interfacial properties that may be used 

in the micromechanical analysis of composites to ensure reasonable results.  

Naderi et al. [31] proposed an augmented 3D FE analysis to study the influence of 

fibre–matrix interface fracture properties on the failure behaviour of fibre-reinforced 
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composites subjected to transverse tensile loading. The study considered the influence 

of the random distribution of fibre arrangement, stochastic distribution of interfacial 

properties, and circular and elliptical fibre shapes in the simulation of different RVEs. 

The 3D FEM simulation results clearly revealed the statistical effect of interfacial 

fracture properties on the load–deflection response. The simulated damage pattern on 

the RVE showed that the weak interfaces are not always the locations for dominant 

microscopic cracks. Other important factors, such as fibre packing density, neighbour 

interface properties, degree of the enriched region with matrix, and shape and size of 

the fibre, affected the failure path.  

Moreover, Ghayoor et al. [32] analysed a large number of RVEs with different 

random microstructures using the FEM. They found that the predicted values for stress 

concentrations and stress distributions in the matrix of a composite were affected by the 

random microstructure of the RVE. It was shown that the maximum stress in the matrix 

was largely dependent on the random morphology, minimum distances between fibres, 

and volume fraction.  

In general, it can be concluded that the micromechanical computational model used 

in the above studies can be used as an efficient computational tool for predicting 

material characteristics, which are beneficial for designing high-performance composite 

materials. 

 

2.3.3. Micromechanical computational modelling for defective FRP 

composites 

Defects are usually formed unavoidably in the manufacturing process of composites 

[33-37], which adversely affect the mechanical properties of the composites. The effect 

of defects on the mechanical behaviour of composites is a relatively complicated 
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problem as the diversity of the defects, such as the shape, the size, and the location, for 

instance, the defects could exist within the matrix or along the fibre-matrix interface. 

Studies on the effects of defects on the mechanical behaviours of FRP composites have 

been conducted for many years [38-41].  

Computational micromechanical modelling has been widely used to analyse the 

mechanical responses of composites with defects. The influences of pressure-sensitivity 

and plastic dilatancy on voids shape and microvoid interaction were studied using the 

finite element method (FEM) [42]. It was found that the mechanical strength of the 

material was weakened by an increasingly oblate void. Moraleda [43] et al. used a 

computational micromechanics approach to study the finite deformation of porous 

elastomers. RVEs of the microstructure containing randomly distributed circular voids 

were generated and simulated under three different loading modes (in-plane isotropic 

elongation, uniaxial elongation, and uniaxial traction). For materials with initial 

porosities of 5%, 10% and 20%, their corresponding stress-strain curves and 

microstructural evolution as a function of the applied deformation were given. Liebig 

et al. [44] worked on an FEM investigation of the effects of voids on the failure 

mechanism of FRP under compression loading. The results showed that stresses 

concentrated in the matrix due to matrix voids caused by fibre/matrix debonding and 

kink-band formation of fibres. This micromechanical analysis focused on examining a 

single void on the compressive failure of the FRP composites without considering the 

interactive effects of multiple voids.  

In addition, Vajari et al. [45, 46] used the FEM to simulate the mechanical 

behaviours within a representative volume element (RVE) of porous UD FRP 

composites subjected to different loading. In their study, two different populations of 

voids were explicitly represented in the RVE of the microstructure, namely, inter-fibre 
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voids and circular voids within the matrix. It was found that the crack path and strength 

of composites were significantly affected by the presence of voids. It was also found 

that damage often initiates around the inter-fibre trapped voids as inter-fibre voids acted 

as stress concentrators. The circular voids in the matrix affected the crack propagation 

when the matrix deformation in the microstructure. However, the use of the cohesive 

zone model requires that the possible paths of cracking must be predefined.  

More recently, Danzi et al. [47] presented a study on the effect of fibre–matrix 

interphase defects on the mechanical properties of a UD composite using FE analyses. 

The defects in the RVE of the UD composite were generated by an original damage 

injection technique for cohesive elements. The effect of fibre–matrix debonding was 

firstly analysed by means of a quasi-3D unitary cell with a single fibre, with periodic 

boundary conditions, for different loading cases. The results showed that the position 

of the interfacial decohesion affected more on the mechanical behaviour more, 

especially for the transverse tension case. Subsequently, they studied multi-fibre 

representative volume elements, which confirmed the results of a softening in the 

stress–strain response of the single-fibre model. Finally, the effect of a 3-D debonding 

propagation was investigated by analysing a single fibre model with an increased fibre-

wise depth. The results showed that the defects propagated in different proportions in 

both circumferential and axial directions under different load conditions. The results 

presented in this study showed and confirmed that defects weakened the mechanical 

properties of composites. 
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2.4 Discrete element method (DEM) 

The discrete element method (DEM), as one of the powerful micromechanical 

computational models, has been also used in studying the mechanical response in FRP 

composites. This section reviews and introduces the basics of the DEM model.  

 

2.4.1. Law of motion 

DEM was proposed by Cundall, P.A. [48, 49] in the context of rock mechanics and 

has been implemented in many fields [50-57]. In a two-dimensional DEM, as shown in 

Figure 2-9, particles A and B (with mass) are used to discretise the domain of material 

and are bonded together at the contacts. The particles are usually assumed to be rigid 

and circular or spherical. The particles interact with each other through contact and 

separate when the contact strength or fracture energy is exceeded. When the internal 

forces are balanced, the interaction between the particles is considered a dynamic 

process with equilibrium. Subjected to external loading, the motion of all particles is 

governed by Newton’s second law. In two-dimensional DEM, the motion of a particle 

is governed by Newton’s second law:  

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛                  𝐹𝑖 = 𝑚(�̈�𝑑_𝑖 −  𝑔𝑖)                                          (2-9)                                                      

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑡𝑖𝑜𝑛                               𝑀3 = 𝐼�̇�3                                                   (2-10)                                                           

where 𝑖 (= 1, 2)  denotes the 𝑥 − and 𝑦 − coordinate directions, respectively, 𝐹𝑖 is the 

resultant force of the particle,  𝑚 is the particle mass, �̈�𝑑_𝑖   is the acceleration of the 

particle, 𝑔𝑖 is components of gravitational acceleration (body forces), 𝑀3 is the out-of-

balance moment in 𝑧 − coordinate directions, �̇�3  is the angular acceleration in 𝑧 − 

coordinate directions, 𝐼 is the rotational inertia of the particle. 
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Figure 2-9: Two particles bonded at a contact. 

The calculation in DEM is a cycle between the application of Newton’s second law 

of motion on each particle and a force-displacement law for contacts between balls (see 

Figure 2-10). The contact forces are calculated by tracing particles within a 

measurement circle. The displacements of the particles are calculated by applying a 

constant velocity to particles and tracing their movement. From the beginning of the 

calculation cycle, the positions of particles are given. Then a force-displacement law is 

employed for every contact bond to compute contact forces. Contact forces are used in 

the equation of motion, and the positions of new particle can be calculated and updated 

by using the central finite difference method involving timestep of ∆𝑡. �̈�𝑑_𝑖, �̇�3, F and 

𝑀3 are calculated at the primary interval of (𝑡 +  ∆𝑡). The translational and rotational 

accelerations are calculated at time 𝑡: 

 
�̈�𝑑_𝑖

(𝑡) =  
1

∆𝑡
 (�̇�𝑑_𝑖

(𝑡 + 
∆𝑡
2

) −  �̇�𝑑_𝑖
(𝑡− 

∆𝑡
2

)) (2-11) 

and 

 
�̇�3

(𝑡) =  
1

∆𝑡
 (𝜔3

(𝑡 + 
∆𝑡
2

) −  𝜔3
(𝑡 + 

∆𝑡
2

)) (2-12) 

The velocities at the time (𝑡 + 
∆𝑡

2
) can be obtained as, 
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 �̇�𝑑_𝑖
(𝑡 + 

∆𝑡
2

) =   �̇�𝑑_𝑖
(𝑡− 

∆𝑡
2

) +  (
𝐹(𝑡)

𝑚
 𝑔𝑖) ∆𝑡 (2-13) 

 𝜔3
(𝑡 + 

∆𝑡
2

) =  𝜔3
(𝑡 + 

∆𝑡
2

) +  (
𝑀3

(𝑡)

𝐼
 ) ∆𝑡 (2-14) 

Finally, the positions of the particles  can be obtained by the integration of velocities 

in (2-13) and (2-14) as 

 𝑥𝑑_𝑖
(𝑡 + ∆𝑡) =  𝑥𝑑_𝑖

(𝑡) +  �̇�𝑑_𝑖
(𝑡 + 

∆𝑡
2

)
 ∆𝑡 (2-15)          

The forces, 𝐹𝑖
(𝑡 + 

∆𝑡

2
)
 and 𝑀3

(𝑡 + 
∆𝑡

2
)
 , are calculated by the force-displacement law 

that will be introduced in the next sub-section.  

 

Figure 2-10: The calculation cycle of the DEM model. 
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2.4.2. Force-displacement law 

Bonding models are used to describe the mechanical behaviour of two rigid particles 

at contact. The particles interact with each other through contact and separate when the 

contact strength or energy is exceeded. Several bonding models based on force-

displacement law are available in the literature [58]. Three of them will be reviewed 

and discussed. 

 

2.4.2.1. Contact-bond model 

The contact-bond model can be described as a set of springs at the contact with 

constant normal and shear stiffness (see Figure 2-11). The resultant force of the particle 

is decomposed by a normal force 𝐹𝑛 and shear force 𝐹𝑠 as: 

 𝐹 = 𝐹𝑛 + 𝐹𝑠 (2-16) 

These forces are obtained from the product of normal/shear stiffness, the overlap of 

particles and incremental tangential displacement as:  

 𝐹𝑛 = 𝑘𝑛𝑈𝑛 𝑛𝑖 (2-17) 

 ∆𝐹𝑠 = −𝑘𝑠∆𝑈𝑠 (2-18) 

The resultant contact stiffness 𝑘 is calculated by: 

 𝑘𝑛 =
𝑘𝑛

(𝐴)
𝑘𝑛

(𝐵)

𝑘𝑛
(𝐴)

+ 𝑘𝑛
(𝐵)

 (2-19) 

 𝑘𝑠 =
𝑘𝑠

(𝐴)
𝑘𝑠

(𝐵)

𝑘𝑠
(𝐴)

+ 𝑘𝑠
(𝐵)

 (2-20) 

where 𝑘𝑛
(𝐴)

, 𝑘𝑛
(𝐵)

, 𝑘𝑠
(𝐴)

 and 𝑘𝑠
(𝐵)

 are the normal and shear stiffness of the contacted 

particles. 
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Figure 2-11: A Contact bond between two particles with (a) normal stiffness, (b)shear 

stiffness. (c)Diagram of a contact bond. 

 

2.4.2.2. Parallel-bond model 

A parallel-bond of two contacted particles can be regarded as a set of springs with 

constant normal and shear stiffness uniformly distributed over a circular or rectangular 

cross-section lying on the contact plane and centred at the contact point (see Figure 

2-12(a)). Both forces and moments can be transmitted by the parallel-bond. The 

resultant force of the particle �̅� is decomposed by normal force �̅�𝑛 and shear force �̅�𝑠 

(seen Figure 2-12(b)) multiplied by normal unit vector 𝑛𝑖  and shear unit vector 𝑛𝑗 , 

respectively, as: 

 �̅� = �̅�𝑛𝑛𝑖 + �̅�𝑠𝑛𝑗 (2-21) 

The out-of-balance moment of the parallel-bond �̅�  is decomposed by normal 

moment �̅�𝑛 (in 2D DEM model, �̅�𝑛 = 0) and shear moment �̅�𝑠 as: 

 �̅� = �̅�𝑛 + �̅�𝑠 (2-22) 
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After a timestep, the increments of elastic force elastic moment are obtained by:  

 ∆�̅�𝑛 = (−�̅�𝑛𝐴∆�̅�𝑛) 𝑛𝑖 (2-23) 

 ∆�̅�𝑠 = −�̅�𝑛𝐼∆𝜃𝑠 (2-24) 

The area of the cross-section 𝐴 and the moment of inertia of the disc 𝐼 are given by: 

 𝐴 = 2�̅�𝑡 (2-25) 

 
𝐼 =

2

3
𝑡�̅�2 

(2-26) 

where �̅� is the radius of the bond as the minimum radius between these two contacted 

balls: 

 �̅� = 𝑚𝑖𝑛 (𝑅(𝐴), 𝑅(𝐵)) (2-27) 

As the parallel bond acts in parallel with the contact bond, the overall stiffness 𝐾 is 

resolved into contact bond and parallel bond as:  

 𝐾 = (𝑘𝑛/𝑠)𝑐𝑜𝑛𝑡𝑎𝑛𝑡 𝑏𝑜𝑛𝑑 + (𝐴�̅�𝑛/𝑠)𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑏𝑜𝑛𝑑 (2-28) 

The maximum tensile stress 𝜎 and the maximum shear stress  𝜏̅ on the cross-section 

of the bond are calculated by: 

 𝜎 =
−�̅�𝑛

𝐴
+

|�̅�3|

𝐼
𝑅 (2-29) 

 𝜏̅ =
|�̅�𝑠|

𝐴
 (2-30) 

Parallel-bond breaks if 𝜎 > 𝜎𝑐 or 𝜏̅ > 𝜏�̅� (see Figure 2-13), then a crack occurs. 
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Figure 2-12: Diagram of a parallel bond. 

 

 

Figure 2-13: Force-displacement laws of the parallel-bond model. (a) Normal 

behaviour. (b) Shear behaviour. 

 

2.4.2.3. Soft-bond model 

The soft-bond model is similar to the displacement-soften model commonly used as 

a bonding model in the DEM model previously [58]. The model is the same as that of a 

linear parallel bond model before the force in the contact reaches the peak contact 

strength. However, the bond is not removed upon failure. The bond will enter a 

softening regime after the peak contact strength, and the force in the contact will then 
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reduce as a pre-defined function of the displacement [59]. Two factors determine the 

softening behaviour: the softening factor and the softening tensile strength factor, 

respectively.  

When the softening factor is zero, the behaviour of the bond in the soft-bond model 

is the same as that of the linear parallel bond. When the softening factor is one, tensile 

softening starts with the same absolute slope but with the opposite sign of the slope as 

an extension up to the peak bond tensile strength. It means that the tensile stress of the 

bond increases at a rate until the peak stress and decreases at the same rate.  

On the other hand, the softening tensile strength factor determines the point for 

controlling the ending of the tensile softening process. When it is one, the behaviour of 

tensile softening is inhabited. Therefore, tensile softening can occur if the softening 

factor is not zero and the softening tensile strength factor is not one at the same time. 

For controlling the ending of the tensile softening, once the tensile stress of the bond is 

larger than the peak contact strength, softening continues until the tensile stress is less 

than the product of the softening tensile strength factor and the peak contact strength. 

For instance, if the softening tensile strength factor is set to zero, the tensile softening 

will end when the tensile stress reaches zero. 

 

2.4.3. Mechanical timestep and the uniaxial loading method  

The timestep used in the DEM model should be defined carefully for solving the 

equations of motion. The timestep needs to be within a reasonable range so the 

calculation can be carried out smoothly at a satisfactory computational cost. The default 

value of the timestep can be automatically calculated by the DEM software ‘PFC’ at the 

beginning of each cycle. This default value of the timestep is considered a reference to 

the actual value of the timestep. 
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Consider a single one-dimensional mass-spring system (see Figure 2-14) with the 

mass, 𝑚, and the stiffness, 𝑘. It was found that the critical timestep is obtained by [60]: 

 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  
𝑇

𝜋
 (2-31) 

 𝑇 = 2𝜋 √𝑚
𝑘⁄  (2-32) 

where  𝑇 is the period of simple harmonic vibration. 

 

Figure 2-14: A single mass-spring system. 

Consider an infinite set of point masses and springs (see Figure 2-15) with particles 

and contacts. The motion of a single point mass can be described by a system in Figure 

2-15(b)-(c). The critical timestep for this system is estimated by:  

 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =  2√𝑚
4𝑘⁄ = √𝑚

𝑘⁄  (2-33) 

In practice, multiplying the critical time increment by a safety factor is usually 

recommended [58].  

Additionally, in the DEM model, uniaxial loading of tension is always implemented 

by applying a velocity or force on the boundary where the force acts.  
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Figure 2-15: A multiple mass-spring system. 

 

2.4.4. The applications of DEM in FRP composites 

DEM has been applied to study the material failure process in the past few years. 

Yang et al. [61] used  DEM  to  simulate the failure process in the micro bond test of 

FRP composites. In the development of DEM, the displacement-softening model was 

used to describe the plastic deformation and cracking of the matrix. The DEM 

simulation of the initiation and propagation of interfacial debonding has been compared 

and validated by existing experimental observations, which showed that the developed 

DEM model has great advantages in investigating the material and structural damages 

of advanced composites.  

DEM model for studying transverse cracking in composite laminae with three 

different types of fibre distributions was then done by Sheng et al. [62]. It was shown 

that the DEM model can simulate transverse cracking in the forms of matrix plastic 

deformation and fibre/matrix interface yielding. In addition, the effect of fibre volume 

fraction was also investigated, and it was found that both the transverse cracking path 
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and the mechanical behaviours of the composite laminae were affected by fibre volume 

fractions. 

Yang et al. [63] applied the DEM to model  progressive delamination of anisotropic 

fibre-reinforced composite laminates. In this study, the composite laminae were 

discretised using a hexagonal arrangement of particles where contact bonds between 

two particles were governed by parallel, and a contact softening model described the 

residual interfacial behaviour. It was concluded that the proposed DEM model can 

simulate the composite delamination with the capability of capturing crack extension 

and plastic zone.  

Based on this study, Yang et al. [64] extended the analysis to the dynamic initiation 

and propagation of transverse cracking and interfacial delamination in cross-ply 

laminates under uniaxial loading. In the construction of DEM modelling, the 90° and 

0°  plies were considered isotropic and orthotropic materials, and their mechanical 

behaviours followed the parallel bond model. The interface between the 90° and 0° plies 

was represented by the contact softening model. The DEM simulation results of the 

transverse cracking and interfacial delamination in both [0°1/90°𝑛]𝑠 and [90°𝑛/0°1]𝑠 

cross-ply laminates under transverse loading were analysed by comparing with results 

of the crack density computed by the experimental data and other numerical 

predications. It was shown that the DEM model has considerable advantages in 

modelling damage progression in laminates at the microscopic level as well as 

predicting crack density and stiffness reduction at the macroscopic level.  

In addition, Maheo et al. [65] conducted a 3D modelling of the Discrete elements 

method (DEM) for a UD composite cell which was restricted to a cubic Representative 

Elementary Volume (REV) containing one carbon fibre in an epoxy matrix. The 

simulations of different loadings were performed on the REV using the proposed DEM 
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model. The results showed that the DEM has powerful abilities in modelling the kinetics 

of the damage. The study of the damage mechanisms in the REV with several fibres 

would be expected. 

 

2.5 Applications of machine learning in composites 

With the rapid development of high-performance computational modelling, many 

essential mechanical properties and behaviours of composites can be computed and 

simulated, which can be implemented on a PC, workstation, etc. It is generally noticed 

that performing computational simulations for studying the mechanical response of 

composites is much more convenient and has less labour expense than conducting 

experimental tests. However, computational modelling is always governed by physical 

laws consisting of different equations. Consequently, it is a computational burden for 

computers to solve complex equations, encouraging researchers to find alternative 

methods. With the latest development in data science combined with powerful machine 

learning (ML) approaches, machine learning (ML) provides an efficient way to solve 

problems and make predictions. 

 

2.5.1. The framework of the machine learning application 

The concept of machine learning (ML) was first inspired by a brain-cell interaction 

model created by Donald Hebb [66]. The first notion of ML was defined by Arthur 

Samuael in 1959 as a field for computers to learn without being explicitly programmed. 

ML has attracted researchers to use it in different areas, such as data analytics, predictive 

analysis, self-driving, image recognition, etc. [67-74]. The success applications of ML 

encouraged researchers to explore its powerful ability in wider fields, for example, in 
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designing new composite materials with better properties [75]. Moreover, the 

combination of computational simulations and experimental tests can provide sufficient 

data used in the ML algorithm. 

There are two basic approaches to machine learning: supervised learning and 

unsupervised learning. Supervised learning enables one to learn a mapping between 

inputs and a known output and then to predict outputs for unseen inputs [76, 77]. In 

contrast, unsupervised learning discovers hidden patterns in data without the 

information about the output, which uses machine learning algorithms to analyse and 

cluster unlabelled data sets [78, 79]. Supervised learning is employed more in the 

applications of ML in composite materials. The basic framework of the ML applied in 

composites is presented in Figure 2-16.  
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Figure 2-16: The framework of the machine learning application. 

 



37 

 

2.5.1.1. Data preparation 

The first step in ML prediction is data preparation, which is the most critical step. 

The successful construction of the ML model is highly dependent on the experiment of 

design (DoE) employed for the data generation. Generally, the data can be from two 

resources: experimental tests and computational simulations. For the efficiency and 

accuracy of the ML model, generating optimal sample points that can greatly represent 

the entire analysis domain is necessarily required. There are several sampling 

algorithms available, including Latin Hypercube Sampling (LHS) [80, 81], central 

composite design (CCD) [82], uniform design [83], D-optimal design [84] and 

orthogonal array sampling [85].  

