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ABSTRACT
This paper presents a spline-based input modelling method for inferring the rate
function of a nonhomogeneous Poisson process (NHPP) given arrival-time observa-
tions and a simple method for generating arrivals from the resulting rate function.
Splines are a natural choice for modelling rate functions as they are smooth by
construction, and highly flexible. Although flexibility is an advantage in terms of
reducing the bias with respect to the true rate function, it can lead to overfitting.
Our method is therefore based on maximising the penalised NHPP log-likelihood,
where the penalty is a measure of rapid changes in the spline-based representation. A
controlled empirical comparison of the spline-based method against two recently de-
veloped input modelling techniques is presented considering: the recovery of the rate
function; the propagation of input modelling error and the performance of methods
given data that is under or over-dispersed in comparison to a Poisson process.
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1. Introduction

This paper presents a spline-based method for modelling and generating non-
homogeneous Poisson process (NHPP) arrivals within stochastic simulation models.
Our motivation for the creation of a new input modelling method is twofold: to reduce
the input modelling error passed from arrival processes to simulation output perfor-
mance measures during simulation experiments, and because in reality rate functions
are likely to be smooth. There are a number of interval-based (piecewise) input mod-
elling methods for NHPPs, but these models assume that the arrival-rate function can
jump instantaneously in time and this is often unrealistic and limits their usefulness
for modelling general processes. Interval-based methods also require knowledge of the
interval boundaries which, if unknown, are hard to determine, and if the true rate
function is smooth do not exist.

We assume that we have a finite number of arrival-time observations of a real-
world system from which to estimate the arrival process. The input model will thus
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inevitably contain error. In stochastic simulation, error in the input models propagates
through the simulation model to the output of interest. This error is known as input
modelling error; for further information see Song, Nelson, and Pegden (2014), Lam
(2016), Morgan, Titman, Worthington, and Nelson (2016), Morgan, Rhodes-Leader,
and Barton (2022), and references therein. We aim to provide an input modelling
method that propagates less input modelling error to the simulation output than its
competitors.

Our focus is arrival processes, which are a requirement of many simulation models,
and more specifically NHPPs which are commonly used in practice. Pritsker et al.
(1996) shows the use of a NHPP for modelling donor and patient arrivals within a large
scale simulation model developed for the United Network of Organ Sharing (UNOS).
A NHPP is a generalisation of a Poisson process where the non-negative rate function,
λ(t), is allowed to change through time, t. The probabilistic behaviour of a NHPP

can be completely characterised by λ(t) or the cumulative rate Λ(t) =
∫ t
0 λ(s)ds; all

NHPP input modelling approaches aim to estimate one of these functions. We focus
on modelling the rate, λ(t).

Our main contributions are a spline-based method for modelling the rate function,
λ(t), of a NHPP and a simple algorithm to generate arrivals from the estimated rate
function. We define a spline function as a linear combination of n cubic B-spline basis
functions. Spline functions are piecewise-polynomials that are, by design, smooth and
satisfy continuity constraints at the knots joining their pieces; see de Boor (1978).
Cubic splines are continuous, and twice continuously differentiable everywhere; rate
functions known to have jumps or non-differentiable points therefore lie outside of
the scope of this paper. Spline functions become increasingly flexible as the number
of basis functions used in their construction is increased. We propose to use a large
number of basis functions, n, to model λ(t) to enable a reduction in the bias with
respect to the true arrival process. We do however wish to avoid over-fitting the model
to the observed data, and therefore opt for a penalised log-likelihood approach. The
penalty acts to reduce the variability and stabilise the resulting representation.

The paper is organised as follows: In Section 2 we discuss the current literature for
modelling the rate function of a NHPP. In Section 3 our spline-based input model is
presented, and in Section 4 we introduce a thinning method for simulating arrivals
from it. In Section 5 we evaluate our method in comparison to relevant competitors
and in Section 6 we conclude.

A preliminary proposal of the ideas presented here appeared in Morgan, Nelson,
Titman, and Worthington (2019b), but it did not consider the consistency of the
spline based estimator, or provide practical guidance for how to choose n. It also did
not consider arrival generation which is key to the use of the spline-based estimator in
practical simulation experiments. The evaluation has also been extensively extended
including the addition of an evaluation of the method when fitting data that is over-
or under-dispersed in comparison to a Poisson process and a consideration of input
model uncertainty when using the spline-based method.

2. Background

A number of methods exist for modelling arrival processes using NHPPs. Our focus is
on modelling the rate function of a NHPP using arrival-time observations. An alter-
native approach is to model the cumulative rate function, Λ(t); see Leemis (1991) and
references therein. Also, in some contexts arrival counts over intervals are the only
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available data instead of arrival times; see Nicol and Leemis (2014) and references
therein for input modelling methods using arrival counts. When only a single realisa-
tion of a NHPP arrival process is available Nelson and Leemis (2020) discuss methods
for input modelling.

A common approach to modelling the rate function of a NHPP using arrival-time
observations is to use an exponential function, λ(t) = exp{g(t,ϕ)} where g(t,ϕ) de-
scribes polynomial or trigonometric components. This exponential form ensures the
rate function is non-negative at all time points as required. Amongst others, Lewis
and Shedler (1976), Lewis (1971), Kuhl, Wilson, and Johnson (1995), Kuhl, Wilson,
and Johnson (1997) and Lee, Wilson, and Crawford (1991) adopted this approach.
But note that numerically optimising parameters ϕ in g(t,ϕ) within these methods is
computationally expensive and often requires a good starting point.

