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Abstract

The risk of neurodegenerative disorders increases with age, due to reduced vascular nutrition and impaired neural
function. However, the interactions between cardiovascular dynamics and neural activity, and how these interactions
evolve in healthy aging, are not well understood. Here, the interactions are studied by assessment of the phase coherence
between spontaneous oscillations in cerebral oxygenation measured by fNIRS, the electrical activity of the brain measured
by EEG, and cardiovascular functions extracted from ECG and respiration effort, all simultaneously recorded. Signals
measured at rest in 21 younger participants (31.1± 6.9 years) and 24 older participants (64.9± 6.9 years) were analysed
by wavelet transform, wavelet phase coherence and ridge extraction for frequencies between 0.007 and 4 Hz. Coherence
between the neural and oxygenation oscillations at ∼0.1 Hz is significantly reduced in the older adults in 46/176 fNIRS-
EEG probe combinations. This reduction in coherence cannot be accounted for in terms of reduced power, thus indicating
that neurovascular interactions change with age. The approach presented promises a noninvasive means of evaluating
the efficiency of the neurovascular unit in aging and disease.
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1. Introduction1

A healthy brain requires sufficient supplies of glucose2

and oxygen to function properly, and any impairment of3

the vasculature will affect their delivery to the target cells.4

The brain and cardiovascular system work closely together5

in a common endeavour to match energy supply to de-6

mand. Their intimate relationship is reflected in the con-7

cept of the neurovascular unit (NVU) (35), corresponding8

to consideration of the neurons, astrocytes, microglia, peri-9

cytes, endothelial cells and basement membrane as a single10

functioning entity. In the process of aging, the brain un-11

dergoes structural (16; 24) and functional changes, and so12

also does the cardiovascular system. Knowledge of healthy13

aging can aid understanding of the mechanisms of patho-14

logical aging, as age is the biggest risk factor in the etiology15

of neurodegenerative diseases, such as Alzheimer’s disease16

which appears to include accelerated aging of the brain17

(28).18

The neurophysiological changes in the aging brain have19

been well documented through measures of its electri-20

cal and magnetic activities using electroencephalogram21
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(EEG) and magnetoencephalogram (MEG) recordings, re- 22

spectively (31; 2; 34; 4; 22; 109; 88). Both the power of 23

brain waves, and the functional connectivity patterns in 24

the brain, have been shown to change with age. 25

The cardiovascular system is a closed system of vessels, 26

where blood circulates, cyclically pumped by the heart and 27

oxygenated by the lungs. It is well known that heart rate 28

variability (1) decreases with aging, whereas the blood 29

pressure (78; 76) increases. This has been linked to al- 30

tered cognition in healthy people below 70 years old (107), 31

thereby indicating the importance of a well-functioning 32

cardiovascular system for brain health. More local to the 33

brain, changes in cerebral blood oxygenation can be mea- 34

sured non-invasively using functional Near-Infrared Spec- 35

troscopy (fNIRS). Several investigations have found differ- 36

ences in oxygenation dynamics between younger and older 37

subjects, both in the resting state and during task activa- 38

tion (114). In elderly subjects, the power and connectiv- 39

ity in the 0.052–0.145 Hz range are reduced compared to 40

younger ones (57; 110). This frequency range is associated 41

with vasomotion, the mechanism through which smooth 42

muscle cells modulate the blood flow, by altering the di- 43

ameter of the blood vessels (40; 85; 97). However, despite 44

general awareness that all components of the NVU are in- 45

dividually affected by aging (56), no quantitative method 46

is available for non-invasive assessment of the function of 47

the NVU as a whole. Nor has any study to date inves- 48
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N Age (yrs) Sex BMI (kgm−2) sBP (mmHg) dBP (mmHg)

Younger 21 31.1± 6.9 11F/10M 23.6± 3.6 122± 18 79± 9.8

Older 24 64.9± 6.9 15F/9M 26.9± 3.0 136± 17 83± 11

p - 1.02× 10−8 - 0.002 0.004 0.067

Table 1: Participants’ data. Age, body mass index (BMI), systolic blood pressure (sBP) and diastolic blood pressure (dBP) are given as
means ± standard deviations. p is obtained from the Wilcoxon rank-sum test between the two groups.

tigated directly whether changes with aging occur in the49

interactions between the dynamics of blood oxygenation50

and neural activity.51

The purpose of the present study is to evaluate the ef-52

ficiency of interaction between the vascular and neural53

systems within the brain. We aim to investigate, on a54

macroscopic scale, the dynamics of oxygen supply and the55

dynamics of the neurons including the signalling of their56

needs. We do so by determination of the coherence be-57

tween spontaneous oscillations in blood oxygenation (mea-58

sured using fNIRS) and electrical activity (measured si-59

multaneously using EEG). Their coherence quantifies their60

strength of interaction, which can be taken as a proxy for61

the efficiency of the NVU. We hypothesise that it will be62

altered in the aging population due to the structural and63

functional changes in the brain. Because resting-state net-64

works spanning several brain regions have been observed in65

both EEG and fNIRS studies (114; 62; 18), and because66

fNIRS and EEG have previously been found to exhibit67

long range correlations (70), we determine the coherence68

between all signal pairs. As the cerebrovascular system69

depends on the systemic support of the cardio-respiratory70

system, we also recorded heart rate and respiration. This71

allows us to consider the physiological origin of the much-72

discussed ∼0.1 Hz oscillations (71; 108; 70; 111; 81; 72).73

To follow the non-linear and time-variable dynamics74

over many time-scales and to allow for resolution in both75

time and frequency, we have employed wavelet phase co-76

herence (WPC) (5) and a novel method of tracing the in-77

stantaneous phases of oscillations by ridge extraction (39).78

WPC is more resilient against artifacts than amplitude-79

based coherence measures and, in addition, provides for80

logarithmic frequency resolution. Given that frequency81

and time are inversely related, this makes the method82

more suitable than those with linear resolution, such as83

the Fourier transform, and is particularly advantageous84

when studying low frequency oscillations.85

By comparing the analyses of measurements on groups86

of younger and older participants in the resting state, we87

seek evidence for changes in the phase interactions between88

their neural and cardiovascular systems, and thus for age-89

related changes in the efficiency and health of the NVU.90

2. Methods 91

2.1. Participants 92

All participants provided written informed consent, and 93

the study was conducted in accordance with the Declara- 94

tion of Helsinki. The study protocols were approved by 95

the Commission of the Republic of Slovenia for Medical 96

Ethics and/or by the Faculty of Science and Technology 97

Research Ethics Committee (FSTREC) at Lancaster Uni- 98

versity. The study involved the recording and analysis of 99

data from 45 participants. The younger group consisted of 100

21 participants between 20 and 39 years. The older group 101

consisted of 24 participants between 56 and 77 years. Par- 102

ticipant details are provided in Table 1. The exclusion 103

criteria were neurodegenerative disorders, clinically diag- 104

nosed neurological disorders, psychiatric disease and/or di- 105

abetes. Three participants were excluded because they fell 106

asleep during the measurements, and one participant was 107

excluded on account of poor probe contact resulting in 108

noisy data. 109

Based on two groups with 21 and 24 participants, a sta- 110

tistical power of 0.8 and a significance level of 0.05 we 111

expected, at minimum, to reliably detect effects of size 112

0.92, which were considered large effects (23). Effect size 113

was calculated using Cohen’s d (15). Further details are 114

reported in the Supplementary Material (SM) Sec. 2. 115

2.2. Data acquisition 116

Data were recorded in quiet rooms at the Neurologi- 117

cal Clinic, Ljubljana, Slovenia or in the Nonlinear and 118

Biomedical Physics Lab, Physics Department, Lancaster 119

University, Lancaster, UK (see SM, Sec. 5). The same 120

system was used in both locations. Each participant was 121

seated in a comfortable chair and had their eyes open dur- 122

ing the approximately 30 minutes of measurement. No fix- 123

ation points were used. An electroencephalogram (EEG) 124

was recorded at 1 kHz using a 16-channel system (V- 125

Amp, Brain Products, Germany). Simultaneously, func- 126

tional Near-Infrared Spectroscopy (fNIRS) measurements 127

detected changes in oxygenated hemoglobin. Note that 128

we refer to these measurements as “brain oxygenation” 129

although, strictly speaking, we investigate brain oxygena- 130

tion dynamics, because fNIRS does not measure absolute 131

hemoglobin concentrations. An 8-source/8-detector LED 132

system (NIRScout, NIRx, Germany) was used and the 133
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Figure 1: A) The cardiovascular system and brain, illustrated schematically with a zoom to show the neurovascular unit (NVU), and examples
of recorded signals: fNIRS to capture brain oxygenation, EEG to capture the electrical activity of the brain, and respiration and ECG to
capture systemic effect of the blood circulation. The vertical arrows show the combinations for the phase coherences investigated. B) Sketch
illustrating the 16 EEG electrode (black) and 11 fNIRS probe (light blue) placements. Note that 8 EEG and fNIRS probes (indicated with
blue open circles) are co-located.

