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Abstract—In this paper we study the algorithm selection
problem and instance space analysis for solving Sudoku puzzles
with metaheuristic algorithms. We formulate Sudoku as a com-
binatorial optimisation problem and implement four local-search
metaheuristics to solve the problem instances. A feature space
is constructed and instance space analysis (ISA) methodology is
applied to this problem for the first time. The aim is to use ISA
to determine how these features affect the performance of the
algorithms and how they can be used for automated algorithm
selection. We also consider algorithm selection using multino-
mial logistic regression models with l1-penalty for comparison.
Different algorithm performance metrics are considered and we
found that the choice of these metrics affected whether the use
of ISA was worthwhile. We found that when the performance of
metaheuristic solvers is similar, predicting whether an algorithm
will perform “well” is also useful.

Index Terms—algorithm selection problem, metaheuristics,
instance space analysis, Sudoku.

I. INTRODUCTION

Sudoku is a Japanese puzzle which consists of an n2 × n2

grid divided into n2 sub-grids each of size n × n. n is the
order of the puzzle, with n = 3 being the most popular (see
Fig. 1). The objective is to fill each cell in a way that every
row, column and sub-grid contains each integer between 1 and
n2 inclusive exactly once.

Fig. 1. Sample board of a 9× 9 Sudoku puzzle

Sudoku puzzles are a special case of Latin squares - grids of
equal dimensions in which every symbol occurs exactly once
in every row and every column [1]. Constructing or completing
a Latin square or a Sudoku puzzle from a partially filled grid
are both NP-complete problems. The solution space for an
empty 9× 9 Sudoku grid contains approximately 6.67× 1021

possible combinations. However, the pre-filled cells serve as
constraints and reduce the number of possible combinations
[2]. There is no deterministic algorithm which can solve all
possible Sudoku problem instances in polynomial time, so
heuristic methods are popular [1], [2]. This is often the case
for combinatorial optimisation (CO) problems, which are a
class of problems whose solution is in a finite or countably
infinite set [3]. Although many CO problems have been widely
studied, there is ongoing research about which algorithm
performs best on a particular instance, or class of instances.
The No Free Lunch Theorem [4] warns that there is no single
algorithm that will be guaranteed to perform well across all
problem instances. When trying to determine which algorithm
is most suitable for a set of instances, exhaustive testing
may be impractical and expensive. It is therefore important to
understand the relationship between instances and algorithm
performance. This can then be used for an automated algo-
rithm selection model to predict which algorithm in a portfolio
is most suitable for solving a given instance.

A useful framework for selecting an algorithm which will
perform best for a collection of problem instances is presented
in [5]. The algorithm selection problem, depicted in Fig. 2,
has four components which make up the meta-data:

• the problem space P - all the relevant instances of a
problem in an application domain;

• the feature space F - a set of features extracted to
characterise the problem space;

• the algorithm space A - a set of algorithms available to
solve all instances in P;

• the performance space Y - a set of performance metrics
for each of the algorithms α ∈ A solving each problem
instance x ∈ P .

The authors in [6] define the algorithm selection problem
as: for a given problem instance x ∈ P , with feature vector
f(x) ∈ F , find the selection mapping S(f(x)) into algorithm



Fig. 2. Framework for the Algorithm Selection Problem [6]

space A, such that the selected algorithm α ∈ A maximises
the performance metric ∥y∥ for y(α, x) ∈ Y . Under this
framework, the problem instances are first translated to some
feature space. This step involves the construction of suitable
features for the problem, and then the selection of a useful
subset of these features. A prediction model is then trained on
the existing instances for which algorithm performs best.

In order to train a useful prediction model, it is necessary
that: (i) the meta-data for the algorithm selection problem
comprise of a large set of diverse instances; (ii) suitable
features which characterise the instances are chosen; and (iii)
a diverse portfolio of algorithms and performance metrics are
considered. Problem instances, their features and algorithm
performance can be represented in a shared space, referred to
as the instance space [7].

