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Abstract

We investigate the effect of amplitude-modulated acoustic irradiation on the dynamics of a charged bubble vibrating
in a liquid. We show that the potential V (x) of the bubble, and the number and stability of its equilibria, depend on
the magnitude of the charge it carries. Under high-frequency amplitude-modulation, a modulation threshold, Gth, was
found for the onset of increased bubble amplitude oscillations. For some pressure field values, charge can facilitate the
control of chaotic dynamics via reversed period-doubling bifurcation sequences. There is evidence for peak-shouldering
and shock waves. The Mach number increases rapidly with the drive amplitude G. In the supersonic regime, for
G > 1.90 Pa, the high-frequency modulation raises both Blake’s and the transient cavitation thresholds. We found a
decrease in the bubble’s maximum charge threshold, and threshold modulation amplitude for the occurrence Vibrational
resonance (VR). VR occurs due to the modulated oscillatory pressure field, and the influence on VR of the electrostatic
charge, and other parameters of the system are investigated. In contrast to the cases of VR reported earlier, where the
amplitude G of the high-frequency driving is typically much higher than the amplitude of the low-frequency driving (Ps),
the VR resonance peaks occur here at relatively low G values (0 < G < 10Pa) compared to the acoustic driving pressure
Ps ∼ 105 Pa. The optimal parameter values for enhanced response could be useful in acoustic cavitation applications.
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1. Introduction

Bubbles are nonlinear oscillators that exhibit variety
of intriguing and complex dynamical properties. Research
on bubble dynamics and its potential applications dates
back more than a century to the work of Lord Rayleigh
[1], seeking to minimise damage to ships’ propellers. Since
then, scientific and technological interest in bubbles has
increased tremendously [2]. It is largely the numerous
emerging applications that motivate the continuing intense
research interest in bubble dynamics.

The dynamics of driven bubbles is relevant to a broad
range of investigations. The emergence of such studies,
more than four decades ago, quickly made driven bubbles
prototypical examples of driven nonlinear systems that
exhibit rich dynamical behaviour, becoming ubiquitous
within the nonlinear dynamics research community [2, 3].
The driving force often arises from external influences of
either deterministic (e.g. periodic or aperiodic) [3–5] or
stochastic (i.e. noisy inputs) origin [3, 5, 6]. In some appli-
cations related to acoustic cavitation, such as in sonochem-
ical reactors [7], fluid engineering, and medical diagnostics
and therapy [8], multi-frequency driving acoustic sound
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waves, consisting of two or more input forces with distinct
or identical frequency components, are often engineered
into a bubble system as control inputs. In addition to the
plethora of intriguing dynamical properties found in single-
frequency oscillators, phenomena such as mixed-mode os-
cillation, i.e. bursting [9–12], combination and simultane-
ous resonance [13] and vibrational resonance (VR) [8, 14]
may appear under different dual-frequency acoustic driv-
ing conditions. Dual-frequency forces can promote the
acceleration of bubble growth via mass transfer, thereby
leading to the generation of large bubbles [15]. More-
over, the combination of dual-frequency ultrasound irra-
diation and multiple-triggered high-intensity focused ul-
trasound (HIFU) was shown to be more efficient than
conventional triggered HIFU for cavitation bubble cloud
generation and expansion. More recently, it was shown
that the dual-frequency excitations: (i) enhance the cav-
itation dynamics and associated stress/strain more effi-
ciently [16]; (ii) promote increased sonochemical yields
[17]; (iii) promote a higher negative-pressure amplitude
than that of single-frequency ultrasound, which is more
appropriate for the generation of cavitation [18]; and (iv)
enable the clear distinction of cavitation sequences based
on phase differences, which has potential applications in
ultrasonic cavitation micromanipulation [18]. In addition,
ultrasound-assisted freezing employing multi-frequencies
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improved significantly the freezing rate, maintained the
myofibrillar structure, and reduced lipid oxidation [19].

In all earlier investigations of the effect of dual-frequency
driving on bubbles, the model bubbles were uncharged to
the best of our knowledge. However, it has been shown
that, when irradiated by acoustic fields, air and gas bub-
bles in liquids are in practice electrostatically charged.
Charge deposition on bubbles at bubble-liquid interfaces
is a problem of long standing [20–22]. The phenomenon
has been confirmed experimentally to be connected to the
migration of ionic charge from the liquid onto the bub-
ble surface [23]. Despite the many potential applications
of charged bubbles – e.g. the production of electro-aerosol
sprays which are composed of highly charged particles [24],
biomedicine [25], water treatment [26], and food produc-
tion [27] – the dynamics of driven charged bubbles has yet
to be fully understood. Notable contributions were made,
however, by Hongray et al. [28, 29] and Ashok et al. [30],
using the modified Rayleigh-Plesset equation for an acous-
tically single-frequency driven gas bubble while consider-
ing the presence of charge q on the surface of the bubble.
Hongray et al. [28, 29] and Ashok et al. [30] reported that
the presence of charge reduces the effective surface ten-
sion of the bubble, thereby causing the charged bubble to
expand to a larger radius and consequently undergo vi-
olent collapse to a minimum radius, as well as lowering
the Blake’s threshold [28]. In addition, Hongray et al [29]
reported that the presence of charge advances the occur-
rence of the period-doubling-bifurcations route to chaos
and increases the maximum attainable bubble radius.

The VR phenomenon has become one of the most promi-
nently investigated resonance phenomenon in recent times
owing to the numerous potential applications highlighted
in Ref. [31]. It can manifest when the frequency compo-
nents (say, Ω and ω) are chosen appropriately such that
Ω ≫ ω, where Ω is considered to be much faster with
respect to ω. Succinctly, VR is the enhancement of the re-
sponse of a system through the cooperation between two
periodic driving signals whose frequencies differ substan-
tially. Since VR was proposed over two decades ago [32],
several model systems have been investigated and their ap-
plications explored [5, 8, 33–40]. Rapid progress has been
made, both theoretically and experimentally [41–49, 49].
In recent papers by some of us [8, 14], the uncharged
Rayleigh-Plesset (R-P) bubble model moving in an incom-
pressible liquid was considered without any attention to
the possible impact of the modulation on other dynamical
properties of the bubbles, such as the Mach number, bi-
furcations, phase space trajectories and attractors in the
Poincaré section. It is well-known that the R-P model is
inappropriate when dealing with the large-amplitude oscil-
lations often encountered during certain biomedical appli-
cations. Consequently, in this paper, we consider a charged
bubble moving in a compressible liquid while driven by
amplitude-modulated acoustic waves. The model is there-
fore a modified R-P equation [28, 29]. In addition to ex-
ploring the impact of the amplitude modulation on the

charged bubble dynamics, we focus on the impact of charge
on the VR phenomenon. In doing so, we obtain for the first
time the potential V (x) for a charged bubble and show
that its nature, and the number and stability of its equi-
libria, will depend on the magnitude of the charge. We re-
port high-frequency amplitude-modulation-induced peak-
shouldering, shock waves and a rapidly-increasing Mach
number, as well as control of chaotic regimes through co-
operation between electrostatic charges and modulation.
We also observe shifts in the bubble’s characteristic pres-
sure thresholds due to the vibrational effects of the high-
frequency amplitude modulation. Finally, we establish the
occurrence VR, and we explore the impacts of the electro-
static charge, the equilibrium radius, the parameters of the
acoustic driving field, and the surface tension.

The rest of this paper is structured as follows: In Sec-
tion 2 we present the charged bubble model and express
it as the dynamics of a classical particle in a potential
well [8, 50]. We explore the potential structure and dis-
cuss the dependence of the stability of equilibrium points
on the magnitude of the charge q. In Section 3, numer-
ical simulation results are presented and discussed, with
emphasis on the effects of amplitude-modulation on the
bubble dynamics as well as the effects of charge, driving
pressure, equilibrium radius, and surface tension on VR.
We summarise and draw conclusions in Section 4.