Alternative approaches to modelling the rate function assume that the rate is
a piecewise polynomial of some degree. Chen and Schmeiser (2017) start from a
piecewise-constant representation of the rate function and present the MNO-PQRS
algorithm that results in a piecewise-quadratic representation. This algorithm is not
restricted to Poisson arrival processes. Zheng and Glynn (2017) present a piecewise-
linear approach to modelling the rate function, and develop a convex programming
formulation to estimate the rate at the interval boundaries given either arrival-times
or arrival-count data. Kao and Chang (1988) present a piecewise polynomial represen-
tation, where the interval boundaries and polynomial degree are selected subjectively
within each interval. This is generally an unrealistic assumption in practice when con-
sidering real-world non-stationary processes. In Section 5 we compare the spline-based
model to the piecewise-linear model presented by Zheng and Glynn (2017), and the
piecewise-quadratic model by Chen and Schmeiser (2017).

Channouf (2008) also uses splines to represent the rate function of both NHPPs
and doubly stochastic Poisson processes. However, they do not take advantage of the
B-spline composition of a spline function which requires many fewer parameters to be
estimated, and is key to our arrival-generation approach in Section 4.

3. Fitting a spline function via penalised log-likelihood

Suppose we observe a NHPP with true rate function λc(t), on the interval [0, T ], m
times. We assume that λc(t) is twice continuously differentiable, λc(t) ∈ C2([0, T ]),
like the cubic spline function that we use to represent it. We also assume that λc(t)
is bounded away from 0 within [0, T ], i.e. that there is no unknown downtime where
λ(t) = 0.

We let m denote a number of days, but in practice m could represent other units of
time. We use a cubic, degree d = 3, spline function to represent the rate function. This
is a linear combination of n cubic basis functions, otherwise known as cubic B-splines.
Let Bk,sssk(t) denote the kth cubic B-spline at time t defined over the ordered knot
sequence sssk = {sk−(d+1), sk−d, . . . , sk} where the knot points can be interpreted as
points on the time axis. B-splines are locally defined functions; for t ∈ (sk−(d+1), sk),
a cubic B-spline is non-negative and twice continuously differentiable, otherwise it is
equal to 0. For d > 1, B-splines are composed recursively from lower degree B-splines
as follows

Bk,d,sssk(t) =
t− sk−(d+1)

sk−1 − sk−(d+1)
Bk,d−1,sssk(t) +

sk − t

sk − sk−d
Bk+1,d−1,sssk+1

(t),
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where d denotes the degree of the B-spline; see de Boor (1978). The spline-based model
of the NHPP rate is

λ(t;ccc) =

n∑
k=1

ckBk,sssk(t), (1)

where ck ∈ ℜ is the spline coefficient of the kth B-spline for k = 1, 2, . . . , n and
ccc = {c1, c2, . . . , cn}.

The knot sequence upon which the spline function (1) is built combines the
n knot vectors of its component B-splines, we denote this as sss, where sss =
{s−d, s−d+1, . . . , s0, s1, . . . , . . . , sn}. It may seem unconventional to start the knot se-
quence sss with knot s−d, but this ensures that for all t ∈ [0, T ], d + 1 B-splines are
non-zero. We also choose to use cardinal B-splines which are spline functions defined
on uniformly spaced local knot sequences. This is not a requirement for the methods
presented, but can be advantageous for arrival generation as we show in Section 4.
From here on, we drop the knot sequence subscript on the B-spline and let Bk(t)
denote the kth B-spline.

Once the knot sequence, sss, has been set Bk,sssk(t) is fixed for all t for all B-splines.
The shape of the spline rate function is therefore completely determined by the spline
coefficients, ccc. It is thus ccc that we optimise, given arrival-time observations, to fit
the spline-based rate function. To optimise the spline coefficients, ccc, we maximise the
penalised log-likelihood of the NHPP. Our choice to use penalised likelihood stems
from the computationally convenient form of the NHPP likelihood function, and our
desire to exploit the assumption of the process being Poisson. We propose fitting
the spline function using a large number of basis functions n allowing for a highly
flexible representation. Penalisation then acts to prevent over-fitting and stabilise the
representation.

