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Abstract

We provide Bayesian inference in the context of Least Median of Squares and Least Trimmed Squares, two well-known

techniques that are highly robust to outliers. We apply the new Bayesian techniques to linear models whose errors

are independent or AR and ARMA. Model comparison is performed using posterior model probabilities, and the new

techniques are examined using Monte Carlo experiments as well as an application to four portfolios of asset returns.
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1 Introduction

In an important paper Piradl, Shadrokh, and Yarmohammadi (PSY, 2021) propose to use a robust estimation method with

autocorrelated errors. PSY use the minimum Matusita distance estimation method and introduce a new robust estimation

method for the linear regression model with correlated error terms in the presence of outliers, and compare it with M-

estimation and the well-known Cochrane and Orcutt least squares estimation method. In this paper we propose an alternative

approach based on Bayesian implementation of Least Median of Squares and Least Trimmed Squares (Rousseeuw, 1984) for

independent errors as well as autocorrelated errors. In Section 2 we present the Least Median of Squares and Least Trimmed

Squares procedures with uncorrelated errors. In Section 3 we extend to correlated errors of the AR and ARMA variety where

we also present Monte Carlo evidence. In Section 4 we present an empirical application and we provide model comparison .

2 Least Median of Squares formulation

Rousseeuw (1984) proposed the method of Least Median of Squares (LMS) in which the sum of squared residuals used

in Least Squares (LS) is replaced by the median of the squared residuals. The resulting estimator can resist the effect of

nearly 50% of contamination in the data. As he argued convincingly: “Let us now return to [least squares method]. A more

complete name for the LS method would be least sum of squares, but apparently few people have objected to the deletion

of the word "sum-as if the only sensible thing to do with n positive numbers would be to add them” (Rousseeuw, 1984, p.

872). Given a regression model:

yt = x′
tβ + ut, t = 1, . . . , n, (1)

where xt is a k × 1 vector of explanatory variables, β is a k × 1 parameter vector of and ut represents an error term, LMS

produces the estimator:

β̂ = argmin
β

median
t=1,...,n

(yt − x′
tβ)

2, (2)

where “med” denotes the median. Rousseeuw (1984) intended his method as an exploratory data analysis tool and did not

work on standard errors for the coefficients β. Moreover, computational problems associated with LMS are still open to this

day.

Bayesian analysis of LMS has not been attempted due to its computational difficulties but also the fact that there is

no obvious way to connect it to a likelihood function. For example, LS is associated with the normal distribution, the Least

Absolute Deviations (LAD) estimator is associated with the Laplace distribution, etc. However, in the case of LMS it is not

obvious how to proceed in terms of Bayesian analysis.

Bissiri et al. (2016) have shown how to update beliefs in a Bayesian framework when we do not have a likelihood

function but we do have a loss function.1 Given a parameter θ ∈ Θ ⊆ <d, and data Y , they show that given a prior p(θ) the
1Similar ideas have been proposed by Kato (2013) who, in the context of instrumental variables models, instead of assuming a distributional

assumption, he proposed a quasi-likelihood induced from conditional moment restrictions. A similar approach has been used in Chernozhukov and
Hong (2003).
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update to a posterior p(θ|Y ) , can be made using:

p(θ|Y ) ∝ p(θ) exp {−`(θ, Y )} , (3)

where `(θ, Y ) ≥ 0 is a certain loss function. For estimating a median, one would take `(θ, Y ) = |θ−Y | while for estimating a

mean, `(θ, Y ) = (θ−Y )2 when it so happens that Y is a single observation. Of course, expected loss is: L(θ) =
∫
`(θ, Y )dF (Y )

where F (Y ) is a distribution function associated with the data.

Given (3), we can further extend the update by using the posterior:

p(θ, h|Y ) ∝ p(θ)hn−1 exp {−h`(θ, Y )} , (4)

where h is a scale parameter whose prior is: p(h) ∝ h−1. Using well-known properties of the gamma distribution, we have:

p(θ|Y ) =
∫∞
0

p(θ, h|Y ) ∝ p(θ)
∫∞
0

hn−1 exp {−h`(θ, Y )}

= p(θ) {`(θ, Y )}−n/2
.