An overview of research in which metaheuristic algorithms
have been applied to solve Sudoku puzzles by modifying
the general template of the algorithms is presented in [8].
The performance of these metaheuristics has been evaluated
using different criteria such as the rate of success, the number
of iterations and the amount of time needed to solve the
puzzle. However, there is no set of benchmark instances or
common performance criteria across studies. For these reasons,
in this study we evaluate the performance of four metaheuristic
solvers for Sudoku, attempting to apply automated algorithm
selection. As part of this process we first construct a feature
space for Sudoku puzzles, which is an issue that has received
relatively little attention. The meta-data created are then anal-
ysed using the Melbourne Algorithm Test Instance Library
with Data Analytics (MATILDA) tool [9] and the results are
discussed.

II. PROBLEM SETTING

A. Problem Instances

The instance space included 1000 problem instances, all of
order n = 3. These were selected from five sources which
were collated in the Tdoku GitHub repository [10]. These are
all proper puzzles, meaning that the solution is unique. The
combined dataset, after removing duplicate instances, contains
approximately 3 million problem instances.

To select a subset of instances to conduct the analysis, 20
features related to the structure of the puzzle were extracted.
These features, which are explained in detail in Section II-C,
describe the location of the fixed cells and the possible values

that empty cells could take. We selected these 20 features
because they are among the cheapest (in terms of computa-
tional cost) Sudoku features to calculate. Principal component
analysis (PCA) was applied on this feature space and the first
two principal components were used to cluster the problem
instances using k-means clustering. 1000 clusters were created
and one problem instance was randomly selected from each
cluster to construct a diverse set of problem instances.

B. Algorithm Space

We considered four local-search metaheuristic solvers: sim-
ulated annealing (SA) [11], record-to-record travel (RR)
[12], reduced variable neighbourhood search (RVNS) [13]
and steepest descent algorithm (SD). For all of the algo-
rithms, a solution is represented as a 9 × 9 matrix X where
xij is the digit in cell (i, j). To initialise the solution, for
each cell, a random number is selected from a list of numbers
that include all the numbers that could be assigned to the cell
without violating any of the fixed cell constraints. This is done
in such a way that the sub-grid constraints are satisfied. The
cost function represents the number of values from one to
nine that are not present in each row, each column and each
sub-grid. A problem instance is solved when the cost is zero.

SA accepts a neighbouring solution X′ of X if it improves
the objective value, or is otherwise accepted with probability
e−∆/T , where ∆ = f(X′)− f(X) is the deterioration of the
objective value if the solution is accepted and T is a control
parameter, called temperature. Neighbouring solutions were
found using the Global Swap operator, where the values of
two unfixed cells are exchanged. We implemented the SA
solver as described in [1]. They use a geometric cooling
schedule, Tk+1 = αTk, where α ∈ (0, 1). In their method,
the algorithm generates a series of candidate solutions at each
value Tk. The length of each series depends on the size of the
problem instance. The initial temperature T0 is determined by
performing a number of swaps and calculating the standard
deviation of the costs of the solutions found. Finally, a “reheat”
mechanism is employed, where the algorithm is restarted at T0

if no improvement is made to the solution for a fixed number
of solution series.

RR accepts a solution which has a cost value no worse
than σ from the best solution found so far, where σ is a fixed
deviation value. The Global Swap operator was also used. SD
accepts a solution which improves or maintains the cost value
of the current solution. The Swap operator was used to find
neighbouring solutions, where the values of two unfixed cells
in the same sub-grid are exchanged.

RVNS considers multiple neighbourhood structures. Given
a solution, a random point from a given neighbourhood is
selected and accepted if it improves the current solution. Oth-
erwise, another neighbourhood structure is considered. Along
with the Swap and Global Swap operators, the neighbourhood
operators we considered are described in [8] and listed below:

• Insert - the value of a chosen cell in a sub-grid is inserted
in front of another chosen cell.



• CPOEx - a cell between the second and sixth cell in a
sub-grid is selected as the centre point to find exchange
pairs. Values for pair of cells, each equidistant from the
centre, are swapped until at least one cell in the pair is
fixed.

• Invert - two cells in the sub-grid are selected and the order
of the sub-sequence of cells between them is reversed.

Parameters for SA and RR were tuned using a popular set
of benchmark puzzles [14]. After some experiments, for SA,
the number of series before reheat was set to 20 and α = 0.9,
and σ = 1 in RR. RVNS and SD have no parameters to tune.