Let ai denote the number of arrivals observed on the ith day, and 0 ≤ ti1 < ti2 <
· · · < tiai

≤ T , for i = 1, 2, . . . ,m, denote the observed arrival times. The likelihood
and log-likelihood of our spline-based model of a NHPP conditional on m days of
observations over the interval [0, T ] are

L(λ(t;ccc)) ∝
m∏
i=1

ai∏
j=1

(λ(tij ;ccc)) exp

{
−
∫ T

0
λ(y;ccc)dy

}m

, and

l(λ(t;ccc)) ∝
m∑
i=1

ai∑
j=1

log(λ(tij ;ccc))−m

∫ T

0
λ(y;ccc)dy,

respectively. Our chosen penalty penalises rapid changes in the spline function using its
integrated second derivative, a standard penalty for cubic splines within the smoothing
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spline literature; see (Reinsch, 1967). The penalised log-likelihood is

lp(λ(t;ccc)) ∝
m∑
i=1

ai∑
j=1

log (λ(tij ;ccc))−m

∫ T

0
λ(y;ccc)dy − 1

2
θ

∫ T

0
{λ′′(u;ccc)}2du

=

m∑
i=1

ai∑
j=1

log

(
n∑

k=1

ckBk(tij)

)
−m

n∑
k=1

ck

∫ T

0
Bk(y)dy

− 1

2
θ

n∑
k=1

n∑
h=1

ckch

∫ T

0
B′′

k(u)B
′′
h(u)du, (2)

where θ controls the penalty term. Let ĉccθ denote the maximum likelihood estimates of
the spline coefficients found by maximising (2) at a fixed penalty value θ. For large θ
rapid changes in the spline function are reduced forcing the fitted rate function closer
to the overall mean rate; in the limit limθ→∞{λ′′(t; ĉccθ)}2 = 0 almost surely, and the
fitted rate function will become linear in t, (Eilers & Marx, 1996). When θ = 0, (2) is
proportional to the log-likelihood of the NHPP.

In introducing penalisation we transfer control of the regularisation of the rate
function into the penalty parameter, θ. The choice of the number of knots n is therefore
not critical, but should be large enough to allow for the flexibility needed to fit the
underlying rate function.

Consider fitting a spline-based rate function with a fixed number of B-splines, n, at
fixed locations, and assume that the true rate function λ(t;ccc0) falls within this family
of models, where ccc0 are the true spline coefficients. If the rate function is truly a spline
function then there is no need to penalise the log-likelihood to fit the model, and the
penalty θ can be fixed at 0. With the penalty fixed at θ = 0, and under assumptions

common in the spline estimation literature, as m → ∞ ĉcc0
P→ ccc0, and the spline-based

rate function converges to the true rate function; see Stone (1986) and Xue and Liang
(2010). Note that in reality the true rate function is unlikely to be a spline function. In
Section 3.1 we discuss how to select the optimal combination of the penalty parameter
and spline coefficients, {θ, ĉccθ}. For now we assume θ is fixed, and use a trust region
algorithm to optimise the penalised log-likelihood and provide estimates of the spline
coefficients.

The trust region algorithm is a well known optimisation approach that moves to-
wards an optimum by taking steps within a region in which it trusts a local model of
the function to be optimised. We point the reader to Conn, Gould, and Toint (2000)
for more details. In practice we set the initial radius of the trust region to be large
so we tend to get a globally good solution. We use a second-order Taylor series as a
local model of the penalised log-likelihood. Note that our choice of penalty enables
easy calculation of the gradient and the Hessian for this local model. At each step,
the second-order model leads to a convex, quadratic trust region sub-problem with
a unique solution. We add an additional constraint in the trust region sub-problem,
forcing all spline coefficients to be non-negative, ccc ≥ 0. This ensures the rate function,
λ(t;ccc), is non-negative, but we acknowledge that this constraint is stronger than nec-
essary since negative spline coefficients are possible whilst still maintaining a positive
rate function. Another implication of non-negative spline coefficients is that all spline
coefficients can themselves be treated as rates which is advantageous for arrival gen-
eration; see Section 4. When the rate function is cyclic in nature we add constraints
of the form: λ(0;ccc) = λ(T ;ccc) λ′(0;ccc) = λ′(T ;ccc), λ′′(0;ccc) = λ′′(T ;ccc). The trust re-
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gion algorithm has a number of control parameters and threshold values; we used the
values suggested by Wright and Nocedal (1999). Morgan (2019) discusses the possibil-
ity of slow or poor convergence of the trust region algorithm as the number of knots
used in the spline-based rate function is increased. Increasing the number of knots
increases the flexibility of the spline-based function over small intervals and thus we
must take smaller steps in the trust region algorithm to ensure the local second order
model of the penalised likelihood is a valid approximation. In some cases this could
cause the algorithm to terminate before optimum spline coefficients have been found.
Note that alternative optimisation algorithms could be used in place of the trust re-
gion algorithm, but the trust region algorithm performed well within the limits of our
experiments.

3.1. Selecting {θ, ĉccθ}

Information criterion estimate prediction error. They can be used as a measure of
relative model quality, for a given set of data, in the process of model selection.
Our approach for choosing the combination {θ, ĉccθ} utilises a modification of the AIC
score of Cavanaugh and Neath (2011), known as the regularisation information crite-
rion (RIC); see Dixon and Ward (2018) and Shibata (1989). This score is based on
Kullback-Leibler (KL) information, a measure of the distance between two distribu-
tions (Kullback, 1997). RIC trades off the goodness-of-fit of a proposed model and its
complexity, whilst also taking into account the penalisation of the log-likelihood. If
the combination {θ, ĉccθ} was selected by maximising the penalised log-likelihood alone,
then a penalty parameter of θ = 0 would always be chosen, as the unpenalised log-
likelihood is more able to adapt to the characteristics in the observed data. The RIC
score is defined as follows:

RIC =− 2 l(λ(ttt; ĉccθ)) + 2 e,

=− 2 l(λ(ttt; ĉccθ)) + 2 tr(Ip(̂cccθ)Jp(̂cccθ)
−1),

where e can be considered a measure of the effective degrees of freedom and Ip(̂cccθ)
and Jp(̂cccθ) are defined as

Ip(̂cccθ) =

m∑
i=1

[
∂

∂ccc
lp(λ(ttti; ĉccθ))

∂

∂cccT
lp(λ(ttti; ĉccθ))

]
Jp(̂cccθ) =− ∂2

∂ccc∂cccT
lp(λ(ttt; ĉccθ)).