It was found the performance of the ML model based on the data obtained by Latin 

Hypercube Sampling (LHS) was very good [86]. Gu et al. [87] employed Latin 

Hypercube Sampling (LHS) for selecting sample data from FEM simulations that were 

used as the training and testing data for the ML. The study on the application of central 

composite design (CCD) includes the optimization of machining parameters in drilling 

hybrid metal matrix composites [88], and experimental and statistical analysis of 

mechanical properties of nano fly ash impregnated GFRP composites [89]. However, 

this sampling method was found lacking in dealing with high-dimensional data [90]. In 

addition, Basavarajappa [91] et al. used orthogonal array sampling to generate the right 

experimental design and then conducted an analysis of variance to investigate the effect 

of various process parameters on the wear behaviour of polymer composites. Zhang et 

al. [92] chose a uniform design method to study the Polypropylene (PP)/waste ground 

rubber tire powder (WGRT) composites of various concentrations to optimize a recipe 

for commercial applications having high mechanical properties. Rajmohan and 

Palanikumar [93] constructed a response surface methodology-based experimental plan 
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of a four-factor (three numerical plus one categorical) D-optimal design. These studies 

showed that experimental design played an important role in the parametric study or the 

data generation for the ML model, which results in a better prediction performance with 

less computational cost [94-97]. 

After choosing or generating data, the input features need to be determined [98]. 

The input features should be representative and related to the outputs to some content 

because these features are important for the ML model to discover the inter-relation and 

then predict for the unseen data effectively. 

 

2.5.1.2. Data pre-processing 

Data pre-processing, including data sampling, data set partition and data 

normalization, is needed before training the ML model. Data sampling is required in 

the case of the distribution of uneven data [99-101]. Undersampling is used to delete 

some data points if these data is duplicated or overwhelmed. Oversampling is used to 

add some data if the representative data in the data set accounts for a relatively small 

proportion.  

Then all the data is divided into two sets, i.e., training sets and testing sets. It is 

usually used 75% or 80% of the data in the data set is the training data. Consequently, 

the rest 25% or 20% of the data is the testing data. Lastly, data normalization is 

commonly needed when the features have different ranges. As the magnitudes of the 

input features and the output are at different scales, applying a data normalization 

method is crucial to converting the magnitudes of data to the same scale. Two common 

methods, namely min-max normalization and Z-score normalization, bring different 

features into the same scale [102]. Between them, Min-max normalization rescales the 

range of features to [0, 1] by the formula below: 
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 𝑥𝑖_𝑚𝑖𝑛_𝑚𝑎𝑥
′ =  

𝑥𝑖  − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥  −  𝑥𝑚𝑖𝑛
 (2-34) 

where 𝑥𝑖 (𝑖 = 1,2, … , 𝑛)  is the original value of a specific feature in the training 

set, 𝑥𝑖
′ is the normalized value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values 

of a feature in the training set, respectively.  

Z-score normalization rescales the data to the normally distributed data with a mean 

of 0 and a standard deviation of 1 by the formula below: 

 𝑥𝑖_𝑧_𝑠𝑐𝑜𝑟𝑒
′ =  

𝑥𝑖  −  𝜇

𝜎
 (2-35) 

where 𝜇 and 𝜎 are the values of the mean and the standard deviation of a specific feature 

in the training set, respectively.  

 

2.5.1.3. Selecting ML models 

Based on the prediction and the generated data, the types of prediction can be 

confirmed. There are two types of supervised ML, namely, classification and regression. 

For a classification problem, ML algorithms include naïve Bayes, support vector 

machines, decision trees and neural networks [103, 104]. Depending on the number of 

classes to be classified, there are two types of classifications. One is the binary 

classification, which means that two classes are considered. Their corresponding 

outputs are one or zero. The other one is the multi-classes classification, and the outputs 

are zero, one, …, etc. For a regression problem, ML algorithms include linear regression, 

genetic programming and neural networks [105]. The categories of regression problems 

also depend on the target outputs. If only one target output exists, the ML problem will 

be regarded as a single-output regression. The ML problem is a multi-output regression 

once the number of the target outputs is larger than two. According to the actual 

prediction problem, an algorithm needs to be chosen. 
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There are several commonly used ML regression and classification algorithms. 

• Linear regression 

Linear regression is a basic but extensively used ML model when the 

variables are continuous. The relation between the target output and the 

inputs is linear and formed by [106]: 

 𝑌 = 𝑊 ×  𝑋 + 𝐵 (2-36) 

𝑌 is the target output, 𝑋 is the inputs, 𝑊 is the weight and 𝐵 is the bias. The 

weight and bias are constantly changing during the training process in order 

to make accurate predictions. One common technique to compute the error 

of the linear regression is the mean squared error (MSE) introduced in the 

last subsection as one of the performance indicators. Linear regression has 

been widely used for different types of problems in engineering due to its 

simplicity and high interpretability. However, linear regression assumes a 

linear relationship between the inputs and the output, which is a limitation 

for more complex prediction problems. In some studies, linear regression 

was tried first before using other ML algorithms to investigate how 

complicated the relationship is.  

 

• Naïve Bayesian model 

The Naïve Bayesian model is a simple and fast classification algorithm based 

on Bayes' theorem and an attribute independence assumption [107, 108]. It 

is an ML algorithm that has usually been applied to high-dimensional data 

sets [109]. It can provide fast and relatively accurate solutions for 

classification problems with few adjustable parameters. Given a problem to 
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be classified, represented by a vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) representing n 

input features, for each of m possible classes 𝐶𝑚, the probabilities are 

 𝒑(𝐶𝑚|𝑥1, 𝑥2, … , 𝑥𝑛) =
𝒑(𝐶𝑚) 𝒑(𝑥1, 𝑥2, … , 𝑥𝑛|𝐶𝑚)

𝒑(𝑥1, 𝑥2, … , 𝑥𝑛)
 (2-37) 

All the features need to be continuous data [110]. The strong attribute 

independence assumption causes the limitation of this classifier. When the 

inputs are not independent, the performance of the naive Bayesian classifier 

is poor. 

 

• Artificial neural network (ANN) 

Artificial neural network (ANN) has a strong ability to address complex 

prediction problems in composite materials [111-114], especially in 

capturing and establishing the interaction between input and output variables 

by its explicit mathematical formulation, no matter how unknown and 

complicated the relation is. An ANN structure with more than three hidden 

layers is called a deep neural network (DNN) [115]. A neural network 

inspired by the biological nervous network has been a robust and promising 

deep learning approach in modelling the mechanical behaviour of materials 

due to its powerful nonlinear mapping ability [116].  

Figure 2-17 shows a simplified structure of a neuron network, forming a 

single-output predictive model. The model comprises a multi-input layer, 

one hidden layer and a single-output layer. The multi-inputs denoted as 

𝑥𝑖 (𝑖 = 1, 2, … , 𝑛) , consist of the input layer. The input layer and the 

subsequent layer are connected with the weights of inputs that are denoted 

as 𝑤𝑖 (𝑖 = 1, 2, … , 𝑛). Each layer needs an activation function 𝑓 that makes 
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the dot product of the inputs and their corresponding weights. Several 

commonly used activation functions are 

1. Rectified linear activation function (ReLU) and is defined as: 

 𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

 (2-38)                          

2. Sigmoid function and is defined as: 

 𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 (2-39)              

3. Hyperbolic tangent activation function (Tanh) is defined as: 

 𝑓(𝑥) =  
𝑒𝑥  −  𝑒−𝑥

𝑒𝑥  +  𝑒−𝑥
 (2-40) 

Then a set of biases is required to add to the dot product of the inputs and 

their corresponding weights, which finally calculates the value of the single-

output 𝑦.  

 𝑦 = 𝑓 (∑ 𝑥𝑖𝑤𝑖 + 𝑏

𝑛

𝑖=1

) (2-41) 

The direction of the connection between neurons can be either unidirectional 

or bidirectional, resulting in two types of networks: feedforward and 

feedforward networks with error feedback networks, respectively. The latter 

is called a back-propagation neural network which simultaneously allows 

forward signal transmission and error back propagation. In a back-

propagation neural network, the inputs propagate from the input layer to the 

hidden layer, then propagate to the output layer via an activation function 

with positive orientation, which is regarded as forward learning in the 

training process. The error will occur if there is a difference between the 

expected output value and the actual output value, which turns on the 
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execution of the process of error back-propagation. The error backward stage 

during the training process aims to ensure that the error is decreased iteration 

by iteration and within an acceptable or predetermined range by 

continuously adjusting and updating the weights of neurons in each layer. 

 

Figure 2-17: Architecture of a simplified artificial neuron network with back-

propagation feedback. 

 

2.5.1.4. Training and testing the ML model 

The next step is to train the generated data using the ML model. Meanwhile, 

evaluating the performance of the ML model is carried out. Performance indicators are 

used to evaluate the model during training and testing. Some commonly-used indicators 

are presented in Figure 2-16 for both the classification and regression models [117, 118]. 

Confusion matrix and classification rate are usually used as indicators used for the 

classification. A confusion matrix is an 𝑛 × 𝑛 matrix that represents the actual and 

predicted results, where 𝑛 represents the number of classes. Moreover, the classification 
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rate is the ratio of the number of observations classified correctly to the total number of 

observations. For the regression ML model, MSE measures the average of the squares 

of the errors between the given simulation results and the predicted results. MAE is a 

measurement of an arithmetic average of absolute errors. 𝑅2 represents the proportion 

of the variance for the target output in the ML model. From the equations, it is clear that 

an MSE or MAE value closer to zero represents a better prediction of the ML model, 

while for the 𝑅2 indicator, a value closer to one suggests a better prediction. It is highly 

stressed that a high accuracy evaluated by indicators with good value in the training 

process does not mean high accuracy in the testing process. An ML model sometimes 

has satisfactory accuracy during the training process but low accuracy during the testing 

process. This is a problem called overfitting.  

To avoid the problem of overfitting, cross-validation is usually used [119-121]. 

Cross-validation, as a resampling method, uses different portions of the data in the data 

set to train and test an ML model literately. Figure 2-18 presents a 5-fold cross-

validation. It can be seen that the whole data set is divided into five subsets. In each 

iteration, the ML model needs to train the four subsets, and one last subset will be 

considered as the unseen data set for validating the model's performance. Hence, a 5-

fold cross-validation has five rounds of cross-validation which are then combined for 

analysing the prediction performance of the ML model.  
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Figure 2-18: Training and test sets of a 5-fold cross-validation method. 

 

2.5.2. Machine learning (ML) prediction for composites 

2.5.2.1. ML for predicting the mechanical behaviour of composites 

For the applications of ML in the investigations of mechanical behaviour, 

researchers began to use ML to predict the mechanical behaviours of different 

composite materials. Liu et al. [122] employed a deep learning neural network to 

generate a new failure criterion for fibre tows, which can accurately predict the initial 

failure of woven composites regardless of the material microstructure, mesostructure 

and failure mechanism. Chen et al. [123] used both artificial neural network 

classification and regression models to predict the strengths of particulate-reinforced 

metal matrix composites (PRMMCs) using the data obtained from an RVE-based direct 

method. Based on recognized patterns, the networks can be used to make moderately 

accurate predictions on the ultimate strength and highly accurate predictions on the 

endurance limit. However, the researchers found that more data would be used as the 

input data for the better performance of the predictive model. 
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Furthermore, other ML models were considered to compare the prediction 

accuracies. Gu et al. [87] constructed a deep neural network (black-box) and a genetic 

programming (grey-box) model for accurately predicting the ultimate failure load of 

single lap joints based on a large amount of parametric FE model simulations with full 

consideration of four continuous geometry variables and three discrete material 

variables. The data sets for training and testing the machine learning models were 

selected using the Design of Experiment (DoE) method of Latin Hypercube 

Sampling (LHS). The prediction results and the case study of designing an adhesive 

layer for a hybrid PPA-Al joint presented in the study showed that the developed DNN 

and GP models can be used in practice as an effective tool for analysing and designing 

adhesive single lap joints. Rahman et al. [124] developed a convolutional neural 

network model based on the data from molecular dynamics (MD) simulations of carbon 

nanotube (CNT)-reinforced composites. Their model can predict the interfacial shear 

strength of carbon nanotube (CNT)-reinforced composites, which showed the great 

success of ML models for both predicting interfacial properties in nanocomposites and 

optimising the mechanical properties of CNT-epoxy interfaces. Xu et al. [125] 

developed a DNN method for accurately predict the strengths of brittle specimens 

consisting of randomly distributed microcracks. The data was based on 

micromechanical method simulations of a large number of 2D microcracked brittle 

specimens. Liu et al. [126] developed an efficient approach to predict Young’s modulus 

and ultimate tensile strength of Gr/Al nanocomposites by combining MD simulations 

and the ML modelling, which can be used to modify the existing Halpin-Tsai model to 

account for some more important factors for the more accurate prediction of Young’s 

modulus for Gr/Al nanocomposites.  
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The studies reviewed above used the data generated by numerical micromechanical 

models. Databases from experimental tests and related literature were also commonly 

adopted. Zhou et al. [127] built an explicit neural network model to predict FRP-

concrete interfacial bond strength from a large database based on an extensive survey 

of existing single-lap shear tests on FRP-concrete interfacial bonds. The predictive 

model performed well by comparing a calibration with conventional shear-bond models 

and a large database. Jahangir et al. [128] collected and compiled a database of 

experimental test results from the literature to estimate bond strength between FRP strip 

and substrate concrete through the artificial neural network and the hybrid artificial 

neural network with an artificial bee colony algorithm (ABC-ANN). More recently, 

Yuan et al. [129] used the data that was extracted from both the published experiments 

and a small amount of finite element analysis (FEA) results and proposed a kernel ridge 

regression (KRR) model for an axial elastic modulus degradation prediction of 

[0°𝑚/90°𝑛]𝑠 cross-ply laminates.  

 

2.5.2.2. ML for predicting the mechanical properties of UD FRP  

The study on determining the macroscopic mechanical properties of UD FRP 

laminae combined with either ML or data mining has also shown its desirability. Pathan 

et al. [130] combined the principal component analysis (PCA) and the Gradient 

Boosting Regressor (GBR) to predict the mechanical properties (macroscopic elastic 

moduli or yield strength) of a UD FRP composite by training the data from numerical 

micromechanics (FEM) simulations of computer-generated microstructures. The 

geometry of microstructures was obtained by using the 2-point correlation function and 

its principal component analysis. Fast and accurate predictions can be made once the 

ML model is trained. However, no comparison was conducted between the ML 
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approach's prediction results and the existing micromechanics analytical models. The 

researchers expect that data-driven ML approaches can be devised in the case of fibre-

dominated failure modes.  

Yao et al. [131] used the material properties of each constituent in UD FRP laminae, 

collected from a literature database to predict UD FRP properties using data mining. 

However, the ability of data mining by applying statistical tools in establishing the 

structure-properties relations was not as strong as an ML model can offer since the 

capability of data mining may be limited by the incompleteness of data and complex 

failure mechanisms of composites. 

Those proposed ML predictive models reviewed above transfer a mechanical 

problem of damage into a non-linear regression problem in ML by finding the 

relationship between the input and output data, which shows great potential for solving 

some more complex mechanical problems of composites.  

 

2.5.2.3. ML for predicting the fracture of composites 

The study on the application of ML in predicting the fracture process of composite 

materials is still at its very early stage and hardly found in the literature. ML approaches 

have been used to predict the fracture process of brittle materials.  

Moore et al. [132] used several ML algorithms to predict the location and timing of 

fracture coalescence in a 2D concrete sample under pure tensile loading conditions by 

using simulation data from the combined Finite-Discrete Element Method (FDEM). 

The simulation was often computationally prohibitive due to the difference in length 

scales between small fractures and bulk material sizes. The data for the ML prediction 

was obtained from 200 two-dimensional simulations of a rectangle structure of 2 metres 

by 3 metres. Figure 2-19(a) shows that 20 pre-set initial fractures of uniform length 
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(30cm) was randomly distributed in each rectangle structure. The target output was if 

the two fractures can coalesce, which resulted in a binary ML classification problem. 

Several input features were selected based on the geometry of the pre-set fractures, like 

the lengths of the two fractures, their orientations, …, etc. The output will be one is the 

two fractures coalescence. Otherwise, the output will be zero. If coalescences between 

every two pre-set fractures occur, the failure path of the material can be obtained.  The 

prediction results from ANN, RF and DT were discussed. It showed that RFs and DTs 

can learn key patterns and trends in the training data set well and make accurate 

predictions in a very short time (5 orders of magnitude drop-in computational time) 

compared to the computational simulation.  

Based on this study, Hunter et al. [133] presented a study that combined the ML and 

graph-theoretic approaches for predicting fracture evolution in concrete to prove the 

prediction performance. The ML models were used to learn the dominant trends and 

effects that can determine an overall material response. Two metrics were also chosen 

for comparison: the failure pathway and the failure time. The data from 150 simulations 

were trained into the ML algorithms. An additional 35 simulations were used for the 

validation of the methods.  The performance of the predictive models was good. 

However, the current algorithm only considered pairwise interactions, neglecting the 

effects of 3 and higher-order crack interactions. 

Schwarzer et al. [134] continued to study the fracture evolution in concrete using 

recurrent graph convolutional neural networks, and the prediction can be made more 

rapidly and accurately. The newest study from the research team adopted a new form 

of data augmentation to compensate for the relatively modest size of the training data 

set. The training of the predictive model was based not only on simulation results but 

also on incorrect predictions that were produced from the earlier training. In this way, 
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the network learnt to correct the mistakes itself. The significant advantage of a deep 

learning approach was the computational speed. The neural network generates resulted 

in seconds once trained instead of running a several-hour simulation. The predictions 

for the fracture size were using 5-fold cross-validation, which showed good agreement 

with the results of simulations. It was found that the deep learning model can generate 

predictions simultaneously for qualitatively distinct material properties, i.e., the time to 

material failure, efficiently and accurately.  

Hsu et al. [135] adopt a convolutional Long-Short-Time-Memory (ConvLSTM)-

based model to investigate dynamic crack propagation in brittle materials. The data for 

training and testing the ML model was achieved from the Molecular Dynamics (MD) 

simulations of fracture patterns in crystalline solids based on the data from molecular 

simulations. An initial crack with its length was pre-set in the microstructure of the 

material (see Figure 2-19(b)). Instead of running the time-consuming MD simulation, 

the goal was to use ML to predict the overall crack propagation pathways. The proposed 

ML model accurately predicted crack patterns and can provide a general framework for 

other fracture scenarios. It was stressed that the performance of the model can be 

improved by adding more data from MD simulation results with complicated geometric 

conditions. 

In addition, Elapolu et al. [136] developed a machine learning model based on the 

convolutional neural network and bidirectional recurrent neural network to predict the 

fracture evolution in pre-cracked polycrystalline graphene under tensile loading (see 

Figure 2-19(c)). The data was based on Molecular Dynamics (MD) simulations and pre-

processed images. The predicted crack growth by the networks showed a close 

agreement with the MD simulations. The proposed machine learning model predicted 
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crack paths in polycrystalline graphene sheets accurately and instantaneously, which 

can avoid the computational costs caused by the micromechanical simulations. 

Among those studies of ML applications in fracture predictions, it was assumed that 

there were one or several pre-set initial cracks in the brittle material and that the material 

was homogenous (see Figure 2-19). These assumptions have significantly improved the 

accuracy of the machine learning predictions, as pre-embedded cracks conveniently 

avoided the difficulties in predicting initial cracking. Moreover, the assumption of 

homogeneity avoided considering the microstructures of individual constituents, such 

as the randomly distributed fibres in an FRP lamina. An accurate and more realistic 

prediction of crack initiation, propagation and failure of anisotropic medium using an 

ML approach remains a challenge that demands urgent attention.  
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Figure 2-19: (a)Predictive modelling of dynamic fracture growth in brittle materials 

with machine learning [132]. (b)Using Deep Learning to Predict Fracture Patterns in 

Crystalline Solids [135]. (c) Studying crack propagation in polycrystalline graphene 

using machine learning algorithms [136]. 
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Sepasdar et al. [137] recently presented an image-based deep learning framework to 

predict the nonlinear stress distribution and failure pattern in composite materials. The 

Mises stress contours at the early stage of damage initiation (ESoDI) and its failure 

pattern in 4500 microstructural representations of carbon fibre-reinforced polymer 

(CFRP) composites were simulated by the FE model. As shown in Figure 2-20, the deep 

learning framework consists of two fully-convolutional networks, Generator 1 and 

Generator 2, which were trained sequentially. Generator 1 used microstructural 

geometry as the input. Its target was the von Mises stress contours at ESoDI. Then 

Generator 2 used the output of Generator 1 as the input to predict the crack pattern. The 

criterion of the true accuracy of the deep learning approach was based on visually 

inspecting the predicted and target (FE simulated) crack patterns for the samples of the 

validation data set. The prediction results were separated into three categories, which 

were “good” (G), “partly good” (PG), and “bad” (B) predictions (see Figure 

2-21).  According to this criterion, it was shown that the proposed deep learning 

approach can predict the post-failure full-field stress distribution and its failure pattern 

with a high accuracy of 90%. It could achieve higher accuracy if more features are 

involved. 

All these studies show that ML offers a broader scope for accurately and efficiently 

investigating the mechanical behaviour of composites based on the data from limited 

experimental tests or computationally intensive micromechanical models. 
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Figure 2-20: The sequential training approach utilized in the proposed deep learning 

framework for training Generator 1 and Generator 2 [137]. 

 

 

Figure 2-21: Illustration of good (G), partly good (PG), and bad (B) crack pattern 

predictions by the deep learning framework [137]. 
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2.6 Summary 

In this chapter, a brief introduction to composite materials, especially laminated FRP 

composites, is presented first. The study of the transverse mechanical properties 

(stiffness and strength) begins with micromechanical analytical models. However, the 

prediction obtained using these micromechanical analytical models is not very accurate 

as the analytical models have some assumptions and constraints. It accelerates the 

development of computational micromechanical models. The computational 

micromechanical analysis is usually obtained through a representative volume element 

(RVE). Then a number of studies using the finite element method (FEM) are presented 

on predicting the mechanical behaviours of the RVE of UD composites. The simulation 

results show satisfied agreement with those from the experimental tests, which can be 

used as an efficient computational tool for understanding the material characteristics. In 

addition to the FEM, the discrete element method (DEM) shows its extremely powerful 

ability to simulate the mechanical behaviour in composites, especially in tracking the 

crack initiation and propagation in the lamina and the delamination in laminates. 