2. Model

We start from the equation for an uncharged gas bubble
of radius R and equilibrium radius R0 oscillating in water.
Assuming no shape deformations, no angular oscillations
or translational motion, the radial equation of motion is
given by [28]:
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3c

)
=

(
1 +

Ṙ
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is the total pressure exerted on the bubble, c is the speed
of sound in the fluid, ρ is its density, η is its viscosity, σ
is its surface tension, P0 is the pressure, Pv is the vapour
pressure and Γ is the polytropic index of the gas inside

the bubble. The term containing (
(
1− Ṙ

c

)
defines the

compressibility of the liquid.
The last term in Eq. (2) is the acoustic driving pres-

sure field of frequency ω and amplitude Ps, modulated by a
high-frequency fieldG sinΩt, whereG and Ω are the modu-
lation amplitude and frequency, respectively. In industrial
applications of cavitation and single bubble sonolumines-
cence (SBSL) wherein bubbles emit light when irradiated
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by a high-frequency modulating acoustic signal, only cer-
tain parameters are tunable. The high-frequency modu-
lation signal is usually regarded as the most appropriate,
since in practice we can only expect to adjust the param-
eters of the external acoustic signal. For example, during
high-intensity focused ultrasound (HIFU) treatment for a
tumor, it would be impracticable to open up the skin to al-
ter the properties of the tumor medium [51]. This justifies
our choice of acoustic modulation to control the bubble
dynamics.

To consider the effect of electrostatic charges on the
bubble model, the charged bubble is regarded as a non-
conducting charged spherical shell with a constant charge
q on its surface. The presence of charge q on the bubble’s
surface reduces the effective value of the surface tension
σ. To account for this, an electrostatic pressure field term
Pq = q2/(8πϵR4) generated by a charge q may be included
in the pressure balance equation at the bubble wall, where
ϵ is the permittivity of the dielectric space-filling liquid.
The pressure, Pq for a charged spherical bubble in dielec-
tric fluid was derived by Grigor’ev and Zharov [52], and
employed by Hongray et al. [28, 29]. Thus, Eq. (1) now
becomes
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Ṙ

c
(1− 3Γ)

)
− Ṙ2
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We now seek an exact expression for the potential func-
tion of a charged bubble governed by Eq. (3). This anal-
ysis is important in order to elucidate the structure of the
potential in which the charged bubble oscillates, and to
explore the stability of the equilibrium state(s) and how
the presence of charge affects them. The procedure to be
employed is adapted from Refs. [8, 14], which is an im-
proved version of the linear oscillation approach employed
by Zhang [53] and Hamaguchi and Ando [54]. However,
it has the advantage of retaining the higher-order nonlin-
ear terms of the oscillator. In the formulation, we assume
only radial oscillations, and express the bubble radius R
in terms of its expansion or contraction variable x, taken
to be dimensionless. So R = R0(1 + x) and by substi-
tuting it into the charged bubble equation for the case
where G = 0 Pa (in the absence of the high-frequency
modulation), Eq. (3) then becomes (See the Appendix 1
for details)
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where the potential is

V (x, t) =
γ1
2
x2 +

γ2
3
x3 +

γ3
4
x4. (5)

The parameters αi(i = 0, 1, 2, 3) and γi(i = 1, 2, 3) given
in Eqn. (19) and (20) (see Appendix 1) are the damping
and potential parameters, respectively – all of which are
charge-dependent. λ = −R0

c , and ϕ = 1+ 1
ρR0c

arises from

the compressibility term. By considering γ1 from Eqn. (20)
and dropping higher-order damping terms in αi(i = 1, 2, 3)
given by Eqn. (19) for the unforced oscillator, it is easy to
recover the expressions for the linear natural frequency and
the linear damping of the oscillator obtained by Hongray et
al. [28]. Indeed, our model preserves the nonlinearity of
the bubble oscillator up to third-order in its expansion or
contraction, thus, making for more elegant and accurate
analysis of the system’s stability compared to the work of
Grigor’ev and Zharov [52].

In the absence of the external acoustic field, the poten-
tial V (x, t) becomes dependent only on position, as V (x).
The nature of the potential V (x), and the number and sta-
bility of its equilibria will depend on the parameters of the
charged bubble, and especially on the magnitude of the
charge q that it carries. We now proceed to discuss the
equilibria of this potential and the nature of their stabil-
ity. The three possible equilibria of the potential obtained
from solving dV/dx = 0 are

x1 = 0, x2,3 =
−γ2 ±

√
γ22 − 4γ1γ3
2γ3

.

The unperturbed charged bubble oscillator can be written
as

ẋ = y

ẏ = −γ1x− γ2x
2 − γ3x

3. (6)

The Jacobian matrix J is

J =

(
0 1
χ 0

)
(7)

where χ = −γ1x− 2γ2x− 3γ3x
2. The eigenvalues of J are

given by ±√
χ. Hence, if χ > 0, the equilibrium is a saddle

point; it is a stable center for χ < 0.
Figure 1 plots the dependence of the equilibria of the

system’s potential on the magnitude of the charge q. We
now discuss these results which, for convenience, are sum-
marized in Table 1. For q < 0.717 pC, the potential is
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Figure 1: The bifurcation diagram of the equilibrium point, showing
the appearance of three equilibria x1,2,3 of the system computed from
the potential V (x) with the variation in bubble charge q in pC. The
Dashed lines indicate instability of the equilibria while the solid lines
indicate stable equilibria. The parameter values are Γ = 5/3, ρ =
998 kgm−3, η = 10−3 Nsm−2, c = 1500 ms−1, Pv = 2.34 kPa, P0 =
101 kPa, σ = 0.0725 Nm−1, ǫ = 85ǫ0, where ǫ0 is the permittivity
of vacuum.

a single-well with a stable equilibrium always at x = 0
denoted by the solid black line. The potential is a double-
well from q = 0.717 pC to about 1.45 pC, after which it
becomes a single-well with a double-hump. The well at
x = 0 collapses into the right hump when q > 1.45 pC,
leading to an instability in the potential structure. This
instability is consistent with the maximum charge thresh-
old for bubbles previously established by Hongray et al.
[28, 29]. Figure 2 depicts the dependence of the struc-
ture and shape of the potential V (x) on the charge (q) of
the bubble. For the parameters used here, the potential
V (x) of an uncharged bubble is an asymmetrical single-
well centered around x = 0. At q = 0.5 pC and up to
about 0.717 pC, the potential remains a single-well, as il-
lustrated in Figure 1. The potential at q = 1.0 pC is an
asymmetric double-well, with the right-well significantly
deeper than the left-well located at x = 0. The poten-
tial at q = 2.0 pC is a single-well located at x = 0 with
double humps on either side. The left hump potential bar-
rier, located at x < 0, is significantly higher than the right
hump potential barrier, located at x > 0. In this case, as
the charge q exceeds 1.45 pC, the particles of the charged
bubble system gain sufficient energy to overcome the ap-
propriate potential barriers, resulting in the observed in-
stability in the charged bubble dynamics.

3. Results and discussion

The results presented here were obtained from numer-
ical solutions for the charged bubble in Eq. (3), rewritten
as a set of coupled first-order autonomous ordinary differ-
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Figure 2: The potential V (x) of the charged bubble in Eq. (5) for (a)
q = 0.0 pC (single-well); (b) q = 0.5 pC (single-well); (c) q = 1.0 pC
(double-well); and (d) q = 2.0 pC (single-well double-hump). Other
parameters were fixed as in Figure 1
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Equation (9) is then solved numerically by implementation
in MATLAB-Simulink with the initial conditions x(0) =
R(0) = R0 = 5.0 µm, y(0) = Ṙ(0) = 0. Simulink is
a MATLAB-based environment for modelling and simu-
lating dynamical systems [44]. We choose Γ = 5/3, cor-
responding to an adiabatic heat transfer process across
the bubble surface. Except where otherwise indicated,
the parameters of the model are fixed at Pv = 2.34 kPa,
ν (linear frequency) = 10 kHz, ω = 2πν = 62.83 kHz,
Ω = 5.0ω, Ps = κP0, ρ = 998 kg m−3, η = 10−3 Ns
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Equation (9) is then solved numerically by implementation
in MATLAB-Simulink with the initial conditions x(0) =
R(0) = R0 = 5.0 µm, y(0) = Ṙ(0) = 0. Simulink is
a MATLAB-based environment for modelling and simu-
lating dynamical systems [44]. We choose Γ = 5/3, cor-
responding to an adiabatic heat transfer process across
the bubble surface. Except where otherwise indicated,
the parameters of the model are fixed at Pv = 2.34 kPa,

4



Table 1: Summary of the effect of charge on the system equilibria.

