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Abstract

Deep Learning (DL) is significantly impacting many industries, including automotive,

retail and medicine, enabling autonomous driving, recommender systems and genomics

modelling, amongst other applications. At the same time, demand for complex and

fast DL models is continually growing. The most capable models tend to exhibit

highest operational costs, primarily due to their large computational resource footprint

and inefficient utilisation of computational resources employed by DL systems. In an

attempt to tackle these problems, DL compilers and auto-tuners emerged, automating

the traditionally manual task of DL model performance optimisation. While auto-tuning

improves model inference speed, it is a costly process, which limits its wider adoption

within DL deployment pipelines.

The high operational costs associated with DL auto-tuning have multiple causes.

During operation, DL auto-tuners explore large search spaces consisting of billions of

tensor programs, to propose potential candidates that improve DL model inference

latency. Subsequently, DL auto-tuners measure candidate performance in isolation on

the target-device, which constitutes the majority of auto-tuning compute-time. Sub-

optimal candidate proposals, combined with their serial measurement in an isolated

target-device lead to prolonged optimisation time and reduced resource availability,

ultimately reducing cost-efficiency of the process.

In this thesis, we investigate the reasons behind prolonged DL auto-tuning and

quantify their impact on the optimisation costs, revealing directions for improved DL
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auto-tuner design. Based on these insights, we propose two complementary systems:

Trimmer and DOPpler. Trimmer improves tensor program search efficacy by filtering out

poorly performing candidates, and controls end-to-end auto-tuning using cost objectives,

monitoring optimisation cost. Simultaneously, DOPpler breaks long-held assumptions

about the serial candidate measurements by successfully parallelising them intra-device,

with minimal penalty to optimisation quality. Through extensive experimental evaluation

of both systems, we demonstrate that they significantly improve cost-efficiency of auto-

tuning (up to 50.5%) across a plethora of tensor operators, DL models, auto-tuners and

target-devices.
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Chapter 1

Introduction

1.1 Motivation

In the recent years, Deep Learning (DL) - an area of computer science, focused on

solving pattern and feature extraction tasks such as image recognition, text generation or

game-playing via the use of Deep Neural Networks (DNNs), has significantly impacted

many industries such as autonomous transport, social media, finance or scientific

applications, achieving impressive predictive performance [129, 205, 380, 95, 169]. With

the proliferation of DL models, there is an ever-increasing demand for them to be

accurate, generic and fast at performing inference, reflected by the growing access to

on-demand compute infrastructures supporting DL workloads [131, 295, 55, 99]. Such

success is in part enabled by developments in DL systems - ecosystems of software and

hardware that support high-level DL model prototyping, training and deployment for

inference. DL systems utilise computational capabilities of high-performance Central

Processing Units (CPUs) and compute accelerators such as Graphics Processing Units

(GPUs) to execute model training and inference [275].

Developing and operating high performance DL models and systems that support

them, requires significant engineering effort, computational power and financial
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investment [33, 303, 258, 204, 308]. Furthermore, the most generally applicable1

and accurate models also tend to exhibit the highest operational costs due to their

algorithmic complexity, need for prolonged training and large computational footprint

during inference [332, 152]. However, operational costs are commonly a second-order

concern in modern DL systems research and industrial developments, focusing foremost

on improving model designs for increased accuracy and generality, whilst designing novel

DL accelerator architectures such as GPUs, Tensor Processing Units (TPUs), Neural

Processing Units (NPUs), and DL-specific Application Specific Integrated Circuits

(ASICs) to perform more computation more quickly [67, 275, 324].

1.1.1 High Operational Costs in Deep Learning

While the algorithmic complexity of DL models is the primary cause for majority of

the operational costs in DL deployments [65], inefficient utilisation of the compute

resources (for example, GPUs) that underpin DL systems can vastly inflate these costs

[368, 144, 123, 146]. DL engineers commonly design and train DL models using high-

level DL frameworks such as Pytorch [1] or TensorFlow [2], whilst their deployment

on high-performance hardware is facilitated using DL inference engines [327, 85, 240],

internally supported by acceleration libraries [51, 232, 141]. At each of these levels of

the software stack, great care is taken to provide efficient implementations for common

DL model tensor operators2, however, these efforts often fail to keep up with the

development of novel DL model architectures (and their unique tensor operators), and

continual developments in the area of high-performance, massively-parallel processors

that underpin DL computation [39, 105]. This forces DL frameworks and inference

engines to use sub-optimal tensor operator implementations for compatibility reasons,

which leads to resource under-utilisation and inflated operational costs [39, 176, 173].
1Capable of performing multiple learning tasks such as image classification with object detection.
2Tensor operators are primary components within DL models that specify the mathematical

operations to be performed as part of training and inference.
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1.1.2 Optimising Model Inference Performance

A traditional approach to improve execution latency, compute resource utilisation and

thus cost-efficiency of performing DL computation on high-performance hardware, is

for the DL engineer to manually develop optimal tensor programs that implement

individual tensor operators within a given DL model. With the current diversity of

quickly changing operational DL environments, manually ensuring that each new DL

model tensor operator is implemented optimally towards each of the progressively more

powerful target-devices is infeasible, given the complexity of DL system deployments.

Such manual optimisation of DL tensor operators must take into account a range of

unique DL model architectures, multiple DL frameworks that can facilitate DL model

development, tens to hundreds of unique tensor operators per DL model, a range of

unique target-devices that can be leveraged to perform tensor computations of the DL

models, and potentially billions of unique implementations (tensor program candidates)

of a single tensor operator towards a single target-device.

1.1.3 Deep Learning Compilers

As a result, various DL compilers [39, 262, 18, 173, 307, 382] have gained

prominence by enabling automated transformations of high-level DL model computation

specifications (originating from DL frameworks), into sets of executable tensor

programs (implementations of tensor operators) that execute on a variety of target-

devices, including high-performance GPU accelerators. Effectively, DL compilers

enable automated decoupling of the computation specification (for example, high-

level mathematical descriptions) from the way in which such computations should

be performed on target-devices (for example, loop nest structures, memory data

layouts, thread parallelism). Furthermore, DL compilers facilitate DL model graph-level

transformations that optimise the overall model architecture towards faster inference.
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DL compilers relieve some of the engineering burden associated with developing

high-performance DL model implementations, however, they require DL engineers to

provide schedules - sets of program transformations that describe how a given DL

tensor operator should leverage computational resources of a high-performance target-

device. For example, within the TVM [39] DL compiler, such schedules take form of a

configurable template of a tensor program, which accepts parameters that determine

how the high-level tensor operator expression will map to low-level tensor program

operations during compilation, including thread-level parallelism, data access, operation

synchronisation and loop nest transformations. As such, while some of the complexity

of implementing DL models is relieved by DL compilers, the process of determining

schedule parameters that configure tensor programs remains manual3 during the use of

standalone DL compilers. As previously outlined, there can be in the order of billions of

unique candidate schedules for any combination of a tensor operator and a target-device,

that must be evaluated on the target-device to determine their performance.

1.1.4 Deep Learning Compiler Auto-tuning

In an attempt to further alleviate the engineering burden of discovering high-performance

tensor program schedules, the concept of DL auto-tuning has been proposed [40].

Facilitated by DL compilers, DL auto-tuning automates discovery of optimised schedules

via the use of cost models and search algorithms that help to traverse the enormous

schedule space, followed by on target-device execution latency measurements of promising

tensor program candidates, ultimately resulting in a schedule configuration proposal for

a given tensor operator and target-device combination that results in reduced inference

latency of the end-to-end DL model. Many DL auto-tuners have recently been proposed

[40, 8, 385, 183, 377, 386, 105, 373], each utilising a different set of component variants

3The DL engineers must test different schedule parameters for combinations of tensor operator
classes and target-devices
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(for example, cost models, search strategies or schedule spaces), improving efficacy of

DL optimisation by targeting increasingly more diverse ranges of tensor operator classes

and target-devices, resulting in substantial DL model inference speedup [40, 385]. One

component that nearly all state-of-the-art (SOTA) DL auto-tuners share in common is

the measurement infrastructure, which manages candidate tensor program execution

latency measurements. It is important to note that all such measurements are performed

in isolation - that is one at a time, ensuring accuracy of measurement and reliability of

the infrastructure, which when coupled with extensive schedule space exploration leads

to prolonged auto-tuning time [8, 183, 385].

1.1.5 Costs of Optimising Deep Learning Model Inference

Through the use of high-level DL model graph optimisations and DL auto-tuners, both

facilitated by DL compilers, DL engineers can substantially reduce end-to-end DL model

inference latency when executing DL models on a given target-device [39, 18, 345, 388,

8, 385, 183]. However, the specific relationships between optimisation quality and time

and energy costs of performing them, have not been previously explored nor quantified.

This is especially the case for DL auto-tuning. The process of optimisation via DL

auto-tuning can be observably time and energy-expensive (taking several days in the

case of large models [184]), yet the precise reasons why that is have not been studied.

While auto-tuning times in the range of tens of hours per end-to-end DL model may

be acceptable in sporadic, one-off usage patterns, prolonged auto-tuning of individual

models at a Cloud cluster level, or when models have to be re-tuned towards different

execution scenarios, begins to become a challenging problem. This is further amplified

by the isolation of the target-device during DL auto-tuning, reducing device availability

and increasing operational costs. As such, to start introducing any modifications to the

existing DL auto-tuning infrastructures, it is necessary to first analyse and quantify the

phenomena responsible for cost-inefficient DL auto-tuning.
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1.2 Recent Challenges within DL Auto-tuning

DL auto-tuners exhibit several outstanding research challenges towards achieving cost-

efficient DL inference performance optimisation.

1.2.1 Serial Candidate Latency Measurements

All SOTA DL auto-tuners utilise a similar approach to performing on-target-device

latency measurements of candidate tensor programs [40, 385, 8]. This approach

involves isolating the target-device and performing candidate tensor program latency

measurements serially, in sequence, ensuring only a single kernel executes at the target-

device at a time. This stems from a long-standing, held and practised assumption within

the DL auto-tuning community that introducing any degree of parallelism will inevitably

result in interference due to resource contention and unpredictability of GPU kernel

scheduling. While unequivocally ensuring measurement reliability, such an approach

significantly under-utilises the available compute resources, whilst reserving them for

prolonged periods of time. Addressing this bottleneck could improve both the overall

wall-clock auto-tuning time and the candidate measurement throughput, resulting in

improved cost-efficiency of performing DL optimisations.

1.2.2 Sequential End-to-end Auto-tuning

SOTA DL auto-tuners that claim to support end-to-end DL model auto-tuning [40,

39, 8, 183], rely upon sequential optimisation of tensor operators. More specifically,

given an end-to-end DL model architecture definition, DL auto-tuners decompose the

architecture graph into individual tensor operators and optimise each of them from

start to finish, subsequently moving onto the next queued tensor operator to be optimised.
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Given the current design of DL auto-tuners, achieved (optimised) end-to-end

DL model inference latency can only be measured once all of its individual tensor

operators have been optimised. This prevents the model-level optimisation strategy from

leveraging information about end-to-end inference latency of the model when performing

optimisation of its individual tensor operators, for example, to avoid unnecessary auto-

tuning whenever this would be appropriate and cost-efficient. There is a large potential

in leveraging such intermediary information, however, existing DL auto-tuners do not

provide these capabilities to their users.

1.2.3 Unfiltered Candidate Measurements

During DL auto-tuning, cost models and search algorithms traverse the schedule space

to discover configurations exhibiting low-latency for each DL model tensor operator.

Subsequently, batches of such candidate schedules are proposed for on-target-device

measurements in isolation to ascertain their quality and guide the schedule search.

Auto-tuners combine such online measurements with optimisation strategies such as

Simulated Annealing [342] that provide eventual guarantees of optimal schedule discovery

after a large number of evaluations, which can be time consuming.

These design assumptions result in prolonged auto-tuning that may eventually

discover a high-quality schedules. Ahn et al. [8] find that candidate schedules can form

clusters within the schedule space that exhibit similar execution footprints, and exploit

this using statistical machine learning methods to propose higher quality candidates

more often during auto-tuning. As such, there exists an opportunity to combine existing

strategies with novel probabilistic methods to exploit candidate similarities further. For

example, candidates with poor performance potential could be filtered out and their

expensive on-device evaluations avoided, enabling the auto-tuner to dedicate time to

potentially more favourable candidates.
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1.3 Objective, Hypothesis and Research Questions

The core objective of this thesis:

Given the aforementioned limitations and prolonged duration of DL auto-tuning, the core

objective of this work is to measurably improve cost-efficiency of optimising DL model

inference via auto-tuning; by reducing the overall auto-tuning time, reducing incurred

energy costs as a result of less complex computational footprint, or increasing the quality

of optimisation given the same time or energy budgets. More specifically, this objective

can be achieved by either delivering better auto-tuning optimisation for the same

operational cost or equivalent optimisation at a reduced cost. To achieve this research

objective, two new standalone yet complementary systems are proposed: Trimmer

and DOPpler, both targeting different parts of the DL auto-tuning infrastructures.

Trimmer increases cost-efficiency of DL auto-tuning by filtering out undesirable candidate

schedules and proposes a novel approach to end-to-end DL auto-tuning termed Survey

tuning. DOPpler complements these improvements by replacing the widely adopted,

serial candidate measurement infrastructure, with novel, intra-device parallel approach

to measuring candidate tensor programs reliably at a much higher throughput.

Within this thesis the following hypothesis is posited:

The design of SOTA DL auto-tuners is plagued by several performance bottlenecks that

prevent them from achieving both high-quality and cost-efficient DL model inference

optimisation. These bottlenecks result in prolonged auto-tuning time, increased energy

costs and under-utilisation of available compute resources, which in turn raises the

barrier to entry and limits their wider adoption in DL inference deployment pipelines. By

utilising targeted DL-based, heuristic and reactive methods, it is possible to address these

bottlenecks at different levels of the deep learning auto-tuner design architecture, resulting

in significant improvements in overall auto-tuning time, optimisation energy costs, and
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cost-efficiency without negatively impacting optimisation quality (i.e., achieving better

optimisation for the same operational cost or equivalent optimisation whilst incurring

smaller operational costs).

To validate this hypothesis, it is re-framed as specific research questions.

[RQ1] How significant are the time and energy costs of applying high and low-level

DL inference performance optimisations and where do they originate from, when

analysed across individual tensor operators, end-to-end models and DL compiler /

auto-tuner levels? Could such cost analysis identify key architectural reasons for

prolonged and cost-inefficient DL auto-tuning, considering different optimisation

scenarios?

Answering this question would identify specific inefficiencies and bottlenecks within

SOTA DL auto-tuners and quantify their operational cost impact, providing

valuable design directions for targeted improvements to specific auto-tuner

components and their operation, when attempting to improve their cost-efficiency.

[RQ2] Is it possible to train a DL model to identify low-quality (high latency) tensor

program candidates ahead of their latency measurements during DL auto-tuning? If

so, could such a model be leveraged to reduce the negative impact of poor candidates

on auto-tuning operational costs?

To answer this question a new DL auto-tuner component will have to be designed,

implemented and evaluated, comparing the modified infrastructure to existing

SOTA DL auto-tuners in terms of optimisation quality and operational costs.

[RQ3] Could the end-to-end DL model inference latency be measured and subsequently

leveraged to control the auto-tuning process for cost-effectiveness trade-offs, whilst

auto-tuning of the model operators is underway?
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Answering this question requires designing a new end-to-end DL model auto-tuning

strategy that could facilitate partial operator optimisation and model compilation

with these partially optimised tensor operators, whilst also leveraging end-to-end

latency information to control cost-budget and/or objective-based auto-tuning.

[RQ4] Could the long-standing requirement for serial, isolated candidate measurements

during DL auto-tuning be avoided, instead enabling parallel candidate tensor

program execution intra-target-device reliably? If so, what would be the optimisation

quality and operational cost implications of such an approach, when applied across

different classes of tensor operators, DL models, auto-tuners and target-devices?

Answering this question could be achieved iteratively. Initially, a naïvely-

parallel solution could be evaluated to ascertain and analyse potential drawbacks

(for example, interference) that justify the widely-accepted requirement for

measurement isolation intra-device. Informed by such an analysis, a comprehensive

and reliable solution for performing intra-device parallel candidate measurements

will need to be developed and evaluated in a variety of DL auto-tuning scenarios.

1.4 Broader Research Context

DL is increasingly becoming a significant part of our societies, industries and day-to-day

lives. Until recently the energy and environmental costs associated with DL computation

have been ignored when developing increasingly more complex models, even though

the costs of manufacturing and operating high-performance compute infrastructures

underpinning DL are enormous [303, 204, 308]. The increasingly energy-intensive DL

computation begs questions whether these costs are proportional to the insights provided

by models and their applications. As such, time, monetary, energy and environmental

costs associated with DL computation should be judged alongside the value of their

predictions and generative outputs.
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However, defining and quantifying a generic measure of value provided by DL

systems is challenging outside of the monetary realm, while quantifying precise material,

environmental and monetary costs of manufacturing and operating DL systems is both

difficult and often overlooked, including in research projects [291, 115]. From a broader

research perspective, this thesis considers a question of how one might analyse and

factor-in, operational costs (including time and energy), into the design and operation

of DL systems, with a case study of DL inference performance optimisation via DL

compilers and auto-tuners.

1.5 Core Research Contributions

1. An experimental analysis of time and energy costs associated with DL compiler

optimisations, including a comprehensive analysis of DL auto-tuners, their

operational cost and discovery of the major sources of inefficiencies within their

design and procedural assumptions.

2. An auto-tuning system termed Trimmer, which includes a neural-network based

candidate filter that reduces cold candidate occurrence and enables cost-efficient

DL auto tuning at a DL model tensor operator level. Trimmer also introduces

a single-model and multi-model level meta-tuning approach that improves cost-

efficiency of end-to-end DL auto-tuning.

3. An empirical analysis of the source of inefficiencies within the conventional candi-

date measurement infrastructures of SOTA DL auto-tuners and autoschedulers

- the serial, intra-device isolation of candidate executions during their latency

measurement. Stemming from the analysis, a naïvely-parallel approach is proposed,

to tackle the identified issues, and empirically guide further developments of a

more reliable and comprehensive solution.
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4. A modular and extensible intra and inter-device parallel candidate measurement

infrastructure termed DOPpler, compatible with SOTA DL auto-tuners and

autoschedulers that provides a sizeable reduction in auto-tuning costs, whilst

enabling existing auto-tuners to maintain their optimisation quality.

5. A report and an analysis of the overall energy, environmental and financial costs

incurred during the experimental evaluations performed as part of this thesis,

discussing the importance of cost reporting within DL research.

The investigations, design and evaluations of Trimmer and DOPpler were sequential.

Developing Trimmer helped to identify issues in SOTA DL auto-tuner design, which

led to the further exploratory analysis and the design of DOPpler. Combined together,

these two systems allowed my thesis to answer the aforementioned research questions.

1.6 Thesis Structure

Chapter 2 provides necessary information on Machine Learning (ML), DL, DL model

life-cycle, specifics of DL computation and systems, characterisation of DL systems, DL

compilers, DL compiler optimisations and the design characteristics of DL auto-tuners.

Within Chapter 2, SOTA DL compilers and auto-tuners are also comprehensively studied

and compared in an overview of the research space.

Chapter 3 presents a comprehensive experimental analysis of the time and energy costs

associated with DL inference and DL optimisation via the use of DL compilers and

auto-tuners. The chapter discusses the reasons for differential behaviour and operational

costs of optimised and un-optimised DL models, as well as the costs of performing

optimisations on said models - focusing in particular on DL auto-tuning. Importantly,

this chapter provides a comprehensive analysis and discussion of one of the reasons for

sub-optimal and inefficient DL auto-tuning - cold candidates.
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Chapter 4 proposes Trimmer, a framework that utilises a neural-network based filter

and a meta-tuning strategy that performs cost-efficient DL auto-tuning on DL models

in a single-machine and multi-machine (Cloud cluster) setting. The chapter presents

Trimmer’s system design and an experimental evaluation of Trimmer against SOTA DL

auto-tuners, concluding with a discussion on Trimmer’s limitations, compatibility with

auto-tuners and target-devices as well as different workloads.

Chapter 5 This chapter presents an experimental analysis of the issues and costs

associated with isolated (serial) on-device candidate measurements in DL auto-tuning

- an approach that is universally assumed and adopted within the existing SOTA

DL auto-tuners and the broader DL compiler community. In response to these

issues, a naïve approach is presented to enable parallel intra-device candidate latency

measurements, followed by an experimental evaluation of the approach, which identifies

several bottlenecks and potential design directions towards achieving high-quality, intra-

device parallel candidate measurements during auto-tuning.

Chapter 6 proposes DOPpler, a DL auto-tuning measurement infrastructure capable

of performing parallel measurements of candidate tensor programs intra and inter-

device, greatly expediting DL auto-tuning, whilst maintaining high optimisation quality

and providing plug-and-play compatibility with several existing auto-tuners. Informed

by the findings presented in Chapter 5, DOPpler’s design is described and evaluated

experimentally against the serial measurement infrastructures adopted within SOTA DL

auto-tuners. The chapter concludes with a discussion on compatibility considerations

and limitations, including potential applications in other DL research areas.

Chapter 7 provides a summary of the contributions presented within this thesis, a

discussion on the broader impact of this work with a focus on the energy costs, and is

followed by thesis conclusions and future research directions. This chapter also includes

an estimation and an analysis of the costs (time, energy, monetary) incurred as a result

of the experiments performed as part of this work.
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Chapter 2

Background and Related Work

This chapter provides broader context of DL systems, DL inference performance and

energy costs, as well as methods for optimising DL model performance during inference.

Within Section 2.1 topics related to ML are discussed, focusing on the different ways data

is utilised in model training, including different learning paradigms, such as Supervised

Learning. Section 2.2 focuses on DL and its associated constructs such as Artificial

Neural Networks (ANNs) and DNNs, as well as different types of ANN layers and

network types. Within Section 2.3 the concept of DL systems is outlined, encompassing

their life-cycle, tensor data structures, DL tensor operators and programs, DL systems

including software (DL frameworks, inference engines) and hardware (CPUs and GPUs).

Section 2.4 characterises DL systems in terms of their performance and costs, focusing

on multiple metrics such as accuracy, computational intensity and measures of energy

efficiency used in academia and industry to compare DL systems. Within Section 2.5

DL compilers are introduced, discussing their features (for example, high and low-level

optimisations), application specifics and criticality within modern DL inference pipelines,

providing a comparison across prominent projects. Lastly, Section 2.6 discusses DL

auto-tuning - an automated method for DL model tensor program candidate (schedule)

discovery and performance evaluation.
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2.1 Machine Learning (ML)

ML is the family of statistical approaches used to discover regularities and patterns

in data, by proposing functions that estimate future data points given past value

observations and features [212]. Features, also known as exploratory variables, are the

observable attributes of the set of data—dataset, used by ML algorithms to discover

correlations that are then used to predict previously unseen values.

Feature
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l

Process of learning

Datapoint
Model

(a) Fitting the model to the observed datapoints

Feature

La
be

l
Process of inference

Model
Prediction

(b) Model predicts a label, given an unseen feature

Figure 2.1: Learning and inference phases of Machine Learning

ML is an automated discovery of regularities in data x via a dynamically derived

function f (in effect the model) that leverages parameters w to produce predictions

ypred, and more formally as ypred = f(x,w). This process is more commonly known as

inference as the model infers predictions based on a priori information. As shown in

Figure 2.1, in the process of learning (Figure 2.1a), an ML model is fitted to observed

data instances that represent features and their corresponding labels. Subsequently,

during inference, the model is used to propose a corresponding label for previously

unseen values for features (Figure 2.1b). The space that is represented by n features is

referred to as the feature space and can be n-dimensional. A single point in this space

is represented by a set of values for each of the features, referred to as the feature vector

- a single instance of data in the dataset.
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2.1.1 Model Training

Raw data such as images, text or sound are too complex for an ML model to directly

utilise in the process of learning and must be pre-processed into a numerical form. This

process is referred to as feature extraction or feature engineering. The extracted features

are then used in the process of training. During model training, the model f together

with its parameters w is incrementally derived by observing available training data and

adjusting w with discovered correlative patterns. To incrementally adjust parameters w

of the trained model, the difference between the produced prediction and expected value

must be determined. This is accomplished using a loss function [351], which is based on

the measure of error such as ypred − y where ypred is the predicted value and y is the

expected value. Equation 2.1 depicts an example of a popular class of loss functions, the

Mean Squared Error [37], from which other loss functions such as Root Mean Squared

Error or Root Mean Squared Log Error are derived.

MSE =

N∑
i=1

(ypredi − yi)
2

N
(2.1)

Different loss functions are used depending on the ML approach and the desired

effects such as: outlier robustness (Mean Absolute Error) [356], ability to determine

bias in the model (Mean Bias Error) or penalisation of false positives with large

confidence (Cross-Entropy Loss) [381]. To validate the model accuracy and prediction

robustness, model evaluation cannot be performed using the data instances that were

used during training. A common practice is to divide the dataset into disjoint training

and testing sets at random, where for a set of pairs of instance and label observations

S = (xi, yi), i = 1, . . . , N and a probability z ∈ [0, 1], the model is trained with N×(1−z)

observation pairs picked at random and validated with N ∗ z pairs disjoint from the

training set, using the difference between expected and predicted values [269].
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To tune model parameters during training, a validation dataset is obtained by

splitting the training set in the same manner as above. The validation set is used to

cyclically evaluate the model, to adjust hyperparameters that guide the training process,

for example, the learning rate at which the model updates its parameters [212].

2.1.2 Machine Learning Characterisation
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Figure 2.2: Differences between Instance Learning and Model Learning

Several criteria can be used to characterise ML approaches, comparing the manner in

which the model utilises training data and the methods of learning used to train it. In

batch learning [27], the training process assumes access to all available training data

and performs offline training, where the model is first trained until convergence, and

only deployed once a satisfactory accuracy is reached. The model does not update its

parameters w unless explicitly re-trained with new observations. Conversely, in online

learning [27], the model is trained within a production environment. Such training is

incremental as new data arrives in the form of individual or mini-batches of observations.

This type of training is useful for datasets too voluminous to fit within machine memory

or when the system receives data as a stream of samples at different rates.

ML methods can be characterised by the manner in which they utilise available

observations, as shown in Figures 2.2a and 2.2b. In instance learning [16], predictions
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are performed by comparing ground-truth and unseen observations using a similarity

measure such as euclidean distance [186]. Conversely in model learning, the ML

approach builds a model based on the available observations such that the model

generalises to new, unseen ones, as described in Section 2.1.1. The model then performs

inference based on learned parameters (also known as weights). An ML model’s learning

process can also differ in the degree of interaction the model has with an outside

environment during training [212]. This can manifest in querying the environment

or performing actions within the environment — active learning or only observing

the environment or dataset — passive learning, with no feedback influence on the

environment or a set of data. ML operations can be divided into paradigms that describe

overarching learning assumptions such as degree of human involvement.
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(a) Supervised Learning
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Environment
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Figure 2.3: Different ML paradigms

Supervised Learning: As depicted in Figure 2.3a, in Supervised Learning, the

process of model training utilises pairs of input values x and corresponding ground-

truth labels y to cyclically update its parameters w [212]. As the process continues, w

correlates x to y with increasing accuracy, whilst generalising towards unseen inputs x̂.

During Supervised Learning it is important to consider over-fitting and under-fitting,
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where the process of training causes the model to fit the training dataset too closely or

not sufficiently enough [162, 140]. Continual adjustment of training parameters with

the help of validation (as described in 2.1.1), aims to prevent both over and under-

fitting. Supervised Learning approaches can be further subdivided into classification

and regression [212], where in classification, the model predicts discrete classes such

as different car models given an image of a vehicle, whereas in regression, the model

predicts a non-discrete numeric value, for example, a stock price at a given time. There

are many Supervised Learning approaches, including: Decision Trees [286], Random

Forests [26], Linear/Logistic Regression [337, 42] and Neural Networks [216].

Unsupervised Learning: Conversely, in Unsupervised Learning the ML approach

learns without relying upon labelled observations, instead discovering patterns in data,

which are then used during inference [212], as depicted in Figure 2.3b. This paradigm is

often applied when working with very large datasets, where labelling their observations

would be costly. On the flip side, results of Unsupervised Learning can be less accurate

than those produced by models trained under supervision and must be validated

manually by experts before deployment in production [89]. Unsupervised Learning

methods include techniques such as K-Means or Hierarchical Clustering [187, 149],

Dimensionality Reduction such as Principal Component Analysis [358] or Anomaly

Detection such as Isolation Forests [189], often used for dataset anomaly detection [35].

Semi-supervised Learning: As depicted in Figure 2.3c, Supervised Learning and

Unsupervised Learning approaches can be hybridised into Semi-supervised Learning,

where partially labelled data are used [212, 370], and can be particularly useful for

obtaining ground-truth labels for Supervised Learning. A good example of Semi-

supervised Learning are Deep Belief Networks [124] that utilise several unsupervised

models based on Boltzmann Machines [389], which once trained, are fine tuned under

supervision. Semi-supervised Learning can be used as an alternative to Supervised

Learning in problems such as text classification [211] or speech analysis [371].
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Reinforcement Learning: Fundamentally, Reinforcement Learning (RL) methods

operate on a separate set of assumptions to Supervised or Unsupervised Learning

methods. RL is built around a notion of an agent - an algorithm that exists within

an environment it can observe and interact with [322], as depicted in Figure 2.3d.

The RL environment provides a set of states the agent can transition into and out

of by performing a set of actions. The environment either positively or negatively

reinforces the agent (with rewards), given the actions taken by the agent and the states

it occupies. In the process of navigating the environment, the agent builds a policy

defining the actions the agent should perform given an occupied state and the state of

the environment to acquire highest reward. Formally, the objective of an RL model is

to build a policy p parameterised by w that is most optimal in terms of gained reward

given the environment. During training, observations consisting of the current state,

new state, an action taken and a reward received for performing that action are used.

Examples of RL-based methods include the class of Monte Carlo methods [208], Policy

Search methods [180] or Proximal Policy Optimisation (PPO) [290]. RL is also used in

game-playing scenarios [145], customer behaviour analysis [299] or robotics [161], with

many approaches being combined with Supervised Learning methods.

2.2 Deep Learning

Deep Learning (DL) is a subset of ML focusing on the design, training and operation of

models based on ANNs [97]. More specifically, DL focuses on DNNs — ANNs with at

least three logical layers, enabling ML that solves complex, non-linear problems such as

image recognition [197], object detection [190] or language translation [305]. DL enables

feature learning or representation learning — an automated discovery of representations

required to extract features from raw data. DL is highly useful in problems such as

Computer Vision (CV) (image-based learning). Image data is commonly represented
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numerically as combinations of scalar values for each of the three colour channels, however

manual discovery of features for machine learning in such diverse data is impractical.

DL is also well suited for multi-dimensional data operations, exemplified by image-based

or Natural Language Processing (NLP) [202] learning tasks.

As such, DL can be thought of as a subset of ML methods that both learn based on

data features to provide predictions, but also automatically discover relevant features

in data that enable effective learning. DL methods automate feature discovery and

their subsequent exploitation for learning and inference, allowing engineers to shift

their focus onto careful design of DL model architectures that best suit the application

scenario [97]. The majority of DL methods are based on ANNs, an example of supervised,

discriminative models inspired by the operation of neural networks found in animal

brains. An unsupervised alternative to ANNs are the Deep Belief Networks [179] that

act in a generative manner — i.e. can learn to reconstruct their inputs probabilistically

as opposed to classify them as in supervised, discriminative ANNs. This thesis focuses

on DNNs for the purposes of analysis and evaluation.

2.2.1 Artificial Neural Networks

ANNs are combinations of data and algorithms that operate on them, attempting to

roughly model the operation of biological neurons to perform tasks such as learning [68].

An ANN is a structure consisting of artificial neurons, also referred to as nodes forming

a directed, weighted graph, where the edges between the nodes are assigned weights.

Each artificial neuron is conceptually inspired by biological neurons [109]. Figure 2.4a

depicts an artificial neuron (a single node in the ANN graph). A neuron receives inputs

x originating from the user or prior neurons in the network (as in Figure 2.4a), and

performs a weighted sum between the input and its weights wi found in the neighbour

edges, adding a bias value β. Inputs that originate from the user (for example, during

training) can be the feature values of training instances appropriately pre-processed

22



2.2. Deep Learning

for the purposes of the network (for example, scaled or truncated). Before dispersing

to neighbouring neurons, the outputs of weighted summation are passed through a

differentiable activation function [336], which decides whether the neuron should activate

or not, emitting output h. Neuron outputs are often referred to as activations.

Neuron 1A

Neuron 1B

Neuron 2A

(a) Artificial Neuron — a single Perceptron

Hidden Layer

1A

1B

1C

2A

2B

2C

3A

3B

3C

1D 2D 3D

Hidden Layer Hidden LayerInput Layer Output Layer

(b) Artificial Neural Network — Multi-layer Perceptron

Figure 2.4: A Perceptron and an Artificial Neural Network

Figures 2.4a and 2.4b depict an artificial neuron and a Multi-Layer Perceptron [264]

- an ANN that is a minimum viable network to satisfy the definition of a DNN, which

must have at least three layers [97]. All networks with less than 3 layers are shallow.

(a) Sigmoid (b) Hyperbolic Tangent (c) Rectified Linear Unit (d) Softmax

Figure 2.5: Depiction of popular activation functions

Activation Functions ϕact activate each neuron within the ANN and produce

their outputs (activations). As ANN training requires differentiation to propagate

loss backwards through the layers, activation functions must be differentiable [114]

and introduce non-linearity, to enable the ANN to approximate patterns by stacking

multiple network layers. There are several activation functions used by ANNs such

as the Sigmoid [212], which produces outputs ranging between 0 and 1, as shown in
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Figure 2.5a, the Hyperbolic Tangent [66] (Figure 2.5b) that produces outputs between -1

and 1, or Rectified Linear Unit (ReLU) [365] (Figure 2.5c) that produces semi-bounded

output ranges between 0 and infinity. When weights w are initialised randomly between

-1 and 1, the ReLU can prevent up to a half of neurons from activating, causing them

to eventually cease partaking in inference. This can be fixed by a Leaky variation of

the ReLU activation function [199], which uses very small activation values for negative

inputs. Equations 2.2 to 2.6 depict several activation functions, where ĥ is the neuron’s

weighted summation of input x and weights w.

[Sigmoid] fact(ĥ) =
1

1 + e−ĥ
(2.2)

[Hyperbolic Tangent] fact(ĥ) =
eĥ − e−ĥ

eĥ + e−ĥ
(2.3)

[ReLU] fact(ĥ) =

0, if ĥ < 0

ĥ, otherwise
(2.4)

[Leaky ReLU] fact(ĥ) =

0.001ĥ, if ĥ < 0

ĥ, otherwise
(2.5)

[Softmax] fact(ĥ)
n
=

eĥ
(n)

N∑
n=1

eĥ(n)

, n = 1, . . . , N (2.6)

Problems such as multi-class classification require a probability distribution to be

produced. Any time a representation of a probability distribution over a discrete variable

with N possible values is required, the Softmax [97] activation function can be used.

Softmax outputs a single value for each neuron in the layer, enabling each value to be

interpreted as a class probability, all summing up to 1. Figure 2.5d and Equation 2.6

depict the Softmax function, where ĥ are the ANN’s last layer outputs.
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Layers: As depicted in Figure 2.4b, an ANN structure is composed of layers, where

each layer represents one or more neurons that activate simultaneously. Typically, ANN

inputs and outputs are considered as separate layers of the network and referred to as the

input layer and the output layer respectively. Any layers in-between the input and output

are referred to as the hidden layers, and contain the bulk of ANN functionality. The

larger the number of layers, the more complex each layer is and the more edges there are

between individual nodes across neighbouring layers, the more complex representations

can be learned by the network. When viewed from the perspective of multiple layers, an

ANN can be conceptualised as a series of functions that depend on each other’s outputs,

starting from the input layer and ending on the output layer. Equation 2.7 depicts

layers of an ANN represented as variations of a generic function g() where N is the total

number of layers in the network and wn are the weights associated with each layer.

ypred = gn(gn−1(gn−2(. . . g1(x,w1)), wn−2), wn−1),∀n ∈ N (2.7)

Neural network training: The main goal of ANN training is to find the weight and

bias values that minimise the loss function output (See 2.1.1) [97]. ANNs are typically

trained using backpropagation [114], where weights w are set to random values, and

subsequently, the observations are passed in batches through the network layers, resulting

in output ypred. Predictions ypred are then compared to their ground-truth counterparts

and a loss value is computed for the batch of observations using an appropriate loss

function L(ypred, y), as described in Section 2.1.1. For example, in image classification,

a cross-entropy loss function L [97] can be used, as follows:

L(ypred, y) = −
N∑
i=1

yi log(yipred) (2.8)

where N denotes the number of classes used in prediction.
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For every layer l in the network, the average error across the batch of observations

B is calculated, as depicted in the following equation.

errB =
1

B

B∑
l=1

L(ylpred, y
l) (2.9)

Subsequently, the loss values are used to update the weights wl and biases βl. α

denotes the learning rate - a hyperparameter deciding the speed at which the network

learns, and δ denotes the derivatives of the loss function w.r.t. wl and βl, as follows:

wl = wl − α
δerrB
δwl

(2.10)

βl = βl − α
δerrB
δβl

(2.11)

The derivation finds the slope of the loss function that minimises it, where training

requires tweaking the weights and biases that contributed to the output of the ANN. To

obtain derivatives of a multi-parameter function L, partial derivatives of each parameter

are calculated and combined using the chain rule [101]. For example, for a single neuron

n with parameter w1, input x and bias value β1 producing output ypred1 , the loss function

can be defined as 1
2

∑
y − ypred

2 and the derivation of the loss function with respect to

the weight w1 and bias β1 as follows:

δL

δw1

=
δL

δypred

δypred
n

δn

δw1

(2.12)

δL

δβ1

=
δL

δypred

δypred
n

δn

δβ1

(2.13)

Derivatives are used in the process of Gradient Descent [280], which optimises the

ANN parameters to minimise loss. Due to the number of parameters in the ANN, it

is often infeasible to calculate derivatives for every parameter. Stochastic Gradient

Descent [29] alleviates this by performing derivations on subsets of parameters.

26



2.2. Deep Learning

2.2.2 Deep Neural Networks and Their Layers

DNNs can be predominantly categorised into Feed-forward Neural Networks (FFNNs)

and Recurrent Neural Networks (RNNs). Other types of DNNs have been proposed

such as Autoencoders [165], Spiking Neural Networks [200], Encoder-decoders [17, 41]

or Transformers [347]. The remainder of this section focuses on FFNNs and RNNs.

2.2.2.1 Feed-forward Neural Networks

As demonstrated in Figure 2.4b, FFNNs can be defined as ANNs that transform inputs

by propagating them forward through the network’s layers, forming a Directed Acyclic

Graph (DAG). A simple form of an FFNN is the Multi-Layer Perceptron, a network

consisting of at least three layers: input, output and at least one hidden layer (for

details, see Section 2.2.1). Supervised FFNNs can be trained using backpropagation.

Fully-connected (FC) Layers layers (a.k.a. Dense or linear layers) are functionally

equivalent to Multi-Layer Perceptrons as they connect every neuron of the layer to

every activation in the preceding layer [97]. An FC layer is composed of a weighted

matrix multiplication of the input x originating from the preceding layer, local weights

w and commonly a bias term b expressed as a vector, which is added to the result of

the multiplication. The resultant output is then passed through an activation function

(see Section 2.2.1) to produce the activations. Equation 2.14 depicts computation of the

output for an FC layer l.

ylj = fact(
N∑
i=1

wl
jix

l−1
i + bj) (2.14)

FCs are sometimes referred to as General Matrix Multiply (GEMM) layers as they

can be computed using matrix multiplication, or to increase computation efficiency,

expressed as a dot-product operation: y = fact(w · x+ b).
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2.2.2.2 Convolution Neural Networks (CNNs)

Input Layer Conv + ReLU Conv + ReLUPooling Pooling Flatten Fully 
Connected 

Layer

Softmax 
Activation 
Function

Feature Learning Classification

Figure 2.6: Convolution Neural Network

step = 1 step = 2 step = 3 step = 4 step = 5 step = 6 step = 7 step = 8 step = 9

Figure 2.7: Convolution operation over 2× 2 matrix (solid red) with padding = 1 (solid grey), stride =
1 and a 2× 2 filter (dotted green)

As depicted in Figure 2.6, Convolution Neural Networks (CNNs) are a class of

FFNNs that facilitate solving spatial classification problems in domains such as image

recognition or object detection [10]. CNNs combine FC layers with Convolution layers

— specialised ANNs layers inspired in their design by the operation of the mammalian

visual cortex, where neurons compartmentalise their inputs into regions that partially

overlap and connect to individual neurons in the network, effectively building up a

spatially networked structure of feature-recognising entities.

Convolution Layers abstract their inputs into feature maps or activation maps

by convolving [97] a set of learnable filters 1 with regions of the input data, as shown

in Figure 2.7. This enables Convolution layers to leverage local spatial correlations
1Filters are also referred to as kernels or weights (w) and are the learnable components within a

Convolution layer
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Figure 2.8: Convolution over image data representing a cross

between data features and substantially reduce the number of neuronal connections

between two layers that must be computed (compared to FC layers). When filters are

updated during training, they are transformed such that the layer produces activations

that respond to specific spatial features (for example, edges or shapes) at specific spatial

positions in the input. The fact that CNNs are FFNNs, enables early layers to recognise

simplistic features such as lines or edges, while subsequent layers learn combinations of

the simple features and recognise digits, faces, vehicles and more.

Figure 2.8 depicts a Convolution operation over a matrix representing an image of a

cross with a single colour channel. For the purposes of 2D Convolution, data is specified

as a tensor of dimensions w× h×Cinput where w and h are the width and height of the

array and Cinput is the number of channels (3rd dimension).

Convolution over input occurs in strides, defined by the engineer as a hyperparameter,

with input commonly padded with zeroes to maintain desired layer dimensionality (see

Figure 2.7). During Convolution, each filter moves across the input from left to right, top

to bottom and across all channels by stride steps, performing element-wise multiplication

with the portion of the input. The result is subsequently summed, to which a bias

β is added, producing a single element of the feature map. All produced feature

maps pass through an activation function such as ReLU to construct the layer output.

Depending on the stride and padding, Convolution transforms the dimension of the

output compared to its input. For example, a Convolution operation that accepts a
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tensor of shape w × h× Cinput, utilising F filters of size γ, with stride s and padding p,

produces a tensor of shape ŵ × ĥ× Coutput, where ŵ, ĥ and Coutput are defined as:

ŵ =
w − γ + 2 ∗ p

s+ 1
(2.15)

ĥ =
h− γ + 2 ∗ p

s+ 1
(2.16)

Coutput = F (2.17)

For a single element of a feature map (O) Convolution can be performed as follows,

where k is the filter, x is the input and m and n are the feature map coordinates:

Omn =

γ∑
i

γ∑
j

kijxi+m,j+n + β (2.18)

Pooling Layers: Commonly placed directly after Convolution layers, the Pooling

layer reduces dimensionality of Convolution outputs, yet preserves spatial invariance,

downsampling the data [212]. Pooling layers traverse the inputs in strides using pre-

defined windows and summarise values on each stride under the filtered range. Different

types of pooling can be applied in CNNs such as: average pooling, global pooling

or min pooling, with max pooling used to capture the most prominent features in

the Convolution feature maps. Figure 2.6 depicts a simplified CNN, consisting of

several Convolution and Pooling layers in the spatial, feature-learning portion and

prediction-producing, FC layers during the latter portion of classification.

Normalisation Layers: Inputs to DNNs can vary in their distribution (for example,

some contain negative values or have upper bounds of 1e3 or larger), where within

deeper networks, such an arrangement may cause neuron instability and side-effects

such as exploding gradients, reducing training effectiveness. Normalisation layers, with

Batch Normalisation (BN) [138] being the most common kind, re-center and re-scale

layer inputs (including those from prior layers) to normalise and stabilise the network.
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Alternative normalisation methods using Layer Normalisation or Group Normalisation

[320] can also be used. BN can cause interdependence between input samples within a

batch and affect the learning rate. Techniques such as Gradient Clipping [31] help to

alleviate these problems by reducing sensitivity of the network to its inputs.

2.2.2.3 Recurrent and Long-short Term Memory Neural Networks (LSTM)

While CNNs are suited for independent, grid-like inputs, Recurrent Neural Networks

(RNNs) process sequences of related samples, such as text [209] and are designed to

scale to variably-long sequences, thanks to parameter sharing. RNNs also maintain

additional internal state that combines current information with prior information from

the sequence when performing inference. RNNs are discussed in more detail in Appendix

A. Stemming from RNNs, Long-short Term Memory (LSTM) networks emerge, utilising

recurrent cells that control what information is stored within the internal state, what

information is forgotten and what information can be passed onto the next recurrent

cell — via gates. LSTM networks are particularly successful in the area of Natural

Language Processing (NLP) and text-related problems such as language translation or

text generation [353]. LSTMs are discussed in more detail in Appendix A.

RNN models are typically implemented by RNN cells, while LSTM cells introduce

gates that improve upon the vanishing or exploding [252, 116] gradient problems in

conventional RNN cells. Superseding RNNs and LSTMs, DNNs such as the Transformer

[347] utilise Attention layers [221] that capture how neighbouring layer outputs influence

one another, also performing distant associations between input tokens, capturing

context.

2.2.3 Systems for DNN Computation

The ability of DL models to deliver rapid predictions during inference given input data -

for example, to decide how to classify an image in less than 1ms, is possible thanks to
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complex DL systems that underpin and enable DL computation.

2.3 Deep Learning Systems & Computation

This section describes how DL models are transformed into sets of individual programs

that operate on tensors and how DL systems - ecosystems of different software such as

DL frameworks, inference engines and compilers are used during training and deployment

for inference, across high-performance processors and accelerators, to deliver DL model

outputs in a timely and efficient manner.

2.3.1 Tensors and Tensor Operators

Input
Tensor Kernel 

3x3x3 Feature 
Map

Figure 2.9: Applying 3×3×3 Convolution kernel to a 6×6×3 input tensor (stride=1, padding=0).
Input Tensor contains three channels of 6×6 matrices forming a 6×6×3 tensor in the HWC layout.

Tensors are generalisations of vectors and matrices2 capable of representing data in

multiple dimensions [97], supporting many of the operations performed on vectors and

matrices such as multiplication or dot-product. Tensors with dimensionality higher than

2D are common in DL (for example, 3D, 4D, 5D tensors), often referred to as the rank of

a tensor (for example, a 3×3, 2D tensor has a rank of two). In DL, tensors are the default

2Scalars, vectors and matrices are zero, one and two-dimensional tensors respectively.
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data structures that contain DNN inputs, outputs, weights, inter-layer activations and

are used for intermediary storage within layers [7]. For example, CNN networks accept

input tensors with data layouts representing the batch size (N), width/height of the

image (WH) and number of channels (C), to represent the RGB image components.

Figure 2.9 depicts a set of tensors used during the Convolution operation, where

the input layer has an NCHW layout with the outermost and innermost dimensions

of N and W . The data layout determines how the data will be laid out in memory,

thus influencing the memory access patterns to these memory regions by the layer’s

operations. Tensor data layouts and transformations are described in Section 2.5.3.

2.3.1.1 Tensor Operators and their types

Fully-connected Layer

Weights Bias

FC Operation

Input

Output

FC Operator

Input

Weights

Bias

Output

DNN Layer representation DNN Operator representation

Figure 2.10: Difference between a DNN layer and a DNN tensor operator. The operator representation
decouples data from computation when expressing DNN topologies.

As described in Section 2.2.2, DNNs are composed of layers such as FC or Convolution,

with the operations performed within them usually represented by tensor operators [97].

The core difference between a DNN layer and a tensor operator lies in the decoupling of

computation from data, as depicted in Figure 2.10. Early DL frameworks such as Caffe

[147], combined operations with the weights and bias data. Modern DL frameworks
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implement tensor operators as separate subroutines with multiple inputs and one or

more outputs, decoupling data from computation.

DNNs are predominantly described as graphs, where the nodes represent the tensor

operators and the edges represent the data flow between them in the form of encoded

tensors, managed by the DL framework. When performing inference or training, the DL

framework matches tensor operators to their internal implementations that accept inputs,

perform computation and produce outputs, feeding the produced outputs to subsequent

tensor operators. A multitude of tensor operators exist3, where each performs a unique

DNN or ML operation and can be grouped into the following types:

Algebraic Operators include operators such as lograrithm (log), exponential

(exp), power (pow), cosine (cos), sine (sin) or tangent (tan), performed on a tensor

element-wise, or add, which adds two or more tensors element-wise, amongst others.

DNN Layer Operators perform operations of DNN layers, such as the FC, which

computes the FC layer. Conv performs variations of 1D/2D/3D Convolution given

input, weights, kernel and bias. BatchNorm performs BN, while Max/Min/AvgPool

performs pooling of an input tensor and Sigmoid applies the Sigmoid activation function

to a tensor element-wise (see Equation 2.2 in Section 2.2.1).

Tensor Transformation Operators transform the dimensionality of tensors. The

reshape operator changes tensor dimensions to those provided as a parameter, for

example, given parameter {5, 3, 4}, transforms tensor shaped 3×4×5 into 5×3×4.

Concat operator concatenates tensors, provided their dimensions match, for example,

4×3×3 tensor with 2×3×3 tensor producing a 6×3×3 tensor. Other operators exist,

such as Transpose or Flatten, which flattens a tensor (for example, 3×3×3 into 1×27).

Broadcast Operators transform tensors such that their shapes are matching. For

example, when performing an addition between a matrix and a vector, a BroadcastAdd

operator will replicate (broadcast) the vector enough times to match its shape to the

3TensorFlow [2] implements more than 1000 unique tensor operators
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shape of the matrix, such that element-wise addition can be performed. Broadcast

operators are usually combined with other operators such as Add or Mul (Multiply).

Reduction Operators reduce the number of elements within the tensor, including:

Sum (sums elements of a tensor), Min/Max/Avg (retrieve min/max/mean value of the

tensor) or ArgMax/ArgMin (retrieve index of the max/min value within the tensor).

More complex operators, often used within DNN layers (MinPool, AvgPool) are also

reduction operators as they reduce the number of elements within the input tensor.

Control Flow and Boolean Operators: Operators such as If, Else or Loop enable

control flow for data-dependent conditional execution in architectures such as RNNs; and

paradigms such as RL. Control flow operators accept as a parameter the condition and

alternative subgraphs of the model to be followed when the condition is false. Boolean

operators such as Or, And, Not enable element-wise application of boolean logic to

tensor data, defining dynamic condition variables for control-flow operators.