C. Feature Space

The feature space for Sudoku has not been widely studied
[1], [15]. Several of the insights are based on the discussions
of Sudoku enthusiasts and need to be formally tested.

1) Features from Puzzle Mask: These are features related
to the structure of the puzzle, such as the puzzle order and the
number of fixed cells. However, the difficulty of the puzzle
largely depends on the configuration of the fixed cells, which is
called the puzzle mask [15]. In [15] it is shown (by example)
that puzzles with the same mask but different digits can have
different difficulties. Thus we consider the following features:

• number of fixed cells;
• total number of empty rows, columns and sub-grids;
• distribution statistics of fixed digits per sub-grid (mean,

variation coefficient, entropy, minimum and maximum).
2) Features from Puzzle Rating Systems: Several rating

systems used by puzzle creators consider some measure of
how a logic-based algorithm solves the problem. An online
Sudoku platform [16] considers how many different logic
techniques it takes to complete a puzzle, and how many times
each technique is used. The techniques are each given a score
based on how advanced they are, and the solver tries to apply
them in order of difficulty. Such rating require solving the
puzzle which is computationally very expensive. However,
certain features related to some of the simpler strategies can be
extracted from a puzzle with little computational effort. The
work in [17] explains several common approaches used by
humans when solving puzzles, which have been implemented
in logic-based solvers. The simplest of these strategies is to
find naked singles, which are cells that can only take a single
value when the filled cells in the same row, column and sub-
grid are considered. This strategy can also be extended to two
or three candidate values for a cell (naked pairs or triples).
We include the following features:

• the number of naked singles, pairs and triples apparent
on an empty puzzle grid;

• the distribution statistics for the number of cells that can
take a particular value.

3) Features of GCP Formulation: Since Sudoku is com-
parable to other CO problems [18], the next consideration
was to reformulate the puzzle to a type of problem with
a set of well studied features. One such problems is the
graph colouring problem (GCP). R. Lewis [19] demonstrates

that Sudoku can be considered a special case of the partial
Latin square problem in which the constraint of appropriately
filling out the sub-grids must also be satisfied. This is a
precolouring problem for which a subset of the vertices has
already been assigned colours. The precolouring problem can
be converted to a standard GCP using graph contraction
operations. Transforming the problem instances, we extract
the following features which are used in [20]:

• the number of vertices and edges;
• the density of the graph;
• the vertex degree (mean and standard deviation);
• the average length of the shortest paths for all possible

vertex pairs;
• betweenness centrality (mean and standard deviation)

- fraction of all shortest paths connecting all pairs of
vertices that pass through a given vertex;

• the graph clustering coefficient;
• the Weiner number.
4) Features of SAT Reformulation: Sudoku can be formu-

lated as a constraint satisfaction (SAT) problem, and for SAT
a large set of features have been studied and found to be
related to instance difficulty [21]. The SAT problem can be
summarised as follows: given a set of clauses, determine if
there exists a truth assignment that satisfies all of them simul-
taneously. The work in [22] encodes the Sudoku puzzle into
conjunctive normal form (CNF) using the minimal encoding
which suffices to characterise the puzzle. For each entry in the
N × N grid S, we associate N variables using the notation
sxyz to refer to variables. Variable sxyz is assigned true if and
only if the entry in row x and column y is assigned value z.
The constraints to be added to our SAT encoding refer to each
entry, each row, each column and each sub-grid. Fixed cells
are represented by unit clauses, which have a single literal
which must be assigned true. The authors in [21] present
a set of features for constructing predictive models for the
difficulty of SAT problems. They include features of different
graph representations of a SAT instance. The clause graph has
nodes representing clauses and an edge between two clauses
whenever they share a negated literal and may be a useful way
to characterise the configuration of the fixed cells. The variable
graph has nodes representing variables and an edge between
variables that occur together in at least one clause. Another
group of features are from solving the linear programming
relaxation of an integer programming representation of the
SAT instance. We extract the following features:

• Problem Size Features - number of clauses, variables, and
ratios of both;

• Clause Graph - nodes degree statistics (mean, variation
coefficient and entropy), weighted clustering coefficient
statistics;

• Variable Graph - nodes degree statistics;
• LP-relaxation Features - objective value, fraction of vari-

ables set to 0 or 1, variable integer slack statistics.
After completely removing uninformative features (those

with the same value for all instances), we have a set of



54 features. It is possible that some features from these
reformulations will provide redundant information. The feature
selection algorithm will resolve this issue.