The combination, {θ, ĉccθ}, that minimises the RIC score is chosen.
Let θ⋆ denote the optimal penalty value. Given a fixed penalty value θ, the op-

timal spline coefficients, ĉccθ, are found by trust region optimisation. The search for
the combination {θ⋆, ĉccθ⋆} that minimises the RIC score therefore reduces to a one-
dimensional line search for θ⋆ ∈ [0,∞). For speed, we propose starting the search with
a high initial penalty value, θ0 = η, then jumping backwards towards 0 by halving the
penalty at each step, θ0 = η, θ1 = η/2, θ2 = η/4, . . . ; allowing us to take larger steps
initially. By evaluating the RIC at each step we can identify an interval of penalty
values, O, in which at least a local minimum of RIC lies. We must check that we are
moving towards the minimum RIC in the first step of the search by checking that
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RICθ0 > RICθ1 . When this is not the case a new, higher, η should be chosen and
the procedure restarted. Assuming the initial penalty passes this check; the following
algorithm describes the kth step of the search:

(1) Fix θk = 1
2k η

(a) Evaluate ĉccθk using the trust region algorithm.
(b) Evaluate RICθk

(2) If RICθk > RICθk−1
, then stop the search and set O = (θk, θk−1).

(3) Else k = k + 1. Return to Step 1.

When the algorithm terminates at step k, we then complete a more intensive search
for θ⋆ ∈ O = {θk, θk−1}. In practice we use the R function ‘optimise’ (R Core Team.
2018) for the search of the narrower interval O. There is no guarantee that the RIC
score function is convex, however in practice lack of convexity only appeared to be
an issue around low penalty values, which is not concerning as the final spline rate
function does not change much for small changes in a small penalty. In practice the
search procedure outlined above worked well. An alternative approach is to do a simple
grid search to study the RIC over a large interval.

Returning to the choice of the number of B-spline basis functions, n. As of yet there
is not theoretical guidance for the choice of n but we follow the practical guidelines
provided by Wood (2003). We know that in using penalisation the choice of n is not
critical but it should be large enough to allow for the flexibility needed to fit the
underlying rate function. To monitor whether we have enough flexibility we might
observe the value of the optimal penalty suggested by our algorithm, θ⋆. If θ⋆ is very
small this suggests we are not penalising the fit of the model much and the choice of n
is too small. It is however hard to give a general value for a ‘small’ penalty; this is likely
to be context specific. As an alternative Wood (2003) suggests comparing the effective
degrees of freedom of the model with and without penalisation. By introducing a
penalty to (2) we reduce the degrees of freedom in the model, so if the effective degrees
of freedom after penalisation is close to the effective degrees of freedom without any
penalisation (when θ = 0) this suggests that penalisation was not required, and thus
that n was too small. In practice Wood (2003) suggests increasing n if the effective
degrees of freedom of the penalised model exceed some proportion between 0.8 to 0.9
of n. In all of the experiments in Section 5 this was either checked or used as a guideline
to choose n.

At this point we have provided a spline-based representation, λ(t; ĉccθ⋆), of the rate
function of a NHPP.

4. Generating arrivals from the spline rate function

Arrival generation is a requirement for the spline-based rate function to be used as an
input process in stochastic simulation. As we directly model the rate function, thinning
(or rejection) is arguably the most appropriate method for arrival generation. For thin-
ning some majorising function is required; see Devroye (2006). The overall maximum
of a spline made of component B-splines is not straightforward to calculate, but we do
know the maximum of each B-spline function. We therefore propose generating arrivals
from λ(t; ĉccθ⋆) by using a thinning algorithm on each of the scaled B-spline components,
λk(t) = ckBk(t), for k = 1, 2, . . . , n. By the superposition property of a Poisson pro-
cess, the superposition of arrivals generated from each of the n scaled B-splines is
equivalent to arrivals generated from the spline function λ(t) =

∑n
k=1 ckBk(t); see
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(Kingman, 1992). In essence we are treating each of the scaled B-splines as the rate
function of a NHPP. The kth cubic B-spline has a maximum at its central knot, sk−2;
thus the maximum of the kth scaled B-spline is ckBk(sk−2).

