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Abstract

The field of security technology is an eternal race. For every step forwards that is made
in producing technology to help secure something it is not long behind it that those who
seek to attack it make one also. Cryptography is one key example, even as encryption
algorithms get more advanced so too do the computers that can be used to brute force
them. Anti-counterfeiting is another. For each new complex watermark or hologram to
prove authenticity there shortly follows better production techniques that aid in replicat-
ing them.

There is a solution to this within the concept of Quantum Dot Physically Unclonable
Functions (QD-PUFs). Underpinned by the laws of quantum physics rather than math-
ematically hard problems they are, as their name suggests, impossible to replicate. Pro-
viding an extremely appealing solution to security concerns where authentication and
identification are required.

There are several matters however that prevent QD-PUFs from being used in a much
more wide spread manner. The aim of this thesis is therefore to address these in order to
move QD-PUFs closer to being widely available. The foremost of these issues is a way to
digitise the output of QD-PUFs. This forms the bulk of this thesis in detailing, analysing
and discussing the fingerprinting algorithms designed to perform this task. As well as
this the stability of the QD-PUFs, how to hide the information within fingerprints and
the influence of varying incident wavelengths are covered. All to provide a comprehensive
discussion on QD-PUFs and their fingerprints.
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Chapter 1

Introduction

Although many may not realise it, uniqueness plays a key role in underpinning many
aspects of security in our modern world. One of its primary uses is in verifying authen-
ticity. Luxury goods may have a holographic tag to show they are the genuine article.
Official documents such as passports bear complex watermarks and are made of a secret
selection of materials. Digital authentication requires a digital signature unique to the
sender and kept secret from an attacker for fear of imposter attacks.

The weakness with these and the myriad of other wide ranging examples however is the
same in each case. They rely on it being difficult to replicate whatever unique feature is
used for authentication. Difficult but not impossible. With improvements and the greater
accessibility to technology a grave threat is posed to the assumption that such authenti-
cation tokens rely on[1][2]. Improvements and down scaling in manufacturing technology
mean that holographic tags can be created far easier[3]. More advanced chemical analysis
can better identify the materials used in passports. The advent of more powerful comput-
ers (not to mention the threat posed by quantum computing) drastically reduces the time
to crack the difficult maths problems that keep digital signatures secure[4]. This leads
to a metaphorical arms race. Those that wish to protect their security developing tech-
niques that are more and more difficult to replicate or crack. On the other side of the coin
are those that wish to attack such security, creating ever more advanced methods to do so.

With this in mind it is therefore obvious as to why Physically Unclonable Functions
or PUFs would be such an area of interest for research. The innate physical properties of
these are impossible, not just difficult, to replicate[1][5]. Thus, it would appear, provid-
ing a light at the end of the tunnel for the authentication arms race. Such a useful item
could be embedded into a luxury good or passport, its unique output them registered
with whoever produced the object. Any that allow for a digital output would mean that
one could carry a digital signature in physical form. There are however two major prob-
lems with most PUFs that prevent more widespread use. The first is the authenticating
of them, many still require specialised equipment[5]. The second is simulation attacks.
An attacker may record the possible outputs of a PUF and then use it to mimic the PUF
and fool authentication protocols[2]. Thus, most PUFs require a secondary verification
to ensure no simulation occurs.

Both of these issues can be solved with a novel variation of PUFs known as Quantum
Dot Physically Unclonable Functions or QD-PUFs[5]. Using the quantum mechanical
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properties of quantum dots, these PUFs produce an unclonable output that a user can
verify by themselves is not a simulation. They also can be challenged using nothing
more than a camera and bright light in the visible spectrum[6][7]. Something that most
members of the public posses at all times in modern phones. Thus, removing the need
for specialised equipment. Such a concept has a wide range of applications in solving the
issues of authentication already discussed.

On their own however, QD-PUFs are not of much use. As their output is a complex
optical pattern, in order to harness them we require some method of digitisation so they
can be quantitatively analysed[5]. The harnessing of QD-PUFs is therefore what we will
focus on here. One cannot simply just compare two photographs of a QD-PUF to give
secure authentication. Image noise, varying ambient lighting conditions and too great
a bit depth prevent this. Instead one must generate a noise resistant binary fingerprint
from the QD-PUF. This allows for the harnessing of QD-PUFs in authentication. The de-
velopment and the understanding of such fingerprints are discussed in the following pages.

To open with, chapter 2 covers the necessary theoretical background that will form the
bedrock of the discussion in later chapters. It covers what a PUF is in greater deal and
what the properties of quantum dots that we use in QD-PUFs are. Although further
proof of this is beyond the scope of the discussion here this chapter also discusses the
simulation attack prevention inherent to QD-PUFs that sets them apart from other PUFs.

After the theoretical groundwork has been laid, chapter 3 covers the common methods
used throughout the experiments in the following chapters. This includes an overview of
how QD-PUFs are created and the process by which they are challenged in the laboratory.
We then discuss the fingerprinting algorithms themselves, detailing how they encode the
brightness texture of the QD-PUFs, how we quantitatively analyse the fingerprints as well
as the authentication process for them. Any methods that are unique to the experiments
in a chapter are detailed in the chapter they are relevant to.