However, computational modelling is always complicated as it is usually governed by 

physical laws consisting of different Machine learning (ML), which provides an 

efficient way to solve problems caused by computational difficulties and experimental 

complexity. The ML applications in the predictions for the mechanical properties and 

fractures in composites are reviewed. Some shortcomings in the studies stated in this 

chapter will be discussed and solved in the thesis. 
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Chapter 3 

3 Studying the mechanical behaviour of unidirectional 

fibre-reinforced polymers: DEM simulation and deep 

learning prediction 

To investigate the mechanical behaviour of a UD FRP composite lamina subjected 

to transverse loading, a two-dimensional (2D) plane strain computational 

micromechanics discrete element method (DEM) model is used to analyse a 

Representative volume element (RVE). Crack initiation and propagation in the RVEs 

containing randomly distributed fibres with different fibre volume fractions are 

simulated using the DEM model. A deep learning model is developed to predict 

macroscopic transverse properties of UD FRP composite laminae based on the data 

generated from the microscale RVE-based DEM model simulations. 

 

3.1 2D RVE-based DEM model  

3.1.1. RVE generation 

In a UD FRP composite, the reinforcing fibres are aligned in their longitudinal 

direction and are normally randomly distributed in the matrix over the transverse cross-

section. To study the transverse mechanical response in the UD FRP composite laminae, 

RVEs of the cross-section of UD FRP composite laminae with suitable size are needed. 

The dimension of the RVEs is set as 50𝜇𝑚 ×  50𝜇𝑚, and the diameter of the fibre is 

3.3𝜇𝑚. The fibre volume fractions of the RVEs are chosen to be 45%, 50% and 60%. 

It has been validated that the square RVEs based on the fibre volume fractions and 
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diameter are reliable in representing the macroscopic properties of UD composite 

laminae [28]. As shown in Figure 3-1(a), an RVE of the lamina with 50% fibre volume 

fraction, which contains 43 circular fibres of radius 𝑅 = 3.3𝜇𝑚 randomly distributed in 

the matrix is generated. The material properties of fibre, matrix and fibre-matrix 

interface for the FRP composite lamina are shown in Table 3-1, which is the FRP 

composite lamina used throughout the thesis. There are several different numerical 

algorithms for generating randomly distributed fibres in the RVE of the cross-section 

of UD FRP composite laminae. Among them, the approach proposed in [23], which is 

based on the discrete element method (DEM) and experimental data of fibre diameter 

distribution, is employed to construct the RVE and achieve randomness and the required 

fibre volume ratio. The RVE is subjected to the periodic boundary condition, and the 

process of the RVE generation is implemented by the DEM software ‘PFC2D’ [58]. In 

order to ensure the fibre volume fraction of the RVE, one fibre will be added along the 

opposite boundary of the RVE when one fibre is about to be out of the boundary, shown 

in Figure 3-1(b) as the paired fibres. In the generated RVE of the lamina, fibres and 

matrix are coloured yellow and blue, respectively. They are all discretised with particles 

by the hexagonal packing arrangement, as shown in Figure 3-1(c)(d), which requires 

three types of bonds of contact. i.e., contact bond of two fibre particles, contact bond of 

two matrix particles and the contact bond between a fibre particle and a matrix particle. 
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Figure 3-1: RVE of the cross-section of UD FRP composite laminae with randomly 

distributed fibres and discrete element discretisation. (a) Random fibre distribution in 

an RVE.  (b) Paired fibres on the boundaries of an RVE.  (c)(d) Discrete element 

discretisation using hexagonally packing arrangement.   

 

Table 3-1: Material properties of fibre, matrix and interface [15]. 

Fibre Transverse modulus, 𝐸𝑓 (𝐺𝑃𝑎) 40 

 Poisson’s ratio, 𝑣𝑓 0.25 

Matrix Modulus, 𝐸𝑚 (𝐺𝑃𝑎) 4 

 Poisson’s ratio, 𝑣𝑚 0.35 

 Tensile strength, 𝜎𝑚𝑡  (𝑀𝑃𝑎) 60 

Interface Facture energy, G (J/m²) 10 
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3.1.2. Contact models and the calibrations 

In the DEM simulation, particles of fibres and matrix are bonded at contacts by parallel-

bonds, and their behaviours are analysed by the parallel bond model. Particles of fibre 

and matrix interface are modelled by the soft-bond model. The relationships between 

the micro parameters (for instance, the contact stiffness and the bond strength), and the 

macro properties (for instance, the modulus and the strength) are established using 

virtual tensile tests. As the composite lamina is made of two constituents, i.e., fibre and 

matrix, with their own properties obtained from experimental tests, its corresponding 

calibration is carried out individually. The DEM model assumes that both the fibres and 

the matrix are isotropic. For the hexagonal packing arrangement (see Figure 3-2), the 

contact stiffness can be expressed explicitly as functions of the respective Young’s 

modulus and the Poisson’s ratio of fibres and matrix [138]. For a 2D homogeneous 

isotropic continuum, the contact stiffness (�̃�𝑛  : normal stiffness; �̃�𝑠  shear stiffness) 

between particles can be calculated by the following expressions:  

 �̃�𝑓
𝑛 =

2𝐸𝑓/𝑚𝜆

2√3(1 + 𝑣𝑓/𝑚)
(1 +

2

3(1 − 𝑣𝑓/𝑚)
) (3-1)                                                                                                

 �̃�𝑓
𝑠 =

2|3𝑣𝑓/𝑚 − 1|𝐸𝑓/𝑚𝜆

6√3(1 − 𝑣𝑓/𝑚
2 )

 (3-2)                                                                                                       

where 𝐸𝑓/𝑚 is Young’s modulus and 𝑣𝑓/𝑚 is the Poisson’s ratio of the fibre and matrix, 

respectively. Therefore, the contact stiffness used in the contact model can be 

determined. 

 

 

 



60 

 

 

Figure 3-2: (a)Discrete elements with hexagonal packing. (b)Contact between two 

particles. 

In addition, the relationship between the micro and macro strength parameters 

should be established. The micro strength is the contact bond tensile strength used in 

the DEM model. Calibration for the contact bond tensile strength against macro material 

tensile strength was done by virtual tensile tests [139]. The relationship between contact 

bond tensile strength (denoted 𝜎𝑚𝑖𝑐𝑟𝑜) and macro strength (denoted 𝜎𝑚𝑎𝑐𝑟𝑜) was linear 

for the hexagonal packing arrangement of the particles: 

 𝜎𝑚𝑖𝑐𝑟𝑜 = 𝛽𝜎𝑚𝑎𝑐𝑟𝑜 (3-3) 

where 𝛽 is a constant factor. The tests were taken in the DEM model by testing the 

RVEs made of different numbers of particles to find the converged constant factor and 

the required minimum number of particles. It was found that the factor 𝛽 = 1.7 can 

achieve the target macro strength when the number of particles in the RVE is more than 

5530 [139]. The RVE used in this chapter is then discretised by approximately 13000 

particles. And the micro-contact tensile strength of the matrix bond is therefore 

computed as 1.7 times the macro strength of the material, which is 105 MPa. In this 

study, it is assumed that there is no fibre damage under transverse tension. Thus, the 

micro-contact tensile strength of the fibre bond is set as a very large value. The interface 
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strength used in the soft-bond model is taken as the value of the cohesion yield stress 

calculated using the Mohr-Coulomb criterion [28, 140]. The cohesion stress and the 

internal friction angle is related to the tensile strength of the matrix by: 

 𝜎𝑚𝑡 = 2𝑐 
𝑐𝑜𝑠 (𝛼)

1 + 𝑠𝑖𝑛 (𝛼)
 (3-4) 

in which 𝛼 is the angle of internal friction, 𝑐 is the cohesion yield stress and 𝜎𝑚𝑡 is the 

matrix tensile strength. The parameters for the Mohr-Coulomb criterion are the angle 

of internal friction 𝛼=  15° and the matrix tensile strength 𝜎𝑚𝑡 =  60 𝑀𝑃𝑎  (given in 

Table 3-1). Therefore, the corresponding cohesion is 39.1 𝑀𝑃𝑎, which gives the fixed 

normal interface strength of  39.1 𝑀𝑃𝑎. The micro strength parameters used in the 

contact model are set.  

Last, the parameters used in the soft-bond model should be calibrated. The 

parameters are the softening factor and the softening tensile strength factor, respectively. 

The softening factor cannot be zero. Otherwise, the softening behaviour will be 

prohibited. Figure 3-3(a) shows the case that the tensile stress of the soft bond increases 

at a rate until the peak stress and decreases at the same rate in the softening process. In 

this case, the softening factor is one. If this factor is larger than one, the tensile stress 

will decrease slower in the softening process. After doing the virtual tensile tests in the 

DEM model, the softening factor is calibrated as 150. Figure 3-3(b) shows this case. It 

can be seen that the tensile stress declines very slowly after it reaches the peak stress. 

For controlling the ending of the tensile soften, softening ends until the tensile stress is 

less than the product of the softening tensile strength factor and the peak contact 

strength. According to this definition, the softening tensile strength factor is set to zero, 

and then the softening ends when tensile stress reaches zero (see Figure 3-3(a)(b)).  
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Figure 3-3: Force-displacement laws of the soft-bond model when (a) the softening 

factor is one, and the softening tensile strength factor is zero. (b) the softening factor is 

larger than one, and the softening tensile strength factor is zero. 

 

3.2 Simulation results of the mechanical response of the laminae 

3.2.1. DEM Model validation 

To study the macroscopic transverse mechanical behaviour of the UD FRP 

composite lamina, a constant tensile velocity of 5 mm/s is applied simultaneously on 

the particles located at both the left and right boundaries of the RVE. This is different 

to the FEM analysis [15, 28, 30] in which periodic boundary conditions are used to 

ensure the compatibility of strain and stress at marco level. In addition, the fibres are 

assumed to be linearly elastic, and there is no fibre damage during loading.  

For the purpose of model validation, DEM simulations are first carried out for two 

commonly used UD FRP laminae, i.e., AS4/3501-6 epoxy and E-glass/MY750 epoxy 

[141]. Using the material properties given in [141], RVEs of 50𝜇𝑚 ×  50𝜇𝑚 

containing randomly distributed fibres of 60% volume fraction are constructed for the 

two UD FRP laminae. Due to the randomness of DEM model for generating RVEs, for 

each type of laminae, 8 RVEs with constant fibre volume fractions of 60.7% and 59.6% 

are generated and then simulated, respectively. The DEM approach for the RVE 
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generation can accurately achieve the fibre volume fractions of the two laminae (60%). 

A total of 16 DEM simulated stress-strain curves are shown in Figure 3-4, from which 

the transverse Young’s modulus and the transverse tensile strength of the two types of 

laminae are evaluated by taking the respective average, as shown in Table 3-2. The 

experimental results from [141] are used for validation (see Table 3-2). It can be seen 

that the predictions based on the DEM model agree well with the experimental tests.  

Table 3-2: Transverse modulus and transverse tensile strengths obtained by DEM 

model and experimental test for two UD FRP laminae. 

 AS4/3501-6 epoxy E-glass/MY750 epoxy 

 DEM Experiment 

[141] 

DEM Experiment 

[141] 

Fibre volume 

fraction  

60.7% 60% 59.6%    60% 

Transverse modulus 

(𝐺𝑃𝑎) 

10.1 11 15.8    16.2 

Transverse tensile 

strength (𝑀𝑃𝑎) 

50 48 44     40 

 



64 

 

 

Figure 3-4: DEM simulated stress-strain curves of AS4/3501-6 epoxy lamina and E-

glass/MY750 epoxy. 

On the other hand, three RVEs of the UD FRP lamina with the properties in Table 

3-1 are also simulated by DEM model. The dimension of the RVE is 50𝜇𝑚 ×  50𝜇𝑚  

that contain about 44 randomly distributed fibres of radius R = 3.3μm. The stress-strain 

curves of the three RVEs are shown in Figure 3-5. It can be seen that the mean transverse 

tensile strength of RVEs is approximately 58 MPa, which is a bit smaller than the macro 

matrix strength of 60 MPa. The tensile strength of the lamina achieved by DEM 

simulation shows a good agreement with the result from the FEM [15]. Therefore, it 

can also be concluded that the DEM model can provide accurate and reliable simulation 

results.  
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Figure 3-5: Stress-strain curves of the three RVEs compared with FEM result [15].  

 

3.2.2. Simulated crack initiation and propagation in the RVE 

The damage states at different strains can be captured in the DEM simulations. The 

crack initiation and propagation in the RVE of the UD FRP composite under transverse 

tension are presented in Figure 3-6. The RVE contains randomly distributed fibres with 

a 45% volume fraction. As shown in Figure 3-6(a), the cracks start at the strain of 0.558% 

(point A in Figure 3-6(e)) and occur in the centre right of the RVE between two 

relatively closed fibres. Then some more short cracks are created among some pairs of 

fibres with very small distances. Deformation increases as the load is applied, while the 

cracks propagate through the matrix, resulting in the final crack at failure (point D in 

Figure 3-6(e)). 
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Figure 3-6: The mechanical behaviour of an RVE with 𝑉𝑓 = 45% under transverse 

tension. (a-d)Cracks at the strains of 0.558%, 0.621%, 0.76% and 0.791%. (e)Stress-

strain curve. 

The mechanical behaviour of an RVE with 𝑉𝑓 = 60% under transverse tension is 

presented in Figure 3-7. The crack also initiates from the places with fibres with very 

closed inner distances at the strain of 0.401%. Then several cracks occur and grow in 

the matrix until the stress reaches the peak stress. After that, the stress decreases, and 

the cracks coalesce, forming the crack path at the failure. The strength of the RVE 

containing 60% randomly distributed fibres is 62.84MPa (point C in Figure 3-7(e)), 

which is larger than that of the RVE containing 45% fibres (56.17MPa at point C in 

Figure 3-6(e)). It is indicated that the RVE with a larger fibre volume fraction is stronger. 

When it comes to the strain, the RVE with a larger ratio of fibres has a smaller strain 

until the failure (see the two points D in Figure 3-6(e) and Figure 3-7(e)). 
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Figure 3-7: The mechanical behaviour of an RVE with 𝑉𝑓 = 60% under transverse 

tension. (a-d)Cracks at the strains of 0.413%, 0.451%, 0.494% and 0.515%. (e)Stress-

strain curve. 

 

3.3 DNN predictive model for macroscopic transverse properties  

Based on the accurate and reliable results obtained from the DEM model, a deep 

learning model, the deep neural network (DNN) regression model, is developed to 

predict the macroscopic transverse properties of a UD FRP lamina and efficiently.  

 

3.3.1. Design of Experiments (DoE) sampling and data generation 

To maximise the performance of a data-driven predictive model, an appropriate and 

high-quality data set that can represent the overall properties of a specific problem is 

required. This sub-section mainly studies the mechanical properties of UD FRP 

composite laminae affected by various fibre volume fractions and radii. In other words, 
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the microstructures of the composite are varied by changing these two variables, which 

results in the distinct fibre distribution of each microstructure. In this study, the fibre 

volume fractions and fibre radii are set in the ranges 40% − 60% and 3 𝜇𝑚 − 5 𝜇𝑚 as 

listed in Table 3-3, respectively, which are proved to cover the commonly used UD FRP 

composite laminae [141, 142].  

Table 3-3: Two variables in DoE and their lower and upper bounds. 

Parameters (DoE) Lower Bound Upper Bound 

Fibre volume fraction, 𝑉𝑓 40% 60% 

Fibre radius, 𝑅𝑓 (𝜇𝑚) 3 5 

 

To describe the slight variation of information under their corresponding conditions, 

the Design of Experiments (DoE) is commonly used to reflect the variation. The 

sampling technique, Latin Hypercube sampling (LHS), can be implemented to generate 

averagely distributed data points in the problem domain. It is a stratification-based 

sampling method. As shown in Figure 3-8, if five sets of samples are to be drawn in the 

domains, each of the domains will be divided into five parts, and one set of the sample 

will be randomly drawn in the domains. 

Latin Hypercube sampling (LHS) is employed to determine the different sets of the 

two independent variables (fibre volume fraction and fibre radius) given their 

corresponding boundaries (see Table 3-3). 200 sets of samples are selected by means of 

the standard LHS. The algorithm of the standard LHS is coded using the commercial 

software MATLAB. 
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Figure 3-8: An example of using Latin Hypercube sampling (LHS) in the domains of 

[0, 1] and [0, 1]. 

For a chosen combination of the volume fraction and fibre radius, 10 RVEs with 

different fibre distributions are generated. A total of 2000 RVEs are then simulated 

using the 2D DEM model described in the previous sections. The transverse tensile 

strength 𝑌𝑇  is defined as the maximum stress in a loading process. The Young’s 

modulus 𝐸𝑇 is the ratio of stress to strain in the elastic deformation stage. The transverse 

tensile strength and Young’s modulus are extracted from the DEM simulation output 

file. The extraction of transverse tensile strength and calculation of Young’s modulus 

are coded and implemented in Python. 

To minimize the variations of mechanical properties caused by different random 

fibre distributions, the average values for the two mechanical properties from every 8 

out of 10 samples that have the same fibre volume fraction and fibre radius (by 

removing the maximum and minimum values in every 10 results) are calculated. The 

average tensile strength and average Young’s modulus over every 10 RVEs that have 

the same volume fraction and fibre radius, but different fibre distributions are plotted in 
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Figure 3-9, where the variances of the respective average are also shown. It can be seen 

that the variance of the tensile strength is relatively larger than that of Young’s modulus, 

which suggests that fibre distribution may have a greater influence on the tensile 

strength than Young’s modulus of the composite. The 200 sets of fibre volume fraction 

and fibre radius selected by the DoE and their predicted average strength and Young’s 

modulus from the DEM simulations are used then as the input data and output data to 

be trained by deep learning. 

 

Figure 3-9: Variance plot for (a)the average tensile strength and (b)the average 

Young's modulus. 

 

3.3.2. Data pre-processing 

Before determining the structure of the DNN predictive model, data pre-processing 

is carried out. It is one of the essential steps in developing data-driven models, as the 

quality of the data of representative features directly determines the performance of a 
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machine learning model. Data pre-processing includes data set partition and data 

normalization.  

To improve the model performance, three different groups of data processed by a 3-

fold cross-validation and implemented in Python, are used for training and testing the 

predictive model. In each group of the data, 80% of data points in the data set (160 data 

points) are used in the training process, and the rest 20% of data points (40 data points) 

are used in the testing process. 

The input features and target output vary in magnitude, which affects the efficiency 

and accuracy of machine learning predictions. Thus, it is crucial to apply a data 

normalization method to convert the magnitudes of data to a same scale. Two common 

methods, namely min-max normalization and Z-score normalization, bring different 

features into the same scale and will be used in this analysis to compare their 

performances in the predictive model. The normalization processes are coded, 

respectively, using the MinMaxScaler function and the StandardScaler function in the 

scikit-learn module of Python. In the process of data normalization, scaling of the input 

features and the target outputs in the training set is done independently. The same 

scaling is also applied to the testing set. 

 

3.3.3. Configuration of the DNN predictive model for the 

macroscopic transverse properties 

A DNN model with a back-propagation learning algorithm is used to predict two 

macroscopic mechanical properties (the transverse tensile strength 𝑌𝑇  and Young’s 

modulus 𝐸𝑇), which allows forward signal transmission and error back propagation 

simultaneously during the training process. The activation function used from the input 
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layer to the first hidden layer and between any two hidden layers is the rectified linear 

activation function (ReLU): 

 𝑓(𝑥) = {
0, 𝑖𝑓 𝑥 ≤ 0
𝑥, 𝑖𝑓 𝑥 > 0

 (3-5)                          

This activation function enables more efficient gradient descent and backpropagation. 

It can also reduce the overall computational cost of the neural network. 

The Sigmoid function is used between the last hidden layer and the output layer: 

 𝑓(𝑥) =  
1

1 +  𝑒−𝑥
 (3-6)              

This function is monotonically continuous in the output interval, thus, it is best used in 

the output layer. 

 In addition, to ensure that the DNN model can have sufficient accuracy, a set of 

trials using the models with different numbers of hidden layers and neurons are made. 

It is found that the predictions by using DNN models containing less than four layers 

with less than 80 neurons in each layer are ‘underfitting’, which means the DNN models 

do not learn well in the training process. It is also found that the predictions by using 

the DNN models containing more than four layers with more than 80 neurons in each 

layer are ‘overfitting’, suggesting that the DNN models learn very well in the training 

process due to the powerful nonlinear mapping capabilities, while may not give accurate 

predictions in the testing process. Therefore, as shown in Figure 3-10, the DNN 

regression model with back-propagation, consisting of four hidden layers with the same 

neuron number of 80 in each layer, has the best nonlinear mapping capabilities in this 

case. The generated DNN predictive model is implemented by using Keras functions of 

the TensorFlow package in Python [143, 144]. 
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Figure 3-10: A multi-layer DNN model for the predictions of transverse mechanical 

properties. 

 

3.3.4. Results of the DNN model for the transverse tensile strength 

Figure 3-11 and Figure 3-12 show the transverse tensile strength of the UD FRPs 

obtained from the DEM simulations and the DNN predictive model and their 

comparisons using the Min-max normalization and Z-score, respectively normalization 

methods to process the input and output data. The training results of the DNN model on 

three cross-validation groups of data are shown in Figure 3-11(a-c) and Figure 3-12(a-

c), which show satisfactory comparisons. These are scatter plots for a better visual 

indication of the correlation between the DNN training results and DEM simulations. 

In the training process, all the points from the DEM and DNN predictions are scattered 

around the diagonal line (indicating 100% agreement). The results on three different 

groups of data in the testing process of the DNN model using two data normalization 

methods are presented in Figure 3-11(d-f) and Figure 3-12(d-f), respectively. Similar 

conclusions can be made based on the comparisons. The DNN predictive model is 

sufficiently accurate in predicting the transverse tensile strength of the UD FRP with a 
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range of fibre volume fractions and fibre radii. Though Figure 3-11(d-f) and Figure 

3-12(d-f) show a slightly more scattered pattern, all the points are still within a 

reasonably close range of the diagonal.  