Quantity of charge, q (pC) Stability Property
q < 0.717 Stable single equilibrium (at x = 0)
0.717 ≤ q ≤ 1.0 Three equilibria: 2 stable (at x = 0 and x > 0), 1 unstable
1.0 < q ≤ 1.5 Two equilibria: 1 stable (at x = 0), 1 unstable (at x > 0)
q > 1.5 Three equilibria: 1 stable (at x = 0), 2 unstable (at x < 0 and x > 0)

ν (linear frequency) = 10 kHz, ω = 2πν = 62.83 kHz,
Ω = 5.0ω, Ps = κP0, ρ = 998 kg m−3, η = 10−3 Ns
m−2, c = 1500 ms−1, P0 = 101 kPa, σ = 0.0725 Nm−1,
ϵ = 85ϵ0, where ϵ0 is the permittivity of the vacuum.

The bubble’s response to the acoustic signal of fre-
quency ω can be computed numerically from the expres-
sion

Q =

√
Q2

S +Q2
C

Ps
, (10)

where Qs and Qc are related to the Fourier sine and co-
sine spectra of the time series of the output signal R(t),
respectively, and expressed as

Qs =
2

nT

∫ nT

0

R(t) sinωtdt, (11)

Qc =
2

nT

∫ nT

0

R(t) cosωtdt. (12)

T = 2π
ω is the period of oscillations of the input signal

frequency ω and n = 1, 2, 3, . . . is the number of complete
oscillations.

3.1. Effect of amplitude modulation on the bubble dynam-
ics

We now describe some effects of the amplitude modu-
lation by the high-frequency field G sinΩt on the dynamics
of the charged bubble. Figure 3 plots R/R0 as a function
of the driving periods (3 driving periods) at G = 0 Pa,
0.30 Pa and 0.60 Pa. The periods 100-103 were chosen to
ensure that the system had reached a steady state solution.
As previously reported by Hongray et al. [28], the maxi-
mum and minimum radii attainable by a charged bubble
increase and decrease, respectively, when compared to an
uncharged bubble. In the absence of high-frequency am-
plitude modulation, the bubble exhibits small-amplitude
stable oscillations, and the bubble radial amplitude can
only increase to about 1.3 times the equilibrium radius
R0, as shown in Fig. 3 (middle panel). For small amplitude
(G = 0.3 Pa) of the high-frequency modulation, there is
no significant difference in the maximum attainable bub-
ble radius from the case G = 0 Pa; however, the time-
series maxima are split into two distinct and equal peaks
(peak shouldering) (Figure 3, upper panel). The lower
panel of Figure 3 shows that the time-series maxima split
into two distinct but unequal peaks as the high-frequency
modulation amplitude G = 0.60 Pa increases further. The

maximum radius attained by the bubble in this case is
approximately twice or 2.5 times the equilibrium radius
R0 for the neutral or charged bubbles, respectively, when
q = 0.80 pC. When G = 0.60 Pa, bursting-like spikes
(shock waves) appear in the radial time evolution. These
emitted shock waves are often associated with a strong
collapse of the bubble after expansion, and they transport
significant portions of the bubble’s energy into the liquid,
resulting in weak after-bounces due to strong damping [2].
Detailed characteristics of the bursting dynamics, which
are beyond the scope of the present paper, are in general
dependent on the ratio between the frequencies Ω and ω
and will be reported elsewhere. Plots of the maximum
radius attainable by the bubble as a function of the mod-
ulation amplitude G for neutral and charged bubbles are
shown in Figure 4(a). We found that increasing G from
zero to 0.5 Pa results in a very small change in the am-
plitude of the oscillation. Notably, a small increase in G
beyond G = 0.5 Pa, impacts significantly on the ampli-
tude of the bubble oscillatory dynamics. At G = 0.50 Pa
precisely, the maximum radii attainable by the bubble are
1.58 and 1.67 times the equilibrium radii for the neutral
and charged bubbles, respectively, for fixed q = 0.80 pC.
For the same quantity of charge at G = 1.00 Pa, however,
the maximum radius of the bubble rapidly increases to 7.00
and 7.15×R0 for the neutral and charged bubbles, respec-
tively. Thus, increase in the high-frequency modulation
amplitude increases the amplitude of the bubble oscilla-
tion. However, it is counter-intuitive that the relationship
between the high-frequency modulation and amplitude of
the bubble oscillation is nonlinear in nature.

Figure 5 shows a plot of the Mach number as a func-
tion of driving period (3 driving periods) and the corre-
sponding spectral analysis of the time series at G = 0 Pa,
0.30 Pa and 0.60 Pa. The Mach number [55, 56], denoted
by Ṙ/c in the current application, is a dimensionless quan-
tity that represents the ratio of a body’s speed to the speed
of sound in the surrounding medium. The Mach number
regimes are classified as subsonic (Ṙ/c < 0.8), transonic
(0.8 < Ṙ/c < 1.2), and supersonic (Ṙ/c > 1.2). The time-
series of Ṙ/c in Figure 5 shows that, in the presence of
high-frequency amplitude-modulation, the bubble oscilla-
tions become more violent. The frequency components of
the time series and their amplitudes in the system can be
examined by spectral analysis, thereby providing valuable
insights into the underlying dynamics of the system. The
analysis shows that prominent peaks exist at intervals of
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Figure 3: Plot of R/R0 as a function of driving periods for a neu-
tral bubble (black-thick) and a bubble with charge q = 0.8 pC
(red-dashed) at different values of G. Other parameters remain un-
changed.

10,000 Hz which is the fundamental frequency of the source
signal – indicating that there is a strong periodic compo-
nent in the time series. The presence of prominent peaks
at regular intervals of 10,000 Hz suggests that the bubble
oscillator generates harmonics at multiples of the funda-
mental frequency.

The effect of the high-frequency amplitude modulation
on the bubble velocity can further be understood from
Fig. 4(b). The plot in Fig 4(b) shows the maximum Mach
number as a function of modulation amplitude G for a neu-
tral and a charged bubble at q = 0.80 pC. As G increases
from zero to G = 0.78 Pa and G = 0.74 Pa for the neutral
and charged bubbles, respectively, at q = 0.80 pC, the bub-
ble velocity increases only slightly, with a maximum Mach
number of 0.05 within this range. However, as G rises
above G = 0.78 Pa and G = 0.74 Pa for the neutral and
charged bubbles, respectively, at q = 0.80 pC, the bubble
Mach number increases rapidly for very small changes in
the bubble oscillation amplitude. When G > 1.48 Pa, the
bubble moves beyond the subsonic region into the tran-
sonic region. Beyond G > 1.90 Pa, the bubble is charac-
terized by supersonic velocities, where its velocity in the
medium significantly exceeds the speed of sound c. In gen-
eral, the introduction of high-frequency amplitude modu-
lation increases the maximum radius of the bubble dur-
ing the expansion phase. This increased maximum radius
causes the bubble to collapse or contract more violently.