2.3.2 Deep Learning Systems

To enable effective architecting, training and deployment of DL models, complex DL

systems are used by engineers and designers in various ways. A DL system can be

designed as a single machine or a set of multiple machines equipped with necessary

hardware and software, that support DL operations such as training or inference. DL

systems are composed of multiple parts that work together to achieve these goals.

2.3.2.1 Models and their applications

Conceived in the 1960s [139], DNNs did not gain prominence until models such as LeNet

(1989) [177] were introduced, limited by the amount of available data and compute

capabilities. DL model development was gradual until AlexNet (2010) [168] proposed

utilising GPUs as the core DNN computation processors, greatly expediting training and

inference. In the last decade, adoption of novel DNN architectures into various areas
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Figure 2.11: Components and abstraction layers of DL systems.

of science and industry has accelerated and naturally divided into sub-areas based on

intended applications. The most popular sub-domains include CV which enables image

classification, object detection or image generation; NLP, enabling sentiment analysis,

Q&A systems or Neural Machine Translation of text; Recommender Systems, which

recommend items to users based on their prior interactions and; RL, with its primary

uses in gaming and robotics. This thesis focuses on the CV domain of DL models due

to its prominence and scale of adoption in various applications. The CV domain can be

further divided into DL models that support specific CV tasks, as follows:

Image Classification (IC) is one of the primary tasks within the domain of CV.

IC models learn features from a set of images to then recognise and classify unseen

images. Well-known examples of IC models include the AlexNet [168], MobileNets [121,

288, 120], DenseNets [125], ResNets [113] or the ConvNeXt model [194]. This thesis

focuses on IC DL models due to their prominence within academia and industry. Details

about the explored models can be found in Appendices D.1 to D.9.
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Image Generation: During Image Generation, model learns the image feature

distribution of some domain (for example, animals), to then generate representative

examples given identifiers such as dog breeds. The Generative Adversarial Networks such

as DCGAN [260], 3DGAN [362] or StackedGAN [126], as well as Generative Pre-Trained

Transformers such as DALL-E [265] are popular examples of such networks.

Object Detection models discover object positions within an image and in some

cases, classify them. Prominent object detection models include SPP-nets [112], Single

Shot Detectors [191], R-CNNs [94] or the YOLO network [268].

2.3.2.2 Datasets

To perform supervised training of DNNs for IC, the DNNs use example images labelled

with correct classes, such that the DNN learns the associations between the classes

and discovered features. There are several prominent IC datasets, including: MNIST

(70,000 28×28× 1 images of handwritten digits) [178], CIFAR-10/100 (60,000 32×32×3

images of entities such as cats, dogs, cars) [167], SVHN (600,000 32×32×3 images of

house numbers) [219] and ImageNet [282] - the most widely used IC dataset, containing

over 14m 224×224×3 images labelled with 1000 classes of various entities. ImageNet

gave rise to the ILSVRC challenges where IC model designers compete at classifying

the ImageNet test dataset with the highest achieved accuracy, leading to many new

developments in the CV domain. Many other IC datasets exist, varying in the number

of examples, variability of classes and image size and quality. COCO [188] or the KITTI

[91] dataset used in vision for robotics are examples of datasets for CV tasks such as

Object Detection, with Image Generation tasks often reusing IC datasets.

2.3.2.3 DL Frameworks

With the emergence of various DL model architectures, it became critical to reduce

the effort to develop DL training and deployment pipelines. As a result, multiple DL
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frameworks have been proposed, facilitating model design using high-level programming

languages such as Python and abstractions to DL operations. The two most prominent

DL frameworks are Tensorflow [328, 2] and Pytorch [1, 249], and both support high-level

DL model design, DAG-based architecture specification, training and inference. Pytorch

enables dynamic, high-level graph composition and is often leveraged for experimentation

with novel training pipelines. Conversely, TensorFlow utilises a static computation

graph, enabling more aggressive performance optimisations for inference and training.

The two frameworks compete in terms of their features (distributed execution, model

serving, device support), with equally large number of DL projects leveraging them.

Other frameworks such as Apache MXNet [79], PaddlePaddle [243] or Keras [331] fill

in feature gaps such as ease of prototyping, facilitate end-to-end product development

or focus on parallel execution. Open Neural Network Exchange (ONNX) [82] is a

cross-compatible representation format for DL models originating from different DL

frameworks. Through ONNX, engineers can export and import models between DL

frameworks to leverage their features. Many frameworks have been discontinued, whilst

others merged into more prominent projects [335, 147, 292, 9]. This work utilises several

DL frameworks including Pytorch, Apache MXNet and ONNX due to their prominence.

2.3.2.4 Hardware

There are several types of processors that support DL computation. Whilst CPUs are

capable of executing any type of workload (including DL computation) thanks to their

rich instruction sets and versatile Arithmetic Logic Units, other processors flourish in

DL due to their supreme abilities in parallelising computation, and the DL computation

being highly parallelisable. The embarrassingly parallel DL computation does not

require the versatile compute capabilities provided by the CPU (being primarily matrix

or tensor computations), and as such, dedicated accelerator processors provide higher

compute efficiency and performance-per-watt ratio. Processors used in DL computation
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can be generally grouped into Temporal (Instruction) Processors (TIPs) and Spatial

(Dataflow) Processors (SDPs) (for example, ASICs). The following paragraphs describe

TIPs such as CPUs and GPUs, while SDPs are outlined in Appendix B.
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Figure 2.12: Differences between CPUs and GPUs. SM stands for Streaming Multiprocessor

Temporal (Instruction) Processors (TIPs) compute guided by a monotonic

clock, signalling to perform actions such as loading or storing data within the memory or

executing instructions [245]. CPUs and GPUs are primary examples of TIPs, as shown

in Figure 2.12. TIPs leverage the clock to control a number of Arithmetic Logic Units

(ALU) that perform arithmetic and logical operations and do not otherwise communicate

between each other, instructed by Instruction Set Architectures (ISAs). CPUs typically

implement one of two ISAs - the Complex Instruction Set Computer (instructions

require multiple clock cycles), or Reduced Instruction Set Computer (multiple simple

instructions per clock cycle). Parallelism is achieved via multi-core and multi-thread

designs in TIPs, implementing paradigms such as Single-Instruction Multiple-Data

(SIMD) for CPUs and Single-Instruction Multiple-Threads (SIMT) for GPUs. DL

workloads often leverage these parallelisation capabilities to accelerate computation.
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Central Processing Units (CPUs) consist of execution elements referred to as

cores that contain Arithmetic Logic Units, Control Units, and low-level cache memory,

as depicted in Figure 2.12. CPU cores are more versatile and complex compared to

processing elements found in SDPs. The Arithmetic Logic Units within cores work

independently and may be occupied by different execution threads concurrently, driven by

high-frequency clocks. CPUs provide most flexibility in terms of programming compared

to other processors, at the expense of more complex and energy-costly instruction-based

computation. In terms of DL, CPUs are widely used for inference, and less so during

training due to their more serial architectures, compared to other processors such as

GPUs. Novel CPU designs include increasingly higher number of parallel cores4 as

well as dedicated silicon for tensor and vector operations enabled via ISA extensions5,

together with pipeline parallelism, whereby multiple instructions execute during the

same clock cycle on the same core, enabling Simultaneous Multi-threading (SMT), which

effectively doubles the number of cores.

Graphics Processing Units (GPUs): Similar to a CPU, GPU contains execution

elements referred to as cores or threads, Control Units, low-level cache and Dynamic

Random Access Memory (DRAM), as depicted in Figure 2.12. Unlike the CPUs,

GPUs are designed for embarrassingly parallel and energy-efficient but less versatile

computation such as vector or matrix arithmetic. GPU cores cannot decode and execute

instructions independently like CPUs do, where instead they process instructions in

groups of cores called warps6. Such primitive cores can sometimes be referred to as

Processing Units such as a Floating-Point Unit (FPU) or Integer Unit since they perform

a limited set of one or few simultaneous primitive operations on every clock cycle, unlike

the more complex CPU cores. Specifically in Nvidia GPUs, these primitive cores are

contained within Simultaneous Multiprocessors (SMs) - collections of cores that contain

4Modern Intel Xeon and AMD EPYC CPUs have up to 128 virtual cores [52, 4]
5Advanced Matrix Extensions (AMX) [53] and Advanced Vector Extensions (AVX) [46, 48]
6Nvidia: warps, Intel: thread-groups, AMD: wavefronts
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the Processing Units, along with other resources, such as shared memory, caches, and

special function units that perform sine, cosine, reciprocal, and square root functions.

DL tensor operators such as Convolution can be accelerated on GPUs since they involve

repeated matrix arithmetic, and can be easily parallelised across the thousands of

available cores. Newer Nvidia GPUs (Volta onwards) include tensor cores - dedicated

silicon for one-shot matrix arithmetic [237].

2.3.2.5 Acceleration Libraries

With many different processors, ensuring high-performance execution of DL models is a

challenging task, especially for designers without prior systems programming expertise.

Acceleration libraries expedite adoption of various processors, their ISAs and one-shot

instructions for DL model execution, providing high-performance linear algebra, vector

and tensor mathematics or DNN layer implementations (e.g Convolution and BN).

Several prominent acceleration libraries are widely used for DL acceleration. Intel

oneMKL [47] and oneDNN [51], provide high-performance implementations of operators

such as compute-intensive Convolutions or memory-bound BNs. Nvidia Compute Unified

Device Architecture (CUDA) [231] and AMD’s equivalent ROCm [5], provide high-level

programming interfaces to GPUs, enabling parallelisation of DL workloads, while cuDNN

[232] implements DL-specific routines and operators via CUDA. DL engineers can also

leverage Basic Linear Algebra Subprograms libraries to accelerate tensor computation,

such as cuBLAS [230], rocBLAS [6], OpenBLAS [363] and Eigen [141]. The disadvantage

of relying upon vendor-provided acceleration libraries is that their ongoing development

fails to keep up with development of novel DL operators.

2.3.2.6 Inference Engines

Inference Engines (IEs) are either bespoke systems or lean versions of existing DL

frameworks that focus purely on DL inference with already trained models across select
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platforms, including applying high-level optimisations to models that target the chosen

hardware platform. IEs analyse and optimise DL model graphs (TensorFlow Grappler

optimiser [170], Pytorch Just-in-Time optimiser/runtime [84]) to dispatch individual

tensor operators to platform and device-specific implementations from acceleration

libraries or the IE for a specific device. Development of IEs is growing, where prominent

ones are: TensorFlow-Serving [327] and TorchServe [85] for large-scale (cluster-level)

deployment of models for inference; Nvidia Tensor RT [240] - an inference toolset

leveraging Nvidia GPUs and acceleration libraries, with support for Pytorch, TensorFlow

and ONNX; TensorFlow Lite [329] and TensorFlow.js [330], enabling DL inference at the

Edge (Android, iOS) and in web browsers; ONNX Runtime [57], supporting inference

with ONNX models across a variety of platforms; and AWS Neuron [297] that supports

model execution on Amazon Inferentia.

Much like DL frameworks, IEs focus on a limited number of target-devices, DL

frameworks and tensor operator types, each adopting different strategies for accessing

platform’s resources, ingesting models, performance optimisation and computation

scheduling. This degree of variance requires DL engineers to either limit their choice of

target-devices, platforms, frameworks and models, manually extend IEs to suit their

specific use-case, or utilise multiple IEs and maintain multiple model inference pipelines.

2.3.2.7 Deep Learning Compilers

As outlined above, the engineering approach of developing high-performance imple-

mentations for combinations of M models, N DL frameworks, T tensor operators

within each model, P target devices, I (billions) variably-optimal implementations

per tensor operator and device7, results in engineering complexity of O(MNTPI).

This limits adoption and performance of processors, tensor operators and their novel

implementations. To alleviate these problems, DL compilers were proposed, providing

7Implementation specifics depend on the shape of inputs to the operator
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unified interfaces for specifying logical representations of DL model graphs and tensor

operators. DL compilers ingest trained models from DL frameworks and apply various

high and low-level optimisations such as auto-tuning and autoscheduling. Finally, DL

compilers compile the resultant model towards devices such as CPUs, GPUs, ASICs

and Field-Programmable Gate Arrays (FPGAs).

DL compilers are an emerging technology with a large potential to substantially

improve DL inference performance, however, applying optimisations facilitated by

DL compilers can be time-consuming, leading to their limited adoption. This thesis

focuses on DL compilers, and more specifically on their strategies for high and low-level

optimisations, auto-tuning and the time and energy costs associated with applying them,

with the broader aim to reduce these costs and the aforementioned barrier to entry. DL

compilers are covered in more depth in Section 2.5.

2.3.3 Tensor Programs and Their Execution
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Figure 2.13: Evolution of a tensor operator into a tensor program

As outlined in Section 2.3.1, DL tensor operators provide high-level, logical representa-

tions of DL model layer computation. Tensor operators implemented towards a given

execution environment (CPU, GPU, specific runtimes/libraries - for example, CUDA)

are referred to as tensor programs. In DL compiler nomenclature, a tensor operator
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specification may be referred to as tensor expression or a primitive function. Each

such tensor operator has operands consisting of tensors inputs, operation(s) expressed

as a function of the operands and an output in the form of a tensor(s). A specific

implementation of the tensor operator, expressed in low-level DL compiler Intermediate

Representation (IR) is often referred to as a schedule. Figure 2.13 depicts an FC layer

as a tensor operator and program across DL frameworks and a DL compiler.

2.3.3.1 Tensor Program Computation

To achieve high DL performance on CPUs and GPUs that enable hardware parallelism via

SIMD and SIMT, tensor operators such as Convolution or FC are often implemented as

matrix multiplications, that can leverage parallel Multiply Accumulate (MAC) operations.

For example, an FC layer tensor operator can be represented as a matrix vector multiply

(+accumulate) or matrix matrix multiply (+accumulate) by rearranging the inputs and

the weights for matching dimensions. Recalling Equation 2.14 in Section 2.2.2, an FC

layer’s operation applies a dot-product between the input and layer’s weights and adds

a bias term. To compute the FC tensor operator using matrix vector multiplication,

the 3D input (Inp) tensor with shape C×H×W must be rearranged into a vector

(CHW )×1, and the M×C×H×W 4D weights (W ) tensor re-arranged into a matrix

M×(CHW ). The FC operator can then be performed as follows:

O1×M = WM×(CHW ) × Inp(CHW )×1 (2.19)

Likewise, to utilise matrix matrix multiplication for batched FC tensor operator

computation, the input tensor of shape N × C ×H ×W containing N inputs would be

rearranged as a matrix of shape (CHW )×N to then produce output O as follows:

OM×N = WM×(CHW ) × Inp(CHW )×N (2.20)
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Convolution as well as other tensor operators can also be represented as matrix or

vector computation. This is possible using Toeplitz matrices [316, 346], with further

reductions to the necessary computations achieved via algorithmic transforms [174] such

as: the Strassen’s matrix multiplication algorithm [317], the Winograd transforms [357]

or Fast Fourier Transforms (FFTs) [344]. The FFT approach performs best with weight

tensors of shapes 5×5 and above, and Winograd for shapes 3×3 and below. When

performed within DL frameworks, different Convolution implementations may be used

via different routines present within DL acceleration libraries, optimised for specific

Convolution shapes and processor characteristics.

// Convolution
// O = output tensor
// I = previous layer's activations
// W = current layer's weights
for (n = 0; n < N; n++) {

for (oc = 0; oc < OC; oc++) {
for (ic = 0; ic < IC; ic++) {

for (oh = 0; oh < OH; oh++) {
for (ow = 0; ow < OW ; ow++) {

for (fh = 0; fh < FH; fh++) {
for (fw = 0; fw < FW ; fw++) {

O[n][oc][oh][ow] = (I[n][ic][oh+fh-1][ow+fw-1]) * W[oc][ic][fh][fw] + O[n][oc][oh][ow]
}

}
}

}
}

}
}

Listing 2.1: Naïve, deep loop nest implementation of Convolution

Naïvely, Convolution can be implemented as a seven-layer deep loop nest, as shown in

Listing 2.1, where I is the input tensor, W is the weights tensor, O is the output tensor,

N is the batch size, OC is the number of output channels / number of filters, IC is the

number of input channels, OH and OW are the height and width dimensions of the output

tensor and; FH and FW are the height and width of the filters. Such an implementation

is sub-optimal given its frequent memory accesses. Efficient memory access is a major

aspect of developing high performance DL tensor program implementations, since
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accessing memory is orders of magnitude slower compared to arithmetic operations [118,

323]. Many DL acceleration libraries design Convolution implementations to better fit

within the memory and cache hierarchies of CPUs or GPUs, for example, by using tiling

[354]. Tiling and other loop nest transformations that improve runtime performance of

tensor programs are described in Section 2.5.5.

2.3.3.2 Parallelism during DL inference

Since many of the tensor operators found in DL models can be expressed as tensor

programs relying upon MAC operations, such tensor programs can be parallelised in

various ways across the CPU and GPU.

Model-level parallelism: Multiple DL models can be executed simultaneously by

scheduling their tensor programs to separate CPU cores. Individual tensor programs tend

to execute serially, one after another to maintain logical data dependency, since outputs

of one layer are inputs to another. Processes executing tensor programs can execute

their data-parallel instructions (for example, matrix arithmetic) on the GPU via calls to

libraries such as CUDA. In Nvidia’s GPUs, calls from processes reside within separate

CUDA Streams [271] and are serialised, unless modules such as Nvidia Multi-process

Service (MPS) [228] are enabled. When considering a single model, provided there is

sufficient resource capacity, parallelism can be achieved by executing multiple tensor

programs simultaneously. For example, the ResNet-18 [113] architecture (see Appendix

D.7) contains shortcut Convolution layers within its residual blocks that can execute

in parallel without affecting model correctness. Each such tensor program could be

scheduled as a separate thread or process, and a separate CUDA Stream on the GPU.

Multiple tensor programs executing within the same process and variations of the above

are often leveraged in DL IEs (see Section 2.3.2.6) to achieve low DL inference latency.

Tensor program-level parallelism: Within a single tensor program, (for example,

one implementing the Convolution operator), parallelism can be achieved by leveraging
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parallel execution units such as CPU or GPU cores and instruction pipelines via the

SIMD or SIMT models, as described in Section 2.3.2.4. The SIMD paradigm implemented

by modern CPUs as a specialised set of Arithmetic Logic Units and control circuitry, or

dedicated silicon, enables a single instruction (for example, Advanced Vector Extensions

(AVX)) to instruct computation across a range of values in large registers simultaneously.

For example, an AVX-256 instruction can perform element-wise multiplication on two

256-bit registers, each containing eight, 32-bit float32 values. DL acceleration libraries

take advantage of this circuitry and implement specific DL tensor programs that replace

inner loop nests with singular AVX instructions.

__global__ void matrix_multiply_kernel(int *a, int *b, int *c, int m, int n, int k){
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
int sum = 0;
if( col < k && row < m){

for(int i = 0; i < n; i++){
sum += a[row * n + i] * b[i * k + col];

}
c[row * k + col] = sum;

}
}

int main(int argc, char const *argv[]){
...
int *A_dev, *B_dev, *C_dev;
cudaMalloc((void **) &A_dev, sizeof(int) * M * N);
cudaMalloc((void **) &B_dev, sizeof(int) * N * K);
cudaMalloc((void **) &C_dev, sizeof(int) * M * K);
cudaMemcpy(A_dev, A, sizeof(int) * M * N, cudaMemcpyHostToDevice);
cudaMemcpy(B_dev, B, sizeof(int) * N * K, cudaMemcpyHostToDevice);
dim3 dimGrid((k + Bsize - 1) / Bsize, (m + Bsize - 1) / Bsize);
dim3 dimBlock(Bsize, Bsize);
// Kernel call
matrix_multiply_kernel<<<dimGrid, dimBlock>>>(A_dev, B_dev, C_dev, M, N, K);
cudaMemcpy(C, C_dev, sizeof(int) * M * K, cudaMemcpyDeviceToHost);
cudaThreadSynchronize();

}

Listing 2.2: Simple matrix multiply implementation in CUDA
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DL compilers also perform such mappings automatically for different tensor operator

input shapes and processors via vectorisation, as described in Section 2.5.5. The GPUs

SIMT paradigm also enables a single instruction to be performed across multiple threads

(a 32/64-thread warp) (see Section 2.3.2.4, with the hierarchy of threads specified via

the CUDA kernel definition [231]. The GPU internal scheduler analyses this thread

hierarchy, and assigns threads to the processing units in accordance with internal

scheduling policies. Unlike CPUs, GPUs allow threads within warps to simultaneously

utilise shared scratchpad caches to perform load coalescing, which reduces memory

access bottlenecks and accelerates computation.

2.3.3.3 Thread Hierarchies and Parallel Execution in Nvidia GPUs:

Nvidia CUDA [231] is a parallel programming model along with C++ language extensions

that allow engineers to develop functions (kernels) that execute on the GPU and take

advantage of their massively parallel computation [239]. Within CUDA, each kernel is a

sub-program that executes N times in parallel across N threads. Listing 2.2 depicts

implementation of matrix multiplication (C = A×B) within CUDA. Threads in CUDA

are grouped into one, two or three-dimensional thread blocks containing a maximum

of 1024 threads, representing computation across less than or equal to 1024 elements

of data. When scheduled, all threads within a single thread block execute across the

same SM (see Section 2.3.2.4), grouped into a one, two or three-dimensional grid. Each

thread block executes independently and its execution can occur in any order across

any SM or core within the GPU, however, threads can share local memory.

Thus, an optimised thread hierarchy arrangement and kernel implementation can take

advantage of memory locality and data reuse to account for global memory bottlenecks

and improve performance. During kernel launch, the thread blocks are distributed across

SMs according to compute resource availability, where one SM concurrently executes

one or more thread blocks. When GPU performs scheduling, threads are re-grouped
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into warps, where each warp executes a single instruction at a time to achieve higher

instruction-level parallelism. As such, high utilisation occurs when there is as little

data-dependent divergence in thread execution paths as possible, achievable via either

manual optimisations or automatically using a DL compiler.

2.3.4 Deep Learning Model Life Cycle

Training
Proper

Architecture Search

Hyperparameter
Search

Manual

NAS

Dataset
Preparation

Compilation
(DL Compiler)

Optimisation

High-level Low-level Auto tuning

Deployment
(Inference)

Initial
Training

Inference Execution
Frameworks

(DL Frameworks)
(Inference engines)

Design Phase Training Phase Optimisation and Compilation Phase

Deployment Phase

Figure 2.14: Life cycle of a DL model

DL models are computational artefacts with a complex life cycle, encompassing

several phases as depicted in Figure 2.14. Early-phase decisions made by DL engineers,

often have drastic impact on model performance and characteristics, and transitively on

its footprint such as operational costs during the latter stages. For example, modifying

the tensor data layout during the design phase can diametrically change model behaviour

due to memory access pattern differences during deployment.

2.3.4.1 Design Phase

During the design phase, DL engineers iteratively produce a training pipeline that

constructs a DL model from a dataset and a model architecture [88], evaluating multiple

potential architectures to discover ones that are best suited towards the problem area
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and ones that achieve highest initial accuracy. Likewise, the dataset is pre-processed and

split into subsets (see. Section 2.1.1) to serve during model training. Typically a large

number of architectures are evaluated either manually or by using Neural Architecture

Search (NAS) techniques [392, 72] that automate this process, each time partially

training the model to determine performance. Such experimental training is also used

to determine optimal training hyperparameters such as the learning rate [24]. With a

large number of experimental training sessions, the design phase is often resource-costly.

2.3.4.2 Training Phase

Once an architecture and optimal hyperparameters are established, the training phase

can commence. During the training phase, the model is trained until it achieves

satisfactory accuracy [97]. Training is facilitated by DL frameworks that leverage CPUs

or other processors for computation. Initially trained on CPUs or singular GPUs [314],

contemporary training pipelines utilise multiple GPUs [263, 167, 168] to train increasingly

complex models that require extensive computation to achieve competitive inference

performance. The growing model complexity and scale, continually translates into

demand for increasingly complex training pipelines (for example, distributed training

[63, 36]), as well as motivates development of more powerful processors and compute

clusters to contain large models [69]. The increasing number of more powerful processors

and growing amount of time necessary to train DL models results in large DL operational

costs (time and energy) [318], further exacerbated by frequent model re-training towards

new applications or datasets [244, 391].

2.3.4.3 Optimisation and Compilation Phase

Trained models are deployed in various environments such as the Cloud or Edge

to perform inference. Whilst DL frameworks offer several deployment options (see

Sections 2.3.2.3 and 2.3.2.6), they are limited to specific tensor program implementations
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optimised for a select class of devices. As outlined in Section 2.3.2.7, DL compilers

provide a solution to the problem of efficient, high-performance compilation of trained

DL models towards various hardware platforms, including facilitation of a plethora of

optimisations during this process [184]. DL model implementations can be specialised

towards a target-device (for example, a GPU) via a lengthy process of auto-tuning, which

involves repeated testing of thousands of potential tensor programs that can implement

the model towards the device. Since each test requires full target-device isolation, the

process greatly under-utilises the device and the host platform both within a given time

instant and across time, resulting in high energy-disproportionality. The optimisation

and compilation life cycle stage is the focus of this thesis. More specifically, the thesis

investigates the efficacy of various DL model optimisation methods and explores the

costs associated with performing them, focusing primarily on auto-tuning.

2.3.4.4 Deployment Phase

Once a model has been trained (and optimised), it is deployed for inference using DL

frameworks, serving platforms [327, 85] and IEs, or as part of an application such as a

mobile app, leveraging DL compilers for code generation. Compared to the other phases,

performing inference using deployed models is the most expensive phase of the DL model

life cycle. This is because once deployed, DL models serve inference requests for an

unpredictable period of time, at unpredictable rates, consuming energy within every

environment they are deployed [65]. For example, Facebook reports that models deployed

within their data-centre scale compute clusters serve trillions of inference requests every

day [111], utilising high-performance processors [248, 360]. Precisely estimating complete

operational cost footprints of DL models is therefore extremely challenging, with many

works relying on metrics and observations instead. From a DL engineer point of view,

a feasible method to reduce operational costs of deployed DL models is to optimise

their runtime performance, such that the value they provide is energy-proportional and
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adequate to the inference task at hand [291, 310]. This thesis focuses on analysing and

improving DL model optimisation strategies, with primary objective of improving the

understanding of the costs associated with DL model optimisation and compilation, in

the hopes of lowering the barrier to entry for DL inference optimisation.

2.3.5 Machine Learning as a Service (MLaaS)

Cloud Interface

Provider ModelsUser Models Trained Models Untrained Models

MLaaS

Training Engine Inference Engine Optimisation
Engine

Data  
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Cloud Management Infrastructure
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Nodes
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Figure 2.15: Machine Learning as a Service (MLaaS) system architecture

Underpinned by complex ecosystems of software and hardware, ML and DL

applications can be challenging to deploy and operate for organisations without prior

DL engineering experience and necessary compute infrastructures know-how in place.

Machine Learning as a Service (MLaaS) is a Cloud computing paradigm that facilitates

development, deployment and provisioning of ML and DL applications [273, 253]. Figure

2.15 depicts a high-level MLaaS system architecture. Within the MLaaS paradigm,

users rely upon remotely-accessible compute infrastructures and middleware such as

training or inference engines, made available by the Cloud providers. Such MLaaS

platforms also provide DL engineers with a variety of tools such as web interfaces for
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specifying, deploying and monitoring DL workloads. Many MLaaS platforms facilitate

Cloud-based data and model management services, including data collection, verification,

pre-processing, as well as model validation, testing and versioning. The MLaaS paradigm

underpins Cloud service models such as Data Science as a Service (DSaaS) [256], that

focus on providing higher-level abstractions over conventional ML applications such as

statistical models, clustering methods or ANN-based models. Large Cloud providers

such as Microsoft (Azure Machine Learning [54]), Google (Cloud Platform [98]) or

Amazon (AWS & SageMaker [298, 296]) are increasingly adopting the MLaaS service

model to facilitate ML and DL services to their users.

2.4 Characterising Deep Learning Systems

There are many factors that affect DL model performance and computational costs,

including time and energy consumption. To better understand these factors, it is

important to outline and cross-associate the relevant metrics that are used both in

industry and academia to characterise DL models and hardware during inference.

2.4.1 Characterising Models

Accuracy, Error, Recall, Precision and F1 Score measure inference performance

of DL models [326]. More specifically, accuracy is a ratio of correct answers to all

answers provided by the model within some number of trials, as depicted in Equation

2.21, where Tpos is the number of true-positives, Fpos is the number of false-positives,

Tneg is the number of false-positives and Fneg is the number of false-negatives. Directly

from the accuracy metric, the prediction error can be derived (Equation 2.22). Recall,

determines what proportion of true-positive predictions were identified correctly, as

shown in Equation 2.23. For example, recall of 0.75 indicates that 75% of some N

predictions were true-positives. The precision metric provides a ratio of true-positives to
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all correct predictions, especially important when inference results are used in use-cases

such as self-driving vehicles. Equation 2.24 depicts the precision metric. Achieving

both high precision and high recall is challenging. F1 score (depicted in Equation 2.25)

captures both of these characteristics, measuring efficacy of the model as a single metric.

Acc =
Tpos + Fneg

Tpos + Tneg + Fpos + Fneg

(2.21)

Err = 1− Acc (2.22)

Recall =
Tpos

Tpos + Fneg

(2.23)

Precision =
Tpos

Tpos + Fpos

(2.24)

F1score = 2× Precision×Recall

Precision+Recall
(2.25)

Achieving high accuracy, precision and recall requires both effective training methods

and a large-enough model composed of complex operators to sufficiently capture the

training dataset features, also generalising to unseen data. As such, DL models are

often characterised by their architectural features.

Number of and size of Layers and Operators: As described in Section 2.2.2,

DL models are composed of multiple layers, each implemented by one or more tensor

operators such as Convolution or BN [97]. Conventionally, only complex layers such as

Convolution or FC are counted towards the model depth measure. When considering

the complexity of the model, individual layers are also characterised as wide or thin by

observing the shapes of their input tensors, as outlined in Section 2.3.1.

Number of trainable parameters and output activations: Memory required

to execute a DL model is dependent on the number of parameters and intermediary

activations used and produced by each layer [323]. During training, both parameters and

activations are usually represented as Floating-point (FP) values (typically float32 ) and

as such, each require four bytes of memory. The number of parameters and activations is
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related to the shape of layer inputs, outputs, kernels (for example, Convolution filters),

and settings such as the stride or padding. The following equations demonstrate how to

calculate the number of parameters and activations for a 2D Convolution:

Numparams =(C ∗K2 ∗N) +B (2.26)

OutH =
(H + 2 ∗ P )−K + 1

S
(2.27)

OutW =
(W + 2 ∗ P )−K + 1

S
(2.28)

OutC =N (2.29)

Actshape ={OutH , OutW , OutC} (2.30)

Numactivations =OutH ×OutW ×OutC (2.31)

where H, W and C are the height, width and channels of the input tensor, N

is the number of kernels, K is the kernel height/width, B is the number of biases

(usually B = N), performed with stride S and padding P . As such, a Convolution layer

containing five filters of shape 10×10 and an input with size 224×224×3, with S = 1

and P = 0, would contain 1505 trainable parameters, and output an activation tensor

of shape 215×215×5 containing 231,125 activations. In FC layers, weights represent

connections of every neuron to every other neuron, with the total number of parameters:

N×M , where N is the input size and M is the output size. Characterising an entire

network, the AlexNet model (see architecture details in Appendix D.1) contains 61.1m

parameters across all its Convolution and FC layers.

Required number of MACs/MADs/FLOPs: DL model computational

complexity can be characterised using the measure of MAC or Multiply Add (MAD)

operations necessary to perform the model’s tensor operator computations [275]. MACs

frequently describe model complexity because it is common for DL tensor operators

to use multiplier-accumulator (MAC) processing units found in CPUs and GPUs, that
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perform a ← a + (b × c) operation as a single-cycle instruction (Fused Multiply-Add

(FMA) or Fused Multiply-Accumulate (FMAC)). Dot-product or GEMM operations can

be easily implemented as a set of FMA operations, improving throughput compared to

multiplication and accumulation performed as consecutive instructions. Simultaneous

FMA operations are achieved using multiple MAC units, with modern CPUs relying on

SIMD AVX instructions [48, 53] and GPUs relying on tensor cores [237].

At a fundamental level, each MAC represents two logical Floating-point Operations

(FLOPs) - multiplication and accumulation (addition) [275, 323]. FLOPs and MACs are

often confused when reporting model complexity, since modern hardware implements

MACs as one-shot operations completing within a single clock cycle. As such, when

representing complexity, a single MAC is often counted as a singular FLOP. The total

required number of MAC operations for a given tensor operator (for example, 2D

Convolution) in the forward pass of the network [275], can be estimated as:

NumMAC = K2 ∗ InC ∗Numactivations +Numactivations (2.32)

where InC is the number of input channels, K is the kernel size, and Numactivations

is calculated as per Equation 2.30, with the additional Numactivations accounting for

the bias term. For example, a 224×224×3 2D Convolution with five, 10×10 kernels,

stride = 1, padding = 0 and included bias term, requires 69.57m MACs. Likewise, the

AlexNet model with 61.1m parameters, requires 715.56m MACs.

2.4.2 Characterising Hardware and its Performance

Number of cores and core capabilities: CPUs consist of several (1 - 64) complex

cores capable of executing one or two threads (via SMT), where each thread executes

one or more instructions within a clock cycle [275]. A DL model could be parallelised

on a CPU by performing simultaneous MAC operations across the available threads.
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Contrastingly, GPUs contain a large number of more primitive cores, such as Integer

(INT)/FP32/64, performing one or more 32/64-bit integer and floating-point arithmetic

operations on every clock cycle [275, 106]. For example, the Nvidia Ampere architecture

[229] contains 6912 FP32 CUDA cores, grouped into SMs, where each SM concurrently

executes up to 2048 threads scheduled as warps, as described in Section 2.3.2, which

enables massively-parallel computation. To leverage these capabilities, DL tensor

operators should off-load heavy FP arithmetic to the GPU, and tensor programs should

be designed such that operand shapes and sizes match appropriately to the available

scheduling primitives (threads, warps) and memory hierarchies. However, both CPUs

and GPUs are limited in terms of achievable speedup due to parallelism, as described

by Amdahl’s law [12] (Equation 2.33) for N independent compute units in parallel, and

P designating a portion of the program that can be parallelised.

MaxSpeedup =
1

1− P + (P/N)
(2.33)

Clock frequency: CPUs and GPUs execute instructions dictated by the clock [106,

275]. The clock frequency (F ) determines how fast the processor loads instructions, fills

up execution pipelines and executes instruction computations. Typical CPU has a clock

frequency ranging between 2 and 5GHz, whilst GPUs operate at clock speeds under

2GHz. High clock frequency and number of cores deliver high computation throughput

at the expense of higher energy consumption, as high F increases circuit power.

Instructions and Peak OPS: TIP can be characterised in terms of their instruction

processing speed. Given a single-core scalar processor with cycle period CT , execution

latency Lexec of a program can be estimated as: Lexec = CT ×
∑N

i CPIi [106, 323], where

CPIi is the number of cycles required per instruction i ∈ I and N are the instructions

of the program. Other measures such as Instructions per Cycle (IPC) also exist and

are widely used. Alternatively, the processor’s performance can be characterised by the
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maximum number of operations each core can perform within a period of time. This

measure is often referred to as peak OPS or peak operation throughput, as shown in

Equation 2.34, where CPOo stands for Cycles per Operation for operation o, while

Equation 2.35 depicts device-wide peak throughput estimation, where Corecount is the

number of cores per device and Coreutil is the aggregate utilisation of all device cores.

CorePeakThroughput = (
1

CPOo

× F ) (2.34)

OPSpeak = CorePeakThroughput × Corecount × Coreutil (2.35)

Newest Intel Xeon CPUs are capable of up to 168 Giga Floating-point Operations

(GFLOPs) and 293 integer Giga Operations (GOPS) [52], whereas Nvidia Ampere

A100 GPU delivers 19.5(FP64), 156(FP32), 624(INT8) Tera Floating-point Operations

(TFLOPs)/Tera Operations (TOPS) of peak throughput [229].

Memory Hierarchy: Ahead of instruction execution, CPUs and GPUs must fetch

data from memory into local registers, which can take more than 100 times the time

it takes to complete an FP32 arithmetic multiplication [107]. For example, Nvidia

A100 achieves 156 TFLOPs OPSpeak for FP32 operations and has a maximum memory

throughput of 2,039GB/s, and for it to achieve full compute utilisation, the A100 would

have to perform 77 operations for every byte fetched. As such, CPUs and GPUs employ

multi-level caches to leverage data locality and store frequently accessed data closer

to the compute unit ahead of computation [323]. Memory can be characterised by its

capacity and peak bandwidth (Bwpeak), calculated as follows:

Bwpeak = F ×Niface × TPC ×Wbus (2.36)

where F is the memory frequency (400MHz for Double Data Rate (DDR)4 DRAM),

Niface is the number of memory interfaces, TPC is the number of transfers per clock-
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cycle and Wbus is the bus width in bits (for example, 64 for DDR). CPUs rely upon

external DDR memory whilst GPUs utilise built-in Graphics Double Data Rate (GDDR)

or High Bandwidth Memory (HBM) with large bus width (1024-bit) and larger number

of channels (for example, in Nvidia A100 80GB HBM2 [229]). CPUs and GPUs use

caches to avoid memory bottlenecks, with CPUs employing three levels of cache and

GPUs two levels, where level one cache has the highest speed, lowest capacity and is

the most expensive to produce. Some GPUs enable modifying low-level cache contents

directly by configuring them as scratchpads (for example, shared memory in Nvidia

GPUs), which is sometimes leveraged within DL compiler optimisations [80, 262].

TDP and Energy Consumption: To execute instructions, CPUs and GPUs

switch transistor state between high and low, and set/unset bits in registers and cache

[106]. Transistor switching dissipates electrical energy as heat as their capacitance is

charged/discharged, known as dynamic power dissipation and estimated as follows:

Pdyn = α× C × V 2 × F (2.37)

where F is the chip’s clock frequency, V is the operating voltage, C is the total

capacitance of all transistors and α is the activity factor which describes the active

portion of transistors within a time period (for example, one second). A portion of

energy is also dissipated via static power dissipation Pstatic, due to slow current leakage

when transistors are in their off state, derived as: Pstatic = Ileak × V where Ileak is

the amount of leakage in amperes. In total, a chip dissipates Ptotal = Pdyn + Pstatic of

instantaneous power, where energy consumed within some time T is E = Ptotal × T .

Ptotal is often inflated by another 10 - 15% due to brief but unavoidable short-circuit

periods. Commercially, chips are characterised by their maximum instantaneous power

draw, also known as Thermal Design Power (TDP). Server CPUs have TDP of 150 -

250W, whereas GPUs such as Nvidia H100 peak at 800W TDP.
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Given perfect knowledge of silicon behaviour, the energy consumption (measured

in Joules: Ojoules) of individual operations (for example, FP multiplication), could be

approximated by applying Equation 2.37, replacing α and C with values appropriate

for the silicon implementing the operation [324]. Derived from Ojoules, one could also

estimate the number of operations that can be performed for one Joule of energy -

JOPS = OPS
Joule

. Horowitz [118] details that on a 45nm chip, FP32 multiplication consumes

37 times more energy than INT32 addition and that DRAM accesses can be up to 173

times more energy expensive than arithmetic operations.

However, such modelling is often infeasible in DL systems due to ever-changing,

black-box designs of chips, lack of precise measurement tools, and the complexity of

program analysis for different platforms, DL models and their tensor programs. Instead,

energy analysis more often relies on system-wide measurements or estimations, reported

as a function of peak performance - for example, TOPS/Watt, deemed adequate to

compare effects of different DL model execution patterns [60]. Modern Intel and AMD

CPUs include current sensors for energy consumption estimation and expose a Running

Average Power Limit (RAPL) Model-Specific Register (MSR) that can be queried to

obtain energy data [61]. Likewise, Nvidia GPUs report coarsely sampled (0.5 - 1s),

package-wide power usage via the Nvidia Management Library (NVML) library [234].

2.4.3 Characterising Model Execution and Efficiency

Several metrics, which encompass both workloads and hardware, are important to

consider when deploying DL models across different systems for inference, namely:

Inference Latency measures the time between an input is supplied to the model

and the time when the model’s output is generated, when executing on a particular

device. Latency encapsulates data loading, individual tensor program launch procedures,

data transfers from host DRAM memory to GPU DRAM, execution of GPU kernels

and transfer of results to the host. Given perfect knowledge of all operations conducted
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as part of model’s execution, inference latency (ILat) could be estimated as follows:

ILat = max(
POPS

OPSpeak

,
Pbytes

Bwpeak
) (2.38)

where POPS is the total number of operations and Pbytes is the total number of

memory accesses in bytes performed during inference. Due to hardware and software

complexity, latency is usually measured using high-precision hardware clocks. CPU-level

measurements utilise instructions that retrieve values from CPU Real Time Clock, while

GPU timings (for example, of kernel latency) are retrieved via Application Programming

Interfaces (APIs) such as Nvidia Activity API [234] directly from the device driver.

Inference Throughput measures the number of model inferences performed within

a time period. Peak inference throughput (IThr) can be estimated as follows:

IThr = OPSpeak ×
1

Oinf

(2.39)

where Oinf is the total number of operations associated with inference, or by observing

the number of performed inferences in a time period.

Memory vs. Compute: Proposed by Williams et al. [355], the Roofline model

calculates the maximum theoretical performance a program can achieve on a particular

processor, and has previously been used to evaluate DL inference performance [59]. The

model includes peak operation throughput (OPSpeak), peak memory bandwidth (Bpeak)

and the program’s Computational Intensity (CI), which is a ratio of the program’s

operations to the number of memory bytes accessed. High CI indicates a compute-bound

program and low CI a memory-bound program, where increasing processor compute

would not result in execution speedup. For a matrix multiply operator with input Inpa×b,
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weights Wb×c and output Outa×c, where all values are four-byte floats, the CI is:

Nops = 2(add/mul) × a× b× c (2.40)

Nbytes = 4(float32) × ((2rd/wr × a× c) + (1rd × a× b) + (1rd × b× c)) (2.41)

CI =
Nops

Nbytes

(2.42)

When no caching is performed, the processor must fetch and store values to DRAM

during each multiply-add operation, which would result in substantial slowdown since

DRAM reads/writes cost around 200 cycles each. Caches circumvent this bottleneck,

enabling data locality and reuse close to compute (L1 cache read is around four cycles).

The Roofline model determines CI and maximum attainable OPS for a given program

and processor, which guides the design of DL tensor programs and optimisations.

Energy Efficiency of DL inference can be measured in Joules
Inference

(JInf) or Inferences
Joule

(InfJ) capturing the costs of delivering predictions. JInf and InfJ can be estimated

by observing the associated compute and memory access operations as follows:

JInf = Ojoules ×Oinf (2.43)

InfJ = JOPS ×
1

Oinf

(2.44)

Development of energy-efficient DL models is challenging. Different DL operations

exhibit different energy consumption patterns, influenced by memory and cache access

characteristics and the program’s ability to utilise compute resources effectively (for

example, via parallelism). Energy-efficiency of DL is important to consider due to

operational costs, especially within large-scale DL inference serving deployments such

as those at Facebook, where DL inference workloads run "tens-of-trillions of times per

day" [111] and result in high power dissipation [360, 248, 104]. As such, it is important

to explore optimisation strategies for improving DL inference performance and efficiency.
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Figure 2.16: Deep Learning Compiler Design

There exists a great diversity of DL models that leverage Edge devices as well

as Cloud servers equipped in powerful CPUs and GPUs. Such diversity extends to

individual deployment scenarios, where executing DL models on different types of

Mobile/Cloud CPUs or GPUs (Intel, AMD, Nvidia, ARM, Google), requires bespoke

implementations to achieve maximum performance. Manually adapting a high-level

model definition specified in a DL framework towards the various processors, requires

systems expertise and large engineering effort. This issue becomes compounded by the

ever-growing number of increasingly more complex DL model tensor operators designed

as part of novel model architectures. Each such operator requires additional engineering

and optimisation to enable deployment on different processors.

As a result DL compilers have gained prominence in the recent years. The core

purpose of a DL compiler is to transform a high-level DL model computation specification

(for example, ones produced by DL frameworks), into a set of outputs necessary for

a DL model to be executed on a given device. Such outputs involve a set of routines

for computation of model operators, device-host memory management and APIs to
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Table 2.1: Characterisation and support matrix of popular deep learning compilers
✓= Supported, × = Unsupported, ? = Limited support / support unclear
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Supported
Languages

Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓
Java ✓ × × × × × × × × × × × × × × × ×
Go ✓ × × × × × × × × × × × × × × × ×
Rust ✓ × × × × × × × × × × × × × × × ×
WebAssembly ✓ × × ✓ × × × × × × × × × × × × ×

Supported
Frameworks

TF/Keras [331] ✓ ✓ ✓ ? ✓ ✓ × × × × × ✓ ✓ ✓ × ✓ ✓
Pytorch [1] ✓ ? ? ? ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × ×
MXNet [79] ✓ ✓ ✓ × × × × × × × × × × × × × ×
ONNX [82] ✓ ✓ ✓ × ✓ ? ✓ × × × ✓ ✓ ✓ × × × ×
Caffe(2) [147] ✓ × × × × × × ✓ × × × × × × × × ×
CoreML [133] ✓ × × × × × × × × × × × × × × × ×
DarkNet [267] ✓ × × × × × × × × × × × × × × × ×
OneFlow [372] ✓ × × × ✓ × × × × × × × × × × × ×
PaddlePaddle [243] ✓ ✓ ✓ × × × × × × × × × × × × × ×
Mindspore [127] × × × × × × × × × × × × × × ✓ × ×

Supported
Libraries

oneMKL [47] ✓ ✓ ✓ × × ✓ × × × × × × × × × × ×
oneDNN [51] ✓ ✓ ✓ × × ✓ × × × × × × × × × × ×
cuDNN [232] ✓ × × × × ✓ × ✓ × × × × × ✓ ✓ ✓ ✓
cuBLAS [230] ✓ × × × × × × ✓ ? × × × × × × × ×
MIOpen [156] ✓ × × × × × ? × × × × × × × × × ×
rocBlas [6] ✓ × × × × × ? × × × × × × × × × ×

Supported
Target
Devices

AMD GPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ? ✓ ✓ ? × × ×
Nvidia GPU ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ARM GPU ✓ ? ? ? ✓ ? × × × × × ✓ ✓ × × × ×
Qualcomm GPU ✓ × × ? × × × × × × × × × × × × ×
ARM CPU ✓ ? ? ✓ ✓ ✓ × × × × ? × × × ✓ × ×
x86 / amd64 CPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × × × ×
RISC-V CPU ✓ × × ✓ ✓ × × × × × × × × × × × ×
FPGA ✓ × × × ✓ × × × ✓ × × × × × × × ×
TPU ✓ × × × × ✓ × × × × × × × × × × ×
NPU/VPU/IPU × ✓ ✓ × × × ✓ × × × × ✓ ✓ × ✓ × ×

Supported
Optimisations

Graph-level ✓ ✓ ✓ × ✓ ✓ ✓ ? × × ? ✓ ✓ ✓ ✓ ✓ ✓
Low-level ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ? ✓ ✓ ✓ ✓ ✓ ✓
Auto-tuning ✓ × × ✓ × × × ✓ ✓ × × ✓ ✓ × ✓ ✓ ✓
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interact with the application that leverages the model. Another important goal of a DL

compiler is to optimise the model implementation towards a given target device. DL

compilers utilise multiple levels of Intermediate Representation (IR) to represent the

model graph, operations and data, and apply various optimisations whilst translating

the model definitions to their executable form.

DL compilers differ from traditional compilers that accept program source code and

output binaries that execute on the target device. Instead, they act as an intermediary

compiler that focuses on optimising the high-level model definitions specified in DL

frameworks, and transforming them into a set of low-level IR representations of optimised

DL tensor programs - a process referred to as lowering. Once the lowering is complete,

the DL compiler utilises conventional compilers such as LLVM [172] for code generation-

proper. As shown in Figure 2.16, akin to traditional compilers, DL compilers include

a frontend component, a single/multi-level IR and a backend component. The DL

compiler backend is responsible for producing low-level IR, compatible with more

generic code generators such as LLVM [172], or device-specific compilers such as Nvidia

NVCC [225] targeted towards Nvidia GPUs, which then compile the optimised model

towards the target-device. Some DL compilers generate executable binaries or other

specialised accelerator instructions directly, for example, to support esoteric FPGA or

ASIC architectures - see the VTA module in TVM [213].

2.5.1 Existing Deep Learning Compilers

Recently, several DL compilers have been introduced, proposing different methods for

lowering DL models to high-performance tensor programs that execute on variety of

devices. Table 2.1 outlines differences in support for target-devices, DL frameworks,

libraries and optimisation approaches across recently proposed DL compilers.

TensorComprehensions (TC) [345] is a DL compiler with a polyhedral tensor operator

expression language, used for operator lowering towards CUDA kernels, whilst performing

65



Chapter 2. Background and Related Work

low-level optimisations and program compilation. Tiramisu [18] combines a polyhedral

approach with scheduling (see Section 2.5.4.1) within its four-level IR, to generate

high-performance image processing pipelines and DL model tensor programs.

TACO [159] is a tensor algebra compiler focused on efficiently generating low-latency

tensor programs that accept both dense and sparse tensor inputs. Rammer [198] targets

both spatial and temporal low-level characteristics of accelerators such as GPUs and

Image/Intelligence Processing Units (IPUs) by providing an abstraction layer over

parallel computation, producing and then pruning (based on predicted performance) a

large number of tensor programs for each tensor operator. Roller [390] also abstracts

spatio-temporal scheduling for parallel tensor algebra computation by introducing tiling

and a micro-performance cost model to evaluate candidate tensor programs.

Glow [278] lowers DNN graphs into two-phase IR to perform memory allocation,

quantisation and instruction scheduling optimisations towards CPUs and GPUs,

leveraging hardware-specific features. Hummingbird [218] unifies expressing both DL and

conventional ML operations as tensor computations, enabling existing DL libraries and

frameworks to support high-performance execution of ML primitives on various target-

devices. Triton [334] proposes an LLVM-based IR for representing tensor operation

primitives, as tiled (multi-dimensional sub-array) computations, accelerating them within

environments where acceleration libraries cannot be used.

Intel nGraph [58] is an IR, DL compiler and an inference engine that supports

several third-party DL frameworks, and most notably, one of the first DL compilers to

support ASIC-based Neural Network Processors (NNPs) when generating optimised

tensor programs. nGraph has undergone cross-integration with other DL compilers such

as PlaidML [255], which was initially focused on tensor program optimisation towards

resource-constrained Edge devices. Recently, MLIR [173] and openVINO [49] integrated

PlaidML and nGraph within their compilation ecosystems as sub-modules.