To assess the accuracy and effectiveness of the predictive model, the performance 

indicators are used for both the training and testing processes. The comparisons of the 

performance indicator (𝑅2) of the DNN model in predicting tensile strength of the UD 

FRP in both the training and testing processes are presented in the figures (see Figure 

3-11 and Figure 3-12), respectively, for the Min-max and the Z-score normalizations. 

For the 𝑅2 indicator, a value closer to 1 suggests a better prediction. It is shows that for 

both training and testing, Min-max normalization performs better than the Z-score 

normalization as larger values of 𝑅2  are obtained from using the Min-max 

normalization.  

 

Figure 3-11: Comparison of the training results and prediction results for the 

transverse tensile strength using 3-fold cross-validation under Min-max normalization. 

(a-c) Training results of Group 1, Group 2 and Group 3. (d-f) Testing results of Group 

1, Group 2 and Group 3. 
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Figure 3-12: Comparison of the training results and prediction results for the 

transverse tensile strength using 3-fold cross-validation under Z-score normalization. 

(a-c) Training results of Group 1, Group 2 and Group 3. (d-f) Testing results of Group 

1, Group 2 and Group 3. 

To better show the results, Figure 3-13 and Figure 3-14 are the DEM simulation 

results, and the DNN predicted results of the transverse tensile strength based on the 

group 1 data processed by the two normalization methods. And the comparisons of the 

performance indicators in the DNN model for the prediction of the transverse tensile 

strength based on group 1 data are also presented in Table 3-4. Two more performance 

indicators are used, namely, MSE and MAE.  

Figure 3-13(a) and Figure 3-14(a) are the training results for the 128 sets of data and 

the validation results of the last 32 sets of data against the DEM simulations. It is seen 

that the DNN training results are very close to the DEM simulation results. Figure 

3-13(b) and Figure 3-14(b) are scatter plots between the DNN results and the DEM 

simulations in the training process, which shows that the training accuracy is quite good. 

The high accuracy of the training process can also be concluded from the values of the 
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performance indicators in Table 3-4(a). As both MSE and MAE are close to zero and 

𝑅2 values reach 0.9. The results of the testing process of the DNN model using the two 

data normalization methods are presented in Figure 3-13(c-d) and Figure 3-14(c-d), 

respectively. Moreover, Table 3-4(b) shows that all three indicators for the testing 

process suggest better performance from using group 1 data processed by the Min-max 

normalization than from the one processed by the Z-score normalization. Because both 

MSE and MAE obtained using Min-max normalization are much closer to zero. And 

the corresponding 𝑅2value is 0.8094 which is higher than the one obtained using the Z-

score normalization (0.7448). 

 

Figure 3-13: Comparison of the training results and prediction results for the 

transverse tensile strength based on group 1 data under Min-max normalization. 
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Figure 3-14: Comparison of the training results and prediction results for the 

transverse tensile strength based on group 1 data under Z-score normalization. 

 

Table 3-4: Comparisons of the performance indicators in the DNN model for the 

prediction of the transverse tensile strength based on group 1 data. (a)Training 

process. (b)Testing process. 

Methods Training MSE Training MAE Training 𝑅2 

Min-max 

normalization 

2.977e-3 2.748e-2 0.9014 

Z-score 

normalization 

9. 065e-2 1.442e-1 0.9000 

(a) 

Methods Testing MSE Testing MAE Testing 𝑅2 

Min-max 

normalization 

8.730e-3 7.166e-2 0.8094 

Z-score 

normalization 

3.508e-1 4.906e-1 0.7448 

(b) 
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3.3.5. Results of the DNN model for Young’s modulus 

Similar to the discussion for the prediction results of the transverse tensile strength, 

the results of training and prediction of the developed DNN model on the three cross-

validation groups of data for the transverse Young's modulus are analysed and shown 

in Figure 3-15 and Figure 3-16, respectively. As shown in Figure 3-15(a-c) and Figure 

3-16(a-c), the training results of the three different groups using the Min-max 

normalization and the Z-score normalization are both very close to the DEM model 

results. The comparisons demonstrate that the accuracy of the training process is very 

high. The transverse Young’s modulus predicted in the testing process of the DNN 

model is shown in Figure 3-15(d-f) and Figure 3-16(d-f), respectively, for the two 

normalization methods and compared with also the DEM results. It can be seen that in 

general, the testing results are accurately predicted by the developed DNN model 

because they are all very close to the diagonal line. In more detail, the performance 

indicator 𝑅2 of the predictions are all very close to 1. It can be concluded that the DNN 

model works efficiently and accurately in predicting the transverse Young’s modulus 

of UD FRP composite laminae. 
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Figure 3-15: Comparison of the training results and prediction results for the 

transverse Young's modulus using 3-fold cross-validation under Min-max 

normalization. (a-c) Training results of Group 1, Group 2 and Group 3. (d-f) Testing 

results of Group 1, Group 2 and Group 3. 

 

Figure 3-16: Comparison of the training results and prediction results for the 

transverse Young's modulus using 3-fold cross-validation under Z-score normalization. 

(a-c) Training results of Group 1, Group 2 and Group 3. (d-f) Testing results of Group 

1, Group 2 and Group 3. 
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Figure 3-17 and Figure 3-18 show more detailed results for the transverse Young's 

modulus based on group 1 data. As shown in Figure 3-17(a) and Figure 3-18(a), the 

training and the validation results obtained from the training process using the Min-max 

normalization and the Z-score normalization are very close to the DEM model results, 

which are illustrated by the direct comparisons shown in Figure 3-17(b) and Figure 

3-18(b) between the two sets of results. The comparisons demonstrate that the accuracy 

of the training process is very high. Also, the performance indicators of the training 

process are shown in Table 3-5(a), where the MSE MAE of the training are very close 

to zero and the 𝑅2 values (0.9540 and 0.9773) are very close to 1. The transverse 

Young’s modulus predicted in the testing process of the DNN model is displayed in 

Figure 3-17(c-d) and Figure 3-18(c-d), respectively, for the two normalization methods 

and compared with also the DEM results. Combined with the results of performance 

indicators of the testing process (see Table 3-5(b)), it is seen that the accuracy of the 

testing process is very high. It is indicated that the DNN predictive model can be used 

as an alternative to the DEM model to predict Young's modulus. 
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Figure 3-17: Comparison of the training results and prediction results for the 

transverse Young's modulus based on group 1 data under Min-max normalization. 



82 

 

 

Figure 3-18: Comparison of the training results and prediction results for the 

transverse Young's modulus based on the group 1 data under Z-score normalization. 

 

Table 3-5: Comparisons of the performance indicators in the DNN model for the 

prediction of the tensile Young's modulus based on group 1 data. (a)Training process. 

(b)Testing process. 

Methods Training MSE Training MAE Training 𝑅2 

Min-max 

normalization 

7.415e-4 1.737e-2 0.9885 

Z-score 

normalization 

5.680e-3 3.621e2 0.9941 

(a) 

Methods Testing MSE Testing MAE Testing 𝑅2 

Min-max 

normalization 

3.512e-3 4.177e-2 0.9540 

Z-score 

normalization 

2.589e-2 1.237e-1 0.9773 

(b) 
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3.3.6. The validation of DNN predicted Young’s modulus 

To further verify the DNN predictive model, the transverse Young’s modulus 

predicted by DEM and DNN are also compared with two existing analytical 

micromechanics models, i.e., the Slab model and the Halpin-Tsai model, the details of 

which are summarized in Table 3-6. In Table 3-6, 𝐸𝑇 is the transverse Young’s modulus; 

𝐸𝑓 and 𝐸𝑚 are the transverse Young’s modulus of the fibre and matrix, respectively;  𝑉𝑓 

and 𝑉𝑚 are the respective volume fractions of fibre and matrix. The ratio, 𝑎/𝑏, is the 

cross-sectional aspect ratio of the reinforcement. Figure 3-19 presents the transverse 

Young’s modulus calculated by the two analytical models, the DEM simulations and 

the DNN predictions based on 40 RVE samples over the whole range (40% − 60%) of 

fibre volume fractions considered in this study. It can be seen from Figure 3-19 that the 

Slab model gives the lowest value of Young’s modulus. The DNN predictions show a 

similar form of non-linearity as the DEM model. Compared to the Slab model, the 

Halpin-Tsai model is more comparable to the DEM and DNN predictions. In general, 

the DEM and DNN predictions are lower than the predictions from the Halpin-Tsai 

model when the volume fraction is below 48% and higher when the volume fraction is 

over 48%. Apart from the various assumptions that were introduced to derive the 

analytical, numerical and machine learning models, factors that attribute to the 

discrepancies between the DNN and the analytical models include the impact of the 

randomly distributed fibres and their diameters that were not considered in the 

analytical models but have been properly modelled in the DEM model and, 

subsequently, reflected in the DNN model. 
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Table 3-6: Two analytical micromechanics models for transverse Young’s modulus. 

Model Transverse Young’s modulus 

Slab model 𝐸𝑇

𝐸𝑚
=  

𝐸𝑓

𝑉𝑓𝐸𝑚 + 𝑉𝑚𝐸𝑓
  

Halpin-Tsai Equations 𝐸𝑇

𝐸𝑚
=  

1+ 𝜉𝜂𝑉𝑓

1−𝜂𝑉𝑓
,  

where 𝜂 =  

𝐸𝑓

𝐸𝑚
−1

𝐸𝑓

𝐸𝑚
 + 𝜉

 and 𝜉 = 2(𝑎/𝑏) 

 

 

 

Figure 3-19: Comparison of the transverse Young's modulus determined by two 

analytical models, the RVE-based DEM model and the DNN predictive model. 
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3.4 Summary 

In this chapter, firstly, an RVE-based DEM model is developed for studying the 

mechanical behaviours of UD FRP laminae subject to transverse tension. The transverse 

mechanical properties of the UD FRP laminae predicted by the developed DEM model 

show good agreement with the results of the experimental tests. The DEM simulated 

stress-strain responses of RVEs agree well with that of the FEM analyse. The RVEs 

based on the different settings of fibre volume fractions are analysed. It is found that 

the strength of the UD FRP lamina becomes larger with the increase of fibre volume 

fractions. However, the deformation until reaching the failure point becomes smaller. 

In addition, it is shown that the crack usually occurs in the matrix where the distance 

between the two fibres is very small. Then the crack propagates through the matrix until 

the failure. It can be concluded that the DEM model shows its advance in tracking crack 

initiation and propagation. 

Then, based on a large amount of RVE-based DEM model simulations, a multi-layer 

DNN model with back-propagation is constructed for predicting two transverse 

mechanical properties (tensile strength and Young’s modulus) of an FRP composite 

lamina at the macroscopic level with consideration of two features related to the fibre 

distribution. The DNN model shows good accuracies for predicting the two categories 

of mechanical properties when three different groups of data under two different types 

of normalizations are trained. Moreover, the verification of the DNN model for Young’s 

modulus shows that the DNN model is superior to two existing analytical models, as 

the impact of the randomly distributed fibres and their diameters can be considered in 

the DNN model. Therefore, it can be concluded that the DNN model has robust abilities 

in predicting both the transverse tensile strength and Young’s modulus of the UD FRP 

composite lamina accurately.   
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Chapter 4 

4 Predictions of microscopic cracks of unidirectional fibre-

reinforced polymer composites using machine learning  

The fracture process in composite materials has been studied for a long time. 

Computational micromechanical methods have been taken to investigate the fracture 

prediction for composites subjected to different loadings, however, it usually takes a 

long time to achieve the crack initiation and propagation as well as the final failure as 

modelling micro-scale fracture mechanics is time-consuming. The machine learning 

prediction for the macroscopic mechanical properties of UD FRP laminae based on the 

data from the DEM model shows its great potential. In this chapter, the data extracted 

by DEM model simulations are also used for machine learning models to predict the 

microscopic cracks of UD FRP composites.  

 

4.1 ML predictive model for the microscopic cracks  

The first try for predicting the microscopic cracks in the RVE of the UD FRP lamina 

using ML models aims to find the complexity of the problem. In other words, it is 

necessary to understand the relationship between the input and the target output in the 

prediction problem.  

 

4.1.1. Data generation and pre-processing 

The developed 2D RVE-based DEM model in Chapter 3 is used for simulating 

fracture processes in RVEs of FRP composite laminae. The scale of the RVE is smaller 
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than that being used in the DEM simulation mentioned in Chapter 3. There are two 

reasons for reducing the scale of the RVE. The first reason is that running enough 

simulations of the original scale of RVEs takes longer. The second reason is that using 

a relatively small size of the data at an early stage to investigate crack prediction via 

ML models allows the model to be continually revised. Thus, the dimension of the 

square RVE is set as 10𝜇𝑚 ×  10𝜇𝑚. The radius of the randomly distributed fibre is 

0.815𝜇𝑚 and the volume fraction 𝑉𝑓 is 45%. A number of 500 DEM model simulations 

are first generated. During the DEM simulations, crack paths of all the 500 RVE 

samples are recorded when the stress is about 70% of their tensile strength.  

In the DEM simulation, the RVE is discretised with particles. A contact bond 

between two particles breaks, and then a crack occurs. For the convenience of the 

discussion, the particles at the cracking contact bond are called cracking particles. To 

predict the crack path in the RVE, the ML model is used to predict whether a particle is 

cracking. It is a binary classification problem with an output of one or zero. Figure 4-1 

presents the ML process using data from the DEM simulation. In this classification 

problem, if there is a crack in the bond between two particles, the particles will be 

labelled by one. Otherwise, the particles will be labelled by zero. In a supervised 

classification machine learning, the features are the inputs to the ML model, and the 

output is a label mapped by the feature vector. The features are essential for training the 

ML model, which will directly affect the ML prediction. The more specific and valuable 

information in the given features, the feedback of better accuracy and lower loss will be 

returned. However, the features related to the properties of the material, for instance, 

the stress or strain rates in any time steps during the simulation and the condition of 

transverse tension loading, etc, should not be considered.  
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Figure 4-1: Diagram for machine learning process using data from the DEM 

simulation. 

Figure 4-2 shows the selection of the features. A single hexagonal-packed particle 

in the RVE is considered a data. It is found that the crack path is highly dependent in 

the fibre distribution. Therefore, the features of each data sample reflect two aspects. 

One is the position of the particle in the RVE. The other one is the distance and direction 

of the particle to the randomly distributed fibre in the RVE. Taking a matrix particle as 

an example (see Figure 4-2), its position is represented by the 𝑥 −  and 𝑦 − coordinate, 

(denoted 𝑝𝑜𝑠_𝑥 and 𝑝𝑜𝑠_𝑦). The distances between the particle to the four boundaries 

are also considered for better reflecting the position of the particle in the RVE. The 

distance and direction related to the fibre are marked in Figure 4-2 and denoted by 𝑡𝑜𝐹1 

and 𝑎1.   

Based on the scale and the fibre volume fraction of the generated RVE, there are at 

least 27 randomly distributed fibres in one RVE. The features we considered are the 

positions of 𝑥 −  and 𝑦 − coordinate directions of matrix particles (denoted 𝑝𝑜𝑠_𝑥 and 

𝑝𝑜𝑠_𝑦), the distance between the centre of matrix particle to the left vertical boundary 

(denoted 𝑑𝑖𝑠𝑡𝑥1), the distance between the centre of the matrix particle to the right 

vertical boundary (denoted 𝑑𝑖𝑠𝑡𝑥2 ), the distance between the centre of the matrix 
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particle to the lower horizontal boundary (denoted 𝑑𝑖𝑠𝑡𝑦1), the distance between the 

centre of the matrix particle to the upper horizontal boundary (denoted 𝑑𝑖𝑠𝑡𝑦2), the 

distance between the centre of the matrix particle to the centre of the first closed fibre 

(denoted 𝑡𝑜𝐹1) to the distance between the centre of the matrix particle to the centre of 

the 27th closed fibre (denoted 𝑡𝑜𝐹27), the angle of the matrix particle to the centre of 

the first closed fibre (denoted 𝑎1) to the angle of matrix particle to centre of  27th closed 

fibre (denoted 𝑎27). The distance and angle are calculated as: 

 𝑡𝑜𝐹𝑖 =  √(𝑝𝑜𝑠_𝑥 − 𝑝𝑜𝑠_𝑥𝑓𝑖
)2 + (𝑝𝑜𝑠_𝑦 − 𝑝𝑜𝑠_𝑦𝑓𝑖

)2 (4-1) 

 𝑎𝑖 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑝𝑜𝑠_𝑦𝑓𝑖

𝑡𝑜𝐹𝑖
) (4-2) 

where 𝑝𝑜𝑠_𝑥𝑓𝑖
 and 𝑝𝑜𝑠_𝑦𝑓𝑖

 are the  𝑥 − and 𝑦 − coordinates of the centre of fibre 𝑖 (𝑖 =

1, 2, … , 27). The number of features of each data point is 60.  

 

Figure 4-2: Feature extraction from an RVE. 

After selecting the input features, the next step is data pre-processing. The cracks 

occur at some places in the RVE when applying a load. As shown in Figure 4-1, it can 

be found that the number of particles which is not cracking is overwhelmingly larger 
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than the number of cracking particles, which causes the problem of data imbalance. 

There are many methods [145] to solve the data imbalance problem. One commonly-

used method is called undersampling. It allows for reducing the number of classes 

containing overwhelming data. The function of ‘undersampling’ is performed in Python 

with its command. In this way, in the training and testing process of the ML model, 

there will be a fixed amount of data in each RVE, making sure the information from 

each RVE is learned well and on average by the ML model.  

The features vary in magnitude. Thus, the features need to be converted to the same 

scale using a data normalization method. Min-max normalization is used for rescaling 

all the data of features.  

 

4.1.2. Development of the ML models 

Two different machine learning models, the Gaussian Naïve Bayes classifier and 

Artificial Neural Networks (ANNs), are employed to predict the crack path. For the 

Gaussian Naïve Bayes classifier, Python codes can be written for the formulas of the 

calculation of the conditional probability: 

 𝒑(𝐶𝑚|𝑥1, 𝑥2, … , 𝑥60) =
𝒑(𝐶𝑚) 𝒑(𝑥1, 𝑥2, … , 𝑥60|𝐶𝑚)

𝒑(𝑥1, 𝑥2, … , 𝑥60)
 (4-3) 

where the vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥60) representing the 60 features described in the last 

sub-section, and 𝐶𝑚 for each of the two possible classes 𝐶1 and 𝐶2, i.e., crack or not 

crack.  

The derivation process for the above formula is as follows: 

• 𝒑(𝐶𝑚) is calculated as:  
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 𝒑(𝐶𝑚) =
𝑁𝐶𝑚

𝑁
 (4-4) 

where 𝑁  is the total number of samples in the data set, and 𝑁𝐶𝑚
 is the 

number of the samples with class 𝐶𝑚. In our prediction problem, 𝑁 is the 

total number of particles in the data set, 𝑁𝐶1
 is the number of particles at the 

cracking contact bonds, and 𝑁𝐶2
 is the number of particles at the non-

cracking contact bonds. 

• The features we considered are all continuous data. The probabilities for the 

input features for each class is calculated as: 

 𝒑(𝑥𝑖|𝐶𝑚) =  
1

√2𝜋𝜎𝑥𝑖|𝐶𝑚

2

𝑒
−

(𝑎−𝜇𝑥𝑖|𝐶𝑚)2

2𝜎𝑥𝑖|𝐶𝑚
2

 (4-5) 

where a, 𝜇𝑥𝑖|𝐶𝑚
, and 𝜎𝑥𝑖

 are the value, the mean, and the standard variance 

of the feature 𝑥𝑖  for a given class 𝐶𝑚 , respectively. The mean and the 

standard variance are obtained by:   

 
𝜇𝑥𝑖|𝐶𝑚

=
1

𝑁𝐶𝑚

 ∑ 𝑥𝑖 
 (4-6) 

 𝜎𝑥𝑖
= √

1

𝑁𝐶𝑚

 ∑(𝑥𝑖 − 𝜇𝑥𝑖|𝐶𝑚
)2  (4-7) 

where  ∑ 𝑥𝑖 is the sum of values of the input feature 𝑥𝑖 for a given class 𝐶𝑚. 

Then, we have 

 𝒑(𝑥1, 𝑥2, … , 𝑥60|𝐶𝑚) = 𝒑(𝐶𝑚) ∏ 𝒑(𝑥𝑖|𝐶𝑚)  (4-8) 

• 𝒑(𝑥1, 𝑥2, … , 𝑥60) is a constant, therefore, we have 

 𝒑(𝐶𝑚|𝑥1, 𝑥2, … , 𝑥60) ∝ 𝒑(𝐶𝑚) 𝒑(𝑥1, 𝑥2, … , 𝑥60|𝐶𝑚)  (4-9) 

• Finally, the conditional probability 𝒑(𝐶𝑚|𝑥1, 𝑥2, … , 𝑥60) is given by 
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 𝒑(𝐶𝑚|𝑥1, 𝑥2, … , 𝑥60) = 𝒑(𝐶𝑚) ∏ 𝒑(𝑥𝑖|𝐶𝑚)  (4-10) 

In a binary classification problem, the output will be one if the conditional 

probability is larger than 0.5. Otherwise, the output will be zero. 

A feedforward neural network is the second ML model used for the crack path 

prediction. It is a unidirectional network that only allows the signals to be transmitted 

in a forward direction. As shown in Figure 4-3, a feedforward network containing two 

hidden layers with the same neuron number of 300 in each layer is constructed. The 

activation function used from the input layer to the first hidden layer and between every 

two hidden layers is ‘ReLU’. The activation function used between the last hidden layer 

and the output is ‘Sigmoid’. Both ML models are coded and implemented in Python. 