Let us first consider the generation of arrivals from a single scaled B-spline,
λd+1(t) = λ4(t) = c4B4(t), with maximum at knot sd+1−2 = s2, as B4(t) is the
first cubic B-spline with fully positive support [0,s4]. Let B⋆

4(t) denote a function
that majorises the cubic B-spline such that B⋆

4(t) ≥ B4(t) for all t ∈ [0, s4]; a sim-
ple choice of majorising function is B⋆

4(t) = maxtB4(t) = B4(s2) for t ∈ [0, s4]. The
scaled majorising function, c4B

⋆
4 , therefore majorises the scaled B-spline, c4B4(t). Us-

ing thinning, an arrival at time q⋆ generated from c4B
⋆
4(t) has probability of rejection

1 − B4(q
⋆)/B⋆

4(q
⋆). Thinning can be used in the same way to generate arrivals from

the remaining k = 2, . . . , n scaled B-splines.
By using cardinal B-splines, arrival generation can be simplified further as each of

the n spline components, λk(t;ccc), are a scaled translation of any other. Let h denote
the uniform difference between two successive knots, then λk(t;ccc) = ckB4(t−h(k−4))
for all k. This means we can use the first B-spline, scaled by each of the spline
coefficients in turn, to generate all arrivals and then translate the arrivals to the
correct interval. The following algorithm provides an overview of how to gener-
ate a sequence of arrivals, q1, q2, . . . , from a spline-based rate function constructed
from cardinal B-splines. To avoid excessive rejections arrival generation for B-splines
B1(t), B2(t), B3(t), Bn−2(t), Bn−1(t) and Bn(t) is restricted to the part of their support
that falls within the interval of interest [0, T ].

(0) Preliminary Step. Let h be the difference between any two knots in the uniform
knot sequence of the spline function.

(1) For j in 1 to n:
(a) Generate arrivals q⋆1j , q

⋆
2j , . . . from the scaled majorising function cjB

⋆
4(t).

If 1 ≤ j ≤ 3 then restrict arrival generation to the interval [s4−j , s4]. If
n− 2 ≤ j ≤ n then restrict arrival generation to the interval [s0, sn−j+1].

(b) Thin arrivals, q⋆1j , q
⋆
2j , . . . , with probability of thinning 1 − B4(·)

B⋆
4 (·)

, leaving

arrivals q1j , q2j , . . . from NHPP with rate function cjB4(t).
(c) Translate the arrivals to the jth B-spline knot sequence by adding h×(j−4)

to each of the arrival times in turn.
(2) Superpose and sort the arrivals from the n B-splines.

This algorithm can be repeated if more than a single sequence is required. To deploy the
algorithm the user will require storage capacity of the order of the expected number of
arrivals. If the arrival rate is extremely high this may impose a demand on memory re-
sources, but even tens of thousands of arrivals would not tax modest memory resources.
Another consideration is the potential expense of sorting the arrivals that takes place
in the last step of the algorithm. By generating the arrivals in an ordered way (from
the first B-spline to the last) the arrivals will be pretty well ordered before sorting. We
therefore do not expect this sort to be computationally prohibitive even when large
numbers of arrivals are generated. An R package with the functionality to fit and gen-
erate arrivals from a spline-based rate function was developed alongside this project.
This package is available on GitHub at www.github.com/morganle/NHPPspline (Mor-
gan, Titman, Worthington, & Nelson, 2020).

Reducing the number of arrivals rejected within the thinning algorithm will increase
its efficiency. This is particularly important in simulation experiments requiring the
generation of a large number of arrivals. To this end we propose using our knowledge
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of the shape and maximum of each B-spline to create a tighter majorising function.
For the algorithm above this simply amounts to creating a single majorising function
for B4(t). To retain the advantages of thinning, arrival generation from the proposed
majorising function should be simple and efficient. Klein and Roberts (1984) propose
a highly efficient and simple method for generating arrivals from a piecewise-linear
rate function based on inversion. We therefore propose a piecewise-linear majorising
function for B4(t). The ratio of the area under the majorising function to the area
under the B-spline is an indicator of how tight the fit of a majorising function is with
1 being perfect agreement. This ratio can be interpreted as the expected number of
possible arrivals needed to generate one arrival from the function of interest.

For illustration consider a majorising function with 5 piecewise-linear segments.
Due to the symmetry of the B-spline we need only focus on the first and second
segments; the third segment is a horizontal line at the B-spline maximum B4(s2).
Once the tangent point at which the second segment touches the B-spline has been
selected, optimising the majorising function amounts to a one-dimensional search for
the optimal position of the point joining the first and second piecewise-linear segments.
Figure 1 illustrates both a constant majorising function (red), and our optimised 5
segment piecewise-linear majorising function (blue) for B-spline B4(t) (black). The
ratio of the area under the B-spline to the area under the constant majorising function
is 2.67, and is 1.07 for the piecewise-linear majorising function; a large improvement.
Using more segments in the construction of the piecewise-linear majorising function
could reduce this ratio further, but a ratio of 1.07 is already a very efficient algorithm.

Figure 1. B-spline B4(t) (black) plus, a piecewise-constant majorising function (red) and a piecewise-linear
majorising function (blue).

5. Evaluation

In this section we evaluate our spline-based input modelling method by comparing it
to two input modelling methods that have recently been presented in the literature
in a controlled experiment where all true intensities are known. We also compare
the methods in terms of how much input modelling error they pass to the output of a
controlled simulation experiment. Finally we investigate the robustness of the methods
for fitting the rate function of an input process when the observations are under- or
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overdispersed in comparison to a Poisson process.
The chosen methods for comparison also allow estimation of the rate function of

a Poisson process given arrival-time observations. These methods are the piecewise-
quadratic input model presented by Chen and Schmeiser (2017), known as MNO-
PQRS, and the piecewise-linear approach by Zheng and Glynn (2017).

