
Model Checking Access Control Policies: A Case Study

using Google Cloud IAM

Antonios Gouglidisa, Anna Kagiaa, Vincent C. Hub

aSchool of Computing and Communications, Lancaster University, Lancaster, LA1 4WA
Lancashire, U.K.

bComputer Security Division, NIST, 100 Bureau Drive, Gaithersburg, 2089
Maryland, U.S.A.

Abstract

Authoring access control policies is challenging and prone to misconfigura-
tions. Access control policies must be conflict-free. Hence, administrators
should identify discrepancies between policy specifications and their intended
function to avoid violating security principles. This paper aims to demon-
strate how to formally verify access control policies. Model checking is used
to verify access control properties against policies supported by an access
control model. The authors consider Google’s Cloud Identity and Access
Management (IAM) as a case study and follow NIST’s guidelines to verify
access control policies automatically. Automated verification using model
checking can serve as a valuable tool and assist administrators in assessing
the correctness of access control policies. This enables checking violations
against security principles and performing security assessments of policies for
compliance purposes. The authors demonstrate how to define Google’s IAM
underlying role-based access control (RBAC) model, specify its supported
policies, and formally verify a set of properties through three examples.

Keywords: Role-based access control, access control, authorization, policy
verification, temporal logic, NuSMV

1. Introduction

The objective of an access control system is to control and limit the ac-
tions or operations in a system that an authorized user or process can perform
on a set of resources [1, 2]. Access control is the process that checks all re-
quests to a system and takes a decision to grant or deny access based on a set

ar
X

iv
:2

30
3.

16
68

8v
1

 [
cs

.C
R

]
 2

9
M

ar
 2

02
3

of rules. This makes it an essential component in all computing systems. In
recent years, Cloud services have rapidly grown, rendering Cloud computing
a popular computing paradigm. It changed the way organizations obtain
IT resources and reduced costs significantly. As a result, Cloud computing
has received considerable attention from academia as well as industry. Ac-
cess control in the Cloud poses significant security challenges, e.g., secure
inter-operation [3], and supporting security assessment of policies [4].

Access control policies dictate who has what access to which resource and
thus it is important that these policies are error-free throughout their life-
cycle. However, in practice, policies often do not satisfy the desired security
requirements, and flaws in their specification can remain hidden and cause
observable harm when exploited. Indeed, [5] states that misconfigurations
in access control policies are one of the main reasons for security and pri-
vacy breaches due to potential inconsistencies. To eliminate unwanted access
control discrepancies, verifying and rigorously testing access control policies
before enforcing them in an operational environment is necessary. Neverthe-
less, the correct specification of access control policies is challenging since
it is difficult to identify discrepancies between policy rule specifications and
their intended functions for ensuring no violation of access control security
principles [6].

Although the integrated tools provided by Cloud providers can check
policies for errors, Cloud administrators have little control over the specifica-
tion of security requirements that can be formally verified in access control
policies. We anticipate that having an automated technique to verify the
correctness of access control policies against a set of desired security require-
ments would serve as a valuable tool for Cloud administrators. This may
assist in promptly identifying issues in the existing policies and provide in-
formation on how to exploit them. In this paper, we use an existing Identity
and Access Management (IAM) system (i.e., Google’s Cloud IAM) as a case
study to elaborate on how policies can be modeled and subsequently verified
against a set of user-defined properties.

The main contributions of this paper are:

• Demonstrate how we formally define the RBAC model of IAM based
on the limited publicly available information.

• Specify a transition system for the RBAC model and demonstrate how
to specify access control policies and properties in temporal logic.

2

• Verify user-defined properties in policy examples provided by Google
through the above methods.

In the rest of this paper, we review some of the related work in Section 2,
define Google’s Cloud IAM RBAC model in Section 3, specify a transition
system for the defined RBAC model and relevant properties in Section 4,
verify example policies in Section 5, and present concluding remarks in Sec-
tion 6.

2. Related Work

Zhang et al., [7] described the main Cloud access control models for
OpenStack, AWS, and Microsoft Azure Cloud platforms. They provided
a formal specification of these access control models and extended them to
include the capability of handling information and resource sharing across
tenants. Power et al., [8] presented two formal models of the access pol-
icy language used within the AWS Cloud computing infrastructure. They
followed a hybrid approach by using both the Z specification language and
the Alloy modeling language to test multiple policy properties and generate
and test candidate policies. Evangelidis et al., [9] proposed a probabilistic
verification scheme based on performance modeling and formal verification
of Cloud-based auto-scaling policies. To demonstrate the applicability of
their method, they used a validation process on Amazon EC2 and Microsoft
Azure, considering two different Cloud service models, i.e., IaaS and PaaS.
Others focused on the challenges faced by the Cloud computing growth and
conducted comparison studies between popular Cloud service providers, e.g.,
[10] compared Amazon EC2 and Microsoft Azure regarding how they deal
with the challenges of availability, resource scaling, data deletion, data lock-
in, and data security. Tajadod et al., [11] compared the same platforms
looking at the security of architecture and the application levels.

A number of papers address verification of access control policies and
several techniques have been reported in [5, 12, 13, 14, 15, 16, 17, 18]. Their
objectives are to look at methods that can check the correctness of policies.
In this paper, we demonstrate the application of a generic technique, follow-
ing NIST’s guidelines [5], which can verify access control properties against
policies supported by an access control model.