recordings were made at 31.25 Hz. The probe layout is134

shown in Fig. 1B.135

The heart rate was evaluated from an electrocardiogram136

(ECG), obtained with a bipolar precordial lead similar to137

the standard D2 lead. To maximize R-peak sharpness,138

electrodes were positioned on the right and left shoul-139

ders and over the lower left rib. The respiration rate140

was evaluated from the respiratory effort recorded using141

a belt wrapped around the participant’s chest, fitted with142

a Biopac TSD201 Respiratory Effort Transducer (Biopac143

Systems Inc., CA, USA). Both were sampled at 1.2 kHz144

using a signal conditioning system (Cardiosignals, Insti-145

tute Jožef Stefan, Slovenia). Fig. 1A depicts signals from146

a participant in the younger group.147

2.3. Data preparation and preprocessing148

Signal processing was done in MATLAB, and the anal-149

ysis was completed using the toolbox MODA (69) to im-150

plement the methods illustrated by Clemson et al. (13). A151

continuous 25-minute signal, mostly free of movement ar-152

tifacts, was extracted for each participant. The data were153

detrended by subtracting a best-fit third-order polynomial,154

and bandpass filtered in the range 0.007–4 Hz. The pre-155

processing procedures were as described by Iatsenko et al.156

(37). To reduce computational load, the EEG, ECG and157

respiration signals were each downsampled using a moving158

average. The resultant frequencies are listed in Table 2.159

The artefact in the EEG signals due to cross-talk between160

brain electrical activity and the electrical activity of the161

heart was extracted using nonlinear mode decomposition162

(38).163

As we do not have individual 3D head geometry data,164

such as MRI scans, and as we use a relatively low-density165

EEG set-up, we chose to do the analysis on the sensor level 166

rather than the source level. This is because a lack of ge- 167

ometrical data coupled with a low-density of EEG sensors 168

is known to result in a low accuracy of source localisation 169

(9; 63). Increasing the number of electrodes would have 170

improved spatial localisation to some extent, but would 171

also have increased the set-up time for the experiment, 172

constituting a limiting factor in clinical applications. 173

2.4. Time-frequency analysis 174

Time-frequency analysis provides information on how 175

the frequency of an oscillation changes through time. We 176

used the continuous wavelet transform (WT) and, at each 177

discrete time tn and frequency ωk, obtained a complex 178

number Xk,n = ak,n + ibk,n. From this a phase Φ and 179

amplitude A were found: 180

Φk,n = arctan

(
bk,n
ak,n

)
,

181

Ak,n = |Xk,n|.

Power was found by squaring the amplitude. The WT has 182

a logarithmic frequency scale. When analysing low fre- 183

quency oscillations, the WT therefore provides better fre- 184

quency resolution than, for example, the windowed Fourier 185

transform. After taking the transforms, the time-averaged 186

WT power spectra were calculated for each of the 11 fNIRS 187

signals, and for the instantaneous heart/respiration rates. 188

The Morlet wavelet was used for the WT. An overview 189

of the parameters used, including the frequency resolution 190

and sampling frequencies, is provided in Table 2. 191

192
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Analysis Method Parameters

Heart rate
Peak detection
and ridge ex-
traction

WT:f0 = 2
f ∈ [0.6, 1.7]
fs = 100 Hz

Respiration rate
Peak detection
and ridge ex-
traction

WT:f0 = 1
f ∈ [0.1, 0.6]
fs = 100 Hz

γ instantaneous
frequency

Ridge extrac-
tion

WT:f0 = 5
f ∈ [20, 30]
fs = 142 Hz

γ instantaneous
power

WT and fre-
quency average

WT:f0 = 5
f ∈ [20, 30]
fs = 142 Hz

IHR/IRR power
Time-averaged
WT

WT:f0 = 1
f ∈ [0.007, 2]
fs = 20 Hz

EEG wavelet
power

Time-averaged
WT

WT:f0 = 1
f ∈ [0.007, 4]
fs = 31.25 Hz

fNIRS wavelet
power

Time-averaged
WT

WT:f0 = 1
f ∈ [0.007, 4]
fs = 31.25 Hz

Power of γ in-
stantaneous fre-
quency/power

Time-averaged
WT

WT:f0 = 1
f ∈ [0.007, 4]
fs = 142 Hz

fNIRS-EEG co-
herence

Wavelet phase
coherence

WT:f0 = 1
f ∈ [0.007, 4]
fs = 31.25 Hz

fNIRS-fNIRS
coherence

Wavelet phase
coherence

WT:f0 = 1
f ∈ [0.007, 4]
fs = 31.25 Hz

EEG-EEG co-
herence

Wavelet phase
coherence

WT: f0 = 1
f ∈ [0.007, 4]
fs = 20 Hz
WFT:f ∈ [4, 48]
fs = 142 Hz

IHR/IRR/
Respiration
fNIRS/EEG
coherence

Wavelet phase
coherence

WT:f0 = 1
f ∈ [0.007, 2]
fs = 20 Hz

γIF-fNIRS/
γIP-fNIRS co-
herence

Wavelet phase
coherence

WT:f0 = 1
f ∈ [0.007, 4]
fs = 31.25 Hz

Table 2: Summary of the methods and parameters used in the anal-
yses. IHR and IRR – instantaneous heart and respiratory rates (fre-
quencies) respectively; γIF – instantaneous frequency of oscillations
in gamma band; γIP – instantaneous power of oscillations in gamma
band; WT – wavelet transform; WFT – windowed Fourier transform;
f0 – frequency resolution fs – sampling frequency.

2.5. Wavelet phase coherence193

Wavelet phase coherence (WPC), introduced by Ban-194

drivskyy et al. (5), is used to evaluate how consistent195

the phase difference between two oscillations remains over196

time. The phase coherence is evaluated at each frequency,197

and the values of coherence and phase difference are orig-198

inally evaluated at each time.199

The WPC does not assume stationarity of the200

time-series and is particularly suitable when the non-201

stationarity comes from a time-variation of the character- 202

istic frequencies. The logarithmic frequency resolution of 203

WPC is particularly suitable for signals with a large span 204

of characteristic frequencies. It provides a model-free ap- 205

proach that does not assume the existence of an underlying 206

stochastic process. Taken together with wavelet analysis, 207

it provides information about potential oscillatory modes 208

contributing to the measured signal, and their degree of 209

coordination and interaction. However, it does not pro- 210

vide information about direction of interaction, nor about 211

couplings between oscillatory modes. For the evaluation 212

of directional couplings one may use dynamical Bayesian 213

inference, Granger causality, or similar information- or 214

permutation-based methods (13; 95; 96). 215

The phase coherence is evaluated at each frequency and 216

takes a value between 0 and 1. If the phase difference 217

remained constant throughout the whole length of the 218

signals at a certain frequency, the phase coherence value 219

would be 1 at that frequency. As the measure only depends 220

on the phase difference, it is independent of the amplitudes 221

of the oscillations. The phase difference between signals 1 222

and 2 at time tn and frequency ωk is 223

∆Φk,n = Φ
(2)
k,n − Φ

(1)
k,n.

The wavelet phase coherence is then defined as

CΦ(ωk) =
√
⟨cos∆Φk,n⟩2 + ⟨sin∆Φk,n⟩2,

where ⟨cos∆Φk,n⟩ and ⟨sin∆Φk,n⟩ are averaged in time. 224

We assessed the fNIRS–fNIRS pairwise coherence (for 225

all permutations of the 11 fNIRS probes), as well as the 226

EEG–fNIRS, instantaneous heart rate (IHR)–respiration, 227

IHR–EEG, IHR–fNIRS, respiration–fNIRS, respiration– 228

EEG, instantaneous respiration rate (IRR)–fNIRS, and 229

IRR–EEG coherences. 230

2.6. Frequency bands 231

The sampling frequency of the fNIRS is 31.25 Hz, and 232

so the Nyquist frequency would be ∼15 Hz. If the oscil- 233

lations had constant frequencies, and there were no har- 234

monics, then 15 Hz would have been the upper limit for 235

investigation of oscillatory modes and their interactions 236

in the fNIRS signal. Furthermore, fNIRS is known not 237

to contain oscillations faster than the cardiac oscillation 238

(∼1 Hz). Consistent with this, we did not see any signif- 239

icant power above the cardiac frequency. So, we selected 240

the upper frequency limit to be 4 Hz for the fNIRS and 241

fNIRS-EEG interactions. The EEG signal was sampled 242

at 1000 Hz, but we analysed it only up to 48 Hz, which 243

allowed for investigation of the slow γ oscillatory modes. 244

The other reason for our 48 Hz limit was to avoid the effect 245

of the 50 Hz notch filter used by the monitoring system. 246

For both the EEG and fNIRS, the lower frequency limit 247

was set to 0.007 Hz. 248

The power and coherence values were divided into the 249

conventional frequency bands (Table 3) (97), within each 250
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of which an average value was calculated. The first five251

bands, representing the characteristic frequency intervals252

of the cardiovascular system (97), strongly overlap the253

slow oscillations in EEG (11). The last five bands are the254

traditional EEG frequency bands. After obtaining single255

power/coherence values in each band for each subject, the256

two groups were compared.257

Name Frequency range (Hz)

Endothelial (V) 0.007− 0.021
Neurogenic (IV) 0.021− 0.052
Myogenic (III) 0.052− 0.145
Respiratory (II) 0.145− 0.6

Cardiac (I) 0.6− 1.7
Delta (δ) 1.7− 4
Theta (θ) 4− 7.5
Alpha (α) 7.5− 14
Beta (β) 14− 22

Gamma (γ) 22− 48

Table 3: Frequency ranges used in the analysis (97). The cardiac
and δ ranges are slightly changed from past studies (see text).