Astra [307] is a DL compiler and a DL training engine that performs multi-version
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compilation whilst the training is underway. Astra replaces logically-equivalent tensor

programs during model execution to establish high-performance operator combinations,

whilst allowing the training to continue unaffected. TensorFlow XLA [176] is a

compilation module closely integrated with the TensorFlow DL framework, which

performs both high-level graph optimisations and selection of low-level tensor program

implementations for CPU and GPU backends, leveraging the LLVM code generator.

Apollo [382] compiles DNNs just-in-time, whilst enabling computation scheduling

optimisations such as tiling to influence high-level optimisation decisions (for example,

operator fusion) made at the model graph-level. FusionStitching [388] and AStitch [387]

optimise memory intensive tensor operators via fusion into larger operators and perform

fine tuning using predictive cost models to improve program performance.

Originally developed as a compiler for image processing pipelines8, Halide [262]

aims to increase flexibility of specifying tensor operations and implementing fast tensor

programs. Halide was one of the first tensor algebra compilers to decouple computation

specification (for example, tensor expressions) from their schedules (implementations),

enabling broad variety of tensor programs to be compiled towards different target-devices.

The Versatile DL Compiler: Inspired by the decoupled compute and schedule

and schedule transformations in Halide, TVM [39] optimises and compiles a wide array

of DL operations and end-to-end models towards a various target-devices such as CPUs,

through GPUs and FPGAs. The core advantage of TVM over the other discussed DL

compilers are its rich integration APIs for DL frameworks, DL acceleration libraries,

several supported programming languages and external code generators such as LLVM.

TVM generates DL tensor programs for different processors, while performing high

and low-level optimisations via graph and schedule transformations and auto-tuning.

This thesis leverages TVM as the core DL compiler during experimentation, due to its

prominence within the field of DL performance optimisation, versatility and third-party

8Halide was later adapted to support DL tensor algebraic computation
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project support. TVM is a foundational project for many prominent DL auto-tuners

and is increasingly adopted within large-scale DL deployment pipelines.

2.5.2 Deep Learning Compiler Frontend

DL compilers ingest DL model definitions from DL frameworks via their frontend com-

ponent9. The DL compiler frontend transforms model definitions into a computational

graph representation, also known as the High-Level Intermediate Representation (HLIR)

or graph IR. Depending on compiler design, the HLIR is part of the same multi-level IR

as the backend, or a separate single-level IR enabling only high-level transformations. As

each DL framework specifies the DL model using a different format and/or programming

language, achieving compatibility with the compiler frontend is challenging. Many DL

compilers have limited support for frameworks (for example, Tensorflow XLA [176]), or

focus on supporting common model specifications (for example, ONNX [82]). As shown

in Table 2.1, only several DL compilers (TVM [39], Intel nGraph + PlaidML [255, 58]

support multiple languages and frameworks.

2.5.2.1 High-level Intermediate Representation (HLIR)

The DL compiler HLIR represents the DL model tensor operators and data dependencies

between them, enabling device-independent graph-level optimisations. Existing DL

compilers implement several types of HLIRs.

Graph-based HLIRs organise computation as a set of vertices and edges to form

a DAG, encoding DL operators such as Convolution as the vertices and their operands

and outputs (tensors) as the edges, facilitating graph-based optimisations. Many DL

frameworks utilise this format to represent models, and as such, Graph-based HLIRs are

commonly leveraged in DL compilers. As shown in Figure 2.17, the Graph-based HLIR

9In DL compiler terminology, "frontend" is not related to web-development
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   func (condition, x) { 
    y = sqrt(x) 
    if (condition) { 
     r = add(y, y) 
        r 
    } else { 
     y 
    } 
   }

sqrt()if (...) add()

var xvar condition

var yresult

   func (condition, x) { 
    let y = sqrt(x) 
    if (condition) { 
     let r = add(y, y) 
     r 
    } else { 
     y  
    } 
   }

Should "y"
be

evaluated
here 
or 

here

"y" evaluated here

PROGRAM COMPUTATIONAL DAG FORM LET-BINDING FORM

Figure 2.17: Graph-based vs. Let-binding HLIR

does not specify the location and scope of each expression, which can be disadvantageous

in later stages of compilation where certainty about computation scope is necessary.

Let-binding HLIRs improve upon this semantic ambiguity of location and order

of operations, being a more strict computation representation, where each expression is

bound to a variable with a "let" keyword pointing to the variable and the operation.

Variables can then be indentified within a variable map as the program is analysed.

Conversely, in a Graph-based HLIR, the compiler must perform recursive descent to

evaluate each node in the DAG by first evaluating all children nodes.

Other HLIRs have also been proposed. The Glow [278] and Tensorflow XLA [176]

compilers adopt a functional HLIR, whereas TVM adopts Relay [276], a custom HLIR

that combines both Graph and Let-binding specifications to enable a wider array of

optimisations at the expense of specification complexity.

2.5.3 High-level Optimisations

The DL compiler HLIR facilitates application of multiple high-level optimisations to

the ingested DL model, with majority being device-independent. Such optimisations

involve traversal of the computation graph / let-node bindings to rewrite them more

optimally, leveraging input / output tensor shape and size information. Following are

the common high-level optimisations applied in many recent DLs compilers:
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Figure 2.18: Different rules of Operator Fusion

Operator Fusion: An un-optimised DL model graph contains operators as defined

by the DL engineer during model construction. Forward pass of such a model,

involves execution of sometimes hundreds of individual operators, including their launch

procedures and memory management [22, 248]. During operator fusion, two or more

compatible operators are fused into a single routine, combining intermediate memory

and launch procedures, and thus reducing overheads [220, 184]. Fusion is especially

important for GPU execution as the memory allocation/access is fused within the scope

of a single kernel, enabling greater reuse of fast registers or scratchpads, and avoids

costly data transfers between operator launches [361]. Element-wise operators (for

example, ReLU) can also be fused with complex Convolutions, enabling data reuse

whilst those still reside within the scratchpads or cache. Operator fusion is possible only

for certain patterns of consecutive operators, and is guided by rules that include: (1)

fusing element-wise operators (injective in TVM) together (for example, two additions),

(2) fusing an element-wise operator such as addition with a reduction operator such as

summation and (3) fusing a matrix-wise operator such as Convolution with an element-

wise operator (complex-out-fusable + injective fusion in TVM), as shown in Figure 2.18.

These rules permit fusion of operators such as Convolution + Bias + Activation function

or BN + Activation function, which are common patterns in CNNs.

Algebraic Identification & Strength Reduction optimisations simplify DL

model graphs. For example, the distributivity characteristics of GEMM, enable matrix
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transposes to be removed when multiplying two matrices, while consecutive transposes

can be eliminated via the involution property: (AT )T = A. Reducing mathematical

complexity of the model graph reduces the computational complexity of the compiled

model [287, 45]. The following equations depict common algebraic optimisations:

a× c+ b× c⇒ (a+ b)× c (2.45)

a− a⇒ 0 (2.46)

(XTY T )T ⇒ XY (2.47)

20
23
26

18 19
21 22
24 25

17
13

47
50
53

45 46
48 49
51 52

36
39 40
42 43

C

H

W

44
41
3837

27

N=0
N

N=1

Tensor of shape [2x3x3x3]

0 1 2 119 10... ...NCHW

0 9

3 12 2018 19 ...21 27 28 29 ...30

NHWC 18 1 10 19 2 11 20 3 12 21 ... 27 36 45 28 37 46 29

CHWN 0 27 1 28 2 29 3 30 ... 9 36 10 37 11 38 12 39 ... 18 45

1615
1412

9 10 11

6 7 8
54

1 20
3

353433
30 31 32

2928
H

W

C

Figure 2.19: Different types of tensor data layouts given the same tensor

Layout Transformations: Patterns of memory access in DL operators heavily

influence load/store latency of data from memory via multi-level caches. Given the same

operator (for example, Convolution), data access time differs depending on its operand

tensor layout in memory. Some DL tensor operator implementations within libraries such

as cuDNN or oneDNN, may require data layouts to match certain specifications. As such,

DL compilers apply layout transformations to ensure library compatibility during later-

stage compilation at the backend. During layout transformation, the compiler modifies

the shape information attached to each tensor so that during low-level optimisations,

these transformations on data can be applied. Figure 2.19 presents different data layouts

for the same 3×3×3 tensor. The Batch-size(N) - (C)hannels - (H)eight - (W)idth
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(NCHW) layout achieves reliably good performance on GPUs due to the specifics of

their memory and cache organisation, where NHWC or (H)eight - (W)idth - (C)hannels

- Batch-size(N) (HWCN) layouts do not perform as well [192, 182]. Consideration must

be made for the computational footprint of applying layout transformations as they can

be costly during runtime (for example, introduce additional transpose operators).

Constant Folding is an optimisation that replaces constant expressions and their

uses with actual values as the code is being compiled. If a constant expression involves

arithmetic on other constants or inline values, constant folding evaluates these expressions

at compile time to avoid doing so during every inference [214]. For DL tensors, the

compiler infers tensor values whenever possible by folding suitable graph nodes.

Dead Code / Node Elimination: Often caused by prior transformations, dead

code are expressions or nodes within the graph, of which results are never used and

can be completely removed, reducing computation burden [160]. For example, an

operator which regularly accepts two inputs, however, only one is available (due to prior

rewriting), can be completely eliminated. Also, if one of tensor value dimensions is zero,

the expression can be replaced with the other non-zero operand, simplifying the graph.

Common Sub-expression Elimination: A common sub-expression is a repeating

expression within the DL model definition that has previously been computed and

which does not require re-computation to satisfy the computation logic. Common

sub-expressions can be computed once and later reused, reducing computation [257].

Expression Inlining involves moving the operations of the called function into the

body of the calling function, eliminating function call overheads such as stack operations

at the expense of increased instruction cache load [143].

Buffer Reuse: Some memory buffers can be re-used. For example, the same memory

area can be used for input and output of a DL operator, provided no other operators

depend on the input further within the data-flow cycle. As this is a compile-time

optimisation, complex memory planning algorithms can be used [155].
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2.5.4 Deep Learning Compiler Backend

The DL compiler backend is a set of components responsible for optimising and lowering

the DL model representation closer to the intended target-device implementation, often

leveraging generic compilers such as GCC [311], LLVM [172] or NVCC [225] for the

executable binary generation. Once the model is ingested by the DL compiler and the

HLIR optimisations are applied, the resultant IR is lowered to Low-Level Intermediate

Representation (LLIR). The LLIR facilitates optimisation of individual operators and

model sub-graphs (if fused), transforming the computationally-invariant linear algebra

representation into tensor programs. The DL compiler backends commonly rely on

existing compiler tool-chains (LLVM, NVCC) for compilation-proper, to take advantage

of general-purpose code optimisations. DL compilers can also generate custom low-level

code (by progressively transforming the LLIR) and optimisation passes, to leverage

domain-specific knowledge in DL models and processors [184].

2.5.4.1 Low-level Intermediate Representation (LLIR)

// Matrix-matrix multiplication (GEMM)
// C = output tensor, A & B = input tensors
for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {
for (k = 0; k < K; k++) {

C[n][m] = C[n][m] + (A[n][k] * B[k][m])
}

}
}

Listing 2.3: GEMM loop nest example

The unique LLIRs support code transformations under the compiler’s purview (for

example, support for a subset of accelerators or specific optimisations requiring

support within the IR). At the same time, granularity of LLIRs must ensure hardware

characteristics (for example, cache, memory layout, scheduling patterns) information
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can be represented, yet also be generic enough to convert a substantial library of DL

operators from linear algebra towards their compute representation for specific target-

devices. A common representation of operators such as Convolution involves a set of

loop nests, that execute one or more arithmetic operations within the innermost loop -

as shown in Listing 2.3. Especially in the case of multi-core processors, the LLIR should

support generating high-performance tensor programs that leverage parallelisation,

taking advantage of multiple cores and vector instructions, as well as enable optimisation

of tensor programs in terms of data storage, reuse and locality, since memory accesses are

orders of magnitude slower than arithmetic operations [118], for example, through loop

tiling [210]. Broadly, DL compiler LLIRs can be grouped into the following categories:

Polyhedral-based LLIRs transform loop nests based on the Polyhedral model [76]

- a mathematical framework that represents loops as polyhedra, which determine data

dependencies between compute statements contained within loop bodies. The Polyhedral

model transforms loop variables (tensor indices) linearly, to reorganise loop nests towards

some objective, given a set of data dependency constraints. The loop nest generated

when HLIR is lowered to a LLIR is referred to as the initial schedule. Each polyhedral

transformation generates a new schedule that represents the transformation, where after

several transformations, the final schedule is produced. One of the major use-cases of

the polyhedral representation are the loop parallelisation, cache-locality and memory

access optimisations [302]. As all transformations within this model are discoverable

via linear programming, the discovery cost is independent of the program complexity.

The Polyhedral model can also optimise programs with cyclic data dependencies (for

example, LSTM cells) due to its initial stage of data dependency and validity analysis,

whilst other LLIRs may struggle to support such scenarios. DL compilers such as TC

[345], PlaidML [374] or Tiramisu [18] support the Polyhedral model within their LLIRs.

Halide/Schedule-based LLIRs: Halide [262, 261] - a Domain Specific Language

(DSL), was initially designed to optimise image processing pipelines, by reorganising
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computation to maximise parallelism and cache locality. As image processing pipelines

and DL tensor arithmetic share many similarities, subsequent Halide LLIR versions were

adapted to support DL compilation [185]. Whilst polyhedral-based LLIRs guarantee

data dependency correctness, they are limited in the scope of supported operations.

Halide-based LLIRs address these limitations by simplifying the representation

of computation via the use of interval (loop iterator extent) arithmetic rather than

polyhedra linear arithmetic, and to further relax expression representation and increase

versatility, propose the concept of decoupled compute and schedule10. Each schedule

is a series of primitives such as tile, vectorise or parallel that determine how the loop

nest should be transformed and which portion of computation should be parallelised or

computed using SIMD/SIMT instructions. Whilst more versatile and easily-applicable

to DL tensor program compilation, Halide-based LLIRs lack correctness guarantees and

require the DL engineer to produce tensor program schedules for each target-device.

Halide-based scheduling is partially adopted in the TVM DL compiler [39].

Composite / Custom LLIRs Some projects (for example, TVM) combine

Polyhedral and Halide-based LLIRs to increase schedule specification flexibility for

DL tensor operators. Other DL compilers implement completely custom approaches, not

relying upon Halide or the Polyhedral model, including the HLO IR used in Tensorflow

XLA [176] or Glow [278], with its strongly typed LLIR. Standalone Intel nGraph [58]

utilises a combined HLIR and LLIR to ingest DL model definitions and transform them

into calls to high-performance DL operator implementations within libraries such as

Nvidia cuDNN [232] or Intel’s oneDNN [47]. The choice of the LLIR largely determines

the trade-off between low-level optimisations, IR expressivity, difficulty of program

development and the level of support for DL operators and target devices.

10The compute defines the logical algorithm, whilst schedule determines where and how the compute
will be executed on the device (for example, in what order an by how many threads)
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2.5.5 Low-level Optimisations

The backend component of a DL compiler applies low-level optimisations by transforming

the LLIR, whilst managing the trade-off between computation parallelism, data locality

and computation redundancy. Low-level optimisations navigate this trade-off space

to discover LLIR transformations that produce high-performance tensor programs.

Prominent examples of low-level DL compiler optimisations include:

2.5.5.1 Operator Stacking

Notably adopted in Glow [278], operator stacking combines subsequent operators that

perform element-wise operations (for example, addition or multiplication), such that

they are computed within the same memory location during each loop iteration. For

example, when Multiply directly follows Add, their sequential computation requires

the CPU/GPU to load intermediate values into memory each time, invalidating caches.

Operator stacking optimises data locality by removing intermediate stages, and while

similar to operator fusion, it does not require bespoke schedules for resultant operators.

2.5.5.2 Loop optimisations

Loop optimisations are loop nest transformations that modify data access patterns,

aligning them towards better cache, memory and core/thread use, leveraging specific

parallelism patterns of the target-device. This improves data locality, reduces cache

invalidation and thus computation latency. In Halide-based DL compilers, loop

optimisations are usually implemented as schedule primitives, whilst Polyhedral LLIRs

naturally arrive at equivalent loop nests as a result of affine transformations.

Loop permutation: Also referred to as loop reordering or loop interchange, loop

permutation is an optimisation where the order of inner and outer loops within loop

nests is permuted [206]. This optimisation is often selectively applied to better match
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Original loop nest
for (a = 0; a < M; a++) {

for (b = 0; b < N; b++) {
W[a][b] = X[a][b] + Z[a][b]

}
}

Transformed loop nest
for (a = 0; a < N; a++) {

for (b = 0; b < M; b++) {
W[a][b] = X[a][b] + Z[a][b]

}
}

Listing 2.4: Loop permutation example

Unfused loops
// Loop A = matrix-vector multiplication
for (a = 0; a < N; a++) {

for (b = 0; b < N; b++) {
X[a][b] = Y[a][b] * Z[b]

}
}
// Loop B = addition
for (a = 0; a < N; a++) {

for (b = 0; b < N; b++) {
W[a][b] = X[a][b] + Z[a][b]

}
}

Fused loop
// Fused Loop AB
for (a = 0; a < N; a++) {

for (b = 0; b < N; b++) {
X[a][b] = Y[a][b] * Z[a][b]
W[a][b] = X[a][b] + Z[a][b]

}
}

Listing 2.5: Loop fusion example

Original loop nest
for (a = 0; a < M; a++) {

W[a] = X[a] + Z[a]
}

Transformed loop nest
// (K: unroll factor = 3)
for (a = 0; a < M; a += K) {

W[a] = X[a] + Z[a]
W[a] = X[a + 1] + Z[a + 1]
W[a] = X[a + 2] + Z[a + 2]

}

Listing 2.6: Loop unrolling example

Original loop nest
for (a = 0; a < M; a++) {

W[a] = X[a] + Z[a]
}

Transformed loop nests
// (K: spliting factor = 2)
for (a = 0; a < M / K; a++) {

W[a] = X[a] + Z[a]
}
for (b = M / K; b < M; b++) {

W[b] = X[b] + Z[b]
}

Listing 2.7: Loop splitting example
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the cache and register patterns of the target-device, reducing cache invalidation and

promoting data locality. Listing 2.4 depicts an example of loop permutation.

Loop Fusion is a data locality optimisation that fuses two or more loops, as long

as they share extent boundaries by combining their loop bodies together. Listing 2.5

depicts an example of loop fusion. Halide-based TVM [39] utilises schedule primitives

for loop fusion, while Tiramisu [18] or PlaidML [374] rely on polyhedral transformations.

FusionStitching [388] utilises pre-defined computation patterns and implements fusion

based on predicted performance potential (via a cost model).

Loop splitting: During loop splitting, a loop is split into K loops, where each

operates on a portion of the original data [34, 74]. This transformation optimises the

loop nest towards data parallelism, where each of the loops may be executed by a

separate thread, better leveraging multi-core architectures, as well as enabling other

optimisations such as vectorisation. Listing 2.7 depicts an example of loop splitting.

Loop unrolling is a loop nest transformation where the loop body is repeated K

times, whilst loop extent is modified to iterate in K increments, reducing total number

of iterations necessary [154, 289]. Loop unrolling reduces computation associated with

loop condition checks and facilitates the compiler to introduce aggressive instruction

parallelism optimisations, leveraging processor instruction pipelines [62, 250].

Original loop nest
for (a = 0; a < N; a++) {

for (b = 0; b < N; b++) {
W[a] = X[a][b] * Z[b]

}
}

Transformed loop nest
// (K: tiling factor = 2)
// Producing <2x2> tiles
for (a = 0; a < N; a += K) {

for (b = 0; b < N; b += K) {
for (c = a; c < min(a + K, N); c++) {

for (d = b; d < min(b + K, N); d++) {
W[c] = X[c][d] * Z[d]

}
}

}
}

Listing 2.8: Loop tiling example
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Loop tiling, sometimes referred to as loop blocking, exploits locality of data accesses

in loops by reorganising loop nests to access data in chunks/blocks, also referred to

as tiles [359]. Loop tiling transforms a loop nest into an inner (intra-tile) and outer

(inter-tile) loop, where the inner loop iterates over a single tile. Tile size is adjusted to

better match the cache hierarchy available on the target-device. Multi-level tiling can

improve access to multiple levels of caches and the DRAM memory for data locality [246].

Listing 2.8 depicts an example of loop tiling with the tiling factor of two, producing

2×2 tiles. The tiling factor decides the tile size and is chosen based on cache size /

organisation in the target-device, often determined via auto-tuning.

Sliding windows: The default method of computation with multiple sequential

loops containing data dependent operations is to perform computation breadth-first and

element-wise, initially performing the first operation across all elements of the tensor

and only then performing the following operation, requiring intermediate results storage.

Thus, each operation can be fully parallelised, provided there are sufficient compute

resources (for example, threads), however, reducing data locality and register/cache

reuse. Alternatively, the loops can be fused to combine the two operations within a single

loop body, increasing data reuse, however, reducing data locality as the data necessary

for both operations may not fit within low-level caches, invalidate them frequently.

Sliding windows computes intermediate values as needed (similar to loop fusion), yet

also retains them until no longer needed, increasing possibilities for data reuse. Most

notably, the sliding windows is used in the Halide DL compiler [262].

2.5.5.3 Hardware-dependent Optimisations (HDOs)

During Hardware-Dependent Optimisationss (HDOs), the DL compiler modifies

implementations of tensor operators based on target-device features and domain

knowledge (for example, high-level compute definitions of operators). Alternatively, the

DL compiler may leverage existing compiler stacks such as LLVM, to perform HDOs such
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Figure 2.20: Different parallelisation schemes enabled by loop nest transformations

as vectorisation. HDOs typically make use of device parallelism capabilities to maximally

utilise resources and improve program execution latency. Many of the aforementioned

loop optimisations (for example, tiling) improve data locality, but also facilitate other,

parallelism-focused optimisations. During HDOs, the trade-offs between data locality,

reuse and parallelism, must be carefully balanced to produce high-performance tensor

program implementations. Following, several HDOs are described:

Parallelisation is an optimisation used by DL compilers to improve runtime

performance of tensor programs, by exploiting features of modern CPUs and GPUs such

as: multi/hyper-threading, thousands of primitive cores and complex thread hierarchies

[154]. Halide [262] and TVM [39] both utilise schedule primitives such as parallel, to

recognise computation patterns that can be split across multiple threads of the CPU, and

automatically perform loop splitting or tiling to assign threads to the blocked loops, while

specific loop nest levels are assigned to GPU thread blocks and threads using the bind

schedule primitive. Stripe [374], the LLIR used by the PlaidML introduces a polyhedral
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block, which recognises opportunities for thread-level parallelisation within the loop

nest levels and assigns threads to appropriate loop extent portions after polyhedral

transformations. Figure 2.20 depicts different approaches to parallelisation of the loop

nest at a single operator level.

Original loop nest
// W, X, Y, Z are vectors
// containing 16x float32 values
for (a = 0; a < N; a++) {

W[a] = X[a] * Y[a] + Z[a]
}

Vectorised loop nest
// Using Intel's AVX-512 intrinsics
W = _mm512_fmadd_ps(X, Y, Z);

Listing 2.9: Vectorisation example

Vectorisation: SIMD [78, 13] vector units and their associated instruction sets

enable one-shot arithmetic on vectors rather than scalars, which can be advantageous in

highly data-parallel DL tensor computations. DL compilers replace loops with extents

of size N with singular vector instructions that support vector operands of size ≤ N

[171, 25] on a given target-device. Listing 2.9 depicts an example of vectorisation using

Intel’s intrinsic11 C API functions, compatible with the AVX instruction set [195, 46].

Alternatively, the DL compiler can rely on third-party toolchains such as LLVM [172]

to detect computation patterns susceptible to vectorisation [270], with the Glow [278]

DL compiler being a prominent example such an approach.

Tensorisation and Hardware Intrinsics: To leverage processing elements such

as Nvidia GPU tensor cores [203] during optimisations, DL compilers must support

embedding of device-specific instructions within operator loop nests - hardware intrinsics.

TVM [39] solves this problem using tensorisation (via the tensorize schedule primitive),

which separates the intrinsic function bahaviour declaration from the mapping rule

that determines how the call to intrinsic functions should be lowered together with the

11Intrinsic functions are function calls of which the DL compiler has internal knowledge, often used
to provide parallelisation or vectorisation functionality given specific target-device architecture support
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tensor program implementation. The tensorise primitive also facilitates embedding

micro-kernels within tensor programs to improve their performance, for example, by

introducing quantisation micro-kernels [108] during LLIR transformations.

External tensor algebra libraries such as cuDNN [232] or Intel oneDNN [47],

contain high-performance implementations for different combinations of processors and

tensor operator variants. DL compilers such as TVM can automatically link calls

to these libraries within the compiled tensor program. For example, when compiling

a specific variant of the Convolution operator, TVM can link to cuDNN and take

advantage of a high-performance matrix-multiply routine dedicated for a specific GPU

[39]. However, DL compilers have no means to inspect, analyse or further optimise

such external routines, which can sometimes degrade runtime performance compared to

code generated directly via the DL compiler, or obtained through auto-tuning. To take

advantage of these routines, the DL compiler must ensure data layouts and operand

shapes match the library API specifications, oftentimes prohibiting the compiler from

applying other optimisations such as operator fusion.

Memory-related optimisations: Before the DL tensor programs can access the

tensor data, an appropriate amount of DRAM memory must be allocated ahead of the

program launch. Accelerators such as GPUs also contain multiple types and levels of

memory and cache, including fast shared memory space or thread-local memory space

that is slower but has a larger capacity [207, 379]. Ability to effectively access allocated

memory can speed up tensor program computation on CPUs and GPUs [92, 312, 103].

As such, some DL compilers introduce separate memory related optimisations, such as

the explicit memory scopes implemented as schedule primitives in TVM, which can pin

select compute expressions to shared or local memory spaces, inserting specific memory

allocation instructions within the generated tensor program [184].

Access to DRAM memory during cache misses can be substantially more time and

energy consuming than singular arithmetic instruction executions [118]. As such, careful
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synchronisation of threads and their memory accesses must be considered to achieve high

program performance, especially when considering memory shared amongst multiple

threads. TVM addresses this by introducing virtual threads and associated multi-level

thread hierarchy as a form of a schedule primitive [201, 39]. Once lowered during

LLIR transformations, memory barriers and thread control statements are introduced

to ensure synchronisation of threads and interleaving of shared memory accesses, hiding

the memory access latency.

2.5.6 Code Generation

Once all low-level optimisations have been applied, the LLIR is lowered towards the

target-device, either via conventional compilers (for example, LLVM [172]), or by

generating binaries directly within the DL compiler. Lowering using external compilers

enables generic code optimisations to be applied to the already domain-optimised

tensor operator implementation, further improving performance. The result of the

code generation stage produces several artefacts. Firstly, the optimised model graph

is produced, often in human-readable format such as JSON. IEs follow this structure

and map high-performance operator implementations to the individual nodes within

the model DAG during inference. This artefact also commonly contains references to

model data (for example, weights), encoded as tensors. Secondly, compiled operator

implementations are produced, usually in the form of individual binary files or static

library bundles, that enable various runtimes to call the exposed program interfaces

during model execution.

83



Chapter 2. Background and Related Work

1

2
3

5
4

6

DL Model

Cost Model

Search
Algorithm

Schedule Parameter Space 

Schedule Generator

Target-device 
(CPU, GPU)

Measurement Infrastructure

Te
ns

or
 O

pe
ra

to
r E

xt
ra

ct
or

5 4 3 2 1

Tuning Task Queue

C
os

t m
od

el
 fe

ed
ba

ck

Figure 2.21: Components and operation of a typical DL auto-tuner

2.6 Deep Learning Auto-Tuning & Autoscheduling

2.6.1 Overview

As outlined in Section 2.3.2.7, manual engineering and optimisation of DL model tensor

programs is extremely challenging considering the multitude of DL models, operator

shapes and varied characteristics of target-devices. To help alleviate this problem,

DL compilers facilitate applying high and low-level optimisations such as loop nest

transformations to DL models during compilation.

There are millions of potential loop nest transformations (i.e. schedules) for a single

unique tensor operator (see Section 2.5.5), where only a small subset is computationally

valid, and an even smaller subset exhibits low latency on the specific target-device

[40, 8, 183]. For example, within the schedule spaces produced by TVM [39], there
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Table 2.2: Characterisation of prominent DL compiler auto-tuners and autoschedulers

Auto-tuner Compiler Scheduling Cost Model Search Device

AutoTVM [40] TVM Templates
Gradient
Boosting,
TreeGRU

Simulated
Annealing CPU,GPU

Chameleon [8] TVM Templates Gradient
Boosting

Reinforcement
Learning GPU

AdaTune [183] TVM Templates Random Forest Simulated
Annealing CPU,GPU

OneShot Tuner [283] TVM Templates Transformer N/A CPU,GPU

DynaTune [377] TVM Templates Gradient
Boosting

Simulated
Annealing CPU,GPU

ALT [373] TVM Templates Gradient
Boosting

Active
Learning GPU

NoSE [90] TVM Templates K-Nearest
Neighbour Evolutionary GPU

Transfer-Tuning [93] TVM Custom
Templates N/A N/A CPU

Ansor [385] TVM Hybrid Gradient
Boosting Evolutionary CPU,GPU

Moses [383] TVM Hybrid Transferrable Evolutionary GPU

FamilySeer [378] TVM Hybrid Multiple Gradient
Boosting models

Gradient
Descent CPU,GPU

FlexTensor [386] TVM Generative Reinforcement
Learning

Heuristic,
Simulated
Annealing

CPU,GPU

DietCode [384] TVM Custom Linear
Regression Decision Tree GPU

Bolt [364] TVM Custom N/A Custom GPU
1st Gen
Autoscheduler [215] Halide Generative N/A Brute-force CPU,GPU

2nd Gen
Autoscheduler [3] Halide Generative FC ANN +

Embeddings Tree Search CPU,GPU

3rd Gen
Autoscheduler [15] Halide Generative FC ANN +

Embeddings Beam Search CPU,GPU

ProTuner [105] Halide Generative FC ANN +
Embeddings

Monte Carlo
Tree Search,
Beam Search

CPU

TC Auto-tuner [345] TC Custom N/A Genetic GPU
PET [349] Multiple Custom N/A Genetic GPU

85



Chapter 2. Background and Related Work

are over 10.45m unique tensor program schedules for a 2D Convolution with input

shape of 1×512×7×7 and kernel shape of 3×3. Each such candidate tensor program

exhibits different performance characteristic (execution latency, target-device utilisation),

however, these characteristics are unknown until the program is compiled and executed.

Manually determining an optimal schedule for a tensor operator and target-device

combination is challenging as it requires in-depth understanding of the operator and

target-device characteristics, and can only be guided heuristically.

In response to these challenges, DL auto-tuners - optimisation frameworks that

automate search over the enormous schedule space of candidate tensor programs, started

to gain prominence. A DL auto-tuner automatically determines a near-optimal schedule

for a given tensor program by parameterising a schedule template (auto-tuning) or

generating the schedule based on different rules and steps (autoscheduling). An auto-

tuner traverses the schedule space using cost models and search algorithms, generates

and compiles promising tensor programs, and measures their latency on target-device to

then utilise these measurement results to further guide schedule search. During search,

thousands of candidate tensor programs are evaluated on target-device for every unique

tensor operator, causing DL auto-tuning to be a lengthy process. Figure 2.21 depicts a

high-level design of a DL auto-tuner while Table 2.2 depicts their characterisation.

As DL auto-tuners substantially improve inference speed, there is a market for

automating DL model optimisations. Both established DL MLaaS providers such as

Amazon AWS [296], Alibaba [102], Huawei [128], and startup companies such as Ampere

Computing [44], NeuralMagic [136] or OctoML [241] are now providing DL model

optimisation via auto-tuning as part of their Cloud MLaaS service.

2.6.2 DL Auto-tuner Operation and Components

DL auto-tuners are composed of several modules that co-operate with one another to

optimise tensor operators towards target-devices. Auto-tuners solve an optimisation
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problem, where oi ∈ O is a set of tensor operators to be optimised and To a set of

candidate tensor programs for operator o. The problem can be formulated as follows:

argmin
t∈To

m(c(o, t)) (2.48)

where c() represents the compilation process for a given operator and its unique

tensor program, and m() is the program latency measurement on the target-device.

2.6.2.1 Schedules and Schedule Parameter Space

The space of all potential tensor programs (schedules) To, for a tensor operator o ∈ O,

is different across DL compilers and can be different across DL auto-tuners utilising the

same DL compiler. The schedule space typically consists of schedule parameters which

configure a schedule that constructs a tensor program from a tensor operator expression,

where a schedule is a set of transformation steps.

The TVM [39] DL compiler introduces the concept of schedule templates (explained

in more detail in Section 2.6.3.1), which provide a set of steps such as tile, parallelise,

split or reorder, that modify the program loop nest in some way, enabling modular

application of low-level DL compiler optimisations as explained in Section 2.5.5. In

schedule templates, parameters configure schedule steps to modify transformation effects

such as the number of loop nest tiles (see Table F.1 in Appendix F).

DL auto-tuners such as the AutoTVM [40], rely on schedule templates to construct a

space of all possible schedule parameters, and search this space to discover configurations

that produce high-performance schedules. Different DL auto-tuners rely on different

schedule spaces and different parameter representations. For example, Ansor [385],

formulates each schedule as a series of incremental generation rules that construct a

tensor program step by step, without the use of templates.
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2.6.2.2 Cost Models

As outlined in Section 2.6.1, schedule spaces for even rudimentary tensor operators can

be very large (millions to billions of unique schedules). To feasibly traverse these spaces

and discover high-performance schedules, DL auto-tuners often utilise cost models that

propose potentially optimal schedules without the need to perform brute-force traversal.

Guided by latency measurements, cost models propose progressively better candidate

schedules - a concept referred to as "learning to optimise" [40].

Different cost models have been used by different DL auto-tuners, such as Gradient

Boosted Trees (GBT) [87] leveraging the XGBoost library [38] or TreeGRU [325], used

within AutoTVM [40, 39] and Ansor [385]. AdaTune [183] replaces the GBT-based

model in the AutoTVM infrastructure with a Random Forest (RF) regression model,

whilst the Halide autoscheduler [215, 3] utilises a cost model based ANN embeddings

to predict schedule performance given its characteristics and target-device features as

inputs, further extended by [15] to include more architectural features as model inputs.

FlexTensor [386] utilises a Q-Learning RL cost model [352], whilst DeepCuts [151] or

DietCode [384] rely on the Roofline model [355] (see Section 2.4) and its derivatives, to

estimate schedule or sub-schedule CI and prune inefficient ones.

Alternatively, the user can specify their own cost model that is best suited for a

given DL auto-tuning scenario - an approach chosen by the ATF auto-tuner [266], or

to create a transferable cost models that work across devices or operators, leveraging

transfer learning (Transfer-tuning [93]), schedule similarity (FamilySeer [378]), or the

Lottery Ticket Hypothesis approach [86] (Moses [383]).

2.6.2.3 Search Algorithms

DL auto-tuners utilise search algorithms to traverse the schedule space and propose

program candidates, guided by cost-models as their energy functions.
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AutoTVM [40] utilises Simulated Annealing (SA) [158] in combination with the

cost model to traverse the space towards a global optimum, by accepting sub-optimal

solutions with a decreasing probability, which avoids local minima. FlexTensor [386]

leverages an RL-based search strategy, while Chameleon [8] replaces SA with an RL-

based Proximal Policy Optimisation (PPO) [290] optimiser and a K-means clustering

[110] adaptive sampler, proactively filtering candidates ahead of measurement.

AdaTune [183], modifies the SA-based search by dynamically balancing exploration

vs. exploitation decisions during search, using a contextual, tensor operator-dependent

factor, while AutoTVM [40] utilises a fixed hyperparameter for this purpose. AdaTune’s

[183] and Chameleon’s [8] filtering and sampling also inspired the design of ALT [373],

which balances candidate diversity and performance uncertainty.

The NoSE auto-tuner [90] proposes a unified Evolutionary search strategy and

a K-Nearest-Neighbour [11] regression model to select tensor programs with highest

achieved FLOPs, whilst ProTuner [105] leverages Monte Carlo Tree Search [32] to

traverse the search space. Unified algorithm-model search is also explored in [350],

whilst Evolutionary search is used by the Ansor [385] autoscheduler. The PET auto-

tuner [349] utilises a multi-linear schedule mutator that modifies existing loop nest

transformations and corrects ones with broken functional equivalency, ensuring schedule

coherence. The Halide autoschedulers [15, 3, 215], utilise Beam search [73] and Tree

Search with variations of hierarchical sampling or candidate pruning, based on the

cost model predictions. Similarly to AutoTVM, the Tensor Comprehensions [345] DL

compiler auto-tuner utilises Genetic Algorithm (GA) to traverse the candidate space.

Non-DL kernel auto-tuners such as the Kernel Tuner [343] have also been proposed.

Kernel Tuner implements multiple search strategies such as SA and GA, Basin Hopping

[348], Differential Evolution [315], Particle Swarm Optimisation [153] and others to

optimise generic kernels / programs. In ATF [266] kernel auto-tuner, the auto-tuner

functionality is determined by the user, with ATF providing the necessary infrastructure.
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Figure 2.22: DL Auto-tuner Measurement Infrastructure

2.6.2.4 Measurement Infrastructure

Majority of DL auto-tuners leverage a mixture of online-trained cost models, search

algorithms and tensor program latency measurements performed on the target-device

during auto-tuning, balancing optimisation speed and quality of discovered schedules.

Several approaches claim that avoiding (online) measurements and relying purely on a

priori trained (offline) cost models is sufficient to produce high-quality schedules [284,

313, 306]. However, offline cost models require training datasets containing millions of

pre-measured schedule examples [313], that cover a limited subset of tensor operators

and target-devices, necessitating frequent re-training when any of these factors change.

As such, tensor program latency measurements remain crucial for DL auto-tuning.
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The candidate measurement infrastructure cross-cuts the auto-tuner and DL compiler

component domains as it relies on the compiler to generate proposed tensor programs,

and relies on execution runtimes to execute them, also often provided by DL compilers.

A notable measurement infrastructure centers around the TVM DL compiler, utilised by

auto-tuners such as AutoTVM [40], Chameleon [8], AdaTune [183], FlexTensor [386] or

Ansor [385]. Similarly, auto-tuners derived from the Halide [262] DL compiler, leverage

a common measurement infrastructure [15, 3, 215].

Despite minor differences, majority of DL auto-tuners utilise similar measurement

infrastructures, whereby the auto-tuner provides a batch of candidate schedules that are

compiled by the DL compiler and measured in isolation (serially) on the target-device,

producing a series of measurements. These results are fed back to the auto-tuner as

online training samples, for example, to update the cost model.

To measure candidates on variety of target-devices, auto-tuners such as AutoTVM

[40] execute them remotely via Remote Procedure Call (RPC), leveraging small, self-

contained execution runtimes available within the TVM [80] codebase. In the TVM

compiler ecosystem, RPC enables multi-target-device measurements, where separate

RPC servers are instantiated per remote or local device. For example, given two remote

platforms, each containing four GPUs, the auto-tuner can measure up to eight candidate

tensor programs simultaneously and maintain measurement isolation. Figure 2.22 depicts

a host-local, single-device candidate measurement infrastructure.

2.6.2.5 Anatomy of a Measurement

As depicted in Figure 2.22, during measurement, each candidate tensor program is

executed more than once to measure latency accurately. More specifically, a batch

of candidate schedules S is compiled using the DL compiler12 to produce a batch of

compiled tensor programs C. The batch C is transferred to a measurement queue, where

12Usually in parallel, for example, by pinning compilation processes to individual CPU cores
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each candidate is executed serially for measurement, producing a batch of measurements

M that are fed back to the auto-tuner upon batch completion.

During each candidate measurement, the program is executed N×R times, where N

is the number of executions within each repeat round R. Execution latency is measured

using start (st) and end (et) timestamps collected at the CPU process level, at the start

and end of each repeat r ∈ R, with a single candidate-wide average calculated across

R repeats as et−st
N

, producing measurement mi ∈M of candidate schedule si. Not all

candidate compilations and measurements succeed, primarily due to invalid schedules,

Out-of-memory (OOM) errors or timeouts13, with any failed candidates reported to the

auto-tuner as measurement errors.

2.6.3 DL Auto-tuner Types

Whilst DL auto-tuners utilise different search strategies, cost models and other

components (for example, samplers or filters), fundamentally they can be categorised by

their methods for generating schedules from tensor operator expressions.

2.6.3.1 Template-based Auto-tuning

In template-based auto-tuners such as AutoTVM [40], schedule templates are used to

construct the candidate space. For each tensor operator, a series of loop nest optimisation

transformations are applied (for example, reordering, splitting, tiling), where a template

is a pre-defined series of transformations with placeholder parameters that configure

the transformation. For example, given a matrix multiplication operator, its schedule

template describes that it can be implemented as a loop nest, transformed by tiling and

reordering consecutively. Parameters within the template correspond to values used

within each transformation, for example, the loop extents within tiling iterations or the

axis over which to reorder the computation. A candidate schedule space consists of all
13OOMs and timeouts occur when valid schedules breach target-device capability limits
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possible combinations of parameter values applicable to the given template. In template-

based auto-tuning, the user must select a pre-defined template for a given tensor operator

and target-device pair (for example, Convolution or FC towards CUDA-enabled GPUs),

or develop a bespoke template themselves for more esoteric combinations.

Multiple DL auto-tuners rely on schedule templates, such as: AutoTVM [40],

Chameleon [8], AdaTune [183], NoSE [90], CNN tuner for integrated GPUs [350],

ALT [373], DynaTune [377] and OneShot Tuner [283]. Bolt [364] has a different approach

to templated auto-tuning by leveraging parameterised acceleration libraries such as

Nvidia CUTLASS [227], where it discovers optimal library call parameters to generate

function calls for different combinations of tensor operators and Nvidia GPUs.

2.6.3.2 Generative Autoscheduling

Autoscheduling is an alternative approach to template-based auto-tuning, where optimal

schedules are generated by applying the different transformations and their parameters

based on pre-defined rules, without the need for templates. This approach is more

opinionated compared to template-based auto-tuning as it relies on a priori rules

defined by the autoscheduler designer, where rules are related to different tensor

operator and target-device combinations. Notably, this approach has been used

in the first generation Halide autoscheduler [215] for image processing pipelines.

FlexTensor [386] also demonstrated generative autoscheduling as a viable method

for optimising DL workloads, leveraging the TVM scheduling infrastructure to apply

schedule transformations iteratively, and build up high-performance schedules.

2.6.3.3 Hybrid and Other Approaches

Recent works hybridise generative and template-based auto-tuning by initially generating

a set of schedules using rules related to tensor operators and device classes, followed by

automated schedule parameterisation to fine-tune them. Hybrid approaches provide the
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best of both worlds in flexibility and versatility, however, increase the schedule space

size (including invalid schedules), necessitating more complex search strategies. Notable

hybrid autoschedulers are: the second and third generation Halide autoschedulers [3,

15], ProTuner [105] for Halide, and the Ansor [385] autoscheduler for TVM, while

PET [349] performs hybridised autoscheduling and fine-tuning without an external DL

compiler. Other projects perform auto-tuning as part of compilation rather than as

a separate process, where the TC auto-tuner [345] maps a pre-defined CUDA kernel

to a tensor comprehension (see paper for details), while TensorFlow XLA [176] selects

best-performing cuDNN [232] or cuBLAS [230] kernels during compilation.

2.7 Chapter Summary

This Chapter discussed Machine Learning (ML), Deep Learning (DL), Deep Neural

Networks (DNNs) and their layers, DL systems, including DL models, datasets,

frameworks, inference engines, acceleration libraries and hardware that performs DL

computation. Furthermore, topics such as parallelism in DL computation, different

phases of the DL model life cycle and methods for characterisation of DL models and

high-performance hardware were also discussed. The Chapter then focused on DL

compilers and their relationship with achieving fast DL inference via both high and

low-level optimisations, before diving into DL compiler auto-tuning - an automated

method for discovering fast tensor programs that implement DL model computation.

DL auto-tuners and autoschedulers deliver promising tensor program and end-to-end

DL model inference performance improvements, by leveraging plethora of advanced

cost models, search algorithms and online target-device measurements. Design and

implementation of DL auto-tuners often revolves around specific DL compilers, to take

advantage of existing optimisation primitives, tensor program scheduling methodologies

and program compilation capabilities.
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However, the reliance of DL auto-tuners on combined cost model and measurement-

based candidate tensor program evaluations, causes the process to become computa-

tionally expensive, as indicated in prior work [183, 8, 283, 386, 385, 377, 93, 383]. This

thesis focuses on analysing, evaluating and reducing the high computational, time and

energy costs associated with DL auto-tuning and autoscheduling, to reduce the barrier

to entry for automated DL optimisation via DL compilers for DL practitioners.

The following Chapter explores and quantifies the costs associated with applying

both high and low-level optimisations to tensor programs and model architectures. It

also identifies specific inefficiencies within DL auto-tuner designs, which when rectified,

could significantly reduce DL optimisation operational costs.
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Chapter 3

Cost of Deep Learning Optimisation

Optimising DL models using auto-tuning and autoscheduling is typically a prolonged

process that consumes a lot of energy and isolates computational resources. Even in

scenarios of optimising relatively small models such as ResNet-18 [113], it can take

more than ten hours to achieve sizeable latency improvements when auto-tuning them

towards a single target-device such as a unique Nvidia GPU [8, 39]. The extended

time and energy costs stem from the heavy load imposed on the platform CPU and

under-utilisation of the target-device (GPU) for prolonged periods of time during auto-

tuning. Initially, the CPU is engaged with traversing the large candidate schedule space,

leveraging cost models and search algorithms to discover template parameterisations

(auto-tuning) or applying scheduling rules and steps (autoscheduling) to generate high-

performance tensor program candidates. Once a portion of high-performance schedules

are discovered, they must be individually lowered and compiled to programs that can

execute on the target-device. Each compiled tensor program is executed in isolation

on the target-device to ascertain its execution latency reliably. Results of these tensor

program execution latency measurements are then fed back to the cost model to improve

the schedule space traversal in the next search round. The auto-tuning procedure is

described in more detail in Sections 2.6.1 and 2.6.2.4.
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The implementation (schedule) space for each DL tensor operator within a model,

often consists of a large number (> 1011 [386]) of possible schedules, with the high-

performance candidate schedules typically non-linearly distributed across the schedule

space [183, 386, 8, 40]. To achieve significant performance improvement, effective search

strategies propose a subset (typically hundreds to thousands) of schedules with predicted

low-latency potential. Once proposed, their execution latency is measured on the

target-device to ascertain their performance. This, coupled with an increasing number

of DL models containing tens to hundreds of complex operators, causes DL auto-tuning

to engage the host machine and target-device for a prolonged period of time, as it

requires an isolated execution environment to ensure accurate latency measurements.

Furthermore, any modification performed to any of the DL model operators, with respect

to their structure, data layout or algebraic logic, would require for the auto-tuning

process to be repeated, as these modifications invalidate the results of candidate latency

measurements for the particular operator and target-device combination.

DL optimisation is beginning to become adopted by large DL Cloud providers within

their MLaaS deployments, enabling automatic optimisation of their users’ DL models

via services such as Amazon SageMaker Neo [296], Huawei Tensor Boost Engine [128] or

Alibaba MNN [148]. The cost concerns associated with local, small-scale auto-tuning of

a few models across several target-devices are inherently amplified when considering a

Cloud setting at large scale. The issues of high host platform load, low target-device

utilisation and low system availability caused by device isolation, cause reduced system

throughput, increasing operational costs. Whilst intuitively assumed, the costs of DL

auto-tuning have not yet been comprehensively studied. The objective of this Chapter

is to provide a thorough analysis of DL optimisation (particularly auto-tuning) time and

energy costs, and discover phenomena that when adequately exploited, could provide

improvements to the cost-efficiency of DL optimisation at small and large scale, reducing

barrier to entry and improving sustainability of DL systems.
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3.1 Study Setup

To analyse the impact of various optimisations on DL model performance (execution

latency) and execution costs on GPUs, and in particular the costs of performing

optimisations, an experimental study was performed, involving several DL models,

frameworks, platforms, high-level optimisations and auto-tuning approaches.

Table 3.1: Details of DL models used during the study

Model Parameters FLOPs Input Size Top-1/5 Acc. Details

MobileNet-V2 [288] 3.4M 314M 1x3x224x224 71.88% / 90.29% Appendix D.4
DenseNet-121 [125] 8M 3B 1x3x224x224 74.65% / 92.17% Appendix D.6
ResNet-18 [113] 11.5M 8B 1x3x224x224 69.76% / 89.08% Appendix D.7
VGG-16 [304] 138.4M 19.6B 1x3x224x224 71.59% / 90.38% Appendix D.8
VGG-19 [304] 143.7M 20B 1x3x224x224 72.38% / 90.88% Appendix D.9

Table 3.2: Details of hardware platforms used during the study

Host Target-device (GPU)
Abrv. CPU DRAM Model Arch. DRAM

A 64-cores 2x Intel Xeon 5218, 2.3Ghz 196GB Nvidia V100 Volta 32GB
B 12-cores Intel i7-8700K, 3.7GHz 16GB Nvidia GTX2080 Turing 8GB
C 24-cores AMD 1920X, 3.5GHz 128GB Nvidia GTX2080 Turing 8GB
D 12-cores Intel i7-6850K, 3.8GHz 32GB Nvidia GTX1080 Pascal 8GB

3.1.1 DL models

The study analyses the cost of optimising prominent CNN models as described in Table

3.1. The studied model architectures range in terms of structure, number of parameters

(3.4m - 143m) and computational complexity (314m - 20b FLOP). Each of the studied

models contained weights trained on the ImageNet dataset [64], acquired from online

repositories and their DL framework implementations [83, 163], as well as models made

available as part of the TVM [39] testing infrastructure. Each of the models receives an

input tensor for inference prediction of shape 1× 3× 224× 224, with tensor layout of

NCHW, and outputs a 1× 1000 tensor containing class predictions. Further information
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about the individual model architectures is provided within Appendices D.4, D.6 - D.9.

During auto-tuning, only tensor operators supported by the available schedule templates

within TVM’s Tensor Operator Inventory (TOPI) were optimised.

3.1.2 Hardware Platforms

During all performed transformations and model optimisations, model compilation was

performed using TVM towards GPUs as the target devices, situated within different

host platforms as described in Table 3.2. The four platforms differ with respect to CPU

compute performance (virtual cores / clock speed), available host DRAM memory and

the compute performance of the GPU target-device.