Chapter 4 forms the first of the experimental chapters and lays the groundwork for those
following it. The purpose of this chapter is to develop understanding of the behaviour
of the fingerprinting algorithms. Three of which are novel in design and provide noise
resistant alternatives to techniques such as Gabor filters for encoding texture information
as a binary output. Each will be tested first in comparison to each other over three dif-
ferent QD-PUFs. Then the focus moves to how well the algorithms can handle damage
to the input image, a key issue when QD-PUFs are moved to use outside of the laboratory.

As discussed there is a constant arms race to try and break security measures. Chapter 5
discusses the security of the fingerprints themselves from the viewpoint of an attacker us-
ing them as a point of attack in the QD-PUF authentication process. It details potential
weaknesses and how they can be overcome. Completing the image of the strengths and
weaknesses of the fingerprints generated from QD-PUFs. To further expand upon this a
unique approach to obscuring structural information and debiasing 2D binary matrices
is also proposed and its performance analysed.

QD-PUFs will be in use for prolonged periods in practical settings. They do experi-
ence degradation over time. This is a factor that must be considered when discussing
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how best to harness them for use. As such chapter 6 covers this issue. Detailing the
effects of QD-PUF degradation on their brightness and their fingerprints, alongside how
this can be counteracted. Thus, progressing insight into the link between the polymer
matrices that quantum dots are suspended within and their rate of degradation.

Finally we have chapter 7. The aim of this chapter is to expand upon the work cov-
ered in the rest of the chapters. Each of the preceding chapters test QD-PUFs under
one incident wavelength of light. Here we look at their behaviour when the wavelength
of the incident light is varied. This covers the effect it has on the quantum dot pattern
and the possibility of creating multiple fingerprints from a single QD-PUF. As well as
this it details a novel method of analysing the photoluminesence excitation spectrum of
quantum dots that are deposited onto a substrate.
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Chapter 2

Theoretical Background

The useful feature of Quantum Dot Physically Unclonable Functions (QD-PUFs) is their
unique optical pattern when excited with incident light. This is formed by colloidal
quantum dots (CQDs) that have been deposited onto a substrate whilst suspended in a
solvent or a lacquer. An example of a QD-PUF with its central quantum dot pattern
can be seen in figure 2.1. Whilst the creation of QD-PUFs will be detailed in chapter 3
this section will instead cover the theoretical background that underpins their usefulness.
Much of this will be referenced back to in later chapters. We begin with the theoretical
background of quantum dots with section 2.1.2 by covering what exactly a quantum dot
is and why they form unique optical patterns. Then will be covered the non-linearity of
their emission and how this can be harnessed as an important additional layer of security.
Following on from this, is the effects of oxidation on the emission intensity of quantum
dots in section 2.1.3, such that we can better understand the hurdles to the long term use
of QD-PUFs. Finally for quantum dots the variation they display in emission when the
excitation light is varied in wavelength. Commonly known as Photoluminesence Excita-
tion (PLE) spectra this is detailed in section 2.1.4 and is useful in discussion of generating
multiple fingerprints from one QD-PUF.

After this a theoretical introduction to Physically Unclonable Functions (PUFs) will
be given in section 2.2. This will be begin by giving an overview of what PUFs are in
section 2.2.1, alongside examples of them and applications of PUFs. Then the discus-
sion will become more focussed with section 2.2.2 covering Optical Physically Unclonable
Functions (OPUFs). Finally in this chapter, with the required groundwork laid, sec-
tion 2.2.3 covers Quantum Dot Physically Unclonable Functions (QD-PUFs) themselves,
setting the focus for the rest of thesis discussion on PUFs.
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Figure 2.1: Image of a QD-PUF taken with the apparatus shown in figure 3.1. The
term ”quantum dot pattern” refers to the spatial variation in brightness over the

deposition area. The quantum dot pattern seen in the center has been excited with blue
light in order to make its emission as clear as possible.

2.1 Quantum Dots

2.1.1 Introduction to Quantum Dots

The quantum dots that are used in the QD-PUFs that are the focus of the research
here are all comprised of semiconductor material. Bulk semiconductor material possesses
electrical properties between that of a conductor and an insulator. Unlike conductors its
band structure is split into two continuous bands, the valence band and the conduction
band. For a current to flow an electron must be excited across the band gap from the
valence band to the conduction band. As represented in figure 2.2a this leads to a con-
tinuous spectrum of energy levels.

Interesting changes begin to occur when we constrain the electron’s degrees of freedom.
For example allowing only a single degree of freedom results in a nanowire, a long thin
structure with a width of the order of a nanometer. Rather than the behaviour of a stan-
dard wire, they instead show electric conductance that is constrained to discrete values[8].
When we apply constraints in all three dimensions we get a quantum dot. Nanometer
in scale they can be represented by an infinite potential well in three dimensions. This
results in the valence and conductance bands being split into discrete energy levels unlike
the continuum seen in bulk material[9]. This drastically changes the density of states
distribution as represented in figure 2.2bii. Resulting in peaks in the density of states
at the energies of the discrete levels. A fact that earned quantum dots the moniker of
”artificial atoms”.