In addition to the aforementioned approaches, a few access control veri-
fication tools were developed [12, 19, 20, 21, 22] to facilitate policy-testing,

3

with Access Control Policy Tool (ACPT) [19] and Security Policy Tool (SPT)
[23] as representative examples. The NIST Computer Security Division de-
veloped ACPT in collaboration with the North Carolina State University
and University of Arkansas[24], and it is an implementation of the verifica-
tion method in [5]. Through a graphical user interface (GUI), it provides
templates for composing access control policies and properties and verify-
ing them using a symbolic model verification (SMV) checker, NuSMV [25].
Moreover, it provides a complete test suite generated by NIST’s combina-
torial testing tool ACTS [26] and generates XACML policy outputs of the
verified model. SPT provides the same fundamental functions as ACPT with
an extension of adding advanced features as a commercial product [23].

3. The RBACGCP Model

Cloud IAM is part of the Google Cloud Platform (GCP), allowing Cloud
administrators to control users’ access to resources. Hence, when enforcing
a policy, an organization can meet its regulatory and business objectives
[27]. ”Cloud IAM manages access control by defining who (identity) has
what access (role) for which resource” [28]. A high-level description of the
RBAC model used in Google’s Cloud IAM is available. Although its formal
definition is not provided, Google documents its main entities, relations, and
main operations. We formally define an access control model for Cloud IAM
by following publicly available information and specify it based on the ANSI
INCITS 359-2012 RBAC [29], which provides a solid foundation for defining
role-based models. The following sections provide formal definitions of the
main elements and functionalities of the model. Henceforth, we refer to the
GCP RBAC model as RBACGCP .

3.1. Model Description

The RBACGCP model consists of eight elements: MEMBERS, ROLES,
PERMISSIONS, RESOURCES, SERVICES, VERBS, POLICIES, and CON-
DITIONS. It binds MEMBERS to ROLES and ROLES to PERMISSIONS
instead of assigning PERMISSIONS directly to MEMBERS [28]. Figure 1
illustrates the relation of RBACGCP elements. A MEMBER representing a
human user or autonomous entity can access RESOURCES through a ROLE
representing a job function described by a collection of PERMISSIONS. PER-
MISSIONS determine what VERBS (i.e., operations) are allowed on a sys-
tem’s RESOURCE (e.g., Compute Engine instances, Cloud Storage buckets).

4

A POLICY is a collection of ROLE bindings, which bind one or more MEM-
BERS to individual ROLES. CONDITIONS assigned on ROLE bindings are
logical expressions based on Google’s Common Expression Language (CEL)
and assigned on ROLE bindings.

Typically, in Cloud IAM, MEMBERS can be of the following type: Google
account, Service account, Google group, G Suite domain, or Cloud Identity
domain [28]. ROLES can be Primitives, Predefined, or Custom. Primitives
are the three concentric roles that have always existed in the GCP console:
the Owner, Editor, and Viewer ROLES. The Owner ROLE contains the
PERMISSIONS of the Editor, and the Editor ROLE includes the Viewer’s
PERMISSIONS. Google creates and maintains predefined roles and can pro-
vide granular access to specific GCP resources. Each product in the Google
Cloud platform has its predefined role since different types of operations ap-
ply to different resources. A particular kind of role in Cloud IAM is Custom,
which allow administrators to combine one or more PERMISSIONS and cre-
ate unique ROLES that satisfy their organizations’ needs when predefined
ROLES are insufficient. Custom roles can only be granted within the Organi-
zation and cannot be used to grant PERMISSIONS on RESOURCES owned
by a different Organization. Maintaining custom roles poses a challenge for
administrators in creating potential security risks despite their flexibility.
These ROLES are user-defined, therefore, not maintained by Google. Also,
they are not automatically updated when an administrator adds new per-
missions, features, or services to the GCP [30]. Consequently, administrators
must always keep up with the changes and ensure that any new functionality

Figure 1: The RBACGCP model.

5

is consistent with the existing access control policies so as not to violate the
security principles of the Organization. This task is challenging and can be
highly complex and time-consuming [31].

PERMISSIONS in Cloud IAM are tuples<service>, <resource>, <verb>
that describe using VERBS what OPERATIONS are allowed on a RE-
SOURCE. A PERMISSION is defined per SERVICE and RESOURCE since
every RESOURCE enables different OPERATIONS [28]. For example, the
PERMISSION ”storage.buckets.create” indicates creating a bucket in Cloud
Storage is permitted for the storage service. RESOURCES are the funda-
mental components that comprise the GCP services, the Compute Engine
instances (i.e., virtual machines), the App Engine services, the Cloud Stor-
age buckets, and the Cloud Pub/Sub topics [32]. RESOURCES in Cloud
IAM are hierarchical, as shown in Figure 2. Projects are the children of
the Folders, which are children of Organization, and the Resources are the
descendants of Projects at the lowest level. Folders is an optional grouping
mechanism.

POLICIES of Cloud IAM manage access to RESOURCES. A POLICY
is a collection of statements that define the BINDING of ROLES and MEM-

Figure 2: The Cloud IAM resource hierarchy (based on [33]).

6

BERS, as illustrated in Figure 3 [28]. BINDINGS can contain a CONDI-
TION, an expression that includes one or multiple logic statements that eval-
uate various conditional attributes, which is optional, and each role BIND-
ING may have only one. A BINDING without a CONDITION will always
grant the ROLE to the specified MEMBERS. A BINDING is valid if a CON-
DITION is evaluated to TRUE. CONDITIONS provide constraints based
either on the availability of a requested RESOURCE or on the situation of
the access request. Examples for the former are the RESOURCE type and
the RESOURCE name, and for the latter, the date/time of the request, the
expected URL path, and the destination IP address. The enforcement of
CONDITIONS can support attribute-based access control (ABAC) [34] to
enhance the RBACGCP model, allowing administrators to create more flex-
ible and efficient access control policies. For instance, they can grant access
to MEMBERS only during specified working hours and only for a specific
RESOURCE type with the desired access level [35].