A practical example of using the spline-based method for modelling arrivals to an
A&E department is provided in Morgan (2019).

5.1. Recovering the rate function

Our first comparison considers metrics that indicate how well the true rate function,
λc(t), is recovered. We use the average percentage discrepancy (APD), δ, and the
maximum percentage discrepancy (MPD), ζ,

δ =
1

T

∫ T

0

∣∣∣∣λ(q; ĉcc)− λc(q)

λc(q)

∣∣∣∣ dq
ζ = max

0≤q≤T

∣∣∣∣λ(q; ĉcc)− λc(q)

λc(q)

∣∣∣∣
which are also used by Liu, Kuhl, Liu, and Wilson (2019) for evaluating their method
for modelling nonhomogeneous non-Poisson processes. We also record the coefficient
of variation of the APD, denoted ι, as an indicator of the dispersion of the fit of each
method. For each level of input data, m, we fit the rate function G = 500 times.
The same m days of arrival observations were used for all three methods for each
replication. Average APD and average MPD over the G = 500 replications, denoted δ̄
and ζ̄ respectively, were recorded.

Both methods to which we compare assume that the number and position of the in-
tervals from which the piecewise intensities are built are known. Morgan et al. (2019b)
compared the three methods for a piecewise rate function with known interval bound-
aries in an experiment that was designed to be as advantageous to the competing
methods as possible. Nevertheless when the true rate function was piecewise-linear
the spline-based method performed well. In reality it is unlikely that the number and
position of the intervals are known, even if the function is truly piecewise-linear, which
is also unlikely. In fact, unless the rate function is truly piecewise it is impossible to say
what the optimal placement of the intervals is. We choose to utilise the data-driven
method by Chen and Schmeiser (2019) to pre-process each of the G = 500 data sets.
The method aims to identify the optimal number of equal length intervals k⋆ from
which to start the MNO-PQRS algorithm presented by Chen and Schmeiser (2017).

During the experiment the interval placement was the same for the piecewise-linear
and piecewise-quadratic methods in each replication. For the spline-based method, 50
equally spaced knots were used, equating to n = 46 B-spline basis functions. In the
majority of replications this led to effective degrees of freedom less than 0.8 times the
effective degrees of freedom of the unpenalised model indicating that n = 46 was ‘large
enough’ to represent the rate function. To look at this in more detail we follow this
experiment with an investigation of the penalty and effective degrees of freedom in
each experiment. In total 9 rate functions were considered for three levels of input data
totalling 27 experiments for each input modelling method. The rate functions followed
a general sinusoidal shape with the addition of a peak, see Figures 2 and 3 which show
G = 500 estimated rate functions for each of the three input modelling methods for
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two of the nine considered rate functions, one with a short sharp peak and the other
with a long duration peak. Within the following figures and tables the three input
modelling methods are denoted “SPL” (spline), “PQ” (piecewise-quadratic) and “PL”
(piecewise-linear). The results of all 27 experiments are listed in the supplementary
material available with this paper.

In all but one of the 27 experiments the spline-based method out-performed the
piecewise quadratic and the piecewise-linear approaches attaining the lowest average
MPD, ζ̄. The spline-based method also achieved the smallest average APD, δ̄, in all
but a few experiments where the rate function had a short duration peak. In these
cases MNO-PQRS achieved a smaller average APD by a small margin. Increasing the
number of basis functions would perhaps lead to a decrease in the APD for the spline-
based model given a rate function with an abrupt but brief change in behaviour. All
three methods struggled to estimate the short duration peak, as seen in Figure 2. As
peak duration increased the average MPD decreased for all methods for all levels of
data. In all experiments the location of the MPD tended to be at the centre of the
peak, time t = 15. In around 75% of cases the spline-based method achieved the lowest
coefficient of variation of the APD; this indicates the method has improved stability
compared to the piecewise methods.

As the number of sets of observations, m, increased all methods improved for both
metrics. In Table 1 we present the results of the two most extreme cases: one rate
function with a high magnitude but short duration peak, and one with a low magnitude
but long duration peak. Figures 2 and 3 show the fit of the G = 500 rate functions for
these two experiments when m = 30.

In Table 2 we compare metrics for the spline-based rate function for n = 23 and
n = 46 basis functions for the same rate functions used in Table 1. We expected to

Table 1. The average MPD, ζ̄, the average APD, δ̄, and the coefficient of variation of the APD, ι, for two of

the 27 rate functions.

m = 15, short sharp peak m = 100, long duration peak
ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 41.77% (0.23) 6.61% (0.09) 0.26 5.58% (0.07) 1.98% (0.03) 0.29
PQ 45.47% (0.13) 5.92% (0.09) 0.33 30.64% (0.13) 2.26% (0.03) 0.25
PL 48.97% (0.27) 13.15% (0.30) 0.51 28.29% (0.35) 10.86% (0.17) 0.36

Figure 2. G = 500 fits of the rate function with a short sharp peak (black) with m = 30 days
of input data. Left shows SPL (cyan), ecntre shows PQ (green) and right shows PL (red).
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Figure 3. G = 500 fits of the rate function with a long duration peak (black) with m = 30
days of input data. Left shows SPL (cyan), Centre shows PQ (green), and right shows PL
(red).

see a decrease in average penalty for lower n which would also be reflected in the
additional metric eθ/e0 describing the average proportion of the penalised effective
dof to the unpenalised effective dof. The intensities constructed using n = 23 were
slightly better able to recover the true rate function. They achieved slightly smaller
average APD, and in all cases but the ones with short high peaks the average MPD
was also smaller. When n = 46 the spline-based representation was more flexible and
therefore better able to represent the peak in the rate function. The improvement in
MPD from n = 23 to n = 46 became more evident as the number of days of data used
to fit the rate function, m, increased.