In bulk semiconductor material the absorption of a photon of sufficient energy causes
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Figure 2.2: a) Diagrammatic representation of the continuous energy spectrum in bulk
semiconductor material. b) Example graph of the variation of density of states (along

the y-axis) against increasing energy (along the x-axis) in the conductance band of bulk
semiconductor material. c) Diagrammatic representation of the discrete energy levels in
quantum dots. d) Example graph of the variation of density of states (along the y-axis)
against increasing energy (along the x-axis) in the conductance band of quantum dots.
For both a) and c) the blue region represents the valence band and the red region the

conduction band. Eg represents the bandgap energy of the material.

an electron to be excited into the conduction band. Leaving an ’electron hole’ in the
valence band. This bound electron-hole pair (or exciton) will emit its energy as a photon
when it recombines, said energy is dependant on the band gap of the semiconductor. As
quantum dots are zero dimensional semiconductor nanostructures and have their valence
and conduction bands split into quantized energy levels[10] they display a narrow emis-
sion spectrum that can be tuned by altering the size of the dots. This size dependence is
characterised by the Brus equation[11]:

E(r) = Eg +
h2

8r2
(

1

m∗
e

+
1

m∗
h

) (2.1)

where E(r) is the emission energy of the quantum dot at a given dot radius r. m∗
e and m∗

h

are the effective mass of electrons and holes within the dot respectively. In this matter
Planck’s constant is given by h. As can be seen this grants a high degree of control over
emission wavelength when creating quantum dots, with larger dots emitting in longer
wavelengths. Such a high degree of control as well as the fact that regardless of the
wavelength of incident light, the emission of the dots will remain within the same wave-
length range makes them highly useful for optical authentication purposes, such as for
QD-PUFS.
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2.1.2 Quantum Dot Patterns and Non-linear Emission

The quantum dots used in this paper for the creation of the quantum dot physically
unclonable functions (QD-PUFs) are known as colloidal quantum dots (CQDs). These
consist of the semi-conductor quantum dot core surrounded by a complex ligand struc-
ture. This allows for the CQDs to be prepared in solution. CQDs have been likened to
’artificial molecules’ as the ligands can bond together to form larger clusters or ’ensem-
bles’ of CQDs[12]. These ligands alter the electronic states within the quantum dot core,
affecting the band-gap and quantum yield of the dots[13]. Bonding further ligands to
a CQD further affects the possible exciton states. Thus, an ensemble of dots will have
different emission properties to that of an individual CQD. There is no way to exactly
control which or how many CQDs will bond to form an ensemble. Thus, applying a solu-
tion of CQDs to a surface will not only result in a randomised pattern of these ’clusters’
but each cluster will have randomised emission properties. Resulting in the creation of
a unique pattern (this is referred to as a ”quantum dot pattern” throughout this thesis
and an example of which is given in 2.1), the basis of QD-PUFs[2][5].

There are further properties of quantum dots that make them particularly useful for
authentication purposes. In particular that they display non-linear emission response
to linearly increasing incident light intensity[10]. At low incident light intensities the
emission of a quantum dot is dominated by its excitons, whose production shows a lin-
ear dependence on incident light[14][15][16]. As the intensity of light increases however
the exciton ground state of the quantum dot becomes fully occupied (also known as
saturation)[15][17]. Any exciton that recombines is immediately replaced by a another
thus preventing the intensity of emitted light from increasing further despite increasing
incident intensity[14]. This causes the PL emission of the quantum dot to flatten out
with respect to the incident light intensity. This is quantified by the equation for the
photon production rate of excitons in quantum dots[18]:

Rex =
Rsat

1 +
Isat
Iex

(2.2)

Where Rex is the optical response rate at excitation and Rsat the rate at exciton satura-
tion. Iex and Isat give the incident intensities at excitation and saturation respectively.
This becomes useful as a second layer of security for QD-PUFs.

This non-linear optical photoluminesence is a well documented feature of semi-conductor
quantum dots. It can be used, for example, to determine the charge carrier density in a
quantum dot[14]. Alternatively, in the case of a QD-PUF it can be used to differentiate
between a legitimate QD-PUF and a simulation of one[2]. The simplest example of a sim-
ulation attack would be an attacker using a high resolution photograph of a QD-PUF to
attempt to fool the authentication process. For other optical PUFs that analyse images
of said PUF for authentication this would be a successful attack. To the authentication
algorithm there would be no difference between this simulation and the actual PUF.

The non-linearity in the PL of quantum dots is used as a secondary security check to
prevent this ”simulation attack”[2]. By measuring the emission of a QD-PUF with lin-
early increasing incident light intensity we can determine if this non-linearity is present.
Any simulated QD-PUF will show a linear response to the incident light (as this will
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just be the light being reflected back) and so can be detected. Such a process has been
demonstrated to work both in laboratory conditions and using a more widely accessible
device such as a smartphone[2][6].

Thus, highlighting why quantum dots are the material of choice when creating a new
breed of optical PUFs. The unique pattern coupled with the ability to detect forgeries
allows for a highly secure identification system. It is therefore imperative that an equally
secure method of extracting a fingerprint from a quantum dot pattern be developed in
order to exploit these features. Such a matter is addressed in the following chapters.

2.1.3 Photo-oxidation of Quantum Dots

As the most useful feature of quantum dots in the context of generating fingerprints from
QD-PUFs for authentication is their optical emission pattern it is important to under-
stand the effect that time may have on it. To create QD-PUFs colloidal quantum dots
are suspended in a lacquer or solvent and then deposited onto a substrate (for further
details see section 3.1). Once these quantum dots are deposited onto a substrate how-
ever the subsequent contact with oxygen causes them to begin to degrade[19]. When an
excited quantum dot is exposed to oxygen, the oxygen will bond with the quantum dot
core to produce ions that dissociate from the quantum dot itself (also known as surface
oxidization). This process is known as photooxidation[20]. Prolonged oxygen exposure
causes a reduction in size of the quantum dot core as it leads to the production of oxygen
containing ions that dissociate from the core itself. The surface trap states this produces
result in a permanent decrease in the photoluminescence output of the quantum dots.
Prolonged degradation would therefore render a QD-PUF useless as no response would
be detectable. This is a serious issue in a practical setting. InP quantum dots, such as
those used in throughout the following chapters, are particularly sensitive to the effects
of oxygen[21]. Although there are different quantum dot growth methods that can reduce
this, the approach to degradation prevention taken here focuses on embedding the CQDs
in a polymer matrix.