In previous studies of cardiovascular dynamics, the car-258

diac band was defined as 0.6–2 Hz (97). In the present259

case, however, we also need to take account of EEG dy-260

namics which potentially overlap the cardiac band. To261

separate the cardiac and δ bands, we therefore defined the262

cardiac band as 0.6–1.7 Hz and the δ band as 1.7–4 Hz.263

With the upper limit set to 1.7 Hz, the variation in heart264

rate is still accommodated.265

The respiratory oscillations are manifested in the fre-266

quency interval 0.145–0.6Hz. They can be detected even267

in the smaller vessels such as capillaries, as they gener-268

ate pressure waves that propagate throughout the entire269

cardiovascular system (99).270

The 0.052–0.145 Hz frequency interval is referred to as271

myogenic, and the neurogenic band is defined as 0.021–272

0.052 Hz. The origins of these two bands are still debated,273

with perceptions depending on whether interest is being274

focused on the vascular or cardiac regulation mechanisms275

(see discussion section). The neurogenic response is sim-276

ilar to the myogenic response in that it also depends on277

pressure changes, but additionally involves neuronal path-278

ways.279

The frequency intervals 0.005–0.021 Hz is called the280

NO-dependent endothelial frequency band, in view of ev-281

idence that NO-dependent endothelial activity manifests282

itself within this range (50; 97; 91).283

2.7. Heart and respiration rates284

Time-series of instantaneous heart and respiration rates285

were obtained in two ways: by peak detection and by the286

ridge extraction method. Peak detection was performed in287

the time domain with a customised program in MATLAB288

that searched for R-peaks in the ECG signals or maxima in289

the respiration signal. The instantaneous frequencies were290

extracted in the time-frequency domain by the ridge ex- 291

traction method (39) using the toolbox MODA (69). Note 292

that “instantaneous heart rate” (IHR) is a time-series of 293

heart frequency values. It is traditionally referred to as 294

heart rate variability when derived in the time domain 295

from the intervals between heart beats. Similarly, “in- 296

stantaneous respiration rate” (IRR) is a time-series of res- 297

piration frequency values, and is usually called respiration 298

rate variability when derived from the time intervals be- 299

tween maxima. The instantaneous heart and respiration 300

rate time series were in close agreement whether obtained 301

either by the peak detection method or by the ridge ex- 302

traction method, as shown in Fig. 2 for the IHR. The av- 303

erage heart and respiration rates were obtained from their 304

respective time-series. 305

Figure 2: Comparison of the IHR found by R-R peak detection with
that found by ridge extraction. We use the lognormal wavelet (37)
with a frequency resolution of 2Hz. It has a better trade-off between
time and frequency resolution than the Morlet wavelet.

Because the time-series obtained with the ridge extrac- 306

tion method are smooth functions, ready to use in time- 307

series analysis, they were used in the wavelet and phase 308

coherence analyses. Furthermore, the ridge extraction 309

method is more appropriate for extracting IHR than the 310

peak-detection method, as ridge extraction takes into ac- 311

count the whole ECG signal and not just the R-peaks, thus 312

also capturing the effect of T-waves. 313

For the IHR, ridge extraction was applied to the WTs 314

of ECG signals in the 0.6–1.7 Hz frequency range. The 315

lognormal wavelet and a frequency resolution of 2 Hz were 316

used for the WT. The sampling frequency of the IHR was 317

the same as that of the ECG, and no interpolation was 318

needed (36). For the IRR, ridge extraction was applied to 319

the WTs of respiration signals in the 0.1–0.6 Hz frequency 320

range and with a frequency resolution of 1 Hz. 321

The standard deviation of the instantaneous rates (sd 322

IHR and sd IRR), resulting in a single number in each 323

case, was used to obtain a measure of their variability. 324

2.8. Frequency and amplitude modulation of the γ–band by 325

low-frequency oscillations 326

From the EEG signals, the instantaneous frequency and 327

power in the 20–30 Hz interval were obtained by ridge 328

extraction (39), and are referred to as a γ–instantaneous 329

frequency and γ–instantaneous power time-series. Fig. 3 330

illustrates the procedure. The frequency resolution param- 331

eter was 5 Hz. 332
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Figure 3: γ–instantaneous frequency (projected onto the Frequency-
Time plane) and γ–instantaneous power time-series (projected onto
the Wavelet power-Time plane) as obtained by ridge extraction.

For the 8 locations where fNIRS and EEG sensors333

are co-located, the WPC was calculated between the γ–334

instantaneous frequency time-series and the fNIRS signal,335

to evaluate the effect of low frequency modulation on the336

oscillations in the γ–band. The WPC was also calculated337

between the γ–instantaneous power time-series and the338

fNIRS signal to evaluate the effect of low frequency mod-339

ulation on the γ–band amplitude and the corresponding340

power.341

2.9. Intersubject surrogates342

To ensure that apparent coherence is statistically signif-343

icant, we used intersubject surrogates (52). In addition to344

calculating coherence between the signals from one person,345

we calculated the apparent coherence between signals from346

different participants. This measure of coherence could347

not signify any underlying link between the signals, and348

was thus random. Inter-subject surrogates have previously349

been found suitable in the context of cardiorespiratory in-350

teractions (36). They are model-free and do not require351

stationary data.352

Based on 154 intersubject surrogates a surrogate thresh-353

old was set as the 95th percentile of all these coherences354

at each frequency. In the plots throughout the paper, only355

the effective coherence (i.e. coherence after subtracting the356

surrogate threshold) is shown, and it was the effective co-357

herence that we used in testing for differences between the358

groups. Each subject and signal pair had an individual359

significance threshold to account for different spectral bi-360

ases in the signals. Due to the lower number of complete361

oscillations at low frequencies, the likelihood of apparent362

coherence is increased. Hence, the surrogate threshold is363

high for low frequencies and, correspondingly, the mea-364

surement time is not long enough for a reliable study of365

oscillations in the endothelial band in the case of fNIRS–366

EEG coherence.367

2.10. Group statistics 368

To assess population differences, the non-parametric 369

two-sided Wilcoxon rank-sum test was applied, and dif- 370

ferences are considered significant for p < 0.05. The data 371

are presented as median values and violin plots (33). Ad- 372

ditionally, for the fNIRS, EEG and fNIRS-EEG analyses, 373

a Monte-Carlo permutation test (58) was applied to check 374

the reliability of the significance. From the total of 45 375

participants, 21 were randomly placed in one group and 376

24 in the other. The Wilcoxon rank-sum test was applied 377

to test for differences between the permutated groups. Af- 378

ter 16587 permutations the original p-value was compared 379

with the values obtained with permutation. If the ini- 380

tial p-value was smaller than 95% of the p-values obtained 381

by permutations its significance was considered confirmed. 382

Additional details are provided in Sec. 7 of the SM. 383

In time-frequency analysis, cluster-based permutation 384

is a common method to correct for multiple comparisons 385

(58). As we averaged in both time and frequency before 386

applying statistical tests, we would only see differences in 387

power/coherence that were present over many time-points 388

and frequencies. For the spatial aspect of multiple compar- 389

isons, the expected false discovery rate, quantifying how 390

many null-hypotheses would be incorrectly rejected with 391

α = 0.05 assuming all null-hypotheses were true, was 0.8 392

for the EEG power analysis, 0.55 for the fNIRS power anal- 393

ysis, 6 for the EEG coherence analysis, 2.75 for the fNIRS 394

coherence analysis and 8.8 for the fNIRS–EEG coherence 395

analysis. From N trials, and assuming that there were no 396

true differences, the probability of obtaining X or more 397

positive findings was calculated from the binomial proba- 398

bility. This was used to assess the reliability of the results, 399

keeping the multiple comparison problem in mind, as done 400

in the literature (66; 70). 401

2.11. Correlations 402

The correlations were found from the Spearman’s rank- 403

order correlation, which is a non-parametric alternative 404

to the Pearson linear correlation. It tests for a monotonic 405

relationship between two variables. The p-value was found 406

from permutation distributions. 407

3. Results 408

Here we present the results of the analyses summarised 409

in Table 2. These include the central oscillations of the 410

cardiovascular system (evaluated from the instantaneous 411

heart and respiration frequencies), and the local vascular 412

and neural oscillations in the brain (from fNIRS and EEG). 413

The analyses relate to the transport of nutrients to the 414

NVU, quantifying its efficiency and the impact of ageing. 415

3.1. Central oscillations: heart and respiration rates 416

We first present the cardio-respiratory characteristics. 417

This enables a consistency check with earlier results, and 418
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Figure 4: Violin plots for A) heart rate, and B) its variability as quantified by the standard deviation (sd) of the IHR for the older and
younger groups. The black stars indicate significant differences, p < 0.05, between groups. The white circles indicate the group medians. C)
Time-averaged wavelet transform power of the IHR. D) Time-averaged wavelet transform power of the IRR. E) IHR–respiration coherence.
F) Average phase differences between IHR and respiration, given in radians. A negative phase difference indicates that respiration is the
leading signal. The blue and black lines are the median group power/coherence/phase difference, while the shaded areas show the 25–75th
percentiles. Significant differences (p < 0.05) between the groups at particular frequencies are indicated by blue stars on the x-axis (causing
effective thickenings of the axis).