 

Figure 4-3: A two-layer feedforward ANN model for predicting the crack path. 

 

4.1.3. Results of the Gaussian Naïve Bayes classifier  

Gaussian Naïve Bayes classifier is trained on the 80% data points (extracted from 

400 simulations) in the dataset to learn the information that leads to particle crack. Then 

the rest 20% of the data points (extracted from 100 simulations) are tested into the ML 
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algorithm to validate the accuracy and efficiency of the prediction. A 3-fold cross-

validation is employed for investigating the performance of the model. 

In the DEM simulation, a crack occurs between two adjacent particles. As shown in 

Figure 4-4, the DEM simulated cracking contact bonds are the contact bonds that are 

located between two black particles. The correctly predicted cracking contact bonds by 

the ML are the contact bonds between particles with a black outer ring and orange 

interior, while the wrongly predicted cracking contact bonds are the contact bonds 

between orange particles. 

 

Figure 4-4: Denotation of the DEM simulation results and machine learning 

predicted results. 

Figure 4-5 is an example of the results by Gaussian Naïve Bayes classifier. In one 

iteration of the 3-fold cross-validation, the data extracted from the RVE shown in Figure 

4-5 belongs to the training set. To get the accuracy of the training process, put the data 

of this RVE into the trained Gaussian Naïve Bayes classifier. The result is presented in 

Figure 4-5(a). All the cracking particles can be captured after the training process. There 

are no black particles in the RVE, i.e., all the black particles are coloured by the orange 
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interior. Though, some orange particles (wrongly predicted particles) are scattered over 

the RVE. The accuracy of the training process is good.  

The data of this RVE can belong to the testing set in the next iteration during the 3-

fold cross-validation. In this iteration, the data of this RVE is the unseen data for testing 

the ML model. The testing result (see Figure 4-5(b)) indicates that the testing 

performance is not good. Many cracking particles (black particles) are not predicted, 

and some non-cracking particles (orange particles) are predicted to be cracking. These 

wrongly predicted particles (orange particles) cluster in several locations in the RVE. 

According to the results, it can be concluded that the problem of overfitting occurs. 

 

Figure 4-5: (a)Training result and (b)testing result by Gaussian Naïve Bayes 

classifier. 

 

4.1.4. Results of the ANN model  

Similar to the discussion of the results of the Gaussian Naïve Bayes classifier, the 

performance of the training process of the ANN model is first analysed. From the results 

obtained from the previous model, it can be seen that the quality of data plays an 

important role in the ML model. Therefore, the effect of different amounts of training 

data on the training process of the ANN model is first studied by using different amounts 
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of data obtained by undersampling. Three different amounts of data in the training set 

are selected, which are 17.5% training data, 26 % training data, and 40 % training data. 

After training the 17.5% data containing the data of the RVE below (see Figure 

4-6(a)), it is seen that almost all the cracking particles are predicted, however, there are 

some wrongly predicted cracking particles (see the orange particles in Figure 4-6(a)). 

Then 26% of training data is used in the training process, and the result is plotted in 

Figure 4-6(b). Only two cracking particles are not predicted. As shown in Figure 

4-6(a)(b), the number of wrongly predicted cracking particles decreases as the amount 

of training data increases. Then, the amount of training data is enlarged to 40%. The 

result in Figure 4-6(c) shows that only one cracking particle is not predicted. Moreover, 

the number of wrongly predicted cracking particles is significantly decreased compared 

to the results by training smaller amounts of data. It can be concluded that the accuracy 

of the training process increases by enlarging the number of training data during the 

undersampling process. 
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Figure 4-6: ANN training results from using different amounts of data. (a) 17.5% 

training data. (b) 26 % training data. (c) 40 % training data. 

As a result, 40% of training data is chosen for the ANN training and testing. Figure 

4-7 shows the training and testing results by the ANN model using 40% of training data. 

The training result is quite good, with fully predicted cracking particles and an 

acceptable number of wrongly predicted ones. The testing results of this RVE from the 

two different iterations (see Figure 4-7(b)(d)) are not good. It is seen that many cracking 

particles (black particles) are not predicted by the ANN model. Only 18 and 23 cracking 

particles are predicted correctly by the ANN model in the two iterations, respectively. 

The results are accompanied by some incorrectly predicted cracking particles (orange 

particles) with scattered distribution in the matrix of the RVE. In the DEM simulation, 

the cracks propagate and connect in the matrix until failure, however, the crack 

propagation is not learned well from the training data. Combining the results shown in 
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Figure 4-6 and Figure 4-7, the training accuracy is quite good, but testing accuracy is 

still not good. It means the network can learn the information from our training data 

well, while the networks may not make accurate predictions for unseen data.  

 

Figure 4-7: (a)Training result and (b)-(c)testing results by the two-layer feedforward 

ANN model 

Dropout is one of the commonly used methods to avoid this problem in the ANN 

model. It is a regularization method that drops out the nodes of hidden layers in a 

network [146]. As a result, as shown in Figure 4-8, the structure of the ANN after 

dropout becomes simpler than that of the original ANN. 
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Figure 4-8: (a)Standard Neural Network. (b) Network after Dropout. 

Figure 4-9(b) is the ANN prediction result based on the data of 500 DEM 

simulations after dropout, which shows more cracking particles are predicted correctly 

by ANN without dropout (see Figure 4-9(a)). Though there are still some wrongly 

predicted crack particles, the ANN prediction result of the crack path based on the data 

of 500 DEM simulations with dropout shows improved accuracy compared to those 

without dropout or based on the same group of data.  

 

Figure 4-9: (a)Testing result by ANN. (b)Testing result by ANN after dropout. 

 

4.2 An improved predictive model for microscopic cracks  

The accuracy of the Gaussian Naïve Bayes classifier and Artificial Neural Networks 

(ANNs) for predicting whether a crack occurs between two particles is not very good 
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due to the overfitting problem caused by its complexity and the class imbalance. A new 

perspective on the problem of predicting cracks is needed. Therefore, an improved DNN 

predictive model with a new feature selection and structure adjustment based on a larger 

group of data is developed. 

 

4.2.1. Data generation and pre-processing 

The size of the data pool is very important in the ML model. In the improved 

predictive model for predicting the microscopic cracks, the data set contains 1600 2D 

RVE samples of 50 𝜇𝑚 × 50 𝜇𝑚 with a constant fibre volume fraction of 45% and 

fibre radius of 3.3 𝜇𝑚. These 1600 RVEs are first simulated using the DEM model. The 

improved predictive model is to predict the occurrence of cracking. It is a classification 

problem. Figure 4-10(a) is an RVE with DEM simulated crack path. The RVE is divided 

into (7 × 7) subareas. The idea is if there is at least one crack in a subarea of the RVE, 

the subarea will be classified as having an output of 1. Otherwise, the subarea will be 

classified as having an output of 0. 

 

Figure 4-10: Data pre-processing based on the generated RVE. (a) RVE partition. (b). 

Feature selections 
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After that, a selection of input features is carried out. The input features for crack 

prediction contain important geometrical information, i.e., the spatial distribution of 

fibres in the RVE, which is critical to the potential crack initiation and propagation. The 

origin or a geometric reference point of the RVE is firstly chosen (see the bottom-left 

corner in Figure 4-10(b)), such that all the considered features can be related to the 

origin to define the geometry of the RVE uniquely. Given the positions of the randomly 

distributed fibres, for instance, (𝑝𝑜𝑠_𝑥𝑓1
, 𝑝𝑜𝑠_𝑦𝑓1

) and (𝑝𝑜𝑠_𝑥𝑓2
, 𝑝𝑜𝑠_𝑦𝑓2

). As shown 

in Figure 4-10(b), two types of features, namely the distance to the origin (denoted 𝑑𝑓1
) 

and the corresponding angle with the 𝑥 − axis (denoted 𝜃𝑓𝑖
), are used to represent the 

relative spatial positions of the randomly distributed fibres in the RVE. And the 

distances from each fibre to the origin are set in order of the nearest to the farthest. The 

distances and angles are computed as follows: 

 𝑑𝑓𝑖
=  √(𝑝𝑜𝑠_𝑥𝑓𝑖

− 0)2 + (𝑝𝑜𝑠_𝑦𝑓𝑖
− 0)2 (4-11) 

 𝜃𝑓𝑖
= 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑝𝑜𝑠_𝑦𝑓𝑖

𝑑𝑓𝑖

) (4-12) 

where 𝑝𝑜𝑠_𝑥𝑓𝑖
 and 𝑝𝑜𝑠_𝑦𝑓𝑖

 are the  𝑥 − and 𝑦 − coordinates of the centre of fibre 𝑖. It 

is worth stressing that there are at most 53 randomly distributed fibres in the generated 

RVEs with a fibre volume fraction of 45% and a fibre radius of 3.3 𝜇𝑚. If the number 

of fibres is less than 53 due to the random fibre distribution, it will be assumed that 

fibres are replenished to the corner opposite the origin. In this way, the distances of 

fibres to the origin are the length of the diagonal of the RVE plus the radius of the fibre, 

and its corresponding angle is 45°. Therefore, the numbers of the input data in each 

generated RVE are the same for the predictive model.  

Tests using different divisions are then performed, from which a reasonably accurate 

prediction can be achieved. As shown in Figure 4-11 and Figure 4-12, the DNN 
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predictions of cracks in RVEs under three different segmentation sizes are compared. 

The short black lines in Figure 4-11(a)-(c) and Figure 4-12(a)-(c) are the DEM 

simulated cracks. The yellow areas in Figure 4-11(a)-(c) and Figure 4-12(a)-(c) are the 

cracked subareas predicted by the DNN. The tables in Figure 4-11(d)-(f) and Figure 

4-12(d)-(f) are also the DNN predicted results represented by the ‘0’ and ‘1’ labels. The 

red ‘0’ or ‘1’ means wrongly predicted results by the DNN model, and the black ‘0’ or 

‘1’ represents the correct results predicted by the DNN model. All the RVEs used for 

the prediction of the crack patterns are with a dimension of 50 μm × 50 μm with a 

constant fibre volume fraction of 45% and a fibre radius of 3.3 μm. For the RVEs with 

25 subareas (5 × 5), as shown in Figure 4-11(a) and Figure 4-12(a), all the cracked areas 

(the yellow areas) in the two RVEs are predicted correctly by the trained DNN model. 

However, there are at most three fibres per subarea, which results in a relatively rough 

prediction of the cracked areas. On the other hand, as shown in Figure 4-11(c) and 

Figure 4-12(c), the accuracy of the crack prediction for the RVE with 100 subareas (10 

× 10) is less satisfactory. Due to the sizes of the subarea and fibre, some of the subareas 

in RVEs with 100 subareas (10 × 10) are covered by incomplete fibres (see Figure 

4-11(c) and Figure 4-12(c)). However, there is no damage in fibres. It can be concluded 

that a finer division does not improve the effectiveness and accuracy of the prediction. 

Considering achieving a reasonably accurate prediction without demanding excessive 

computational cost, (7 × 7) subareas (see Figure 4-10(a)) are used in the DNN prediction. 

Therefore, in the classification model, 53 pairs of 2-dimensional feature vectors are 

identified as the 53 2D input features in the input layer and the output layer there are 49 

outputs in a vector, which are either 1 or 0. 
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Figure 4-11: Comparison of DNN predictions of cracks in the first RVE with different 

segmentation sizes. (a)(d)RVE with 25 subareas (5 × 5). (b)(e)RVE with 49 subareas (7 

× 7). (c)(f)RVE with 100 subareas (10 × 10). 

 

Figure 4-12: Comparison of DNN predictions of cracks in the second RVE with different 

segmentation sizes. (a)(d)RVE with 25 subareas (5 × 5). (b)(e)RVE with 49 subareas (7 

× 7). (c)(f)RVE with 100 subareas (10 × 10). 
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After selecting the features, data pre-processing is carried out. 80% of the data 

(extracted from 1280 DEM model simulations) are used as training data for the DNN 

predictive model. The rest 20% (extracted from 320 simulations) are used as testing 

data. Additionally, to ensure that all the features are of the same scale, Min-max 

normalization is used to rescale the features in the training and testing sets 

independently. 

 

4.2.2. Configuration of the DNN predictive model for crack path 

In the previous ML model, a feedforward two-layer network is constructed for 

predicting the cracking particles in the RVE. It is found that the performance of the 

network is not very good. More hidden layers, as well as more neurons in the network, 

are considered. A DNN classification model with back-propagation is constructed (see 

Figure 4-13). The 53 pairs of 2D feature vectors discussed in the last sub-section are in 

the input layer and are to be trained to predict cracking as multi-outputs in the output 

layer. The network shown in Figure 4-13 is found to have a better performance after 

doing a set of trials using the models with different numbers of hidden layers and 

different numbers of neurons. In the DNN model, the number of hidden layer is four. 

In each layer, there are 530 neurons. The activation function used from the input layer 

to the first hidden layer and between every two hidden layers is ‘ReLU’. The activation 

function used between the last hidden layer and the output is ‘Sigmoid’. The generated 

DNN classification model is implemented by using Keras functions in the TensorFlow 

package through Python [143, 144]. 
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Figure 4-13: A multi-layer DNN model for the predictions of crack path 

 

4.2.3. Results of the improved predictive model for predicting cracks 

To demonstrate the accuracy of the DNN model, we divide the composite material 

into a number of subareas and study the likelihood of crack occurrence within each of 

the subareas. Both the validated DEM model and the trained DNN model are used to 

predict the occurrence of cracks in 1600 samples with the same material composition 

but randomly distributed fibres. For each of the subareas, the number of times it is 

predicted to crack by both models is counted respectively. The respective total 

occurrence of cracking of each subarea is divided then by the total number of the 

samples to give the predicted probability of cracking of each of the subareas (locations) 

of the material for both models. The crack probabilities at each subarea obtained from 

the DEM model (denoted 𝑷𝒓𝒐𝒃𝐷𝐸𝑀_𝑐𝑟𝑎𝑐𝑘𝑖
) and DNN predictions (denoted 

𝑷𝒓𝒐𝒃𝐷𝑁𝑁_𝑐𝑟𝑎𝑐𝑘𝑖
) are therefore obtained by the following expressions: 

 

𝑷𝒓𝒐𝒃𝐷𝐸𝑀_𝑐𝑟𝑎𝑐𝑘𝑖

=
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑏𝑎𝑟𝑒𝑎 𝑖 ℎ𝑎𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 1 𝑏𝑦 𝐷𝐸𝑀 

1280
 

 

(4-13) 
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𝑷𝒓𝒐𝒃𝐷𝑁𝑁_𝑐𝑟𝑎𝑐𝑘𝑖

=
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑏𝑎𝑟𝑒𝑎 𝑖 ℎ𝑎𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 1 𝑏𝑦 𝐷𝑁𝑁 

320
 

 

 (4-14) 

where 𝑖 (= 1, 2, … , 49) denotes number of the subarea. 

Figure 4-14 compares the above-defined crack probabilities from the DEM results 

and the DNN predictions. The probabilities of cracking at different locations (subareas) 

obtained from the DNN predictions are close to those from the DEM model.  

 

Figure 4-14: The crack probabilities based on DEM model results and DNN 

prediction results. 

In addition, the density of cracking of the 1600 RVE-based DEM simulations is 

calculated and compared with the density of cracking obtained from the DNN 

predictions. The density of cracking is computed as the total number of cracked 

subareas of the RVE samples divided by the total number of subareas of the RVE 

samples, which describes the extent of cracking coverage in each RVE sample. The 

densities of cracking based on the 1600 DEM and DNN simulations are, respectively, 

0.3325 and 0.3288, which shows a very high consistency between the two results. It can 
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be concluded that the trained DNN model can satisfactorily predict the locations of 

cracking and the overall crack density of the material.  

Based on the ‘0’ and ‘1’ classifications, three representative DNN prediction results 

of cracking are shown in Figure 4-15, Figure 4-16 and Figure 4-17, respectively. Figure 

4-15(a) shows an RVE generated by DEM with random fibre distribution. The cracks, 

marked by A and B, are the initial cracks predicted by the DEM, both of which are 

located at the centre of the RVE. The damage in the RVE starts at the stress of 56 MPa 

and these initial cracks show an early stage of failure (at the stress of 61 MPa). It can 

be seen that the initial cracks appear at the locations where fibres are close to each other. 

This confirms that the locations of initial cracks are closely related to the overall and 

local properties of fibre distributions of the RVE. To be specific, it is usually deemed 

that these areas contain a high fibre and matrix stiffness ratio, which results in 

significant stress concentration [9]. As the tensile loading velocity of 5 mm/s is 

continuously applied, the initial cracks grow inside the RVE. Figure 4-15(b) shows the 

DEM simulation result of crack growth within the RVE when the stress is about 70% 

of the tensile strength. Figure 4-15(b), crack propagation in the matrix starts to appear.  

There are four short cracks in the matrix at the upper middle part of the RVE and one 

long crack through the matrix between five pairs of relatively close fibres, which cause 

the final failure of the RVE. The yellow areas in Figure 4-15(c) are the cracked subareas 

predicted by the DNN, which are compared with the DEM simulations in Figure 4-15(d). 

It can be found that almost all the cracked areas are predicted correctly by the trained 

DNN model. There are 3 mispredicted crack areas, as shown more clearly by the DNN 

outputs classifications in Figure 4-15(e-f). The two red ‘0’ represent that these two 

cracked subareas are not correctly predicted by the DNN. The red ‘1’ area has cracked 

in the DNN prediction, while has not according to the DEM simulation.  
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In Figure 4-16(a), the damage in the RVE starts at the stress of 38 MPa from the 

simulation and the initial cracks are generated at the stress of 42.5 MPa. Similar to the 

initial cracks of the RVE in Figure 4-15(a), the initial cracks of the second RVE also 

occur at the region where the inter-fibre distance is small. However, unlike the way of 

the long crack propagation in the RVE in Figure 4-15(b), the cracks in Figure 4-16(b) 

extend upward through the region where the fibres are located relatively sparsely. In 

Figure 4-16(c), the cracks predicted by the DNN model show a similar pattern. The 

comparison in Figure 4-16(d) demonstrates that the DNN has satisfactorily predicted 

crack propagation. Again, the output classifications of the DNN model are shown in 

Figure 4-16(e-f). Four areas are wrongly predicted as cracked. However, these four 

subareas are all close to the correctly predicted crack areas, which is reasonable because 

the DNN model considers the probability of the crack in the vicinity of an existing crack 

to be high.   

Figure 4-17(a) shows the third RVE with several isolated cracks at the early stage 

of failure (at the stress of 56.5 MPa) from the DEM simulation. Compared to the crack 

paths of the first two RVEs, the damage of the third one consists of several short and 

medium-length cracks, as shown in Figure 4-17(b). The short cracks occur between two 

adjacent fibres first and then propagate in the matrix. Then, some of the initial cracks 

connect with each other. From Figure 4-17(c-f), it can be observed that the accuracy of 

the crack prediction by the DNN is less satisfactory compared to that of the first and 

second RVEs. The purpose of selecting this RVE is to demonstrate a typical error of the 

DNN prediction. However, as shown in Figure 4-17(d), most of the cracks on the right-

hand side of the RVE are predicted correctly, which cause the ultimate failure of the 

RVE according to the DEM simulation. In addition, the subarea having one short crack, 

labelled by C in Figure 4-17(d), is not predicted as a crack area by the DNN. Instead, 



108 

 

three subareas, labelled by X in Figure 4-17(d), with a relatively dense fibre distribution 

are identified as cracked. Crack C is short and does not eventually propagate or merge 

with a longer one leading to the ultimate failure (see Figure 4-17(b) and (d)). Thus, it 

appears that when the current DNN model is used to predict short and isolated cracks, 

it may not have the same accuracy as it is used to predict growing cracks, as shown in 

the previous two RVEs. Nevertheless, it can be concluded that the DNN model can 

successfully predict most of the cracks and the major crack evolution with full 

consideration of fibre random distribution.  

 

Figure 4-15: (a) Initial cracks in the first RVE simulated by DEM model. (b) DEM 

simulated crack path. (c) DNN prediction of crack path. (d) Result combined with DEM 

simulated cracks and DNN predicted crack subareas. (e) Table of results of the DEM 

simulation. (f) Table of results of the DNN prediction. 
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Figure 4-16: (a) Initial cracks in the first RVE simulated by DEM model. (b) DEM 

simulated crack path. (c) DNN prediction of crack path. (d) Result combined with DEM 

simulated cracks and DNN predicted crack subareas. (e) Table of results of the DEM 

simulation. (f) Table of results of the DNN prediction. 

 

Figure 4-17: (a) Initial cracks in the first RVE simulated by DEM model. (b) DEM 

simulated crack path. (c) DNN prediction of crack path. (d) Result combined with DEM 

simulated cracks and DNN predicted crack subareas. (e) Table of results of the DEM 

simulation. (f) Table of results of the DNN prediction. 
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4.3 DNN predictive models for the initial cracks 

In order to obtain the position of initial cracks more efficiently, lastly, in the chapter, 

two DNN models are developed for predicting the crack initiation in the UD FRP lamina. 

The models will train a set of suitable and representative features obtained from the 

DEM simulations and then predict the first and second cracks in the RVE subject to the 

loading of transverse tension in order.  

 

4.3.1. Development of the DNN for the first crack 

4.3.1.1. Data generation and pre-processing 

The data set for predicting the first crack contains 500 RVE samples of UD FRP 

lamina with dimension 40 𝜇𝑚 ×  40 𝜇𝑚 consisting of 35% randomly distributed fibres 

with a uniform fibre radius of 3μm (see Figure 4-18). As shown in Figure 4-18, these 

RVEs with random fibre distribution are not generated based on the periodic condition. 

Based on the above setting of the RVE, the number of fibres is fixed as 20. It can make 

the number of features for each data point consistent. 