The principle behind this concept is that by embedding the CQDs in a polymer their
exposure to oxygen is reduced[22]. The effectiveness of this approach is dependant on the
oxygen diffusion rate of the polymer as well as their compatibility with the quantum dots
used. Each polymer must also be optically transparent and still allow for the application
of the CQDs to a substrate in order to create a QD-PUF. Such principles are taken into
consideration in the creation of the QD-PUFs. The analysis of QD-PUF degradation, its
effects on fingerprinting and how to reduce it is explored in chapter 6.

2.1.4 Quantum Dots Behaviour Under Varying Incident Wave-
lengths

Photoluminescence excitation spectroscopy is a technique commonly used to probe the
electronic structure of materials. The emission of a sample is measured at the peak
emission wavelength for that sample whilst the wavelength of the incident light is varied.
The response of the sample will vary based on its electronic structure, giving insight into
matters such as absorption peaks and the material’s bandgap[23].
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Two examples of absorption spectra can be seen in figure 2.3. These display the responses
of Copper Indium Sulphide (CIS)[24] and Indium Phosphide/Zinc Selenium (InP/ZnS)
quantum dots suspended in solution at low concentrations. In regards to quantum dots
the only key difference between these and a PLE spectra is the method of measurement,
both show the absorption structure of a quantum dot. When determining the electronic
structure of a material that exhibits photoluminescence within a small bandgap com-
monly PLE techniques will be used to measure absorption spectra when a greater degree
of sensitivity is required[25]. As such the location in terms of wavelength of features in
both the PLE and absorption spectra will be the same[26]. This means that over the
same range of measured wavelengths a PLE spectra will be identical to an absorption
spectra[26].

Figure 2.3: a) Absorption spectra of CIS quantum dots suspended in solution at low
concentration. The blue dashed lines indicate the wavelength range analysed, in this

case 440 nm to 620 nm. Graph produced by author using data made publicly
available[24]. b) Absorption spectra of InP/ZnS quantum dots suspended in solution at

low concentration. The blue dashed lines indicate the wavelength range analysed, in
this case 440 nm to 600 nm. Graph produced by author using data taken by Angelo

Lamantia (of Lancaster University at time of writing).

As can be seen in figure 2.3 the composition of the quantum dot greatly affects the ab-
sorption spectra and so PLE response. They display distinctly different PLE responses
and have clearly different formations of CQD ensembles on their surface, allowing for a
range of analysis.

PLE has been used to analyse the effects of quantum dot size[27] and coupling between
quantum dots[28] on electronic structure. It has not been used however, to analyse the
effect of CQDs forming ensembles on a substrate. As detailed in section 2.1.2 the inter-
action of ligands with quantum dots alters their electronic structure, an effect amplified
within CQD ensembles. Therefore, it stands to reason as PLE is affected by electronic
structure, that the formation of CQD ensembles will affect the PLE response. Thus, we
can expect that this will lead to the PLE response to vary over the area of a quantum
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dot pattern. If this is correct then it will allow for the generation of different fingerprints
at each incident wavelength. This hypothesis is tested in chapter 7.

2.2 Physically Unclonable Functions (PUFs)

2.2.1 PUFs and their Applications

A Physically Unclonable Functions or PUF is an object or device that produces a com-
pletely unique output in response to a particular input[29]. Within cryptography the
particular combination of specific output for a certain input is known as a challenge/re-
sponse pair (CRP). An example of this would be password authentication. In this situa-
tion the request for a password is the challenge and the user giving the correct password
the response. For QD-PUFs the challenge is the exciting of the QD-PUF with incident
light and the response the production of the correct quantum dot pattern.

The key principle behind QD-PUFs is that it is not possible to replicate or reproduce
any CRP[1]. No matter how many PUFs are produced no two of them will produce the
same output despite receiving the same input. The origin of this uniqueness stems often
from the process of their manufacture. This is due to the fact that in many cases aspects
of manufacture are stochastic processes. Take for example the silk PUFs demonstrated
by Kim et al[30]. These use the random arrangement of silk fibres in a piece of silk to
produce a unique diffraction pattern. Replicating such a arrangement would require an
infeasible amount of time and effort thus, ensuring the output is unique.

It is useful to note for the context under which PUFs are employed here that they can
fall under two broad categories. These are known as weak or strong PUFs and are de-
termined by the scalability of the number of CRPs with the size of the PUFs[31][32].
CRPs in weak PUFs scale with low order polynomials, meaning it is not uncommon for
a weak PUF to only have a few challenge response pairs[29]. Strong PUFs on the other
hand scale at much higher rates, meaning that the same sized strong PUF would have
significantly more CRPs than a weak one[33][29]. An example of this is the QD-PUFs
that will be the focus of the discussion here. They only posses one challenge response
pair. An example of a strong PUF would be Arbiter PUFs[34] which use small random
delay differences on parallel electric paths to generate multiple CRPs.