Figure 6 plots the Ṙ/c versus R/R0 phase portrait for
a bubble with charge q = 0.8 pC for four different modula-
tion amplitudes, G. As clearly shown, the phase portrait
is a regular period-one orbit in the absence of amplitude

Figure 4: (a) Maximum radius Rmax/R0 and (b) Maximum Mach
number |Ṙmax|/c plotted against the modulation amplitude G for a
neutral bubble (black-thick) and a bubble with charge q = 0.8 pC
(blue-dashed). The driving pressure is Ps = 0.8P0 and other param-
eters remain unchanged.

modulation (G = 0 Pa) for the parameters used in the sim-
ulation. This corresponds to the time series shown in Fig. 3
(upper panel). Amplification of the orbit, and increased
irregularity are manifested as the modulation amplitude G
increases, due to the peak shouldering and after-bounces
observed in the time series for R/R0 and Ṙ/c in Figs. 3
and 5. The Poincaré points coloured red in Fig. 6 indicate
that the orbit is a period-one attractor that is stable over
a wide range of G values. However, the bubble attrac-
tor vibrates with increased velocity and rapidly expanding
radius as the modulation amplitude increases beyond a
threshold value Gth. This is illustrated in the bifurcation
diagram (Fig. 7) where a transition point, Gth is evident.
The dynamics for G > Gth is typical of a bursting oscil-
lation, wherein the orbits occasionally visit the quiescent
state sandwiching the spikes of the time series, and returns
as shown in Figs. 3 and 5 for G = 0.6 Pa. This happens
because the variables evolve on two distinct time scales [9–
12]. In the latter part of this paper, the features of these
vibrations, and their dependence on G and the quantity of
charge q, will be explored in detail.
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Figure 5: Plot of Ṙ/c (Mach number) as a function of driving periods
and the corresponding spectral analysis for a neutral bubble (black-
thick) and a bubble with charge q = 0.8 pC (red-dashed) at different
values of G. Other parameters remain unchanged. The right-hand
side shows the spectral analysis of the corresponding time series.

Notably, for larger values of the pressure amplitude
– e.g. Ps = 2P0, the dynamics of the bubble shown in
Figs. 6 and 7 is remarkably different for both the neu-
tral (Q = 0) and charged (Q ̸= 0) bubbles. In this
case, chaotic dynamics emerges via period-doubling bifur-
cations from a period-two attractor (when G = 0) with
increased modulation amplitude, as shown in Fig. 8. The
impact of electrostatic charge on the bifurcation structure
is clearly evident. First, the size of the attractor shrinks
progressively with increasing charge. Secondly, the chaotic
dynamics is controlled in certain regimes of G, namely:
G ∈ [2.29 : 2.41], [3.1 : 3.5], [4.05 : 5.20], [5.70 : 6.07].
In particular, the window G = [4.05 : 5.20], shows clearly
that the control mechanisms are characterised by reversed
period-doubling bifurcations. The attractor trajectories
and their corresponding Poincaré points for three values
of G in the controlled regimes are illustrated in Figs. 9
and 10

Next, we examine the impacts of G on the Blake’s
threshold, PBlake, which is the pressure threshold above
which an acoustically forced bubble expands rapidly, cul-
minating in cavitation. There is a higher threshold af-
ter the Blake’s threshold known as the transient cavita-
tion threshold, Ptr. This is the minimum acoustic pres-
sure required for the bubble to collapse violently after
its maximum expansion at near-sound velocities. Essen-
tially, the bubble is in an unstable regime at pressures
between the Blake’s and transient cavitation thresholds.
The maximum Mach Number, |Ṙmax|/c, for Ps < Ptr, in-
creases as a function of the driving frequency whereas, for
Ps > Ptr, the maximum Mach Number decreases [29]. The
expansion-compression ratio ζ = (Rmax−R0)/(R0−Rmin)
was introduced by Hongray et al [28, 29] as a useful di-
mensionless measure of the relative extent of bubble ex-

Figure 6: Ṙ/c versus R/R0 phase plots and Poincaré map (red
points) at different values of the modulation amplitudeG for a bubble
with charge q = 0.8 pC. The driving pressure is Ps = 0.8P0, driving
frequency ν = 10 kHz and other parameters remain unchanged.

pansion to compression. Plotting ζ as a function of the
driving pressure ratio, Ps/P0, allows one to locate quickly
both Blake’s threshold PBlake and the transient cavitation
threshold Ptr. Figure 11 shows plots of ζ vs Ps/P0 for
a charged bubble with q = 0.80 pC in the absence and
presence of high-frequency amplitude modulation. Here,
as Ps/P0 increases, the value of ζ rises until it peaks at
Ps = PBlake followed by a minimum at Ps = Ptr. Hongray
et al. [29] established the effect of charge and the equilib-
rium radius R0 on the ratio ζ in their studies. The ef-
fect of high-frequency amplitude modulation on threshold
pressures is shown for two different values of the modu-
lation G. Blake’s threshold PBlake is 1.085P0, 1.1225P0,
and 1.1325P0 for G = 0, 0.05, and 0.10 Pa, respectively.
Moreover, the transient cavitation threshold, Ptr, is at
Ps = 1.1075P0, Ps = 1.1400P0, and Ps = 1.1425P0 for
G = 0 Pa, G = 0.05 Pa, and G = 0.10 Pa, respectively.
Remarkably, an increase in the modulation amplitude G,
shifts the threshold pressures to higher Ps values. This
could be attributable to high-frequency-induced vibration
effects which cause the bubble to expand more rapidly due
to decreases in the effective surface tension and damp-
ing [28].

Another important threshold for charged bubble dy-
namics is the maximum charge qh that a bubble can carry.
Beyond qh, the bubble model’s minimum radius Rmin may
become less than that corresponding to the van der Waals
hard core radii h for the gas contained within the bub-
ble. Previous research has established the effect of driving
pressure Ps and equilibrium radius R0 on qh [28, 29]. Fig-
ure 12 shows a plot of qh as a function of the modulation
amplitude G for a bubble of equilibrium radius R0 = 5 µm
with different driving frequencies. Clearly, the value of the
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Figure 7: Bifurcation diagram of R/R0 varying with the modulation
amplitude G for bubble charges q = 0 pC (blue dots) and q = 0.8 pC
(red dots). Gth is the transition point indicating the onset of bubble
vibration. The driving pressure is Ps = 0.8P0, driving frequency
ν = 10 kHz and other parameters remain unchanged.

threshold qh decreases significantly as the high-frequency
modulation amplitude G increases from zero. Similarly, qh
decreases with increasing driving frequency of the acous-
tic pressure field from G = 0 Pa to G = 0.70 Pa. The
bubble’s ultrasonic cavitation threshold decreases signif-
icantly in the presence of electrostatic charges due to a
decrease in effective surface tension. Furthermore, the
high-frequency amplitude-modulation serves to reduce the
magnitude of the effective surface tension even further.
The decrease in the value of the threshold qh due to high-
frequency amplitude-modulation can be explained in rela-
tion to the reduction of the bubble wall resistance to rup-
ture due to decreased surface tension [57]. Remarkably,
the curve has a plateau-like feature beyond G = 0.70 Pa,
wherein increased modulation amplitude does not impact
on the value of qh regardless of the driving frequency of
the acoustic pressure field. This demonstrates that for
G > 0.70 Pa, the effect of vibration due to cooperation
between the frequencies of the driving acoustic field (ω)
and the modulating force (Ω) on the maximum allowed
bubble charge eventually saturates for R0 = 5 µm. The
minimum qh for the equilibrium bubble radius R0 = 5 µm
was estimated to be 1.24 pC. The area above the curve in
Figure 12, which is dependent on the linear frequency ν
is physically unreachable for the bubble because the min-
imum radius becomes less than that corresponding to the
van der Waals hard core radii Rmin > h of the enclosed
gas atoms.

3.2. Effect of charge on the vibrational resonance of the
bubble

We start by focusing on the effect of charge variation
on the bubble’s response to dual-frequency-driven acous-
tic fields. We computed the quantity Q/Qunc, where Qunc

is the response amplitude of the uncharged bubble (i.e.