Table 3.3: Details of middleware and software used during the study

Type Specification Version
Operating System Ubuntu 20.04
GPU Driver / Compute Lib. Nvidia CUDA [231] / Driver (Linux) 11.3.1 / 465.31
DL / Codegen Compiler Apache TVM / LLVM [172] 0.7-dev1 / 11.0
DL Frameworks Pytorch [1] / Apache MXNet [79] 1.6.0 / 1.6.0

3.1.3 Software

Each platform was provisioned with an identical Operating System and necessary

middleware (drivers, compute libraries, compiler and DL frameworks), as described

within Table 3.3. Most recent software versions were used at the time of experimentation.

The TVM [39] DL compiler was selected to perform model compilation and optimisations

due to its versatility, level of support for different DL frameworks and the number of

available high and low-level optimisations (for more information and comparison of DL

compilers, see Table 2.1 within Section 2.5). DL model definitions originated from two

popular frameworks: Pytorch [1] and Apache MXNet [79]. For the purposes of the study,

each of the models was converted from the respective frameworks into the TVM Relay

IR using TVM’s frontend modules for Pytorch and MXNet.
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3.1.4 High-level Optimisations

Once transformed into the TVM Relay IR, the graph optimisation level applied to the DL

model Relay IR was varied from 0 to 4 (all available levels). The optimisations associated

with each level are described in Table E.1 of Appendix E. For more information about the

operations associated with the fundamental high-level optimisation transformations, see

Section 2.5.3. Optimisation levels 0 to 3 do not modify the control flow or computation

logic of the DL model operators, whilst level 4 introduces passes such as FastMath that

may affect the model accuracy as algebraic computation may be selectively approximated.

Other than during experimentation involving varying graph optimisation levels, the

level was affixed to 3 - preserving original model integrity.

3.1.5 Low-level Optimisations - Auto-tuning

Experiments with low-level optimisations performed via auto-tuning involved using

several auto-tuners compatible with the TVM DL compiler, focusing on evaluating

four template-based auto-tuners: Grid Index (GR), Random Index (RD), Genetic

Algorithm (GA) search and AutoTVM (AT), each implemented within the mainline

TVM auto-tuner sub-package AutoTVM [40]. The auto-tuning infrastructure provided

by AutoTVM involves parameterising schedule templates (described in Section 2.6.3.1),

with the schedule template parameters constituting the auto-tuning search space outlined

in Table F.1 of Appendix F. During each auto-tuning experiment, all suitable1 operators

of a DL model are auto-tuned until 500 hardware measurements are performed, with all

other parameters kept to default as per AutoTVM codebase and tutorials [80] at the

time of the study being performed. The GR auto-tuner explores the template parameter

space sequentially, the RD auto-tuner selects parameters from the space at random, the

1Whilst majority of computationally complex operators (for example, Convolutions, FC) are
supported by most auto-tuners, more esoteric operators may lack suitable schedule templates for
the particular device class, disqualifying them from optimisation via template-based auto-tuning.
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GA search auto-tuner leverages a genetic search algorithm to more efficiently explore

the schedule space and finally, the AT auto-tuner leverages a Gradient Boosted Trees

(GBT) cost model and a search method based on SA to find parameters that generate

high-performance schedules - as described in more detail in Sections 2.6.2.2 and 2.6.2.3.

Details on the auto-tuner configurations used during the study can be found in Tables

F.2 - F.5 in Appendix F. During this study, DL auto-tuning was performed locally

whereby the machine executing the optimisation process contained the target-device.

3.1.6 Collected Metrics

The core metrics collected during the study were: inference latency (time taken to

perform single forward pass of the model on a single input sample), energy cost

incurred during inference, the energy costs of performing model transformations from

DL frameworks to Relay IR, high-level optimisations and auto-tuning - measured in

Joules. All measurements were performed in isolation with no other significant processes

executing on the host platform. GPU and CPU energy consumption costs incurred

during experiment computations were collected using a custom profiling suite that

leverages Nvidia’s NVML [234] and the RAPL MSR interfaces for both Intel and AMD-

based platforms [48]. The profiling suite was developed in Python and C++ with Cython

[21] acting as the binding layer, and integrated within the TVM codebase.

3.2 High-level Transformations and Optimisations

3.2.1 The choice of a DL Framework

Each DL Framework has a unique method for specifying the model graph structure.

Whilst tensor operators have equivalent functionality across frameworks such as Pytorch

or Apache MXNet, the IR formats adopted by these frameworks and the ability of the
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DL compiler to ingest these representations into its own IR (for example, Relay in TVM),

may differ across DL frameworks and thus impact performance of the ingested models

when performing inference on the same target-device. At the same time, the energy and

time costs incurred during parsing, ingestion and compilation of DL framework model

representations may differ across frameworks given the same DL compiler.

DenseNet-121
MobileNet-V2

ResNet-18 VGG-19

Model

0

2

4

La
te

nc
y 

(m
s)

MXNet Runtime
Pytorch Runtime

0.0

0.1

0.2

0.3

GP
U 

En
er

gy
 (J

)

MXNet Energy
Pytorch Energy

(a) Inference latency (ms) and GPU energy cost (joules) of
the converted model.

DenseNet-121
MobileNet-V2

ResNet-18 VGG-19

Model

0

1

2

Co
m

pi
la

tio
n 

En
er

gy
 (k

J) MXNet Pytorch

(b) Energy costs (kilojoules) incurred by conversion and
compilation.

Figure 3.1: Conversion of four DL models from Pytorch and MXNet into TVM. Models are compiled
towards the GPU in Platform A with graph optimisation level = 3, and executed for inference.

As depicted in Figure 3.1a, majority of the studied models, when converted from

Pytorch to TVM Relay IR and compiled to the Platform A GPU, perform on average

1.05× better compared to the same models converted from Apache MXNet. These

differences stem from the degree of support within the TVM frontend component for

model conversion from Pytorch and Apache MXNet, including effective mapping to

equivalent tensor operator definitions within the TVM’s Relay IR.

At the same time, ingesting and compiling models originating from Pytorch, incurs

on average 1.11× more energy costs compared to the MXNet models (see Figure 3.1b.

Whilst the TVM frontend is more effective at ingesting Pytorch model graphs compared

to MXNet graphs, and as a result produces slightly faster model implementations, the

careful mapping of more adequate operator definitions in Relay results in increased

energy consumption during compilation. It is important to note the magnitudes of scale
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with respect to these differences in compilation cost and inference cost.

Whilst the compilation cost may be greater for Pytorch-sourced models, doing

so produces slightly faster models that use less energy during inference - an activity

performed in far greater numbers than compilation (up to tens of times for compilation

and thousands or millions for inference). Additionally, an observation can be made

about the strong positive correlation between resultant DL model inference latency and

the energy consumed by the GPU as a result of the associated computation (Pearson:

0.9987). This suggests that energy consumption is a strong indicator of both time

cost and costs stemming from computational complexity of model implementation as a

composite metric, as also observed in prior work [65, 281].

DenseNet-121 VGG-19

Model

0

2

4

6

La
te

nc
y 

(m
s)

Platf: A
Platf: B

Platf: C
Platf: D

0.0

0.1

0.2

0.3

GP
U 

En
er

gy
 (J

)

GPU Energy
Runtime
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Figure 3.2: Conversion of two/four DL models from Pytorch into TVM. Each model is then compiled
towards the GPU target-device in Platforms A, B, C and D with graph optimisation level = 3, and
executed for inference on the respective target-device of each platform.

3.2.2 Impact of the Hardware Platform

Whilst the complexity (measured in FLOPs required to be performed by each tensor

program) of each DL model operator remains largely the same across platforms and

target devices that execute the operator tensor programs, the choice of hardware has an

impact on computational capability requirements and the associated time and energy
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costs when performing these operations. Figures 3.2a and 3.2b depict the effects of

performing framework-to-DL compiler transformations, high-level optimisations (level 3)

and a compilation of two DL models towards GPUs contained within platforms A - D.

The choice of target-device and platform that hosts it, has measurable impact on the

model execution costs, inference performance (latency) and the costs incurred during

model compilation. Notably, it costs 4.16× more energy to compile the DenseNet-121

model towards platforms A and C compared to B and D. At the same time, despite

platform A containing a more modern CPU, with higher number of cores than other

platforms, the compilation under-utilises these cores and wastes energy. Likewise, for

both models, platform C’s GPU consumes less energy during model execution, despite

being identical to that of platform B, which indicates that the CPU may be a bottleneck

in that platform - being a more modern CPU with higher number of cores.

As such, when designing deployment pipelines that involve model transformations,

optimisations and compilation, the DL engineer must consider both the target-device

and the host environment where the model will operate. Much like in the case of

differences between DL frameworks that supply the model definition, it is also necessary

to consider the long-term costs of compilation and model deployment for inference. With

the deployment being a substantially longer endeavour, it may be more cost-efficient

to disregard compilation costs when trade-offs with end-to-end model performance

exist. However, for scenarios such as Neural Architecture Search (NAS) [392, 72],

where thousands of similar ANN architectures are partially trained and evaluated to

determine their suitability and performance, this assumption may no longer hold and

the aforementioned costs may need to be reconsidered when designing such DL pipelines.

3.2.3 Impact of High-level Optimisations

As outlined in Section 2.5.3, high-level optimisations transform the DL model graph

to reduce inference latency. Application of different graph optimisation approaches to
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Figure 3.3: Conversion of three DL models from Pytorch into TVM. Each model is then compiled
towards the GPU target-device in Platform A with varying graph optimisation levels between 0 and 4.
The model is then executed for inference on the target-device.

several DL models was evaluated to understand their impact on the resultant model

performance and inference cost, as well as the cost of applying these optimisations

during compilation. The TVM DL compiler groups high-level optimisations into levels

of optimisation passes (0 to 4) as described within Table E.1 of Appendix E.

As it can be observed in Figure 3.3a, as the optimisation level increases, the

performance of the model improves and its inference energy costs reduce by 25 - 50%.

Achieving this improvement however, incurs increasingly higher compilation costs as

the level increases (by 29 - 60%) as shown in Figure 3.3b. This is intuitive as the

higher optimisation levels perform more sophisticated transformations such as combining

parallel convolution operations, which incurs higher computational cost.

It can also be observed that different models respond differently to graph level

optimisations. For example, applying level 4 graph optimisations, improved inference

latency of VGG-19 by 22.5%, whilst a 50.1% improvement can be observed for DenseNet-

121. This is an example of a relationship between model structure, the number and

complexity of its layers and the effects of applying high-level optimisations. DenseNet-

121 contains 95% less parameters than VGG-19 (8m vs 143m) with 75% less required
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FLOPs to perform a forward pass of the network. However, DenseNet-121 is composed

of 121 complex layers making it more susceptible to optimisations such as operator

fusion than VGG-19, resulting in a more significant, relative performance improvement.

An overarching observation is that applying a progressively more complex model

graph-level optimisations brings substantial performance improvements and execution

cost reductions, however, at a cost of increased energy consumption during model

compilation. It can also be observed that performance gains resulting from these

optimisations do not scale proportionally with the energy consumed to apply them. For

example, DenseNet-121 experiences the largest improvement in execution energy costs

after applying optimisation level 1, incurring a small increase in compilation cost. In

the case of DenseNet-121, pplying further optimisation levels brings negligible inference

cost reduction, with level 4 pass actually increasing the overall execution energy costs of

the model whilst at the same time, doubling the compilation costs.

These non-linear cost vs. benefit differences can, however, be disregarded in cases

where it is known ahead of time that the model will be performing inference for a

prolonged period of time (for example, being deployed in production). Again, in the case

of DenseNet-121, the doubled one-off cost of applying level 4 optimisations, compared to

level 0 is negligible, compared to the nearly halved costs of performing inference using

the optimised model. In other words, it would take just over 1500 inferences using the

optimised model to amortise the costs of graph-level optimisation at level 4, with any

inferences beyond that being 50% more energy efficient.

3.3 Tensor Operator Auto-tuning

As outlined in Section 2.6, DL auto-tuning is an automated method of generating

high-performance tensor program schedules (tensor operator implementations) via an

exploration of the space of all possible program transformations. To determine the
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efficacy and costs associated with performing DL auto-tuning, several DL models were

optimised using four auto-tuners, measuring the resultant model inference latency,

execution energy costs and auto-tuning energy and time costs. Energy measurements

were performed both at the CPU and GPU levels as described in Section 3.1.

3.3.1 Performance and Runtime Energy Costs

It can be observed that auto-tuning significantly reduces inference latency of the DL

model, with some auto-tuners being more effective than others. More sophisticated
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Figure 3.4: Impact of performing auto-tuning using four auto-tuners for two models towards the GPU
in Platform A. Auto-tuning was performed until 500 hardware measurements were performed for each
operator of each of the models. Prior to auto-tuning, level 3 graph optimisations were applied to each
model. Resultant model inference latency is then tested by executing it on the target-device. "No
tuning" corresponds to a model compiled using default schedules for each DL model operator.
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auto-tuners such as GA search or AT were able to improve model latency by 9.22 -

10.35× compared to an un-optimised model relying on default schedules, whilst reducing

execution energy consumption by 1.91 - 9.98×, as shown in Figures 3.4a and 3.4b.

Less sophisticated auto-tuners such as the brute-force GR search or RD search

were less successful compared to their more sophisticated counterparts, however, still

brought significant performance improvements and inference energy cost reductions to

the optimised models. In some instances (GR for VGG-16), they caused a substantial

performance degradation and increase in inference costs. This can be attributed to the

duration of auto-tuning (up to 500 hardware measurements). GR explores the schedule

space sequentially and it may so be that in the case of VGG-16, the first 500 candidate

schedules within the space exhibited very low performance. Considering some of the

most computationally complex operator shapes in VGG-16 are repeating across the

model (see Appendix D.8), finding poorly performing schedules will negatively impact

the overall achieved model inference latency, since an identical, best-found schedule will

be applied to operators of the same input/output shapes.

3.3.2 Costs Across Different Auto-tuners

Much akin to the correlation that exists between DL model latency and its runtime

energy costs, there exists a strong correlation between the overall wall-clock auto-tuning

time and the energy costs incurred during optimisation (Pearson: 0.9880). However, as

shown in Figures 3.4d and 3.4, different auto-tuners exhibit different time and energy

cost patterns for different models. For example, when auto-tuning ResNet-18 with AT

towards platform A, the resultant model exhibited a low inference latency of 0.89ms,

however, the auto-tuning process costed additional 7200 - 8300s and incurred additional

240 - 1800kJ of energy costs compared to the GA search auto-tuner, despite small

relative improvement in achieved model latency. The additional energy costs stem from

the more complex operation of AT compared to the other studied auto-tuners. AT

109



Chapter 3. Cost of Deep Learning Optimisation

must query its cost model and utilise an SA-based search strategy to propose candidate

schedules ready to be measured on the target-device - a much more complex endeavour

compared to a sequential (GR) or random (RD) brute-force methods.

A surprising phenomenon are the increased time and energy costs of auto-tuning

with RD (+23,250s of time spent and +6,020kJ consumed), compared to sequential

exploration (GR) or the GA approach. Given the similar computational complexity

of both RD and GR approaches, they would be expected to exhibit similar time and

energy cost patterns. Upon closer observation of the auto-tuning procedure, it can

be observed that the procedure constitutes several stages: the schedule space search,

candidate compilation and candidate measurement. Due to its stochasticity, the RD

approach proposes candidates that may be erroneous (invalid schedule transformations

that cannot be compiled or valid transformations that compile, yet fail to execute on

the target-device due to computational or memory limits). Validity of such candidate

schedules may not always be deterministic ahead of compilation or execution, and as

such, they consume additional energy during their failed measurement attempts.

Furthermore, brute-force approaches propose measurement candidates without any

substantial prior analysis of their potential performance, and as such, valid schedules

that may exhibit very high latency are evaluated on the target-device, occupying the

isolated environment for longer periods of time compared to other candidates. To

understand the impact of erroneous and slow candidates on the overall costs of DL

auto-tuning, it is necessary to examine their time and energy cost profiles more closely.

3.4 Sources of Inefficiencies in DL Auto-tuning

To determine the impact of slow and erroneous candidates on the costs of DL auto-tuning,

the exhibited execution latency patterns of successful candidates and those that were

erroneous were analysed at the level of individual operators.
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3.4.1 Erroneous Candidate Schedules
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Figure 3.5: Erroneous candidate occurrences during auto-tuning of ResNet-18 towards platform A
across four different auto-tuners. Auto-tuning until 500 hardware measurements are performed.

It can be observed that all auto-tuners propose at least some candidate schedules

that are erroneous, as shown in Figure 3.5. Out of all studied auto-tuners, RD proposed

the highest number of erroneous candidates, caused by its stochastic exploration of

the schedule space, which does not guarantee, nor limit the occurrence of invalid

schedules. Figure 3.5 depicts the number of candidates that produced timeouts during

compilation (Compile Timeout). Compile Timeouts occurred, for example, due to

schedule transformations that involved valid but cyclic operations, that are unable to

complete in reasonable time (set by default to three seconds by the TVM infrastructure).

Schedules unable to successfully compile were also observed, stemming from invalid loop

nest transformations (Instantiation Error). Schedules that successfully compiled, yet

could not successfully execute during their measurement due to compute / memory

limit violations on the target-device (Runtime Error) were also observed.
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Figure 3.6: Runtime latency improvement trends when auto-tuning several ResNet-18 and VGG-16
operators using four different auto-tuners until 500 hardware measurements are performed. The figure
depicts measured runtime latencies of successfully executed candidate schedules for each operator.
LOESS regression is used to differentiate candidates that positively contribute towards optimisation
progress (hot candidates) and those that were proposed for measurement by the search strategy despite
their low performance (cold candidates).

It was found that Instantiation Errors were the most common reason for erroneous

candidates across all auto-tuners, caused in part by the stochastic or cost-model-based

schedule space exploration approaches of examined auto-tuners, particularly prominently
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in GA (15% of all candidates proposed) and RD (36%). Another 1.9% and 2.6%

of erroneous candidates were attributed to Runtime Errors and Compile Timeouts

respectively. An important insight from this analysis is that existing auto-tuners

determine when to stop the optimisation by observing the total number of hardware

measurements that have been completed, including successful and erroneous ones. With

erroneous candidates consuming additional 11 - 18% of energy, not only do they increase

the cost of auto-tuning but also decrease opportunity for other (potentially desirable)

candidates to be proposed and measured, reducing efficacy of the entire process. As

such, it is important to minimise the occurrence of erroneous candidates.
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Figure 3.7: Percentage of energy costs attributed to cold candidates when auto-tuning eight operators
of the ResNet-18 model using four different auto-tuners across four platforms.

3.4.2 Identifying Cold Candidates

An observation of the individual operator candidate latency profiles shows that a

significant portion of the total proposed (and thus measured) candidates, exhibit

comparatively high execution latency relative to their time of occurrence within the
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auto-tuning period - i.e. it would be expected for the auto-tuning process to identify

high-performance schedules more frequently as the auto-tuning progresses further. As

such, these candidates do not meaningfully contribute to the optimisation progress, yet

cost time and energy to evaluate. These candidates were labelled as cold candidates.

Table 3.4: Cold candidate impact on time and energy costs of auto-tuning across all studied platforms
for ResNet-18 and VGG-16. Values calculated as an average of cold candidates across all operators per
model. Auto-tuning until 500 hardware measurements were performed for each operator.

Model Platform
Number of cold
candidates
(out of 500)

Percentage of
time spent on
evaluating
cold candidates

Energy spent on
evaluating cold
candidates
(in kilojoules <kJ>)

Resnet-18

A 133 ± 21 26.74 ± 4.3 52.1 ± 10.4
B 134 ± 18 26.86 ± 2.8 36.7 ± 7.9
C 130 ± 11 26.13 ± 2.2 37.1 ± 4.2
D 139 ± 14 27.92 ± 2.9 9.0 ± 4.6

VGG-16

A 202 ± 29 40.51 ± 5.9 76.7 ± 2.0
B 201 ± 28 40.24 ± 5.6 49.3 ± 2.4
C 200 ± 29 40.16 ± 5.9 49.1 ± 4.2
D 216 ± 25 43.33 ± 5.0 41.2 ± 3.1

To differentiate cold candidates from those that meaningfully contribute towards

auto-tuning (hot candidates), LOESS regression [43] is applied, based on the latency of

all successfully measured candidates within a DL model tensor operator auto-tuning

session. The result of applying this method can be seen in Figure 3.6 for the traces of

eight auto-tuning sessions using GA, RD, AT and GR auto-tuners for two operators of

ResNet-18 (top row) and two operators of VGG-16 (bottom row) each.

It can be observed that different auto-tuners exhibit different patterns of cold

candidate occurrences, as shown in Figure 3.6. For example, AT produces the highest

number of cold candidates early-on, when the cost model is not yet initialised, whereas

GR and RD produce more diffused cold candidate proposal patterns as they explore the

schedule space in a brute-force manner.
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3.4.3 Impact of cold candidates

Apart from restricting promising candidate proposals, cold candidates also contribute

to almost 50.5% of total auto-tuning energy costs, as shown in Table 3.4 and Figure 3.7.

This varies across auto-tuners, especially between AT and the other studied auto-tuners,

where AT proposes fewer cold candidates in the latter stages of auto-tuning. Overall,

cold candidates originating from AT constituted 17 - 38% of total auto-tuning energy

costs, whereas for RD, cold candidates constituted nearly 80% of all costs.

This impact also varies depending on the operator. As shown in Figure 3.7, the cold

candidates proposed for the first few (less computationally complex) operators of ResNet-

18 have lesser energetic impact compared to operators 6 or 7 (more computationally

complex). This is because a low-performance implementation for an operator with a

higher number of FLOPs required during execution, is likely to consume more energy

than a low-performance implementation for less a complex operator would. For more

information on ResNet-18 architecture composition, see Appendix D.7. In terms of the

choice of platform and target-device, intuitively, cold candidate impact was proportional

to the platform capabilities, as shown in Table 3.4.

3.4.4 Converging Onto Hot Candidates

Observing candidate proposals for a single tensor operator across different auto-tuners,

it becomes apparent they exhibit different convergence patterns as the auto-tuning

progresses, as depicted in Figure 3.6 - signified by the next-minimum-candidate Trend.

More complex auto-tuners (AT, GA) tend to discover satisfactory candidates relatively

quickly within the auto-tuning process, whilst the brute-force approaches (GR, RD)

discover the next-best candidate with some degree of probability that is dependent on

the organisation of the schedule space rather than the auto-tuner’s effectiveness.

It can be observed that all studied auto-tuners propose progressively better candidates
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as the auto-tuning progresses, whether discovering them by chance or actively performing

complex space exploration. Interestingly, a subset of low-latency candidates are usually

discovered early on during auto-tuning, especially when using more complex auto-tuners

(GA, AT). These candidates are hereafter referred to as hot candidates. A good example

of hot candidate occurrence is the auto-tuning trace of AT for operator 7 of ResNet-18,

depicted in Figure 3.6, where a high-performance candidate was discovered within the

first 87 measurements out of 500 total. This candidate schedule exhibited performance

only three to five percent slower than the globally best candidate (100ns difference),

suggesting that an earlier selection of near-locally-optimal schedule, could have avoided

82.6% of the costs associated with this auto-tuning session.

3.5 Findings and Design Directions

The study examined both high-level and low-level (auto-tuning) DL inference

optimisation methods identified several important design directions, that if explored,

could lead to significant improvements in the efficiency of DL optimisation.

Insight 1 - Understanding diversity of optimisation cost : The interaction between

compute platforms, target-devices, DL frameworks, models, high-level optimisations and

low-level auto-tuner approaches, lead to unique optimisation cost profiles and resultant

model performance profiles once optimised, whilst existing work focuses on reducing

model inference costs on specific target devices [39, 8]. Additionally, it can be observed

that there exists no single auto-tuner that can guarantee significant and cost-efficient

model inference latency reduction across all models, platforms and target-devices. These

insights can be advantageous when determining model, target-device and auto-tuner

combinations that successfully produce DL models with low inference latency.

Insight 2 - Avoiding erroneous and cold candidates : All studied auto-tuners produced

a number of erroneous candidates (due to invalid schedules or schedules that break
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compute capability limits of the target-device). These erroneous candidates do not

positively contribute to auto-tuning progress since they count towards the measurement

count total that determines the duration of auto-tuning. This in turn prevents more

favourable candidates from being explored instead, reducing the overall auto-tuning

efficacy. Additionally, it can be observed that cold candidates exhibit high execution

latency relative to their time of occurrence during auto-tuning2. Cold candidates do not

positively contribute towards the auto-tuning progress, furthermore incurring additional

time and energy costs during their selection, compilation and measurements. As such, a

design direction for future auto-tuner development is to focus on avoiding both cold and

erroneous candidates, thus increasing cost-efficiency of auto-tuning, whilst maintaining

efficacy and quality of proposed schedules.

Insight 3 - Taking advantage of hot candidates: During analysis, it has been

discovered that candidates exhibiting runtime latencies similar to that of a globally

fastest candidate (for that operator), could be found relatively early during the candidate

search. Within this theses, such candidates are referred to as hot candidates. It is

generally accepted that the more extensive the candidate exploration, the higher the

chance of discovering progressively better candidates. However, analysis suggests that

continuing auto-tuning for prolonged periods of time, only to discover marginally better

candidates further into the exploration, may not be cost-proportional. This causes

auto-tuning to become less cost-efficient the longer it continues. As such, it is possibly

more cost-efficient to select a well-performing, hot candidate discovered early during

auto-tuning. Additionally, the hot candidate quality and frequency of their occurrence

could help to establish auto-tuning efficacy across different approaches, especially that

quality is influenced by the combination of the model characteristics, target-device

capabilities and the chosen auto-tuner, as outlined in Insight 1.

2It is intuitive that candidates manifesting lower latency should be found more often as the auto-
tuning progresses, as opposed to continuing to find high-latency candidates.
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Chapter 4. Trimmer: Cost-Efficient DL Auto-tuning

From the insights and design directions established within Chapter 3, there emerged

the design of Trimmer - an auto-tuning framework focused on achieving cost-efficient

DL model optimisation, by reducing the total time and energy costs of performing

end-to-end DL model auto-tuning, whilst maintaining high optimisation quality. At the

level of tensor operators and end-to-end DL models, Trimmer enhances the operation

of the search algorithm and the multi-operator auto-tuning strategy. At the level of a

single DL model layer tensor operator, Trimmer utilises an ANN to predict and exclude

sub-optimal cold candidates. This enables the auto-tuner to explore the schedule space

for more optimal hot candidates sooner during auto-tuning, accelerating optimisation

convergence. At the end-to-end DL model level, Trimmer performs Survey-tuning

to enable early auto-tuning completion based on real-time monitoring of model-level

inference latency improvements. Overall, Trimmer is designed as a component within

the MLaaS ecosystem, that increases cost-efficiency of optimising trained DL models to

be deployed for inference by Cloud providers, as shown in Figure 4.1.

4.1 System Design and Implementation

4.1.1 Trimmer’s Objective

Trimmer’s core objective is to minimise DL model inference latency on a particular

target-device. Given DL model inference latency ft, Trimmer performs auto-tuning on

each tensor operator {oi ∈ O|i = 1 · · ·K}, where K is the number of unique tensor

operators in the DL model. The amount of time dedicated to optimising each unique

tensor operator oi, depends on the rate of its execution latency improvement in relation to

the other tensor operators within the DL model (oj), as well as the overall improvement

to the end-to-end DL model inference latency as a result of auto-tuning. More formally,

for a DL model f and its inference latency ft, Trimmer’s goal is to optimise its individual
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tensor operators at a low cost, such that a user-specified inference latency goal g is

achieved, as follows:

min
K∑
i=1

Costauto−tune(oi) s.t. f t ≤ g (4.1)

where Costauto−tune(oi) represents the cost of auto-tuning tensor operator oi.

Trimmer’s operation can be further constrained by additional objectives such as external

cost functions specified by the user, as detailed in Section 4.1.3.1.

4.1.2 Cold Candidate Filtering

As outlined in Sections 2.6.2.3 and 2.6.2.2, auto-tuners utilise cost models and search

algorithms to traverse candidate tensor program schedule space, in an attempt to

discover parameters for schedule transformation that result in low execution latency

of the resultant tensor program. During operation, the auto-tuner proposes candidate

tensor program schedules to be compiled and executed on the target-device, to evaluate

their execution latency. Within Chapter 3, it has been identified that a subset of these

candidates are cold candidates that could be filtered to improve upon cost-efficiency of

auto-tuning. Thus, Trimmer introduces a tensor operator-level, FC ANN-based cold

candidate filter, that integrates with existing auto-tuning infrastructure (AutoTVM

[40]) to remove cold candidates and replace them with new proposals, encouraging faster

schedule space exploration and limiting impact of cold candidates on operational costs.

4.1.2.1 FC Network

The FC ANN network used to filter out cold candidates was designed with three layers,

and leverages a ReLU activation function [217]. The network operates in two modes: (1)

for training and regular inference, the network outputs predictions of execution latency

for a given combination of schedule configuration and execution characteristics (outlined
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Table 4.1: Details of the FC network architecture used by Trimmer to perform cold candidate filtering
and re-sampling. Within the table, each model layer is represented as an x, y tuple where x is the
layer’s input size and y is the layer’s output size.

Layer Type Layer Dimensions

Input (
E∑
i=1

ei, 32)

*Embedding ei (Rspace, 10)
Middle (32, 32)
Output (32, 1)

in the following section), and (2) during filtering, the network outputs middle-layer

learned embeddings, which are then used to compare proposed candidate schedules to a

historical database of embeddings. The network was implemented and trained using the

Pytorch [1] DL framework. Listing G.1 found in Appendix G depicts the definition of

Trimmer’s FC ANN specified in the Pytorch specification format, while the high-level

details of the network are provided within Table 4.1.

4.1.2.2 FC Network Inputs

As identified within Chapter 3, there are many characteristics of both the tensor

operators, their schedule spaces, and the target-devices that may influence execution

latency of a candidate tensor program, for a specific tensor operator and target-device

combination during auto-tuning. These characteristics also have non-linear distributions

which are challenging to leverage by more traditional methods such as Decision Trees

[277]. As such, this non-linearity stands behind the choice of GBT-based cost models

or other non-linear ML methods in SOTA DL auto-tuning, to traverse the candidate

schedule space effectively. Taking into account the above assumptions, an input to

Trimmer’s filtering FC network consists of a numerical vector, composed of:

• (1) Schedule Configuration: Each entry represents a parameter used to configure

a candidate tensor program schedule template, as described in Section 2.6.2.1. In
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template-based auto-tuners such as AutoTVM [40], Chameleon [8] or AdaTune

[183], template parameters consist of several unique values, such as: tile_x, tile_y,

auto_unroll_max_step (See Table F.1 in Appendix F for details). During pre-

processing, these were encoded as separate features.

• (2) Hardware Features: Characteristics of the target-device GPU. For example,

the number of available cores, L1/L2 cache sizes, threads per warp.

• (3) Tensor Operator CI: This entry represents the complexity of the tensor operator

expressed as total required FLOPs to be performed.

• (4) Tensor Operator Features: This entry represents a unique tensor operator

identifier (for example, its class ) and type, such as 1D, 2D, 3D Convolution.

• (5) Encoded Tensor Operator Argument Features: This set of entries encodes the

representation of tensor operator parameters, for example, the input/output shape,

kernel size, the amount of input padding or the stride during Convolution.

• (6) Status of Measurement: Given candidate tensor program measurements can

be successful or failed due to instantiation errors or runtime errors, signifying an

erroneous candidate schedule, these status features are taken into account within

the model by encoding them as a unique integer value.

4.1.2.3 FC Network Training

The goal of the training pipeline for Trimmer’s FC filtering ANN, was to learn the

relationships between the tensor operator features, individual tensor program candidate

configurations (schedule parameters) and the target-device characteristics, to then

predict tensor program execution latency. During network training, the Mean Squared

Error loss objective function was used, against candidate latency to determine loss, which

was then leveraged to update layer weights during backpropagation. In terms of the
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training dataset, it consisted of 20,000 individual candidate measurements, collected as

part of the study documented within Chapter 3. The dataset was prepared by splitting

it into three disjoint sets: training (70%), validation (10%) and testing (20%). The

validation set was leveraged to adjust (tune) hyperparameters, following established

methods and guidelines from research focused on predicting tensor program latency

[376]. The training pipeline was configured to perform ten training epochs on the FC

network, with the learning rate of 1e−3 (min 1e−9). To adjust the training process,

Adam optimiser [157] with Plateau Patience hyperparameter of one was used, utilising

batch size of 1024 simultaneous samples during forward-backward pass of the network.

Algorithm 1: Trimmer’s Cold Candidate Filtering
Input: Candidates, ϵ, K, Model, costModel

1 begin
// Batched inference using sample candidates proposed by the cost model

2 embeddings = NNPredict(Model, Candidates, mode="filter")
// For each candidate task’s embedding

3 totalRemovedCount = 0 for ei ∈ embeddings do
4 rand = random()

// ϵ is an increasing parameter

5 if rand < (1− ϵ) then
// Retrieve K similar candidates based on embeddings

6 Csim = similarInDatabase(K, ei)
// Check how many of the identified similar candidates are cold candidates

7 Nsim.cold = howManyAreCold(Csim)
8 if Nsim.cold == K then

// Remove sample from the candidate set - removal is based on index ei == ci

9 remove(Candidates, ci) totalRemovedCount += 1
10 end
11 end
12 end
13 Candidates∗ = Candidates + reSample(costModel, totalRemovedCount)
14 updateEpsilon(ϵ)
15 return Candidates∗

16 end
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4.1.2.4 Utilising the FC ANN for Filtering

Whilst trained to predict candidate tensor program execution latency, the network is

utilised differently during cold candidate filtering within Trimmer. During training and

regular inference, the network’s forward pass outputs predictions of tensor program

execution latency, based on inputs that specify candidate schedule parameters and the

execution environment such as the target-device characteristics.

As depicted in Algorithm 1, during candidate filtering ("filter" mode), the ANN

outputs the network’s middle-layer embeddings - data structures commonly used in NLP

tasks [309] to process input data with many features. Trimmer leverages embeddings by

treating the input data as bag-of-words samples (indifferent of their order within the

sample vector). These embeddings are then used to compare proposed candidates with

an offline embeddings database extracted from the training dataset.

Comparison of embeddings is performed by measuring cosine distance - a frequently

used method to identify samples that share characteristics within a vector space [300].

Top-K similar candidates are identified during this process based on their embeddings,

for each candidate proposed by the auto-tuner. If embeddings identified to be similar,

were previously associated with candidates that were identified as cold candidates, the

currently examined candidate schedule is removed from the input candidate set.

To ensure an adequate number of candidates are measured on the target-device, the

module re-samples totalRemovedCount new candidates by re-querying the auto-tuner

cost model. This updated candidate set is sent for measurement, and the process repeats

for the subsequent batches of proposed candidate schedule configurations.

4.1.2.5 Exploration vs. Exploitation

From the cost-efficiency perspective, it is more desirable to reduce the time spent on

measuring costly cold candidates. Inversely, from the perspective of the optimiser,
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sampler and the cost model within an auto-tuner, it may be beneficial to explore many

different points within the candidate schedule space to identify promising template

parameter sets. As such, there exists a trade-off between reducing the cost of evaluating

cold candidates, and allowing candidate discovery procedure to explore the schedule

space in an unconstrained manner.

Trimmer balances this trade-off by leveraging an inverse ϵ-greedy policy, where the

filtering of sampled schedules is encouraged within the early iterations of the auto-tuning

session, whilst exploration is encouraged later on, as the auto-tuning progresses. To

encourage exploration, the probability of candidate filtering decreases after each batch

of candidates is measured and once the cost model has been updated - see line 5 of

Algorithm 1 for details. This results in incentivisation of candidate exploration rather

than filtering as soon as the optimiser and auto-tuner cost model become stable.

Comparing Trimmer’s approach to prior work, Chameleon’s sampling module [8]

leverages the K-means [110] algorithm to filter out similar candidates, thus allowing

the AutoTVM schedule space exploration algorithm (Simulated Annealing) to explore

more candidate schedules within the schedule space quicker. Contrastingly, Trimmer

heuristically prunes away candidates if and only if top-K similar configurations all exhibit

high execution latency (for example, manifest cold candidate execution patterns). Since

Trimmer prunes candidate tensor programs likely to exhibit high execution latency, the

filtered candidates are replaced with new candidates by querying the auto-tuner cost

model, further ensuring sufficient exploration of the candidate schedule space.

This also ensures coherence with the auto-tuner measurement infrastructure, which

expects a given batch size of candidate tensor programs to be measured. By combining

both the probabilistic and heuristic strategies, Trimmer accelerates exploration of the

candidate schedule space, whilst limiting the number of cold candidates that need to

be measured on the target-device, ultimately increasing the overall cost-efficiency of

auto-tuning as lesser number of poor candidates are evaluated on the target-device.
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4.1.3 Survey Tuning
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Figure 4.2: Differences between Sequential and Survey tuning. [OP = Tensor Operator]

Existing DL auto-tuners, optimise end-to-end DL models by extracting all tensor

operators that are compatible with the auto-tuner, followed by sequential auto-tuning

of each extracted tensor operator to completion. More specifically, each tensor operator

auto-tuning session must be completed before auto-tuning of the next tensor operator can

commence, as depicted in Figure 4.2. The duration of each tensor operator auto-tuning

session depends primarily on the number of candidate tensor program measurements

performed on the target-device - typically chosen by the user.

Considering the above constraints, within existing DL auto-tuning frameworks, end-

to-end inference latency of a DL model being optimised can only be ascertained once the

entirety of the individual auto-tuning sessions have been completed. During this often

prolonged (tens of hours) process, the user has no knowledge of the impact of individual

tensor operator auto-tuning on the global, end-to-end DL model inference latency. It is

also unclear which tensor operators should be optimised to achieve the most significant

end-to-end DL model inference latency improvement. Moreover, it is uncertain how

this improvement compares to auto-tuning sessions of other tensor operators within the

same model.
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Algorithm 2: Trimmer’s Survey Tuning
Input: Model, Bsize

1 Class SurveyManager is
2 Method update(b, lat) is
3 if b.lastBestLatency > lat then // reset plateu on this batcher
4 b.plateauCount = 0
5 b.lastBestLatency = lat
6 else
7 b.plateauCount += 1
8 if b.plateauCount > Opplateau.thresh then
9 b.shouldStop = true

10 end
11 end
12 Method step(modInfLat) is
13 infLatHistory.add(modInfLat)
14 if length(infLatHistory) < Hwindow then // window not large enough, continue
15 return false
16 else if length(infLatHistory) > Hwindow then // window too large, reduce
17 infLatHistory.popFromFront()
18 end
19 if mean(infLatHistory) > lastAvgHistory then
20 if Modplateau > Modplateau.thresh then
21 return true
22 end
23 Modplateau += 1
24 else
25 Modplateau = 0
26 lastAvgHistory = mean(infLatHistory)
27 end
28 if Objective then // If user specified custom objective
29 return eval(Objective, mean(infLatHistory), modInfLat) // Eq. 4.1
30 else if min(infLatHistory) < Glat then
31 return true
32 end
33 return false
34 begin
35 for o ∈ Model.operators do
36 batchers.add(SurveyBatcher(CreateAutoTuner(o), o, Bsize)
37 end
38 mgr = SurveyManager(batchers)
39 while not mgr.hasFinished() do // Begin epoch
40 for b ∈ mgr.batchers do // iterate through all tensor operator batchers
41 if not b.shouldStop then
42 n = b.getNextBatchSize()
43 bestFoundLat = autoTune(b.autoTuner, b.operator, bSize=n)
44 mgr.update(b, bestFoundLat) // update best-found candidate for the batcher
45 end
46 end
47 recs = mgr.getBestAutoTuningRecordsSoFar()
48 modInfLat = measure(compile(model, recs)) // evaluate model inference latency
49 if mgr.step(modInfLat) then // mgr.step() decides whether to continue auto-tuning
50 return
51 end
52 end
53 end
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Furthermore, given the occurrence of hot candidates within early stages of auto-

tuning (See insights derived within Chapter 3), it is unknown ahead of time whether

auto-tuning each tensor operator to completion is cost-efficient, and whether it could

have been more efficient to suspend select tensor operator auto-tuning sessions early1.

Being able to leverage this information during auto-tuning automatically, would enable

to focus more time on auto-tuning tensor operators that result in more significant

end-to-end DL model inference latency improvement compared to others, ultimately

leading to a more cost-efficient overall process. Trimmer leverages these insights to

implement the concept of Survey tuning, as depicted in Figure 4.2. Survey-tuning is

designed to operate both at the individual tensor operator and the DL model levels.

4.1.3.1 Tensor Operator-level Survey Tuning

Trimmer’s Survey tuning approach is designed around the idea of a Survey Manager

and a set of Survey Batchers managed by it, as depicted in Algorithm 2. At the tensor

operator level (i.e. auto-tuning a single end-to-end DL model), Trimmer extracts all

optimisable tensor operators and allocates a Survey Batcher per tensor operator to

maintain auto-tuning state and manage batched optimisation of that particular tensor

operator. Each Batcher maintains information about how many measurements have

been performed in relation to its managed tensor operator and how many more are left

(for example, due to hard measurement limits imposed by the user).

Partial Auto-tuning: Once initialised, Trimmer’s Survey tuning module begins

iterative optimisation of each tensor operator, splitting auto-tuning into epochs.

During each auto-tuning epoch, Trimmer performs partial auto-tuning of each tensor

operator, by allowing the auto-tuner to propose up to Bsize candidate tensor programs

for measurement. Within Trimmer, Bsize is by default set equal to the planSize

1Existing auto-tuners provide means to stop auto-tuning early, however, the threshold of observed
improvement is set arbitrarily by the user, and has to be decided manually for each individual tensor
operator
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hyperparameter of an auto-tuner (64 in AutoTVM and Chameleon), which specifies the

number of candidate proposals and measurements, after which the cost model will be

updated and a new set of candidates proposed. The Bsize parameter is kept equal to

planSize in order to ensure Survey tuning does not interfere with DL auto-tuner cost

model updates, however, it can be freely modified by the user if required.

Tensor operator Early-stopping: Once partial auto-tuning is performed for a

given tensor operator, the best (lowest latency) candidate found within the current

epoch is selected and used to update its Batcher’s internal state (by calling its update()

procedure - see. line 43 in Algorithm 2). During Batcher update for the current

epoch, the current best found latency is compared with previous epoch’s lowest latency

candidate to establish whether the auto-tuner is making good progress at reducing the

particular tensor operator’s execution latency. In case the new best latency candidate

is found to be worse than the one discovered within the last epoch, a plateauCount

is raised. Optimisation of this tensor operator will be early-stopped if plateauCount

exceeds OPplateau.thresh - set to 2 in Trimmer based on empirical findings. In other words,

if the tensor operator does not exhibit latency improvement in three consecutive epochs,

its optimisation will be halted to dedicate more time and resources towards other tensor

operators. The epoch continues until all such partial auto-tuning sessions are performed

for all the remaining tensor operators of the DL model.

End-to-end Model Early-stopping: At the end of each epoch, for each of the

tensor operators, Trimmer extracts the best performing candidate tensor program found

so far, and applies the schedule configurations to the end-to-end DL model. Configured

model is then compiled and executed on the target-device to determine its inference

latency (modInfLat). The modInfLat is then used to perform an epoch step via the

Survey Manager, which results in a decision whether to continue auto-tuning of the

end-to-end DL model. During the step() procedure (see lines: 12 - 32 in Algorithm

2), the Survey Manager maintains a window of Hwindow epochs across which the end-

130



4.1. System Design and Implementation

to-end DL model inference latency is compared. Initially, current epoch’s end-to-end

DL model inference latency is appended to a list of historical latency records. Then,

an updated historical average latency mean(infLatHistory), across Hwindow of prior

latencies is compared with prior average latency, establishing whether the end-to-end

DL model latency has improved as a result of the current epoch’s partial auto-tuning

sessions. If no such improvement is observed, the Modplateau count is raised to reflect

potentially plateauing optimisation. If the Modplateau count exceeds Modplateau.thresh,

the optimisation is halted. In Trimmer, Hwindow was set to 3 whilst Modplateau.thresh to

2, based on empirical findings.

Objectives: Optimisation of the DL model can also be controlled by user-defined

goals and cost functions. Trimmer utilises the achieved min(infLatHistory) end-to-end

inference latency measure to determine whether it has fallen below the goal threshold

Glat, in which case optimisation is halted for that DL model. Alternatively, a cost

function (in the form of an external evaluating procedure) can be specified, in which case

the Survey tuning module consults the cost function to determine whether optimisation

should be halted - see line 29 of Algorithm 2. By default, Trimmer’s Survey tuning

module compares the rate of end-to-end DL model inference latency reduction across

the current and prior Survey tuning epoch, as follows:

stop = ω1
xt + xt—1

xt—1

≤ ϕ

xt = ω2
δft
δOt

(4.2)

Where the difference in end-to-end DL model inference latency f between batch

intervals t and t− 1 is represented by xt, as a ratio over the optimisation time cost Ot

for the auto-tuning epoch, multiplied by configurable weight ω2. Trimmer increases

efficiency of auto-tuning by determining how significantly the DL model inference
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latency is reducing on every epoch and at what rate, adjusting the optimisation process

accordingly. ϕ is a configuration parameter that helps the policy to avoid unnecessary

auto-tuning, by signalling when the ratio since the previous epoch becomes smaller

than the parameter ϕ. This would occur when the change in model inference latency

between epochs is insignificant. The ϕ option enables prioritisation of performance

improvement or operational cost. Trimmer sets ϕ to -0.25 to avoid unnecessary time

spent on optimising poorly improving operators. This setting was determined empirically.

To account for the cases where xt and xt−1 are slower (+ive), and cases of xt being

quicker but xt−1 being slower, ω1 is set to −1 and otherwise set to 1. Within Trimmer,

ω2 is set to −1 if both δft and δOt are -ive, and set to 1 otherwise. These phenomena

may occur when the space of candidate schedule is significantly non-linear, potentially

resulting in rapid changes in measured candidate latency.

4.1.3.2 DL Model-level Survey Tuning

The aforementioned early suspension approach is also applied when optimising multiple

models simultaneously, since Trimmer measures end-to-end DL model latency at each

Survey tuning batch. This achieves meta-tuning, where a relative speedup (decrease

in end-to-end inference latency) of DL models is compared to the speedup achieved by

concurrently executing auto-tuning sessions across other models.

Taking inspiration from population-based DL model training [142], Trimmer ranks

models using the measure of improvement to their inference latency at the end of a

partial Survey tuning batch, accomplishing meta-tuning across multiple models. Models

performing worse in comparison to others are suspended. The goal of this strategy is to

focus optimisation efforts onto the most quickly improving DL model and auto-tuner

combinations, when considering multiple of such pairs within a cluster, the user-set

criteria for inference latency thresholds or cost objectives. Similar to single-model

Survey tuning, the suspension criteria include configurable plateau iterations. Trimmer
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synchronises auto-tuning sessions across multiple models and machines using RPC, and

does so when a batch of measurements are completed for each model, allowing a short

period of conventional auto-tuning before comparison, to initialise cost models.

4.2 Experiment Setup

To evaluate Trimmer’s ability to increase cost-efficiency of auto-tuning, both at the level

of a single DL model auto-tuning and across multiple models in a Cloud cluster scenario,

experimentation was performed using several prominent DL models, comparing Trimmer

to SOTA auto-tuners across different hardware platforms. Trimmer has been integrated

partly as a module of the existing AutoTVM auto-tuner infrastructure and as a layer

above the auto-tuner (Survey tuning) to manage multiple auto-tuning sessions.

4.2.1 Hardware, Software and Middleware

During experiments, Trimmer performed auto-tuning towards Nvidia GPUs situated

within distinct hardware platforms as oulined within Table 3.2 found in Section 3.1.2

of Chapter 3. Each of the platforms was provisioned with identical Operating System

and middleware, much like in the case of the experimentation performed as part of

Chapter 3. For experiments involving multi-platform (distributed system), multi-model

Survey tuning, Docker [134] and Docker Swarm [135] version 20.10.7 were used to deploy

Trimmer and facilitate communications between instances.

4.2.2 Auto-tuners

Trimmer was evaluated against three SOTA auto-tuners: (1) AutoTVM (AT) [40],

which utilises a GBT-based cost model to propose candidate schedule configurations

and SA-based optimiser to traverse the schedule space using the feedback from the GBT

cost model; (2) RL (RL) [8] - an auto-tuner which also leverages the GBT-based model,
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however, replaces the SA-based optimiser with one based on PPO; and (3) Chameleon

(CH) [8], which extends the RL auto-tuner with a K-means clustering sampler, to reduce

the number of similar candidates being explored and improve optimisation quality.

4.2.3 Workloads

Experimentation performed as part of Trimmer’s evaluation involved auto-tuning four

distinct CNN DL models (AlexNet [168], MobileNet [121], VGG-16 [304] and ResNet-18

[113]), as previously shown in Table 3.1. Each model receives an input tensor for

inference prediction of the shape of 1× 3× 224× 224, with tensor layout of NCHW,

and outputs a 1 × 1000 tensor containing predictions. Models range in the number

of parameters and computational complexity, and were converted into TVM format

from the Pytorch and Apache MXNet DL frameworks. Once converted into the TVM’s

Relay format, each model has been transformed using the graph-level optimisation

infrastructure, applying level 3 optimisations, following prior work guidelines to avoid

approximation of parameter values that occurs when applying level 4 graph optimisations.

During experiments, only tensor operators compatible with the studied auto-tuners

were extracted and auto-tuned - subject to limitations posed by TVM’s TOPI template

repository. For more information about graph-level optimisations and optimisation

levels, see Section 2.5.3 as well as Table E.1 within Appendix E, whilst further details

on the model architectures can be found within Appendices D.1, D.3, D.8 and D.7.

4.2.4 Collected Metrics

Several metrics were used to quantify Trimmer’s effectiveness at increasing cost-efficiency

of auto-tuning. End-to-end model latency was captured prior and post auto-tuning to

determine optimisation quality, expressed as a raw measurement of execution latency (ms)

or speedup compared to an un-optimised model. Total auto-tuning time and platform
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energy consumption were also measured to determine operational costs of performing

auto-tuning with Trimmer vs. other SOTA auto-tuners. Additionally, average CPU

and GPU utilisation and memory usage were also collected during auto-tuning. Details

about the specific metrics collection methods can be found in Section 3.1.6.

4.2.5 Experiment Scenarios

Experiments evaluating Trimmer consisted of several scenarios. Initially, Trimmer was

evaluated in a Single-platform scenario where DL models were auto-tuned end-to-end,

utilising isolated target-devices to perform candidate tensor program measurements.