POLICIES are hierarchical and follow the same path as the RESOURCE

Figure 3: The Cloud IAM bindings (based on [28]).

7

hierarchy in Figure 2. That means that the administrator can set a policy at
any level in the RESOURCE hierarchy (e.g., Organization, Folder, Project,
Resource level), and the children’s resources of that level can automatically
inherit it. RESOURCES always inherit the POLICIES of the parent RE-
SOURCE, and the inheritance is transitive through the hierarchical path.
Therefore, RESOURCES inherit the POLICIES of the Project; Projects in-
herit the POLICIES of the Folder, and Folders inherit the Organization’s
POLICIES. At each level, the effective policies (i.e., in the presence of a hi-
erarchy) are equal to the union of policies directly applied at the level and
POLICIES inherited from its ancestors. For instance, a POLICY used in
a Folder will also apply to Projects and RESOURCES under that Folder.
Note that the POLICY hierarchy will change if the RESOURCE hierarchy
is changed such that the PERMISSIONS that a child node inherited from
its original parent will be lost and replaced by the PERMISSIONS set at the
destination parent. RBACGCP has no sessions. Instead, a ROLE remains
dormant and not grantable if the respective SERVICE is not enabled. An ad-
ministrator can use custom ROLES to enforce the principle of least privilege
[36].

3.2. Model Definition

Following the notation used in the ANSI INCITS 359-2012 standard, we
formally define the core RBACGCP model as:

• MEMBERS ,ROLES , SERVICES ,RESOURCES ,VERBS , CONDITIONS
are sets of members, roles, services, resources, verbs, and conditions,
respectively;

• BINDING is a binding, such as BINDING ⊆ MEMBERS × ROLES × CONDITIONS
is a many-to-many mapping relation of MEMBERS , ROLES and CONDITIONS
assignment. CONDITIONS are optional;

• PERMISSIONS = 2 (SERVICES×RESOURCES×VERBS) is a set of permis-
sions;

• PA ⊆ PERMISSIONS × ROLES is a many-to-many mapping of PERMISSIONS
to ROLES assignment;

• POLICIES ⊆ 2BINDING is the set of policies, i.e., a single policy is a
set of bindings.

8

4. Model and Properties Specification

This section elaborates on the model checking technique for verifying
RBACGCP policies. The process is compliant with NIST’s guidelines [5].
Specifically, we define the RBACGCP model using a transition system (TS).
And verify example policies using temporal logic specifications for demon-
stration purposes.

4.1. A Transition System for RBACGCP

Model checking is a formal verification technique that can be applied to
verify the correctness of models and detect faults in model specifications. It
takes a finite-state model and checks it against specified properties expressed
using temporal modalities, linear temporal operators, and path quantifiers.
To achieve this, we define access control rules in a transition system for the
RBACGCP , as follows.

Definition 1. An access control rule is an implication of c → d, where
constraint c is a predicate expression of the form:

(
∨

MEMBER = mbrs) ∧ (
∨

ROLE = role) ∧ (
∨

PERMISSION = prms)
∧ (

∨
RESOURCE = rscs) which when true implies the access control de-

cision d, i.e., decision = Grant or decision = Deny , where mbrs ∈ MEMBERS ,
role ∈ ROLES , prms ∈ PERMISSIONS , and rscs ∈ RESOURCES . The
symbol of

∨
denotes that more than one formula may be present, e.g.,∨

MEMBER = mbrs could be MEMBER = mbrs1 ∨ MEMBER =
mbrs2∨. . .∨MEMBER = mbrsn, where mbrs1, . . . ,mbrsn ∈MEMBERS.

Definition 2. An RBACGCP access control property prop is an impli-
cation formula of ∀�(c → ∀♦d), where c is the cause and d is the effect
(response property pattern). Both � and ♦ are elementary temporal modal-
ities for ”always” and ”eventually”, respectively, and ∀ means ”for all paths”
(Computation Tree Logic (CTL) semantics) [37].

Definition 3. The transition system TS for the RBACGCP model is
expressed as a tuple (S,Act, δ, i0) where:

• S is a set of system states, S = {Grant,Deny};

• Act is a set of actions, where Act = {((
∨
MEMBER = mbrs) ∧

(
∨
ROLE = role)∧(

∨
PERMISSION = prms)∧(

∨
RESOURCE = rscs)→

decision = Grant), . . .}

• δ is a transition relation, where δ : S × Act→ S;

9

• i0 is the initial state, i0 = {Deny}.

Access control rules define the system’s behavior, which functions as the
transition relation δ in TS. In other words, a transition system specifies how
a system can evolve from one state to another when the transition relation
is applied, i.e., an action Act is performed on a state S to bring the system
to the next state of S. To verify RBACGCP access control properties using
a temporal logic formula, we say that model TS satisfies prop by TS |= prop
i.e., TS |= ∀�(c→ ∀♦d) from Definition 2.