Figure 8: Bifurcation diagram of R/R0 varying with the modulation
amplitude G for bubble charges q = 0 pC (blue dots), q = 0.8 pC
(green dots) and q = 1.0 pC (red dots). The bottom plot is the zoom
of the periodic window where reversed period-doubling bifurcation
appeared. The driving pressure is Ps = 2.0P0, driving frequency ν
= 500 kHz and other parameters remain unchanged.

for q = 0). The dependence of the response amplitude
ratio Q/Qunc on the charge q is illustrated in Figure 13
for different values of modulation amplitude G with a
driving pressure Ps = 0.8P0, bubble equilibrium radius
R0 = 5.0 µm and other parameters remain as previously
stated. The response amplitude for the uncharged bubble
is represented by Qunc (q = 0 pC). In Figure 13, the ra-
tio Q/Qunc has a value of unity when q = 0 pC and the
response amplitude is either amplified (Q/Qunc > 1) or at-
tenuated (Q/Qunc < 1) as charge increases from q = 0 pC.
A close look at Figure 13 shows that there is an amplifi-
cation of the response amplitude as charge increases for G
lying between 0.25 Pa ≤ G ≤ 0.70 Pa. For G = 0.60 and
G = 0.70, the response amplitude is significantly ampli-
fied to about 1.45 and 1.72 times the input signal, respec-
tively. However, for G > 0.70 Pa and especially between
G = 0.72 Pa and 1.0 Pa, the response amplitude initially
underwent a marked attenuation until around q = 0.55 pC,
after which the response amplitude increases as the bub-
ble charge increases further. The attenuation, character-
ized by the inversion of the VR curve, corresponds only
to a ∼20% reduction in the value compared to the un-
charged case since Q/Qunc ∼0.8 at the inversion. For
G ≥ 1.00 Pa the effect of charge on the response am-
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Figure 9: Ṙ/c versus R/R0 phase plots and Poincaré map (red
points) at different values of the modulation amplitude G for a bub-
ble with charge q = 0.8 pC. The driving pressure is Ps = 2.0P0,
driving frequency ν = 500 kHz and other parameters remain un-
changed.

plitude of the bubble eventually saturates, and variations
in the bubble charge produce no significant changes in
the response amplitude. Thus, the effect of the high-
frequency amplitude-modulation eventually compensates
for the electrostatic effect caused by the charge.

In Figures 14(a) and (b), the response amplitude Q is
plotted against the modulation amplitude G and acoustic
driving frequency ω for different values of the charge q . It
is characterized by multiple resonance peaks and decreases
slightly as the bubble charge increases for 0 < G < 1.0 Pa.
However, as the charge increases further, the resonance
peaks appear at lower values of the modulation amplitude
G. The resonance peaks for q = 0 pC are at G = 0.68 Pa,
0.74 Pa, and 0.85 Pa. The q = 0.50 pC resonance peaks
are slightly shifted to lower G values at G = 0.66 Pa,
0.72 Pa, and 0.83 Pa. Furthermore, for q = 1.00 pC, there
are now only two distinct resonance peaks at G = 0.68 Pa
and 0.81 Pa. Thus, the vibrational effect is characterized
by multiple vibrational resonance peaks. The amplifica-
tion of the input signal at the highest resonance peak is
by factors of 7.26, 6.82, and 5.72 at bubble charge values
of q = 0 pC, q = 0.50 pC, and q = 1.00 pC, respectively.
Figure 14(b) shows that the bubble’s resonance amplitude
is directly proportional to the driving frequency ω of the
acoustic field and the quantity of charge, with distinct res-
onance peaks. The response amplitude does not change
significantly as the driving frequency increases from zero
to around 60 kHz. However, there are about four dis-
tinct resonance peaks between 60 − 150 kHz, specifically
at ω = 63.46 kHz, 76.02 kHz, 93.62 kHz, and 122.52 kHz
for a bubble with charge q = 1.00 pC. The resonance peaks
occur at lower values of the acoustic driving frequency as
the bubble charge increases.

It is also worth noting that, in contrast to previous

Figure 10: Ṙ/c versus R/R0 phase plots and Poincaré map (red
points) at different values of the modulation amplitudeG for a bubble
with charge q = 1.0 pC. The driving pressure is Ps = 2.0P0, driving
frequency ν = 500 kHz and other parameters remain unchanged.

cases of VR, the VR response curves in this case exhibit
resonance at relatively low values of the introduced high-
frequency modulation amplitudeG compared to the acous-
tic driving pressure Ps ∼ 105 Pa.

3.3. Effect of driving pressure on the vibrational resonance
of the bubble

Previous research has shown that the driving pressure
Ps = κP0 exerts a significant effect on the dynamics of
acoustically driven bubbles. We now examine the depen-
dence of VR on the driving pressure Ps of the acoustic
field (Figure 15). The pressure thresholds for a 5 µm bub-
ble are: Blake’s threshold, PBlake = 1.085P0; and the
transient cavitation threshold, Ptr = 1.108P0. The de-
pendence of the response amplitude Q on the modulation
amplitude G at four different driving pressures is shown in
Figure 15(a). The values used were Ps = 0.9P0 (i.e. below
Blake’s threshold), Ps = 1.085P0 (at Blake’s threshold),
Ps = 1.1P0 (between the Blake and transient cavitation
thresholds) and Ps = 1.2P0 (beyond the transient cavita-
tion threshold). As already indicated the bubble is in an
unstable regime for driving pressures between the Blake’s
and transient cavitation thresholds. Furthermore, after
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Figure 11: Plot of ζ (expansion-contraction ratio) as a function of
the driving pressure ratio Ps/P0 at ν = 10 kHz and R0 = 5 µm at;
(a)G = 0 Pa showing the locations of the Blake’s threshold pressure
PBlake and the upper transient threshold pressure Ptr. (b) G = 0 Pa
(blue-thick), G = 0.05 Pa (red-dashed) and G = 0.10 Pa (black-
dotted).

maximal radial expansion, the bubble collapses violently
above the transient cavitation threshold. At driving pres-
sures below Blake’s threshold, the bubble is at its most sta-
ble. This is illustrated in Figure 15(a), where the response
amplitude is more pronounced for Ps = 0.9P0, with three
resonance peaks at G = 0.62 Pa, 1.06 Pa, and 3.54 Pa.
For this case, the amplification due to VR at the highest
resonance peak (G = 3.54 Pa) is by a factor of 45.24 of
the amplitude at G = 0 Pa. However, for the other driv-
ing pressure values used in Figure 15(a), there exist single
resonance peaks located at G = 2.34 Pa, G = 2.40 Pa, and
2.64 Pa for Ps = 1.085P0, Ps = 1.1P0, and Ps = 1.2P0,
respectively. The amplification of the input signal due
to VR at these resonance peaks is 16.51, 10.18, and 2.81
for Ps = 1.085P0, Ps = 1.1P0, and Ps = 1.2P0, respec-
tively. When the driving pressures exceed Blake’s thresh-
old, the resonance peaks shift slightly to higher modulation
amplitude G values with decrease in the amplification of
the input signal due to VR. The rough nature of the re-
sponse curve that appears as the modulation amplitude G
increases for driving pressures above Blake’s threshold is
a further signature of the bubble dynamics’ instability in
this case. The instability in the response curves for pres-
sures above the Blake’s threshold can be better understood
by referring to Figure 15(b). For increasing values of the
modulation amplitude G (0 − 2.00 Pa), the response am-
plitude of the bubble is plotted as a function of the driving
pressure ratio Ps/P0 in Figure 15(b). In the absence of the
high-frequency modulation (G = 0 Pa), the bubble does
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Figure 12: Plot of qh as a function of the modulation amplitude G for
a bubble of equilibrium radius R0 = 5 µm at driving frequencies ν =
10 kHz (black-thick), ν = 20 kHz (blue-dashed) and ν = 40 kHz (red-
dotted). The driving pressure is Ps = 0.8P0 and other parameters
remain unchanged. The area below each curve corresponds to the
physically permitted region for the bubble. The area above each
curve is the physically unreachable region for the bubble.

not vibrate. Thus, no resonance peaks exist at any driving
pressure. However, when the modulation is switched on,
the bubble vibrates with multiple peaks and the number of
resonance peaks increases as the value of G increases. In
general, as the value ofG increases, the response amplitude
due to the pulsation effect caused by the increased effec-
tive pressure on the bubble also increases. In the presence
of a driving pressure above Blake’s threshold, the pulsa-
tion effect becomes more pronounced as the modulation
amplitude of the high-frequency force increases.