D. Performance Space

For each problem instance, 20 initial solutions were gen-
erated. Every metaheuristic solver was initialised with each
of these 20 solutions and executed until either a cost of zero
was reached (the problem instance was solved), or a maximum
5× 105 cost function evaluations was performed. For a given
instance, the success rate is the proportion of runs in which
a solution with cost zero is found within the fixed budget.

We also use a performance metric which considers both the
objective function value and time. For a given instance and
run, cost-time is defined as:

cbest +
i

maxIts
, (1)

where cbest is the lowest cost achieved during a run, and i is
the earliest iteration in which cbest is achieved. We considered
the mean cost-time across the 20 runs.

III. METHOD

The Melbourne Algorithm Test Instance Library with Data
Analytics (MATILDA) [9] is a tool that follows Rice’s algo-
rithm selection framework, and extends it to enable visuali-
sation and measurement of algorithm footprints in a process
called Instance Space Analysis (ISA) [7]. The ISA method-
ology, which is implemented in MATLAB [23] and available
online in MATILDA [9], consists of several algorithms, four
of which we outline in Sections III-A to III-D.

In the following, the feature matrix F ∈ Rm×n stores in its
columns the m features that describe each of the n problem
instances. Similarly, the performance matrix Y ∈ Ra×n stores
in its columns the performance of each of the a algorithms on
each problem instance.

A. Preparation for Learning of Instance Meta-data

First, MATILDA pre-processes the feature matrix F and the
performance matrix Y to construct an instance space. A binary
performance metric, Ybin, is calculated from Y based on a
user-defined threshold for “good” performance. This metric
can either be absolute (compared to a fixed threshold) or
relative (compared to the performance of the best algorithm
for a given instance). Both the feature matrix F and the
performance matrix Y can be normalised by applying a Box-
Cox transformation and then standardised to have mean zero
and standard deviation one [7].

B. Selection of Instance Features to Explain Difficulty

This algorithm, abbreviated as SIFTED, identifies the fea-
tures which are most correlated with algorithm performance
and are uncorrelated with each other. SIFTED first calculates
the absolute value of Pearson’s correlation coefficient between
the features and algorithm performance. The feature most
correlated to the performance metric for each algorithm is
selected, as well as any other features moderately correlated

(|ρ| > 0.3) to the performance of at least one algorithm.
To obtain the user-specified number of k features, SIFTED
applies k-means clustering to detect groups of similar features.
Multiple subsets of k features are obtained by randomly
selecting a single feature from each of the k clusters. For
each such subset of k features SIFTED applies PCA to reduce
the data to two dimensions. Each of the resulting datasets
is used to train a Random Forest that predicts Ybin. The
optimal subset of features is the one which results in the lowest
predictive error [7].

C. Projecting Instances with Linearly Observable Trends

This algorithm, abbreviated as PILOT, aims to find a lower-
dimensional projection of the features, Z = ArF, such that
Z has a linear relationship with the original features, and
with the performance of the different algorithms [24]. This is
formulated as minimising the sum of squared approximation
errors as:

min
Ar,Br,Cr

||F− F̂||2F + ||Y − Ŷ||2F (2)

s.t. Z = ArF (3)

F̂ = BrZ (4)

Ŷ = CrZ, (5)

where Ar ∈ R2×m,Br ∈ Rm×2,Cr ∈ Ra×2. This opti-
misation problem is solved numerically using the Broyden–
Fletcher– Goldfarb– Shanno (BFGS) optimisation algorithm
in the MATILDA toolkit [9]. The optimal solution has the
highest Pearson correlation coefficient between the distances
in the feature space and the distances in the new projection
space. The projections, Z, can be used for visualisation.