It is known that the contact bond will break if the contact force exceeds the contact 

strength in the DEM simulation. Thus, the idea of the deep learning model for predicting 

the initial crack is to regress the contact force of each contact in the RVE at the time 

step just before the first crack occurs so that the fracture of the contact bond can be 

determined from the regressed contact forces. As it is impossible to calculate the contact 

force at the exact time of cracking, the contact bond force at the time step immediately 

before the initial cracking is taken approximately as the critical force of cracking. In 

this way, the contact bond with the highest contact force is regarded as the initial crack 

in the RVE. 
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Figure 4-18: RVE generated for predicting the crack initiation. 

There are around 41000 contact bonds in each RVE sample, including fibre-fibre 

contacts, matrix-matrix contacts, and fibre-matrix interface contacts. The contact force 

of each contact bond at the time just before the initial crack of all the 500 RVE samples 

can be recorded by the DEM software ’PFC 2D’. Extracting all matrix-matrix contacts 

is done first, as it is assumed that there is no damage in the fibre and fibre-matrix 

interface during the DEM simulation. Then based on the hexagonally packed particles 

in the RVE and the transverse tension in the perpendicular direction applied on the 

lamina, the initial crack occurs only in the 0-degree contact bond. The DEM simulation 

data includes each RVE sample consisting of the positions of approximately 8500 

matrix-matrix contact bonds with 0 degree. In the regression model, every contact bond 

is regarded as a data point. As a result, the deep learning model will train and test 

4250000 data which are the 42500000 (8500×500) matrix-matrix contact bonds of the 

500 RVEs.  

The features for the regression problem are the positions of the matrix contact bonds 

(denoted (𝑝𝑜𝑠_𝑦c, 𝑝𝑜𝑠_𝑦c)), the distances between each contact bond to the 20 fibres 
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(denoted 𝑑𝑐𝑓𝑖
) and their corresponding angles (denoted 𝜃𝑐𝑓𝑖

), which are computed by 

Python codes as follows:  

 

𝑑𝑐𝑓𝑖
=  √(𝑝𝑜𝑠_𝑥c − 𝑝𝑜𝑠_𝑥𝑓𝑖

)2 + (𝑝𝑜𝑠_𝑦c − 𝑝𝑜𝑠_𝑦𝑓𝑖
)2      

(i = 1, 2, …, 20) 

(4-15) 

 𝜃𝑐𝑓𝑖
= 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑝𝑜𝑠_𝑦𝑓𝑖

𝑑𝑐𝑓𝑖

) 
   

(4-16) 

where 𝑝𝑜𝑠_𝑥c , 𝑝𝑜𝑠_𝑦c  and 𝑝𝑜𝑠_𝑥𝑓𝑖
, 𝑝𝑜𝑠_𝑦𝑓𝑖

 are the  𝑥 − and 𝑦 − coordinates of the 

centre of matrix-matrix contact bond with 0 degree and fibre i. Taking a contact bond 

of the matrix as a data point, the position of the contact bond of the matrix gives the 

most direct information on the distribution of the contact bond of the matrix. The 

distance and the corresponding angle between the matrix bond and each of the fibres 

represent the spatial position of the matrix bond relative to the randomly distributed 

fibre in the RVE. The distances from the matrix bond to the 20 fibres are set in order of 

the nearest to the farthest, which can obtain the distribution of fibres around this matrix 

bond. In this prediction problem, the number of fibres in each RVE is identical to 20, 

which makes the number of features for each data point the same as 21. Therefore, for 

one contact bond in the RVE, there are 21 pairs of 2D feature vectors, including the 

positions of the matrix contact bond, 20 pairs of distance and the angle to the fibre.  

For the data set partition, 80% of the data (extracted from 400 DEM model 

simulations) are used as training data for the DNN predictive model. The rest 20% of 

the data (extracted from 100 simulations) are used as testing data. Finally, to ensure that 

all the features are of the same scale, Min-max normalization is used to rescale the 

features in the training and testing sets independently. 
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4.3.1.2. Configuration of the DNN model for the initial crack 

After the data pre-processing, the DNN regression model with back-propagation is 

constructed, as shown in Figure 4-19. In the input layer, there are 21 pairs of 2D features 

including the position of the contact bond of the matrix, the distances between the 

matrix contact bond to the fibre and its corresponding angle. The contact force of the 

contact bond is the single output in the output layer. There are four hidden layers in the 

DNN model with the same neuron number of 420 in each layer. The activation function 

used from the input layer to the first hidden layer and between every two hidden layers 

is ‘ReLU’. The activation function used between the last hidden layer and the output is 

‘Sigmoid’. The generated DNN classification model is also implemented using Keras 

functions in the TensorFlow package through Python. 

 

Figure 4-19: A multi-layer DNN model for the prediction of contact force. 

 

4.3.2. Results of the DNN model for the initial crack 

The DNN model for predicting the initial crack in RVEs trains the amount of data 

extracted from 400 DEM simulations and tests the data from 100 DEM simulations. 

There are two levels of evaluation criterions for the analysis of the prediction 
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performance. The accuracy of the model for predicting the initial crack is shown in 

Table 4-1. The first criterion is, if the predicted initial crack (by DNN) is close to the 

one determined by the DEM model within a distance smaller or equal to the diameter 

of the ball (3.64e-4mm), the predicted crack will be regarded as an accurate result. 

According to this criterion, the initial cracks in the 65 RVE samples can be predicted 

successfully, thus, the accuracy is 65% (65/100). It means that the DNN model can find 

out the highest contact force of the contact bond among 8500 contact bonds successfully. 

Two examples of this criterion are shown in Figure 4-20. Figure 4-20(a) compares 

the DNN and DEM results of the contact forces. The black triangle at the bottom-left in 

Figure 4-20(a) is the predicted highest contact force, which is -32.73N. The DEM 

simulated contact force of this contact bond is also the highest and is -36.75N. The 

position of this contact bond in the RVE is plotted as the black triangle in Figure 4-20(b), 

which shows that the DNN predicted initial crack is at exactly the same position as that 

of the DEM simulated initial crack. It is found that the initial crack occurs in the place 

between two very closed fibres. The input features trained into the DNN model are 

designed to tell the model that an initial crack often occurs in the matrix where the fibres 

are very close to each other. The DNN model can predict this initial crack accurately, 

which reflects that the DNN model captures the relation between input features and the 

output well. The second example of this scenario is shown in Figure 4-20(c-d). The 

black triangle represents the highest contact force of the contact bond simulated by the 

DEM model, as shown in Figure 4-20(c), which is --36.56N. The DNN model predicts 

the contact force of this contact bond to be the second highest one, with a value of -

32.67N. The position of this DEM simulated cracking bond is plotted as the black 

triangle in Figure 4-20(d). The red triangle plotted in Figure 4-20(c) is the highest 

contact force of the contact bond predicted by the DNN model, which is -33.71N. The 
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position of this contact bond is marked as a red triangle shown in Figure 4-20(d), right 

around the DEM simulated initial crack.  

The DNN prediction can be treated as acceptable if the initial crack simulated by the 

DEM model is among the first five cracks predicted by the DNN model ordered by their 

contact forces. This is the second criterion. Based on the 2nd criterion, the initial cracks 

in the 92 RVEs can be successfully predicted, thus, the accuracy of the DNN prediction 

increases to 92 %. Figure 4-21 shows two examples of this criterion. For instance 

(Figure 4-21(a-b)), the initial crack predicted by the DEM model is plotted by a black 

triangle in the RVE. The position (marked as a red triangle) with the third-highest 

contact force from the DNN prediction is right next to the DEM simulated one. Thus, 

by the 2nd criterion, it is acceptable as it is among the first five possible cracks. Figure 

4-21(c-d) shows another example of the second criterion. The initial crack predicted by 

the DEM model is marked as the black triangle in Figure 4-21(d), which is the position 

with the third-highest contact force predicted by DNN. The first crack predicted by the 

DNN model is plotted as a red triangle in the RVE (see Figure 4-21(d)). In this example, 

the DNN model regards the initial crack bond as an initial crack bond with the third 

highest risk.  

Table 4-1: DNN prediction results for the initial crack. 

Criterion Result Accuracy 

Criterion 1: The DNN predicted crack is around the 

DEM simulated initial crack. 

65 65% 

Criterion 2: The contact bond around the DEM 

simulated initial crack is in the list of DNN-predicted 

cracks with the top five highest risks. 

92 92% 

 



116 

 

 

Figure 4-20: Two examples of Criterion 1. (a)(c) DNN regression results of contact 

forces. (b)(d) The initial crack in the RVE. 
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Figure 4-21: Two examples of Criterion 2. (a)(c) DNN regression results of contact 

forces. (b)(d) The initial crack in the RVE. 

 

4.3.3. Development of the DNN for the second crack 

4.3.3.1. Data generation and feature selection 

After predicting the initial crack in the RVE, the next step is to predict the second 

crack based on the prediction results of the initial crack. The data of DEM simulations 

used in the predictive model for the second crack does not need to be regenerated. 

However, more features are added to the predictive model. The new considered features 

are related to the initial crack. If a bond breaks, its contact force becomes zero. In the 
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DEM simulation, the contact force of the bond next to the broken bond will be affected. 

Thus, the information about the initial crack will play an essential role in predicting the 

second crack. As shown in Figure 4-22, the distance from the initial crack to the matrix 

contact bond and its corresponding angle is added to reflect the information of the initial 

crack.  

Therefore, the features of each matrix bond include the positions of matrix contact 

bonds (denoted (𝑝𝑜𝑠_𝑥c, 𝑝𝑜𝑠_𝑦c)), the distances between each contact bond to the 20 

fibres (denoted 𝑑𝑐𝑓𝑖
)  and their corresponding angles (denoted 𝜃𝑐𝑓𝑖

), the distances 

between each contact bond to the initial crack (denoted 𝑑𝑐𝐶𝑟𝑎1
) and its corresponding 

angles (denoted 𝜃𝑐𝐶𝑟𝑎1
). These are calculated as: 

 

𝑑𝒄𝑓𝑖
=  √(𝑝𝑜𝑠_𝑥c − 𝑝𝑜𝑠_𝑥𝑓𝑖

)2 + (𝑝𝑜𝑠_𝑥c − 𝑝𝑜𝑠_𝑦𝑓𝑖
)2   

(i = 1, 2, …, 20) 

(4-17) 

 𝜃𝑐𝑓𝑖
= 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑝𝑜𝑠_𝑦𝑓𝑖

𝑑𝑐𝑓𝑖

) (4-18) 

 𝑑𝑐𝐶𝑟𝑎1
=  √(𝑝𝑜𝑠_𝑥c − 𝑝𝑜𝑠_𝑥𝐶𝑟𝑎1

)2 + (𝑝𝑜𝑠_𝑦c − 𝑝𝑜𝑠_𝑦𝐶𝑟𝑎1
)2 (4-19) 

 𝜃𝑐𝐶𝑟𝑎1
= 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑝𝑜𝑠_𝑦𝐶𝑟𝑎1

𝑑𝑐𝐶𝑟𝑎1

) (4-20) 

where 𝑝𝑜𝑠_𝑥c , 𝑝𝑜𝑠_𝑦c ,  𝑝𝑜𝑠_𝑥𝑓𝑖
, 𝑝𝑜𝑠_𝑦𝑓𝑖

, (where i = 1, 2, …, 20) and 𝑝𝑜𝑠_𝑥𝐶𝑟𝑎1
, 

𝑝𝑜𝑠_𝑦𝐶𝑟𝑎1
 are the  𝑥 − and 𝑦 − coordinates of the centres of the matrix-matrix contact 

bond with 0 degree, fibre i and the initial crack. As mentioned above, there are 22 pairs 

of 2D input features in the predictive model. 
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Figure 4-22: New features related to the initial crack. 

 

4.3.3.2. The division of the training set and testing set 

As a follow-up to the initial crack prediction, the training data used in the training 

process of the predictive model for the initial crack (80% of the data: 400 simulations) 

are also used as training data in the DNN predictive model for the second crack. The 

positions of initial cracks in the 400 RVEs are extracted in advance to calculate the 

features related to the initial crack.  

The testing process is slightly more complicated. In the prediction for the initial 

crack, 20% of the data (extracted from 100 simulations) are used as testing. Two 

evaluation criterions are considered for the prediction analysis of the initial crack. One 

is that the DNN predicted crack is around the DEM simulated initial crack. The result 

is that 65 of the initial cracks in RVEs are accurately predicted. The other one is that 

the contact bond around the DEM simulated initial crack is in the list of DNN-predicted 
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cracks with the top five highest risks. According to this criterion, the initial cracks in 92 

RVEs (including the 65 based on the first criterion) are predicted correctly. The rest 

wrongly predicted 8 RVEs in the 100 RVEs will not be used as the testing data for 

predicting the second crack. 

Having the prediction results of initial cracks in the 92 RVEs, the detailed steps for 

computing the features in the testing set are as follows: 

• Finding the top five largest contact forces of contact bonds in the predicted 

results  

• Finding the contact bonds corresponding to these five forces and 

determining their positions 

• Calculating the distances 𝑑𝑐𝐶𝑟𝑎1
 between each contact bond to the predicted 

contact bonds and its corresponding angles 𝜃𝑐𝐶𝑟𝑎1
 

All these steps are implemented in Python. As a result, there are five sets of 22 pairs of 

2D input features in each of these 92 RVEs. The 92 RVEs will be tested five times to 

look for their second cracks correctly. In addition, all the data, including the training 

data and the five different sets of testing data, are normalized using Min-max 

normalization. 

 

4.3.3.3. Configuration of the DNN model for the second crack 

The configuration of the DNN regression model for predicting the second crack is 

quite similar to the one used for the first crack. The difference is in the input layer, i.e., 

there are 22 pairs of 2D features, including the position of the contact bond of the matrix, 

the distances between the matrix contact bond to the fibre and its corresponding angle, 

and the distances between each contact bond to the initial crack and its corresponding 
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angles. The contact force of the contact bond is the single output in the output layer. 

There are four hidden layers in the DNN model with the same neuron number of 660 in 

each layer. The activation functions in the DNN model for predicting the second crack 

are the same as those of the first crack.  

 

4.3.4. Results of the DNN model for the second crack 

The DNN model for predicting the second crack in RVEs with random fibre 

distribution trains the amount of data extracted from 400 DEM simulations. The model 

then tests the data from 92 of 100 DEM simulations five times with five different sets 

of input features. The predictive model aims to determine the second crack once a 

position of the initial crack is given. The evaluation criterion in this model is whether 

the DNN-predicted crack is around the DEM simulated second crack. According to this 

criterion, the second cracks in 65 RVEs are predicted successfully by the DNN model. 

Thus, the accuracy is 92% ∗ 65% ≈ 60%.  

Four examples are shown for the discussion of prediction results of the second crack. 

These four RVEs of the examples were used for analysing the prediction results of the 

initial crack in Section 4.3.2. Recall the two evaluation criterions for analysis of the 

prediction performance, these four examples fall into two categories. The first two 

examples present that the DNN predicted initial crack is around the DEM simulated 

initial crack. Then the second cracks in these two RVEs are predicted using the features 

related to the predicted initial crack. The rest two examples present that the contact bond 

around the DEM simulated initial crack is in the lists of DNN-predicted cracks with the 

third highest risk. Thus, the second cracks in these two RVEs are predicted using the 

features related to the predicted initial crack with the third-highest contact force. 
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The examples in Figure 4-23 and Figure 4-24 are in the first category. Figure 4-23(a) 

shows the comparison of the DNN and DEM results of the contact forces. The black 

triangle in Figure 4-23(a) is the highest contact force obtained by the DEM, which is -

34.41N. The position of this contact bond in the RVE is plotted as the black triangle 

(position M) in Figure 4-23(b). The red triangle in Figure 4-23(a) is the DNN predicted 

highest contact force, which is -34.41N. The position of this contact bond in the RVE 

is plotted as the red triangle (position M) in Figure 4-23(b). It is seen that the DNN 

predicted second crack is right next to the DEM simulated the second crack. In addition, 

the yellow triangle at position M in Figure 4-23(b) is the initial crack. It is seen that the 

second crack spreads around the initial crack, which reflects that the information on the 

initial crack is very important for the DNN model to predict the position of the second 

crack. The DNN model can predict this second crack successfully, which shows that 

the DNN model can learn the relation between the input features and the output well. 

Figure 4-23(c) is the DEM simulated crack path of the RVE under a load of transverse 

tension at failure. It is also found that the DNN predicted second crack is in the whole 

crack path, as shown in Figure 4-23(c).  

The second example is presented in Figure 4-24. The black triangle at the bottom-

left in Figure 4-24(a) is the predicted highest contact force, which is -36.12N. The DEM 

simulated contact force of this contact bond is also the highest and is -34.03N. The 

position of this contact bond in the RVE is plotted as the black triangle (at position N) 

in Figure 4-24(b), which shows that the DNN predicted second crack is at exactly the 

same position as that of the DEM simulated initial crack. This second crack is next to 

the initial crack (see the yellow triangle at position N). In Figure 4-24(c), the cracks will 

propagate from the position of the first several cracks up and down for forming the 

crack path at the failure.  
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Figure 4-23: (a) DNN regression results of contact forces. (b) The second crack in the 

RVE. (c) The DEM simulated crack path. 
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Figure 4-24: (a) DNN regression results of contact forces. (b) The second crack in the 

RVE. (c) The DEM simulated crack path. 

The examples in Figure 4-25 and Figure 4-26 are in the second category. The DNN 

predicted initial cracks are plotted as the yellow triangle in Figure 4-25(b) and Figure 

4-26(b). These two initial cracks are in the list of DNN predicted cracks with the third 

highest risk. The black triangle in Figure 4-25(a) represents the highest contact force of 

the contact bond simulated by the DEM model. This contact bond is marked as a black 

triangle at position X in Figure 4-25(a). The red triangle in Figure 4-25(a) represents the 

highest contact force predicted by the DNN model. The contact bond with this contact 

force is plotted as the red triangle at position X in Figure 4-25(b), which is very close to 

the DEM simulated second crack. In addition, these three cracks at position X are 

adjacent to each other and are all on the crack path (see Figure 4-25(c)).  
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The second example in this category is shown in Figure 4-26. The DNN predicted 

second crack is marked as the red triangle (at position Y) in Figure 4-26(b), of which 

the contact force is shown as the red triangle in Figure 4-26(a). The DNN predicted 

second crack (red triangle at position Y in Figure 4-26(b)) is right around the DEM 

simulated one (black triangle at position Y in Figure 4-26(b)). It is found that the DNN 

predicted initial, and second cracks are in the whole crack path (see position Y in Figure 

4-26(c)). It can be concluded that the proposed DNN predictive model can accurately 

and effectively predict the positions of the first two cracks.  

 

Figure 4-25: (a) DNN regression results of contact forces. (b) The second crack in the 

RVE. (c) The DEM simulated crack path. 
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Figure 4-26: (a) DNN regression results of contact forces. (b) The second crack in the 

RVE. (c) The DEM simulated crack path. 

 

4.4 Summary 

The DEM model shows its significant advance in providing accurate and reliable 

simulation results that can be used in data-driven predictive models. Thus, two 

relatively simple and easily used ML models, the Gaussian Naïve Bayes classifier and 

Artificial Neural Networks (ANNs) are first developed for predicting the crack path of 

the UD FRP lamina. A set of 500 reduced-size RVE samples is selected and simulated 

by the DEM model. The training accuracy Gaussian Naïve Bayes classifier is good, 

however, the prediction results by the trained Gaussian Naïve Bayes classifier show not 

very satisfactory accuracy. This is usually caused by the problem of overfitting. Then, 



127 

 

a 3-fold cross-validation is employed in the developed feedforward ANN. Three 

different ratios of training data (17.5%, 26%, and 40 %) are selected using 

undersampling and trained into the network. It can be found that the accuracy of the 

training process increases by enlarging the number of training data during the 

undersampling process. But the testing result is still not very satisfactory. Dropout is 

then used in the network to improve the performance, which gives a better prediction 

result than the original network.  

Then a multi-layer DNN model with back-propagation is developed based on the 

results of 1600 DEM simulations for the predictions of the crack areas of an FRP 

composite lamina. After training the DNN model, most of the initial cracks and the 

overall trends of cracking paths can be predicted successfully. It can also be concluded 

that the DNN model is capable of predicting both occurrences of local cracks areas and 

cracking density of the RVE sample with full consideration of random fibre distribution.  

The DNN prediction for the crack initiation in the UD FRP lamina is also conducted 

in this chapter. For the prediction of the first crack, the input features are determined by 

the fibre distribution for reflecting the randomness of fibres in each RVE. The output is 

the contact force of the contact bond. The contact bond with the largest regressed 

contact force is regarded as the DNN-predicted initial crack. Two criterions are 

considered for analysing the prediction performance. Based on criterion I, the 

accuracies are 65%. Based on criterion 2, the accuracy is 92%. Then, a DNN regression 

model that learns a different set of features is built to predict the second crack. New 

features related to the position of the initial crack in the RVEs are added. The criterion 

for evaluating the prediction performance is whether the DNN predicted crack is around 

the DEM simulated second crack. According to this criterion, the second cracks in 65 

RVEs are predicted successfully by the DNN model, of which the accuracy is 92% ∗
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65% ≈ 60% . The prediction accuracy is not very high, which indicates that the 

problem of predicting the second crack is a bit complex based on the current input 

features.  
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Chapter 5 

5 Effects of defects on the transverse mechanical response 

of unidirectional fibre-reinforced polymers: DEM simulation 

and deep learning prediction 

This chapter presents a 2D RVE-based DEM model for analysing the effects of 

defects on the transverse mechanical response of unidirectional (UD) fibre-reinforced 

polymer (FRP) laminae. The crack initiation and propagation in defective RVEs with 

different fibre distributions are analysed and compared. For further exploring the 

relation between initial cracks and the distribution of defects, deep learning models are 

developed for a fast determination of crack initiation and instantaneous critical load of 

the RVEs based on a data set generated by DEM simulations. 