Analogously PUFs are akin to one way cryptographic functions[29][32]. Only in this
case the function that maps the challenge input to a response out is a physical object.
The prevention of replication is not ensured by sufficiently hard mathematical concept
but instead by physical properties that cannot be reproduced. In this light then it is
clear to see the uses that they may serve in a practical setting. A cryptographic function
that can be embedded into items, be used as part of hardware security or even carried
on ones person as a form of identification.
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Figure 2.4: Top: Flowchart displaying an example process of the use of a weak PUF.
Starting with a digital response being captured from the PUF, saved and then later

compared to a challenge for authentication. Bottom: Flowchart displaying an example
process of the use of a strong PUF. Starting with multiple digital responses being
captured from the PUF, saved and then later one of them being compared to a

challenge for authentication. In this ”one time pad” approach the strong PUF can then
be reused with a different CRP.

Weak PUFs are akin to a secret key[32]. As can be seen in figure 2.4 a weak PUF can
be used to authenticate a user. At the manufacturing stage the PUFs unique response is
recorded and stored in a database. At a later stage if a user wishes to authenticate they
can challenge the weak PUF and compare the response to the expected response in the
database. In this manner it allows the user to carry a secret key with them, provided
they still physically have the PUF they can be confident that no one has learned their
secret key. This does have drawbacks however. If an attacker can gain access to the weak
PUF they will be able to measure all possible CRPs and then would be able to simulate
it even without access to it. Thus, for authentication using a weak PUF to take place it
must first be verified that it is indeed the PUF itself being used.

Strong PUFs alternatively are more akin to a hash function[32]. As in the same manner
they take in similar challenges and producing distinctly different responses. Thus, strong
PUFs have a multitude of different CRPs, to the degree that it would be infeasible for
an attacker to measure all of them[31]. This allows for them to be used in different ways
for authentication that does not require an extra step to verify that it is indeed the PUF
itself in use. The first example of which is shown in figure 2.4, using the strong PUF as a
one time pad protocol. Similar to the weak PUF CRPs are recorded at the manufacturing
stage. A user would then authenticate using only one of them. Once used this CRP would
then be removed from the list of valid authentication challenges. Thus, unlike the weak
PUF it could then be reused. Alternatively at the manufacture stage a random sequence
of CRPs would be recorded. Given the scale of the amount of possible CRPs in the
strong PUF for a long enough sequence it would be almost impossible for an attacker to
correctly simulate. Thus, removing the need for a verification step that the PUF is in use.
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Weak PUFs are therefore of course often seen as less secure than their strong counterparts.

This is not to say however that one is ”better” than the other. Instead which is more
useful comes down to the situation in which they are applied in. Strong PUFs require
more specialised equipment both to create and to authenticate. Meaning that they are
better suited to situations where a high degree of security is absolutely necessary and
the equipment is readily available. An example of this could be electronic identification
in a high security building. Weak PUFs despite their lessened security are far easier to
authenticate meaning they are better suited to wider public use. Making them useful in
areas such as confirming the authenticity of products.

2.2.2 Optical Physically Unclonable Functions (OPUFs)

There are many different varieties of PUF that exist from electronic PUFs (EPUFs)[35]
and Radio-Frequency PUFs (RFPUFs)[36] to Optical PUFs (OPUFs)[2]. It is the last of
which that will be the focus of this section. OPUFs are characterised by their response
being optical in nature. This could be a unique pattern produced when the OPUF is used
as a transmission medium. This is shown in figure 2.5a, where light is shone through the
OPUF to produce an optical pattern behind it. Examples of this include the silk PUF[30].
The other common variety of OPUF instead uses light that is ”returned” from the OPUF.
Whether this be through reflection such as in the paper PUF[37] or emission such as the
QD-PUFs discussed here. This is represented in figure 2.5.

Figure 2.5: a) Pictorial representation of an OPUF that produces an optical pattern
when light is shined through it. These tend to include OPUFs which have a random

arrangement of holes such as the silk PUFs demonstrated by Kim et al[30]. b) Pictorial
representation of an OPUF that produces an optical pattern when light is shined on it,
either through reflection or emission. The QD-PUFs used in this thesis are an example

of these.

The common feature of OPUFs is however that they are extrinsic PUFs. Namely that

12



they require an external piece of apparatus in order for them to be challenged and the
response measured. Commonly this is some form of camera or CCD (or Charge Coupled
Device, capacitor arrays used in the production of cameras and similar devices). This
grants OPUFs some advantages such as the fact that they do not have to be embedded
in a circuit like EPUFs do. In some cases they also can be used without specialist ap-
paratus, making them viable options for wider public use[6][7]. OPUFs also have the
advantage of being cheap to produce and also having a high degree of complexity in their
outputs[32]. However, depending on the OPUF, they can be easily simulated by simply
taking an image of the output.

To be useful an OPUF must have a pattern that possess a high degree of entropy whilst
being clear to read. Optical measurements will always be subject to the issue of image
noise. As such OPUF authentication is done using fuzzy authentication techniques[38].
Techniques such as fuzzy vaults[39] and the hamming distance comparison detailed in
section 3.3.3 are both prime examples of this. As such nanoscale emitters are commonly
used as the material for OPUFs. Their bright emission within a narrow bandwidth makes
it much easier to filter out the OPUF pattern from the background. Nanowires[40], gold
nanoparticles[41] and quantum dots have all been used as the material for OPUFs[5].