D. Performance Prediction & Automated Algorithm Selection

In the final stage MATILDA trains a support vector machine
(SVM) to predict the binary performance measure, Ybin, for
each algorithm using as input the projected features, Z [7].
The SVMs can be trained with either polynomial or Gaus-
sian kernels. The SVM parameters are tuned either through
Bayesian optimisation, or a random search algorithm, both
using k-fold stratified cross-validation. If for a given problem
instance, there is only one algorithm with good performance,
it is selected as the best algorithm for that instance. If multiple
algorithms are predicted to perform well, then the algorithm
whose model has the highest precision (across all n problem
instances) is selected as the best. If none of the algorithms
are predicted to be good, then the algorithm with the highest
average performance is selected.

IV. COMPUTATIONAL RESULTS

All four metaheuristics where implemented in Python ver-
sion 3.9.10. The results were generated on an Intel(R) Xeon(R)
Gold 6248R CPU at 2.6 GHz. The code used to generate the
results discussed in this paper can be found at [25].



TABLE I
PROBABILITY DISTRIBUTION OF SUCCESS RATES

SA RR RVNS SD
Average SR 0.088 0.086 0.062 0.058

Pr(SR > 0) 0.438 0.442 0.345 0.326
Pr(SR > 0.5) 0.041 0.041 0.041 0.039
Pr(SR = 1) 0.041 0.038 0.022 0.011
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Fig. 3. Visualisation of instances using the 1st and 2nd principal components
of the full feature space showing (a) the number of algorithms able to solve
the instance at least once and (b) the classification based on logic solvers

A. Exploratory Data Analysis

1) Success Rate (SR): Table I shows that for approximately
two-fifths of the problem instances SA and RR found the
solution with cost equal to zero (solved the instance) at least
once in the 20 runs. RVNS and SD found that solution at least
once in approximately one-third of the problem instances. 654
of the instances were solved by at least one of the algorithms,
while 175 of the instances were solved by all of them. Fig. 3
shows the number of algorithms that were able to solve a
given instance at least once. Generally, the instances that
three or four algorithms found solvable correspond to data
sources which were described as “easy”. However there are
also instances such as those furthest left which are described
as easy but none of the considered algorithms can solve them.
This can be explained by the fact that logic-based solvers
employ search techniques that are markedly different from
those employed by metaheuristic solvers.

2) Mean Cost-Time (CT): The cost-time value for a prob-
lem instance solved to optimality (i.e., achieved a cost value of
zero) is less than one. Table II and Fig. 4 show the probability
distribution of the mean cost-time and the average for each
algorithm. Instances with CT < 2 are those which were
frequently solved by a given algorithm.

B. Predicting Performance

Using the success rate as the performance metric, we
considered two absolute thresholds for good performance:
SR > 0 and SR > 0.5. We also considered two absolute
thresholds for mean cost-time value: CT < 2 and CT < 2.5.

In the feature selection algorithm (SIFTED), the number of
features is specified by the user. For each of the thresholds,

TABLE II
PROBABILITY DISTRIBUTION OF MEAN COST-TIME

SA RR RVNS SD

Average CT 2.202 2.085 2.679 2.775

Pr(CT < 2.5) 0.873 0.962 0.275 0.197
Pr(CT < 2.0) 0.127 0.162 0.046 0.044
Pr(CT < 1.0) 0.041 0.041 0.036 0.036
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M
ea

n 
CT

Fig. 4. Distribution of mean cost-time for each algorithm

we ran MATILDA multiple times with a different number of
features to evaluate how this affects the selected features, and
the quality of the trained SVMs. To determine the number of
features for each threshold we considered the average model
accuracy, precision and recall from 10-fold cross-validation.
We also considered the F1 score, which is the harmonic
mean of precision and recall. Based on these metrics, the
models with 10 features were selected for all thresholds, except
SR > 0.5, for which we used 6 features.

Each subfigure in Fig. 5 visualises performance with respect
to a performance metric. The bars are grouped by whether
good performance is specified in terms of SR or CT, and
the choice of threshold. The first four bars correspond to the
performance of the SVM that predicts whether each algorithm
will achieve good performance on a problem instance. The last
bar, coloured purple, depicts the performance of the model
trained to select the best performing algorithm out of the four
considered based on the rules outlined in Section III-D. This
model is called the Selector.

When SR is used to define good performance, higher
thresholds result in increased class imbalance between good
(class 1) and bad (class 0) performance. Because of the small
proportion of class 1 instances, the classes are easily separable.
Consequently, the SVMs trained on SR > 0.5 have near
perfect accuracy and recall. When good performance is defined
as SR > 0, the trained SVMs still perform reasonably well,
but the error rate is higher.