3.4. Effect of equilibrium radius on the vibrational reso-
nance of the bubble

Figures 16 and 17 show the dependence of the acousti-
cally driven bubble’s response amplitude Q on the ambient
or equilibrium bubble radius, R0. This is of interest be-
cause the compressibility function λ = −R0/c is related to
R0 [2, 58]. Figure 16(a) shows the response amplitude Q
as a function of the equilibrium bubble radius R0 at four
different modulation amplitudes G. The equilibrium ra-
dius is directly proportional to the resonance amplitude of
the acoustically-driven bubble, as shown in Figure 16(a),
and the system is enhanced and maximizes as the equilib-
rium radius increases. VR, characterized by the multiple
peaks in the resonance curves, occurs at several values of
R0, ranging from 1.5 µm to 10.0 µm. For R0 > 8 µm, a
random-walk-like pattern appears in the Q−R0 resonance
curve, indicating the onset of aperiodicity in the bubble
oscillation for modulation amplitudes greater than 0.5 Pa.
The most dominant VR peaks appears within the stable
and periodic oscillation window whenR0 is 9.1 µm, 6.9 µm,
7.9 µm, and 6.8 µm for G = 0.50 Pa, 0.75 Pa, 1.00 Pa, and

10



0 0.2 0.4 0.6 0.8 1

0.8

0.9

1

1.1

1.2

1.3

Figure 13: Effect of G on the response amplitude ratio Q/Qunc

of the charged-bubble. Qunc represents the response amplitude for
the uncharged bubble (q = 0 pC). Q/Qunc has a value of unity
when q = 0 pC, it either amplifies (Q/Qunc > 1) or de-amplifies
(Q/Qunc < 1) as the quantity of charge increases. Between G =
0.7 Pa and G = 1.0 Pa, there appears an inversion of the response
amplitude.

2.00 Pa, respectively. The amplification of the input signal
due to VR at these resonance peaks is by factors of 20.61,
36.43, 60.00, and 4.47 for G = 0.50 Pa, 0.75 Pa, 1.00 Pa,
and 2.00 Pa, respectively. By increasing the driving fre-
quency ω with fixed bubble ambient radius R0, the sys-
tem’s response amplitude can be enhanced. Figure 16(b)
shows a plot of the response amplitude Q as a function of
the acoustic driving frequency ω for different bubble equi-
librium radii R0 = 4.0 µm, 5.0 µm, and 6.0 µm. Again,
we found multiple peaks for all values of R0, with signifi-
cant enhancement of Q as the equilibrium radius becomes
larger. The most dominant VR peaks within the frequency
range investigated for R0 = 4.0 µm were at 135.09 kHz
and 175.56 kHz. Within the window for stable and peri-
odic oscillations at R0 = 5.0 µm, the most dominant VR
peaks were at 102.42 kHz and 133.83 kHz, with an aperi-
odic window within the frequency range 170−200 kHz. In
the frequency range 135− 170 kHz, the aperiodic window
was observed for a large bubble of radius R0 = 6.0 µm.
The dominant VR peaks are located at 82.31 kHz and
106.19 kHz.

Figure 17 plots the dependence of the response ampli-
tude Q on the modulation amplitude G for bubble equi-
librium radii R0 = 4.0 µm, 5.0 µm, and 6.0 µm. The re-
sponse curve in the range G = 0− 6.00 Pa is shown in two
plots: Figure 17(a) (G = 0 − 2.34 Pa) and Figure 17(b)
(G = 2.34 - 6.00 Pa). At lower values of the modula-
tion amplitude G, the variations in response amplitude
with changes in the bubble ambient radius are more pro-
nounced. As previously stated, the pulsation effect caused
by increased effective pressure on the bubble accounts for
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Figure 14: Plot of response amplitude Q against (a) modulation
amplitude G (b) driving frequency ω at G = 0.50 Pa for different
values of bubble charge (q = 0 pC, q = 0.50 pC, q = 1.00 pC).
The driving pressure is Ps = 0.8P0 and other parameters remain
unchanged.

the roughness of the response curve at higher G values.
For the bubble equilibrium radii of R0 = 4.0 µm, 5.0 µm
and 6.0 µm used, there are five distinct resonance peaks
within the range G = 0− 6.00 Pa. Those for R0 = 4.0 µm
are at G = 0.92 Pa, 1.20, 1.56 Pa, 2.22 Pa, and 4.68 Pa,
corresponding to input signal enhancement factors of 8.00,
14.29, 23.76, 38.84, and 68.19, respectively. The resonance
peaks for R0 = 5.0 µm occur at G = 0.72 Pa, 0.82 Pa,
1.18 Pa, 1.86 Pa, and 4.38 Pa, corresponding to input sig-
nal enhancement factors of 4.27, 6.76, 13.32, 26.14, and
54.43, respectively. Furthermore, the resonance peaks for
R0 = 6.0 µm are located at G = 0.60 Pa, 0.70 Pa, 0.88 Pa,
1.56 Pa, and 4.44 Pa, corresponding to input signal en-
hancement factors of 2.23, 4.43, 7.92, 18.11, and 44.40,
respectively. In general, the values of G at which the VR
peaks occur shift to lower values as the equilibrium radius
of the bubble increases. Furthermore, as the equilibrium
radius increases, the amplification effect of the input sig-
nal decreases. Consequently, the smaller the equilibrium
radius, the greater the effect of signal amplification due to
VR.
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Figure 15: Plot of response amplitude Q against (a) modulation
amplitude G for a bubble with charge q = 0.50 pC for different values
of bubble driving pressure (Ps = 0.9P0, Ps = 1.085P0, Ps = 1.1P0,
Ps = 1.2P0). (b) driving pressure ratio Ps/P0 for a bubble with
charge q = 0.50 pC at G = 0 Pa, 0.25 Pa, 0.50 Pa, 1.00 Pa, 2.00 Pa.
Other parameters remain unchanged.

3.5. Effect of surface tension on the vibrational resonance
of the bubble

We demonstrated above that VR can be induced by
varying the quantity of charge on the bubble, or its equi-
librium radius, or the parameters of the acoustic driving
field Ps sinωt, or the modulating high-frequency amplitude
G. We now investigate the effect of the liquid properties
and, in particular, the surface tension on the occurrence
of the VR phenomenon. It is of note that the surface ten-
sion of a liquid can be altered slightly by using surfactants
such as ethoxylated octylphenol (Photoflo®), 4-(1,1,3,3-
Tetramethylbutyl)phenyl-polyethylene glycol (Triton® X-
100), polyoxyalkylene alkyl ether (NCW®-1002) and other
compounds due to their adsorption at solid/liquid and
gas/liquid interface [59–61]. This could be of significance
in relation to the technological applications of bubbles.
Thus, investigating surface tension effects will illuminate
the likely impact of surfactants on VR. This is illustrated
in Figure 18(a) where we present a plot of the response
amplitude Q as a function of surface tension σ at vari-
ous modulation amplitudes G. The response amplitude
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Figure 16: Plot of response amplitude Q against (a) equilibrium
radius R0 for a bubble with charge q = 0.50 pC at G = 0.50, 0.75,
1.00, 2.00. (b) driving frequency ω at G = 0.50 for different values
of the equilibrium radius (R0 = 4 µm, R0 = 5 µm, R0 = 6 µm).
The driving pressure is Ps = 0.8P0 and other parameters remain
unchanged.