The impact of the short sharp peak in the experiments above brings into the question
the use of a single uniform penalty for the entire spline-based representation. Due to the
local nature of the B-spline basis functions it would be possible to penalise regions of
the rate function unequally allowing additional flexibility in local areas of the function.
We leave this as an idea for future work.

5.2. Propagation of input modelling error

At this point we have shown that the spline-based method recovers the true rate
function well. We now consider the propagation of input modelling error, caused by
the estimation of the rate function of a NHPP, to the output of a M(t)/M/∞ simulation
model. The output performance measure studied is the expected number of people in

the system, E(N̄), where N̄ = 1
T

∫ T
0 N(t)dt. The service rate µ is treated as known

so all input modelling error can be assumed to come from the arrival process. Input
modelling error can be broken down into bias caused by input modelling, b, and the

Table 2. The average MPD, ζ̄, the average APD, δ̄, the average penalty, θ̄, and the average proportion of
the penalised edof to the unpenalised edof, eθ/e0, used with our check on n, for two rate functions constructed

from n = 23 and n = 46 B-spline basis functions.

m = 15 short sharp peak m = 100 long duration peak

ζ̄ δ̄ θ̄ eθ/e0 ζ̄ δ̄ θ̄ eθ/e0
n = 23 42.66% 6.27% 12.44 0.34 5.52% 1.97% 20.13 0.35
n = 46 41.77% 6.61% 54.68 0.22 5.58% 1.98% 91.36 0.18
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variance caused by input modelling, or input uncertainty, σ2
I (Morgan, Nelson, Titman,

& Worthington, 2019a). We shall consider both components.
All 9 arrival processes introduced in Section 5.1 were considered for m = 15, 30, 100.

This gave a total of 27 experiments for us to compare the spline-based method to the
piecewise input modelling methods. The G = 500 fits of the rate function created for
the experiment in Section 5.1 were used as input to the simulation model. In each
simulation experiment r = 100 replications of the simulation were run, and the results
averaged to reduce the intrinsic error in the estimate of the expected number in the
system caused by random variation within the simulation.

Knowledge of the true rate function allowed us to estimate the bias caused by
input modelling, b, by comparing the output of the simulation run using the true rate
function to the output of the simulation run using λ̂(t), an estimated rate function
created using each of the three methods. Input uncertainty, σ2

I , was approximated by
subtracting the stochastic estimation error from the total simulation error given the
simulation output from the G = 500 estimated rate functions; see Nelson and Pei
(2021). Table 3 shows an average estimate of bias caused by input modelling, and
an estimate of the square root of input uncertainty for the two rate functions from
Table 1. For the spline we use n = 46 basis functions. In the supplementary material
available with this paper the results of all 27 experiments are presented.

In all 27 experiments the spline-based rate function achieved the lowest input un-
certainty variance, and in > 80% of experiments it also achieved the lowest average
bias caused by input modelling. When m = 100, the highest level of input data we
tested, the spline-based rate function propagated the least bias and variance caused
by input modelling to the simulation output. These results are a promising indication
that the spline-based input modelling method passes less input modelling error to the
output of a simulation model than rival methods.

5.3. Under and over-dispersed data

Our final consideration is to test the robustness of the methods to non-Poisson obser-
vations. Specifically, we consider both underdispersed and overdispersed data. Arrival
times were generated from a Markov-MECO process using the Markov-MECO-based
tool for generating nonhomogeneous non-renewal arrival processes presented by Nel-
son and Gerhardt (2011). The Markov-MECO-based tool allows the user to select a
target squared coefficient of variation, cv2, of the process. For Poisson distributed data
the squared coefficient of variation, cv2, equals 1, by definition of a Poisson process.
We consider underdispersed, cv2 = 0.5, and overdispersed, cv2 = 1.5 data for the 9
intensities investigated in Section 5.1; the averaged metrics from fitting G = 500 rate

Table 3. The estimate average bias caused by input modelling b̄ and an estimate of the square root of the

input uncertainty, σ̂I , for the fit of two rate functions. The expected number in the system having run the
simulation with the true rate function was 0.512 for both systems.

m = 15, short sharp peak m = 100, long duration peak

E(N̄) b̄ σ̂I E(N̄) b̄ σ̂I

SPL 0.502 0.010 0.049 0.515 0.004 0.045

PQ 0.479 0.033 0.074 0.482 0.030 0.076

PL 0.478 0.034 0.120 0.485 0.026 0.125
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functions are presented in Tables 4 and 5, respectively. We use n = 46 B-spline ba-
sis functions to fit the spline intensities, and the pre-processing method of Chen and
Schmeiser (2019) was again utilised to select the number of equal length intervals on
which to construct the intensities for the competing methods.