The choice of threshold is also important when good per-
formance is defined in terms of CT. When the threshold is
2, which is closer to the average CT for SA and RR, the
SVMs trained to predict whether SA and RR will achieve
lower performance compared to the corresponding SVMs for
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Fig. 5. Average model evaluation metrics as percentages for SVMs trained to
predict good performance and models to select best algorithm by MATILDA

RVNS and SD. When the CT threshold is 2.5, which is closer
to the average for SD and RVNS, the SVMs for these methods
perform worse than those for SA and RR.

Fig. 6 shows which algorithm is selected by the Selec-
tor as the best for each instance in the projected instance
space. When SR > 0 and SR > 0.5 are used to define
good performance, if none of the algorithms exhibit good
performance, SA is recommended as it has the best average
SR performance. Overall when assessing performance in terms
of SR, SA is generally the superior algorithm. According to
MATILDA when good performance is defined in terms of
CT < 2 or CT < 2.5, RR is recommended in cases where
none of the algorithms perform well. This may seem counter-
intuitive, particularly in the case of the CT < 2.5 Selector,
where SA is selected in the vasts majority of instances. On
all of the 873 instances for which SA is selected, RR also
performs well. Selecting either of the algorithms would lead
to similar results. However, based on the MATILDA selection
rules, SA is chosen for these instances because its SVM has
higher precision compared to that of the RR SVM (as seen in
Fig. 5).

C. Understanding Performance

Table III summarises the features found to best characterise
the problem instances in terms of algorithm performance.
Fig. 7 shows that there are similar trends between the success
rates and the projected instance space for all four algo-
rithms. Based on these projections, as well as the correla-
tion of the features with each other, the algorithms appear
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Fig. 6. Projection of instance space showing the best algorithm and the
number of instances for which an algorithm is selected as best

to have greater success solving puzzles with the following
characteristics: a higher fraction of integer variables in the
solution of the LP relaxation (LP fracInt), more naked
singles and pairs (counts naked1, counts naked2), greater
average graph clustering coefficient of the GCP reformulation
(GCP clustcoef) and shorter paths for all possible vertex
pairs in the graph of the GCP reformulation (GCP avg).

Similarly, the algorithms find solutions closer to a cost
of zero and more quickly for instances with the following
characteristics: a higher fraction of integer variables in the
solution of the LP relaxation (LP fracInt), more naked pairs
(counts naked2), denser graphs from the GCP reformulation
(GCP density) and a lower mean number of empty cells
that can potentially take each value (value mean). However
correlation between these features and the mean cost-time is
not as strong for RVNS and SD as it is for the other algorithms.

We can also explain the algorithm selection for a given
instance, particularly for the models using mean cost-time
as a performance metric, by considering Fig. 6 and the
projection matrices. For example, in plot (c), although RR is
recommended for the vast majority of the instances (including
those that “None” is selected), there is a cluster of instances
at the lower left corner of the instance space that RVNS is
actually the best algorithm. These instances have a high count
of naked singles and pairs and a low variation coefficient for
the variable integer slack of the LP relaxation.



TABLE III
FEATURES SELECTED BY SIFTED ALGORITHM

Feature Description SR > 0 SR > 0.5 CT < 2 CT < 2.5

counts CV CV of the count of possible values each empty cell can take given the fixed cells *
counts min minimum count of possible values each empty cell can take given the fixed cells * * *
counts naked1 number of empty cells that can take only 1 possible value given the fixed cells * * * *
counts naked2 number of empty cells that can take only 2 possible value given the fixed cells * * *
counts naked3 number of empty cells that can take only 3 possible value given the fixed cells *
fixedDig max maximum number of times each value appears as a fixed cell *
value max maximum number of empty cells that can potentially take each value * *
value mean mean number of empty cells that can potentially take each value * *
value min minimum number of empty cells that can potentially take each value * *
GCP avgPath average length of the shortest paths for all possible vertex pairs in graph of GCP formulation *
GCP clustcoef average graph clustering coefficient of the GCP formulation *
GCP density density of the graph of GCP formulation * *
GCP nDeg std standard deviation of vertex degrees of GCP formulation *
LP fracInt fraction of variables set to 0 or 1 in solution of LP relaxation of SAT formulation * * * *
LPslack CV variable integer slack statistics of LP relaxation of SAT formulation * *
LPslack entropy variable integer slack statistics of LP relaxation of SAT formulation * *
SAT ratioLin the linearised clause-to-variable ratio of the SAT formulation *
SAT ratioRec reciprocal of the clause-to-variable ratio of the SAT formulation * *
VG CV node degree statistics for the variable graph of the SAT formulation *
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Fig. 7. Instance space showing the success rate for each algorithm using the
PILOT projection from the SR > 0.5 models