provides insight into systemic changes relevant to neu-419

rovascular interactions,420

Heart rates (older: 1.04 ± 0.16 Hz; younger: 1.17 ±421

0.15 Hz) and sd IHR (older: 0.052 ± 0.011 Hz; younger:422

0.070 ± 0.022 Hz) are significantly different between the423

groups (p = 0.014, p = 0.005), as shown in Fig. 4A,B. No424

significant difference is seen in the respiration rate (older:425

0.23± 0.08 Hz; younger: 0.24± 0.05 Hz, p = 0.300), or sd426

IRR (older: 0.039± 0.009 Hz; younger: 0.045± 0.019 Hz,427

p = 0.26). The corresponding plots are shown in the SM428

Sec. 3.429

IHR power is reduced in the older group in the 0.01–430

0.11 Hz range (see Fig. 4C). The IRR power is not signif-431

icantly different between the groups (Fig. 4D).432

Each group has significant IHR–respiration coherence433

in the respiratory band (see Fig. 4E; for the frequency434

band ranges, see Table 3). The younger group has signif-435

icantly higher coherence around 0.3 Hz, compared to the436

older group. For both groups the IHR power and IHR–437

respiration coherence were shown not to differ significantly438

between males and females (see SM Sec. 6), consistent with439

earlier results (36).440

3.2. Interactions between instantaneous heart/respiration441

rates and brain oxygenation442

The results presented here illustrate how the modulation443

of the heart and respiration rates is linked to the oxygena-444

tion of the brain. Fig. 5 shows the wavelet phase coherence445

between IHR and oxygenation, between IRR and oxygena-446

tion, and between the respiration signal and oxygenation,447

all at N5. For data from the other fNIRS probes see SM448

Sec. 3. The SM also includes the IHR–EEG, respiration–449

EEG and IRR–EEG coherence.450

There are systematic differences in coherence, with the451

older group tending to have lower coherence. This dif-452

ference is statistically significant for coherence between453

IHR and oxygenation (Fig. 5A), and is particularly pro- 454

nounced in the myogenic and respiratory bands. The 455

same significant reduction of coherence with age is ob- 456

served in coherence between the IHR and all other oxy- 457

genation signals apart from the two temporal ones, where 458

the coherence is reduced only in the respiratory band. In- 459

terestingly, the phase difference between oxygenation and 460

IRR/respiration/IHR is found to be negative in the respi- 461

ratory band, meaning that brain oxygenation is the lead- 462

ing signal. This result is consistent for both age groups. 463

In contrast, the phase difference in the myogenic region 464

is slightly positive, indicating that the brain oxygenation 465

lags. 466

3.3. Brain oxygenation oscillations 467

Here we present the power calculated for all 11 fNIRS 468

signals, and coherence between all possible signal combi- 469

nations. The positions of the probes are shown in Fig. 470

1B. 471

The myogenic power (0.052–0.145 Hz frequency interval) 472

in 8 of the 11 channels is significantly lower in the older 473

group (Figs. 6A,B). A lower power is also found in the en- 474

dothelial, neurogenic and respiratory bands (Fig. 6B), but 475

the differences are statistically significant for fewer probes. 476

In the endothelial band there are 3 fNIRS probes with a 477

significant difference between the groups, while this num- 478

ber is 4 in the respiratory band, and 1 in the neurogenic 479

and cardiac bands. The chance of obtaining 3 positive 480

outcomes out of 11 is 1.5% when there were no true dif- 481

ferences, while the chance of obtaining 1 positive outcome 482

out of 11 is 43% when there were no true differences. 483

Significantly lower myogenic coherence in the older par- 484

ticipants is found in 12 fNIRS signal combinations: across 485

the frontal-parietal signals, the frontal signals and the oc- 486

cipital signals (Fig. 6C,D). In the neurogenic band signifi- 487

cantly higher coherence in 12 fNIRS combinations (mainly 488

from the temporal probes) is observed in the older group. 489
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Figure 5: Coherence (upper panels) and phase difference (lower panels) between A) IHR and N5, B) respiration rate and N5, C) IRR and
N5. Note that the y-axes differ. See Fig. 1 for the locations of the EEG electrodes and fNIRS probes. The blue and black lines represent
the younger and older group medians, respectively, while the shaded areas show the 25–75th percentiles. Significant group differences at
particular frequencies are indicated by blue stars on the x-axis. Phase differences are given in radians, and a negative value indicates that N5
is the leading signal.

In the cardiac band in 50 of 55 combinations coherence490

is also significantly higher in the older group. The dif-491

ferences are found between the frontal-parietal, frontal-492

occipital and temporal signals. In the endothelial band493

coherence in 3 combinations is significantly higher n the494

older group, while in the respiratory band coherence in495

only one combination is significantly higher in the younger496

group. The chance of obtaining 12 positive outcomes out497

of 55 is 0.0014% when there were no true differences, while498

the chance of obtaining 3 positive outcomes out of 55 is499

52%.500

Brain oxygenation for males and females is summarised501

in Sec. 6 of the SM. The older male group has higher myo-502

genic power at probes 1 and 9 compared to the older female503

group, while the older female group has higher myogenic504

coherence than the older male group in 7 signal combina-505

tions.506

3.4. Brain neuronal activity evaluated by EEG507

The EEG power and coherence are consistent with pre-508

vious results (61; 109; 88; 65; 83), and are summarised in509

the SM Sec. 4.510

3.5. Coherence between neuronal activity and brain oxy-511

genation512

The coherence between neuronal activity, as evaluated513

by EEG, and brain oxygenation, as evaluated by fNIRS,514

differs significantly between the groups, in both the myo-515

genic and cardiac bands (Fig. 7B,C). In the myogenic516

band, the coherence is lower in the older group in 46/176517

probe combinations and the decrease does not seem con-518

fined to any specific areas. However, both groups have low519

myogenic coherence in the two temporal fNIRS probes (N8520

and N9). In contrast, the coherence in the cardiac band is521

higher in the older group in 50/176 probe combinations.522

The chance of having 46 or more positive findings out of523

176 is 1.2×10−18% assuming there were no true differences.524

Further information is provided in the SM. It consists of525

neurogenic and respiratory coherence (Fig. 23), the coher- 526

ence plots of all 176 fNIRS-EEG combinations (Sec. 10), 527

and the results divided by sex (Sec. 6). 528

3.6. Frequency and amplitude modulation of the γ–band by 529

low-frequency oscillations 530

Here we show analysis of possible amplitude and phase 531

modulation of γ–band oscillations by low-frequency os- 532

cillations. There is non-zero power for both the γ– 533

instantaneous frequency and γ–instantaneous power time- 534

series between 0.007 and 4 Hz (Figs. 8A, B) for both groups 535

indicating the existence of modulation. The coherence be- 536

tween oxygenation and these time-series, and the phase 537

shifts for both instances, are shown in Fig. 8C–F for the 538

signals measured at location O1. For the remaining loca- 539

tions, see the SM Sec. 11. For the γ–instantaneous fre- 540

quency time-series the coherence is zero for all frequencies 541

in the interval 0.007–4 Hz. For the γ–instantaneous power 542

time-series the median coherence is zero, but there is ev- 543

idence of some significant effective coherence (Fig. 8D). 544

For the oxygenation–power there is a negative phase shift 545

for the older group around 0.06–0.08 Hz (Fig. 8F), which 546

is significantly different between the groups in 5/8 probe 547

combinations. A negative phase difference indicates that 548

the oxygenation is lagging. 549

3.7. Correlations 550

BMI is negatively correlated with neurovascular coher- 551

ence in the myogenic band, IHR–respiration coherence in 552

the respiratory band and IHR–respiration coherence in the 553

myogenic band (Fig. 9A,B,C). The systolic blood pressure 554

is also negatively correlated with neurovascular coherence 555

in the myogenic band (ρ = −0.435, p = 0.004) and IHR– 556

respiration coherence in the respiratory band (ρ = −0.356, 557

p = 0.022) (SM Sec. 8). 558

As shown in Fig. 10 the neurovascular coherence in the 559

myogenic band is correlated with the IHR–respiration co- 560

herence in the myogenic band (ρ = 0.397, p = 0.008), 561
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Figure 6: fNIRS power and coherence. A) Time-averaged power spectra for N3. B) p-values indicating significant group differences between
the powers in the frequency bands. Blue (yellow) indicates that the power is higher in the younger (older) group. C) Coherence between
N11 and N7 (see Fig. 1 for locations). The blue and black lines are the median group coherences, while the shaded areas show the 25–
75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. D) p-values
indicating a significant group difference between the coherence in the frequency bands. Blue (yellow) indicates that the coherence is higher
in the younger (older) group. For the frequency intervals see Table 3, and for the probe lay-out see Fig. 1.