2.2.3 Quantum Dot Physically Unclonable Functions (QD-PUFs)

Finally we arrive at the topic of Quantum Dot Physically Unclonable Functions or QD-
PUFs. Although they have been touched upon in earlier sections of this chapter here we
will delve deeper into what they are. QD-PUFs fall under the category of optical PUFs or
OPUFs[5]. As detailed in section 2.1.2 when CQDs are deposited onto a substrate they
form a unique pattern of quantum dots. When excited with incident light this pattern
will photoluminesce, such as shown in figure 2.1. As with other PUFs the manufacturing
does contribute to the uniqueness of the quantum dot pattern. There is no way to predict
or precisely control (a very limited degree of control is possible in the manner of the de-
gree of clustering that occurs) how the CQDs will cluster together. Thus, this means that
their arrangement upon the substrate will be completely randomised. A further degree
of randomisation is introduced in that the bonding of the ligands affects the brightness
of clusters. As such there is no clear way of predicting the brightness of a cluster as
one cannot know how the ligands will bond within it. These both combine to two di-
mensional brightness topography that is the singular challenge response pair of QD-PUFs.

Although the singular CRP that QD-PUFs posses does make them a weak PUF, they
do not posses the same drawback of being vulnerable to simulation attacks. As already
discussed in section 2.1.2 we can use the non-linear response to incident light to validate
whether the QD-PUF being challenged is a simulated fake or not. This gives QD-PUFs a
novel edge over other PUF designs. Being optical in nature and requiring no specialised
equipment to challenge them they can be authenticated with something as widely used
as a smartphone camera and flash[2][6]. Thus, opening the door for secure cryptographic
key storage that can be used for authentication by any member of the public. This could
range from anti-counterfeiting on luxury items to identity verification. As such they show
great potential is harnessed and developed.
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Chapter 3

Methodology

In this chapter we discuss the common experimental methods used throughout subse-
quent chapters and details of the fingerprinting algorithms applied. First covered is the
production method of the QD-PUFs used throughout this thesis, detailed in section 3.1.
Following this is section 3.2, detailing the process and apparatus used to capture of im-
ages of the QD-PUFs. Finally there is section 3.3. This opens with a discussion of the
requirements that a fingerprinting algorithm must meet as well as the figures of merit
used to quantify this. Following this is the process of how QD-PUF authentication is
performed. Finally how each of the four algorithms (RLBP.V1, RLBP.V2, RMLBP and
AHB) produces a fingerprint from a QD-PUF image is discussed.

3.1 QD-PUF Creation

As the focus of most chapters here is on using the QD-PUFs and not their chemical
composition the creation process will be detailed in a more general manner here. This is
especially as there are several ways to produce QD-PUFs. With different combinations
of their chemical compositions, the lacquers/polymers they are suspended in and their
deposition methods producing different patterns on the substrate. The focus of the work
in this thesis is on the optical patterns that are produced and not how to create them.
As such the exact methods are not particularly of interest and so will not be detailed for
each QD-PUF. Especially as a wide array of QD-PUFs are used in the following chapters.
The exception to this is chapter 6, wherein the exact chemical composition is important
and so is covered in much greater detail.

In each case the basic principles remain similar[5]. The CQDs are dissolved in a sol-
vent (often toluene) with an encapsulating polymer if required. These are thoroughly
mixed before being deposited onto a black polyethene substrate. The method of depo-
sition can vary. Drop casting sees the CQD solution dripped onto the substrate from a
pipette thus, forming much less uniform but far less neatly square patterns. Hand stamp-
ing as the name implies involves the CQD in solvent mixture being applied to a stamp
before being stamped onto the substrate. The doctor blade is the process by which the
majority of QD-PUFs in the following chapters were made. It is a device which deposits
a thin film of a solution onto a substrate with a precisely controllable thickness.
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3.2 QD-PUF Image Capture

In order to test the fingerprinting algorithms in as reliable a manner as possible images
are needed of the excited quantum dot patterns with as little external influencing factors
as possible. This allows for confidence that the conclusions drawn about the algorithms
are not dependant on some unknown external factor. As such to ensure this a imaging
system was designed to ensure that what was captured in each image is only the quantum
dot pattern.

Figure 3.1: A schematic of the apparatus used to captures images of each QD pattern.
The quantum dots in each token were excited using white light filtered through a

450 nm short-pass filter. A 500 nm long-pass filter placed in front of the CCD ensures
only light from the emission of the QD pattern is measured. The entire apparatus is

sealed within a closed black box when measurements are in progress.

Each quantum dot pattern was imaged in the apparatus displayed in figure 3.1. The tag
each pattern is housed on is placed in a stand designed to ensure the patterns are all
in the same location when imaged. Blue light with peak wavelength of 450 nm and an
intensity of 0.31 mWcm−2 (at the distance the pattern is placed) is then used to excite
the QD pattern. The emission of the QD pattern is then captured on the CCD, which
is filtered to ensure only light from the QD emission is imaged. The exposure time for
each pattern is chosen so as the image is as bright as possible with out any saturation
occurring. Due to the fingerprinting techniques invariance to global brightness levels this
in of itself will have no effect on the results. The only issues with exposure occur if it is
too high (as the image saturates and information is lost) or if it is too low, which gives
a poor signal to noise ratio. Finally this entire apparatus set is housed in a blackbox to
ensure no light from external sources affects the results.