D. Comparison with Logistic Regression

We next compare MATILDA to multinomial logistic regres-
sion models with l1-penalty for feature selection to select the
best algorithm. These models were all solved using SAGA
[26], implemented in the scikit-learn library in Python [27].
For each of the regression models, the inverse of the regularisa-
tion strength (C) was tuned using 5-fold cross-validation. The
greater this value, the more features had non-zero coefficients
and were included in the model. Five classes were defined:
one for each of the algorithms and “None”. Instances are
given the label “None” if three or more algorithms tie for best
performance. This is the case for 406 instances when success
rate is used as the performance metric.

When training a model based on success rate, ten features
had non-zero coefficients. Several of these were the same

as those selected by MATILDA. In contrast to MATILDA,
none of the SAT reformulation features were included, while
some of the fixed cell distribution variables (fixedDig min,
fixedDig entropy) were selected. The multinomial logistic
regression model selected SA for 338 instances, RR for 4
instance and predicted that for 658 of the instances, there
will be no difference in the performance of the algorithms.
Table IV shows that this model has relatively poor accuracy
and precision (estimated through 10-fold cross validation).
So while the selections are rather similar to those made by
MATILDA, MATILDA also has the benefit of better predicting
good performance to support decision making.

When training a logistic regression model based on mean
cost-time, C was selected to be very small, and no features
were included in the model. Instead RR is selected for all
instances. Interestingly, this naive classifier results in better
selections than those made by MATILDA.

TABLE IV
AVERAGE MODEL EVALUATION METRICS FOR MULTINOMIAL LOGISTIC

REGRESSION MODELS

Success Rate Mean Cost-Time

Accuracy (%) 50.7 78.3
Precision (%) 62.9 83.0
Recall (%) 50.7 78.3
F1 score (%) 37.8 68.8

V. CONCLUSION

In this paper we studied the instance space analysis and
algorithm selection problems for solving Sudoku puzzles using
metaheuristics. We considered a large number of problem in-
stances, which is atypical for the application of metaheuristics
to Sudoku [2], [8]. We also constructed a large number of
features to characterise puzzles and identified features that are
informative of algorithm performance. Our findings suggest
that not only the logic-related features are useful, but also
features derived from reformulations. In particular, the GCP



reformulation provides useful information pertaining to the
performance of metaheuristic solvers.

Our analysis focused on the Melbourne Algorithm Test In-
stance Library with Data Analytics (MATILDA). An important
limitation of MATILDA is that the classification performance
of the final predictive models is highly dependent on how the
classes are defined with respect to the original (non categor-
ical) performance measures [7]. When success rate was used
to distinguish between “good” and “bad” performance, SA
was selected as the best solver for nearly all instances. When
mean cost-time was used, the selection was more nuanced,
and the final predictive models produced by MATILDA did
not manage to outperform a naive prediction. Therefore, the
additional complexity of MATILDA proved worthwhile when
using success rates, but not when using mean cost-time as a
performance metric.

When the performance of (some of the) metaheuristic
solvers is similar, predicting whether an algorithm will perform
“well” is more meaningful compared to trying to identify
the best performing solver. This also suggests that a more
appropriate evaluation metric should take into account the
cost of an incorrect prediction (an aspect that is ignored by
typical measures of performance). This constitutes a direction
for future research. A limitation of our work is that it focused
exclusively on puzzles of the same order. In future work,
puzzles of higher order (16 × 16 or 25 × 25 grids) can be
considered to understand how the algorithms used scale with
size. We may also include logic-based solvers in the algorithm
set and compare them to the metaheuristic solvers.
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