 

5.1 Configuration of the DEM model for the defective UD FRP 

laminae 

5.1.1. RVE generation 

Defects formation in FRP would occur due to negligence during the manufacturing 

process of FRP [147], and it can strongly affect the mechanical properties of FRP [44, 

46, 148]. Defects may be arbitrarily shaped, which causes a relatively expensive cost 

for the generation of defects. Experimental results [149] showed that the defects in FRP 

composites were elongated and distributed along the fibre direction, which enables 

defects to be generated in 2D samples. Figure 5-1(a) is the cross-section of a UD FRP 



130 

 

lamina. It is shown that defects within the matrix and along the fibre-matrix interface 

usually exist. The defects in both the matrix and the fibre-matrix interfaces are therefore 

considered in this study.  

The defective UD FRP composite laminae with three different types of fibre 

distributions are analysed, which are the random fibre distribution and two different 

patterns of periodic fibre distributions. Firstly, the generation of RVEs of defective UD 

FRP laminae is carried out. The first two types of distributions of fibres in RVEs of 

defective UD FRP laminae are two periodic fibre distributions, which are the laminae 

with the rectangular arrangement of fibres (type I) and the hexagonal arrangement fibres 

(type II), respectively. A 60 𝜇𝑚 ×  60 𝜇𝑚  type I RVE of the cross-section of the 

lamina (as shown in Figure 5-1(b)) is firstly generated by the DEM software ‘PFC2D’. 

The generated RVE are discretized with particles by the hexagonal packing arrangement 

and contains 49 randomly distributed circular fibres of radius  𝑅𝑓 = 3.276 𝜇𝑚, of which 

fibre volume fraction is 45.9%. The target defect volume fraction of the RVE is 1.2%. 

The ratio of the matrix and interfacial defects is set to be 1:1 (i.e., the volume fractions 

of the matrix and interfacial defects are identical at 0.6%). Thus, 25 randomly 

distributed circular porous defects of radius 𝑅𝑚_𝑑  = 0.495 𝜇𝑚  in the matrix are 

generated in the RVE.  

The generation of debonding defects along the fibre-matrix interface is implemented 

by combining to use the function of ‘random. sample’ in Python and the DEM software 

‘PFC 2D 6.0’. To ensure the interfacial defect volume fraction and the randomness of 

the distribution of interfacial defects, 8 of 49 fibres in the RVE are randomly chosen 

using the function of ‘random. sample’ in Python for containing the interfacial defects. 

Then the locations of defects along fibre-matrix interfaces are determined by the DEM 
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software ‘PFC 2D 6.0’. Totally 28 defects along the eight fibre-matrix interfaces with 

equal lengths are generated in the type I RVE.  

For the type II RVE, the fibre and the defect volume fractions are approximately 44% 

and 1.2%, respectively. The volume fractions of the matrix defect and the interfacial 

defect are set identically as 0.6%. As shown in Figure 5-1(c), there are 42 fibres with a 

uniform fibre radius of 3.465μm and 20 randomly distributed matrix defects of a radius 

of 0.527μm. There are also 28 defects along eight fibre-matrix interfaces with equal 

lengths in the type II RVE.   

Besides the RVEs with periodically distributed fibres, the RVE of the defective 

lamina with random fibre distribution (type III) is generated lastly. The dimension of 

this type of RVE is also 60 𝜇𝑚 ×  60 𝜇𝑚. The radii of the fibre and the matrix defect 

are 3.32 𝜇𝑚 and 0.37 𝜇𝑚, respectively. An example of type III RVE, as shown in 

Figure 5-1(d), contains 64 fibres with a uniform fibre radius of 3.32 𝜇𝑚  and 39 

randomly distributed matrix defects of radius 0.37 𝜇𝑚. The number of the interfacial 

defects is 28. These are also along eight fibre-matrix interfaces with equal lengths.  The 

fibre and defect volume fractions of this type III RVE are approximately 60% and 1.2%, 

respectively. The above geometry configurations of RVEs mentioned above are in the 

acceptable and reasonable ranges for “good materials properties”  [45, 46].  
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Figure 5-1: (a) An example SEM image of UD FRP composite with defects, adopted 

from [150]. (b) A DEM approached RVE generation and its discretization (type I: 

rectangular arrangement of fibres). (c) RVE with a hexagonal arrangement of fibres 

(type II). (d) RVE with randomly distributed fibres (type III). 
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5.1.2. Contact models and the calibrations 

In the RVEs shown in Figure 5-1(b)-(d), the areas coloured by the red particles are 

the matrix defects, and the areas coloured by the yellow particles are the defects along 

the fibre-matrix interface. In the DEM simulations, the contact bonds between particles 

within the areas of matrix defects and interfacial defects are ignored by deleting this 

type of contact bonds. As a result, three types of contact bonds remain the contact bond 

between two fibre particles, the contact bond between two matrix particles and the 

contact bond between a fibre particle and a matrix particle. In the DEM model for 

simulating the mechanical response, particles of fibres and particles of the matrix are 

respectively bonded at contacts by parallel bonds. The behaviour of parallel bonds is 

described using the parallel bond model. Contacts of fibre and matrix interface are 

represented by soft bonds and modelled by the soft-bond model. 

Similar to the calibrations of the macro and micro parameters in the study for the 

mechanical response of the defect-free UD FRP lamina, the micromechanical properties 

that characterize the DEM model are also calibrated by the macroscopic properties of 

each composite constituent obtained from experimental tests. The material properties 

of fibre, matrix and fibre/matrix interface for the defective FRP composite lamina are 

also found in Table 3-1. It is assumed that both the fibres and the matrix are isotropic 

in the DEM model. The contact stiffness used in the DEM model can be expressed 

explicitly as functions of Young’s modulus and Poisson’s ratio of fibres and matrix 

[138]. The relationship between the macro strength of the matrix and the micro strength 

of the matrix bonds was linear, and the linear coefficient was also used as 1.7 [139], 

which results in the micro-contact tensile strength of the matrix bond is therefore 105 

MPa. The micro-contact tensile strength of the fibre bond is set as a very large value as 

it is assumed that there is no fibre damage under the loading of transverse tension. 
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Additionally, the fibre-matrix interface strength used in the DEM model is also obtained 

using the Mohr-Coulomb criterion. The fibre-matrix interface strength for studying the 

effect of defects in the lamina is taken as the double values of the cohesion yield stress, 

which gives a fixed normal interface strength of  78.2 𝑀𝑃𝑎. The 2D RVE-based DEM 

model is eventually developed.  

 

5.2 DEM model simulation 

5.2.1. DEM Model validation 

A constant tensile velocity of 5 mm/s is applied simultaneously on the particles 

located at both the left and right boundaries of the DEM model to study the transverse 

mechanical behaviour of the defective UD FRP lamina. An RVE of UD FRP lamina 

with the same 60% fibre volume fraction and an almost identical fibre distribution to 

the experimental sample see Figure 5-2(a)) is simulated using the DEM. Figure 5-2 (b) 

shows that the simulated cracks have a good agreement with the crack patterns 

measured by the in-suit microscopic test (see Figure 5-2(a)). It can be concluded that 

the DEM model can provide accurate and reliable simulation results for studying the 

fracture process of defective UD FRP laminae. 
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Figure 5-2: Crack path of defective UD FRP laminae under transverse tension. 

(a)Experimental result [151]. (b)DEM simulation result. 

 

5.2.2. Effect of the presence of defects in matrix and interface 

The effect of the presence of defects on the mechanical response for the three types 

of RVEs under transverse tension is studied. The experimental results of transverse 

cracks in the two RVEs with periodic fibre distributions are shown in Figure 5-3. Firstly, 

it is shown that the presence of matrix and interfacial defects in the Type I RVE affects 

the stress-strain curves (see Figure 5-4(e)). The maximum stress of the Type I RVE is 

52.03MPa at around 0.544% strain, which is 20.7MPa lower than that (72.75MPa) of 

the RVE without defects at around 0.731% strain. The simulated crack initiation and 

propagation of the RVE are shown in Figure 5-4(a-d). The presence of the defects 

induces stress concentrations, which leads to crack initiation. As shown in positions X 

and Y in Figure 5-4(a), the cracks initiate around the two defects in the fibre/matrix 

interfaces at the middle of the RVE, where there are relatively dense matrix defects and 

defects. Subsequently, several cracks propagate through the matrix (see Figure 5-4(b)), 

of which stress reaches the maximum, i.e., 52.914MPa (point B in Figure 5-4(e)). After 

that, the cracks continue to grow up and down through the matrix and interfacial defects 
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(Figure 5-4(c)). The corresponding stress and strain are approximately 41.728MPa and 

0.608% (point C in Figure 5-4(c)), respectively. In Figure 5-4(d), long cracks at the 

failure (point D) are connected among matrix and interfacial defects. Due to the 

presence of the defects in the matrix and along the fibre-matrix interface, the DEM 

simulated crack path in type I defective RVE at failure (see Figure 5-4(d)) is slightly 

different compared to the experimental one (see Figure 5-3(a)). The experimental result 

shows that cracks propagate through the fibres in the middle of the lamina, while the 

crack propagation in the defective RVE obtained from the DEM model is altered and 

influenced by interfacial defects and matrix defects. In addition, the stiffness is slightly 

affected by the defects. The stiffness of the defective RVE is smaller than that of the 

defect-free RVE. It can be also seen that the presence of defects causes the ultimate 

failure at a lower overall strain compared with the RVE without any defect (see Figure 

5-4(e)).  

 

Figure 5-3: Experimental tests of cracks in (a) type I RVE and (b) type II RVE. [152] 
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Figure 5-4: The mechanical behaviour of a type I RVE with 𝑉𝑓 = 45% and 𝑉𝑑 = 1.2%,  

𝑅𝑚_𝑑 = 0.1 𝑅𝑓 under transverse tension. (a-d)Cracks at the strains of 0.499%, 0.536%, 

0.608% and 0.633%. (e)Stress-strain curve. 

Similarly, the damage progression and the stress-strain curve of the Type II RVE 

are also obtained and analysed using the DEM model. In Figure 5-5(d) and Figure 5-3(b), 

it is seen that the presence of the defects in the matrix and fibre-matrix interface affects 

the trajectory of crack development with the comparison to the crack path in a lamina 

obtained from the experimental test. In detail, the initial cracks occur around the two 

fibres with interfacial defects (see positions X and Y in Figure 5-5(a)). Then the cracks 

propagate and an additional short crack develops from one of the interfacial defects in 

the middle of the RVE when the stress reaches the maximum stress of 49.408MPa (point 

B in Figure 5-5(e). This short crack grows in the matrix between two horizontally 

neighbouring fibres at position H in Figure 5-5(b), which shows a good agreement with 

the experimental observation of the crack path in the lamina with the hexagonal fibre 

distribution (see position G in Figure 5-3(b)). With the increase of loading, cracks 
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generated from the matrix and interfacial defects coalesce with an ultimate strain of 

0.744%. Compared to the crack path of the Type I RVE, the crack path of the Type II 

RVE is slightly longer with a larger strain, which suggests that crack propagation of the 

Type II RVE requires greater fracture energy to reach the final failure. 

 

Figure 5-5: The mechanical behaviour of a type II RVE with 𝑉𝑓 = 45% and 𝑉𝑑 = 1.2%, 

𝑅𝑚_𝑑 = 0.1𝑅𝑓 under transverse tension. (a-d)Cracks at the strains of 0.529%, 0.596%, 

0.64% and 0.744%. (e)Stress-strain curves. 

The effect of the presence of matrix and interfacial defects in the Type III RVE on 

the mechanical response is shown in Figure 5-6. The cracking in this RVE initiates from 

the three interfacial defects on the right of the RVE, as shown in Figure 5-6(a) at the 

positions X, Y and Z. The corresponding stress and strain of the RVE are approximately 

45MPa and 0.31% (point A in Figure 5-6(e)), respectively. Several cracks propagate 

through the matrix (see Figure 5-6(b)) when the stress reaches the maximum stress 

(point B in Figure 5-6(e)). After that, the cracks are connected (Figure 5-6(c)-(d)) across 

the defects, forming the final crack path at failure (Point D). In addition, the Type III 
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RVE has a maximum stress of 50.6MPa at around 0.379% strain, which is 8.9MPa 

smaller than that (59.5MPa) of the RVEs with a random fibre distribution but without 

defects. The presence of defects in this RVE also causes earlier ultimate failure (see 

Figure 5-6(f)).  

 

Figure 5-6: Effect of the presence of defects on the mechanical behaviour under 

transverse tension of an RVE with 𝑉𝑓 = 45% and 𝑉𝑑 = 1.2%, 𝑅𝑚_𝑑 = 0.1𝑅𝑓. (a)Crack 

path of a typical RVE without defects. (b-e)Cracks of the RVE with defects at the strain 

of 0.312%, 0.378%,0.401%, and 0.435%. (f)Stress-strain curves. 

 

5.2.3. The effect of the size of defects distributed in the matrix 

The effect of the size of defects distributed in the matrix on the behaviour of the 

stress-strain curve and crack path at the failure point are illustrated in Figure 5-7 and 

Figure 5-8. In Figure 5-7, the RVEs contain the same fibre distribution with fibre 
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volume fraction 𝑉𝑓 = 60% and defect volume fraction 𝑉𝑑 = 1.2%, but different sizes 

of porous defects in matrix, 𝑅𝑚_𝑑 =  0.1𝑅𝑓 , 0.15𝑅𝑓 , 0.2𝑅𝑓 and 0.25𝑅𝑓. The distribution 

of fibre-matrix interfacial defects in these four RVEs is not changed. It can be 

implemented in the DEM software ‘PFC 2D’. Detailly, the ‘PFC 2D’ can generate 

matrix defects with different sizes while maintaining the target volume fraction of 60% 

and the distribution of interfacial defects. The trends of the stress-strain curves of the 

four RVEs are similar, and all their strengths are approximately 50.5𝑀𝑃𝑎, which shows 

that the tensile strength is not affected by the size of matrix defects. However, the 

damage paths of all cases at final failure are relatively different, and it is found that the 

damage path is sensitive to the distribution and size of matrix defects. The cracks always 

occur from the interfacial defects and propagate through the matrix defects. With the 

increase of the radii of defects, cracks merge among matrix defects more frequently (see 

Figure 5-7(c-d)), which indicates that large matrix defects affect more on the crack paths. 

Moreover, it is found that the ultimate strain at failure increases as the radius of the 

matrix defect increases. The RVE with the largest radius of matrix defect 

(𝑅𝑚_𝑑 =  0.25𝑅𝑓) has the largest ultimate strain.  
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Figure 5-7: Effect of matrix defect size on the mechanical behaviour under transverse 

tension of an RVE containing 𝑉𝑓 = 60%  and 𝑉𝑑 = 1.2% . (a) 𝑅𝑚_𝑑 =  0.1𝑅𝑓 . 

(b)𝑅𝑚_𝑑 =  0.15𝑅𝑓. (c)𝑅𝑚_𝑑 =  0.2𝑅𝑓. (d)𝑅𝑚_𝑑 =  0.25𝑅𝑓. (e)Stress-strain curves. 

The mechanical behaviours of RVEs containing the same fibre distribution with 

fibre volume fraction 𝑉𝑓 = 45% and defect volume fraction 𝑉𝑑 = 1.2%, but different 

sizes of porous defects in the matrix, 𝑅𝑚_𝑑 =  0.1𝑅𝑓 , 0.15𝑅𝑓 , 0.2𝑅𝑓 and 0.25𝑅𝑓 are also 

analysed and presented in Figure 5-8. The stress-strain response of the four RVEs is 

relatively similar. The tensile strengths of the four RVEs are not affected by the size of 

matrix defects much and the corresponding stiffness is not changed as the radii of the 

matrix defects change. In addition, compared to the stress-strain curves of the RVEs 

with the 60% fibre volume fraction, it is found that the ultimate strain at failure of the 

RVE with a higher fibre ratio (60%) is smaller than that of the RVE with a lower fibre 

ratio (45%). On the other hand, the crack paths of all cases at final failure are relatively 

similar. The cracks first occur from the interfacial defects and propagate through the 
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defects in the matrix and interface. The damage path is not much dependent on the 

distribution and size of matrix defects in the RVEs. It is indicated that the interfacial 

defects play important roles in crack propagation in the RVEs with the 45% fibre 

volume fraction.  

 

Figure 5-8: Effect of matrix defect size on the mechanical behaviour under transverse 

tension of an RVE containing 𝑉𝑓 = 45%  and 𝑉𝑑 = 1.2% . (a) 𝑅𝑚_𝑑 =  0.1𝑅𝑓 . 

(b)𝑅𝑚_𝑑 =  0.15𝑅𝑓. (c)𝑅𝑚_𝑑 =  0.2𝑅𝑓. (d)𝑅𝑚_𝑑 =  0.25𝑅𝑓. (e)Stress-strain curves. 

Then, the DEM simulations of RVEs containing the same fibre distribution (45%) 

but different matrix and interfacial defects distributions are carried out and shown in 

Figure 5-9. It is found that the crack paths in the four RVEs are completely different, 

which is indicated that the distributions of both matrix defects and interfacial defects 

influence the crack path. Combining the results shown in Figure 5-8, it can be confirmed 

that the interfacial defects affect the crack propagation in the RVEs with lower fibre 

volume fraction the most, leading to different crack paths at failure. 
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Figure 5-9: Effect of matrix defect size on the mechanical behaviour under transverse 

tension of an RVE containing 𝑉𝑓 = 45%  and 𝑉𝑑 = 1.2% . (a) 𝑅𝑚_𝑑 =  0.1𝑅𝑓 . 

(b)𝑅𝑚_𝑑 =  0.15𝑅𝑓. (c)𝑅𝑚_𝑑 =  0.2𝑅𝑓. (d)𝑅𝑚_𝑑 =  0.25𝑅𝑓. (e)Stress-strain curves. 

 

5.2.4. Effect of the distribution of the defects 

For the two types of defects considered, namely, matrix and interfacial defects, the 

effect of the distribution of the defects on the deformation and failure of the composite 

lamina is studied and presented in Figure 5-10. The stress-strain curves of three typical 

Type III RVEs having the same fibre distribution with fibre volume fraction 𝑉𝑓 = 60% 

and the same defect volume fraction 𝑉𝑑 = 1.2% ,but three different distributions of the 

defects, i.e., all matrix defects, half matrix defects and half interfacial defects, and all 

interfacial defects, are shown in Figure 5-10(a). The stress-strain curves show that the 

distribution of defects affects both the strength and stiffness of the material. An increase 
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in interfacial defects reduces both strength and stiffness. To show the variations of the 

strength and stiffness caused by different random fibre distributions, the average values 

of the two mechanical properties from the 13 RVEs with different fibre distributions 

but the same volume of defects are calculated and plotted in Figure 5-10(b). The average 

strengths of the RVEs with the three different distributions of defects are 56.85MPa, 

52.36MPa and 49.03MPa. Their corresponding stiffness is 14.67GPa, 14.11GPa, and 

13.34GPa.  

 

Figure 5-10: Effect of the distribution of the defects on the mechanical behaviour of 

type III RVEs under transverse tension. (a)Stress-strain curves. (b)The average strength 

and the average stiffness, and their corresponding variances. 
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5.3 Development of data-driven deep learning models 

To verify that the initial cracks are closely related to the distribution of defects, deep 

neural network (DNN) regression models are constructed to predict the initial cracks 

and instantaneous stresses of the defective UD FRP laminae with the two types of 

periodic fibre arrangements (Types I and II in Figure 5-1(b) and (c)). The deep learning 

models are trained and tested by the data from the DEM simulations. 

 

5.3.1. Data generation 

The data set generated for predicting the initial crack and its stress of UD FRP 

laminae with rectangular distributed fibres or hexagonal distributed fibres and randomly 

distributed defects contains 500 RVE samples of dimension 60 𝜇𝑚 ×  60 𝜇𝑚 . 

Therefore, 1000 RVE samples are generated according to the specifications mentioned 

in Section 5.1.1. To ensure the randomness of the distribution of interfacial defects, 8 

of 49 fibres in each RVE are chosen by using the function of ‘random. sample’ in Python 

containing the interfacial defects. The locations of defects in fibre-matrix interfaces are 

determined by the DEM software ‘PFC 2D 6.0’. Totally 28 defects along the eight fibre-

matrix interfaces with equal lengths are generated in the RVE (see Figure 5-11).   
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Figure 5-11: RVEs with (a)rectangular distributed fibres and (b)hexagonal 

distributed fibres. 

In the DEM simulation, the contact bond will break if the contact force exceeds the 

contact strength. Therefore, the same to the last chapter, the target of the developed deep 

learning model is to regress the contact force of each contact bond in the RVE at the 

time step just before the first crack occurs, so that fracture of the contact bond can be 

determined from the regressed contact forces. It has been mentioned in the last chapter 

that the force of contact bond at the time step immediately before the initial cracking is 

taken approximately as the critical force of cracking as the time step used in the 

calculation is sufficiently small (<2.5𝑒−11𝑠). It is relatively difficult to calculate the 

contact force at the exact time of cracking. 

There are around 59000 contact bonds in each defective RVE sample obtained by 

removing the bonds where there are defects, including the defective bond in the matrix-

matrix contacts, and in the fibre-matrix interface contacts (see Figure 5-11). To further 

reduce the size of data to be trained in the DNN model, only the data from the bonds 

that are likely to crack are collected from the DEM model. In detail, in the matrix, there 
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are three types of contact bonds with different angles based on the hexagonally packed 

particles: contact bonds with 0 degree, 60 degrees and 120 degrees, respectively, to the 

horizontal direction. In all 500 samples for each type of RVEs, the initial crack occurs 

in the 0-degree contact bond only as the transverse tension applied on the RVE is in the 

perpendicular direction. The number of the 0-degree contact bonds in each RVE is 9400. 

As a result, the deep learning model will train and test 4700000 data which are the 

4700000 (9400×500) matrix-matrix contact bonds of the 500 RVEs. 