while this is not the case for the neurovascular coherence562

and the IHR–respiration coherence in the respiratory band563

(ρ = 0.103, p = 0.504).564

4. Discussion565

Based on 25-minutes signals recorded in participants in566

resting state and novel time-frequency analysis methods,567

our investigation of cardiovascular and neurovascular in-568

teractions reveals clear changes with aging. These are569

manifested through:570

• Weakened 0.052–0.145 Hz coherence between the neu-571

ral activity and brain oxygenation, reflecting reduced572

neurovascular interactions; 573

• Reduced coherence between instantaneous heart rate 574

and brain oxygenation oscillations in the myogenic 575

and respiratory frequency bands; 576

• Changes in the heart and respiration rates, and their 577

coordination through respiratory sinus arrhythmia; 578

and 579

• Altered brain oxygenation resting state networks in 580

the brain. 581

We now discuss these changes in more detail. 582
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Figure 7: A) Group median fNIRS–EEG coherence averaged over the frequency band 0.021–1.7 Hz. The results for the younger group (left)
are compared with those for older group (middle) and p-values indicating a significant difference between the groups are shown on the right.
Blue (yellow) coding indicate that coherence is higher in the younger (older) group. B) Same as for A but for the myogenic band. C) Same
as for A but for the cardiac band. For the frequency intervals see Table 3, and for the probe lay-out see Fig. 1.
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Figure 8: Comparisons between the older and younger groups related to frequency and amplitude modulation in the EEG γ-interval. Median
power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous power time-series. C) Median coherence between fNIRS and
the γ–instantaneous frequency time-series. D) Median coherence between fNIRS and γ–instantaneous power time-series. E) Phase difference
between fNIRS and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous power time-series.
The blue and black lines are the median group coherences, while the shaded areas show the 25–75th percentiles. Significant differences between
the groups at particular frequencies are indicated by blue stars on the x-axis. The blue and black solid vertical lines indicate the average
respiration rates for the younger and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are
from location O1.

Figure 9: Spearman correlations between A) BMI and fNIRS–EEG coherence in the myogenic band, B) BMI and IHR–respiration coherence
in the myogenic band, and C) BMI and IHR–respiration coherence in the respiratory band. In A) the black circles show the coherence values
between fNIRS–EEG combinations (176 combinations per participant), while the red crosses show the median coherence for each participant.
The correlation is found between the median coherence values and BMI.

4.1. Central oscillations: heart and respiration activity583

Consistent with previous studies (36), we found a de-584

crease in the variability of the cardiac frequency with age,585

as quantified by the sd IHR. Additionally, the average rest-586

ing cardiac frequency (heart rate) is higher in the younger587

group. We did not find a significant reduction with age588

in the respiratory frequency band of the IHR (in studies589

with linear frequency resolution and shorter recordings of-590

ten referred to as the high frequency band, 0.15–0.4 Hz,591

linked to parasympathetic nervous activity (1)). The IHR592

power decreases with age in the myogenic frequency band,593

0.052–0.145 Hz. We note here that when evaluated with594

linear frequency resolution, and based on shorter, usually595

5-min recordings, this frequency interval is also referred to 596

as the low frequency band, 0.04–0.15 Hz, and is linked to 597

sympathetic nervous activity (1)). 598

Note that the low/high frequency bands strongly over- 599

lap the myogenic/respiratory frequency bands. Low heart 600

rate and insignificantly different respiratory band power 601

in elderly participants could reflect relatively preserved 602

parasympathetic tone. However, the changed parasym- 603

pathetic/sympathetic activity is not sufficient to account 604

for the variability in heart rate, which is generated by a 605

complex interplay of nervous activity, respiration, smooth 606

muscle cells and other factors (7; 14). Reduced variability 607

with aging has previously been demonstrated (1; 27; 91), 608
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Figure 10: Spearman correlations between A) IHR–respiration coherence in the myogenic band and fNIRS–EEG coherence in the myogenic
band, B) IHR–respiration coherence in the respiratory band and fNIRS–EEG coherence in the respiratory band. The black circles show the
coherence values between fNIRS–EEG combinations (176 combinations per participant), while the red crosses show the median coherence for
each participant. The correlation is found between the median coherence values and IHR–respiration coherence.

also with wavelet-based methods (36).609

A tendency for the IHR–respiration coherence to be610

lower in the older group reaches significance at around611

0.3Hz. We did not, however, find a significant change in612

the respiration rate or its variability, as evaluated by the613

sd IHR, so this is an unlikely explanation for the reduced614

coherence. The significant IHR–respiration coherence re-615

flects respiratory sinus arrhythmia (RSA), which is mod-616

ulation of the heart frequency by the amplitude of respi-617

ration (113; 98). Wavelet based methods have previously618

been applied to investigate RSA (46; 36), and Iatsenko619

et al. (36) found the peak coherence in the respiratory620

band to decrease with age, suggesting that RSA is more621

time-variable and weaker in elderly subjects.622

Consistent with the previous studies the present results623

show that the two central pumps of the cardiovascular624

system, heart and lungs, and their coordination, mainly625

through RSA, are affected by aging.626

4.2. Propagation of the central oscillations: instantaneous627

heart/respiration rates and oxygenation628

Next we investigated the effect of aging on the propaga-629

tion of cardiovascular oscillations to the brain. Systemic630

cardiovascular oscillations naturally impact brain oxygena-631

tion (44), and their propagation may be affected by age-632

related structural changes in blood vessels. We investi-633

gated this latter possibility by evaluating the phase co-634

herence between the cerebral blood oxygenation and the635

time-series of instantaneous heart or respiration rates.636

The IHR–oxygenation coherence is significantly reduced637

in the older group in the myogenic and the respiratory638

frequency bands, across all non-temporal sites (Fig. 5A).639

These changes in coherence are consistent across combi-640

nations, indicating that the changes are systemic. The641

elastic properties of the vessels are known to change with642

aging (20), which could affect the propagation of pressure643

waves and therefore impact the myogenic response, causing644

reduced IHR–oxygenation coherence. This reduced coher-645

ence is attributable to the way in which smooth muscle646

cells respond to pressure changes. In mice, the myogenic647

response to pulsatile pressure in the middle cerebral arter- 648

ies has been shown to decrease with age (94). 649

Systemic cardiovascular oscillations have been shown to 650

affect the ∼0.1 Hz oscillations in cerebral oxygenation: 651

Katura et al. (44) estimated that such effects could only 652

account for less than half of the observed changes. Note, 653

however, that the study investigated heart rate and arte- 654

rial blood pressure, but did not consider respiration. Fur- 655

thermore, it has been shown that the Granger causality 656

from heart rate to oxyHb during head-up tilt (93) at 45◦ 657

decreased with age, which is in line with our findings of 658

reduced coherence in the older group. 659

In the myogenic frequency band the phase difference 660

between the oscillations in the time-series of IHR and 661

fNIRS is positive, implying that in this frequency inter- 662

val the oscillations in the IHR are preceeding the oscil- 663

lations recorded by the fNIRS signal. This furthermore 664

confirms that the myogenic oscillations are propagating to 665

the brain. The shift is significantly reduced with ageing, 666

suggesting that the pulse propagates with less resistance 667

to the small vasculature of the brain, as discussed in more 668

detail below in Sec. 4.3. 669

The phase difference between the same signals in the 670

respiratory band is negative (see Fig. 5A), suggesting that 671

oxygenation is the leading signal. The reduction in phase 672

coherence might, therefore, reflect decreasing efficacy of 673

brain oxygenation with age. However, the phase differ- 674

ence between the two signals in the respiratory band is 675

not altered by ageing. 676

There is a tendency for the respiration–oxygenation co- 677

herence to decrease with age in the respiratory band (at 678

location N5 ∼0.3 Hz p < 0.1, in several locations p < 0.05): 679

see Fig. 5B and Fig. 6 in the SM). The phase difference is 680

negative and similar for both groups, suggesting that oxy- 681

genation is the leading signal. The high coherence between 682

respiration and each of the oxygenation signals implies a 683

systemic orchestration of cortical oxygenation in rhythm 684

with breathing, an effect that is reduced in the older group. 685

The phase difference, indicating which signal leads or lags 686

the other, can be explained as follows: 687
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1. The oxygenation signal is leading. Respiration is688