4.2. Specification of Properties

The transition system describes the system’s behavior, which can be used
for verifying properties [38]. The verification shows if the access control policy
is correctly specified and according to the security requirements. Specifically,
model checking performs exhaustive testing of all behaviors of the model. It
can verify if the defined properties hold or not throughout the model’s behav-
iors (i.e., system states). In the RBACGCP model, properties are expressed
as (based on Definition 2; conditions are optional):

∀�((MEMBER = m ∧ROLE = r∧
PERMISSION = prms∧
RESOURCE = rsrc∧
CONDITION = value)→
∀♦(decision = Grant ∨Deny))

Different specifications can be expressed depending on the values used
in the predicates forming the property above. Consequently, we can define
several different logical representations of the response pattern property using
the same CTL formula.

5. Verification of Example Policies

This section demonstrates using examples from Google’s Cloud IAM web-
site [33] how to verify RBACGCP policies. The examples show how the POL-
ICY inheritance works in the Cloud IAM platform. We use these examples for
their diversity in terms of used RESOURCES, MEMBER types, structural
complexity, number of PERMISSIONS per ROLE, and level of a hierarchy
of access control policy rules. The NuSMV code of all three examples are
available on GitHub [39].

10

We assign values m, r, prms, rsrc, value to the parameters MEMBER,
ROLE, PERMISSION , RESOURCE, and CONDITION , respectively,
following the CTL formula in Section 4.2 to specify properties. CONDITION
is optional and not used in the examples. The ANY value is introduced for
all variables as a wild card. The response property is written as: AG(c →
AF (d)), where G is an equivalent symbol used instead of �, and F instead
of ♦. A represents the universal path quantifier ∀. So, we can rewrite access
control properties in NuSMV as:

AG((MEMBER = m&ROLE = r&

PERMISSION = prms&

RESOURCE = rsrc&

CONDITION = value)→
AF (decision = Grant | Deny)).

The model checker creates all system model states and evaluates whether
the policy model satisfies the specified properties. If it does, there are no
errors from the output of NuSMV. Otherwise, a counterexample is generated,
which details why the model fails to satisfy a property.

5.1. Example 1: Cloud Pub/Sub

The first example [33] uses Cloud Pub/Sub RESOURCES, which are top-
ics under a Project. As illustrated in Figure 4, topic a resides in project a.
The Cloud IAM platform manages two Google accounts, i.e., bob@gmail.com
and alice@gmail.com. We assume that the POLICY pl1 is set on project a
to assign the ROLE of Editor (roles/pubsub.editor) to bob@gmail.com and
POLICY pl2 is set on topic a to assign the ROLE of Publisher (roles/pubsub.publisher)
to alice@gmail.com. Hence the two POLICIES that contain the rules are
(based on Definition 1):

POLICY for bob@gmail.com:

pl1 :MEMBER = ”bob@gmail.com”&

ROLE = ”roles/pubsub.editor”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”project a”→
(decision = Grant)

POLICY for alice@gmail.com:

11

Table 1: Example 1 - Authorized roles per member and resource.

Resource
Authorized role

bob@gmail.com alice@gmail.com

project a Editor No access
topic a Editor Publisher

pl2 :MEMBER = ”alice@gmail.com”&

ROLE = ”roles/pubsub.publisher”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”topic a”→
(decision = Grant)

As RESOURCES always inherit the POLICIES of the parent RESOURCE,
topic a inherits the POLICY from project a. Hence, we introduce an addi-
tional POLICY pl′1 for topic a to assign the Editor ROLE roles/pubsub.editor
to bob@gmail.com, as follows:

pl′1 :MEMBER = ”bob@gmail.com”&ROLE = ”roles/pubsub.editor”&

(PERMISSION = prms1 | · · · | prmsn)&RESOURCE = ”topic a”→
(decision = Grant))

Ultimately the effective policy for topic a will be the union of the POLI-
CIES directly applied to topic a and the POLICIES inherited from its an-
cestors.

The respective NuSMV code for the POLICIES and the transition system
is available in Example 1 on GitHub [39]. As a result, the ROLE assignments
for each MEMBER per RESOURCE are shown in Table 1.

After expressing POLICIES and the RBACGCP TS, the policy properties
should be specified for verification in the model checker. When a specifica-
tion is evaluated to be TRUE, there is no error to report, i.e., the specified
property is satisfied by the model. On the other hand, when the specified
property is not satisfied and evaluated to be FALSE, the model checker pro-
vides a counterexample to justify the result. For example, the NuSMV spec-
ification to check if alice@gmail.com has the publisher ROLE for project a
at the Projects hierarchy level is:

12

Figure 4: Example 1 - Cloud Pub/Sub (based on [33]).

SPEC AG ((MEMBER = "alice@gmail.com") &

(ROLE = "roles.pubsub.publisher") &

(PERMISSION = ANY) & (RESOURCE = "project_a") -> AF decision = Grant)

The above will be evaluated to be FALSE since alice@gmail.com is as-
signed to ROLE Publisher on topic a, and according to RBACGCP POLICY,
she cannot access project a because it resides in a higher level.

A NuSMV specification to check if alice@gmail.com has the pubsub.topics.publish
PERMISSION on project a at Projects hierarchy level can be written:

SPEC AG ((MEMBER = "alice@gmail.com") &

(ROLE = ANY) &

(PERMISSION = "pubsub.topics.publish") &

(RESOURCE = "project_a") -> AF decision = Grant)

The above will be evaluated to be FALSE since alice@gmail.com has
the PERMISSION pubsub.topics.publish, for her Publisher ROLE only on
topic a, but not on project a that resides on a higher level.