is evidently inversely proportional to the surface tension.
Furthermore, as the value of G increases, the relationship
between Q and σ becomes nonlinear. Figure 18(b) plots
the response amplitude Q versus the acoustic driving fre-
quency ω for different values of surface tension σ (σ = 0.06,
σ = 0.0725, σ = 0.08). The surface tension values were
chosen to be close to the standard value of 0.0725 Nm−1

for water at room temperature. Remarkably, increasing
the driving frequency ω at a specific surface tension σ in-
creases the system’s response amplitude. Here, an ape-
riodic window for ω > 160 kHz in the frequency range
investigated, characterized by a random-walk-like pattern
can be observed in the response curve. The most domi-
nant resonance peaks within the stable and periodic os-
cillation window are at 96.76 kHz, 126.92 kHz for σ =
0.06 Nm−1; 102.42 kHz, 133.83 kHz for σ = 0.0725 Nm−1

and 106.81 kHz, 140.74 kHz for σ = 0.08 Nm−1. As the
surface tension increases, the VR resonance peaks shift
slightly to higher values of the modulation amplitude G.
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Figure 17: Plot of response amplitude Q against modulation ampli-
tude G for a bubble with charge q = 0.50 pC for different values of
the equilibrium radius (R0 = 4 µm, R0 = 5 µm, R0 = 6 µm): (a)
G = 0 - 2.34 pa, 5.0 Pa and (b) G = 2.34 - 6.00 Pa. The driving
pressure is Ps = 0.8P0 and other parameters remain unchanged. The
bubble size impacts on Q more significantly at weak G values.

4. Conclusions

We have investigated the dynamics of a charged bub-
ble moving in a compressible liquid while being driven by
amplitude-modulated acoustic waves. We focused closely
on the possible impacts of the electrostatic charges and
modulation on the dynamical properties of the bubbles,
such as the Mach number, bifurcations, phase space tra-
jectories and attractors in the Poincaré section – all of
which were not considered in recent papers by some of
us [8, 14]. Consideration of the liquid’s compressibility is
essential when dealing with cases where large-amplitude
oscillations are encountered – such as are often found in
biomedical applications.

Our investigation of the dynamics and the occurrence
of VR in a charged bubble oscillator driven by an high-
frequency amplitude-modulated acoustic pressure field has
led to several significant conclusions. Our charged oscilla-
tor model largely preserves the higher-order nonlinearities,
which are essential for capturing the complete dynamics.
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Figure 18: Plot of response amplitude Q against (a) surface tension
σ for a bubble with charge q = 0.50 pC at G = 0.50 Pa, 0.75 Pa,
1.00 Pa, 2.00 Pa showing inverse relationship between Q and σ, with
signal enhancement promoted by increase in the modulation. (b) Q
vs driving frequency ω at G = 0.50 Pa for different values of the sur-
face tension (σ = 0.06 Nm−1, σ = 0.0725 Nm−1, σ = 0.08 Nm−1)
showing increased response with increase in ω as well as the appear-
ance of aperiodic window at higher values of ω. The driving pressure
is Ps = 0.8P0 and other parameters remain unchanged.

By dropping these higher-order damping terms for the un-
forced oscillator case, we recovered the expressions for the
linear natural frequency and the linear oscillator damp-
ing obtained earlier by Hongray et al. [28]. The potential
structure of the charged bubble has been established, and
the stability analysis of its equilibrium states reveals the
existence of one, two, three or no equilibrium states, de-
pending on the value of the electrostatic charge it carries.
Notably, the existence of the three equilibria state could
not have been established by Grigor’ev and Zharov [52]
because their stability analysis was based on the linear
model.

High-frequency amplitude-modulation increases the am-
plitude of the bubble oscillation, with the time-series ex-
hibiting peak-shouldering and, at the same time, shock
waves can arise. Remarkably, a certain pressure ampli-
tude – viz. Ps = 2P0 – can drive the bubble into chaotic
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states via period-doubling bifurcations. However, progres-
sive increase in the charge can counter this chaos-induced
effect by controlling its appearance in some windows of the
modulation amplitudes through multiple reversed period-
doubling bifurcation sequences. The charge-facilitated chaos
control arising from the cooperation between electrostatic
charges and the modulation amplitude was not reported
by Hongray et al. [29] in their study, wherein it was found
that charge always advance the period-doubling bifurca-
tions. In addition, we also found that the bubble Mach
number grows quickly with small increase in the modula-
tion amplitude beyond G = 0.78 Pa and G = 0.74 Pa for
the neutral and charged bubbles, respectively. The bubble
enters the transonic dynamics zone when G > 1.48 Pa,
and the supersonic zone when G > 1.90 Pa. As the mod-
ulation amplitude rises, Blake’s threshold and the tran-
sient cavitation threshold both shift to higher values of the
pressure amplitude Ps/P0 reported by Hongray et al. [28],
perhaps attributable to the greater bubble expansion due
to a reduction in the effective surface tension and damp-
ing. With stronger high-frequency amplitude-modulation,
the bubble maximal charge threshold decreases consider-
ably. Because surface tension is reduced by high-frequency
modulation, the bubble’s resistance to rupture in the pres-
ence of electrostatic charges is reduced, thus lowering both
thresholds.

For G > 1.00 Pa, the charge’s impact on the bubble’s
VR is negligible because the effect of the high-frequency
modulation balances out the electrostatic effects. No reso-
nance peak with driving pressure was found in the absence
of high-frequency modulation (G = 0 Pa); but with rising
G, multiple VR peaks appeared due to the pulsation ef-
fect arising from increased effective pressure on the bub-
ble. The resonance amplitude of the acoustically-driven
bubble increases proportionally with the equilibrium ra-
dius and, as the equilibrium radius grows, so also do the
amplification and enhancement of the system’s response.
The system’s response amplitude increases as the driving
frequency ω is raised at fixed bubble equilibrium radius.
Increasing the liquid’s surface tension results in an increase
in the VR signal amplification in direct proportion to the
liquid surface tension. Raising the driving frequency ω at
fixed surface tension increases the system’s response am-
plitude.

These results promise to stimulate further theoretical
and experimental investigations. They relate especially
to the understanding and exploration of the practical ap-
plications of electrically charged particles for the produc-
tion of electroaerosols and agarose gel solid–liquid elec-
trolyte [62, 63]. They will also help in in elucidating the
possible roles of modulated ultrasound over a charged sur-
face in the generation of single- and multi-electron bubbles
in liquid helium [64].
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Appendix 1 - The charged bubble equation

In the formulation of the charged bubble equation, it
was assumed that the bubble underwent only radial os-
cillations. Thus, the bubble radius R, was expressed in
terms of its expansion or contraction variable x taken to
be dimensionless. So that R = R0(1+x) and by substitut-
ing it into the charged bubble equation for the case where
G = 0 Pa (in the absence of the high-frequency modula-
tion), Eq. (3) then becomes

(1 + λẋ)R2
0 (1 + x) ẍ+

4η

cρ
R0ẍ =

δ1
ρ
(1 + x)

−3Γ

(1− λ(1− 3Γ)ẋ)− R2
0

2
ẋ2 (3 + λẋ)− 2σ

ρR0(1 + x)

+
q2

8πρϵR4
0(1 + x)4

(1 + 3λẋ)− 4ηẋ

ρ(1 + x)

− δ2
ρ
(1− λẋ) +

Psλω

ρ
(1 + x) cosωt (13)

where

λ = −R0

c
, δ1 = P0 − Pv +

2σ

R0
− q2

8πϵR4
0

,

δ2 = P0 − Pv + Ps sinωt (14)

Using (1 + x)
−3Γ ≈ 1 − 3Γx, and dividing through by

R2
0(1 + x), Eq. (13) becomes

(1 + λẋ) ẍ+
4η

ρc

ẍ

R0(1 + x)
=

δ1
ρR2

0

1− 3Γx

(1 + x)