Within these experiments, Trimmer was compared to other DL auto-tuners that also

utilised the same workload, target-device and platform. Further experiments followed

the Cloud-cluster scenario where four auto-tuning instances were coordinated across

four individual (platform A) machines, comparing Trimmer’s Survey auto-tuning with

performing Sequential auto-tuning concurrently at a model level. Trimmer assumes

access to an offline repository of historical optimisation data, used to train its FC

network. In cases where no such data is available, auto-tuning can be performed to

populate such database with candidate measurement samples.

4.3 Evaluation Results

4.3.1 Single Platform, Sequential Auto-tuning

4.3.1.1 Achieved Inference Latency

As presented within Table 4.2 and Figure 4.4, Trimmer achieved on average greater

reduction of inference latency when auto-tuning end-to-end DL models, compared to

other auto-tuners. For AlexNet, VGG-16 and MobileNet, Trimmer achieved the lowest

end-to-end DL model inference latency of 0.79ms, 4.68ms and 0.65ms respectively.
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Figure 4.3: Comparison of candidate tensor program latency patterns as a result of auto-tuning tensor
operator 5 of the VGG-16 model using Trimmer and AutoTVM.

Table 4.2: Achieved inference latency, auto-tuning time and energy costs incurred during auto-tuning
(Single Platform)

DL Model Trimmer AutoTVM RL Chameleon Base.

Latency
(ms)

Alexnet 0.79±0.02 0.85±0.05 0.84±0.09 0.82±0.08 4.42
VGG-16 4.68±0.49 4.78±0.28 5.85±0.45 5.83±0.38 9.66
Mobilenet 0.65±0.03 0.67±0.02 0.76±0.06 0.74±0.05 1.24
ResNet-18 1.39±0.29 0.86±0.08 1.11±0.06 1.03±0.08 8.48

Tuning
time
(m)

Alexnet 119±0.29 116±0.25 121±0.42 127±0.40
VGG-16 194±0.49 207±0.22 296±0.98 298±0.30
Mobilenet 213±0.48 286±0.52 216±0.58 214±0.42
ResNet-18 228±0.24 401±0.59 353±0.74 279±0.44

Tuning
energy
(MJ)

Alexnet 1.6±0.22 1.9±0.22 2.3±0.46 2.4±0.50
VGG-16 3.4±0.59 3.4±0.21 5.5±1.19 5.6±0.32
Mobilenet 3.6±0.81 4.5±0.48 3.6±0.58 3.6±0.41
ResNet-18 21.2±1.6 26.6±2.4 29.5±3.4 31.8±3.1

Specifically for ResNet-18, Trimmer achieved results similar to Chameleon and RL. This

is because the cold candidate filter employed by Trimmer, apart from filtering out poor

candidates, enables rapid identification of more favourable schedules during the early

phases of auto-tuning. This can be observed within Figure 4.3 where trimmer almost

immediately explores high-quality candidate tensor programs, whereas approaches such
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Figure 4.4: Achieved inference latency (ms)

as AutoTVM require some time to begin finding low latency schedules. Inadvertently for

ResNet-18, Trimmer discovered good candidates early on during auto-tuning, potentially

omitting slightly better ones that could have been found later on.

4.3.1.2 Auto-tuning Cost Efficiency
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Figure 4.5: Total auto-tuning energy consumption (MJ)

As shown in Table 4.2, Trimmer incurred the lowest auto-tuning time cost compared

to the other studied auto-tuners for the ResNet-18 and VGG-16 models, whilst performing

comparably with the fastest auto-tuner for the remaining two models (within margin of

error). In terms of energy costs of auto-tuning, Trimmer’s energy consumption when

auto-tuning DL models was lower, compared to the other auto-tuners for AlexNet and

ResNet-18. In the cases of the remaining two DL models, Trimmer scored on par with

the least energy-hungry framework (AutoTVM), as depicted in Figure 4.5.
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Figure 4.6: Average energy costs (measured in MJ) of auto-tuning that were incurred to achieve
inference latency reduction of one millisecond across different DL models and auto-tuners, expressed as
a ratio

However, crucially, both the time and energy costs should be understood in terms

of cost-efficiency during auto-tuning. In other words, an auto-tuner would not be

considered cost-efficient when it results in slightly lower inference latency, however,

incurs significantly higher time or energy costs to achieve it. As depicted in Figure

4.6, within all experiments, Trimmer auto-tuning exhibited the best cost-efficiency,

understood as: "the energy cost of achieving a 1ms improvement to model execution

latency via auto-tuning". Trimmer exhibited an average improvement in cost efficiency

over other auto-tuners, between 14 and 29% for AlexNet, 2 and 54% for VGG-16, 16

and 24% for MobileNet, and 14 and 29% for ResNet-18, attributed to the candidate

filtering and early finish when insubstantial inference latency improvement is detected.

4.3.1.3 Candidate Measurement Composition

Trimmer’s evaluation suggests that when guided by Trimmer’s cold candidate filtering,

an auto-tuner’s cost model proposes on average fewer globally poor candidates as well

as a lesser number of erroneous candidates that fail during compilation or measurement,

compared to the RL and Chameleon auto-tuners, as depicted in Figure 4.7b. Trimmer’s

re-sampling explores on average more total candidate schedules compared to AutoTVM,

as during re-sampling, Trimmer filters out cold candidates from the batch currently
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Figure 4.7: Total energy cost (MJ) & failed candidate measurements, when auto-tuning VGG-16
towards the GPU in Platform A – Trimmer’s Survey tuning vs. Sequential tuning in parallel

proposed by the auto-tuner, whilst reintroducing a replacement batch of new candidate

schedules by greedily querying the cost model. This in effect diversifies the measurement

batch. With higher diversity of explored candidates compared to the filter-less AutoTVM

auto-tuner, Trimmer inadvertently explores a wider variety of candidates, including

erroneous ones. The additional processing of the Trimmer’s ANN-based candidate

filtering, results in a 3% increase of CPU utilisation compared to AutoTVM, which

given the improvements to the overall cost-efficiency achieved by Trimmer is acceptable.

4.3.2 Cloud Clusters

Table 4.3: Comparison of Survey tuning and parallel model auto-tuning in a cluster scenario

Model Survey Parallel Improvement

Tuning energy (MJ)
MobileNet 10.76 18.21 40.9%
AlexNet 6.80 8.70 21.8%

Model latency (ms)
MobileNet 0.629 0.684 8%
AlexNet 0.797 0.805 1%

When performing model-level Survey tuning across multiple target-devices, Trimmer

achieved between 21.8% and 40.9% improvement in total energy cost incurred during
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Figure 4.8: Achieved DL model inference latency after Survey auto-tuning. Results depict achieved
end-to-end DL model inference latency at different batches (1 batch = 64 measurements)

optimisation, compared to performing parallel auto-tuning for AlexNet (8.70MJ to

6.80MJ) and MobileNet (18.21MJ to 10.76MJ) respectively, as shown in Figure 4.7a.

This reduction in energy consumption during auto-tuning stems from early-suspension

of optimisation once insufficient end-to-end DL model inference latency reduction is

observed during Trimmer’s Survey tuning. This occurs both at the level of an individual

model’s tensor operators as well as at a multi-model level.

A major feature of Survey tuning implemented in Trimmer, is that it permits well-

performing2 combinations of DL models and auto-tuners to conduct additional partial

Survey tuning batches compared to less-effective combinations, thus achieving better

cost-efficiency. This can be observed in Table 4.3, which demonstrates that especially

for MobileNet (0.684ms), Trimmer achieved inference latency 8% faster compared to

AutoTVM permitted to continue auto-tuning until user-set threshold of candidate

measurements is surpassed (i.e. completion). When Survey tuning is employed to

evaluate the end-to-end DL model inference latency at Survey batch intervals, different

auto-tuners can be observed to exhibit different patterns of achieved model latency, in

scenarios of auto-tuning both MobileNet and AlexNet, as depicted in Figure 4.8.

2Exhibiting substantial improvement to end-to-end DL model latency
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For MobileNet, all auto-tuners resulted in a sizeable end-to-end DL model latency

improvement within the period of time between Survey batch 0 and 1 (between 10.1 and

30.2% reduction in latency). Chameleon and RL auto-tuners were stopped earlier than

other scenarios as they have not exhibited sufficient improvements to the end-to-end

DL model inference latency at Survey Batch 3. This suspension occurred both due to

gradient convergence (at single model level) and in relation to other simultaneously

executing auto-tuning sessions. AutoTVM was early-stopped at Survey Batch 5 as it

achieved insignificant DL model inference latency improvement across two Survey batch

intervals consecutively. This improvement was also smaller compared to Trimmer, and

as such, the Survey tuning module decided to suspend it.

Overall, the evaluation results suggest that Trimmer is a more cost-efficient auto-

tuner compared to standalone AutoTVM or Chameleon, as it allows the schedule space

search algorithm (for example, SA) to greedily explore more candidate schedules, whilst

incurring the same operational cost, and in many cases, achieving superior optimisation

quality. This ultimately achieves a more cost-appropriate end-to-end DL model inference

latency optimisation. This is further improved by the Survey tuning strategy at the

tensor operator and single/multi-model levels. Leveraging this meta-strategy, Trimmer

exhibits on average faster auto-tuning compared to conventional auto-tuning, which

awaits completion of all tensor operators before testing end-to-end model latency, and

faster auto-tuning when considering multiple models in a Cloud cluster setting.

4.4 Discussion and Limitations

4.4.1 Auto-tuner Compatibility

Trimmer’s ANN-based filtering module is compatible with any AutoTVM-derived auto-

tuners that leverage schedule templates and a cost model (see Section 2.6.3.1 for
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examples). In cases where the templates utilise different schedule parameters to those

supported by default in TVM’s TOPI repository, the user can re-train Trimmer’s FC

ANN model with a dataset containing the alternative parameters as new features. To

improve compatibility with autoschedulers or hybrid auto-tuners, Trimmer’s filter and

re-sampler could be adapted to support encoded schedule transformation rules / steps

alongside template parameters during the FC model training and embeddings extraction.

Trimmer’s Survey tuning is compatible with any auto-tuner that performs batched

candidate proposals (for example, 64 at a time in TVM-based auto-tuners). This is a

very common approach in all cost-model / search algorithm-based auto-tuners since

the cost model must be periodically updated to improve search efficacy, and as such,

requires iterative measurement result feedback.

4.4.2 Target-device Compatibility

Trimmer has been evaluated on Nvidia GPUs, and leverages their characteristics as input

data features to the FC ANN. It is highly-likely that the same process could be adopted

when auto-tuning towards non-Nvidia GPUs or CPUs, since their characteristics could

also be used as input data features.

4.4.3 FC NN Model Training

One of Trimmer’s limitations is the need for model training to prepare the filtering module

for its operation. This design decision was made to account for the diverse environments

in which Trimmer may operate (tensor operator classes, target-devices), enabling the

user to adjust and fine-tune Trimmer’s model to their specific needs. Prior candidate

measurement data is typically easily accessible, especially given Trimmer’s adopters

are assumed to be prior practitioners of conventional auto-tuning, which produces

measurement log files as a result of its operation. Furthermore, the TVM publishes an
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online repository (TopHub [80]) of prior measurement data, containing measurement

logs for the best found candidates for select combinations of tensor operators and

target-devices. This could be used to supplement other available candidate measurement

logs to enhance diversity of the training datasets. Due to its relatively low complexity

(3× layers with small input/output dimensionality), Trimmer’s FC ANN model training

is a quick procedure (< 10m given 20,000 input samples obtained during exploratory

study - see Chapter 3), and is performed as a one-off task ahead of auto-tuning multiple

end-to-end DL models. Trimmer’s model training can be completely avoided in cases of

time constrained adoption by training the model online as the auto-tuning progresses,

leveraging a limited number of cold candidate samples.

4.4.4 Workloads compatibility

During Trimmer’s evaluation, CNN DL models have been used as the primary workloads

to be optimised. Utilising CNNs to evaluate auto-tuners is a common practice [40, 8, 385,

183, 386] due to the occurrence of high-complexity Convolution tensor operators within

these types of networks. Auto-tuning other workload types such as RNN or Transformer

model tensor operators could also be achieved in Trimmer, by adopting the template

parameters for these tensor operators as the ANN input features. When investigated,

templates for such workloads could not be found within the online repositories.

4.4.5 Scalability

Trimmer’s multi-model Survey tuning was evaluated on a cluster of four machines, each

containing one GPU. It is unclear how utilising a larger cluster of machines (100s -

1000s) would impact Trimmer’s efficacy of improving auto-tuning cost-efficiency. One

approach to limit such potential impact would be to partition a larger cluster into

smaller sub-clusters and manage multiple Trimmer instances separately.

143



This page is left intentionally blank



Chapter 5

A Naïvely-parallel Approach to Reduce

DL Auto-tuning Costs

5.1 Overview
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Figure 5.1: Auto-tuning four DL models with three DL auto-tuners towards Nvidia Volta V100 GPU
target-device until 500 hardware measurements are performed.

As identified in Chapters 3 and 4, DL model auto-tuning via DL compilers can yield

substantial reduction in model inference latency, however, it is a costly process often

requiring hours of iterative search to obtain satisfactory performance improvements.

Figure 5.1 depicts results (achieved inference latency speedup) and costs (auto-tuning
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time) of performing auto-tuning for four prominent DL models towards Nvidia V100

GPU, utilising different auto-tuners (AutoTVM [40], Chameleon [8] and Ansor [385]).

It can be observed that different auto-tuners produce different performance

improvement and incur varied time cost when paired with different models. At the

algorithmic level, this stems from the varied abilities of auto-tuners to search through a

large candidate schedule space, in quest to discover tensor program schedule candidates

that exhibit low execution latency when applied, and the necessity to do so for every

unique tensor operator within every optimised DL model.

Chapter 3 experimentally demonstrates that a substantial portion of candidates

proposed for measurement on target-device are not meaningfully furthering the search

process (identifying as them cold candidates), whilst Chapter 4 proposes several

techniques to reduce their occurrence and impact, additionally improving the efficiency

of the auto-tuning process at multi-operator and multi-model levels.
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Figure 5.2: Auto-tuning three DL models with three DL auto-tuners towards Nvidia Volta V100 GPU
target-device until 500 hardware measurements are performed.

Despite their increasingly more effective approaches to candidate space traversal,

completing auto-tuning for a single DL model remains a lengthy process (hours to

tens of hours), as demonstrated in Figure 5.1b and results presented in Section 3.3.

To understand what causes this increased cost, several auto-tuners (AutoTVM [40],
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Ansor [385] and Chameleon [8]) were instrumented to measure the proportion of total

auto-tuning time spent on candidate schedule generation (processing), compilation

(build) and candidate tensor program latency measurements, as shown in Figure 5.2a.

These results indicate that the processing phase is highly dependent on the type of

auto-tuner, whilst the build phase depends mainly on the DL model, since more complex

tensor operator classes commonly take similar time to compile. Importantly, it can be

observed that performing measurements can be a time-consuming activity, costing on

average 51.6% of total optimisation time during auto-tuning.

Upon closer inspection of the measurement infrastructure (see Section 2.6.2.4) shared

by the analysed auto-tuners, it becomes apparent that the isolation of candidate execution

during measurement (see Section 2.6.2.5) is the core bottleneck causing high time costs

of performing measurements on target-devices during auto-tuning. The decision of

isolating candidate executions during measurements has been widely adopted within the

DL compiler optimisation community [40, 385, 8, 183, 184], and stems from the need

to maintain measurement accuracy. It is an established assumption that simultaneous

execution of more than one DL tensor program on the same device can result in kernel

contention and interference [254, 367, 369], with no execution latency guarantees provided

by the GPU scheduling infrastructure [239, 271, 44].

Within this thesis, this isolated execution approach is referred to as a serial

measurement infrastructure, whereby latency of tensor programs is measured by

executing them on the target-device sequentially, with no other concurrently executing

workloads present within the same GPU. As depicted in Figure 5.2b, isolated execution of

tensor programs does not utilise the GPU fully (as low as 19%), at the same time resulting

in low host CPU utilisation (as low as 7%) due to frequent waiting for measurement

results, ultimately reducing candidate throughput and platform availability.

All studied TVM-based auto-tuners rely upon the same, serial candidate measurement

infrastructure. As such, there exists opportunity to address prolonged auto-tuning times
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across multiple SOTA DL auto-tuners, by eliminating or reducing the bottlenecks

present within their measurement infrastructures. The rest of this Chapter explores a

naïve approach to solving the aforementioned bottlenecks within current auto-tuner

candidate measurement infrastructure, in quest to discover opportunities for efficiency

and performance gains during DL auto-tuning.

5.2 Leveraging Parallelism During Measurements

It is widely understood that parallelism can be used to improve compute resource

efficiency and throughput across numerous areas of computing. Intuitively, performing

candidate tensor program executions in parallel, within the same target-device GPU,

could also manifest in similar improvements, accelerating DL auto-tuning. However,

an established, held and practised view within the community is that leveraging

measurements performed on simultaneously executing (within the same target-device)

candidate tensor programs is not viable due to unpredictable resource contention effects

occurring during parallel execution. In the case of GPUs, the proprietary kernel

scheduling provides no workload latency guarantees. Moreover, existing auto-tuner

measurement infrastructures are designed to strictly perform serial tensor program

latency measurements in an isolated target-device. Within the existing SOTA DL

auto-tuner measurement infrastructures, parallelism can only be achieved inter-device,

where multiple local or remote devices perform serial measurements in parallel.

5.2.1 Existing Inter-device Parallel Measurements

Existing, serial measurement infrastructure underpinning SOTA DL auto-tuners is

unable to parallelise candidate executions during measurement within a single GPU.

Within the TVM-based auto-tuners, acceleration of measurements is achieved via a set

of RPC-based components that enable leveraging multiple identical target-devices during
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Figure 5.3: Existing, serial measurement infrastructure achieving inter-device parallelism during
measurement via RPC calls and ring buffer tracker that isolate candidate executions.

the auto-tuning candidate measurement process. Any locally or remotely available GPUs

can be leveraged for measurement by binding them to standalone RPC servers that

facilitate kernel execution and latency measurement, as depicted in Figure 5.3. Multiple

RPC servers are managed via an RPC tracker - a process that connects the auto-tuner

to the servers and allocates measurement tasks to servers that are not yet occupied

by existing measurement tasks, in a ring buffer fashion. The maximum parallelism

achievable via this approach is bounded by the number of available target devices, and

limited by the CPU’s ability to execute multiple RPC servers and connections to the

tracker simultaneously. To date, no existing DL auto-tuner is capable of performing

intra-device parallel candidate measurements reliably - that is to execute multiple tensor

programs on the same target-device whilst performing their latency measurements, and

maintain satisfactory DL auto-tuning performance.

5.2.2 Naïve Intra-device Parallel Measurements

To introduce intra-device parallelism during candidate measurements, N local RPC

servers could be spawned and bound to a single GPU, where each RPC server executes

a process with an attached CUDA Stream [271], enabling simultaneous execution of

up to N candidate tensor programs. This, however, introduces overhead of spawning
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multiple long-running RPC servers per GPU target-device and further, makes it more

challenging to control and analyse the pattern of candidate submissions for execution.

An initial, naïve approach to challenge the established view of the need for serial intra-

device candidate measurements during DL auto-tuning, and avoid spawning multiple

RPC servers, is to circumvent the existing RPC-based serial infrastructure and manage

multiple candidate measurement processes separately. Within this approach, during each

measurement round, dp (Degree of Parallelism) processes are spawned and assigned a

separate CUDA Stream that executes the respective GPU kernel for the tensor program,

enabling dp simultaneous tensor program executions. Hereafter, this approach is referred

to as Naïve Parallel Measurement (NPM). The NPM approach considers a local DL

auto-tuning deployment with a single GPU. Multi-GPU mechanism, amongst other

improvements is presented in Chapter 6.

5.3 Experiment Setup

To analyse the impact of intra-device parallelism on tensor program latency measurement

effectiveness and the cost of performing auto-tuning, a set of experiments was performed

involving multiple hardware platforms, tensor programs and DL auto-tuners, comparing

the conventional serial approach and the proposed naïve approach - NPM.

5.3.1 Hardware Platforms

Table 5.1: Details of hardware platforms used during experimentation

Host Target-device (GPU)
Abrv. CPU DRAM Model Arch. DRAM

A 64-cores 2x Intel Xeon 5218, 2.3Ghz 196GB Nvidia V100 Volta 32GB
B 24-cores AMD 1920X, 3.5GHz 128GB Nvidia GTX2080 Turing 8GB
C 12-cores Intel i7-6850K, 3.8GHz 32GB Nvidia GTX1080 Pascal 8GB
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All performed experiments involved auto-tuning DL tensor programs towards Nvidia

GPUs contained within three distinct compute platforms (A, B and C), as shown in Table

5.1. Each platform differs in terms of the CPU model, available DRAM memory and the

available GPUs. GPUs were selected across three distinct Nvidia architectures: Pascal

[222], Turing [224] and Volta [223] to determine feasibility of parallel measurements and

their impact across a wide range of popular DL auto-tuning target-devices.

5.3.2 Software, Middleware and Auto-tuners

Table 5.2: Details of middleware and software such as DL frameworks used during the study

Type Specification Version

Operating System Ubuntu 20.04.02
GPU Driver / Compute Lib. Nvidia CUDA [231] / Driver (Linux) 11.3.1 / 465.31
DL / Codegen Compiler Apache TVM / LLVM [172] 0.8 / 11.0
DL Frameworks Pytorch [1] / Apache MXNet [79] 1.11.0 / 1.8.0

Similar to the study performed within Chapter 3, each host platform contained identical

deployments of an Operating System and middleware, as detailed within Table 5.2.

Most recent versions of software were used at the time of experimentation.

To perform auto-tuning, three SOTA DL auto-tuners were used, selected based on

general popularity within the TVM online community and availability of source code

online, necessary for instrumentation and analysis. The following auto-tuners were used:

(1) AutoTVM [40] - a template-based auto-tuner that leverages a GBT cost model

and an SA-based search strategy (abbreviated as AT in figures); (2) Chameleon [8] - a

template-based auto-tuner that leverages the same cost model as AutoTVM, replacing

the search strategy with an RL-based approach (abbreviated as CH in figures); and

(3) Ansor [385] - an autoscheduler that leverages a modified cost model adopted from

AutoTVM and an Evolutionary search strategy to generate high-performance tensor

program schedules (abbreviated as AN in figures).
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Each auto-tuner was configured with its default parameters, obtained from the

associated publications and codebases available online. Section 2.6 provides architectural

and design details of the auto-tuners used for experimentation, while Tables F.1, F.5,

F.6 and F.7 within Appendix F provide parameters used to configure the auto-tuners.

5.3.3 Workloads

Table 5.3: Tensor operator workloads used during experimentation. For more in-depth details, please
see Table C.1 in Appendix C

Total
Count Class Tensor Op Type Input

Types
Input
shapes Variants FLOPs range

3 MatMul Matrix multiply fp32 NHW Regular 180 - 6.71E+08

7 Conv1D Convolution 1D fp32 NCW,
NWC

Regular,
Transposed 36 - 221,448

16 Conv2D Convolution 2D fp32,
int8

HWCN,
NCHW,
NHWC,
NCHWc

Regular,
Depthwise,
Grouped

576 - 1.21E+09

6 Conv3D Convolution 3D fp32 NCDHW Regular,
Transposed 27,648 - 5.24E+08

1 Corr Correlation
operator fp32 NCHW Regular 70,308

3 Dense Dense (FC)
layer operator

fp32,
int8 NHW Regular 1,024,000 - 1.84E+08

Experimentation performed during evaluation of the NPM approach, involved auto-

tuning 36 unique tensor operators, as outlined in 5.3. Tensor operators selected consisted

of commonly occurring operators within CNN models, as well as custom operators with

multiple variants (for full details on the tensor operator characteristics, see Table C.1 in

Appendix C. Expressions for each tensor operator were specified using TVM’s Tensor

Expression (TE) language, ensuring that all operators are able to leverage existing

schedule templates within TVM’s TOPI, such that they can be auto-tuned using

AutoTVM and Chameleon (Ansor does not require templates). Studied workloads range

in shapes, sizes, variants and overall CI to represent many potential DNN architectures.
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5.3.4 Collected Metrics

During experimentation, tensor program execution latency was captured via timestamps

during DL auto-tuning measurements. Derived from the execution latency, metrics

such as latency increase/decrease with respect to some latency setpoint were obtained.

Furthermore, total DL auto-tuning time cost was captured via less granular start and

end timestamps. In scenarios that involve NPM measurements, the measure of δ was also

captured - difference between measured latency performed with some dp (for example,

two or four) vs. a measurement performed in serial for the same candidate.

5.3.5 Experiments

36 unique tensor operators were auto-tuned using three SOTA auto-tuners and the NPM

infrastructure. Seven distinct dp levels (1, 2, 4, 8, 16, 32, 64) were studied across all tensor

operator and auto-tuner combinations. Experiments utilising the serial measurement

infrastructure were also performed to obtain reference latency measurements of best

found candidates per auto-tuner. Each experiment involved auto-tuning a tensor operator

towards a given GPU until 500 measurements were performed.

5.3.5.1 Nvidia MPS

In addition to the NPM dp level experimentation, a subset of tensor operators were

selected for NPM auto-tuning with Nvidia Multi-process Service (MPS) [228] enabled.

Nvidia MPS is client-server implementation of the CUDA runtime API, that enables

multiplexing of GPU kernels originating from different CPU processes, facilitating their

concurrent execution on the GPU. Typically, kernels originating from separate threads

within a single process may run concurrently as they are managed as part of the same

CUDA context, however, kernels originating from separate processes cannot, and are by

default allocated to separate execution queues that are managed by a black-box scheduler
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within the driver. Nvidia MPS enables separate process kernels (for example, candidate

tensor program executions) to share GPU compute resources concurrently, in turn

increasing resource utilisation. The experiments involving Nvidia MPS were performed

to determine whether it could be a viable strategy to increase overall GPU compute

and memory utilisation, and speed up auto-tuning further, as well as to determine its

impact on measurement accuracy.

5.4 Experiment Results
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Figure 5.4: Impact of different degrees of parallelism during NPM: Reporting reduction in total auto-
tuning time cost compared to serial measurement infrastructure across different tensor operators, degrees
of parallelism and auto-tuners. Reporting averaged results across three platforms. It can be observed
that the degree of speedup depends on the auto-tuner, tensor program and degree of parallelism, with
times where parallelism produces counterintuitive slowdown compared to serial measurements.
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5.4.1 Auto-tuning time cost

It can be observed that auto-tuning time is consistently reduced when performing

measurements using the NPM infrastructure, as shown in Figure 5.4. At dp levels dp

larger than eight (higher number of simultaneous candidate executions), auto-tuning

with NPM infrastructure resulted in overall auto-tuning speedup of between 2 and

3.36× in relation to serial measurements. Lower number of simultaneous candidate

executions (dp = 2 or 4) resulted in less significant improvement of between 1.01 and

1.2×. This difference in speedup is intuitive since the more simultaneous candidate

tensor program executions there are, the higher the measurement throughput. However,

it can be observed that the achieved speedup is non-linear in relation to the applied dp.

5.4.1.1 GPU Time-slice Scheduling

The lower than ideal speedup as a result of naïve parallelisation of tensor programs stems

from the specificity of GPU scheduling with respect to kernels originating from separate

host processes. Such kernels are managed by the Nvidia GPU scheduler, which disallows

parallel execution of kernels originating from different processes (more specifically from

different CUDA Streams). According to documentation [271], each such kernel receives

a slice of the GPU execution time and will be pre-empted once its launch thread grid is

completed, replacing it with another kernel to begin its thread grid computation.

Commonly, the majority of the time spent during tensor program execution consists

of the CPU setting up the launch procedure, loading data onto the device, and waiting for

the respective GPU kernel to complete its work and return back results. Whilst waiting

for the kernel computation results might not be an issue during serial measurements,

since there is no competition between tensor program kernels for the GPU time slices, it

begins to become impactful during NPM. During NPM, the multiple CPU processes

managing the awaiting tensor program kernels, become blocked at the CUDA Runtime
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level, awaiting any straggler kernels. This prevents them from fully utilising the CPU

capabilities for performing tasks such as data loading or setting up subsequent kernel

launches, ultimately resulting in long idle CPU time and prolonged auto-tuning time.

5.4.1.2 Candidate Measurement Timeouts and Runtime Errors
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Figure 5.5: Proportion of successful and failed candidate measurements across different degrees of
parallelism adopted during NPM measurements. All measurements performed with the timeout set to
three seconds. Candidates were proposed using the Grid-index auto-tuner towards the GPU in platform
A, to maintain candidate repeatability across experiments. See Figures H.3 - H.11, in Appendix H.2 for
additional results across remaining platforms, other auto-tuners and additional tensor operators.

Conventionally, all candidate tensor programs submitted for measurement within

the default candidate measurement infrastructure, utilise a timeout setting (set to

three seconds). This guard ensures no tensor program can occupy the target-device for

longer than three seconds during its measurement. Usually, candidates complete their

computation far ahead of their three second timeout setpoint, however, in the worst

case, the next candidate is prevented from being executed for more than three seconds.

The worst case occurs when a candidate is programmatically correct (and is thus

directed to be measured), however, the loop transformations performed as part of its

schedule, cause the program kernel to have a disproportionately long execution time
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on the GPU. Other causes of timeouts are Out-of-memory (OOM) errors caused by

the candidate attempting to utilise more GPU DRAM memory than is available, also

commonly originating from inefficient schedules proposed by the auto-tuner.

In several experiments, it can be observed that auto-tuning with the NPM

infrastructure at lower dp levels of 2 or 4, results in auto-tuning time cost larger

than that with serial measurement infrastructure (dp = 1) - see series for Dense and

TConv3D-NCDHW in Figure 5.4. This is because execution timeouts and OOM errors

are more prevalent when multiple candidates are launched simultaneously via NPM, as

depicted for several tensor operators and the Grid-index auto-tuner towards platform A

in Figure 5.5. Results for other auto-tuners and platforms are depicted in Figures H.3,

H.4, H.5, H.6, H.7, H.8, H.9, H.10 and H.11 found in Appendix H.2.

Given that multiple candidates have to wait for their turn to start executing kernels

in NPM, there is a higher likelihood of their timeout and the programs being forcefully

terminated. Furthermore, whilst tensor program kernels are ultimately serialised by

default at the level of the CUDA time-slice scheduler, their inputs and intermediary

data is pre-allocated when they are submitted for execution. As such, even a few

simultaneously submitted, large-CI kernels, may result in more frequent OOM errors.

Both in the cases of timeouts and runtime errors, the CPU is idle for prolonged period of

time compared to the time spent on executing kernel on the GPU during measurement.

5.4.1.3 Amortisation of Slowdown

Higher dp levels (16 - 64), in part amortise the inefficiencies associated with awaiting

CPU processes that execute their tensor programs. This is due to the number of in-flight

candidates being measured simultaneously, which saturates the available CPU cores, in

part reducing idle time and enabling higher measurement throughput compared to a

lower dp level. Importantly, however, the CI and memory footprint of the tensor operator

must be low enough to fit dp tensor program candidates within the GPU simultaneously,

157



Chapter 5. A Naïvely-parallel Approach to Reduce DL Auto-tuning Costs

0.0

2.5

5.0
Conv1D-NCW Conv2D-HWCN

0.0

2.5

5.0
Conv2D-NCHW Conv3D-NCDHW

0.0

2.5

5.0
Corr-NCHW Dense

AN AT CH0.0

2.5

5.0
MatMul

AN AT CH

TConv3D-NCDHW

AutoTuners

Au
to

-tu
ni

ng
 S

pe
ed

up
 (X

) f
ro

m
 S

er
ia

l M
ea

su
re

m
en

ts

DP2 DP4 DP8 DP16 DP32 DP64

Figure 5.6: Impact of different degrees of parallelism during NPM with Nvidia MPS turned on:
Reporting reduction in total auto-tuning time cost compared to serial measurement infrastructure
across different tensor operators, degrees of parallelism and auto-tuners, averaged across three platforms.

without resulting in substantial increase of errors or timeouts. Candidate tensor programs

for complex tensor operators with large memory footprint may result in increased errors

and timeouts when auto-tuned with high dp level. The overall throughput of both

successful and failed candidate measurements is increased at higher dp, however, linear

auto-tuning speedup (for example, 64 times for dp = 64) is rarely possible due to CPU

and GPU capability limits, timeouts, runtime errors and the serialisation of tensor
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Figure 5.7: Differences in tensor program and kernel execution patterns when performing candidate
measurements using serial, NPM and NPM + Nvidia MPS measurement infrastructures.

program kernels at the CUDA Runtime level. However, parallel execution of tensor

programs helps to amortise inefficiencies at the CPU process level, leading to faster

measurements compared to serial auto-tuning, as shown in Figure 5.7.

5.4.1.4 Impact of Nvidia MPS

As depicted in Figure 5.6, enabling Nvidia MPS during NPM auto-tuning results in

moderate improvement in terms of auto-tuning time cost compared to auto-tuning

with MPS disabled. With Nvidia MPS enabled, it was possible to further speed up

auto-tuning by between 0.98% and 10.97% (δ = 25.6%) compared to NPM alone, across
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the evaluated tensor programs and platforms This effect was especially observable

at higher dp levels. These results are intuitive as the larger number of simultaneous

or overlapping kernels, can pack the GPU resources available better, thus increasing

target-device utilisation and auto-tuning measurement throughput. Figure 5.7 depicts

the differences in CPU process execution patterns and GPU kernel behaviour, between

NPM auto-tuning alone and the combination of NPM and Nvidia MPS.

5.4.2 Quality of Candidate Measurements
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Figure 5.8: Improvement in achieved latency of the best found tensor program as a result of auto-tuning
them with three different auto-tuners towards platform A’s GPU. Results depict improvement in
achieved latency compared to an un-optimised tensor program, across different degrees of parallelism (2
- 64) used during measurement of candidates. In each parallel scenario, the candidate was re-measured
in isolation (represented by arrows) to obtain its un-affected execution latency measure, and determine
whether and how parallel measurements affect the overall efficacy of DL auto-tuning.
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The intuition behind serialising candidate measurements during auto-tuning is that

any degree of parallelism will inadvertently reduce the quality of measurements performed

(accuracy and consistency), rendering them useless for the auto-tuner when adjusting its

cost model and traversing the tensor program schedule space. Attempting to challenge

this assumption, requires understanding the source of the measurement quality reduction,

and analysis of the magnitude of impact observed as a result of varied levels of dp.

5.4.2.1 Candidate Measurement Accuracy

To understand how varying dp affects quality of candidate measurements, and in turn the

overall auto-tuning quality, it is necessary to establish the differences between auto-tuning

performed using NPM infrastructure, with each distinct dp level, in contrast to serial

auto-tuning with existing measurement infrastructure. This difference is represented as

δ, equal to |r̃i − ri|, where ri represents the latency of candidate tensor program ci as

collected during a serial measurement, and the r̃i is the execution latency of the same

candidate tensor program measured using the NPM infrastructure.

Figure 5.8 depicts tensor program latency improvement vs. un-optimised tensor

operator implementation (for example, default DL compiler schedule), for auto-tuning

performed across different tensor operators, auto-tuners and levels of dp (including

serial). It can be observed that the tensor program latency improvement achieved with

the NPM infrastructure, is typically always reported as worse compared to improvement

reported for auto-tuning with serial measurement infrastructure.

Furthermore, when measurement of the best-found candidate is repeated in isolation

(serial), its reported latency differs substantially from the one reported by the NPM

infrastructure - as depicted by black arrows in Figure 5.8. However, when individual

candidate executions were examined using Nvidia Nsight Systems [236] and Nvidia Nsight

Compute [235], their on-GPU kernel latencies, when executed using NPM, matched

closely those obtained using the serial measurement infrastructure.
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This is explained by the fact that by default, latency measurements are performed

at the level of the CPU, within the process that manages the execution of the tensor

program, as it can be observed in Figures 2.22 and 5.7. Within both serial and NPM

candidate latency measurements, the measurement routine relies on start and end

timestamps collected at the beginning and end of every measurement repeat of a single

candidate. As outlined in Section 2.6.2.5, each candidate tensor program kernel is

launched R×N times where R stands for a single measurement repeat, within which

the kernel executes N times to obtain a reliable measure of execution latency. The NPM

infrastructure introduces efficiency gains by enabling CPU-level parallelism. During

NPM, multiple GPU kernels contained by independent CUDA Streams, driven by

individual CPU processes (dp ≥ 2), are blocked and must await at the CUDA time-slice

scheduler, however their CPU-level routines take advantage of parallel computation.

The above findings suggest that majority of the measurement inaccuracy that

manifests during NPM auto-tuning, stems from the measurement method itself, which

occurs at the level of kernel launch repeats (performed at the CPU) - see Figure 5.7.

Since the time-slice scheduling of GPU kernels can be arbitrary (black-box), and cannot

be externally influenced, the time between kernel being launched and the kernel executing

on the GPU is factored into the measured latency. This poses no issues during serial

measurements, however, results in unpredictably inflated tensor program candidate

execution latency when measured using CPU-level timestamps, further amplified by

differences in GPU SM utilisation and memory access contention between simultaneously

executing tensor programs.

5.4.2.2 Candidate Measurement Consistency

DL auto-tuners rely upon consistently accurate candidate latency measurements to

continually update their cost models that influence the schedule space traversal to

discover high-performance tensor programs. The inaccuracy of measurements caused by

162



5.4. Experiment Results

10 5

10 4

10 3
MatMul

10 5

10 4
Conv1D-NCW

10 3

10 2

2

Conv2D-NHWC

10 5

10 4

10 3

10 5

10 4

10 3

10 2

4

10 5

10 4

10 3

10 5

10 4

10 3

10 2

8

10 5

10 4

10 3

10 5

10 4

10 3

10 2

16

10 5

10 4

10 3

10 5

10 4

10 3

10 2

32

0 20 40

10 5

10 4

10 3

0 20 40

10 5

10 4

0 20 40

10 3

10 2

64
De

gr
ee

s o
f P

ar
al

le
lis

m

Lo
g-

sc
al

e 
La

te
nc

y 
(s

)

First 50 candidates measured

Serial NPM NPM + Nvidia MPS

Figure 5.9: Measured latency of proposed candidate tensor programs when auto-tuning with a Grid-
index auto-tuner (to ensure repeatability of candidate proposal pattern). Reported 50 first candidates
proposed by the auto-tuner towards the GPU within platform A, across several tensor operator auto-
tuning tasks. Compared latency measurements produced by serial, NPM and NPM + MPS measurement
infrastructures. For extended results, see Figures H.1 and H.2 in Appendix H.1.

CPU-level timestamp collection at higher dp also degrades the ability of the auto-tuner

to discover high-quality candidates. Consistency of measurement accuracy is crucial

such that auto-tuner cost models do not converge onto false minima and waste time

and energy exploring high-latency schedule space areas.

Figure 5.9 depicts auto-tuning progress (latency of candidate executions across time)

across different tensor operators, when auto-tuning with a Grid-index auto-tuner [39]

163



Chapter 5. A Naïvely-parallel Approach to Reduce DL Auto-tuning Costs

utilising the serial and NPM infrastructures, across different levels of dp and with Nvidia

MPS enabled or disabled. The Grid-index auto-tuner was selected for these experiments

to ensure identical candidates are proposed for the same tensor operator across multiple

auto-tuning sessions1. This enables one-to-one latency comparisons across different dp

levels, and across serial and NPM infrastructures. Observing results in Figure 5.9, it

can be noted that for identical candidate measurements within auto-tuning sessions

of identical tensor operators, higher levels of dp produced increasingly more diverse

distributions of the measured latency compared to the same candidate measurements

performed in isolation. Different tensor operators (varied CI) had varying impact on

such divergence, with further differing impact across measurements performed using

NPM infrastructure with Nvidia MPS enabled/disabled.

This stems from the black-box scheduling decisions made at the CUDA Runtime level.

At lower dp levels, the fewer the number of simultaneous kernels originating from different

CUDA streams can be more effectively packed within the available computational

resources of the GPU (SMs), increasing the probability that the measured execution

latency of the tensor program is closer to the same tensor program executing in isolation

- in other words, reducing the impact of contention on execution characteristics. At

higher dp levels, more simultaneous kernels are awaiting their turn to execute, sometimes

long-enough to violate the overall measurement timeout set point, and as such, the

measurement processes that manage them, must wait longer for the kernel results to be

returned and the end timestamps to be saved, causing measurements to be inaccurate.

The accuracy divergence occurs because these phenomena are not consistent across

time, as different candidates occupy different portions of the GPU compute resources

for different lengths of time, further influenced by non-deterministic kernel scheduling

decisions made by the black-box CUDA Runtime scheduler.

1Such fair comparison using auto-tuners such as Ansor or AutoTVM would be infeasible, given their
schedule space search algorithms propose different schedules during new auto-tuning sessions, when
optimising an identical tensor operator.
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5.4.2.3 Impact of Nvidia MPS

Examining Figure 5.9, it appears that enabling Nvidia MPS during NPM, reduces overall

measurement inaccuracy by 15% across all evaluated tensor operator classes. However,

inconsistency of this reduction remains high (40% Median Absolute Deviation [181, 251]).

Reduction in inaccuracy stems from kernel throughput as a result of enabling Nvidia

MPS. As detailed in Section 5.3.5.1, Nvidia MPS combines kernels originating from

different CUDA Streams (different CPU processes), into a single Stream, circumventing

kernel serialisation at the GPU time-slice scheduler level. This results in more GPU

compute resources being utilised simultaneously, thus affecting the inaccuracy measure,

as kernel measurements complete earlier, resulting in δ being smaller across time.

Whilst marginally speeding up candidate measurements and reducing measurement

inaccuracy, Nvidia MPS retains the effect of causing accuracy inconsistency, and in

several cases (Conv1D-NCW at dp = 16, 32, MatMul at dp = 16, 32 in Figure 5.9),

manifests further inconsistency artefacts (repeating periods of "flat", highly inflated

latency, followed by latency "dips"). These stem from the aforementioned kernel

funneling whereby many kernels execute on the device at the same time, preventing

their measurements from being completed until all of them complete. While improving

workload throughput, Nvidia MPS impacts the cache and/or memory transaction

efficiency of concurrent CUDA Stream kernels, where kernel executions are interleaved

and compete for memory access, particularly in cases of memory-bound programs [271].

The performed analysis suggests that enabling Nvidia MPS is counterproductive

during parallel candidate measurements within auto-tuning, due to the negative effects

on measurement accuracy and accuracy consistency. As it is important for auto-tuners

to rely upon accurate and consistent measurements when exploring tensor operator

schedule spaces, enabling Nvidia MPS, while utilising the inaccurate NPM infrastructure,

can further impair auto-tuner’s ability to propose optimal candidates.
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5.5 Findings and Design Directions

The study explored NPM infrastructure for performing parallel measurements during

tensor operator auto-tuning, identifying several important design decisions for a candidate

measurement infrastructure used by auto-tuners, that if appropriately leveraged, could

lead to significantly lower overall auto-tuning time costs, whilst maintaining auto-tuning

quality across a range of different tensor operators, auto-tuners and target-devices.

Insight 1 - Performing more accurate measurements: The study indicates that

tensor program latency measurements, when performed naïvely in parallel using CPU-

level timestamps, inadvertently result in measurement inaccuracy. This occurs due to

serialisation of kernels at the GPU-level. As the CPU-based kernel launch routines await

kernel completion, the time spent between kernel launch and execution will be captured,

producing inaccurate measurement. Furthermore, the inaccuracy pattern is affected

both by candidate execution characteristics and the black-box GPU-level scheduling,

causing accuracy inconsistency across candidates. This in turn hinders the auto-tuner’s

ability to navigate the candidate schedule space via cost models and search algorithms.

Thus, an important design direction is to leverage more accurate measurement

methods when parallelising candidate tensor program measurements, such that the auto-

tuners can reliably leverage them during schedule space exploration.

Insight 2 - Managing trade-offs between concurrency and failures : Another important

observation is that naïvely increasing the number of concurrent tensor programs, leads

to more frequent timeouts and runtime failures. This stems from the statically set, three

second timeout used in conventional measurement infrastructure for all candidate tensor

programs. A static timeout, combined with GPU time-slice scheduling of concurrent

kernels, and measurement routines awaiting kernel completion, results in premature

preemption of measurements that would have otherwise succeeded if performed serially.

In turn, when auto-tuning with the NPM infrastructure, this results in a
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reduced number of successful measurements available for the auto-tuner cost model

updates, ultimately reducing auto-tuning efficacy or in the worst case, rendering it

counterproductive compared to un-optimised schedules. Additionally, the degree of

computational resource utilisation varies across candidate tensor programs for a single

tensor operator over time. As auto-tuning continues, candidates with increasingly better

performance are proposed, that better utilise the available GPU compute resources.

This results in different execution footprint across candidates as they reach lower latency,

in turn affecting the GPU scheduling decisions.

This suggests that the measurement timeout should adjust to dp at which the

measurements are performed. For example, the higher the number of simultaneous

measurements, the larger the individual per-candidate timeout should be, minimising

failures. Furthermore, the timeout adjustments must dynamically account for the

varying execution patterns of candidates within a single auto-tuning session, such that

progressively better candidates are not prematurely pre-empted causing them to fail.

Insight 3 - Adapting to different tensor operators : The analysis suggests that certain

tensor operators benefit more from the NPM infrastructure during their auto-tuning,

with respect to reducing total auto-tuning time cost and less impactful measurement

inaccuracy and inconsistency. This stems from the different overall characteristics of

tensor operators, which include compute complexity, memory footprint and ability of the

auto-tuner to generate schedules that parallelise tensor operator computation optimally

across the available GPU cores. It is likely that for different combinations of tensor

operators and target-device and host platform capabilities, there exists a different range

of dp levels that optimally balances the trade-off between concurrency (achieving high

measurement throughput), measurement accuracy and measurement consistency.

As such, to reduce auto-tuning operational costs, whilst delivering consistently accurate

parallel measurements, the selection of an appropriate dp level must take into account

the varied performance profiles across tensor operators with different characteristics.
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Chapter 6

DOPpler: Parallel Measurement

Infrastructure for DL Auto-tuning

Guided by the insights and design directions established in Chapter 5, this Chapter

describes the design, implementation and evaluation of DOPpler - a parallel DL auto-

tuning measurement infrastructure that is capable of reducing total auto-tuning time

cost by exploiting parallelism during candidate tensor program latency measurements,

whilst maintaining optimisation quality equivalent to that of auto-tuning with serial

measurement infrastructure. DOPpler actively adjusts the level of measurement

concurrency (dp) towards the given auto-tuning scenario, and monitors quality of

performed candidate measurements to ensure results reported to the auto-tuner allow it

to maintain high schedule space exploration efficacy. Simultaneously, DOPpler also works

towards avoiding measurement timeouts and runtime errors (ones that are unrelated

to erroneous candidate schedules), such that maximum number of valid candidate

measurements complete successfully, and can be leveraged by the auto-tuner during cost

model updates to then better navigate the schedule space.
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6.1 System Design and Implementation
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Figure 6.1: Design of the DOPpler measurement infrastructure

As shown in Figure 6.1, DOPpler acts as an intermediary layer between the auto-

tuner and target-devices, replacing the conventional, serial measurement infrastructure

to enable high-quality, intra and inter-device parallel candidate measurements. DOPpler

comprises two major components that work together to achieve these goals:

(1) Precise Parallel Measurer (PPM) is a component within DOPpler,

responsible for enabling parallelisation of candidate tensor program measurements

within the same target-device GPU as well as across multiple GPUs. Moreover, PPM

introduces a method for collecting kernel execution latency measurements directly from

the GPU, as opposed to collecting timestamps at the CPU level - the method used by

conventional candidate measurement infrastructure.

(2) Calibrator: The Calibrator module compliments the PPM to reactively adapt

dp towards an auto-tuning scenario, both in terms of the specific tensor operator

characteristics, target-device capabilities and the changing execution characteristics of

candidate tensor programs for a given tensor operator across time. Calibrator analyses
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the accuracy and consistency of performed measurements in real-time, and continually

adjusts the dp to levels appropriate for the current batch of candidate measurements.

Furthermore, the Calibrator ranks a small portion of best found candidates and re-

measures their latency in isolation to ascertain selection of the globally best candidate

out of all proposed during the auto-tuning session.

6.1.1 DOPpler’s Objectives

Formally, DOPpler is designed towards three core objectives, as follows:

Objective 1: Maximise dp during auto-tuning measurements, thus increasing

measurement throughput and utilisation of the target-device GPU and platform CPU:

argmax dp (6.1)

Objective 2: Minimise measurement time1 Υ = {υi | i = 1 . . . K} for a set of

candidates C = {ci | i = 1 . . . K} proposed by the auto-tuner given target-devices

H = {hj | j = 1 . . . N} and operating with degree of parallelism dp = {p = 1 . . .maxdp},

where E denotes tensor program execution during its latency measurement.

argmin
i,j,p

Υ = E(ci, hj, dp) (6.2)

Objective 3: Minimise measurement inaccuracy δmean, resultant from assigned dp

being too high for a given sub-batch of candidate tensor program latency measurements,

that execute in parallel during a single DOPpler round2, as follows:

argmin
i,j,p

δmean = E(ci, hj, dp) (6.3)

1Time taken to perform latency measurement of a single candidate. Note: In conventional (serial)
and parallel measurement infrastructures, tensor program kernels are executed multiple times during
their latency measurement to ensure measurement accuracy)

2DOPpler rounds are elaborated on within Section 6.1.3
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6.1.2 Precise Parallel Measurer

Algorithm 3: Precise Parallel Measurer
Input: Bcurr, dp, G
Output: Mcurr

1 init
2 W ← Instantiate maxdp workers across G devices
3 begin
4 tout = CalcTimeout(dp) // Eq. 6.4

5 while candidates left to measure do
6 Bsel ← take dp ×G candidates from Bcurr

// Allocate dp candidates to each device gi ∈ G in a round-robin manner

7 BGalloc ← allocate(Bsel, dp, G)
8 for (bi, gj) ∈ BGalloc do
9 subm← measure(wrk=wij,dev=gj,cand=bi,tout=tout)

10 end
11 end
12 Mcurr ← Retrieve results from workers W

13 end

6.1.2.1 Parallel Candidate Execution

To ensure DOPpler (compared to the naïve approach proposed within Chapter 5) can

manage parallel candidate tensor program execution and measurement more reliably, a

process manager and candidate execution / measurement routines were designed across

different levels of the DL compiler stack. Algorithm 3 describes the PPM, where Bcurr

is a set of compiled candidates and G is the number of available target-devices.