13

Lastly, to check if alice@gmail.com has the PERMISSION pubsub.topics.delete
on topic a at Resources hierarchy level, we write:

SPEC AG ((MEMBER = "alice@gmail.com") &

(ROLE = ANY) &

(PERMISSION = "pubsub.topics.delete") &

(RESOURCE = "topic_a") -> AF decision = Grant)

Although alice@gmail.com has the ROLE Publisher on topic a she does
not have the PERMISSION pubsub.topics.delete since an assignment is miss-
ing between that ROLE and the PERMISSION; hence, it is evaluated to be
FALSE.

In all three specifications, the result of the verification isRBAC.decision =
Deny without a next state, which indicates that they can never be satisfied,
according to the RBACGCP POLICIES. The model checker could not find
any system state where the property verified to be TRUE for the access
permission Grant to happen.

5.2. Example 2: Cloud Storage

The second example [33] uses Cloud Storage RESOURCES called buckets.
The bucket upload here belongs to the Project project a of the Organization
example.com and is used to store files uploaded from GCP users (see Fig-
ure 5). Many users can use the same bucket to upload files; thus, it requires
that no user can delete any of the files uploaded by other users. However,
the data processing expert should be able to gain or delete anyone’s files.

We assume that alice@example.com is the Google account of the data
processing expert and data uploaders@example.com is the group account
of users who upload files to the bucket. The group has three MEMBERS:
jane@example.com, harry@example.com, and bob@example.com. To achieve
the security requirements, a POLICY is set on project a to assign the Storage
Object Admin ROLE (roles/storage.objectAdmin) to alice@example.com,
and a second POLICY is set on project a to assign the Storage Object Cre-
ator ROLE (roles/storage.objectCreator) to data uploaders@example.com.
These ROLES should allow alice@example.com to upload or delete any ob-
ject in any bucket in project a, while the MEMBERS of data uploaders@example.com
should be allowed to upload files. The two POLICIES will look as follows:

POLICY for alice@example.com:

14

pl1 :MEMBER = ”alice@example.com”&

ROLE = ”roles/storage.objectAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&RESOURCE = ”project a”→
(decision = Grant)

POLICY for data data uploaders@example.com:

pl2 :(MEMBER = ”data uploaders@example.com” | ”jane@example.com” |
”bob@example.com” | ”harry@example.com”)&

ROLE = ”roles/storage.objectCreator”&

(PERMISSION = prms1 | · · · | prmsn)&RESOURCE = ”project a”→
(decision = Grant)

POLICY pl2 applies to project a for every group MEMBER, which as-
signs the Storage Object Creator ROLE to jane@example.com, harry@example.com
and bob@example.com, as well.

Bucket upload here inherits POLICIES from its parent RESOURCE project a.
POLICIES pl1 and pl2 will then be defined and populated to the transition
system of the RBACGCP model. Although the bucket has no defined POLI-
CIES, these two POLICIES will apply on upload here (due to hierarchy) such
that the Storage Object Admin ROLE is assigned to alice@example.com on
upload here, and the Storage Object Creator ROLE is assigned to data uploaders@example.com
for upload here, as follows:

pl′1 :MEMBER = ”alice@example.com”&

ROLE = ”roles/storage.objectAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”upload here”→
(decision = Grant)

and

15

Figure 5: Example 2 - Cloud Storage (based on [33]).

pl′2 :(MEMBER = ”data uploaders@example.com” | ”jane@example.com” |
”bob@example.com” | ”harry@example.com”)&

ROLE = ”roles/storage.objectCreator”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”upload here”→
(decision = Grant)

Ultimately, the effective POLICIES at project a and upload here will be
the union of the POLICIES directly applied to them and the POLICIES
inherited from their ancestors.

Table 2 shows the ROLES assigned to each MEMBER per RESOURCE.
The respective NuSMV code for the POLICIES and the transition system

16

Table 2: Example 2 - Authorized roles per member and resource.

Resource
Authorized role

alice@example.com
data uploaders@example.com
jane harry bob

example.com No access No access
project a Storage Object Admin Storage Object Creator
upload here Storage Object Admin Storage Object Creator

is available on GitHub [39], under Example 2. After expressing POLICIES
and the TS of the RBACGCP in NuSMV, we specify the policy properties
to be verified by the model checker. The following explains the evaluation of
specifications.

Four of the example properties will be evaluated to be FALSE as follows.

SPEC AG ((MEMBER = "data_uploaders@example.com") &

(ROLE = ANY) & (PERMISSION = "storage.objects.delete") &

(RESOURCE = ANY) -> AF decision = Grant)

This property is FALSE since the group of data uploaders@example.com
does not have the permission storage.objects.delete on any RESOURCE.

SPEC AG ((MEMBER = "alice@example.com") &

(ROLE = ANY) & (PERMISSION = ANY) &

(RESOURCE = "example.com") -> AF decision = Grant)

This property was also evaluated to be FALSE since we assigned alice@example.com
to the Storage Object Admin ROLE on project a, and from the RESOURCE
hierarchy, it has no access on example.com in a higher level.

SPEC AG ((MEMBER = ANY) & (ROLE = ANY) &

(PERMISSION = "storage.objects.delete" |

PERMISSION = "storage.objects.update") &

(RESOURCE = "example.com") -> AF decision = Grant)

The above property is evaluated to FALSE since, according to RBACGCP

RESOURCE hierarchy, none of the MEMBERS have the PERMISSION
storage.objects.delete or storage.objects.update on example.com because we
assigned them to project a that resides in a lower level.

17

SPEC AG ((MEMBER != "alice@example.com") &

(ROLE = ANY) & (PERMISSION = "storage.objects.create") &

(RESOURCE = ANY) -> AF decision = Deny)

This property is also FALSE since MEMBERS (different than alice@example.com)
have the PERMISSION storage.objects.create on a RESOURCE at the RE-
SOURCE hierarchy level. Group MEMBERS data uploaders@example.com
have PERMISSION for its assignment for the Storage Object Creator ROLE
on project a that resides at a higher level.