In Tables 4 and 5 the spline-based method gives the smallest average MPD for the
two experiments for both under and overdispersed data. This held for all bar one of the
27 experiments given underdispersed data and all of the experiments for overdispersed
data. When m = 100 in Tables 4 and 5 we see the spline-based method provides a
considerable improvement in average MPD.

The spline-based rate function also achieved the smallest APD in the majority of
experiments given underdispersed data, and in all but three of the experiments with
overdispersed data. Just as in the original experiment from Section 5.1, the spline-
based method appeared to perform worse in cases where the duration of the peak in
the rate function was shortest which reiterates that rate functions with short abrupt
peaks are a challenge for the spline-based method. This problem might be alleviated
by increasing the number of basis functions, n, in the spline function construction.

These results are promising as in most of the 27 experiments the spline-based
method outperforms the piecewise-quadratic method, MNO-PQRS, which is designed
for general, not specifically Poisson, input models. In all 27 experiments the piecewise-
linear approach performed worse than the spline-based rate function in terms of both
metrics. This may be partially due to our use of the MNO-PQRS pre-processing tech-
nique for the selection of the number of intervals from which to run the algorithm. A
bespoke algorithm to find the optimal choice of starting point for the piecewise-linear
method may have led to better results.

By considering the same rate functions presented in Section 5.1 we can directly
compare the results of the fit of the rate function for underdispersed, Poisson and
overdispersed data. Looking at the results in Tables 1, 4 and 5, it appears that all
methods perform worst when the arrivals are overdispersed; this held for all experi-
ments.

Within the parameters of this experiment we have demonstrated that when the
arrival data departs from Poisson, by being over- or underdispersed, the spline-based

Table 4. The average MPD, ζ̄, the average APD, δ̄, and the coefficient of variation of the integrated absolute
difference, ι, for the fit of two rate functions given underdispersed data.

cv2 = 0.5 m = 15, κ = 5, ξ = 1 m = 100, κ = 1, ξ = 10

ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 40.16% (0.25) 5.82% (0.07) 0.27 6.69% (0.09) 2.40% (0.04) 0.39

PQ 45.61% (0.11) 5.25% (0.07) 0.28 29.76% (0.11) 2.48% (0.04) 0.36

PL 48.97% (0.27) 13.14% (0.29) 0.51 28.29% (0.34) 10.86% (0.17) 0.36

Table 5. The average MPD, ζ̄, the average APD, δ̄, and the coefficient of variation of the integrated absolute

difference, ι, for the fit of two rate functions given overdispersed data.

cv2 = 1.5 m = 15, κ = 5, ξ = 1 m = 100, κ = 1, ξ = 10

ζ̄ (se) δ̄ (se) ι ζ̄ (se) δ̄ (se) ι

SPL 43.69% (0.23) 8.00% (0.13) 0.36 9.32% (0.14) 4.20% (0.10) 0.53

PQ 45.28% (0.18) 7.94% (0.14) 0.39 31.47% (0.18) 4.37% (0.10) 0.50

PL 50.10% (0.42) 15.81% (0.29) 0.42 28.74% (0.36) 10.53% (0.17) 0.36
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method performs well in terms of the metrics of average APD and average MPD
relative to the piecewise-quadratic and piecewise-linear methods. This indicates that
the spline-based input modelling approach is robust to arrivals that are under- or
overdispersed in comparison to a Poisson distribution. In the supplementary material
we report the proportion of times that the spline-based input model achieved the
smallest MPD, ζ, or APD, δ, compared to the piecewise-linear and piecewise-quadratic
input models across the G = 500 macro replications. With proportions exceeding 0.8
for the vast majority of cases, the spline-based method clearly performs very well.

6. Conclusion

In this paper we presented a spline-based method for modelling and generating arrivals
from a NHPP. In a controlled comparison to two recent methods in the literature, the
spline-based method was seen to perform very well in terms of recovering the true
rate function of a range of NHPPs. The spline-based rate function was also seen to
dominate its competitors in terms of how much input modelling error it passed to the
output of a simple M(t)/M/∞ queueing model.

Given both under and overdispersed arrivals compared to a Poisson process the
spline-based method performed very well at recovering the underlying rate function.
Within the constraints of the experiment the spline-based method for estimating λ(t)
appeared to be robust to non-Poisson data.

The other key contribution of the paper was a thinning-based method for simulating
arrivals from the resulting spline-based rate function. The method takes advantage
of the composition of the spline function as a linear combination of B-spline basis
functions with known maxima. We presented this method alongside an algorithm for
its implementation, and provide a link to an R package for its practical implementation.

In practice, arrival counts are sometimes recorded instead of arrival times. Our
method could be extended to work for arrival count data through a simple modification
of the log-likelihood. In the same way, provided an appropriate likelihood can be
derived, the penalised log-likelihood method could be extended for use with other non-
stationary non-Poisson arrival processes. We leave these extensions for future work.
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du Processus d’arrivée (Unpublished doctoral dissertation). Département d’Informatique
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