The process (worker) manager leverages the multiprocessing [81] Python library

to construct W reusable CPU worker processes, where W = {wi | i = 1 . . .maxdp}.

maxdp specifies the maximum expected dp possible for the auto-tuning session, and is a

hyperparameter that can be set by the user. Within all performed experiments, maxdp

has been set to 64 - the size of the batch of candidate tensor programs proposed for
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latency measurement during auto-tuning (see Tables F.5, F.6 and F.7 within Appendix

F for details on auto-tuner hyperparameters set during experimentation).

Each worker process wi ∈ W manages a separate CUDA Stream that encapsulates

and executes the tensor program kernel on the GPU, and performs calls to the custom

latency measurement subroutines added to the DL compiler tensor program runtime

environment (C++). The workers are reusable3, for the duration of auto-tuning of a

single tensor operator. As such instantiating these workers is a one-off cost.

Tensor program latency measurement requests are sent to each worker wi ∈ W , in the

form of a compiled candidate tensor program and a set of execution parameters (timeout

setpoint, number of measurement repeats). The requests are made by DOPpler’s main

routine via Inter-Process Communication. As detailed in Section 5.4.2, separate CUDA

Stream kernels are serialised by the GPU time-slice scheduler. Thus, the core cost

savings, in the form of increased measurement throughput achieved by the parallel worker

manager, have their source at the platforms’s CPU level. More specifically, caused by the

amortisation of increased per-candidate measurement time Υ (stemming from workers

waiting for kernel results) by the increased number of in-flight candidate measurements.

DOPpler does not attempt to spatially multiplex candidate tensor program kernel

executions at the GPU, for example, by enabling Nvidia MPS. As described in Sections

5.4.1.4 and 5.4.2.3, enabling Nvidia MPS imposes further measurement inaccuracy and

inconsistency across time, whilst resulting in modest auto-tuning time cost reduction.

6.1.2.2 Adaptation of Timeout Setpoint

As described in Section 5.4.1.2, high dp levels during candidate tensor program latency

measurements, result in an increased likelihood of tensor programs violating their timeout

setpoints, and causing runtime errors such as Out-of-memory (OOM) due to resource

3Unlike the ephemeral, serialised processes spawned within conventional serial infrastructure for
each candidate tensor program measurement
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availability violations. As such, to achieve timely and successful completion of parallel

candidate measurements, DOPpler addresses this by introducing the concept of an

adaptive timeout for individual candidate tensor program measurement processes. An

appropriate timeout is determined dynamically for each candidate tensor program ahead

of its measurement, using a modified Heaviside step function [23], as follows:

tout = ⌊max{η,min{ι, 2ι× tanh(ϕdp
G

2
)}}⌋ (6.4)

where η is the minimum tout, ι is the maximum tout, G is the set of target-devices

available for measurement, and ϕ the ‘steepness’ parameter that controls how quickly

tout should increase given higher dp and G. The tout increases as dp and G increase.

In terms of selected hyperparameters, η was set to conservative four seconds (+1 in

relation to the default three seconds found within serial measurement infrastructure). ι

was set to 20 seconds, which was guided empirically by auto-tuning tensor operators

with progressively higher CI using the Grid-index auto-tuner. The maximum time taken

to complete maxdp concurrent measurements successfully was noted and represented

as ι, utilising highest-possible CI tensor operator that fits within the GPU resources,

whilst avoiding timeout setpoint violations and runtime errors such as OOMs.

6.1.2.3 Maintaining Measurement Accuracy

As outlined in Section 5.4.2, utilising the conventional candidate latency measurement

method (CPU-level timestamps) during parallel candidate tensor program executions,

results in increased measurement inaccuracy. To alleviate measurement inaccuracy,

DOPpler’s PPM introduces a measurement routine that leverages direct on-device

kernel execution latency information collection. To enable direct on-device latency

measurements, PPM utilises calls to the Nvidia Activity API available within the Nvidia

CUDA Profiling Tools Interface (CUPTI) library [226] - a set of low-level profiling tools
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Figure 6.2: Differences in candidate tensor program and GPU kernel execution patterns when performing
candidate measurements with serial measurement infrastructure vs. using DOPpler.

for Nvidia GPUs. More specifically, PPM utilises the CUpti_ActivityKernel5 records

made available by the Activity API, containing start and end timestamps of each kernel

execution, collected by the GPU itself, as instructed by the CUDA driver.

DL systems engineers often utilise Nvidia Activity API to manually inspect and

measure particular portions of GPU kernels. The Activity API also underpins Nvidia

visual profiling suites as an internal library [236, 235]. DOPpler’s PPM automates this

instrumentation for each executed kernel, by modifying the low-level DL compiler runtime

routine, responsible for launching tensor program kernels. Once the kernel records are

collected, the PPM extracts necessary timing data and reconstructs a compatible

candidate latency measurement record, returning it back to the auto-tuner. Since the

kernel timing information originates directly from the target-device (via GPU driver),

measurement accuracy is greatly enhanced compared to the CPU-level measurement

approach, and further strengthened by repeated kernel executions during measurement,

following conventional measurement infrastructure approach. The conceptual difference

between serial measurement infrastructure and DOPpler’s PPM is shown in Figure 6.2.
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Whilst DOPpler does not leverage Nvidia MPS and the associated kernel multiplexing

(see Section 5.4.2.3), and employs accurate kernel latency measurements via the PPM,

execution of kernels in close succession manifests in additional GPU DRAM memory

footprint, which inadvertently has an effect on the cache overhead and thus the ability

of kernels to access their operational data efficiently. Any execution timing overheads

resultant from memory and cache sharing are thus captured by the direct on-device

measurements performed via Nvidia Activity API, reporting kernel execution latencies

that are different from those obtained during serial candidate execution and measurement.

Whilst executing candidate tensor programs serially on the GPU usually results in very

low compute/memory resource utilisation, as the dp grows, the available resources

become better utilised and the aforementioned latent phenomena start to manifest.

Thus, there is a specific dp threshold where measurement inaccuracy and inconsistency

become problematic for auto-tuning quality. This threshold is highly dependent on

the unique combination of tensor operator and target-device characteristics. DOPpler

manages the trade-off between achieving high measurement throughput (large dp level)

and maintaining measurement quality (dp low-enough to avoid high degree of inaccuracy

/ inconsistency), using the Calibrator module - as detailed in Section 6.1.3.

6.1.3 Calibrator

Recalling the insights found in Chapter 5, different combinations of dp levels and

tensor operator classes and sizes, manifest different degrees of impact on measurement

accuracy and consistency during parallel auto-tuning measurements. As described in the

previous section, despite the significantly more accurate measurement approach enabled

by DOPpler’s PPM, kernel execution latency remains affected due to memory/cache

access competition phenomena when multiple kernels are launched simultaneously. To

address this, DOPpler’s Calibrator module analyses and dynamically adjusts dp based

on changing operational characteristics.
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Algorithm 4: Calibrator operation
Input: T - Tensor operator definition

C - Batch of candidate configurations for T
G - Available target devices

Output: M - Measurements of each Bi as configured by Ci

1 begin
2 B ← Compile(T , C) // B = Set of compiled candidates

3 while len(B) ≥ 0 do
4 Mres ← Measure(dp ×G candidates from B, dp=dp, devs=G)
5 Mres, Nerr.dp, Nsucc ← RemeasureFailed(Mres)
6 Msmpl ← SampleCandidates(Mres, param) // Eq. 6.6

7 Mremeas ← Measure(Msmpl, dp=1, devs=G)
8 Mres, δmean ← Analyze(Mres, Mremeas) // Eq. 6.7

9 Mupdt ← Update(Mres, δmean) // Eq. 6.8

10 M ← Concat(M , Mupdt)
// REACT Policy Update

11 A← α // Adaptive Max Degree of Parallelism, α is an initialiser, set to 128

12 if (δmean > τ) or (Nerr.dp > (dp × τ)) then
13 A, dp ←MultiplicativeDecrease(A, dp, β) // Eq. 6.9

14 γcur ← CalculateAdjustment(A, dp, γmin, γmax) // Eq. 6.10

15 dp ← |dp + γcur| // Binary Increase

The operation of the Calibrator is described within Algorithm 4, and involves

performing the desired candidate tensor program measurements as a set of measurement

iterations, each utilising a dynamically determined degree of parallelism dp.

6.1.3.1 Initial Parallel Measurements

At the beggining of each auto-tuning measurement round (i.e. once an auto-tuner

proposes a batch of candidate schedule configurations to be measured), the Calibrator

compiles the tensor operator T , |C| times using the TVM DL compiler, where C is a set

of schedule configurations provided by the auto-tuner, producing set of compiled tensor

programs B, each with different execution characteristics. The set of compiled tensor

programs B is then passed onto DOPpler’s PPM in order to perform dp × |G| parallel
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latency measurements with degree of parallelism dp across |G| available target-devices,

where G is the set of handles for the devices. This process produces a set of dp × |G|

measurement results Mres containing tensor program execution latencies. Measurements

Mres are inspected, and any failed measurements are repeated as a smaller sub-batch

with dp =
|Mfailed|

|G| across the available target-devices G. This enables the Calibrator to

establish two important measurement characteristics: (1) Nerr.dp, which denotes how

many measurements have failed (timed out, OOM) as a result of the dp being set too

high4; and (2) Nsucc denoting the number of measurements that have succeeded. These

two characteristics are later used in the process of reactive dp adaptation.

6.1.3.2 DOPpler’s Measurement Anatomy

As outlined within Sections 2.6.2.4 and 2.6.2.5, a latency measurement of a single

candidate tensor program constitutes multiple executions of the tensor program kernel

to increase measurement reliability. This process is further depicted in Figures 2.22 and

5.7 for serial and NPM measurement infrastructures, whilst Figure 6.2 compares the

execution characteristics of DOPpler in relation to the serial infrastructure.

More specifically, let M denote a batch of K completed (successful or failed)

measurements, where M = {mi|i = 1 . . . K}. M is obtained by measuring bi ∈ B

compiled tensor programs as configured by ci ∈ C candidate schedule configurations

provided by the auto-tuner. In line with conventional auto-tuner measurement

infrastructures, each execution of bi ∈ B is repeated R×N times within its measurement

mi to obtain mean execution latency li ∈ L. DOPpler extends each measurement record

mi by also capturing total measurement duration υi ∈ Υ. υi denotes the total time

taken to perform latency measurement of a single candidate tensor program, which

constitutes R×N executions of the tensor program.

4If initially failed measurements succeed once dp is lowered, it indicates too high dp has caused the
initial failure
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6.1.3.3 Latent Measurement Ratios

Examining candidate latency patterns in Figure 5.9, it can be observed that different

candidate tensor programs are variably affected by their parallel operation across the

auto-tuning duration, in terms of accuracy of reported execution latency. The Calibrator

analyses measurement records to identify ones that were disproportionately affected

by the latent phenomena identified in Chapter 5. To identify such measurements, the

Calibrator initially calculates a population of ratios P between mean candidate execution

latencies L and the durations of their associated measurements Υ, as follows:

P = { li
υi
|li ∈ L, υi ∈ Υ} (6.5)

In an ideal scenario (for example, during serial execution), N × li ≈ υi for each mi -

that is the measurement time υi should have a duration close to N times li where li is

the mean measured latency of the candidate tensor program, with small overhead related

to kernel launch and data copy operations (where both are static across candidates).

However, in cases of high tensor operator CI, constrained computational resources

of the target-device, or the dp being set too high, the ratios pi ∈ P for candidate

tensor programs most affected by measurement inaccuracy (stemming from parallel

execution), were found to be disproportionally inflated compared to other ratios within

the population P . Detecting such disproportionally affected measurements can be

advantageous to determine a population-wide measure of inaccuracy within a single

DOPpler iteration, as well as enable to partially correct the initial population.

6.1.3.4 Outlier Detection and Isolated Re-measurements

Calibrator detects such outlier measurement records using a combination of Double

Median Absolute Deviation [181] and modified Z-score [132]. A combination of these

detectors was used due to the distribution of P being non-symmetric, where standalone
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conventional Median Absolute Deviation outlier detectors fail to operate effectively

within such distributions at lower population sizes [279]. Once discovered, the outlier

measurements, coupled with a number of random samples from the rest of the result

set, are selected for re-measurement in isolation. The Calibrator selectively calculates

latency differences between parallel-measured candidates and their serially re-measured

counterparts, without having to re-measure the entire population, and balances the

tradeoff between measurement quality and auto-tuning cost reduction. Subsequently, a

set of Q candidates are selected to be re-measured serially in isolation, constituting the

aforementioned outliers and random samples, with Q constructed as follows:

Q = max(len(Poutliers), ⌈ζ × len(Msuccess)⌉) (6.6)

where Msuccess denotes all successful measurements within DOPpler’s current iteration

and ζ denotes the re-measurement percentage factor - set to 0.2 based on initial empirical

and sensitivity analyses. The re-measurement result records are then used to calculate

δmean, a population-level measure of candidate measurement inaccuracy, as follows:

δmean ← mean

({
|lj − li|

li
| lj ∈ Lremeas, li ∈ L

})
(6.7)

The obtained δmean is then leveraged two-fold in the Calibrator module: (1) to guide

adjustment of dp for the next Calibrator iteration, and (2) to scale current iteration’s

measurements reported to the auto-tuner in an attempt to correct them, as follows:

Mupdt = {pi × (υi − (υi × δmean))|pi ∈ P, υi ∈ Υ} (6.8)

Since the latent ratios are unique to the specific candidate and its measurement, each

such measurement can be adjusted with respect to the population-level δmean, whilst

accounting for the impact of parallelism on the measurement’s accuracy.
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6.1.3.5 Reactive dp Calibration

As outlined before, DOPpler continually adjusts dp to ensure timely and reliable

candidate latency measurements are performed. Ahead of the next measurement

iteration, DOPpler’s Calibrator adjusts next dp by leveraging the REACT policy. The

REACT policy is inspired by the operation of the Binary Increase Congestion control

(BIC) [366] method, proposed initially as a network congestion control mechanism within

the Transmission Control Protocol (TCP). REACT’s goal is to rapidly respond to any

changes in δmean and the number of measurement failures occurring due to current dp

being too high (Nerr.dp), and whilst doing so, maximise dp over time as outlined in

Equation 6.1. The REACT policy is described at lines 11 - 18 of Algorithm 4.

Inspired by the operation of TCP BIC, REACT utilises an adaptive maximum dp

denoted A (and initialised by α) to determine dp for the next measurement iteration. A

is initialised by α to 128 - double of the typical auto-tuner candidate batch size of 64 and

can be modified if necessary. To establish whether the dp needs to be adjusted, REACT

monitors current iteration’s δmean and Nerr.dp for whether they have surpassed threshold

τ , which would indicate that the current iteration has manifested high measurement

inaccuracy or resulted in a large number of failed candidates as a result of the current

dp. In either case, to ensure reliable latency measurements can be obtained within the

next measurement round, dp must be reduced. To do so, inspired by the TCP BIC,

REACT performs Multiplicative Decrease of A using hyperparameter β to adjust next

iteration’s dp as follows:

A←

|dp ×
2−β
2
|, if dp < A

|dp| otherwise

dp ← |dp × (1− β)|

(6.9)
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Xu et al. (2004) [366] sets β to 0.125 motivated by higher network utilisation at the

expense of convergence on the window size. In Calibrator, β is set to 0.2 to focus the

policy on reducing measurement inaccuracy at a modest reduction of throughput. Once

adjusted for inaccuracy and failures, the next iteration’s dp is established by performing

Binary Increase, utilising the γ factor as follows:

γ ←


A−dp

2
, if dp < A

dp − A, otherwise

γ ← max{min{γ, γmax}, γmin}

(6.10)

The γmin and γmax denote the lower and upper bounds for dp adjustment during

each DOPpler’s iteration. This limits the degree of change of dp between consecutive

iterations and reduces sensitivity to transient candidate impact on auto-tuning progress.

In REACT, γmin and γmax are set to two and twelve respectively, in line with [366].

The Calibrator continues to monitor dp and measurement characteristics until auto-

tuning completion, continually adjusting dp in response to measurement inaccuracy,

inconsistency and candidate measurement failure rate. Transitively, Calibrator also

adjusts the dp to both the tensor operator characteristics and target-device capabilities.

For example, when performing auto-tuning of a highly computationally complex and

large tensor operator, which utilises a large portion of the target-device’s computational

capabilities and/or memory resources, the Calibrator will adjust dp accordingly (for

example, reduce dp), working towards reliable measurements being produced. Another

example involves a target-device with very low available resources, which may be capable

of only accommodating a few simultaneous candidate tensor program executions without

violating its resource limits. In extreme cases, dp may be reduced to one, whereby

DOPpler’s operation becomes equivalent to the serial infrastructure, in which case

candidate re-measurements are avoided entirely until dp is increased. Importantly, these
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decisions are made automatically, reactively and transparently, without the need to

provide target-device, auto-tuner or tensor operator characteristics ahead of time.

6.1.3.6 Candidate Rank Selection

To increase reliability of latency measurement results returned back to the user, upon

auto-tuning completion, the Calibrator module re-measures Top-K best-found candidate

tensor programs in isolation to re-affirm the latency measurement of the globally-best

candidate found during auto-tuning. During this process, DOPpler reverts back to

the serial measurement infrastructure. The number of re-measured candidates, K, was

empirically determined (via sensitivity study - see Section 6.3.10) and set to 1% of |C|.

6.2 Experiment Setup

To determine DOPpler’s ability at reducing auto-tuning time cost and maintaining auto-

tuner optimisation quality, an experimental evaluation was performed using several SOTA

auto-tuners, a variety of workloads (including standalone tensor operators and end-to-

end DL models), and three unique hardware platforms. It is important to stress that this

evaluation focuses on comparing the effects of using DOPpler’s candidate measurement

infrastructure vs. the conventional serial measurement infrastructure during auto-tuning.

The evaluation does not attempt to compare the achieved optimisation quality of

individual auto-tuners towards different tensor operators, models or target-devices.

6.2.1 Hardware, Software, Middleware and Auto-tuners

During experimentation, DL auto-tuning was performed towards three distinct target-

device GPUs, as listed in Table 5.1 found in Section 5.3 of Chapter 5. These GPUs

span three distinct architectures: Pascal, Turing and Volta, all of which are supported

by the Nvidia Activity API of the CUPTI library used by DOPpler’s PPM. Software
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packages deployed on the hardware platforms were identical to the ones listed within

Table 5.2 found in Chapter 5, Section 5.3. Likewise, the auto-tuners used were identical

to those used during the Chapter 5 study, that is the AutoTVM, Chameleon (+Ansor),

configured with default parameters, as per Tables F.5, F.6 and F.7 in Appendix F.

6.2.2 Workloads

Table 6.1: Details of DL models used during DOPpler’s evaluation

Model Parameters FLOPs Input Size Top-1 / 5 Acc. Details

AlexNet [168] 62.30M 725.00M 1x3x224x224 57.20% / 80.30% Appendix D.1
SqueezeNet [130] 1.25M 20.00B 1x3x224x224 57.50% / 80.30% Appendix D.2
MobileNet-V1 [121] 4.20M 569.00M 1x3x224x224 66.60% / 90.40% Appendix D.3
ConvNeXt [194] 350.00M 60.90B 1x3x224x224 87.00% / 98.04% Appendix D.5
VGG-16 [304] 138.40M 19.60B 1x3x224x224 71.59% / 90.38% Appendix D.8

DOPpler’s evaluation consisted of auto-tuning 36 tensor operators, as previously outlined

in Table 5.3 found in Section 5.3 of Chapter 5, each accepting an input with batch size

= 1. Further information about the specific tensor operator characteristics are provided

within Table C.1 of Appendix C. Additionally, DOPpler was evaluated by auto-tuning

tensor operators of end-to-end DL models, including AlexNet[168], SqueezeNet [130],

MobileNetV1 [121], VGG16 [304] and ConvNeXt [194], as outlined in Table 6.1. The

models were configured to accept inputs shaped 1× 3× 224× 224 in the NCHW layout,

and output a prediction tensor of shape 1 × 1000. Further information about the

individual model architectures used is provided within Appendices D.1, D.2, D.3, D.5

and D.8. The models originate from several DL frameworks, including Pytorch [1]

and Apache MXNet [163, 79], as well as converted using the ONNX [82] interchange

format whenever necessary. Once ingested into the DL compiler, DL model graphs were

optimised using graph-level optimisation at level 3 (see Sections 3.1.4 and 3.2, as well

as Table E.1 found in Appendix E. Level 3 is chosen in line with existing works [40, 8,

385, 39], as it is the highest level of graph optimisation that does not modify the DL
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model’s operational logic and does not introduce optimisations that modify input or

weight data - for example, by enabling mathematical approximations.

6.2.3 Performed Experiments

Experiments performed as part of DOPpler’s evaluation consisted of auto-tuning

standalone tensor operators and tensor operators of end-to-end DL models, initially

using the conventional serial candidate measurement infrastructure, followed by the

same auto-tuning scenario with the measurement infrastructure replaced by DOPpler.

Unless otherwise stated, during all experiments, each auto-tuner is set to propose at

most 500 candidate tensor programs to be measured on the target-device, or otherwise

stop early due to the schedule space containing < 500 candidates. The choice of 500

measurements follows the experimental evaluations of existing projects [8, 183], that

measure from 150 up to 800 candidates. Furthermore, within these works, it can be

observed that auto-tuning commonly converges around the 500-candidates mark, across

substantial majority of the experiments published. To ensure DOPpler’s reliability during

prolonged auto-tuning sessions, experiments involving a larger number of candidate

tensor program measurements (2000 trials) were also performed.

For end-to-end DL model experiments, auto-tuners are allowed to extract all

compatible tensor operators from the model graph. Once extracted, each auto-tuner

performs either 500 candidate proposals (and measurements) for each of the extracted

tensor operators, or self-allocates the number of candidate proposals for each tensor

operator, up to O × 500 of total measurements per model, where O denotes the

number of unique tensor operators extracted. The latter approach is adopted by the

Ansor autoscheduler. Within experiments utilising multiple target-devices G, the serial

measurement infrastructure conventionally performs 500/G measurements in a round-

robin manner across the available devices, whilst DOPpler allocates dp measurements

per available device, performing dp ×G simultaneous measurements.
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6.2.4 DOPpler’s Hyperparameters and Sensitivity Analysis

The majority of DOPpler’s hyperparameters were selected using methods practiced by

the TVM auto-tuning community [39, 80, 8] as well as mimic those described within

published methodologies of works that DOPpler is inspired by [23, 132, 366]. Any

hyperparameters that are unique to DOPpler’s design were determined empirically by

experimenting with different values on a subset of auto-tuning scenarios (six tensor

operators, one auto-tuner, one hardware platform), which represents 3.7% of all scenarios

performed as part of DOPpler’s evaluation, with results of sensitivity analysis presented

within Section 6.3.10. Unless otherwise stated, DOPpler’s static hyperparameters do not

change across experiments involving different tensor operators, platforms or auto-tuners.

6.2.4.1 Number of Measurement Repeats During Auto-tuning

A common approach within TVM-based auto-tuners is to determine the number of

candidate measurement repeats dynamically. This is achieved by allowing each candidate

tensor program to continue executing repeatedly until a minimum amount of time has

elapsed. As such, the number of measurement repeats is variable depending on the

composition of the auto-tuning scenario (for example, tensor operator complexity,

device capabilities), and can often exceed hundreds or thousands, given the parameter

deciding the minimum elapsed time is often set to 1000ms. Other practitioners select

a static number of measurement repeats - for example, three (N = 1, R = 3) or 100

(N = 10, R = 10), with the choice being fairly arbitrary. During DOPpler’s evaluation,

all auto-tuning experiments perform 60 tensor program executions per measurement

(R = 3, N = 20), disabling the dynamically allocated number of repeats, in order to

maintain fairness when comparing the measurement infrastructures across different

tensor operators, platforms and auto-tuners. This choice is further evaluated empirically

by varying the number of repeats for a small subset of auto-tuning scenarios.
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6.2.5 Collected Metrics

During all experiments, auto-tuning time cost has been observed and compared between

the serial and DOPpler’s candidate measurement infrastructures. Additionally, the

latency of the best-found candidate per auto-tuning scenario was also captured, to

then analyse the impact on auto-tuning quality as a result of performing candidate

measurements with DOPpler’s infrastructure vs. serial. Furthermore, platform-wide

utilisation of computational resources (CPU and GPU) were also collected. CPU

utilisation was collected via a custom profiler based on Python’s psutil library [274],

whilst GPU utilisation was queried from the GPU via the use of Nvidia’s NVML library

[234]. In both cases, granularity of profiler queries was restricted to 0.5 - 1 seconds due

to architectural and design limitations of the platform and middleware / libraries.

Table 6.2: Comparison of total time cost and latency improvement as a result of auto-tuning 16
classes of tensor operators with three auto-tuners (AutoTVM, Chameleon, Ansor) towards three GPUs
(platforms A, B and C). Table presents aggregate results across the tensor operator classes, auto-tuners
and platforms.

Tensor Operator
Class

Auto-tuning time cost
reduction with

DOPpler rel. Serial

Tensor program
latency reduction

(Serial)

Tensor program
latency reduction

(DOPpler)
Conv1D-NCW 56.24% ± 12.96% 31.62% ± 8.55% 33.18% ± 9.26%
Conv1D-NWC 57.89% ± 13.41% 30.61% ± 8.23% 32.55% ± 7.88%
Conv2D-HWCN 36.41% ± 26.21% 48.57% ± 32.95% 46.19% ± 30.84%
Conv2D-INT8 55.61% ± 13.59% 86.35% ± 3.32% 82.81% ± 9.30%
Conv2D-NCHW 49.28% ± 32.03% 77.74% ± 8.05% 74.81% ± 9.84%
Conv2D-NHWC 49.93% ± 18.31% 63.14% ± 23.04% 66.09% ± 18.99%
Conv3D-NCDHW 47.48% ± 20.48% 98.61% ± 1.54% 97.36% ± 5.12%
Conv3D-NDHWC 48.97% ± 13.08% 94.42% ± 2.36% 94.51% ± 2.30%
Corr-NCHW 55.17% ± 10.04% 80.51% ± 6.59% 81.13% ± 6.28%
DEPTH-Conv2D 45.61% ± 16.31% 30.91% ± 15.78% 25.38% ± 10.53%
Dense 51.47% ± 13.95% 9.56% ± 4.38% 11.49% ± 4.22%
DenseINT8 51.68% ± 15.36% 93.28% ± 3.85% 92.74% ± 4.17%
GRP-Conv2D 52.15% ± 13.91% 97.56% ± 1.31% 98.05% ± 1.01%
MatMul 53.84% ± 21.57% 45.71% ± 9.37% 45.47% ± 8.85%
TConv1D-NCW 57.41% ± 11.85% 54.13% ± 6.23% 56.47% ± 5.28%
TConv3D-NCDHW 46.15% ± 14.65% 88.79% ± 2.52% 88.79% ± 2.77%
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6.3 Evaluation Results

6.3.1 Auto-tuning Time Cost - Single Target-device
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Figure 6.3: Auto-tuning time cost (minutes), when auto-tuning different classes of tensor operators with
three different auto-tuners (AutoTVM, Chameleon, Ansor) across three platforms (A, B, C), comparing
serial vs. DOPpler’s measurement infrastructure.

As depicted in Figure 6.3 and Table 6.2, DOPpler was able to reduce auto-tuning time

cost by 51.9%±18.6% compared to using the serial measurement infrastructure, across

all studied platforms, auto-tuners and tensor operator classes. This stems from the

increased measurement throughput when using DOPpler for candidate measurements, as

a result of performing several simultaneous measurements on the target-device. Savings

due to DOPpler can be particularly observed for less-complex or lower FLOP tensor

operator classes such as Conv1D-NWC, Conv1D-NCW, TConv1D-NCW or Dense, where
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auto-tuning scenarios that leveraged DOPpler, completed between 51.4 and 57.9% faster

than those leveraging serial measurement infrastructure.
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Figure 6.4: Achieved tensor program latency (ms) when auto-tuning different classes of tensor operators
with three different auto-tuners (AutoTVM, Chameleon, Ansor) across three platforms (A, B, C),
comparing serial vs. DOPpler’s measurement infrastructure.

Within minority of experiment scenarios, DOPpler resulted in minimal auto-tuning

time cost reduction, in specific combinations of tensor operators, auto-tuners and

platforms - for example, DOPpler’s was 2.53% faster compared to serial measurement

infrastructure, when auto-tuning the MatMul tensor operator using Chameleon towards

the GPU in platform B. When examined further, this minimal speedup was a result

of a disproportionate number of erroneous scheduled being proposed by the auto-

tuner, as well as timeouts, causing delays in measurement completion. Such erroneous

candidate schedule proposals were observed primarily in auto-tuning with Chameleon

and AutoTVM. Overall, the auto-tuning speedup when auto-tuning with DOPpler is in

189



Chapter 6. DOPpler: Parallel Measurement Infrastructure for DL Auto-tuning

part a result of better utilised platform’s compute resources. Concurrently performed

candidate measurements leverage more CPU cores compared to serial, confirmed by

the overall increased CPU utilisation in DOPpler auto-tuning scenarios on all studied

platforms: platform A (48.43%), platform B (54.23%) and platform C (51.46%).

6.3.2 Achieved Execution Latency - Single Target-device

As demonstrated within Figure 6.4 and Table 6.2, performing auto-tuning with DOPpler’s

measurement infrastructure, produced equivalent tensor operator optimisation quality

compared to auto-tuning with the serial measurement infrastructure. On average, across

all tensor operator classes, auto-tuners and platforms, there was ±1.37% difference

in attained tensor program latency speedup between auto-tuning scenarios involving

DOPpler vs. the serial measurement infrastructure.

Several experiment instances can be observed where one measurement approach

outperforms the other with respect to attained tensor program execution latency, for

example: auto-tuning Dense or MatMul tensor operators with the serial measurement

infrastructure and auto-tuning Conv1D-NCW or DEPTH-Conv2D with DOPpler. This

primarily stems from the non-deterministic exploration strategies of SOTA DL auto-

tuners. This has been confirmed by performing an identical auto-tuning scenario with

the serial measurement infrastructure ten times, which has yielded on average 2.16%

deviation in achieved latency resultant from proposing different pattern of candidate

schedules within each auto-tuning run. As such, the best-found candidate during auto-

tuning with DOPpler, resides within an equivalent range to the best-found candidates

proposed when auto-tuning with the serial measurement infrastructure.

For certain combinations of auto-tuners and tensor operators, auto-tuning with

DOPpler discovered higher-latency candidates (Ansor + Dense-INT8). INT-8 (quantised)

tensor operators are commonly considered esoteric and typically lack robust support

within autoschedulers such as Ansor that rely upon rule-based schedule generation [385].

190



6.3. Evaluation Results

Despite that, auto-tuning with DOPpler maintains optimisation quality close to that of

serial auto-tuning, in relation to un-optimised INT-8 schedules.

6.3.3 End-to-end DL Model Auto-tuning
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Figure 6.5: Comparison between DOPpler and serial measurement infrastructures, reporting achieved
end-to-end DL model latency (ms) and total auto-tuning time cost (hrs) when auto-tuning five DL
models using the Ansor autoscheduler. Each DL model layer tensor operator was auto-tuned until
500 measurements were performed in both serial and DOPpler infrastructure scenarios. Both red
(auto-tuning time cost) and green (achieved inference latency) series in the Figure represent DOPpler.

Similar to standalone tensor operator auto-tuning, auto-tuning tensor operators extracted

from end-to-end DL models with DOPpler, also benefits operational time cost and

maintains model-level optimisation quality. As shown in Figure 6.5, auto-tuning end-

to-end DL models with DOPpler, on average, reduced total auto-tuning time cost by

51.40% for all studied models and target-device combinations. In line with standalone

tensor programs (see Figure 6.4), auto-tuning end-to-end DL models with DOPpler

resulted in end-to-end model inference latency improvement equivalent to that produced

when auto-tuning with the serial measurement infrastructure (σ = 3.3%± 7.8%).
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Figure 6.6: Achieved latency and total auto-tuning time cost improvement compared to serial
measurement infrastructure, when auto-tuning 27 layer tensor operators of the ConvNeXt model
using Ansor, leveraging DOPpler’s measurement infrastructure. Each layer tensor operator was auto-
tuned until 500 candidate measurements were performed.

On a DL model layer level, as shown in Figure 6.6 for the 27 unique tensor operators

suitable for auto-tuning within the ConvNeXt DL model, these improvements are also

observable. In these auto-tuning scenarios, DOPpler achieved sizeable auto-tuning

time cost reduction (µ=48.67%, σ=27.0%), and achieved overall latency improvement

equivalent to that of auto-tuning with serial measurement infrastructure. The auto-tuned

layer tensor operators within the ConvNeXt model ranged in FLOP footprint between

4.7×e−6 and 0.92 GFLOPs. Within several scenarios (layers 5, 11 and 17) DOPpler auto-

tuning is slower due to an increased number of invalid candidates proposed by the Ansor

autoscheduler. This has caused DOPpler to perform more frequent re-measurements

and thus reduced auto-tuning speedup.

6.3.4 Leveraging Multiple Target-devices

To evaluate DOPpler’s ability at leveraging multiple target-devices during candidate

measurements, six tensor operators were auto-tuned using Ansor, leveraging between

one and four GPUs within platform A. Auto-tuning scenarios that utilised the serial

measurement infrastructure, leveraged the RPC-based tracker / server round-robin

measurements, with N RPC servers deployed locally for N used GPUs.
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Figure 6.7: Depiction of the total auto-tuning time cost differences between the default TVM RPC-based
multi-device measurement infrastructure vs. DOPpler’s multi-device infrastructure, when auto-tuning six
tensor programs using Ansor auto-tuner across one and more (up to four) devices used for measurement
of candidate latencies.

As it can be observed within Figure 6.7, performing auto-tuning with DOPpler,

whilst utilising a single target-device GPU for candidate latency measurements, yielded a

time reduction equivalent to serial candidate measurement auto-tuning with 3.46 GPUs.

This effect is further amplified when DOPpler can leverage multiple GPUs, providing

further time reduction over the serial measurement infrastructure of 52.76%, 52.93%

and 45.32% for two, three and four GPU scenarios.

Within specific auto-tuning scenarios such as MatMul, Conv1D-NCW or Conv2D-

NCHW, it can be observed that leveraging three or more GPUs, yields a marginal 4.69%

auto-tuning time cost improvement, in both cases of applying the serial measurement

infrastructure and leveraging DOPpler. This stems from the platform’s CPU cores

becoming saturated by simultaneous candidate measurement procedure operations,

limiting auto-tuning speedup.

Regarding optimisation quality, when leveraging multiple target-devices during

auto-tuning with DOPpler, the best found tensor programs exhibited latencies that

differed from those found during serial auto-tuning by between 0.98 and 1.35%, in line

with expected auto-tuner deviation as previously presented within Table 6.2. DOPpler

achieved on average 50.5% auto-tuning speedup across singular and multi-device auto-

tuning scenarios, compared to the serial measurement infrastructure.
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6.3.5 Auto-tuning Large Tensor Operators
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Figure 6.8: Comparison of achieved GPU utilisation during autoscheduling (with Ansor) Layer 4 of the
ConvNeXt model with varied batch size (1, 2, 4) when relying upon serial vs. DOPpler measurement
infrastructure. GPU utilisation was sampled using the Nvidia NVML library at one second intervals.
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Figure 6.9: Achieved latency (s) when auto-tuning large layer tensor operators of the ConvNeXt model
using Ansor and leveraging serial and DOPpler infrastructure for comparison. Batch sizes of the layers
are varied between one and four to artificially increase CI (FLOPs).

To stress-test DOPpler’s measurement infrastructure, several tensor programs that

exhibit very high GPU utilisation were auto-tuned. Commonly, DL models that are

considered "large", consist of a large number of low to medium complexity layer tensor

operators, however, some models may contain tensor operator kernels that require a

large number of floating point operations during computation, leading to high target-
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device utilisation during their execution. This in turn may lead to increased likelihood

of measurement inaccuracy and inconsistency when auto-tuning utilises concurrently

performed candidate latency measurements.

Figure 6.8 depicts instantaneous GPU utilisation achieved during auto-tuning the

tensor operator associated with layer 4 of the large ConvNeXt DL model. The tensor

operators were then artificially enlarged in terms of their FLOPs requirement by

increasing their input batch size up to two and four, resulting in required FLOPs

of 0.924 GFLOPss to 3.70 GFLOPss. Modifications of batch size beyond four resulted

in OOM errors stemming from violating the target-device resource limits.

Auto-tuning was successfully performed for these tensor operator auto-tuning

scenarios using DOPpler’s measurement infrastructure. As shown in Figure 6.8, these

experiments resulted in high GPU instantaneous utilisation as well as increased frequency

of on-device activity, compared to auto-tuning with the serial measurement infrastructure,

also reducing auto-tuning time cost for the batch size one and two scenarios.

Despite the higher GPU utilisation and approaching resource limits, DOPpler was

able to reduce auto-tuning time cost by on average 32.4% compared to serial auto-

tuning, primarily by avoiding overheads associated with sequential tensor program

launch procedures. In most cases, DOPpler auto-tuning maintained optimisation quality

equivalent to serial auto-tuning, as depicted in Figure 6.9.

Figure 6.9 depicts achieved tensor program latency improvement when auto-tuning

large tensor operators found in layers of the ConvNeXt model, with artificially inflated

batch sizes, producing high-FLOP tensor operators. As the size and complexity of the

tensor operator grew, optimisation quality decreased (see batch size four for ConvNeXT

L4 example) due to increased number of OOM errors and timeouts resultant from

violations of target-device resource limits. This behaviour is expected, and could occur

within serial auto-tuning when considering isolated executions of tensor programs that

require a large number of FLOPs to be performed during their execution.
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In all cases, DOPpler reactively assigned lower dp levels when auto-tuning these

tensor operators (dp between one and three). As such, whilst decreased dp reduces auto-

tuning time cost savings, it minimises likelihood of measurement inaccuracy. Within

the ConvNeXt L4 (batch size four) example shown in Figure 6.9, DOPpler’s achieved

tensor program latency remains within the range of acceptable improvement, especially

given the baseline (unoptimised, default schedule) exhibits an order of magnitude higher

latency compared to both DOPpler’s and serial measurement infrastructure result.

This reaffirms that DOPpler is capable of providing good quality measurements when

auto-tuning large tensor operators, including mitigating negative impact stemming from

resource contention on target-device.

6.3.6 Number of Performed Measurements and Repeats
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Figure 6.10: Impact on achieved tensor program latency and total auto-tuning time cost, as a result of
applying DOPpler’s measurement infrastructure during an increased number of candidate measurement
trials (2000), when auto-tuning three tensor operators towards platform A with Ansor. Comparison
with default serial measurement infrastructure.

To evaluate DOPpler’s effectiveness during prolonged auto-tuning sessions (signified

by more candidate latency measurements being performed), several tensor operator

classes were auto-tuned using the Ansor autoscheduler towards platform A’s GPU,

continuing auto-tuning until 2000 candidate measurements were performed. As it can

196



6.3. Evaluation Results

be observed in Figure 6.10, auto-tuning tensor operators with DOPpler, resulted in

equivalent optimisation quality attained by the auto-tuner, whilst reducing auto-tuning

time cost by between 46.5 and 64.0% across the three considered tensor operators.
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Figure 6.11: Impact of the difference in the number of repeated executions of the same candidate (3 vs
60 times) during its latency measurement on the achieved tensor program latency and the overall time
cost of auto-tuning. Comparing between serial and DOPpler measurement infrastructures.

Furthermore, to evaluate DOPpler’s ability to maintain optimisation quality and

auto-tuning time speedup when performing a lower number of measurement repeats

for each candidate tensor program, several tensor operators were optimised using the

Ansor autoscheduler towards platform A’s GPU using a reduced number (three from

the default 60) of measurement repeats. In such scenarios, the auto-tuning time cost

was marginally reduced, as depicted in Figure 6.11. Compared to serial auto-tuning

with three measurement repeats per candidate, auto-tuning with DOPpler (with 60

measurement repeats) reduced auto-tuning by between 47.8 and 54.4%. The marginal

difference in auto-tuning time between low and high number of measurement repeats

stems from the fact that the majority of time spent during candidate measurements,

involves process and context management, both in the case of serial and DOPpler.

In some cases (MatMul), utilising three measurement repeats as opposed to 60

(DOPpler’s default) was disadvantageous for DOPpler as it resulted in increased

measurement inconsistency, which required DOPpler to re-measure candidates more

197



Chapter 6. DOPpler: Parallel Measurement Infrastructure for DL Auto-tuning

often, ultimately reducing the time cost savings potential.

As such, by default, DOPpler utilises 60 candidate tensor program executions per

candidate measurement. Figures I.7, I.8 and Table I.1 found in Appendix I provide

additional information about the timings of individual operations happening during a

candidate measurement and across an entire auto-tuning session, comparing DOPpler’s

approach vs. the serial measurement infrastructure.

6.3.7 dp and Dynamic Timeout
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Figure 6.12: Pattern of change of DOPpler’s dynamic degree-of-parallelism observed when auto-tuning
three tensor operators towards GPUs of platforms A, B and C with Ansor.

As depicted in Figure 6.12, DOPpler continually adjusts dp for different tensor operator

and platform combinations, including during individual auto-tuning sessions as the

characteristics of proposed candidate tensor programs change. Notably, DOPpler reduces

dp when auto-tuning increasingly complex tensor operators (for example, Conv3D-

NCDHW), due to the increased measurement inaccuracy. Measurement inaccuracy

becomes impactful more quickly for more complex tensor operators as the dp increases.

This is because lesser number of complex tensor programs can share the target-device

GPU resources simultaneously than it would have been the case for a less complex tensor

operator. DOPpler dynamically adjusts dp levels in accordance with these characteristics
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(for example, lowers dp in scenarios involving the less capable Nvidia GTX 1080 GPU -

platform C).

Figures I.1, I.2 and I.3 found in Appendix I depict how dp varied across time

when auto-tuning different tensor operators towards different platforms with the Ansor

autoscheduler, while Figures I.4, I.5 and I.6 depict how the dynamically determined

timeout setpoint has varied within DOPpler within the same auto-tuning scenarios.

6.3.8 Platform Utilisation
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Figure 6.13: Comparison of achieved GPU utilisation during auto-tuning (with Ansor) a single Conv2D
tensor operator, comparing serial vs. DOPpler’s measurement infrastructure impact across three
different platforms (A, B, C) containing different GPUs. Utilisation sampled using Nvidia NVML
library API [234], which limits sampling granularity to once every 0.5 - 1.0s depending on GPU
capabilities.

Performing auto-tuning using DOPpler’s measurement infrastructure, increased plat-

form’s CPU utilisation across all considered platforms by 8% (A), 14% (B) and 24%

(C), compared to the serial infrastructure. This stems from the increased number of

candidate measurement processes being allocated to the available CPU cores, which also

increased cost-efficiency by amortising the process waiting time. Figure 6.13 depicts

GPU utilisation attained when auto-tuning several tensor operators using Ansor towards

the three platforms (A, B and C). It can be observed that relying on DOPpler’s candidate

measurement infrastructure, causes the GPU target-device to be utilised more effectively.
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This stems from more frequent kernel launch events when measuring using DOPpler,

since kernels from candidate "B" no longer have to wait for candidate "A" to finish

being measured - unlike when measuring serially.

6.3.9 Alternative Calibrator Policies

During DOPpler’s evaluation, Calibrator policies other than REACT were considered for

dynamically adapting dp during auto-tuning measurements. The LEARN policy utilised

a Sequential Model-based Bayesian Optimisation [30] and a Gradient Boosted Random

Forest [38], and successfully provided measurements that maintained optimisation quality

comparable to serial measurement infrastructure, however, resulted in 4.8% higher auto-

tuning time cost compared to REACT across different tensor operators, auto-tuners and

platforms. The LEARN policy had a tendency to exploit rather than explore different dp

ranges, and thus conservatively didn’t react to changes in measurement characteristics

as quickly as REACT does. Another explored policy called RLEARN, was based on RL

and PPO [290], where the reward function was specified as follows:

r = α× (1− (υcurrent − υmin

υmin

) + (1− α)× (1− δmean) (6.11)

with α controlling the tradeoff between auto-tuning time cost and quality of performed

measurements. The reward function assigned high reward to a certain dp range when

both the auto-tuning time cost and measurement inaccuracy were small.

The RLEARN approach was unable to converge to an optimal dp level and

adapt to the changing operational circumstances appropriately, producing inaccurate

measurements with dp often "stuck" within a range discovered as appropriate in the

beginning of operation. This is due to the need for large number of training samples

in RL, to reach an optimal policy. The specific application area of quickly adapting dp

within DOPpler, rendered the RLEARN policy unsuitable for this particular purpose.
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6.3.10 Hyperparameter Sensitivity Analysis

To determine how varying DOPpler’s hyperparameters affects auto-tuning time cost and

optimisation quality, six tensor operators were auto-tuned using the Ansor autoscheduler

towards platform A’s GPU, varying DOPpler’s hyperparameter values.
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Figure 6.14: DOPpler hyperparameter sensitivity study results. Reported achieved latency (µs) and
total auto-tuning time cost (minutes) when auto-tuning six tensor programs until 500 measurements are
completed using Ansor autoscheduler. "DOP" series represents DOPpler’s default parameters obtained
empirically or set dynamically during operation (timeout).

6.3.10.1 Dynamic Timeout

Figure 6.14a depicts differences in auto-tuning time cost and achieved tensor program

execution latency of the best-found candidate, when varying the static candidate

timeout setpoint parameter (2s, 3s, 5s, 10s, 20s, 30s, DOP {DOPpler}). DOPpler’s

dynamic timeout setpoint resulted in on average 18.84% reduction in auto-tuning time
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cost compared to the static timeout setpoint of three seconds (default value used in

AutoTVM, Chameleon and Ansor). The dynamically determined timeout setpoint is

able to avoid both the excessive candidate pre-emptions, and the idle time spent waiting

for the candidate tensor program kernel to return its results and allow measurement

to be completed. At the same time, the dynamic approach can quickly adapt to the

differences between tensor operator complexities and target-device capabilities. The

results presented in Figure 6.14a suggest that there does not exist a one-size-fits-all

timeout setpoint that is applicable to all tensor operator and platform auto-tuning

scenarios, and that this can be alleviated using a dynamic approach.

6.3.10.2 Re-measurement Sampling Threshold

Figure 6.14d demonstrates differences in auto-tuning time cost and achieved tensor

program execution latency of the best-found candidate, when varying the number of

samples to be re-measured during Calibrator’s operation (ahead of analysis)(ζ). DOPpler

adopts 20% as the default number of samples to be re-measured during each iteration

of the Calibrator’s loop. Other sampling percentages were considered as part of the

sensitivity study: 10%, 15%, 30%, 50% and one sample.

Whilst increasing ζ from one sample to 50% of measured candidates within the

iteration, negatively impacted auto-tuning time by 30.1%, a low choice for ζ (for example,

one sample) resulted in insufficient number of samples being re-measured, in turn causing

δmean to become unreliable. This often led to infrequent Multiplicative Decrease events

within the REACT policy, causing DOPpler to utilise dp that is higher than optimal

for that particular scenario, ultimately manifesting in moderately increased number

of timeouts / OOM, reducing measurement reliability. DOPpler’s 20% ζ, whilst re-

measuring more samples than some of the other choices, facilitated the REACT policy

in responding to quickly changing measurement accuracy and appropriate scaling of dp

such that auto-tuning speedup and measurement quality were maintained.
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6.3.10.3 Multiplicative Decrease Threshold

To understand how the DOPpler’s τ threshold, responsible for determining when to

perform Multiplicative Decrease during the REACT update, affects auto-tuning time

and achieved tensor program execution latency, several tensor operators were auto-tuned

with varied τ threshold. The τ threshold triggers Multiplicative Decrease when δmean

exceeds τ (expressed as a number between 0 and 1) across the iteration’s population.

For example, with τ set to 5%, when δmean exceeds it, Multiplicative Decrease will be

triggered to reduce dp in the next iteration. DOPpler by default utilises τ = 5%.

As demonstrated in Figure 6.14c, the lower the τ threshold, the more conservative

the policy becomes, reacting to small variances in measurement accuracy and frequently

triggering Multiplicative Decrease. On the other hand, permissive τ of 25 - 50%,

results in quickly growing dp (with Binary Increase), resulting in higher likelihood of

intermittent timeout violations during measurement, as there are more simultaneous

candidates in-flight. Additionally, the likelihood of OOM error occurrences increases as

the target-device computational and memory limits are approached at high dp levels.

The REACT policy allows dp to continually increase until the τ threshold is reached.

As such, low DOPpler’s τ of 5% is appropriate when one of the primary goals is to

maintain measurement quality, whilst attempting to continually increase dp until high

δmean begins to manifest. Setting τ lower than 5% sensitises the policy to the naturally

occurring differences in measured execution latency, that occur both across DOPpler

and serial measurement infrastructures during auto-tuning, as outlined in Section 6.3.2.

6.3.10.4 Rank Re-measurement

At the end of each auto-tuning session, DOPpler performs isolated rank selection re-

measurement of the candidates measured during auto-tuning. This has been put in place

to ascertain that the globally best candidate found as part of auto-tuning is returned
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back to the user as the optimised schedule configuration. As demonstrated in Figure

6.14b, selecting a large percentage of candidates to be rank ordered and re-measured

in isolation, drastically reduces auto-tuning time cost savings obtained via the use of

DOPpler. For example, there is a reduction of 31.34% in total auto-tuning time cost

savings when the rank selection percentage is varied from 1% to 20%; however, no major

differences in achieved latency were observed as the rank selection percentage varied.

This suggests that small percentage of candidates can be selected for re-measurement

in isolation, with little to no adverse effect on overall auto-tuning optimisation quality.

As such, the default selection for the rank re-measurement percentage used in DOPpler

is 1%. As the rank re-measurement percentage is a hyperparameter, it can be configured

to an even lower value by the user if permissible given specific optimisation scenario (for

example, ahead of time knowledge of perfect-accuracy measurements).

6.4 Discussion and Limitations

6.4.1 Auto-tuner Compatibility

DOPpler is capable of accelerating many prominent DL auto-tuners [40, 8, 385, 386,

183, 105, 377], as it replaces their default measurement infrastructure (isolated serial

measurements) without the need for major modifications to their codebases. This is

a significant advantage for projects such as NeuralMagic [136], Amazon SageMaker

Neo [296], Ampere Computing [44] or OctoML [241] that rely upon DL compiler-based

auto-tuning to optimise DL models at datacenter scale.

6.4.2 Target-device Compatibility

DOPpler has been evaluated with three distinct Nvidia GPU architectures (Pascal,

Turing, Volta), due to their prevalence in DL research, and being commonly used in
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DL auto-tuner research [385, 8, 40]. With high probability of success, DOPpler could

also leverage other Nvidia GPU architectures such as the Ampere [229] A100 Graphics

Processing Unit (GPU). This is because the Ampere architecture continues to utilise

Nvidia Activity API, submission of kernels for execution using CUDA Streams, and has

recently been used to evaluate other DL auto-tuning projects [321].