The verification of the first three specifications result is RBAC.decision =
Deny without a next state, which indicates that these properties can never
be satisfied in the RBACGCP model. The model checker NuSMV could
not find any system state where the property would be evaluated to be
TRUE so that it could eventually cause the access permission Grant to
happen. Similarly, the verification of the fourth specification results in
RBAC.decision = Grant; hence, it is invalidated too.

5.3. Example 3: Compute Engine

The third example [33] uses Compute Engine RESOURCES, which are
virtual machines (VM) hosted on Google’s infrastructure. For this example,
the organization example.com, owns two projects, project 1 and project 2.
And RESOURCES instance a and instance b belong to each project respec-
tively, as illustrated in Figure 6. Assuming that bob@example.com is a MEM-
BER of the administrator’s team that manages the network and security RE-
SOURCES of the Organization, and alice@example.com is a MEMBER of
the development team. bob@example.com is capable of making changes to
all network RESOURCES and any project under it, and alice@example.com
should be allowed to launch instances and carry out other actions related
to instances related to her project. Such security requirements are imple-
mented by the POLICY on example.com that assigns the Compute Net-
work Admin ROLE (roles/compute.networkAdmin) to bob@example.com
and a second POLICY on project 2 that assigns the Compute Instance Ad-
min ROLE (roles/compute.instanceAdmin) to alice@example.com. The
two POLICIES are:

POLICY for bob@example.com:

18

Figure 6: Example 3 - Compute Engine (based on [33]).

pl1 :MEMBER = ”bob@example.com”&ROLE = ”compute.networkAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&RESOURCE = ”example.com”→
(decision = Grant)

POLICY for alice@example.com:

pl2 :MEMBER = ”alice@example.com”&

ROLE = ”roles/compute.instanceAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”project 2”→
(decision = Grant)

Since project 1 and project 2 inherit the POLICIES of example.com,
once we define POLICY pl1, we introduce the following POLICIES for the
Compute Network Admin ROLE (roles/compute.networkAdmin) to be as-
signed to bob@example.com on project 1 and project 2, as follows:

POLICY for bob@example.com on project 1:

19

pl1.1 :MEMBER = ”bob@example.com”&

ROLE = ”roles/compute.networkAdmin”&

(PERMISSION = prms1| . . . |prmsn)&

RESOURCE = ”project 1”→
(decision = Grant)

POLICY for bob@example.com on project 2:

pl1.2 :MEMBER = ”bob@example.com”&

ROLE = ”roles/compute.networkAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”project 2”→
(decision = Grant)

RESOURCES instance a and instance b also inherit their parent re-
sources’ POLICY project 1 and project 2, respectively. The Compute Net-
work Admin ROLE (roles/compute.networkAdmin) is assigned to bob@example.com
on instance a and instance b, and the Compute Instance Admin ROLE
(roles/compute.instanceAdmin) is assigned to alice@example.com only on
instance b. The introduced POLICIES are:

POLICY for bob@example.com on instance a:

pl′1.1 :MEMBER = ”bob@example.com”&

ROLE = ”roles/compute.networkAdmin”&

(PERMISSION = prms1| . . . |prmsn)&

RESOURCE = ”instance a”→
(decision = Grant)

POLICY for bob@example.com on instance b:

pl′1.2 :MEMBER = ”bob@example.com”&

ROLE = ”compute.networkAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”instance b”→
(decision = Grant)

POLICY for alice@example.com on instance b:

20

Table 3: Example 3 - Authorized roles per member and resource

Resource
Authorized role

bob@example.com alice@example.com
example.com Compute Network Admin No access
project 1 Compute Network Admin No access
project 2 Compute Network Admin Compute Instance Admin
instance a Compute Network Admin No access
instance b Compute Network Admin Compute Instance Admin

pl′2 :MEMBER = ”alice@example.com”&

ROLE = ”roles/compute.instanceAdmin”&

(PERMISSION = prms1 | · · · | prmsn)&

RESOURCE = ”instance b”→
(decision = Grant)

Ultimately, the effective POLICIES on every RESOURCE are the union
of the POLICIES directly applied to the RESOURCE and the POLICIES
inherited from its ancestors.

Table 3 shows the ROLES assigned to each MEMBER per RESOURCE.
The NuSMV code for the properties specification of this example is avail-

able on GitHub [39], under Example 3.

SPEC AG ((MEMBER = "alice@example.com") &

(ROLE = ANY) &

(PERMISSION = "compute.instances.create") &

(RESOURCE = "project_1") -> AF decision = Grant)

This property will be evaluated to FALSE since alice@example.com has
the PERMISSION compute.instances.create assigned to the Compute In-
stance Admin ROLE, but not on project 1 that resides in a different branch
of the RESOURCE hierarchy. ROLES do not affect peer RESOURCES.

SPEC AG ((MEMBER = ANY) &

(ROLE = "roles/compute.instanceAdmin") &

(PERMISSION = ANY) & (RESOURCE = "instance_a") -> AF decision = Grant)

This property is FALSE since the Compute Instance Admin ROLE is
assigned to instance b.