(5)

If the prior is flat (viz. p(θ) ∝ const., θ ∈ Θ) or at least we can reasonably assume that it is bounded above, integrability

of (5) may be a problem. The problem can be always avoided if we assume that the scale parameter has the following prior:

p(h|β) ∝ h−1 exp
{
−qh

}
, (6)

where q > 0. This is still an improper prior but the posterior is proper as, after integrating h out, we have:

p(θ|Y ) ∝ p(θ)
{
q + `(θ, Y )

}−n/2
. (7)

Given the stated conditions on the prior of θ, the only assumption we needed for integrability of the posterior is:

`(θ, Y ) ≥ 0 ∀θ ∈ Θ. Clearly, the “non-informative” choice would be to select q as close to zero as possible (we use 10−7 in

this study).

In turn, given the posterior kernel in (5) standard Bayesian Markov Chain Monte Carlo (MCMC) methods (Hastings,

1970, Tierney, 1994) can be used to provide samples
{
θ(s), s = 1, ..., S

}
that converge to the distribution whose kernel density

is given by (5).

In the case of LMS regression, where it is natural to assume that the distribution of the errors involves a scale parameter

h, the posterior becomes:

p(β|Y ) ∝ p(β)

{
q +median

t=1,...,n
(yt − x′

tβ)
2

}−n/2

. (8)

A related idea is to use least trimmed squares (LTS, see also Rousseeuw, 1984). This estimator has the following loss

function:

l(β, Y ) =

H∑
t=1

(rt)
2
1:H , (9)
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where (rt)
2
1:H are the ordered squared residuals. Generally, H depends on the trimming proportion α, so that: H =

1 + [n(1− α)], where [·] denotes the integer part.

3 Least Median of Squares with correlated errors

We consider (1) under the assumption

ut = ρut−1 + et, (10)

where et ∼ i.i.d N (0, σ2). This is a standard AR(1) autoregressive process. To proceed, we will make use of the autoregressive

transformation in the linear model. This transformation uses quasi-first- differencing to produce a model with independent

errors in which case we can use the procedures of the previous section.

Therefore, we have

yt = ρyt−1 + (xt − ρxt−1)
′β + et. (11)

Therefore, the LMS posterior (8) becomes

p(β|Y ) ∝ p(β)

{
q +median

t=1,...,n
(yt − ρyt−1 − (xt − ρxt−1)

′β)2
}
.−n/2 (12)

Notice that yt − ρyt−1 − (xt − ρxt−1)
′β = et. For LTS the posterior becomes

p(β|Y ) ∝ p(β)
{
q +

[
(yt − ρyt−1 − (xt − ρxt−1)

′β)2
]
1:H

}
.−n/2 (13)

3.1 Results with independent data

Next, we present a numerical example to see how LMS and LTS perform in relation to least squares. Raj and Senthamarai

(2017) use a regression to examine the relationship between blood pressure and age in 30 patients. In Figure 1, we present

the marginal posteriors of the intercept (upper panel) and the slope (lower panel) compared to a normal distribution for OLS

parameter estimates. This is really a sampling distribution; viz. a normal distribution, over the appropriate range defined

by LMS/LTS, centered at the OLS estimate and having variance the familiar OLS expression. As a result of contamination,

the sampling distribution of OLS has a large variance and appears as flat over the posterior domain of LMS/LTS. Clearly,

LMS performs excellently, whereas the sampling distribution of OLS has no posterior probability over the domain of LMS.2

In Figure 2, we report marginal posterior densities of βk in a regression model with n observations and k regressors.