To predict the stress of an RVE, when the initial crack occurs, the deep learning 

model will train and test 500 data according to the results of the DEM simulations (500 

for Type I or Type II RVE as in Figure 5-1(a)(b)). The critical stress of the initial crack 

in an RVE is the single-output, which makes the prediction a single-output regression 

problem.  

 

5.3.2. Data pre-processing 

From the DEM modelling, it is found that the initial cracks are always around the 

defects, which suggests that each of the contact bonds and the distribution of the defects 

are critical features and should play an essential role in the training process of the data-

driven model for initial crack prediction. As shown in Figure 5-12, the input features 

are selected as the positions of the matrix-matrix contact bonds (denoted (𝑝𝑜𝑠_𝑥c,

𝑝𝑜𝑠_𝑦c)), the distances between every contact bond to each defect (denoted 𝑑𝑐𝑑𝑖
)  and 

their corresponding angles with the 𝑥 − axis (denoted 𝜃𝑐𝑑𝑖
), which are computed by 

Python codes as follows:  

 

𝑑𝒄𝑑𝑖
=  √(𝑝𝑜𝑠_𝑥c − 𝑝𝑜𝑠_𝑥𝑑𝑖

)2 + (𝑝𝑜𝑠_𝑦c − 𝑝𝑜𝑠_𝑦𝑑𝑖
)2    

  (i = 1, 2, …, 53 or 48) 

(5-1) 
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 𝜃𝑐𝑑𝑖
= 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑝𝑜𝑠_𝑦𝑑𝑖

𝑑𝑐𝑑𝑖

) (5-2) 

where 𝑝𝑜𝑠_𝑥c , 𝑝𝑜𝑠_𝑦c  and 𝑝𝑜𝑠_𝑥𝑑𝑖
, 𝑝𝑜𝑠_𝑦𝑑𝑖

are the  𝑥 − and 𝑦 − coordinates of the 

centre of matrix-matrix contact bond with 0 degree and defect i. For one contact bond 

in the type I RVE, there are 54 pairs of 2D feature vectors, including the positions of 

the contact bond, 25 pairs of distance and angle to the matrix defects and 28 pairs of 

distance and angle to the interfacial defects. Similarly, there are 49 pairs of 2D feature 

vectors for one contact bond in the type II RVE, including the contact bond's positions, 

20 pairs of distance and angle to the matrix defects and 28 pairs of distance and angle 

to the interfacial defects.  

 

Figure 5-12: Feature selections for predicting the initial crack. 

The features for the model predicting the stress of the initial crack are considered 

based on the randomly distributed defects in RVEs. Therefore, the positions of the 

randomly distributed defects corresponding to the origin of the RVE, for instance, (𝑥𝑑1
,
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𝑦𝑑1
)  and (𝑥𝑑2

, 𝑦𝑑2
) , and the distance to the origin (denoted 𝑑𝑜𝑑𝑖

) and the 

corresponding angle with 𝑥 − axis (denoted 𝜃𝑜𝑑𝑖
), are used as the input features to 

represent the relative spatial distribution of the defects (see Figure 5-13). Additionally, 

the distances are set in an ascending order to the nearest to the farthest to improve the 

efficiency of the training of the DNN model. Therefore, 53 and 48 pairs of 2D input 

features are determined for the type I and II RVEs, respectively. 

 

Figure 5-13: Feature selections for predicting stress of the initial crack. 

In the DNN model for predicting the initial crack, for each composite configuration, 

90% of the data (450 samples) from 500 RVEs are used as training data for the DNN 

predictive model and the rest 10% of the data (50 samples) are used as testing data. And 

in the DNN model for predicting stress, 90% of the data (450 RVE samples) are used 

as training data, and the rest samples (50 RVE samples), are used as testing data. Finally, 

to ensure that all the features are of the same scales, Z-score normalization is used to 
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rescale the features in the training set and the testing set in the predictive models 

independently. 

 

5.3.3. Configuration of the DNN models 

As shown in Figure 5-14, a back-propagation DNN model is developed for this study. 

In the model for predicting the initial crack in type I or type II RVE, there are 54 or 49 

pairs of 2D feature vectors in the input layer, as discussed in Section 5.3.2, and the 

contact force of each contact bond is the single output in the output layer. There are four 

hidden layers with the same neuron number in each layer, 810 for type I RVE with and 

735 for type II REV. For the model for predicting stress, there are 53 or 48 2D feature 

vectors in the input layer. The target output is the stress the overall RVE 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 when 

the initial crack occurs. Four hidden layers with the same neuron number in each layer 

are defined (530 for the type I RVE and 480 for the type II RVE). The setting of 

activation functions of the model is that the activation function used from the input layer 

to the first hidden layer and between any two hidden layers is the rectified linear 

activation function (ReLU), and the activation function applied between the last hidden 

layer and the output layer is the 'linear' function. The DNN predictive models presented 

above are finally determined after doing a set of trials of DNN models with different 

numbers of hidden layers and neurons, which has good performances in training and 

predicting processes.  

 



151 

 

 

Figure 5-14: A back-propagation DNN model for predicting the initial crack and its 

stress. 

 

5.4 Results and discussion 

5.4.1. DNN predictive model for the initial crack and its stress of 

defective composite laminae with rectangular fibre distribution 

The DNN model for predicting the initial crack in RVEs with the two periodic fibre 

distributions trained the amount of data extracted from 450 DEM simulations and tested 

the data from 50 DEM simulations. Two levels of evaluation criterions are used in the 

analysis. The accuracy of the models for the Type I RVE is shown in Table 5-1. The 

first criterion is that if the predicted initial crack (by DNN) is close to the one determined 

by the DEM model within a distance smaller or equal to the diameter of the ball (4.62e-

4mm), the predicted crack is regarded as an accurate result. According to this criterion, 

the initial cracks in the 41 RVE samples can be predicted successfully, thus, the 

accuracy is 82% (41/50). It means that the DNN model can find out the highest contact 

force among 9400 contact bonds of each RVE successfully. Figure 5-15(a) shows the 

comparison of the DNN and DEM results of the contact forces. The black triangle at 

the bottom-left in Figure 5-15(a) is the predicted highest contact force, which is -44.94N. 



152 

 

The DEM simulated contact force of this contact bond is also the highest and is -48.13N. 

The position of this contact bond in the RVE is plotted as the black triangle in Figure 

5-15(b), which shows that the DNN predicted initial crack is at exactly the same position 

as that of the DEM simulated initial crack.  

The second criterion is that the DNN prediction can be treated as acceptable if the 

initial crack simulated by the DEM model is among the first five cracks predicted by 

the DNN model ordered by their contact forces. Based on the 2nd criterion, the initial 

cracks in the 47 RVEs can be successfully predicted, thus the accuracy of the DNN 

prediction increases to 94 %. For instance (Figure 5-15(c-d)), the initial crack predicted 

by the DEM model, is at position M in the RVE, which is the position with the second-

highest contact force from the DNN prediction. Thus, by the 2nd criterion, it is 

acceptable as it is among the first five possible cracks. The first crack predicted by the 

DNN model is at position N in the RVE. Although it is not the exact position of the first 

crack predicted by the DEM model, it is found that the position is among the first 5 

cracks to appear and will be merged with other cracks to form the final crack path 

predicted by the DEM model, as shown in Figure 5-15(e). Nevertheless, by the 2nd 

criterion, the DNN model can effectively predict positions with high fracture risk.  
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Table 5-1: DNN prediction results for the initial crack in type I RVEs. 

Criterion Result Accuracy 

Criterion 1: The DNN predicted crack is around the 

DEM simulated initial crack. 

41 82% 

Criterion 2: The contact bond around the DEM 

simulated initial crack is in the list of DNN-predicted 

cracks with the top five highest risks. 

47 94% 

 

 

Figure 5-15: Two examples of the DNN predictions of the initial crack in RVEs with 

rectangular fibre distribution. (a-b) The DNN and DEM results for an example of 

criterion one. (c-e) The DNN and DEM results for an example of criterion two. 

The stress at the initial cracking obtained from the DEM simulations and the DNN 

predictive model are plotted in Figure 5-16. The stresses predicted by the DNN are close 

to the ones predicted by the DEM. The average stresses from the DEM simulations and 
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the DNN predictions are 44.21MPa and 44.38MPa, respectively, with standard 

deviations of 1.85MPa and 1.25MPa. Therefore, it can be concluded that the trained 

DNN model can satisfactorily predict the stress when the initial crack occurs.  

 

Figure 5-16: Comparison of predictions of the stress of RVE with rectangular fibre 

distribution from the DNN model to the DEM simulation results. 

 

5.4.2. DNN predictive model for the initial crack and its stress of 

defective composite laminae with hexagonal fibre distribution 

Similar to the discussion on the DNN predictions in the Type I RVE, the two 

criterions are also used to evaluate the performance of the DNN model (see Table 5-2) 

for the Type II RVE. Based on criterion 1, the initial cracks in the 40 Type II RVEs can 

be predicted with relatively high accuracy (40/50 = 80%), indicating that the highest 

contact force can be found by the DNN accurately. An example of this scenario is shown 

in Figure 5-17(a-b). The black triangle represents the highest contact force predicted by 

the DNN model, as shown in Figure 5-17(a), which is -46.34N. The position of the 
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initial crack is determined then by the position of the DNN predicted highest contact 

force by DNN, which is the same as the position obtained from the DEM model where 

the contact force is -45.14N. The position of this contact bond in the RVE is denoted 

by the black triangle in Figure 5-17(b).  

Based on criterion 2, the initial cracks in the 47 Type II RVEs are predicted with an 

accuracy of 94% (47/50) by the DNN model. For instance (Figure 5-17(c-d)), the initial 

crack predicted by the DEM model, is at position P, which is the position with the 

fourth-highest contact force predicted by DNN. The first crack predicted by the DNN 

model is at position Q in the RVE. As observed in Type I RVEs, the position is also 

among the first five cracks to appear and will be merged with other cracks to form the 

final crack path predicted by the DEM model (see Figure 5-17(e)).  

Table 5-2: DNN prediction results for the initial crack in type II RVEs. 

Criterion Result Accuracy 

Criterion 1: The DNN predicted crack is around the 

DEM simulated initial crack. 

40 80% 

Criterion 2: The contact bond around the DEM 

simulated initial crack is in the list of DNN-predicted 

cracks with the top five highest risks. 

47 94% 
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Figure 5-17: Two examples of the DNN predictions of the initial crack in RVEs with 

hexagonal fibre distribution. (a-b) The DNN and DEM results for an example of 

criterion one. (c-e) The DNN and DEM results for an example of criterion two. 

Figure 5-18 presents the stress of the initial crack from the DEM results and the 

DNN predictions, which shows good agreement. The averages (46.35MPa and 

45.99MPa) and standard deviations (2.84MPa and 1.51MPa) of the stresses obtained 

from the DEM and DNN are very close, which indicates that the trained DNN model 

can be used to provide a reliable result of the stress at initial cracking. 
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Figure 5-18: Comparison of predictions of the stress of RVE with hexagonal fibre 

distribution from the DNN model to the DEM simulation results. 

 

5.5 Summary 

In this chapter, an RVE-based DEM model has been developed to study the effect 

of defects on the transverse mechanical responses in UD FRP laminae. The defects in 

both the matrix and the fibre-matrix interfaces are considered. It can be found that the 

simulated crack path can very well fit the experimental test when randomly distributed 

defects are considered. The presence of defects affects the mechanical behaviours of 

both the stress-strain response and crack progression. Both the strength and the stiffness 

of the defective RVE are less than that of the defect-free RVE. The crack path is 

dependent on the distribution of the defects. The cracks often occur among fibre-matrix 

interfaces with a high density of defects. It is because of the stress concentration on the 

tip of the defects. It can also be found that the presence of defects causes a faster 

coalescence of cracks thus, the ultimate failure achieves earlier. The crack paths in the 
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RVEs with higher fibre volume fraction (60%) are more sensitive to the distribution and 

size of matrix defects. The crack paths in the RVEs with lower fibre volume fraction 

(45%) are more sensitive to the distribution of interfacial defects. In addition, the 

simulation results showed that the proportional distribution of the defects in the matrix 

and interface influences the tensile strength and stiffness significantly. It can be found 

that the strength and stiffness decreased with the increase in the proportion of interfacial 

defects. 

Then, multi-layer DNN regression models with back-propagation are generated for 

the prediction of the position of the initial crack and its stress of defective FRP 

composite laminae with two periodic fibre distributions based on the data extracted 

from the results of the RVE-based DEM model. Considering the random distributions 

of both matrix and interfacial defects in the microstructures of RVEs, the developed 

DNN regression models show reasonably high prediction accuracies in predicting the 

position of the initial crack for both two periodic fibre arrangements. Based on criterion 

I, the accuracies are 82% and 80%, respectively. Based on criterion 2, both accuracies 

are 94%. On the other hand, the overall stress of the material at the time, when the initial 

crack occurs in the RVEs can be accurately predicted in both two types of RVEs. 
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Chapter 6 

6 Conclusions and Future Works 

6.1 Conclusions 

In this thesis, a 2D RVE-based Discrete Element Method (DEM) model is first 

developed for modelling the mechanical behaviour of defect-free UD FRP composite 

laminae under the loading of transverse tension. RVEs of UD FRP laminae are 

generated based on experimentally validated sized fibres. A constant tensile velocity of 

5 mm/s is applied simultaneously on the left and right boundaries of the RVE. The 

developed DEM model can accurately predict the transverse mechanical properties of 

the defect-free UD FRP lamina, as it can be validated with the results of the 

experimental tests. The DEM simulated stress-strain responses of RVEs are also 

compared with that of the FEM analyse, which shows a good agreement. The 

mechanical responses in the RVEs based on the different settings of fibre volume 

fractions (45% and 60%) are analysed. For the stress-strain response, the strength of the 

UD FRP lamina becomes larger with the increase of fibre volume fractions, however, 

the deformation until reaching the failure point becomes smaller. For tracking the crack 

initiation and propagation, the DEM simulation result shows that the crack usually 

occurs in the matrix where the distance between the two fibres is very small, which is 

caused by the stress concentration. Then the crack propagates in the RVE, and the final 

crack path occurs. Based on a large set of data generated from the microscale RVE-

based DEM model, lastly, in Chapter 3, a four-layer DNN model with back-propagation 

is constructed for predicting two transverse mechanical properties (tensile strength and 

Young’s modulus) of an FRP composite lamina at the macroscopic level with 
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consideration of two features related to the fibre distribution. Latin Hypercube sampling 

(LHS), one commonly used Design of Experiments (DoE) method, is implemented to 

generate 200 sets of two independent variables (fibre volume fraction and fibre radius) 

given their corresponding boundaries. Based on the 200 sets of variables, 2000 RVE-

based DEM model simulations are generated for the training process and the testing 

process of the DNN model. The data is normalized using both Min-max normalization 

and Z-score normalization, and the analysis of the comparison of their performances in 

the predictive model is done. To validate as well as improve prediction performance, a 

3-fold cross-validation is conducted. The DNN model shows good accuracies for 

predicting the two mechanical properties. The better performance of predicting the 

tensile strength is obtained by using the trained DNN model with the Min-max 

normalization method as the value of the performance indicator 𝑅2 is higher. And the 

performance in the prediction of transverse Young’s modulus, as indicated by the 

respective 𝑅2 values obtained using the two different normalization methods, is not 

affected significantly by the normalization method. Additionally, the comparison 

among the DNN model and two existing analytical models for obtaining Young’s 

modulus shows that the DNN model has its superiority, as the impact of the random 

fibre distribution and varied fibre diameters can be considered.  

The simulated damage evolution of the FRP composites is accurate, however, it 

usually takes a long time and costs huge power of computing even if only to the initial 

crack. Thus, machine learning models are employed to understand the relationship 

between the microstructure of UD FRP composite laminae and its crack path and then 

predict the transverse cracks. In Chapter 4, two relatively simple and easily used ML 

models, Gaussian Naïve Bayes classifier and Artificial Neural Networks (ANNs) are 

first developed for predicting the crack path of the UD FRP lamina. The data used in 



161 

 

the ML models are extracted from the DEM simulations of 500 reduced-size RVE 

samples. Every single particle in the RVE is considered a data point. The target of this 

prediction problem is whether this particle is cracking or not. Undersampling, as a 

method for overcoming the problem of data imbalance, is employed on the data for 

deleting some data points that are not cracking. The training accuracies of both the 

Gaussian Naïve Bayes classifier and ANN are good, however, their prediction results 

show not very satisfied accuracy. In the training and testing processes of the ANN 

model, a 3-fold cross-validation is used. Three different ratios of training data (17.5%, 

26%, and 40 %) are used in the training process. It is found that the accuracy of the 

training process increases by enlarging the number of training data. As the prediction 

performance is not very satisfactory, dropout is used, which gives a better prediction 

result than the original network.  

An improved predictive model is then developed. Compared to the data size used in 

the previous two ML models, the data size is enlarged and based on the results of 1600 

DEM simulations. A four-layer DNN model with back-propagation is constructed to 

predict the crack areas of an FRP composite lamina. It is shown that most initial cracks 

and the overall trend of cracking paths can be predicted successfully by the DNN model. 

Moreover, both occurrence of local crack areas and the cracking density of the RVE 

sample can be predicted accurately with full consideration of random fibre distribution.  

In addition, for the purpose of a fast determination of the initial cracks in the UD 

FRP lamina, a DL prediction for the crack initiation of the UD FRP composite with 

random fibre distribution is investigated in the last part of Chapter 4. Two DNN models 

train a set of suitable and representative features obtained from the DEM simulations 

and then predict the initial and the second cracks in order. The input features in the 

DNN model for the initial crack are selected for representing the randomness of fibres 
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in each RVE, as the initial crack is highly dependent on the fibre distribution. The target 

output for predicting the initial crack is the contact force of the contact bond in the RVE. 

Two criterions are used for analysing the prediction performance of the initial crack. 

The first one is the DNN predicted crack is around the DEM simulated initial crack. 

The second one is the contact bond around the DEM simulated initial crack is in the 

lists of DNN predicted cracks with the top five highest risk. The accuracies according 

to the criterions are 65% and 92%, respectively. Then, new features based on the initial 

crack are added for the prediction of the second crack, which is the distance from the 

contact bond to the initial crack and its corresponding angle with x – axis. After training 

the model, the second cracks in 65 RVEs are predicted successfully, of which the 

accuracy is 92% ∗ 65% ≈ 60% . It is indicated that the problem of predicting the 

second crack is a bit complex based on the current input features. The relatively small 

data size may affect the training and test performance of the crack initiation prediction. 

Much more data obtained from the DEM simulations are needed to improve the 

accuracy of the prediction. The work presented in Chapter 4 shows a promising 

framework to predict the initial crack of UD FRP composite by combining the 

advantages of both DEM modelling and the DNN algorithm. The current results could 

demonstrate the feasibility and effectiveness of the method. 

In Chapter 5, a DEM model for simulating the effect of defects on the transverse 

mechanical responses in UD FRP laminae with the rectangular arrangement of fibres 

(type I), the hexagonal arrangement of fibres (type II) and the random arrangement of 

fibres (type III) are validated developed. The defects in both the matrix and the fibre-

matrix interfaces are considered. The defects in the matrix and along fibre-matrix 

interfaces are randomly distributed, which is implemented using a function in Python. 

It is found that the presence of matrix and interfacial defects in the composite laminae 
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reduced the tensile strength and affected the form of damage progression. The cracks 

often occur among fibre-matrix interfaces with a high density of defects due to the stress 

concentration on the tip of the defects. It is also found that the crack paths of RVEs are 

different caused by the radii of the defects and their locations. The crack propagation 

depends much more on the distribution of fibre-matrix interfacial defects. In addition, 

the proportional distribution of the defects in the matrix and interface in the RVE 

influences the strength and stiffness. It can be concluded that both the strength and 

stiffness are decreased with the increase in the proportion of interfacial defects. Next, 

DNN is used to verify that the initial crack is closely related to the distribution of defects. 

In this way, the trained DNN can also help to obtain the initial crack and its 

corresponding load effectively. Totally 1000 samples for type I and type II RVEs with 

randomly distributed defects are generated and simulated by the DEM model. The DNN 

regression models show reasonably high prediction accuracies in predicting the the 

initial crack according to two criterions. Based on criterion I, the accuracies of the two 

types of RVEs are 82% and 80%, respectively. Based on criterion 2, both accuracies 

are 94%. The predicted overall stress at the time when the initial crack occurs in the 

RVEs in both two types of RVEs, is accurate and reliable as indicated by the respective 

average and standard deviation of the DEM and DNN predicted results.  

The machine learning application in the predictions of mechanical behaviour of the 

UD FRP laminae based on the data of DEM simulation shows its efficiency and 

accuracy. After training the predictive model using the data extracted from the DEM 

simulations, an accurate result can be obtained in less than one second by the predictive 

model rather than requiring an approximately 5-hour DEM simulation.   
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6.2 Suggestions for Future Works 

In terms of the DEM model, it can be found that the 2D RVE-based DEM has 

powerful ability and reliable computing for studying the transverse behaviour of both 

defect-free and defective UD FRP laminae. However, it would be better if the 2D DEM 

model could be extended to a 3D model to study mechanical behaviour more 

comprehensively and accurately. Additionally, the study on the effects of defects in the 

mechanical response of the lamina is expanded to biaxial loading.  

The study on crack prediction can reflect that the DNN model, which is a black-box 

deep learning model, has the power to capture the complex intrinsic relations between 

the inputs and the outputs without imposing any assumptions or simplifications for such 

a complex and challenging prediction problem. The results of the DNN model for the 

initial crack demonstrate the feasibility and effectiveness of the deep learning prediction. 

Therefore, combining the advantages of DEM modelling and the deep learning 

algorithm for fracture mechanics may provide new avenues to design engineering 

materials, for instance, high-performance composites, and how these materials respond 

to various scenarios of crack propagation. 
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