21

SPEC AG ((MEMBER = ANY) & (ROLE = ANY) &

(PERMISSION = "compute.instances.create") &

(RESOURCE = "project_1") -> AF decision = Grant)

We have that bob@example.com has access to project 1, but his ROLE
(Compute Network Admin) does not contain that specific PERMISSION.
And alice@example.com has this PERMISSION because of her assigned
ROLE (Compute Instance Admin) on project 2, but not on project 1 in a
different branch of the RESOURCE hierarchy. Hence, the property is FALSE
since no one has the PERMISSION compute.instances.create on project 1.

In all three specifications, the result of the verification isRBAC.decision =
Deny, without a next state since the NuSMV model checker could not find
any system state where the properties is TRUE.

5.4. Summary of Examples

The first example used Cloud Pub/Sub RESOURCES and presented a
case of RESOURCE hierarchy between a Project and a topic. We considered
two different POLICIES for two MEMBERS, one on each RESOURCE. This
example demonstrates how the TS operates, and how properties are speci-
fied to check whether the hierarchy was implemented correctly. The second
example used Cloud Storage RESOURCES to demonstrate the enforcement
of two different POLICIES for two MEMBERS on the same RESOURCE.
One of the MEMBERS is a Google group account that allowed us to inves-
tigate how the applied technique handles this type of a MEMBER. Google
groups are a convenient way to apply organization access control policies and
a best practice for role distribution [33]. The third example used Compute
Engine RESOURCES, which allowed us to evaluate the security policies in
a more complex configuration where the resource structure contains more
branches and nodes. Various properties in each example were checked to
satisfy specific security requirements in compliance with Google’s proposed
best practices [33]. Overall, the applied technique successfully verified the
properties in all three examples; hence, offering the capability of a tool for
administrators to specify policies/properties and verify their correctness.

6. Conclusion

When defining policies in Cloud systems, it is imperative to understand
the underlying access control model and supported policies to avoid configu-
ration errors or even inconsistencies. Towards achieving this aim, we defined

22

RBACGCP to provide a better understanding of the RBAC model and poli-
cies supported by the Google Cloud IAM platform. The RBAC access control
model of Cloud IAM has a few differences compared to the ANSI standard
model. Specifically, the former supports permission inheritance through RE-
SOURCE hierarchies but not ROLE hierarchies. We applied model checking
to formally verify supported access control policies. And we demonstrated
the technique’s applicability through three examples described on the official
Google Cloud IAM website. We anticipate this work to assist system ad-
ministrators in ensuring the correctness of policy specification and checking
violations against security requirement [6] and, even further, performing a
security assessment of policies for compliance purposes [40].

Acknowledgement

The authors would like to thank Dr Andrew Sogokon at Lancaster Uni-
versity for his feedback. This research is supported in part by the Security
Lancaster VERIFi Mini-Project under grant number IRL1025.

References

[1] R. Sandhu, P. Samarati, Access Control: Principle and Practice, IEEE
communications magazine 32 (9) (1994) 40–48.

[2] D. Ferraiolo, D. R. Kuhn, R. Chandramouli, Role-based access control,
Artech House, 2003.

[3] V. Hu, M. Iorga, W. Bao, A. Li, Q. Li, A. Gouglidis, General Access
Control Guidance for Cloud Systems, Tech. rep., National Institute of
Standards and Technology (2020).

[4] L. Hadarean, One-click formal methods, in: 2020 IEEE 13th Inter-
national Conference on Software Testing, Validation and Verification
(ICST), 2020, pp. 1–1. doi:10.1109/ICST46399.2020.00009.

[5] V. C. Hu, R. Kuhn, D. Yaga, Verification and test methods for access
control policies/models, NIST Special Publication 800 (2017) 192.

[6] A. Gouglidis, I. Mavridis, V. C. Hu, Security policy verification for multi-
domains in cloud systems, International Journal of Information Security
13 (2) (2014) 97–111.

23

https://doi.org/10.1109/ICST46399.2020.00009

[7] Y. Zhang, R. Krishnan, F. Patwa, R. Sandhu, Access control in cloud
IaaS, Security, Privacy, and Digital Forensics in the Cloud (2019) 81.

[8] D. Power, M. Slaymaker, A. Simpson, On the modelling and analysis
of amazon web services access policies, in: M. Frappier, U. Glässer,
S. Khurshid, R. Laleau, S. Reeves (Eds.), Abstract State Machines,
Alloy, B and Z, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 394–394.

[9] A. Evangelidis, D. Parker, R. Bahsoon, Performance modelling and ver-
ification of cloud-based auto-scaling policies, Future Generation Com-
puter Systems 87 (2018) 629–638.

[10] A. Sleit, N. Misk, F. Badwan, T. Khalil, Cloud computing challenges
with emphasis on Amazon EC2 and windows azure, International Jour-
nal of Computer Networks & Communications 5 (5) (2013) 35.

[11] G. Tajadod, L. Batten, K. Govinda, Microsoft and Amazon: A compar-
ison of approaches to cloud security, in: 4th IEEE International Confer-
ence on Cloud Computing Technology and Science Proceedings, IEEE,
2012, pp. 539–544.

[12] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, M. C. Tschantz, Veri-
fication and change-impact analysis of access-control policies, in: Pro-
ceedings of the 27th international conference on Software engineering,
ACM, 2005, pp. 196–205.

[13] V. C. Hu, D. R. Kuhn, T. Xie, Property verification for generic access
control models, in: 2008 IEEE/IFIP International Conference on Em-
bedded and Ubiquitous Computing, Vol. 2, IEEE, 2008, pp. 243–250.

[14] A. Li, Q. Li, V. C. Hu, J. Di, Evaluating the capability and performance
of access control policy verification tools, in: MILCOM 2015-2015 IEEE
Military Communications Conference, IEEE, 2015, pp. 366–371.