controlled by the brain stem, and voluntary respira-689

tion can also be controlled by the motor cortex. The690

brain then controls the respiration signal.691

692

2. The respiration signal is leading. The period of an693

oscillation at 0.2 Hz is 5 s, and the period of an oscil-694

lation at 0.3 Hz is 3.3 s. This means that if the lag is695

longer than these times the phase difference might ap-696

pear to be negative when, in reality, it is not. Zhang697

et al. (115) found in mice that breathing rate is a698

key modulator of cerebral oxygenation, and that oxy-699

genation was correlated with both the respiration rate700

and the phase of the respiration cycle, which was true701

across the brain. They found a time lag of around702

1-3 seconds between respiration and PtO2 consistent703

with the transit time of blood from the lungs to the704

brain, which was similar for blood oxygenation too.705

What a similar lag would be in humans is not known,706

and the corresponding phase difference is therefore707

also not known. However, it might be the case that,708

although the respiration is actually leading the oxy-709

genation, the latter is delayed by more than the time710

for one complete respiration cycle.711

4.3. Brain oxygenation oscillations and their spatial co-712

herence713

The reduced myogenic power and reduced myogenic714

coherence between the frontal probes, between the715

frontal-parietal probes and between the occipital probes716

seen in the older participants (see Fig. 6A,B,C) indicate717

altered vascular resting state networks.718

719

There is increased coherence in the cardiac band in the720

older group, in 50/55 fNIRS combinations (see Fig. 6C),721

and between fNIRS and EEG signals (see Fig. 7C). This722

could be explained by several factors, such as the increased723

radii of vessels in the microvasculature of older participants724

(16) and decreased microvascular density in older partici-725

pants (20). While the total cerebral blood flow decreases726

with age, the pulsatile flow increases (112). It propagates727

through vessels that are fewer and larger, with reduced728

surface area per unit volume, resulting in less oxygena-729

tion. The older group also has decreased vessel elasticity730

(20) and increased blood pressure (Table 1), and we note731

that if the cardiac pulse is stronger throughout the smaller732

vessels, this can cause increased cardiac coherence. These733

findings are consistent with earlier fNIRS studies as re-734

ported in the review by Yeung and Chan (114).735

These results illustrate that, in the brain vasculature,736

both the oscillations, and their coordination are altered737

in the older group, suggesting decreased oxygenation of738

the brain with aging. The myogenic vascular resting state739

network is weaker in the older group. We note that our740

definition of resting state networks is mainly operational in741

nature, as participants were recorded while not performing742

any task. However, it is interesting to note that, in addi- 743

tion to low coherence for the lateral sensors, we observe 744

strong frontal-parietal coherence. This is consistent with 745

earlier work (e.g. (84)), and shows that our results also 746

relate to the placement of the sensors. 747

4.4. Neurovascular coherence 748

Our key findings are: that there is significant neurovas- 749

cular phase coherence in the 0.052–0.145 Hz (myogenic) 750

frequency range; that this coherence is greatly reduced in 751

older participants, as compared to the younger group; and 752

that there is higher neurovascular coherence in the cardiac 753

band in the older group (Fig. 7). As can be seen by com- 754

paring Figs. 6B,C and 7B, the coherence is also reduced 755

in some locations without a decrease in power, so that the 756

reduction in coherence cannot be accounted for by reduced 757

power. To our knowledge, this is the first report of such 758

effects. 759

In both the myogenic and cardiac bands there was 760

widely distributed coherence across the cortex, as seen in 761

Fig. 7B,C. In comparison, the neurogenic and respiratory 762

bands showed little or no significant coherence in either age 763

group, so that little change in coherence with age could be 764

detected (see SM Fig. 23). The altered neurovascular co- 765

herence in the older group reflects less effective neurovascu- 766

lar interaction. Magnitude squared coherence (which has 767

linear frequency resolution) between fNIRS and EEG sig- 768

nals near 0.1 Hz was found in a previous study of healthy 769

participants aged around 30 years (70). This is in agree- 770

ment with the coherence found in the younger group of the 771

present study. 772

Grooms et al. (29) studied slow oscillations in EEG and 773

blood oxygen level dependent (BOLD) signals in the de- 774

fault mode network. The authors concluded that there was 775

evidence of a relationship between infra-slow (< 0.1 Hz) 776

EEG and BOLD oscillations at the same frequencies, 777

which was also found by Hiltunen et al. (32) and Keinänen 778

et al. (45). These correlations were shown to span sev- 779

eral brain regions and to be time-varying. Both fNIRS 780

and BOLD signals reflect changes in oxygenation, and the 781

BOLD signal has been shown to correlate with both oxyHb 782

and deoxyHb (100; 90). These studies investigated lin- 783

ear correlation between BOLD signals and infraslow EEG 784

time-series, whereas the wavelet phase coherence used in 785

our present study has logarithmic frequency resolution and 786

evaluates coherence at each frequency step. The earlier 787

studies did not consider frequencies above 0.1 Hz, while 788

our present results show coherence centred around ap- 789

proximately 0.1 Hz. Although the studies are not directly 790

comparable, they all provide evidence of a significant rela- 791

tionship between electrical neural activity and oxygenation 792

oscillations in the brain at low frequencies. Mitra et al 793

(64) found a similar relationship in mice, using laminar 794

electrophysiology and hemoglobin imaging. Such invasive 795

recordings have the advantage of measuring activity that 796

is more local but, given that our goal was in-vivo, non- 797
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invasive measurements in humans, we chose to use EEG798

and fNIRS.799

In fMRI studies it is found that typically, only 10% of800

the variability in the hemodynamic signal can be explained801

by neural activity (21). Similarly, we show low, but sig-802

nificant, coherence between the EEG and fNIRS signals.803

BOLD signals are often thought of as a convolution of the804

neural activity with what is known as the hemodynamic805

response function (HRF) (79). The HRF contains vascular806

factors, such as vasomotion, which is also present in the807

fNIRS signals. The difference in coherence between the808

younger and older groups illustrates that care should be809

taken in studies estimating the HRF, as the response is810

age-dependent.811

4.5. Neurovascular coupling812

In the awake resting state the brain consumes around813

11% of the cardiac output and 20% of the body’s total814

metabolic energy, despite only making up about 2% of the815

body’s weight (30). Resting state functional networks are816

consistently observed both with fMRI (8; 32) and fNIRS817

(87), in addition to EEG (4), indicating that the rest-818

ing state activity is not random. Neurovascular coupling,819

mediating the adjustment of local cerebral blood flow to820

match the energy demand of neurons, is maintained con-821

tinuously by the diverse cells constituting the NVU (35).822

Studies of neurovascular coupling usually consider in-823

formation flow from neurons to the vasculature. However,824

Kim et al. (48) introduced the term vasculo-neuronal cou-825

pling to describe information flow from vessel to astrocyte826

to neuron. From experiments on mice, both in vivo and in827

vitro, the authors concluded that neurons adjust their rest-828

ing state activity based on brain perfusion changes in flow829

and pressure (47; 48), probably to match the energy sup-830

ply and demand. Changes in the blood flow and perfusion831

are characterised by oscillatory processes, and so is en-832

ergy metabolism (41). Hence, the energy exchange to the833

brain is also likely to occur in an oscillatory manner. To834

be efficient, this is coordinated between the cardiovascular835

system and the brain, leading to coherent oscillations. It836

therefore seems likely that the degree of myogenic phase837

coherence is a proxy for neurovascular efficiency, and that838

the neurovascular interaction can be considered as arising839

through the cardiovascular system and brain behaving as840

interacting oscillators.841

Myogenic coherence is reduced in the older group of par-842

ticipants, indicating that the interaction between the os-843

cillators has decreased. From the current results we can-844

not be certain of the direction of the interaction, but it845

could be bi-directional. The neurovascular coherence in846

the myogenic frequency band is negatively correlated with847

BMI (Fig. 9), an observation that could be further inves-848

tigated in future studies.849

In the present work we focused on quantifying the func-850

tioning of the neurovascular unit. Our reasoning is that851

the efficiency of coordination between neuronal and vas-852

cular activities can be evaluated by their phase coherence.853

It provides a measure of neurovascular coupling. Estab- 854

lishment of the directionality and strength of the coupling 855

between the vascular and neuronal oscillatory modes, as 856

identified in this work, will be the next step in the inves- 857

tigation. The efficiency of the neurovascular unit, and the 858

neurovascular coupling, are of particular interest in rela- 859

tion to the older population, as decreased neurovascular 860

coupling has been linked to cognitive decline and demen- 861

tia (103; 17). Especially promising is the recent report of 862

a treatment that can improve neurovascular coupling in 863

mice (102). Evaluation of neurovascular phase coherence 864

therefore has potential as a biomarker for the efficiency 865

of the NVU, and could be used to evaluate the effects of 866

treatment and lifestyle changes in humans. 867

4.6. Origins of 0.1 Hz oscillations 868

Having established that oxygenation and neural activity 869

are coherent around 0.1 Hz, reflecting neurovascular inter- 870

actions, the next question is: what are the mechanisms 871

underlying the coherence? There are several possible ori- 872

gins of 0.1 Hz oscillations in the brain and cardiovascular 873

system, which we now consider. 874

Systemic cardiovascular fluctuations. IHR is coherent 875

with oxygenation at ∼0.1 Hz (see Sec. 3.2), and, to a much 876

lesser degree respiration is also coherent with oxygenation 877

at ∼0.1 Hz. However, the systemic cardiovascular fluctu- 878

ations cannot fully explain the oscillations in oxygenation 879

(44), indicating that the 0.1 Hz oscillations could have ad- 880

ditional origins. Most EEG probes have low but non-zero 881

coherence with the ∼0.1 Hz IHR signal, but the IHR–EEG 882

coherence is generally lower than the neurovascular coher- 883

ence evaluated from the EEG and fNIRS time-series: see 884

SM Fig. 5 and SM Sec. 10. 885

Vascular origin. In 1902 Bayliss (6) considered how 886

smooth muscle cells respond to changes in intravascular 887

pressure. This myogenic hypothesis was later studied by 888

Folkow (25) who found it was important for blood autoreg- 889

ulation. Myogenic oscillations tend to manifest between 890

0.052-0.145Hz (60; 97; 101; 53). Local 0.1 Hz oscillations 891

consistent with myogenic activity have been observed in 892

vivo in the human cortex (81; 72). These oscillations are 893

believed to contribute to the clearance of substances like 894

amyloid-beta proteins from the brain (3). 895

Vascular neural origin. The hemodynamic bases of 896

Meyer waves are oscillations of the sympathetic vasomo- 897

tor tone of arterial blood vessels (42). Note that this 898

would contribute to systemic cardiovascular fluctuations 899

by impacting the heart rate and arterial blood pressure. 900

In studies on blood flow with neural blockers, however, it 901

was shown that 0.1 Hz activity continues, suggesting at 902

least a contribution from the myogenic activity (43; 101). 903

Rayshubskiy et al. (81) found that 0.1 Hz oscillations in the 904

human cortex were spatially localised, and correlated with 905

the diameter of local vessels, suggesting that the 0.1 Hz 906

hemodynamic oscillation in the human cortex are primar- 907

ily myogenic in nature. 908
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Electrophysiological origin in the brain. Oscillations909