Furthermore, the Ampere architecture is one of the first GPUs within the Multi

Instance GPU (MIG) class of GPU that enable virtual GPU instances to be partitioned

and separately utilised by the user. Importantly, the separate MIG instances entail

separate cache and DRAM access paths. If used for auto-tuning, the auto-tuner could

target each of the individual virtual GPU instances as a target-device, further increasing

DOPpler’s utility as existing workloads would have to be re-optimised towards each

unique instance (if differently partitioned). With minimal modification to the PPM,

DOPpler could also support non-Nvidia (AMD or Intel) GPUs via OpenCL Cmd-Queues

for multi-"Stream" workload submission and the clWaitForEvents(...) callback that

enables kernel latency information collection directly from device [137].

6.4.3 Workloads compatibility

Whilst evaluated in part on CNN architectures, and a wide range of standalone tensor

operator classes, DOPpler can support any DL workloads already supported by the

auto-tuners compatible with DOPpler. It is important to stress that DOPpler does not

actively analyse the tensor operator or DL model characteristics during its operation, and

instead relies on a reactive approach that leverages real-time tensor program execution

characteristics. As such, DOPpler has no dependencies on any particular workload type

or target-device characteristics. Any limitations on supported workloads stem from the

capabilities of auto-tuners themselves, for example, missing templates in template-based

auto-tuners such as AutoTVM or Chameleon or incompatible schedule generation rules

within autoschedulers such as Ansor.
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6.4.4 Cost vs. Quality

DOPpler is capable of significantly speeding up auto-tuning time, without compromising

optimisation quality attained by the auto-tuner. However, given the set of hyperpa-

rameters and design decisions adopted within DOPpler’s Calibrator module, it can also

be used to balance optimisation quality and measurement throughput (i.e. speedup).

Controlling such balance may be advantageous, for example, in applications such as

large-scale Neural Architecture Search (NAS) [19] that generate and evaluate thousands

of candidate DL model architectures, where rapidly discovering ones characterised

by high inference accuracy and low inference latency is paramount. Alternatively,

DL optimisation MLaaS provider, servicing many customers, may desire to prioritise

throughput of auto-tuning jobs over optimisation quality, for example, to offer ’fast

but good’ auto-tuning immediately, vs offering ’slow but excellent’ auto-tuning that is

enqueued for hours or days, occupying compute resources. Such scenario would require

minimal modifications to the DOPpler’s REACT policy and/or default hyperparameters.

6.4.5 Scalability

DOPpler has been evaluated in single-machine, single-target-device and single-machine,

multi-target-device scenarios. It has not been evaluated in scenarios involving multiple

machines. When considering deploying DOPpler in multi-machine scenarios, the default

auto-tuner candidate batch size of 64 may not saturate multiple machines containing

multiple target-devices. To remediate this, modifications must be made to the PPM,

whereby multiple candidates are sent to different machines simultaneously. Increasing

batch size, may affect the operation of the auto-tuner’s cost model, given its re-training

occurs once every batch of candidates. Understanding how best to split a batch of

candidates across multiple machines containing variable number of target-devices is

beyond the scope of this work, however, remains a foremost direction for future work.
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Conclusion

This chapter concludes the thesis by summarising the explored research area and the

identified problems within the space of DL inference performance optimisation, followed

by how the major research questions and contributions have been addressed. The

costs incurred as a result of performing experiments associated with this work are also

discussed, including how a change in geographical location or electricity generation fuel

mix could affect the monetary and environmental costs when reproducing this research.

The chapter concludes with a discussion on future research directions that could be

explored by building upon the research contributions presented within this thesis.

7.1 Research Problem Summary

DL models are becoming increasingly integrated within industrial applications such as

stock market analysis, autonomous driving, genomics or automated protein synthesis.

In part, this has been enabled by the emergence of high-performance, massively-parallel

processors such as GPUs that greatly accelerate complex DL computation, facilitating

research progress. However, given the DL model operators each exhibit different

computational footprint, without carefully designed implementations that take advantage
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of these powerful processors, the computational resources become under-utilised. This

leads to sub-optimal inference performance and large DL operational costs.

In recent years, several solutions such as graph-level optimisations and auto-tuning

(both facilitated by DL compilers) have been proposed for optimising model inference

performance, aligning model implementations towards target-device characteristics. DL

auto-tuning demonstrates impressive inference latency improvements, however, it is a

lengthy and energy-intensive process, requiring a large number of candidate schedules

to be proposed and evaluated on target-devices in isolation (serially), to ascertain their

performance profiles and discover optimal implementations.

A substantial portion of such candidate proposals exhibits high execution latency,

thus not contributing positively towards optimisation, and at the same time, isolating

the already under-utilised target-devices for prolonged periods of time. Moreover, SOTA

DL auto-tuners optimise tensor operators sequentially, one at a time until completion,

making it difficult to predict the effects of single tensor operator optimisation on the

end-to-end DL model performance and to introduce operational cost controls.

Sub-optimal candidate proposals coupled with inefficient, serial candidate mea-

surements and sequential operator optimisation, constrain auto-tuners from being used

reliably at scale, where cost-efficiency and control over cost objectives are highly desirable

system characteristics for DL deployment pipelines. Tackling these challenges has a

potential to not only reduce costs of optimising DL inference performance, but also to

reduce the barrier to entry to compiler-based optimisations.

7.2 Summary of Contributions

The key insight derived within this thesis is that within the space of DL performance

optimisation, and more specifically auto-tuning, there exist a number of inefficiencies,

stemming from strongly-held assumptions and design decisions, which result in cost-
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ineffective and prolonged optimisation. Addressing the research hypothesis and questions

posited within Chapter 1, the work presented within this thesis demonstrates that

these inefficiencies can be measurably alleviated via targeted improvements to multiple

components of existing DL auto-tuners, leveraging probabilistic, heuristic and reactive

techniques. More specifically the following research contributions are proposed:

7.2.1 Analysis of DL Optimisation Costs and Inefficiencies

Chapter 3 presents an in-depth analysis of time and energy costs associated with

performing DL inference optimisations. This analysis experimentally evaluated existing

DL compiler-based optimisation methods (model graph level and low-level auto-tuning),

across different optimisation scenarios, varying DL models and hardware platforms. Such

experimental analysis discovered insights into inefficiencies plaguing existing DL inference

optimisation. As described in Section 3.2.3, the costs of DL model graph transformations

are negligible, given their substantial end-to-end latency improvements when applied.

This is not the case during low-level DL auto-tuning that targets individual tensor

operators within a DL model. DL auto-tuning, while offering substantial performance

improvements is notoriously slow, partly due to the enormous candidate schedule space

it has to navigate, and partly because some of the discovered candidate schedules must

be measured on the target-device in isolation.

Additionally, during the analysis, cold candidates were discovered - proposed

schedules that exhibit poor performance despite being proposed farther in the auto-

tuning process than otherwise expected, with their impact further propagated to the

measurement process resulting in additional operational costs. Quantifiably, as a result

of their proposals and measurements, cold candidates result in between 28 - 43% of

additional energy costs during auto-tuning. Chapter 3 concludes with recommendations

on design directions for future DL auto-tuners that would help to mitigate impact of

cold candidates during DL auto-tuning and improve auto-tuning cost-efficiency.
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7.2.2 Cost-efficient DL Auto-tuning Filtering and Meta-tuning

Chapter 4 builds upon the design directions established within Chapter 3, proposing

Trimmer - a multi-component, cost-efficient DL auto-tuning filter and meta-tuner,

capable of reducing auto-tuning time and energy costs. Trimmer’s design enables it

to introduce new cost objectives when auto-tuning singular and multiple end-to-end

models across standalone target-devices or clusters of machines. To alleviate the impact

of cold candidates, Trimmer introduces an ANN-based filter that predicts whether a

candidate proposed by the auto-tuner is a cold candidate, and replaces such candidates

with previously unexplored ones, leading to more cost-effective auto-tuning.

At the single and multi-model levels, Trimmer introduces Survey tuning - a meta-

tuning approach for scheduling tensor operator auto-tuning sessions. For the first time,

Survey tuning enables end-to-end DL model inference latency to influence auto-tuning

progress and control operational costs. While conventional auto-tuners await completion

of all tensor operator auto-tuning sessions before measuring end-to-end DL model latency,

Trimmer’s Survey tuning performs partial auto-tuning of all tensor operators, measures

the end-to-end model latency, and determines which tensor operators should continue

to be optimised. Trimmer’s policy takes into account model-level latency improvements

as well as relative improvements across tensor operators when making these decisions.

The same decision making process is also applied at multi-model level, whereby

models that exhibit substantial performance improvement during their optimisation,

are permitted to continue being optimised. Such an arrangement enables Trimmer to

utilise cost objectives such as a ratio of inference latency improvement over time, or

custom objectives to be specified by the user, including time or energy budgets. Based

on empirical evaluation, compared to SOTA DL auto-tuners, Trimmer delivers the most

cost-efficient auto-tuning and reduces optimisation energy costs by between 21.8 and

40.9% when used in optimisation scenarios utilising a cluster of machines.
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7.2.3 Analysis of Parallel Candidate Measurements

During experimentation it became apparent that one of the major bottlenecks causing

prolonged DL auto-tuning is the serial candidate measurement infrastructure, utilised by

majority of SOTA DL auto-tuners. Performing candidate measurements serially ensures

measurement accuracy, however, it is time consuming and isolates the target-device.

In Chapter 5, a naïve solution involving parallel candidate measurements is

proposed (NPM), acting as an exploratory analysis experiment towards breaking the

aforementioned assumption. This involved comparing the effects of concurrent candidate

measurements at different degrees of parallelism, across diverse operator classes, auto-

tuners and hardware platforms, determining reasons behind concurrent measurement

inaccuracy, and design directions for a more comprehensive solution.

Crucially, it has been identified that most of the inaccuracy during parallel candidate

measurements stems from CPU-level measurements, inherently subject to latent

phenomena of process blocking and waiting for multiple simultaneously executing

GPU workloads. Furthermore, the analysis suggests that when no controls are put in

place within the naïve solution, a high degree of simultaneous measurements increases

measurement timeouts or exhausts device resources (for example, DRAM).

This suggests that to achieve fast yet accurate auto-tuning measurements, a trade-

off must be made between high degree of concurrency, measurement accuracy and

minimisation of measurement failures. A more comprehensive solution for reliable intra-

device parallel measurements, must account for inherent differences in tensor program

execution patterns, reacting to sudden changes in such patterns during auto-tuning.

7.2.4 Parallel Intra-device Measurement Infrastructure

Given the design directions established in Chapter 5, we propose DOPpler - a reliable,

intra and inter-device parallel candidate measurement infrastructure, described within
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Chapter 6. DOPpler builds upon the naïve solution presented within Chapter 5, by

introducing an adaptive candidate measurement component that is compatible with

existing DL auto-tuners.

To ensure appropriate degree of parallelism is selected during each auto-tuning

session and across time, DOPpler continually analyses optimisation quality based on

measurement accuracy and consistency metrics, and reactively modifies the number

of in-flight candidates using a method adapted from TCP BIC. At the same time, to

maintain measurement reliability, DOPpler performs on-device measurements, leveraging

GPU’s internal kernel timing reports as opposed to CPU-level timestamps.

To facilitate the trade-off between maximising parallelism during measurements and

minimising the timeouts and runtime errors, DOPpler adapts the timeout setpoint for

each measured candidate in real-time, adjusting it in accordance with the current degree

of parallelism, and the number of available target-devices. DOPpler’s experimental

evaluation demonstrates that on average, DOPpler reduces auto-tuning time costs by

50.5%, when evaluated on a large variety of standalone tensor operator classes and

DL models, acting as the measurement infrastructure layer for several SOTA DL auto-

tuners. The experiments include auto-tuning scenarios that utilise singular and multiple

target-devices simultaneously, where in all cases DOPpler outperforms the conventional,

serial measurement infrastructure, whilst maintaining equivalent optimisation quality.

7.3 Review of Research Questions

The insights derived from the research presented within this thesis, and the artefacts

developed to tackle the identified problems, collectively answer the research questions

posited within Section 1.3 of Chapter 1. More specifically, this section identifies

the connections between discussions provided in each Chapter of this thesis and the

aforementioned research questions.
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[RQ1] How significant are the time and energy costs of applying high and low-level

DL inference performance optimisations and where do they originate from, when

analysed across individual tensor operators, end-to-end models and DL auto-tuner

levels? Could such cost analysis identify key architectural reasons for prolonged

and cost-inefficient DL auto-tuning, considering different optimisation scenarios?

This question is answered in particular in Chapter 3, where cost implications of

high and low-level DL model optimisations are discussed, with Chapters 4, 5 and

6 also experimentally quantifying these optimisations. More specifically, Section

3.2.3 demonstrates that high-level optimisations cost less compared to low-level

optimisations, and intuitively, in majority of the cases, their costs are proportional

to their optimisation complexity and achieved performance improvement.

DL auto-tuning exhibits more complex relationships between optimisation quality

and operational costs. As shown in Section 3.3, operational cost patterns vary

substantially across auto-tuners, with less complex methods (for example, Random)

exhibiting large operational costs. This can be attributed to lower quality candidate

proposals that are measured on target-device in isolation, occupying compute

resources while achieving sub-optimal performance improvements.

Within Chapters 3 and 5, it has been identified that the occurrence of cold

candidates, coupled with serial measurements performed in isolation on the target-

device, are significant reasons for inefficient and prolonged DL auto-tuning. The

entirety of Chapter 5 focuses on iteratively exploring the inefficiencies of serial

candidate measurements and describes an evaluation of a naïve approach to

parallelising candidate measurements intra-device. Section 3.4 of Chapter 3,

identifies and quantifies the issue of cold candidates and demonstrates that they

can severely impair auto-tuning efficacy, preventing more favourable hot candidates

from being measured more frequently.
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[RQ2] Is it possible to train a DL model to identify low-quality (high latency) tensor

program candidates ahead of their latency measurements, during DL auto-tuning?

If so, could such a model be leveraged to reduce the negative impact of poor

candidates on auto-tuning operational costs?

In Chapter 4, Trimmer was proposed. Trimmer incorporates an ANN-based

candidate filter capable of identifying and filtering out cold candidates during auto-

tuning. Within experimental evaluation of Trimmer, it has been demonstrated

that it is indeed possible to leverage such a model for cold candidate filtering, and

that utilising such filtering improves cost-efficiency of auto-tuning substantially.

Trimmer combines this ANN-based approach with an ϵ-greedy exploration policy

that adapts the balance between exploitation and exploration of tensor program

candidates when utilising them to advance auto-tuning progress. The efficacy of

Trimmer’s filtering model has been experimentally shown in Section 4.3.

[RQ3] Could the end-to-end DL model inference latency be measured and subsequently

leveraged to control the auto-tuning process for cost-effectiveness trade-offs, whilst

auto-tuning of the model operators is underway?

This question has been answered by developing Trimmer’s Survey tuning module,

as presented in Chapter 4, with its evaluation presented within Section 4.3.

As Trimmer’s Survey tuning facilitates performing end-to-end DL model inference

latency measurements during auto-tuning, Trimmer can leverage this information

to preemptively suspend auto-tuning of tensor operators that do not exhibit

significant performance improvement over time. Trimmer re-uses this strategy for

multi-model auto-tuning scenarios where it redistributes auto-tuning time and

computational resources towards more promising auto-tuning sessions and models.

This is in part enabled by performing partial (batched) auto-tuning of all tensor

operators within the model, permitting limited candidate measurements to be
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performed, and frequently checking how the auto-tuning performed so far, has

impacted the overall DL model inference latency. Given more control is now

possible over the progress of end-to-end model auto-tuning, Trimmer’s Survey

tuning can facilitate adding new cost objectives when auto-tuning singular and

multiple end-to-end DL models.

[RQ4] Could the long-standing requirement for serial, isolated candidate measurements

during DL auto-tuning be avoided, instead enabling parallel candidate tensor

program execution intra-target-device reliably? If so, what would be the optimisation

quality and operational cost implications of such an approach, when applied across

different classes of tensor operators, DL models, auto-tuners and target-devices?

To answer this question, an experimental analysis has been performed, involving

existing SOTA DL auto-tuners and their serial measurement infrastructures, as

well as a naïve parallel measurement infrastructure, as presented in Chapter 5.

This approach enabled to identify that naïvely parallelising candidate mea-

surements intra-device, exhibits both measurement inaccuracy and inaccuracy

inconsistency, reaffirming the reasoning behind the requirement for isolated

candidate measurements in SOTA DL auto-tuners. These phenomena occur

largely due to the widely-adopted method of performing measurements (CPU-level

timestamps), which is inherently affected by latent phenomena caused by process

blocking when executing multiple GPU workloads simultaneously.

Furthermore, Chapter 5 describes and quantifies phenomena such as timeouts and

runtime errors, frequently occurring during naïvely-parallel measurements at high

degrees of parallelism, suggesting that high degrees of measurement parallelism do

not always translate into substantial time cost reduction during auto-tuning.

All together, these insights helped to form design directions for a more

reliable parallel measurement solution - DOPpler, presented in Chapter 6. To
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alleviate measurement inaccuracy, DOPpler introduces a direct, on-target-device

measurement technique, leveraging GPU vendor libraries and APIs. At the

same time, to ensure the degree of parallelism is appropriate for the given

optimisation scenario, and to mitigate inaccuracy inconsistency, DOPpler proposes

the Calibrator module, which continually analyses candidate measurement quality

and adjusts the operational conditions using a reactive policy.

DOPpler’s experimental evaluation and hyperparameter sensitivity analyses,

demonstrate that parallelism can be leveraged to substantially reduce DL auto-

tuning operational costs, while maintaining high optimisation quality.

Experimental analyses of DL optimisations, and in particular DL auto-tuning, helped

to identify design directions for two distinct yet complimentary solutions (Trimmer

and DOPpler). Their empirical evaluations demonstrate that it is possible to reduce

operational costs associated with DL auto-tuning and retain optimisation efficacy

by addressing multiple inefficiencies at different levels of the DL auto-tuner design

architecture. Importantly, answering the above research questions, validated the

hypothesis posited within Section 1.3 of Chapter 1.

7.4 Self-analysis of Research Costs

Globally, DL computation is doubling every three to four months, which has resulted

in an overall 300, 000× increase of required DL compute capability during the period

between 2012 and 2018 [14]. These increases in demand, translate into increases in energy

consumption attributed to DL models, both in terms of their development and use for

inference [319], which in turn translate to increased Greenhouse Gas (GHG) emissions.

Strubell et al. [318] report that training a large NLP Transformer model to convergence,

including a priori NAS, results in GHG emissions equivalent to those produced by a

globally average human during 60 years of their life, or nearly equivalent to the emissions
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produced by five mid-sized vehicles since their production until decommissioning. Given

the substantial environmental costs of performing DL research, several recent works

[291, 115] advocate for at least minimal reporting of the energetic footprint required to

replicate published DL research results, in the hope of creating more responsible and

accountable research moving forwards.

The following analysis presents estimates for the time, energy, monetary and

environmental costs incurred as part of the experimental studies and evaluations of

the work presented within this thesis. Furthermore, the implications of geography and

energy source composition (fuel mix) are discussed, projecting potential variance in

these costs across different geographical regions within and outside of the UK borders.

7.4.1 Assumptions and Context

(a) Racks containing machines within the server room (b) Mitsubishi Electric PKA-M100KAL CRAC

Figure 7.1: Compute and cooling equipment within the server room

7.4.1.1 Location and Temperature Control

All experiments performed as part of the research presented within this thesis, utilised

machines located within Lancaster University UK, and more specifically a single room

dedicated to housing the compute equipment utilised by the Experimental Distributed
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Systems Lab, as shown in Figure 7.1. The room contains several server racks, that in the

period of 2019 - 2022 contained between 50 and 150 machines. The room’s temperature is

controlled via a wall-mounted Mitsubishi Electric PKA-M100KAL Computer Room Air

Conditioning (CRAC), which is rated at 10kW of cooling capacity, drawing a maximum

of 2.81kW during operation [70].

The computational resources located within this room are shared across multiple

research projects within the areas of DL, distributed systems, computer networking,

resource management and security, all with different workload execution patterns and

computational, energy and heat dissipation footprints. Since only a portion of machines

were leveraged for the experiments, at intermittent time intervals across the span of

three to four years, it is beyond the scope of this work to account for the proportion of

energy consumed by the networking equipment, the CRAC unit, or the transmission

and transformation losses originating from the power delivery to the server room.

7.4.1.2 Location and Energy Sourcing

To understand how energy consumption can differently affect financial and environmental

costs, it is important to understand the context in which the electricity is sourced and

used. According to reports on environmental sustainability, Lancaster University is

supplied by several electricity sources: around 14% of total electricity is sourced from

on-premises wind turbine, between 25 and 40% from a natural gas powered Combined

Heat and Power (CHP) engine and the rest from the national power grid [341].

GHG Emissions: UK’s national power grid is composed of several distinct

downstream electricity generation sources, each with different proportion of contribution

to the overall energetic grid composition, including: natural gas (65.8%), nuclear

(14.5%), biomass (7.3%), coal (3.6%), hydro (2.0%), wind (4.7%), offshore wind (0.9%)

and other (1.2%) respectively [340, 119]. Each of these downstream sources results in

different environmental footprint, measured in grams of carbon dioxide equivalent per
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kilowatt-hour of electricity generated (g CO2 eq/kWh).

On average, in the years 2019, 2020, 2021 and 2022, UK-wide national grid carbon

intensity factor of electricity generation was reported as 264.39g CO2 eq/kWh, 242.15g

CO2 eq/kWh, 264.51g CO2 eq/kWh and 261.55g CO2 eq/kWh respecively (avg. 258.15g

CO2 eq/kWh) [71]. In terms of the other electricity sources at Lancaster University, on

average, UK wind power generators result in low levellised GHG emissions of 11.8g CO2

eq/kWh [119, 333]. As reported by Rehva [285], a natural gas powered CHP installed in

the UK in 2014, has an average carbon intensity factor of 217g CO2 eq/kWh.

As such, it is estimated that on average, dissipating 1kWh of electricity at Lancaster

University during the period between 2019 - 2022, resulted in GHG emissions of 207.20g

CO2 eq/kWh in the best case scenario (40% sourced from CHP) and 213.37g CO2

eq/kWh in the worst case scenario (25% sourced from CHP), non-inclusive of transmission

losses or otherwise incurred power delivery losses.

Financial Costs: UK national grid prices for non-domestic electricity use were

on average £0.1224/kWh, £0.1303/kWh, £0.1431/kWh and £0.1839/kWh in the years

2019, 2020, 2021 and 2022 respectively, with an average price across the duration of this

research work of around £0.14/kWh [339]. Likewise, in the case of natural gas prices,

the UK’s Department for Business Energy and Industrial Strategy reports that 1kWh

worth of natural gas costed £0.0232, £0.0228, £0.0290 and £0.0443 (avg. £0.0298) in

the years 2019, 2020, 2021 and 2022 respectively [339].

Furthermore, relating natural gas prices to Lancaster University’s CHP engine, it is

estimated that for every 1kWh of electricity generated, 1.1kWh of heat is also released

and recaptured for residential heating [338]. As such, to generate 1kWh of electrical

energy, the CHP must consume up to 2.1kWh worth of natural gas. Estimating financial

costs of operating the wind turbine, as of 2015, Thomson and Harrison [333] report that

during a lifetime of a typical UK wind turbine, an average levellised (deployment and

operation) cost is £0.083 for every 1kWh supplied.
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As such, it is estimated that dissipating 1kWh of electricity at Lancaster University

during the period between 2019 and 2022, costed on average £0.101 in the best case and

£0.112 in the worst case, non-inclusive of any transmission and power delivery losses.

7.4.1.3 Machine Power Model

Experimentation performed as part of Chapters 3 and 4 made use of energy and

instantaneous power measurements to quantify costs of performing DL optimisations.

As previously outlined in Section 3.1.6, energy metrics were collected using Nvidia

NVML library for GPUs and the RAPL MSR interface for CPUs. During experiments

described within Chapters 5 and 6, energy sampling for CPUs was not performed,

instead collecting machine-wide CPU utilisation during every experiment, while GPU

instantaneous power samples were collected using Nvidia NVML.

Accounting for Other Costs: Since machine-wide energy data was not collected

in any of the experiments performed, other costs such as the energy consumed by

the machine’s motherboard, DRAM memory, internal cooling fans or the energy lost

during transformations at the Power Supply Unit (PSU) were instead estimated using

available information about their power draw, found in data sheets published by their

respective manufacturers. For experiments performed as part of Chapters 5 and 6,

CPU instantaneous power was modelled by leveraging a widely used power curve model

proposed by Fan, Weber, and Barroso [75], which relies on CPU utilisation, minimum

idle power draw and maximum safe TDP to estimate average power drawn.

Energy lost as part of PSU power transformations was accounted for by observing

PSU efficiency designations. For example, a PSU with 85% energy efficiency, delivers

up to 85% of energy drawn from the socket to the machine’s components, with the total

out-of-socket power equal to component power draw ×1.15. This has been adjusted for

every unique machine. Energy costs associated with the server room’s CRAC cooling

system, the networking equipment or any other auxiliary costs were not accounted for.
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7.4.2 Experimental Research Costs

Table 7.1: Estimated time, energy, environmental and financial costs incurred as a result of performing
experimentation presented within this thesis. GHG emissions and financial costs calculated for the
Lancaster University setting. Results grouped by Chapter (CH)

CH
Total

Experi-
ments

Auto-
tuning

Sessions

Candidate
Measure-

ments

Compute
Time
(h)

Energy
Consumption

(kWh)

GHG
Emissions

(kg CO2 eq)

Electricity
Costs
(£)

Best Worst Best Worst

3 1760 2160 1,080,000 2003.12 751.64 155.74 160.38 75.91 84.18
4 293 3871 1,935,500 3122.76 1246.23 258.22 265.91 125.87 139.57
5 30,180 30,180 15,090,000 9944.03 3187.26 660.40 680.07 321.91 356.97
6 10,805 14,345 7,172,500 8684.59 2682.96 555.91 572.47 270.97 300.49

Total 43,038 50,556 25,278,000 23,754.51 7868.10 1630.28 1678.84 794.67 881.22

Table 7.1 presents estimates for time, energy, environmental and financial costs

incurred as a result of experimentation related to this thesis. As it can be observed,

both the GHG emissions and monetary costs are higher when Lancaster University’s

CHP constitutes 25% of total electricity generation (vs. 40% in the best case). In

comparative terms, given the most favourable conditions, the 7868.10kWh consumed as

part of the experimentation, would be enough to drive 48,269 miles in a standard Tesla

Model 3 electric vehicle, boil the kettle enough times to brew 251,779 cups of tea or

heat an average UK home for almost two years using an electric heat pump.

Different world regions exhibit different carbon intensity factors and costs of electricity

per kWh, and as such, affect the potential footprint of performing computationally

expensive experiments, as shown in Table 7.2. For example, to replicate the

experimentation in the UK, selecting a location with the average UK-wide non-domestic

electricity costs, it would have cost on average 28% more in terms of electricity and

released 20% more GHG emissions than it did at Lancaster University. The differences

in monetary costs are even more stark between domestic and non-domestic electricity

tarrifs in the UK. For example, if a researcher from the UK was to replicate experiments

associated with this thesis in their own home, using the exact equipment, it would
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Table 7.2: Estimated environmental and financial costs incurred as a result of performing experimentation
presented within this thesis in different locations. Carbon intensity data obtained from [96] while
electricity prices (as of December 2022) obtained from [122]. Financial conversions performed at rate 1
USD = 0.81 GBP. Best case scenario selected for Lancaster University

Location Carbon intensity
(g CO2 eq/kWh)

Total GHG
emissions

(kg CO2 eq)

Avg
Electricity

Price/kWh(£)

Total
Electricity
Cost (£)

Sweden 12.00 94.417 0.114 898.61
France 58.00 456.350 0.140 1102.55
Lancaster University* 210.12 1630.280 0.101 794.67
United Kingdom (non-dom) 264.50 2031.150 0.140 1101.53
United Kingdom (price-cap) 264.50 2031.150 0.340 2675.15
United States 357.00 2808.915 0.088 694.67
China 541.00 4256.646 0.068 535.03
South Africa 665.00 5232.292 0.062 487.82
Poland 728.00 5727.983 0.056 440.61

have cost them 2.42 times more than a business buying electricity on a non-domestic

tarriff due to economies of scale, and 3.4× more than Lancaster University. When

analysed at a multinational level, the experimentation could have resulted in 17.2×

less electricity-related GHG emissions if it was to be performed in Sweden (12% more

expensive), or 3.5× more if it was to be performed in Poland (45% less expensive).

7.4.2.1 Operational Costs

Table 7.3: Estimated costs of access to on-demand Cloud instances equivalent to Platform A used
within experimentation. Total cost provided for the total compute hours spent during experimentation
across Chapters 3, 4, 5 and 6. Prices adjusted to GBP using ratio of 1 USD = 0.81 GBP.

Cloud
Provider

Instance
Type

On-demand
(£/h)

Total Cost
(£) Location

Google Cloud a2-highgpu-4g 12.1800 289,330 US (Iowa)
Amazon AWS p3.8xlarge 9.9144 235,511 US (N. Virginia)
Huawei Cloud g5.8xlarge.4 4.7628 113,138 Hong Kong
Huawei Cloud g5.8xlarge.4 10.2400 243,400 Ireland (Dublin)

Microsoft Azure Standard_NC24rs_v3 13.2192 314,015 US (Central)

Typically, electricity costs are only a portion of the total costs of operating

high-performance compute infrastructures, with other costs involving levellised initial
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investment, maintenance, internet access, location rental and cooling equipment upkeep.

As such, on-demand Cloud access costs can greatly exceed the costs of electricity

dissipated by computation1234. Table 7.3 depicts estimates for total costs of experiments

associated with this thesis using different on-demand Cloud infrastructures. It can be

observed that the overall costs of performing the aforementioned experiments can be

vastly different depending on the selected Cloud provider as well as region in which the

rented Cloud instances are located.

7.4.3 Observations

As detailed above, the energy mix composition and geographical location can have

a substantial impact on the monetary and environmental costs of performing DL

research. Performing identical amount of computation can result in differences in the

realm of tonnes of CO2 eq GHG emissions, when performed at different locations with

different energy mix compositions. At the same time, certain locations, while exhibiting

substantially higher GHG emissions per every kWh of electricity produced, provide the

electricity at much lower price points - see Poland in Table 7.2.

Furthermore, it is unclear whether utilising on-demand Cloud infrastructures for

computation-heavy research experimentation is a cost-effective strategy. For example,

purchase, installation, maintenance and energy consumption costs associated with the

Platform A machines used during experimentation amounts to roughly £50,000, inclusive

of estimated margins to account for power transmission losses. Comparing this with

Table 7.3, it can be observed that for equivalent compute capability, it may be more

than 60% more cost efficient to deploy and maintain bespoke compute infrastructures in

research settings, especially if they can be shared across multiple research projects.

1Google Cloud: https://cloud.google.com/products/calculator
2Amazon AWS: https://aws.amazon.com/ec2/instance-types/p3/
3Huawei Cloud: https://www.huaweicloud.com/intl/en-us/pricing/index.html#/ecs
4Microsoft Azure: https://learn.microsoft.com/azure/virtual-machines/ncv3-series
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7.4.4 Broader Research Context

In the course of this research, surprising and, at times, alarming costs associated with

DL computation have been encountered, both in terms of monetary and environmental

impact. These findings highlight the need for further investigation of the intricate

balance between the value provided by DL systems and the costs of resources required to

build and operate them. Additionally, there is a growing awareness within the research

community about the necessity to measure and report the material, economic and

environmental costs associated with DL computation. This shift in mindset is crucial,

as it fosters responsible and sustainable research and development practices.

Although this work does not directly address the broader questions of assessing the

value of DL against its costs, it contributes to the pursuit of more energy-proportional and

energy-efficient DL systems. Additionally, by raising awareness of the environmental and

operational costs associated with this research and promoting transparency in reporting,

this thesis takes an active part in the collective work towards a more sustainable and

responsible future for DL and its applications. While the immediate future research

stemming from this work is unlikely to focus on addressing the broader cost vs. value

questions, it is important to acknowledge that these issues are of paramount importance

and require higher-level attention, such as government policy formulation, driving the

research and development of more environmentally-responsible DL systems.

7.5 Future Work

Given the research area of DL auto-tuning is continually growing and is becoming

increasingly adopted within large MLaaS platforms, there is an opportunity to extend

Trimmer and DOPpler to improve quality and efficiency of DL auto-tuning at scale.
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7.5.1 Alternative Candidate Filters

While the FC ANN-based candidate filtering approach used in Trimmer results in cost-

effective and high-quality auto-tuning, exploring alternative filtering methods could yield

interesting discoveries in terms of efficacy of different algorithms at optimising different

classes of tensor operators and DL models. Future work could involve experimenting

with different ANN architectures, manually or utilising existing NAS [392] approaches

for rapid network discovery. The incremental search for high-performance schedules

performed during auto-tuning could also be thought of as an index search problem.

Recently proposed work [166], explores the idea of learned index structures - testing a

hypothesis that all existing index structures (for example, B-Trees, Hashmaps, Bitmaps),

could be replaced by learned models, demonstrating promising improvements to search

efficiency, and as such, a potential direction to explore when improving Trimmer.

7.5.2 Polymorphic Auto-tuning

As described in Section 2.6, SOTA DL auto-tuners are frameworks composed of

several components such as cost-models, search algorithms, the schedule space and

the measurement infrastructure. Trimmer demonstrates how augmenting an existing

auto-tuner (AutoTVM) by adding a filtering component can improve cost-efficiency of

optimising end-to-end DL models, while DOPpler provides a unified, parallel alternative

to the serial measurement infrastructure component within DL auto-tuners.

While auto-tuners typically exist within monolithic code bases, recent innovation

in the area of auto-tuning primarily consists of replacing existing components with

alternative ones, that are better suited for a subset of optimisation scenarios [8, 183, 105,

377, 386, 385]. This suggests that there exist a set of auto-tuner component combinations

that are better suited for specific workload classes, or that certain optimisation scenarios

may require different exploration strategies during different phases of auto-tuning.
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Building an experimental framework capable of dynamic construction and adaptation

of auto-tuners at a component level, guided by different objectives such as cost reduction,

quality improvements or arbitrary priority designations, would be an interesting

immediate area to explore. In such a system, Trimmer’s Survey tuning could be

leveraged to take advantage of its ability to balance cost vs. optimisation quality,

while DOPpler’s parallel measurement infrastructure could accelerate the process of

measurements that most auto-tuners rely upon.

7.5.3 Alternative Calibration Policies

As briefly outlined in Section 6.3.9, this research work considered two other calibration

policies for DOPpler: LEARN (Bayesian Optimisation), and RLEARN (Reinforcement

Learning), however, it has been observed that they result in sub-optimal performance

compared to the TCP BIC-based REACT policy. Further work on DOPpler could

involve evaluating different TCP congestion control algorithm variants such as TCP

Highspeed [77], TCP CUBIC [272], TCP Reno [28], TCP Vegas [196] amongst other

implementations. This could lead to further cross-area discoveries of adapting well-

established methods to more recent problems such as DL compiler auto-tuning.

7.5.4 Auto-tuning as a Service

Currently, the majority of SOTA DL auto-tuners utilise a single-machine environment,

where a single CPU process executes the candidate search procedure, several processes

are responsible for candidate compilation and a single process is responsible for isolated

candidate measurements performed on each locally or remotely available target-device.

Analyses in Chapters 3 and 5 suggest that this can lead to resource under-utilisation,

both at the CPU and GPU levels and crucially, result in prolonged optimisation. This

is because the measurement procedure must wait for candidate compilation, while the
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compilation procedure awaits for the schedule space search and cost model to propose

new candidates for measurement, which can only do so once a batch of measurements is

generated and fed back to it by the measurement infrastructure.

Furthermore, different auto-tuning phases have distinct computational resource

requirements. For instance, candidate compilation benefits from multi-core CPUs to

perform as many simultaneous compilations as possible, since these processes are non-

dependent and disjoint from each other. The measurement phase would benefit from

access to machines equipped with multiple powerful GPUs or a diverse set of other

target-devices that could be rapidly used for candidate latency measurements. Lastly,

the search procedure is best deployed on machines with high-frequency clocked CPUs to

accelerate the often single-core schedule space traversal.

To efficiently interleave these different auto-tuning phases across multiple simultane-

ous auto-tuning sessions, auto-tuning could be split across multiple disjoint micro-services,

leveraging distributed computing paradigms such as the Service Oriented Architecture,

allocating computation to resources best suited for it. Exploring cost-effective approaches

for performing large-scale DL optimisation is becoming an important area of research,

given large Cloud providers such as Amazon [296], Huawei [128] or Alibaba [102] are

beginning to make DL optimisation available as one of their MLaaS service offerings,

alongside more conventional training and inference Cloud-based DL services.

Trimmer’s multi-model Survey tuning provides foundations for achieving cost-efficient,

multi-model and multi-machine DL auto-tuning, while DOPpler improves utilisation of

target-devices during candidate measurements. Combining these advancements with

the micro-service-based approach, could be an interesting research area to explore.

Transforming DL auto-tuning into a massively-distributed process could lead to new

research frontiers, one of which could involve developing new Cloud paradigms such

as Auto-tuning as a Service (AaaS), which could in turn spark exploration of novel

resource orchestration methods dedicated towards DL auto-tuning at scale.
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7.6 Recommendations for Stakeholders

Building upon the research in this thesis, this section provides a set of recommendations

tailored for different stakeholders involved in DL workflows and pipelines, such as: DL

Engineers, MLaaS Cloud Providers and DL Compiler Engineers.

7.6.1 DL Engineers

DL Engineers should aim to leverage DL compilers and DL compiler auto-tuners to

optimise their models ahead of deployment, as this would lead to faster model inference,

and over time, lead to reduced financial and environmental footprint. More specifically,

to incentivise adoption of model optimisation and reduce operational costs, DL Engineers

could adopt Trimmer (as described in Chapter 4), which can reduce the time spent

on evaluating sub-optimal candidate tensor programs. Engineers could also integrate

DOPpler (see Chapter 6) in their existing auto-tuning deployments to further speed up

optimisation by parallelising candidate evaluations inter and intra-device.

Similar to other metrics commonly used in DL workflows such as: accuracy, validation

loss or inference throughput, DL engineers should also actively control the optimisation

cost during the auto-tuning process. This can be achieved by monitoring end-to-end

model auto-tuning using cost objectives, ensuring that the auto-tuning process is always

within acceptable cost limits or budgets. Trimmer’s Survey tuning could prove beneficial

in this task by dynamically monitoring and controlling optimisation progress.

7.6.2 MLaaS Cloud Providers

Prominent MLaaS Providers with optimisation service offerings such as Amazon

SageMaker Neo [296] or OctoML Octomizer [241], should consider offering Trimmer and

DOPpler as part of their existing service suite. The operational cost reductions enabled
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by both Trimmer and DOPpler could also incentivise other MLaaS Providers that

currently do not have a model optimisation Cloud offering. Accelerated optimisation

enabled by Trimmer and DOPpler could help attract more customers who are looking

for efficient and cost-effective DL solutions.

MLaaS providers should also consider implementing DOPpler’s approach to parallelise

candidate measurements intra-device. This approach allows multiple candidate

measurements to be performed simultaneously, thereby significantly reducing the time

and computational resources required for auto-tuning. This can lead to faster model

deployment and lower operational costs at a datacenter scale.

7.6.3 DL Compiler Engineers

One of the factors that limit adoption of DL auto-tuning within DL pipelines are the

large search spaces associated with the optimisation process. DL Compiler Engineers

are often tasked with developing novel methods of exploring these candidate spaces.

Trimmer’s approach to filtering out poorly performing candidates can be a good

starting point. By focusing on promising candidates, DL Compiler Engineers can reduce

the time it takes to evaluate their methods. DL Compiler Engineers should also consider

integrating DOPpler as the default measurement infrastructure in the auto-tuning

methods they develop. By parallelising measurements, engineers can significantly reduce

the time required for auto-tuning, thereby speeding up evaluation of their methods.

Trimmer’s ANN-based filtering module is compatible with any AutoTVM-derived

auto-tuners that leverage schedule templates and a cost model. At the same time,

DOPpler is a flexible replacement measurement infrastructure that can be integrated

with both template-based and generative auto-tuners such as Ansor [385]. As such,

both systems could be leveraged by DL Compiler Engineers with minimum amount of

development effort.
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Appendix A

Recurrent Cell Layers and LSTMs

A.1 Recurrent Cell Layers

(a) RNN cell

  RNN Cell 
  

Input: 

Output: 

  RNN Cell 
  

Input: 

Output: 

  RNN Cell 
  

Input: 

Output: 

  RNN Cell 
  

Input: 

Output: 

"Old" "McDonald" "had" "a"

"book" "burger" "a" "farm"

Predicted next word  
in sequence

(b) RNN cell across time

Figure A.1: RNN cell depicted as a recurrent block and unrolled across time steps

RNNs are built using cells, where each cell is recurrent (feeds back on itself).

Figure A.1a depicts operation of a single RNN cell. Each cell accepts an input vector xt

where t designates the current time step or element in the sequence. Before producing

output yt, the RNN cell updates its internal state s by performing the following:
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st = nonlinearfunc(W T
ssst−1 +W T

xsxt) (A.1)

where nonlinearfunc is a non-linear function of choice such as Sigmoid, Hyperbolic

Tangent or ReLU, W T
ss is a transposed state weight matrix, st−1 is the previous state

of the cell, W T
xs is a transposed input weight matrix and xt is the current input vector

element. Once updated, the state s is used to produce output yt as follows:

yt = W T
ysst (A.2)

where W T
ys is a transposed output weight matrix and st is the current cell state.

During inference, RNNs process elements in the input sequence as described above,

until the last element is reached. Figure A.1b depicts how an RNN cell (shown unrolled

in time) would process a set of words in a sequence to predict the next word. For clarity,

the diagram does not depict separate RNN cells but rather a single RNN cell at different

points in time, sharing the same set of weights and periodically updating its internal

state s. As with FFNNs, during training RNN utilise a loss function (Section 2.1.1) to

determine how well the network is performing and to use the loss values to progressively

update their weights. Since the update of weights involves computation of derivatives

with respect to parameters (described in the following section) tracing back to the

initial state, it involves many factors of weights and gradient computations, causing

a phenomena such as exploding gradients [252] or vanishing gradients [164]. This

occurs when values involved in the computation of gradient are greater than one or very

small, causing calculated gradients to become very large or very small due to repeated

calculations over the same values, rendering the training sub-optimal or in worst-case

scenarios useless. These issues can be prevented using techniques such as gradient

clipping [375], initialising weights to identity matrices [175] or an appropriate choice

of an activation function, however have been solved altogether using a modified RNN

architecture - the Long-short Term Memory (LSTM) networks [117].
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A.2 Long Short Term Memory Layers

Figure A.2: LSTM gated cell

As depicted in Figure A.2, LSTM recurrent cells are composed of the internal cell

state s, an input gate gtinput, output gate gtoutput and a forget gate gtforget, where t is

the current time step. Gated information flow enables LSTM networks to remember

information over arbitrarily large spans of time, depending on information importance.

On top of the internal state akin to classic RNNs, LSTM include a cell state c for storing

information. Whilst in theory, generic RNN networks are also capable of remembering

information over arbitrarily large sequences of input, the longer those spans are, the

higher is the chance of exploding or vanishing gradients occurring.

LSTMs improve upon this via their architecture that enables gradient calculation

during training to occur along the outputs of the gates. On every time step, the LSTM

cell updates the state of each of the three gates. First, the state of the forget gate is

processed for time step t to determine what information from prior internal state is kept
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and what is forgotten, as follows:

gtforget = σ(W g
forgetxt + Ss

forgetst−1 + βforget) (A.3)

where σ is the Sigmoid function, W g
forget is the weight matrix of the forget gate,

Ss
forget is the weight matrix of the cell’s internal state w.r.t. the forget gate and βforget is

the bias of the gate. Next the input and output gates’ states are processed, as follows:

gtinput = σ(W g
inputxt + Ss

inputst−1 + βinput) (A.4)

gtoutput = σ(W g
outputxt + Ss

outputst−1 + βoutput) (A.5)

New cell state Ct is then determined as follows:

Ct = tanh(W l
hypxt + Sl

hypst−1 + βhyp)⊙ gtinput + gtforget ⊙ Ct−1 (A.6)

where Ct−1 is the previous cell state and W l
hyp&Sl

hyp&βhyp represent the weight

matrices and bias of the hyperbolic tangent layer resultant from the input gate.

Finally, the new internal state (also the cell’s output) is produced by:

st = gtoutput ⊙ tanh(Ct) (A.7)
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Spatial Dataflow Processors (SDP)

In contrast with Temporal (Instruction) Processors (TIPs), Spatial (Dataflow) Processors

(SDPs) enable communication between their Arithmetic Logic Units to provide means for

forming computation chaining [247, 245]. The Arithmetic Logic Units found in SDPs are

often less versatile compared to TIP Arithmetic Logic Units and focus on a specific task

such as a the Multiply Accumulate (MAC) operation often used in tensor computation

and DL. SDP Arithmetic Logic Units often include a limited amount of scratchpad

memory and a simple control unit, together forming a Processing Element (PE). As

PEs in SDPs are chained and do not rely on instructions to guide computation, they are

suitable for high-throughput, embarrassingly-parallel, however, simpler computations

such as MACs, found in DL workloads. This results in higher energy-efficiency as a

higher portion of silicon is dedicated for the task at hand compared to more complex and

feature-redundant TIPs. However, SDPs provide a decreased programming flexibility

and increased engineering effort required to leverage them effectively. Prime examples

of SDPs are Application Specific Integrated Circuits (ASICs) and Field-Programmable

Gate Arrays (FPGAs).
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B.1 Application-specific Integrated Circuits (ASIC)

DRAM

Scratchpad
ALU (e.g. MAC)

Control Unit

Memory Hierarchy
(Caches)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Multiply

Accumulate

Inp.1

Inp.2

Sum Sum

Application-Specific Integrated Circuit (ASIC)

Figure B.1: An example of an Application Specific Integrated Circuit (ASIC) architecture based
around systolic array configuration - a common design for DNN accelerator chips such as the Google
Tensor Processing Unit (TPU). In the Figure, PE stands for Processing Element, MAC stands for
Multiply-Accumulate and ALU stands for Arithmetic Logic Unit.

In the domain of DL, ASICs are SDPs used to perform compute-intensive MAC

computations. ASICs are inflexible to program for and rely on predictable code that

must be mapped from software implementation to hardware by experienced engineers,

to execute efficiently and achieve high device utilisation. Whilst each ASIC design is

different, they often employ arrays of PEs, each linked to each other and capable of

performing simple arithmetic such as MACs. The core advantage of ASICs is their

ability to perform massively parallel computation in far fewer clock cycles compared

to a complex CPU core, however, can only do so for simple DL tensor operators

or parts of operators (matrix multiplication) and require other processors to handle

more complex tasks and data movement. One of the first commercially viable DL
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ASICs was Google’s Tensor Processing Unit (TPU) designed for inference and training

[150, 100]. Other Cloud-based ASICs include Baidu Kunlun [242] or Amazon’s AWS

Inferentia chips [294]. Oftentimes marketed as Neural Processing Units (NPUs), Vision

Processing Units (VPUs) or Image/Intelligence Processing Units (IPUs), ASICs have

also started to become prevalent at the Edge with Intel Movidius Myriad-X architecture

[50], Apple’s Neural Engine [20] or mobile Digital Signal Processor (DSP) ASICs such as

the Qualcomm Hexagon [259]. Figure B.1 depicts an example of an ASIC architecture

based on the systolic array configuration. Systolic array ASICs are monolithic networks

of fixed, identical processing elements, where each such processing element is independent

in terms of computation. Typically, simple operations such as addition or multiplication

are performed by these processing elements, which store and then pass computation

results downstream. This makes systolic array ASICs especially suitable for massively

parallel DNN computation.

B.2 Field-programmable Gate Arrays (FPGA)

FPGAs contain a large number of re-programmable execution elements, also known as

Configurable Logic Blocks (CLBs), where each contains a Lookup Table (LUT) and a

flip-flop gate and where each CLB can be adapted to perform a desired Boolean logic

function or set of functions. Alongside the re-configurable portion of silicon, modern

FPGAs often include Digital Signal Processor (DSP) tiles that provide higher-level

functionality such as adders or multipliers without having to dedicate a portion of the

re-configurable silicon to implement them. Moreover, FPGAs are sometimes coupled

with DRAM memory installed on the same accelerator board to reduce memory access

latency. FPGAs enable engineers to prototype other processors such as ASICs and

design hardware-based implementations for specific DL operations such as Convolution

or matrix multiplication, achieving much higher computation throughput compared to
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CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

I/O
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I/O

I/O

I/O
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I/O 
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DSP tiles Block RAM

Field-Programmable Gate Array (FPGA)

Figure B.2: An example of an Field-Programmable Gate Array (FPGA) architecture. In the Figure,
CLB stands for Configurable Logic Block and DSP stands for Digital Signal Processor.

temporal processors. However, developing FPGA-based solutions for DL is challenging

as it requires expertise in low-level hardware design and in-depth understanding of the

specifics of DL computation. Despite that, some FPGA adoption can be observed for

large-scale DL processing with Amazon’s AWS EC2 F1 FPGA instances [293] containing

Xillinx (now AMD) FPGAs or Microsoft Azure ML FPGA instances containing Altera

(now Intel) FPGAs [56]. Furthermore, Nvidia released an open-source set of designs for

a DL accelerator - Nvidia NVDLA [233], compatible with FPGAs, enabling research

and development of novel DL accelerators.