In the regression there is always an intercept, and k − 1 normally distributed regressors (i.i.d). The regression coefficients

are all set equal to 1. With degree of contamination c, the errors are generated from a standard normal distribution with

probability 1 − c, and a standard Cauchy (Student-t with one degree of freedom) with probability c. Again, the sampling

distribution of OLS places, practically, no posterior probability around the true values (which are all equal to 1).
2All MCMC uses 1,500,000 passes the first 500,000 of which are omitted during the burn-in phase to mitigate possible start up effects. This

is, of course, excessive, and in all cases, 15,000 omitting the first 5,000 produce the same results. Initial conditions for MCMC are provided by
numerical minimization of the loss function. The standard Geweke (1992) numerical performance and MCMC convergence are inspected in all
cases and they are available on request.
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Figure 1: Bayesian LMS of blood pressure data
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Figure 2: Marginal posterior densities with different n, k, and degree of contamination
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3.2 Monte Carlo experiment for correlated errors

We keep the same configurations as in the previous subsection, but we now assume that errors are autocorrelated as in

(10), We vary the autocorrelation coefficient from ρ = 0.1 to 0.9 (20 different values). Our Monte Carlo experiment uses

1,000 replications, 15,000 MCMC draws, omitting the first 5,000 in the burn-in phase. We are interested in the median

bias of OLS, LMS and LTS estimates of parameter vector β (across all its components whose true values are all equal to

1) for different configurations of n, k, ρ and degree of contamination. The initial value for errors (u0) is taken to be zero

in all cases. We present our Monte Carlo results in graphical form to facilitate reading. In Figure 3 we report root mean

squared errors of parameters β (left panel) and ρ (right panel) for LMS and LTS posteriors as well as the normal posterior

of OLS that takes into account the AR(1) model in (10). In panel (a) we report results for a small sample and a few

regressors with contamination 10%. In panel (b) we report results for a medium sample and a moderate number regressors

with contamination 25%. Finally, in panel (c) we report results for a large sample and a large number regressors with

contamination 50%. LMS and LTS posteriors deliver results that are esstinally unbiased in samples whose size is as small

as 50, whereas standard AR(1) estimation delivers estimators whose bias is orders of magnitude larger compared to LMS or

LTS. 3

4 Empirical application

4.1 Statistical Inference

It is well known that volatility in asset markets is autocorrelated, a fact that is known as “volatility clustering”. Techniques

that are used in the literature include Generalized Autoregressive Conditional Heteroskedasticity (GARCH) or Stochastic

Volatility (SV) models. If rt denotes the return of a certain asset, we define volatility as yt = log r2t as the mean return

is, practically, zero. However, it is also well known that asset returns are often leptokurtic; therefore, we expect a certain

number of outliers or contamination that may affect adversely estimates of µ and ρ.

We use 4 value-weighted equity portfolios formed by sorting individual stocks based on market capitalization of equity

(ME) and book-to-market equity ratio (BM). The sample period is from January 1963 to December 2020. Monthly percentage

returns in excess of the T-bill rate are analyzed in the first two applications; the third application uses daily excess returns.

The data are from Kenneth French’s data library, which uses security level data from the CRSP, Compustat and Ibbotson

Associates data bases.

In turn we use the following model
yt = µ+ ut,

ut = ρut−1 + et.

We are especially interested in estimates of ρ to determine the degree of persistence in volatility. The results are reported

in Figure 4. Clearly, in all cases, the AR(1) posterior mean. This indicates that there are indeed outliers which affect the

posterior of AR(1)4 is shifted to the right relative to the LMS and LTS posteriors (which are nearly the same).
3This is computed in two steps. In the first step we use OLS to obtain the residuals. From the residuals we obtain ρ by regressing the residuals

on their lagged values. Finally, we use the estimated value of ρ to estimate (11) by OLS.
4In this case, all parameters are estimated simultaneously using a standard Gibbs sampler. MCMC is based on 150,000 draws and the first
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Figure 3: RMSE of parameters (β) and ρ
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Figure 4: Marginal posterior densities of ρ
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Clearly, the marginal posteriors of ρ are nearly the same for LMS and LTS but quite different compared to the

marginal posterior of ρ from AR(1) estimation. In turn, this indicates that the presence of outliers in volatility affects AR(1)

estimation in a significant way.