(1− λ(1− 3Γ)ẋ)− 3ẋ2

2(1 + x)
− λẋ2

2(1 + x)

− 2σ

ρR3
0(1 + x)2

+
q2

8πρϵR6
0(1 + x)5

(1 + 3λẋ)

− 4ηẋ

ρR2
0(1 + x)2

− δ2
ρR2

0(1 + x)
(1− λẋ)

+
Psλω

ρR2
0

cosωt. (15)

Using the binomial expansion for the terms (1 + x)−n,
retaining terms up to the quadratic term in x, Eq. (15),
after some algebraic manipulation, can be written as

14



ẍ

[
1 + λẋ+

4η

ρR0c
(1− x+ x2)

]
+

δ1
ρR2

0

[−1+

(1 + 3Γ)x− (1 + 3Γ)x2 + 3Γx3
]
+
δ1λ

ρR2
0

(1−3Γ)ẋ [1−

(1 + 3Γ)x+ (1 + 3Γ)x2 − 3Γx3
]
+

3

2
ẋ2(1− x+ x2)

+
λ

2
ẋ3(1− x+ x2) +

q2

8πρϵR6
0

(−1 + 5x− 15x2)

+
3q2λ

8πρϵR6
0

ẋ(−1 + 5x− 15x2) +
2σ

ρR3
0

(1− 2x+ 3x2)

+
4η

ρR2
0

ẋ(1− 2x+ 3x2) +
δ2
ρR2

0

(1− x+ x2)

+
δ2λ

ρR2
0

ẋ(−1 + x− x2) =
Psλω

ρR2
0

cosωt. (16)

It is assumed that the bubble oscillates about its equilib-
rium radius R0. This assumption leads to the following
approximation

ϕ = 1 + λẋ+
4η

ρR0c
(1− x+ x2) ≈ 1 +

4η

ρR0c
,

which is valid considering the stability properties that have
been established in previous studies [8, 65–67]. Thus,
Eq. (16) becomes

ẍ+
ẋ

ϕ

[(
δ1λ

ρR2
0

(1− 3Γ)− 3q2λ

8πϵρR6
0

+
4η

ρR2
0

− δ2λ

ρR2
0

)
x

+

(
− δ1λ

ρR2
0

(1− 9Γ2) +
15q2λ

8πϵρR6
0

− 8η

ρR2
0

+
δ2λ

ρR2
0

)
x

+

(
δ1λ

ρR2
0

(1− 9Γ2)− 45q2λ

8πϵρR6
0

+
12η

ρR2
0

− δ2λ

ρR2
0

)
x2

−3Γδ1λ

ρR2
0

(1− 3Γ)x3
]
+

3

2ϕ
ẋ2(1− x+ x2)

+
λ

2ϕ
ẋ3(1− x+ x2) +

1

ϕ

(
− δ1
ρR2

0

− q2

8πϵρR6
0

+
2σ

ρR3
0

+
δ2
ρR2

0

)
+

1

ϕ

(
δ1
ρR2

0

(1 + 3Γ) +
5q2

8πϵρR6
0

− 4σ

ρR3
0

− δ2
ρR2

0

)
x+

1

ϕ

(
− δ1
ρR2

0

(1 + 3Γ)− 15q2

8πϵρR6
0

+
6σ

ρR3
0

+
δ2
ρR2

0

)
x2 +

3Γδ1
ϕρR2

0

x3 =
Psλω

ϕρR2
0

cosωt. (17)

From Eq. (17), the charged bubble equation(3) for the case
where G = 0 Pa can be written in dimensionless form as

ẍ+ ẋ
[
α0 + α1x+ α2x

2 + α3x
3
]
+

3

2ϕ
ẋ2(1− x+ x2)

+
λ

2ϕ
ẋ3(1− x+ x2) + γ1x+ γ2x

2 + γ3x
3

=
Psλω

ϕρR2
0

cosωt− Ps

ϕρR2
0

sinωt, (18)

where the parameters αi(i = 0− 3) and γi(i = 1− 3) are

α0 =
λ

ϕρR2
0

(1−3Γ)

(
2σ

R0
− q2

8πϵR4
0

)
− 3Γλ

ϕρR2
0

(P0−Pv)

− 3q2λ

8πϵϕρR6
0

+
4η

ϕρR2
0

− Psλ

ϕρR2
0

sinωt,

α1 = − λ

ϕρR2
0

(1− 9Γ2)

(
2σ

R0
− q2

8πϵR4
0

)

+
9Γ2λ

ϕρR2
0

(P0−Pv)+
15q2λ

8πϵϕρR6
0

− 8η

ϕρR2
0

+
Psλ

ϕρR2
0

sinωt,

α2 =
λ

ϕρR2
0

(1− 9Γ2)

(
2σ

R0
− q2

8πϵR4
0

)

− 9Γ2λ

ϕρR2
0

(P0−Pv)−
45q2λ

8πϵϕρR6
0

+
12η

ϕρR2
0

− Psλ

ϕρR2
0

sinωt,

α3 = − 3Γλ

ϕρR2
0

(1− 3Γ)

(
P0 − Pv +

2σ

R0
− q2

8πϵR4
0

)
,

(19)

γ1 =
1

ϕρR2
0

(1+3Γ)

(
2σ

R0
− q2

8πϵR4
0

)
+

3Γ

ϕρR2
0

(P0−Pv)

+
5q2

8πϵϕρR6
0

− 4σ

ϕρR3
0

− Ps

ϕρR2
0

sinωt,

γ2 = − 1

ϕρR2
0

(1+3Γ)

(
2σ

R0
− q2

8πϵR4
0

)
− 3Γ

ϕρR2
0

(P0−Pv)

− 15q2

8πϵϕρR6
0

+
6σ

ϕρR3
0

+
Ps

ϕρR2
0

sinωt,

γ3 =
3Γ

ϕρR2
0

(1− 3Γ)

(
P0 − Pv +

2σ

R0
− q2

8πϵR4
0

)
.

(20)

Finally, using equations (19) and (20) expressed in terms
of the potential V (x, t) of the charged bubble, we obtain

ẍ+ ẋ
[
α0 + α1x+ α2x

2 + α3x
3
]
+

3

2ϕ
ẋ2(1− x+ x2)

+
λ

2ϕ
ẋ3(1− x+ x2) +

dV (x, t)

dx

=
Psλω

ϕρR2
0

cosωt− Ps

ϕρR2
0

sinωt, (21)

Appendix 2 - Simulink Model

A block diagram of the charged bubble model (Eq. (9))
was designed in MATLAB-Simulink and is shown in Fig-
ure 19. Subsystem 1 in Figure 19 has input 1 and input 2
as 1/x and y, respectively and an output that performs
z1 (1 + z2y) /x

3Γ. Subsystem 2 in Figure 19 has an input y,

output 2 as y/c and an output 1 that performs y2

2

(
3− y

c

)
.

For subsystem 3, input 1, input 2 and output 2 are 1/x,
y/c and 1, respectively. Output 1 performs z3

x4

(
1− 3y

c

)
.

Subsystem 4 has input 1, input 2, output 1 and output 2
as 1/x, y, z4/x and z5y/x, respectively.

Subsystem 5 has input 1, input 2, input 3 and input 4
as 1, sinωt, y/c and 1+G sinΩt, respectively and an out-
put that performs ∆1(t)

(
1 + y

c

)
. Subsystem 6 has input 1,
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input 2, input 3, input 4 and input 5 as ωt, sinωt, cosΩt,
1 + G sinΩt and x, respectively and an output that per-
forms x∆2(t). The input 1, input 2 and input 3 on sub-
system 7 are y/c, 1 and x, respectively; while it has an
output that performs

(
1− y

c

)
x + z10. Subsystem 8 is a

time-function block with 1 as the only input, and output
1, output 2, output 3 and output 4 perform sinωt, ωt,
1 +G sinΩt and G cosΩt respectively.
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