around or below 0.1 Hz detected with EEG in the brain910

are not traditionally referred to as myogenic, but rather as911

infra-slow (<0.1 Hz) or slow oscillations (11). Such studies912

usually do not include measurements of cardiovascular ac-913

tivity, and rather focus on metabolic processes. The origin914

of these oscillations is still debated (71; 108; 70; 111; 49).915

Mitra et al (64) have shown that, in mice, the infra-slow os-916

cillations have unique dynamics when compared to higher917

frequencies, and should be considered as a separate physi-918

ological process. There is evidence for both a neuronal and919

a non-neuronal generator of these oscillations, and possi-920

bly both of them contribute.921

One feature of the infra-slow oscillations is that their922

phases were found to be correlated with the amplitude923

of faster oscillations and with performance (67; 19). It924

has been suggested that infra-slow oscillations are related925

to gross cortical excitability (73) and to arousal (80; 92).926

Changes in arousal level would be reflected in the heart927

rate, which could explain why we observe IHR–EEG coher-928

ence. Non-neuronal infra-slow oscillations in EEG could929

stem from a potential difference across the blood-brain930

barrier (BBB) (71; 108; 82; 104; 106). This difference is931

sensitive to pH (104), and can be manipulated by hypoven-932

tilation, hyperventilation (108) or postural changes that933

affect intracranial hemodynamics (106). The BBB, con-934

sisting of endothelial cells, is known to be affected by aging935

(91), Further, electrical coupling through the endothelium936

is a mechanism for neurons to modulate smooth muscle937

cell activity and therefore arteriole diameter (21). At the938

molecular level, another component that could affect the939

slow EEG oscillations might be neural mitochondrial cal-940

cium signalling, which is known to be altered in aging (86).941

Neuron-glia interactions are also thought to contribute to942

the slow oscillations (55; 10), as are extracellular ion fluxes943

which have been shown to contribute to the coupling of944

brain activity and blood flow (59).945

Other origins. Another potential origin of infra-slow946

fluctuations is movement artifacts from fidgeting, which947

has been observed in both animal and human studies. It948

has been shown in mice that both flow in arterioles and949

also brain electrical activity can be impacted by these arti-950

facts (21), however in humans it is hardly likely that such951

movement artefacts would be oscillatory.952

We find widely-distributed ∼0.1 Hz coherence across953

the cortex, which does not in itself represent evidence of954

a single generator. Neurovascular coherence in the myo-955

genic band is correlated with the IHR–respiration coher-956

ence in the myogenic band, while the neurovascular co-957

herence in the respiratory band is not correlated with the958

IHR–respiration coherence in the respiratory band. This959

result suggests that the myogenic frequency band and the960

0.1 Hz oscillation are key to understanding aging from both961

the neural and vascular perspectives.962

4.7. Frequency and amplitude modulation of the γ–band by 963

low-frequency oscillations 964

An interesting question to explore is whether the am- 965

plitude and/or frequency of γ oscillations in the EEG 966

is modulated by the slower oxygenation/vascular oscilla- 967

tions. Murta et al. (68) have reported evidence for ampli- 968

tude modulation from combined fMRI and EEG studies. 969

There is also some evidence from previous fNIRS studies 970

that β oscillations are modulated by brain oxygenation 971

(77). The ∼ 0.1 Hz variations in the oxygenation level of 972

brain blood are generally used as an fMRI-based surrogate 973

of “resting-state” neuronal activity, implying that it is the 974

gamma band which is most closely correlated with BOLD 975

signals (21). 976

To investigate possible amplitude and frequency modu- 977

lation of neuronal activity by low-frequency oxygenation 978

oscillations, we focused on the higher β / lower γ band (20– 979

30 Hz). Our results revealed that the spatial coherence 980

between EEG signals has a peak in this frequency range. 981

They also showed non-zero power for γ–instantaneous fre- 982

quency and γ–instantaneous power time-series between 983

0.007 and 4 Hz, as shown in Figs. 8A, B). 984

We therefore calculated the WPC of the γ– 985

instantaneous frequency time-series with fNIRS (fre- 986

quency modulation), and of the γ–instantaneous power 987

time-series with fNIRS (amplitude modulation) for the 988

8 locations where the fNIRS and EEG are co-located. 989

However, we found little to no coherence in the frequency 990

band considered here (Fig. 8C) indicating that there 991

was no significant frequency modulation. We comment 992

however, that a single γ instantaneous frequency provides 993

only a rough measure of the collective neuronal activity 994

in the γ band. 995

On the other hand, a non-zero coherence was observed 996

for amplitude modulation, as shown in Fig. 8D), though 997

not for all participants. What is more interesting is that we 998

observed a negative phase shift for the older group around 999

0.06–0.08 Hz. This frequency range is often linked to peri- 1000

odic breathing, which appears in hypoxia (51). This may 1001

indicate that some effects of hypoxia appear with aging, 1002

even in the resting state. These results suggest an exciting 1003

direction for future research through more detailed inves- 1004

tigations of how fast neural activity measured by EEG is 1005

modulated by slow hemodynamic oscillations measured by 1006

fNIRS. Further investigation of the coherence between the 1007

band power and oxygenation should also include a broader 1008

γ frequency band, and could explore other frequency bands 1009

too. This may elucidate additional information about neu- 1010

rovascular interactions. 1011

In addition, neuro–respiratory interactions with the γ- 1012

band may be investigated using the IRR and respira- 1013

tion signals. Our results show that both the instanta- 1014

neous γ–frequency and instantaneous γ–power are modu- 1015

lated by respiration (Figure 8A and B). Earlier studies in 1016

both humans and animals (12; 105; 26) have provided evi- 1017

dence of respiration-related oscillations in several brain re- 1018

gions. Distinct from respiration-related artefacts in fMRI, 1019

15



respiration-related networks have been shown to be linked1020

with the γ-band power (105). Respiration-related oscilla-1021

tions might aid coordination between different brain re-1022

gions (26). In humans, the phase of respiration has an1023

impact on memory encoding and perception, further indi-1024

cating the importance of respiration for cognitive function.1025

The close relationship of neural activity to both hemody-1026

namics and respiration illustrates the importance of simul-1027

taneous measurements to investigate interactions between1028

the underlying systems, e.g. as done in systemic physiol-1029

ogy augmented fNIRS (89).1030

4.8. Effect of increased BMI and BP1031

The two age groups differ in BMI and sBP (Table 3).1032

From Fig. 9A it is clear that BMI is correlated with neu-1033

rovascular coherence in the myogenic band.1034

To separate these effects, we created a smaller data-set,1035

matching the BMI and BP values between the younger1036

and older groups. This modified data-sets consisted of 131037

younger and 13 older participants with comparable BMI1038

(p = 0.80,) and sBP (p = 0.86). We then compared the1039

subgroups’ power/coherence values. The results and sub-1040

group details are shown in the SM Sec. 9. We conclude1041

that, while it is difficult to disentangle the influence of ag-1042

ing from that of the increased BMI/BP, there is evidence1043

for an effect of ageing on the parameters considered, inde-1044

pendent of the BMI/BP differences.1045

It is likely that BMI/BP differences also contribute, but1046

some of the loss of significance can be attributed to loss of1047

statistical power due to having smaller groups.1048

Further investigation of the impact of increased BP and1049

BMI could be useful given that raised BMI is associated1050

with increased risk of cardiovascular diseases such as coro-1051

nary heart disease (54), and increased mid-life BMI is as-1052

sociated with the development of dementia in later life1053

(74).1054

5. Conclusions1055

We have investigated the function of the neurovascu-1056

lar unit at macroscopic level, evaluating the coherence be-1057

tween the oscillations in the cardiovascular system (simul-1058

taneously monitored centrally via ECG and respiration ef-1059

fort, and locally by whole-brain fNIRS) and oscillations1060

in neuronal activity (monitored locally by EEG), thereby1061

gaining insight into the mechanisms of ageing in the NVU.1062

Most notably, the neurovascular coherence near 0.1 Hz is1063

significantly reduced by ageing. This presumably reflects1064

progressively impaired control of cerebral blood flow. The1065

changes in cardio-respiratory coherence with blood oxy-1066

genation confirm that age affects significantly brain vas-1067

cular function and oxygenation. It seems that this then1068

impacts neuronal activity.1069

The methods described here, combined with state-of-1070

the-art time-frequency analysis focusing on phase dynam-1071

ics, have yielded new insights into the neurovascular dy-1072

namics of the aging brain. In particular, they have pro- 1073

vided a quantitative measure of the neurovascular effi- 1074

ciency and health of the NVU, information that cannot be 1075

obtained in other ways. The approach could thus be used 1076

for non-invasive evaluation of the decline of neurovascular 1077

function in normal aging, as well as for monitoring the ef- 1078

ficacy of treatment or lifestyle changes in a wide range of 1079

neurodegenerative disorders. 1080
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G., Richard, C., Hamilton, J., Salat, D., Berka, C., 2021. Rest- 1341