4.2 More general models

The extension of the new techniques to AR(p) models is obvious. The techniques can also be extended to ARMA(p, q)

models. Here, we consider the ARMA(1, 1) model

yt = x′
tβ + ut,

ut = ρut−1 + et − αet−1,
(14)

where et ∼ i.i.d N (0, σ2). To proceed we define recursively

et = αet−1 + (yt − x′
tβ)−

(
yt−1 − x′

t−1β
)
, (15)

where e0 = 0.5 In turn, we define the following loss function for LMS:

`LMS(β, α, ρ) = median e2t
t=2,...,n

. (16)

In turn, we can use the appropriately modified posteriors for both LMS and LTS. Moreover, the ARMA posterior can

be easily handled using the Gibbs sampler. In Figure 5, we report marginal posterior densities of ρ and α for the empirical

application of the previous section. Again, ARMA overestimates both ρ and α by a significant amount, in terms of posterior

means or medians, for all four portfolios.

4.3 Model selection

Suppose we consider a general ARMA(p,q) model and we want to perform Bayesian Model Averaging (BMA) or compute

posterior model probabilities. The critical part is to compute marginal likelihoods also known as “evidence”, With a likelihood

L(θ;Y ) and a prior p(θ), (θ ∈ Θ ⊆ Rd) the marginal likelihood is

M(Y ) = L(θ;Y )p(θ)
p(θ|Y ) . (17)

As this is an identity in θ, it holds at θ̄ as well (say the posterior mean or median which can be computed easily from

MCMC output). Therefore, we have

M(Y ) = L(θ̄;Y )p(θ̄)

p(θ̄|Y )
. (18)

50,000 are omitted in the burn-in phase.
5It is possible to treat e0 as unknown parameter.
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Figure 5: Marginal posteriors of LMS, LTS and ARMA
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Table 1: Posterior model probabilities for ARMA(p,q), portfolio 1, posterior LMS results

q ↓ p → 0 1 2 3 4
0 0.00 0.119 0.1801 0.118 0.000
1 0.000 0.480 0.0079 0.000 0.000
2 0.000 0.040 0.023 0.031 0.000
3 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000

Figure 6: BMA posteriors of α and ρ

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

10

20

30

40

50

60

70

80

90

de
ns

ity

Portfolio 1

LMS
LTS
ARMA

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

10

20

30

40

50

60

70

de
ns

ity

Portfolio 1

LMS
LTS
ARMA

Since the denominator is unknown, we can use a Laplace approximation to obtain p(θ̄|Y ) ' (2π)−d/2|V |−1/2, where

V is the posterior covariance matrix of θ which can be computed easily from MCMC (DiCiccio et al., 1997). If we have

different models, say m ∈ {1, . . . ,M} posterior model probabilities can be computed as

Pm(Y ) = Mm(Y )p(θm)∑m
j=1 Mj(Y ) , m ∈ {1, . . . ,M} . (19)

assuming that model m has parameters, likelihood, and prior given, respectively, by θm, Lm(θm;Y ), p(θm). Moreover, the

marginal likelihood for model m is denoted Mm(Y ). We report posterior model probabilities in Table 1 for portfolio 1 as

results for other portfolios were nearly the same. Clearly, the lion’s share goes to ARMA(1,1) with posterior probability

0.480. In case of model selection, the model that should be selected in ARMA(1,1). the posterior probabilities for LTS were

qualitatively similar but very different for ARMA models which favored ARMA(2,2) with posterior probability almost 0.99.

Instead, if we use BMA the marginal posteriors densities of α and ρ from LMS are reported in Figure 6.

The qualitative conclusion remain the same in that BMA for ARMA provides quite different marginal posterior of ρ

and α and6 seems to overestimate, again, the posterior means and medians of these parameters.
6Since BMA for ARMA favors an ARMA(2,2) reported here for ARMA method are marginal posteriors of the first order coefficients.
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Concluding remarks

In this paper we proposed Bayesian analysis of models with outliers using Bayesian implementations of Least Median of

Squares (LMS) and Least Trimmed Squares (LTS) in models where the errors are independent, as well as in models where

the errors follow AR or ARMA schemes. Monte Carlo evidence as well as an empirical application to financial portfolios

shows that LMS and LTS produce more robust estimates for the volatility of portfolios, and that AR or ARMA tend to

overestimate the parameters of AR(1) and ARMA(1,1) models. The techniques can be extended to general ARMA(p,q)

models in a straightforward way.
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