Figure B.2 depicts an example of an FPGA architecture with the commonly occurring

components such as CLBs, DSPs, the routing mesh and input/output blocks for

communications. The Figure does not depict any specific FPGA device but rather a

conceptual representation of an FPGA architecture that could be observed in platforms

such as AWS EC2 F1.
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Details of standalone tensor operators

used in experimentation
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Table C.1: Tensor Operator Characteristics

ID Type FLOPs In
p
u
t

T
yp

e

B
at

ch
si

ze
In

C
h
an

n
el

s

F
il
te

rs

P
ad

d
in

g

S
tr

id
es

In
p
u
t

S
iz

e

F
il
te

r
S
iz

e

D
il
at

io
n

W
ei

gh
t

In
p

D
im

W
ei

gh
t

O
u
t

D
im

In
p
u
t

d
ep

th
F
il
te

r
d
ep

th
O

u
t-
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G
ro

u
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0 MatMul 180 fp32 1 3,5 3,6
1 MatMul 245760 fp32 5 32,16 32,48
2 MatMul 6.71E+08 fp32 5 32,1024 32,2048
3 TConv1D-NCW 221448 fp32 1 3 32 0 1 224 5 0
4 TConv1D-NCW 134 fp32 1 1 1 2,3 1 10 5 0
5 Conv1D-NCW 36 fp32 1 1 1 VALID 1 8 3 1
6 Conv1D-NCW 16384 fp32 1 16 16 SAME 1 32 1 1
7 Conv1D-NCW 13500 fp32 1 5 18 VALID 1 27 3 1
8 Conv1D-NWC 36 fp32 1 1 1 VALID 1 8 3 1
9 Conv1D-NCW 16384 fp32 1 16 16 SAME 1 32 1 1
10 Conv2D-HWCN 1.21E+09 fp32 1 256 256 SAME 1 32 3 1
11 Conv2D-HWCN 2.36E+08 fp32 4 128 256 VALID 2 16 5 1
12 Conv2D-HWCN 1.21E+09 fp32 1 256 256 SAME 1 32 3 2
13 Conv2D-NCHW 2.15E+08 fp32 1 64 64 1 1 56 3 2
14 Conv2D-NCHW 576 fp32 2 2 2 2 2 2 2 1
15 Conv2D-NCHW 4.64E+08 fp32 1 2048 126 1 1 10 3 1
16 Conv2D-NCHW 23658496 fp32 1 512 64 SAME 1 19 1 1
17 Conv2D-NHWC 2.1E+08 fp32 4 128 128 SAME 2 16 5 1
18 Conv2D-NHWC 1.13E+09 fp32 1 256 256 1,1,2,2 1 32 3 2
19 TConv3D-NCDHW 27648 fp32 1 3 1 0,0,0,0,0,0 1,1,1 24,24 1,1 24 1 0,0,0
20 Conv3D-NCDHW 4.53E+08 fp32 1 16 16 SAME 1 32 3 1 32 3
21 Conv3D-NCDHW 2.06E+08 fp32 1 1 32 SAME 1,2,2 256,256 3,3 1 20 1
22 Conv3D-NCDHW 5.24E+08 fp32 1 4 8 0,2,2 1,2,2 256,256 5,5 1 20 1
23 Conv3D-NDHWC 52428800 fp32 1 32 5 0 1 32 1 1 32 1
24 Conv3D-NDHWC 57499200 fp32 1 32 5 0,0,0,1,1,1 1 32 1 1 32 1
25 Corr-NCHW 70308 fp32 4 1,1 1,3,10,10 1
26 Dense 2048000 fp32 1 1024 1024 1000
27 Dense-INT8 1024000 int8 2 256 256 1000
28 Dense-INT8 1.84E+08 int8 9 2048 2048 5000
29 DEPTH-Conv2D-NCHW 10136448 fp32 1 32 SAME 1 112 3 1
30 DEPTH-Conv2D-NCHW 77237888 fp32 1 728 SAME 1 64 3 2
31 GRP-Conv2D-NCHW 28901376 fp32 1 1024 1024 1 1 7 3 1 32
32 Conv2D-NCHWc-INT8 2.31E+08 int8 1 64 64 1 1 56 3 1
33 Conv2D-NCHWc-INT8 18432 int8 4 4 4 4 4 4 4 1
34 Conv2D-NCHWc-INT8 11829248 int8 1 512 32 SAME 1 19 1 1
35 Conv2D-NCHWc-INT8 1492992 int8 1 32 32 1,2,2,1 1 8 3 1
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DL model architecture details

D.1 AlexNet

Table D.1: AlexNet [168] architecture details. Input / Output shape in NHWC layout

# Input Output Type Pad Stride Kernel*CI*CO
L1 1x227x227x3 1x55x55x96 Conv 0 4 11x11x3x96

1x55x55x96 1x27x27x96 MaxPool 0 2 3x3
L2 1x27x27x96 1x27x27x256 Conv 2 1 5x5x96x256

1x27x27x256 1x13x13x256 MaxPool 0 2 3x3
L4 1x13x13x256 1x13x13x384 Conv 1 1 3x3x256x384
L5 1x13x13x384 1x13x13x384 Conv 1 1 3x3x384x384
L6 1x13x13x384 1x13x13x256 Conv 1 1 3x3x384x256

1x13x13x256 1x6x6x256 MaxPool 0 2 3x3
1x6x6x256 1x9216 Flatten

L7 1x9216 1x4096 Dense
L8 1x4096 1x4096 Dense
L9 1x4096 1x1000 Dense
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D.2 SqueezeNet

To decrease the number of parameters, whilst maintaining acceptable accuracy,

SqueezeNet [130] includes Fire blocks. Each Fire block consists of two phases (sub-

layers): Squeeze and Expand. The Squeeze phase consists of a Convolution layer with

some number of 1x1 kernels (specified by "(S) 1x1" in the table), followed by ReLU

activation function. The Squeeze phase directly feeds into the Expand phase, which

consists of a Convolution layer with some number of 1x1 kernels (specified by "(E) 1x1"

in the table) and some number of 3x3 kernels (specified by "(E) 3x3" in the table),

followed by ReLU activation function.

Table D.2: SqueezeNet [130] architecture details. Input / Output shape in NHWC layout. "(S) 1x1"
is the number of 1x1 kernels within the Squeeze phase of each Fire block. "(E) 1x1" and "(E) 3x3"
correspond to the number of 1x1 and 3x3 kernels within the Expand phase of each Fire block.

# Input Output Type Stride Kernel*CI*CO (S)
1x1

(E)
1x1

(E)
3x3

L1 1x224x224x3 1x111x111x96 Conv 2 7x7x3x96
1x111x111x96 1x55x55x96 MaxPool 2 3x3

L2 1x55x55x96 1x55x55x128 FireBlock 16 64 64
L3 1x55x55x128 1x55x55x128 FireBlock 16 64 64
L4 1x55x55x128 1x55x55x256 FireBlock 32 128 128

1x55x55x256 1x27x27x256 MaxPool 2 3x3
L5 1x27x27x256 1x27x27x256 FireBlock 32 128 128
L6 1x27x27x256 1x27x27x384 FireBlock 48 192 192
L7 1x27x27x384 1x27x27x384 FireBlock 48 192 192
L8 1x27x27x384 1x27x27x512 FireBlock 64 256 256

1x27x27x512 1x13x13x512 MaxPool 2 3x3
L9 1x13x13x512 1x13x13x512 FireBlock 64 256 256
L10 1x13x13x512 1x13x13x1000 Conv 1 1x1x512x1000

1x13x13x1000 1x1x1x1000 AvgPool 1 13x13
1x1x1x1000 1x1000 Flatten
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D.3 MobileNetV1

Input
Tensor

Split
Channels

Kernel
3x3x1

Partial
F-map

Concatenated
Feature Maps
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D-wise
Kernel 
1x1x3

Output 
Tensor

Figure D.1: The effect of applying 3x3x1 (x3) Depth-wise Separable Convolution to a 6x6x3 input
tensor (stride = 1, padding = 0)

To maintain accuracy whilst reducing the number of required parameters within

the model, MobileNetV1 [121] substitutes Convolution with Depth-wise Separable

Convolution blocks [301]. Each Depth-wise Separable Convolution block consists of a

single Depth-wise Convolution layer (apply single kernel channel to single input channel

- as opposed to convolving directly in depth dimension) followed by an application of a

1x1 filter to the depth dimension of the resultant output, with BN and ReLU activation

function applied after the Depth-wise and Point-wise (1x1) convolution. Depth-wise

Separable Convolution block is shown in Figure D.1
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Table D.3: MobileNetV1 [121] architecture details. Input / Output shape in NHWC layout

# Input Output Type Stride Kern*CI*CO
L1 1x224x224x3 1x112x112x32 Conv 2 3x3x3x32
L2 1x112x112x32 1x112x112x32 Conv D-wise 1 3x3x32x1
L3 1x112x112x32 1x112x112x64 Conv P-wise 1 1x1x32x64
L4 1x112x112x64 1x56x56x64 Conv D-wise 2 3x3x64x1
L5 1x56x56x64 1x56x56x128 Conv P-wise 1 1x1x64x128
L6 1x56x56x128 1x56x56x128 Conv D-wise 1 3x3x128x1
L7 1x56x56x128 1x56x56x128 Conv P-wise 1 1x1x128x128
L8 1x56x56x128 1x28x28x128 Conv D-wise 2 3x3x128x1
L9 1x28x28x128 1x28x28x256 Conv P-wise 1 1x1x128x256
L10 1x28x28x256 1x28x28x256 Conv D-wise 1 3x3x256x1
L11 1x28x28x256 1x28x28x256 Conv P-wise 1 1x1x256x256
L12 1x28x28x256 1x14x14x256 Conv D-wise 2 3x3x256x1
L13 1x14x14x256 1x14x14x512 Conv P-wise 1 1x1x256x512
L14,16,18,20,22
L15,17,19,21,23

1x14x14x512
1x14x14x512

1x14x14x512
1x14x14x512

Conv D-wise
Conv P-wise

1
1

3x3x512x1
1x1x512x512

L24 1x14x14x512 1x7x7x512 Conv D-wise 2 3x3x512x1
L25 1x7x7x512 1x7x7x1024 Conv P-wise 1 1x1x512x1024
L26 1x7x7x1024 1x7x7x1024 Conv D-wise 2 3x3x1024x1024
L27 1x7x7x1024 1x7x7x1024 Conv P-wise 1 1x1x1024x1024

1x7x7x1024 1x1024 AvgPool 1 7x7
L28 1x1024 1x1000 Dense 1x1000
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D.4. MobileNetV2

D.4 MobileNetV2
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Figure D.2: The Expand Depth-wise Project (Add) Blocks in MobileNetV2.

The goal of the MobileNetV2 [288] architecture is to maintain the small computational

footprint of MobileNetV1 [121], whilst improving upon the achieved inference

performance (accuracy) and provide a backbone for other CV tasks such as object

detection. The V2 architecture partially re-uses the Depth-wise and Point-wise

Convolution layers found in V1, whilst expanding the architecture using inverted residual

structures - Expand-Depth-wise-Project (EDP) and Expand-Depth-wise-Project-Add

(EDPA) blocks, as depicted in Figure D.2.
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Appendix D. DL model architecture details

Table D.4: MobileNetV2 [288] architecture details. Input / Output shape in NHWC layout.

# Input Output Type Stride Kern*CI*CO
L1 1x224x224x3 1x112x112x32 Conv 2 3x3x3x32
L2 1x112x112x32 1x112x112x32 Conv D-wise 1 3x3x32x1
L3 1x112x112x32 1x112x112x16 Conv P-wise 1 1x1x32x16

Blk: 1
L4-6 1x112x112x16 1x56x56x24 EDP Blk 2

1x1x16x96
3x3x96x1
1x1x96x24

Blk: 2
L7-9 1x56x56x24 1x56x56x24 EDPA Blk 1

1x1x24x144
3x3x144x1
1x1x144x24

Blk: 3
L10-12 1x56x56x24 1x28x28x32 EDP Blk 2

1x1x24x144
3x3x144x1
1x1x144x32

Blk: 4-5
L13-15
L16-18

1x28x28x32 1x28x28x32 EDPA Blk 1
1x1x32x192
3x3x192x1
1x1x192x32

Blk: 6
L19-21 1x28x28x32 1x14x14x64 EDP Blk 2

1x1x32x192
3x3x192x1
1x1x192x64

Blk: 7-9
L22-24
L25-27
L28-30

1x14x14x64 1x14x14x64 EDPA Blk 1
1x1x64x384
3x3x384x1
1x1x384x64

Blk: 10
L31-33 1x14x14x64 1x14x14x96 EDP Blk 2

1x1x64x384
3x3x384x1
1x1x384x96

Blk: 11-12
L34-36
L37-39

1x14x14x96 1x14x14x96 EDPA Blk 1
1x1x96x576
3x3x576x1
1x1x576x96

Blk: 13
L40-42 1x14x14x96 1x7x7x160 EDP Blk 2

1x1x96x576
3x3x576x1
1x1x576x160

Blk: 14-15
L43-45
L46-48

1x7x7x160 1x7x7x160 EDPA Blk 1
1x1x160x960
3x3x960x1
1x1x960x160

Blk: 16
L49-51 1x7x7x160 1x7x7x320 EDP Blk 2

1x1x160x960
3x3x960x1
1x1x960x320

L52 1x7x7x320 1x7x7x1280 Conv 1 1x1x320x1280
1x7x7x1280 1x1x1x1280 AvgPool

L53 1x1x1x1280 1x1000 Dense
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D.5. ConvNeXt

D.5 ConvNeXt
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Figure D.3: The ConvNeXt Blocks, Layers and overall architecture.

The ConvNeXt [194] architecture is an attempt to test the limits of conventional

CNN architecture in terms of accuracy and efficiency when performing CV tasks. Via

a series of modernisations of the ResNet [113] architecture and adoption of training

methods from Vision Transformer models [193], which enable it to outperform SOTA

in image classification and other CV tasks, whilst remaining a pure CNN. Figure D.3

depicts the structure of the ConvNeXt-L model.
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Appendix D. DL model architecture details

Table D.5: ConvNeXt [194] architecture details. Input / Output shape in NHWC layout. "N" denotes
number of repeats of the block

# N Input Output Type Kern*CI*CO Stride Pad Groups
L1 1 1x3x224x224 1x192x56x56 Conv 4x4x3x192 4 0

B1-3
L2-10 3

1x192x56x56 1x192x56x56 GrpConv 7x7x192x192 1 4 192
1x192x56x56 1x56x56x192 Permute
1x56x56x192 1x56x56x768 Dense
1x56x56x768 1x56x56x192 Dense
1x56x56x192 1x192x56x56 Permute

L11 1 1x192x56x56 1x384x28x28 Conv 2x2x192x384 2 0

B4-6
L12-20 3

1x384x28x28 1x384x28x28 GrpConv 7x7x384x384 1 3 384
1x384x28x28 1x28x28x384 Permute
1x28x28x384 1x28x28x1536 Dense
1x28x28x1536 1x28x28x384 Dense
1x28x28x384 1x384x28x28 Permute

L21 1 1x384x28x28 1x768x14x14 Conv 2x2x384x768 2 0

B7-33
L22-102 27

1x768x14x14 1x768x14x14 GrpConv 7x7x768x768 1 3 768
1x768x14x14 1x14x14x768 Permute
1x14x14x768 1x14x14x3072 Dense
1x14x14x3072 1x14x14x768 Dense
1x14x14x768 1x768x14x14 Permute

L103 1 1x768x14x14 1x1536x7x7 Conv 2x2x768x1536 2 0

B34-36
L104-112 3

1x1536x7x7 1x1536x7x7 GrpConv 7x7x1536x1536 1 3 1536
1x1536x7x7 1x7x7x1536 Permute
1x7x7x1536 1x7x7x6144 Dense
1x7x7x6144 1x7x7x1536 Dense
1x7x7x1536 1x1536x7x7 Permute

1 1x1536x7x7 1x1536x1x1 AvgPool 7x7 1
1 1x1536x1x1 1x1536 Flatten

L113 1 1x1536 1x1000 Dense
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D.6. DenseNet-121

D.6 DenseNet-121
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Figure D.4: Dense / Transition layers, Blocks and DNN architecture of DenseNet121

Figure D.5: Connectivity between Dense layers within DenseNet121. Figure obtained from [125].

The DenseNet [125] architecture has been designed to exploit an assumption where

very deep DNNs can be effectively trained and avoid the diminishing gradient problem

as long as the connections between layers close to the DNN input and output are
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Appendix D. DL model architecture details

Table D.6: DenseNet121 [125] architecture details. Input / Output shape in NHWC layout. "*" denotes
3x3 Convolution, "L" denotes Layer numbers, "DB" denotes Dense Block, "dl" denotes Dense Layer

# Input Output Type
Kern*CI*CO
dl1, dl2, dl3,
dl4, dl5, ...

Padding = 1 for 3x3 Conv
Unless otherwise stated Stride

L1 1x224x224x3 1x112x112x64 Conv 7x7x3x64 - Padding = 3 2

1x114x114x64 1x56x56x64 MaxPool 3x3 (Dilation = 1) 2

DB1
L2-13 1x56x56x64 1x56x56x256 Conv+*

Conv+*
1x1x64x128
1x1x160x128

1x1x96x128
1x1x192x128

1x1x128x128
1x1x224x128

1
1

TL1
L14 1x56x56x256 1x28x28x128 Conv

MaxPool
1x1x256x128

2x2
1
2

DB2
L15-38 1x28x28x128 1x28x28x512

Conv+*
Conv+*
Conv+*
Conv+*

1x1x128x128
1x1x224x128
1x1x320x128
1x1x416x128

1x1x160x128
1x1x256x128
1x1x352x128
1x1x448x128

1x1x192x128
1x1x288x128
1x1x384x128
1x1x480x128

1
1
1
1

TL1
L39 1x28x28x512 1x14x14x256 Conv

MaxPool
1x1x512x256

2x2
1
2

DB3
L40-87 1x14x14x256 1x14x14x1024

Conv+*
Conv+*
Conv+*
Conv+*
Conv+*
Conv+*
Conv+*
Conv+*

1x1x256x128
1x1x352x128
1x1x448x128
1x1x544x128
1x1x640x128
1x1x736x128
1x1x832x128
1x1x928x128

1x1x288x128
1x1x384x128
1x1x480x128
1x1x576x128
1x1x672x128
1x1x768x128
1x1x864x128
1x1x960x128

1x1x320x128
1x1x416x128
1x1x512x128
1x1x608x128
1x1x704x128
1x1x800x128
1x1x896x128
1x1x992x128

1
1
1
1
1
1
1
1

TL1
L88 1x14x14x1024 1x7x7x512 Conv

MaxPool
1x1x1024x512

2x2
1
2

DB4
L89-120 1x7x7x512 1x7x7x1024

Conv*
Conv*
Conv*
Conv*
Conv*
Conv*

1x1x512x128
1x1x608x128
1x1x704x128
1x1x800x128
1x1x896x128
1x1x992x128

1x1x544x128
1x1x640x128
1x1x736x128
1x1x832x128
1x1x928x128

1x1x576x128
1x1x672x128
1x1x768x128
1x1x864x128
1x1x960x128

1
1
1
1
1
1

1x7x7x1024 1x1024 AvgPool 7x7 1
L121 1x1024 1x1000 Dense

shorter. In DenseNets, connections are made between every other layer as opposed

to between neighbouring layers, reducing the required number of parameters. This

effectively enables very deep networks to be trained, whilst reducing their computational

burden.

The architecture leverages blocked-layered design as shown in Figure D.4. Consecu-

tiveness of Dense layers within each block, enables concatenation of early feature maps

(outputs of each layer) together as the block grows, effectively sharing parameters the

deeper the network becomes, as shown in Figure D.5.
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D.7. ResNet-18

D.7 ResNet-18
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Figure D.6: Depiction of the Residual Blocks in ResNet architectures.

The ResNet [113] (Residual Nets) architecture was designed in response to the

vanishing gradient problem which can occur in deep convolutional networks trained using

backpropagation (see Section 2.2.1 for more details). Within the ResNet architecture,

Residual Blocks of convolutions with shortcut residual mappings are used (see Figure

D.6), such that during training, layers can be skipped when updating weights.
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Appendix D. DL model architecture details

Table D.7: ResNet-18 [113] architecture details. Input / Output shape in NHWC layout. Each ResBlk
is a Residual Block as depicted in Figure D.6

# Input Output Type Stride Kernel*CI*CO
L1 1x224x224x3 1x112x112x64 Conv 2 7x7x3x64

1x112x112x64 1x56x56x64 MaxPool 2 3x3

L2-3 1x56x56x64 1x56x56x64 ResBlk 1
1

3x3x64x64
3x3x64x64

L4-5 1x56x56x64 1x56x56x64 ResBlk 1
1

3x3x64x64
3x3x64x64

L6-7

Conv Shortcut
1x56x56x64 1x56x56x128 ResBlk

2
1
2

3x3x64x128
3x3x128x128
1x1x64x128

L8-9 1x56x56x128 1x56x56x128 ResBlk 1
1

3x3x128x128
3x3x128x128

L10-11

Conv Shortcut
1x56x56x128 1x56x56x256 ResBlk

2
1
2

3x3x128x256
3x3x256x256
1x1x128x256

L12-13 1x56x56x256 1x56x56x256 ResBlk 1
1

3x3x256x256
3x3x256x256

L14-15

Conv Shortcut
1x56x56x256 1x56x56x512 ResBlk

2
1
2

3x3x256x512
3x3x512x512
1x1x256x512

L16-17 1x56x56x512 1x56x56x512 ResBlk 1
1

3x3x512x512
3x3x512x512

1x56x56x512 1x1x1x512 AvgPool 1 7x7
L18 1x1x1x512 1x1x1x1000 Dense
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D.8. VGG-16

D.8 VGG-16

Table D.8: VGG-16 [304] architecture details. Input / Output shape in NHWC layout

# Input Output Type Stride Kernel*CI*CO
L1 1x224x224x3 1x224x224x64 Conv 1 3x3x3x64
L2 1x224x224x64 1x224x224x64 Conv 1 3x3x64x64

1x224x224x64 1x112x112x64 MaxPool 2 2x2
L3 1x112x112x64 1x112x112x128 Conv 1 3x3x64x128
L4 1x112x112x128 1x112x112x128 Conv 1 3x3x128x128

1x56x56x128 1x56x56x128 MaxPool 2 2x2
L5 1x56x56x128 1x56x56x256 Conv 1 3x3x128x256
L6-7 1x56x56x256 1x56x56x256 Conv 1 3x3x256x256

1x56x56x256 1x28x28x256 MaxPool 2 2x2
L8 1x28x28x256 1x28x28x512 Conv 1 3x3x256x512
L9-10 1x28x28x512 1x28x28x512 Conv 1 3x3x512x512

1x28x28x512 1x14x14x512 MaxPool 2 2x2
L11-13 1x14x14x512 1x14x14x512 Conv 1 3x3x512x512

1x14x14x512 1x7x7x512 MaxPool 2 2x2
1x7x7x512 1x25088 Flatten

L14 1x25088 1x4096 Dense
L15 1x4096 1x4096 Dense
L16 1x4096 1x1000 Dense
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Appendix D. DL model architecture details

D.9 VGG-19

Table D.9: VGG-19 [304] architecture details. Input / Output shape in NHWC layout

# Input Output Type Stride Kernel*CI*CO
L1 1x224x224x3 1x224x224x64 Conv 1 3x3x3x64
L2 1x224x224x64 1x224x224x64 Conv 1 3x3x64x64

1x224x224x64 1x112x112x64 MaxPool 2 2x2
L3 1x112x112x64 1x112x112x128 Conv 1 3x3x64x128
L4 1x112x112x128 1x112x112x128 Conv 1 3x3x128x128

1x56x56x128 1x56x56x128 MaxPool 2 2x2
L5 1x56x56x128 1x56x56x256 Conv 1 3x3x128x256
L6-8 1x56x56x256 1x56x56x256 Conv 1 3x3x256x256

1x56x56x256 1x28x28x256 MaxPool 2 2x2
L9 1x28x28x256 1x28x28x512 Conv 1 3x3x256x512
L10-12 1x28x28x512 1x28x28x512 Conv 1 3x3x512x512

1x28x28x512 1x14x14x512 MaxPool 2 2x2
L13-16 1x14x14x512 1x14x14x512 Conv 1 3x3x512x512

1x14x14x512 1x7x7x512 MaxPool 2 2x2
1x7x7x512 1x25088 Flatten

L17 1x25088 1x4096 Dense
L18 1x4096 1x4096 Dense
L19 1x4096 1x1000 Dense
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Appendix E

TVM DLC high-level graph

optimisation details

Table E.1: TVM’s Relay IR transformation passes (high-level optimisations) and their corresponding
designator levels

Lvl Pass Name Description

0 SimplifyExpr Algebraically simplify expressions
0 SimpligyInference Simplify DAG specifically for inference pass
0 InferType Given a Relay expression, infer its resultant type
0 PartitionGraph Partition model DAG into subgraphs
1 EtaExpand Add abstraction over global variable or constructor
1 Inline Inline appropriate functions within Relay module
1 RemoveUnusedFunctions Remove unused global functions within Relay module
1 FuseOps Perform operator fusion within Relay module

1 ToBBNF/ToANF/ToGNF Convert Relay Expression to BBNF (Basic Blocks),
ANF (Let-binding) or GNF (DAG)

1 PartialEvaluate Evaluate static expressions at compile time
1 DeadCodeElimination Eliminate unreachable expressions
2 FoldConstant(Expr) Fold constant Relay expressions (replace with values)
2 SplitArgs Split function with many arguments into multiple
2 DynamicToStatic If possible, convert dynamic operators to static
3 EliminateCommonSubexpr Common Relay subexpression elimination
3 For/Back-wardFoldScaleAxis Forward / Backwards folding of axis into

weights of Conv-2D or Dense operators
3 CanonicalizeOps Standardise format of special operators
3 AlterOpLayout Alternate layouts of consecutive operators
3 CanonicalizeCast Standardise format of cast expressions
4 FastMath Convert expensive non-linear activations to

approximation functions, decreasing computation
4 CombineParallelConv2D Join parallel Conv-2D ops into large Conv-2D
4 CombineParallelDense Join parallel Dense ops into large Dense
4 CombineParallelBatchMatmul Join multiple Batched GEMM ops into large GEMM
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Appendix F

Auto-tuner hyperparameter details

Table F.1: Schedule parameters used to parameterise templates during auto-tuning.

Parameters Description
tile_f, tile_y, tile_x Tiling factors for the feature map and filter loop nests
tile_rc, tile_ry, tile_rx Tiling factors for the reduction axis
auto_unroll_max_step Unroll factor for automatic loop unrolling
unroll_explicit Whether to explicitly unroll loop (annotate)

Table F.2: Configuration of the Grid-index search auto-tuner used during experimentation [40].

Configuration
Option Value Description

NumAvgRuns 20 Number of candidate runs during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs

Table F.3: Configuration of the Random search auto-tuner used during experimentation [40].

Configuration
Option Value Description

NumAvgRuns 20 Number of candidate runs during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs
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Table F.4: Configuration of the Genetic search auto-tuner used during experimentation [40].

Configuration
Option Value Description

PopSize 100 Population size during genetic search
NumEliteKeep 3 Number of elite candidates to keep in every iteration
MutationProb 0.1 Probability of mutation during each iteration
NumAvgRuns 20 Number of candidate runs during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs

Table F.5: Configuration of the AutoTVM auto-tuner used during experimentation [40].

Configuration
Option Value Description

FeatureType itervar Features considered in cost model
LossType rank Cost model loss type
BatchSize 64 Planning batch size
NumMarkovChains 128 Number of Markov chains in parallel SA
MaxSteps 500 Maximum umber of steps in a single SA run
FilteringEps 0.05 Epsilon parameter used in candidate filtering
NumAvgRuns 20 Number of candidate runs during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs

Table F.6: Configuration of the Chameleon auto-tuner used during experimentation [8].

Configuration
Option Value Description

FeatureType itervar Features considered in cost model
LossType reg Cost model loss type
BatchSize 64 Planning batch size
NumSteps 500 Number of steps in one reinforcement learning episode
NumIterations 16 Number of iterations of the optimiser process
NumEpisodes 128 Number of episodes performed during RL
PPO-AdamStepSize 1× 10−3 Step size of the Adam Optimiser used in the

PPO strategy (search algorithm)
PPO-DiscountFactor 0.9 Discount factor parameter of the PPO strategy
PPO-GAE 0.99 GAE parameter of the PPO strategy
PPO-Epochs 3 Number of epochs used in the PPO strategy
PPO-Clip 0.3 Clipping parameter for the PPO strategy
PPO-Coeff 1.0 Value coefficient for the PPO strategy
PPO-Entropy 0.1 Entropy parameter for the PPO strategy
FilteringEps 0.05 Epsilon parameter used in the candidate

filtering process ahead of proposal for measurement
NumAvgRuns 20 Number of candidate runs during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs
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Appendix F. Auto-tuner hyperparameter details

Table F.7: Configuration of the Ansor autoscheduler used during experimentation [385].

Configuration
Option Value Description

CostModelType XGBoost Type of cost model used
EpsGreedy 0.05 Epsilon-greedy parameter for the cost model
RetSOROE 1 Search strategy parameter:

Retry Search One Round On Empty
SmplInitMinPop 50 Sample size of the initial minimum population
SmplInitMeasRatio 0.2 Ratio of samples to be measured
EvoPop 2048 Population size for evolutionary search strategy
EvoIters 4 Number of iterations in evolutionary

search strategy
EvoMutProb 0.85 Probability of mutation in evolutionary

search strategy
CPUTiling SSRSRS Pattern specification for CPU-targeted

multi-level tiling transformation
GPUTiling SSSRRSRS Pattern specification for GPU-targeted

multi-level tiling transformation
MaxInmSplit 64 Maximum innermost split factor for the split

schedule transformation
MaxVec 16 Maximum vectorisation factor for the vectorise

schedule transformation
DisChgCompLoc false Whether to disable change in compute location
ModelAlpha 0.2 Alpha parameter when autoscheduling entire DNN
ModelBeta 2 Beta parameter when autoscheduling entire DNN
BckwrdWin 3 Backward window size parameter when

autoscheduling entire DNN
NumWarmupSmpl 5 Number of warmup samples to initialise

cost model
ObjectiveFunc sum Type of objective function when autoscheduling

entire DNN
NumAvgRuns 20 Number of candidate runs

during 1 measurement repeat
NumMeasureRepeat 3 Number of measurement repeats per candidate
MinRepeatMs 0 Minimum duration of a single measurement

Set to 0 to perform 20*3 runs
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Appendix G

Trimmer FC ANN Model Definition

class TrimmerFCNNModel(torch.nn.Module):
def __init__(self, cat_feats, padding_indexes, embedding_dims=10, hidden_dim=32):

super(TrimmerFCNNModel, self).__init__()
self.cat_feats = cat_feats
self.embeddings = {}
total = 0
for i, (feat, size) in enumerate(self.cat_feats.items()):

embed = torch.nn.Embedding(size, embedding_dims, padding_idx=padding_indexes[feat])
self.embeddings[feat] = embed
total+=1

self.linear = torch.nn.Linear((total * embedding_dims) + 1, hidden_dim)
self.linear2 = torch.nn.Linear(1, 1)
self.relu = torch.nn.ReLU6()
self.final = torch.nn.Linear(hidden_dim, 1)

def get_features(self, x):
feats = []
for k,v in x.items():

embed = self.embeddings.get(k, None)
if embed is None:

continue
feats.append(embed(v.long().detach()))

feats = torch.cat(feats, axis=1)
batch = x["flop"].size(0)
flops = x["flop"].reshape(batch,1).float().detach()
x2 = self.linear2(flops)
x2 = self.relu(x2)
return self.linear(torch.cat((feats, x2), axis=1))

def forward(self, x, feats_only=False):
x = self.get_features(x)
if feats_only:

return x
return self.final(self.relu(x))

Listing G.1: Pytorch implementation of Trimmer’s FC ANN filtering model.
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Appendix H

Naïve Parallel Auto-tuning -

Additional Results

H.1 Measurement Inaccuracy during NPM/MPS
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H.1. Measurement Inaccuracy during NPM/MPS
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Figure H.1: {PART 1:} Measured latency of proposed candidate tensor programs when auto-tuning with
a Grid-index auto-tuner. Reported 50 first candidates proposed by the auto-tuner towards the GPU
within platform A, across several tensor operator auto-tuning tasks. Compared latency measurements
as reported via serial, NPM and NPM + MPS measurement infrastructures.
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Figure H.2: {PART 2:} Measured latency of proposed candidate tensor programs when auto-tuning with
a Grid-index auto-tuner. Reported 50 first candidates proposed by the auto-tuner towards the GPU
within platform A, across several tensor operator auto-tuning tasks. Compared latency measurements
as reported via serial, NPM and NPM + MPS measurement infrastructures.
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H.2 Measurement Outcomes During NPM Auto-tuning
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Figure H.3: Auto-tuning 15 groups of tensor operators using AutoTVM auto-tuner on Platform A
(Intel CPU + Nvidia V100 GPU) until 500 hardware measurements are performed.
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Figure H.4: Auto-tuning 15 groups of tensor operators using Ansor autoscheduler, Platform A (Intel
CPU + Nvidia V100 GPU) until 500 hardware measurements are performed.
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Figure H.5: Auto-tuning 15 groups of tensor operators using Chameleon auto-tuner on Platform A
(Intel CPU + Nvidia V100 GPU) until 500 hardware measurements are performed.
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Figure H.6: Auto-tuning 15 groups of tensor operators using AutoTVM auto-tuner on Platform B
(AMD CPU + Nvidia GTX 2080 GPU) until 500 hardware measurements are performed.
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Figure H.7: Auto-tuning 15 groups of tensor operators using Ansor autoscheduler, Platform B (AMD
CPU + Nvidia GTX 2080 GPU) until 500 hardware measurements are performed.
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Figure H.8: Auto-tuning 15 groups of tensor operators using Chameleon auto-tuner on Platform B
(AMD CPU + Nvidia GTX 2080 GPU) until 500 hardware measurements are performed.
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Figure H.9: Auto-tuning 15 groups of tensor operators using AutoTVM auto-tuner on Platform C
(Intel CPU + Nvidia GTX 1080 GPU) until 500 hardware measurements are performed.
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Figure H.10: Auto-tuning 15 groups of tensor operators using Ansor autoscheduler, Platform C (Intel
CPU + Nvidia GTX 1080 GPU) until 500 hardware measurements are performed.
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Figure H.11: Auto-tuning 15 groups of tensor operators using Chameleon auto-tuner on Platform C
(Intel CPU + Nvidia GTX 1080 GPU) until 500 hardware measurements are performed.
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Appendix I

DOPpler - Additional Results

I.1 dp Over Time Across Tensor Operators and Tensor

Programs
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Figure I.1: dp over time when auto-tuning with Ansor towards Platform A
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Figure I.2: dp over time when auto-tuning with Ansor towards Platform B
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Figure I.3: dp over time when auto-tuning with Ansor towards Platform C
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I.2 Timeout Setpoint Over Time Across Platforms and

Tensor Operators
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Figure I.4: Timeout over time when auto-tuning with Ansor towards Platform A
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Figure I.5: Timeout over time when auto-tuning with Ansor towards Platform B
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(d) Conv3D-NCDHW, Ansor, Platform C
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Figure I.6: Timeout over time when auto-tuning with Ansor towards Platform C
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I.3. Low-level View of the Candidate Measurement Procedure

I.3 Low-level View of the Candidate Measurement

Procedure
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Figure I.7: Process-level view of auto-tuning MatMul with Serial and DOPpler (Grid-index, 64
measurements (1 batch of candidate schedules), 3 repeats (per candidate), Platform A). Stage executions
traced using Nvidia NVTX [238], and Nsight Systems [236]
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Figure I.8: NVTX [238] trace at the kernel level during candidate measurement. Python measurement
process (red) calls TVM latency evaluation C++ runtime (blue), both of which are considerably slower
than GPU kernel execution (pale-blue).
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Appendix I. DOPpler - Additional Results

Table I.1: Auto-tuning scenario: MatMul, Ansor, Serial vs. DOPpler, 64 measurements, 3 Repeats /
candidate. Timings data collected using Nvidia NVTX & Nsight Systems. run_worker_routine =
total measurement time per candidate and measure_candidates = total auto-tuning time.

Serial DOPpler
Range Total Time Instances Avg Total Time Instances Avg

compile_candidates 3.296 s 1 3.296 s 3.055 s 1 3.055 s
measure_candidates 33.192 s 1 33.192 s 19.189 s 9 2.132 s
build_worker_routine 31.968 s 64 499.497 ms 32.599 s 64 509.363 ms
run_worker_routine 15.642 s 64 244.404 ms 68.859 s 78 882.807 ms
cand_0_main 37.886 µs 1 37.886 µs 51.573 µs 1 51.573 µs
cand_1_main 55.237 µs 1 55.237 µs 56.363 µs 1 56.363 µs
cand_2_main 75.351 µs 1 75.351 µs 60.705 µs 1 60.705 µs
cand_3_main 104.914 µs 1 104.914 µs 156.318 µs 2 78.159 µs
cand_4_main 52.754 µs 1 52.754 µs 40.475 µs 1 40.475 µs
cand_5_main 90.648 µs 1 90.648 µs 154.676 µs 2 77.338 µs
cand_6_main 104.210 µs 1 104.210 µs 78.978 µs 1 78.978 µs
cand_7_main 68.402 µs 1 68.402 µs 71.210 µs 1 71.210 µs
cand_8_main 90.787 µs 1 90.787 µs 79.337 µs 1 79.337 µs
cand_9_main 54.282 µs 1 54.282 µs 50.662 µs 1 50.662 µs
cand_10_main 111.115 µs 1 111.115 µs 65.891 µs 1 65.891 µs
cand_11_main 94.577 µs 1 94.577 µs 173.491 µs 2 86.745 µs
cand_12_main 55.020 µs 1 55.020 µs 92.877 µs 1 92.877 µs
cand_13_main 54.821 µs 1 54.821 µs 66.336 µs 1 66.336 µs
cand_14_main 110.808 µs 1 110.808 µs 204.611 µs 1 204.611 µs
cand_15_main 56.072 µs 1 56.072 µs 72.345 µs 1 72.345 µs
cand_16_main 121.208 µs 1 121.208 µs 103.836 µs 1 103.836 µs
cand_17_main 113.870 µs 1 113.870 µs 72.305 µs 1 72.305 µs
cand_18_main 108.994 µs 1 108.994 µs 75.513 µs 1 75.513 µs
cand_19_main 119.754 µs 1 119.754 µs 49.756 µs 1 49.756 µs
cand_20_main 74.024 µs 1 74.024 µs 176.912 µs 2 88.456 µs
cand_21_main 110.730 µs 1 110.730 µs 75.401 µs 1 75.401 µs
cand_22_main 114.193 µs 1 114.193 µs 207.953 µs 2 103.976 µs
cand_23_main 68.692 µs 1 68.692 µs 35.935 µs 1 35.935 µs
cand_24_main 114.957 µs 1 114.957 µs 405.785 µs 2 202.892 µs
cand_25_main 115.852 µs 1 115.852 µs 42.507 µs 1 42.507 µs
cand_26_main 68.845 µs 1 68.845 µs 71.151 µs 1 71.151 µs
cand_27_main 51.498 µs 1 51.498 µs 67.860 µs 1 67.860 µs
cand_28_main 116.209 µs 1 116.209 µs 55.012 µs 1 55.012 µs
cand_29_main 106.520 µs 1 106.520 µs 95.270 µs 1 95.270 µs
cand_30_main 116.503 µs 1 116.503 µs 312.540 µs 2 156.270 µs
cand_31_main 118.382 µs 1 118.382 µs 62.012 µs 1 62.012 µs
cand_32_main 79.117 µs 1 79.117 µs 186.879 µs 2 93.439 µs
cand_33_main 112.753 µs 1 112.753 µs 53.782 µs 1 53.782 µs
cand_34_main 110.261 µs 1 110.261 µs 57.144 µs 1 57.144 µs
cand_35_main 113.912 µs 1 113.912 µs 70.529 µs 1 70.529 µs
cand_36_main 69.266 µs 1 69.266 µs 210.705 µs 1 210.705 µs
cand_37_main 112.165 µs 1 112.165 µs 184.692 µs 2 92.346 µs
cand_38_main 117.646 µs 1 117.646 µs 184.771 µs 2 92.385 µs
cand_39_main 66.436 µs 1 66.436 µs 60.563 µs 1 60.563 µs
cand_40_main 54.024 µs 1 54.024 µs 71.109 µs 1 71.109 µs
cand_41_main 115.262 µs 1 115.262 µs 301.617 µs 2 150.808 µs
cand_42_main 65.308 µs 1 65.308 µs 74.169 µs 1 74.169 µs
cand_43_main 52.079 µs 1 52.079 µs 74.251 µs 1 74.251 µs
cand_44_main 108.586 µs 1 108.586 µs 76.008 µs 1 76.008 µs
cand_45_main 115.650 µs 1 115.650 µs 88.433 µs 1 88.433 µs
cand_46_main 111.522 µs 1 111.522 µs 48.056 µs 1 48.056 µs
cand_47_main 52.613 µs 1 52.613 µs 74.799 µs 1 74.799 µs
cand_48_main 115.446 µs 1 115.446 µs 68.579 µs 1 68.579 µs
cand_49_main 114.742 µs 1 114.742 µs 78.050 µs 1 78.050 µs
cand_50_main 114.828 µs 1 114.828 µs 96.261 µs 1 96.261 µs
cand_51_main 113.627 µs 1 113.627 µs 71.761 µs 1 71.761 µs
cand_52_main 112.560 µs 1 112.560 µs 103.580 µs 1 103.580 µs
cand_53_main 119.490 µs 1 119.490 µs 276.753 µs 2 138.376 µs
cand_54_main 113.671 µs 1 113.671 µs 149.204 µs 1 149.204 µs
cand_55_main 112.558 µs 1 112.558 µs 47.917 µs 1 47.917 µs
cand_56_main 52.039 µs 1 52.039 µs 316.021 µs 2 158.010 µs
cand_57_main 67.278 µs 1 67.278 µs 68.823 µs 1 68.823 µs
cand_58_main 111.210 µs 1 111.210 µs 52.847 µs 1 52.847 µs
cand_59_main 51.677 µs 1 51.677 µs 57.651 µs 1 57.651 µs
cand_60_main 107.627 µs 1 107.627 µs 210.557 µs 2 105.278 µs
cand_61_main 105.448 µs 1 105.448 µs 203.352 µs 1 203.352 µs
cand_62_main 114.796 µs 1 114.796 µs 89.601 µs 1 89.601 µs
cand_63_main 66.537 µs 1 66.537 µs 61.615 µs 1 61.615 µs
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Glossary

Accelerator Dedicated co-processor to the main machine’s CPU, used to perform a

select subset of operations more efficiently than via the use of CPU’s instructions.

Activation In the context of DL, an activation is an output of a single neuron’s

activation function. ANN layers produce activations.

Architecture In the context of DNNs, architecture describes the organisation of the

DNN graph and choice of tensor operators / layers that populate each node within

the graph. In the context of processors, an architecture describes the composition

of the chip, for example, the number and type of cores, the interconnects between

the cores or their association with different levels of caches / DRAM memory.

Auto-tuning Automated discovery of high-performance program implementations.

Autoscheduler In the context of low-level DL optimisation, an autoscheduler is an auto-

tuner that does not rely on schedule templates, instead generatively constructing

schedules using rules, steps or other forms of patterns, whereby a schedule is

iteratively constructed. Generally, autoschedulers do not require a DL compiler

engineer to provide a template that matches a tensor operator class and target-

device class for the combination to be optimisable.

Batch In the context of DL training, a batch denotes the number of individual training

samples being process before updating the model’s parameters. In the context
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Glossary

of Trimmer, a batch denotes a partial auto-tuning session performed for a tensor

operator. In the context of DOPpler, a batch denotes a subset of candidate tensor

programs being measured simultaneously across one or more target-devices.

Black box A component of a system is said to be a black box when it produces expected

results as per specification without revealing its inner workings.

Bottleneck A design factor within a system that limits its capacity/performance.

Candidate In the context of DL auto-tuning, a candidate is a configuration, that when

used to parameterise a schedule, produces a unique tensor program.

Cloud Distributed computing paradigm with on-demand access to compute resources.

Cluster Collection of more than one machine, interconnected via a common network.

Configuration In the context of broader computer science, a configuration describes

parameterisation of a system component that in some way modifies its behaviour

or desired functions. In the context of DL compilation and auto-tuning-based

optimisation, a configuration may refer to the parameters that are used to construct

a schedule for a given tensor operator.

Convergence In the context of ML or optimisation problems, convergence is a desirable

state where the prediction error or search progress is satisfactory.

Dense In terms of NN layers, dense may refer to a dense layer - a fully connected layer

where each neuron connects to every other neuron in the preceeding layer. In

terms of entire NNs, dense may refer to dense networks - entire networks composed

of dense layers.

Edge In the context of distributed computing, Edge can refer to edge devices - devices

that are part of a distributed system that deliver computation and request serving

close to their location to leverage data locality and reduced network overheads.

338



Embedding In the context of DL, an embedding is a construct that enables a high-

dimensional vector space to be mapped to low-dimensional representation (for

example, a vector). An embedding captures input semantics and can be learned.

End-to-end When referring to DL model optimisation, end-to-end describes a situation

where the entire model is optimised - that is all tensor operators.

Engine A core software component that may be included in applications to facilitate

some functionality. For example, an inference engine facilitates DL inference.

Epoch In the context of DL training, an epoch denotes a single pass through the entire

training dataset. In the context of Trimmer, an epoch denotes a single partial

auto-tuning pass through all tensor operators within a model.

Feature An attribute of a data point.

Filter In the context of Convolutions, a filter is the same as kernel (i.e. a window that

moves across the layer’s inputs). In the context of systems, a filter may refer to a

component that filters entities according to rules, patterns or policies.

Gradient A derivative calculated with respect to an ML model parameter (weight)

during training, typically within the process of backpropagation.

Graph-level When referring to DL optimisation, graph-level is commonly used to

group optimisations that transform the DL model graph structure.

Hyperparameter In the context of DL model training, a parameter that is not part

of the internal (learned) model parameters (weights), and is used to configure the

process of training. The term is also used across the thesis to describe configuration

parameters of the Trimmer and DOPpler systems.

Inference The process of producing a prediction by a trained ML model.
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Inter-device Across multiple devices - for example, performing multiple simultaneous

candidate measurements across multiple devices.

Interference Degradation of execution performance (for example, increase in latency),

when two or more workloads simultaneously share the same computational resource.

Intra-device In the context of measurement parallelism - within a single device - for

example, performing simultaneous candidate measurements within a single device.

Isolation In relation to DL compilation and optimisation, a situation where the target-

device is prevented from executing workloads other than those originating from

the auto-tuning process and only one at a time.

Kernel In the context of CUDA, a kernel is a self-contained routine that executes

multiple threads on the GPU. In the context of Convolution operators, a kernel

describes a window used to multiply inputs and weights to produce activations.

Latency Latency describes the total time taken to perform the action from start to

finish. For example, inference latency of an end-to-end DL model, captures the

time between the input reaching the model and the model producing a prediction.

Layer In the context of DL models, a layer is a logical component of a model consisting

of learnable weights and an operator.

Loop nest Set of loops embedded into each-other’s bodies. For example, inner and

outer loops.

Loss The measure of error during ML model training with respect to some objective

function.

MatMul Short for Matrix Multiplication.
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Middleware A software system or a set of systems that facilitate applications in

utilising system resources. Oftentimes, refers to any distributed systems software

that facilitates communication, data and process management.

Neural Adjective describing ML or DL entities that rely on artificial neurons.

Padding In the context of Convolutions, padding refers to input or output padding

- a 0-based frame that is applied to a matrix / tensor data intended to preserve

spatial dimensions as the input is moving along the network layers.

Parallelisation In the context of DL compilation, the process of mapping individual

computation patterns such as inner loops or sub-loops to different parallelism

constructs such as threads or individual cores.

Pipeline In the context of ML or DL, a pipeline is a set of software constructs that

facilitate the inflow of inputs and outflow of outputs to and from a DL model or

multiple models. In the case of training, a pipeline contains dataset management

routines, the training loop, validation subroutines and/or testing scripts.

Platform In this thesis, platform refers to a unique class of machines that contain

identical hardware (CPU, GPU, amount of DRAM memory etc.).

Plug and play Two or more operationally compatible systems without the need to

substantially modify either of the systems to facilitate their co-operation.

Policy In the context of DL optimisation and more specifically DOPpler, the term

policy is used to describe a decision-making subroutine.

Polyhedral A form of program representation as parametric polyhedra, which enables

geometric optimisations to be performed on constructs such as loop nests, with

the aim of improving data locality or reuse.
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Quality In the context of DL optimisation, quality refers to the ability of the optimiser

(high-level or auto-tuner) to improve execution performance of individual tensor

operators or end-to-end DL models.

Round In the context of DOPpler, a round refers to a cyclic process where a subset

(batch) of candidates is measured on target-device, followed by calibration of

the degree of parallelism. Multiple DOPpler rounds are performed across a

single batch of candidates proposed by the auto-tuner for measurements. For

example, DOPpler may perform eight measurement rounds with eight simultaneous

candidate measurements across a batch of 64 candidate schedules provided by the

auto-tuner.

Schedule In the context of DL compilation, schedule is a set of program transformations

that describes how a given computation should be performed.

Scheduling In the context of general computing, the process of allocation of resources

to workloads. In the context of DL compilation, the process of determining an

implementation for a given computation definition (for example, constructing a

tensor program from a tensor operator given some intermediate transformations).

Serial In DL auto-tuning candidate measurements, "serial" describes the process of

performing one candidate measurement at a time within a single target-device.

Shape When referring to tensors, a shape describes the dimensionality of a tensor.

Stack In the context of software, a collection of independent systems, programming

languages and libraries that enable execution of an application.

Stride In Convolution operators, a stride denotes how far the convolution kernel (filter)

moves in some direction across the input tensor when performing convolution.
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Target-device In the context of DL optimisation, a target-device is a hardware device

towards which the optimisations of workloads are being performed.

Template In the context of DL auto-tuning, a template is a pre-defined skeleton of a

schedule that requires parameters (schedule configuration) to construct a complete

tensor program for a given tensor operator.

Tensor operator In the context of DL models, a tensor operator specifies the logical

operations necessary to perform actions associated with a model’s layer.

Tensor program In the context of DL models and DL systems, a tensor program is a

standalone program that executes computation associated with a tensor operator.

Alternatively, a tensor program can be thought of as a program that performs

operations on tensors as inputs and outputs.

Tensorisation In the context of DL compilation, the process of mapping individual

computation patterns such as inner loops or sub-loops to hardware intrinsics -

instructions that let the program leverage specialised silicon such as tensor cores

in recent Nvidia GPUs.

Throughput In the context of DL model execution, throughput describes the number

of inferences that can be performed within a given period of time. This definition

extends to tensor operators and tensor programs that exhibit execution latency.

Tiling In the context of DL compilation, the process of dividing loop nests into

tiles/blocks that can be individually mapped to parallelisation primitives or to

exploit data locality via more efficient cache alignment.

Timeout Duration of time a given action is permitted to take before being cancelled.

Training The process during which ML model’s parameters are iteratively updated

with respect to training data until convergence.
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Utilisation In the context of processors, the portion (i.e. a percentage) of the peak

compute capabilities utilised by the workload at any measurable point in time.

Vectorisation In the context of DL compilation - mapping of computation patters

such as loops to singular SIMD instructions.

Weight A parameter within an ML model that represents learned regularities.
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