ing state EEG biomarkers of cognitive decline associated with 1342

Alzheimer’s disease and mild cognitive impairment. PLOS 1343

ONE 16, 1–31. 1344

[62] Mesquita, R. C. , Franceschini, M. A., Boas, D. A. , 2010, 1345

Resting state functional connectivity of the whole head with 1346

near-infrared spectroscopy. Biomed. Opt. Express. 1, 1 324– 1347

336. 1348

[63] Michel, C.M., Brunet, D., 2019. EEG Source Imaging: A 1349

Practical Review of the Analysis Steps. Front. Neurol. 10, 1350

325. 1351

[64] Mitra, A., Kraft, A., Wright, P., Acland, B., Snyder, A. Z., 1352

Rosenthal, Z., Czerniewksi, L., Bauer, A., Snyder, L., Cul- 1353

ver, J., Lee, J., Raichle, M. E., 2018, Spontaneous infra-slow 1354

brain activity has unique spatiotemporal dynamics and lami- 1355

nar structure. Neuron 98, 2, 297-305.e6. 1356

[65] Moezzi, B., Pratti, L.M., Hordacre, B., Graetz, L., Berryman, 1357

C., Lavrencic, L.M., Ridding, M.C., Keage, H.A., McDonnell, 1358

M.D., Goldsworthy, M.R., 2019. Characterization of young 1359

and old adult brains: An EEG functional connectivity analysis. 1360

Neuroscience 422, 230–239. 1361

[66] Montez, T., Poil, S.S., Jones, B.F., Manshanden, I., Verbunt, 1362

J.P.A., Van Dijk, B.W., Brussaard, A.B., Van Ooyen, A., 1363

Stam, C.J., Scheltens, P., et al., 2009. Altered temporal cor- 1364

relations in parietal alpha and prefrontal theta oscillations in 1365

early-stage Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1366

106, 1614–1619. 1367

[67] Monto, S., Palva, S., Voipio, J., Palva, J.M., 2008. Very slow 1368

EEG fluctuations predict the dynamics of stimulus detection 1369

and oscillation amplitudes in humans. J. Neurosci. 28, 8268– 1370

8272. 1371

[68] Murta, T., Leite, M., Carmichael, D.W., Figueiredo, P., 1372

Lemieux, L., 2015. Electrophysiological correlates of the 1373

BOLD signal for EEG-informed fMRI. Hum. Brain Mapp. 1374

36, 391–414. 1375

[69] Newman, J., Lancaster, G., Stefanovska, A., 2018. Multiscale 1376

Oscillatory Dynamics Analysis User Manual v1.01. Depart- 1377

ment of Physics, Lancaster University. 1378

[70] Nikulin, V.V., Fedele, T., Mehnert, J., Lipp, A., Noack, C., 1379

Steinbrink, J., Curio, G., 2014. Monochromatic ultra-slow 1380

(∼0.1Hz) oscillations in the human electroencephalogram and 1381

their relation to hemodynamics. NeuroImage 97, 71–80. 1382

[71] Nita, D., Vanhatalo, S., Lafortune, F., Voipio, J., Kaila, K., 1383

Amzica, F., 2004. Nonneuronal origin of CO2-related DC EEG 1384

shifts: An in vivo study in the cat. J. Neurophysiol. 92, 1011– 1385

1022. 1386

[72] Noordmans, H.J., van Blooijs, D., Siero, J.C.W., Zwanenburg, 1387

J.J.M., Klaessens, J.H.G.M., Ramsey, N.F., 2018. Detailed 1388

view on slow sinusoidal, hemodynamic oscillations on the hu- 1389

man brain cortex by Fourier transforming oxy/deoxy hyper- 1390

spectral images. Hum. Brain. Mapp. 39, 3558–3573. 1391

[73] Palva, J.M., Palva, S., 2012. Infra-slow fluctuations in electro- 1392

physiological recordings, blood-oxygenation-level-dependent 1393

signals, and psychophysical time series. NeuroImage 62, 2201– 1394

2211. 1395

[74] Pedditzi, E., Peters, R., Beckett, N., 2016. The risk of over- 1396

weight/obesity in mid-life and late life for the development of 1397

dementia: a systematic review and meta-analysis of longitudi- 1398

nal studies. Age Ageing 45, 14–21. 1399

[75] Peng, T., Ainslie, P.N., Cotter, J.D., Murrell, C., Thomas, K., 1400

Williams, M.J.A., George, K., Shave, R., Rowley, A.B., Payne, 1401

S.J., 2008. Physiol. Meas. 29, 1055. 1402

[76] Peters, M.J., Joehanes, R., Pilling, L.C., Schurmann, C., Con- 1403

neely, K.N., Powell, J., Reinmaa, E., Sutphin, G.L., Zher- 1404

nakova, A., Schramm, K., et al., 2015. The transcriptional 1405

landscape of age in human peripheral blood. Nat. Commun. 1406

18



6, 8570.1407

[77] Pfurtscheller, G., Daly, I., Bauernfeind, G., Müller-Putz, G.R.,1408

2012. Coupling between intrinsic prefrontal HbO2 and central1409

EEG beta power oscillations in the resting brain. PLOS ONE1410

7, e43640.1411

[78] Pinto, E., 2007. Blood pressure and ageing. Postgrad. Med. J.1412

83, 109–114.1413

[79] Rangaprakash, D., Wu, G.R., Marinazzo, D., Hu, X., Desh-1414

pande, G., 2018. Hemodynamic response function (HRF) vari-1415

ability confounds resting-state fMRI functional connectivity.1416

Magn. Reson. Med. 80, 1697–1713.1417

[80] Raut, R.V., Snyder, A.Z., Mitra, A., Yellin, D., Fujii, N.,1418

Malach, R., Raichle, M.E., 2021. Global waves synchronize1419

the brain’s functional systems with fluctuating arousal. Sci.1420

Adv. 7.1421

[81] Rayshubskiy, A., Wojtasiewicz, T.J., Mikell, C.B., Bouchard,1422

M.B., Timerman, D., Youngerman, B.E., McGovern, R.A., Ot-1423

ten, M.L., Canoll, P., McKhann, G.M., Hillman, E.M., 2014.1424

Direct, intraoperative observation of 0.1 Hz hemodynamic os-1425

cillations in awake human cortex: implications for fMRI. Neu-1426

roImage 87, 323–331.1427

[82] Revest, P.A., Jones, H.C., Abbott, N.J., 1993. The1428

transendothelial DC potential of rat blood-brain barrier vessels1429

in situ, in: Drewes, L.R., Betz, A.L. (Eds.), Frontiers in Cere-1430

bral Vascular Biology: Transport and Its Regulation. Springer1431

US, Boston, MA, pp. 71–74.1432

[83] Richard Clark, C., Veltmeyer, M.D., Hamilton, R.J., Simms,1433

E., Paul, R., Hermens, D., Gordon, E., 2004. Spontaneous1434

alpha peak frequency predicts working memory performance1435

across the age span. Int. J. Psychophysiol. 53, 1–9.1436

[84] Sadaghiani, S., Scheeringa, R., Lehongre, K. , Morillon, B.,1437

Giraud, A. L., D’Esposito, M., Kleinschmidt, A., 2012, Alpha-1438

band phase synchrony is related to activity in the fronto-1439

parietal adaptive control network. J. Neurosci. 32, 41, 14305–1440

14310.1441

[85] Salerud, E.G., Tenland, T., Nilsson, G.E., Oberg, P.A., 1983.1442

Rhythmical variations in human skin blood flow. Int. J. Mi-1443

crocirc. Clin. Exp. 2, 91–102.1444

[86] Sanganahalli, B.G., Herman, P., Hyder, F., Kannurpatti, S.S.,1445

2013. Mitochondrial functional state impacts spontaneous neo-1446

cortical activity and resting state fMRI. PLOS ONE 8, e63317.1447

[87] Sasai, S., Homae, F., Watanabe, H., Sasaki, A.T., Tanabe,1448

H.C., Sadato, N., Taga, G., 2012. A NIRS-fMRI study of1449

resting state network. NeuroImage 63, 179–193.1450

[88] Scally, B., Burke, M.R., Bunce, D., Delvenne, J.F., 2018.1451

Resting-state EEG power and connectivity are associated with1452

alpha peak frequency slowing in healthy aging. Neurobiol. Ag-1453

ing. 71, 149 – 155.1454

[89] Scholkmann, F., Tachtsidis, I., Wolf, M., Wolf, U., 2022.1455

Systemic physiology augmented functional near-infrared spec-1456

troscopy: a powerful approach to study the embodied human1457

brain. Neurophotonics 9, 030801.1458

[90] Schroeter, M.L., Kupka, T., Mildner, T., Uludağ, K., von Cra-1459
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