[15] M. Aqib, R. A. Shaikh, Analysis and comparison of access control poli-
cies validation mechanisms, IJ Computer Network and Information Se-
curity 1 (1) (2015) 54–69.

24

[16] V. C. Hu, D. Ferraiolo, D. R. Kuhn, Assessment of access control sys-
tems, US Department of Commerce, National Institute of Standards and
Technology, 2006.

[17] G. Hughes, T. Bultan, Automated verification of access control policies
using a SAT solver, International journal on software tools for technology
transfer 10 (6) (2008) 503–520.

[18] T. S. Hoang, D. Basin, J.-R. Abrial, Specifying access control in event-b,
Technical report 624 (2009).

[19] J. Hwang, T. Xie, V. Hu, M. Altunay, ACPT: A tool for modeling and
verifying access control policies, in: 2010 IEEE International Symposium
on Policies for Distributed Systems and Networks, IEEE, 2010, pp. 40–
43.

[20] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, S. Chapin, Au-
tomatic error finding in access-control policies, in: Proceedings of the
18th ACM conference on Computer and communications security, ACM,
2011, pp. 163–174.

[21] D. Jackson, Alloy: a language & tool for relational models,
https://alloytools.org (Accessed: June 2022).

[22] E. Martin, J. Hwang, T. Xie, V. Hu, Assessing quality of policy proper-
ties in verification of access control policies, in: 2008 Annual Computer
Security Applications Conference (ACSAC), IEEE, 2008, pp. 163–172.

[23] InfoBeyond Technology LLC, Security Policy Tool: Access Con-
trol Security Policy Editing, Testing, Verification, and XACML
Deployment, https://securitypolicytool.com/Content/files/Technical-
overview.pdf (Accessed: June 2022).

[24] NIST, Access control policy testing,
https://csrc.nist.gov/Projects/Access-Control-Policy-Tool/ACPT
(Accessed: June 2022).

[25] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, S. Tonetta, The nuXmv symbolic model
checker, in: International Conference on Computer Aided Verification,
Springer, 2014, pp. 334–342.

25

[26] NIST, Combinatorial testing, https://www.nist.gov/programs-
projects/combinatorial-testing (Accessed: June 2022).

[27] Google, Cloud Cloud Platform - Security Products - Products and capa-
bilities, https://cloud.google.com/security/products/ (Accessed: Jan-
uary 2020).

[28] Google, Cloud Cloud Platform - Security Products - Overview,
https://cloud.google.com/iam/docs/overview (Accessed: January
2020).

[29] A. INCITS, INCITS 359-2004. role-based access control, American Na-
tional Standard for Information Technology (2017).

[30] Google, Understanding IAM custom roles,
https://cloud.google.com/iam/docs/understanding-custom-roles (Ac-
cessed: December 2019).

[31] Google, Cloud Cloud Platform - Security Products - Understand-
ing roles, https://cloud.google.com/iam/docs/understanding-roles (Ac-
cessed: January 2020).

[32] Google, Cloud Cloud Platform - Security Products - Resource hierar-
chy, https://cloud.google.com/resource-manager/docs/cloud-platform-
resource-hierarchy (Accessed: January 2020).

[33] Google, Cloud Cloud Platform - Security Products - Using resource hi-
erarchy for access control, https://cloud.google.com/iam/docs/resource-
hierarchy-access-control (Accessed: January 2020).

[34] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone, et al., Guide
to attribute based access control (abac) definition and considerations
(draft), NIST special publication 800 (162) (2013) 1–54.

[35] Google, Cloud Cloud Platform - Security Products - Overview of
Cloud IAM Conditions, https://cloud.google.com/iam/docs/conditions-
overview (Accessed: January 2020).

[36] Google, Cloud Cloud Platform - Security Products - Frequently asked
questions, https://cloud.google.com/iam/docs/faq (Accessed: January
2020).

26

[37] E. M. Clarke, B.-H. Schlingloff, Chapter 24 - model check-
ing, in: A. Robinson, A. Voronkov (Eds.), Handbook of
Automated Reasoning, Handbook of Automated Reasoning,
North-Holland, Amsterdam, 2001, pp. 1635–1790. doi:https:

//doi.org/10.1016/B978-044450813-3/50026-6.
URL https://www.sciencedirect.com/science/article/pii/

B9780444508133500266

[38] C. Baier, J.-P. Katoen, Principles of model checking, MIT press, 2008.

[39] A. Gouglidis, A. Kagia, Google Cloud IAM NuSMV examples,
https://github.com/agouglidis/GoogleIAM-NuSMV (Accessed: May
2022).

[40] M. Rochwell, Google cloud gets FedRAMP high tag,
https://fcw.com/articles/2019/12/06/google-cloud-fedramp-high.aspx
(Accessed: December 2019).

27

https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://doi.org/https://doi.org/10.1016/B978-044450813-3/50026-6
https://www.sciencedirect.com/science/article/pii/B9780444508133500266
https://www.sciencedirect.com/science/article/pii/B9780444508133500266

	1 Introduction
	2 Related Work
	3 The RBAC GCP Model
	3.1 Model Description
	3.2 Model Definition

	4 Model and Properties Specification
	4.1 A Transition System for RBAC GCP
	4.2 Specification of Properties

	5 Verification of Example Policies
	5.1 Example 1: Cloud Pub/Sub
	5.2 Example 2: Cloud Storage
	5.3 Example 3: Compute Engine
	5.4 Summary of Examples

	6 Conclusion