For cases when a higher magnification is required the same principle can be applied
to a microscope. By choosing filters with no spectral overlap as with the apparatus in
figure 3.1 we can capture images where the only emission is that from the quantum dot
pattern. Owing to being able to use cameras with longer exposure times using a micro-
scope allows for the use of bandpass filters instead of long and short pass filters (as seen
in chapter 7). Although it was not possible to fit a blackbox around this apparatus the
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external lights were all turned off remove any impact on the experiment.

3.3 Fingerprinting Algorithms

3.3.1 Algorithm Requirements

The primary goal of the fingerprinting algorithms is to condense an image of a quantum
dot pattern into a repeatable format usable for authentication. This is done in the cases
discussed in this thesis by encoding the local texture information of the image in order to
generate a 2D binary matrix that can be used as a cryptographic key. The most immediate
issue with this is the fact that no two images of the same quantum dot pattern will be
exactly the same. This is because the value of each pixel consists of the emission signal
from the quantum dot pattern as well as the value of the camera’s inherent noise for that
pixel. As this noise varies randomly it is what prevents two images of the same pattern
form being exactly the same. On top of this for applications where the QD pattern
is imaged outside of laboratory conditions environmental factors will affect the image
taken of the QD pattern. These may include global scale shifts in brightness, brightness
gradients due to non-uniform ambient lighting and enhanced camera noise depending
on the apparatus used. Therefore, directly matching a ”challenge” fingerprint is not
appropriate and ”fuzzy” authentication techniques must be applied. For a technique to
be useful it must meet the following criteria:

• The algorithm must produce a form of key that can be used for authentication
purposes. This key must be greater than or equal to 256 bits in length. This is to
reflect industry standards in other more conventional algorithms used in authenti-
cation such as SHA-256[42]. This bit length also aids in ensuring that there are no
collisions between fingerprints.

• Be able to produce repeat fingerprints of the same QD pattern that are similar
enough to each other but different enough to fingerprints of other patterns so as to
be identified as originating from the same pattern.

• Be resistant to noise such that two input images of the same QD pattern with
different noise levels will still produce matching fingerprints.

• The algorithm must be invariant to global shifts in input image brightness.

• The performance of the algorithm must not be limited by the type of texture it is
generating a fingerprint from. It must be applicable to all QD patterns of which
vary greatly in their textures, depending on make. For example feature mapping
techniques are not of use in this matter as for secure authentication they are de-
pendant on the number of features they can detect in an image.

Whilst other computer vision techniques such as blob and feature detection/mapping
algorithms can be used for authentication these were not suitable in this use case as they
did not meet the all of the above criteria. When comparing techniques that do match
the criteria other matters are considered. These include how accurately they can identify
a fingerprint, to what degree are the techniques robust against outside damage to the
input image or how repeatable the produced fingerprints are taken into consideration.
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3.3.2 Figures of Merit

In order to test the performance of each of the fingerprinting algorithms four main figures
of merit will be used. What these figures of merit specifically show for each test will be
detailed alongside the results.

1. Intra hamming distance - if each fingerprint is treated as a bit string we can cal-
culate the ”distance” between two fingerprints. For such a case as this fractional
hamming distances are often used, these represent the fraction of bits between two
binary strings that are different. The fractional intra hamming distance is therefore
the fraction of the bits between two fingerprints of the same QD pattern that are
different. Mathematically fractional hamming distance (HD) for two 64x64 pixels
(shortened to px in later uses) fingerprints is given by [43]:

HD =
1

4096

64∑
i

64∑
j

(A⊕B)ij (3.1)

Where A and B represent the binary matrices of the fingerprints and ⊕ is the XOR
operator. For intra hamming distance A and B are generated from the same QD-
PUF at different times. The closer to zero the intra hamming distance is the better
the fingerprints match, this is the wanted outcome. In terms of fingerprints the mean
intra hamming distance for repeat intra comparisons will give us a measure of how
consistently the algorithm is generating fingerprints as close to the initial fingerprint
as possible for repeat images of the same QD-PUF. The standard deviation provides
a measure of how repeatable the algorithm is at performing this.

2. Inter hamming distance - the same as the intra hamming distance apart from the
fact that this is between two fingerprints of different QD patterns. It is also calcu-
lated from equation 3.1 as with intra hamming distance. The only difference being
that A and B represent fingerprints generated from different QD-PUFs. In this case
the optimal value is as close to 0.5 as possible, as this is maximum separation for
two binary strings. Inter hamming distance standard deviation provides a measure
of how unique a fingerprint is when compared to fingerprints of other patterns.

3. False Positive Rate (FPR) - the FPR of a challenge fingerprint represents the possi-
bility that this fingerprint is falsely matched to the chosen reference fingerprint. The
lower the FPR is the more confident the person performing the authentication can
be that the challenge fingerprint has authenticated correctly. It is calculated from
the crossover between the intra and inter hamming distance distribution curves.
Making it almost a measure of the confidence that a noisy fingerprint is more like
repeats of itself that fingerprints of other patterns. Mathematically it is given by
the equation [5]:

FPR =

∫ T

0

f(x)dx (3.2)

Where f(x) is the function describing the normalised cumulative density function
of the inter hamming distance distribution. T gives the maximal value of the intra
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hamming distance distribution. Making it a measure of how likely a member of the
inter distribution falls within the intra distribution. For authentication purposes a
maximum FPR of 10−6 was chosen. This value was born both out of experience
from preliminary testing and discussion based on use case scenarios. Providing a
sufficient degree of security for many applications whilst allowing for it to be made
stricter as required.

4. Effective Number of Independent Bits (ENIB)[43] - provides a measure of the num-
ber of bits in the fingerprint that do not feature in a pattern that is repeated in
other fingerprints. It is calculated using the mean (µ) and standard deviation (σ)
of the inter hamming distance distribution via:

ENIB =
µ(1 − µ)

σ2
(3.3)

It acts as a metric to describe how many bits in the fingerprint can actually be used
in authentication. A minimum of 256 bits would be required.

For the sake of completeness the False Negative Rate (FNR) has not been used as a
figure of merit owing to the fact that during testing the value of it fell below the precision
MATLAB was able to process at (i.e. 10−308) for all fingerprints. As such all values of
it were treated as 0, rendering analysis of them redundant. The FNR is also more useful
from an applications standpoint (e.g. how easy it would be for a user to scan a QD-PUF
and it to register successfully) than for looking at the security of generated fingerprints.

Another important metric that is referred to throughout this thesis is the entropy of
fingerprints. With the exception of the analysis performed in chapter 5 this is used as a
qualitative term. The estimation of entropy in a 2D matrix is more complex than that of
a simple 1D string [44], as Shannon entropy is used for. As one must consider not only
the complexity of patterns along a plane but also their arrangement relative to each other
on said plane. Whilst there are methods to create an estimation of such values (such as
Voronoi diagrams [44]) such calculations as complex and would not provide a proportional
degree of benefit to the discussion. Instead entropy is discussed in a qualitative manner
based on visual inspection of fingerprints.

3.3.3 Fingerprint Authentication Process

Despite each algorithm creating the fingerprint in a different manner the overall structure
of the fingerprinting process will always remain the same. The first step that must occur
before any authentication can take place is the generation of the ”reference” fingerprints.
This involves the party, Alice, that distributes the QD patterns for use generating a
database of fingerprints which can be kept private or public (for the latter it is recom-
mended they are encrypted, potentially in a manner such as a fuzzy vault scheme[39] or
via XOR debiasing as shown in chapter 5.2). The database must contain at least five
repeat fingerprints of each QD pattern that has been distributed. This is to ensure that
their are enough repeats for the intra hamming distance value to be reliable without caus-
ing too much of an increase in required computational time. Each of these fingerprints
should be generated by taking repeat images of the same pattern (whilst it is excited by
an external light source) and applying the fingerprinting algorithm to each separately.
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When it comes to the authentication stage this will aid an accurate result by reducing
the effects of noise. Once this is complete Alice may distribute her QD patterns and
database, if it is public.

If a secondary party, Bob, has possession of a QD pattern and wishes to use it for
authentication purposes the following process is followed:

1. The QD pattern is imaged by Bob’s chosen apparatus. As with Alice he must
ensure it is excited by an external light source. This is the ”challenge” image.

2. Any pre-fingerprinting processing is then applied to the challenge image. In all
cases this will include cropping the challenge image such that it only features the
QD pattern.

3. The chosen fingerprinting algorithm is then applied to the challenge image to pro-
duce the challenge fingerprint. This will be in the form of a 2D binary matrix.

4. Post-fingerprinting processing will then be applied to the fingerprint. In all cases
this includes resizing the fingerprint to be 64x64 pixels in size.

5. At this stage Bob will then authenticate the fingerprint, either by sending it to Alice
to compare to the reference fingerprints (if the database is private) or by comparing
them himself.

6. If the fingerprint is deemed a match by the chosen fuzzy authentication technique
then the QD pattern in Bob’s possession is authentic.

3.3.4 RLBP.V1

Local binary patterns (LBP) is a texture descriptor technique first proposed by Ojala et
al[45]. It compares each pixel in an image to N of it’s neighbours, each of which sit on the
circumference of a circle of radius R (this value is always measured in terms of pixels).
Moving in a clockwise direction starting from the pixel that lies on the positive y-axis of
the central pixel (see the red circled point in figure 3.2) the value of each circumference
pixel is compared to that of the central pixel. If it is greater or equal to the value of
the central pixel it is assigned a value of 1. Otherwise it is assigned a value of 0. These
values are then concatenated together to form a binary string known as a feature vector
which is assigned to the central pixel, an example of which is shown in figure 3.2. This
feature vector encodes local contrast information as well as positional information (by
reading it off you can reconstruct the relative values of the pixels measure to the central
pixel), allowing it to describe a set of features. Further discussion on this is however not
necessary for the topic of this paper.
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Figure 3.2: Pictorial representation of the ”LBP circle” used by RLBP.V1. The grey
circle represents the central pixel. The black and white circles represent the pixels being

compared to the central pixel, each of which lies on the circumference of a circle with
radius R centred on the central pixel. A black circumference pixel represents that it is

lower in value than the central pixel, white represents that it is equal to or greater than
the central pixel in value. Below the diagram is the feature vector string that LBP

would have generated for this central pixel.

The appeal of using LBP as a base for a fingerprinting algorithm stems from a few rea-
sons. First and foremost that it encodes feature information into a binary string. Thus
allowing for the easy digitisation of QD patterns into a cryptographic key. As it is based
on local contrast information it also has no limitations set upon it by the texture anal-
ysed. Secondly the fact that it is based on relative pixel values it is invariant to global
shifts in illumination. Finally there is its reported performance in use as a reliable texture
descriptor and feature matching algorithm.

The feature vector in of itself however cannot be used in a fingerprint. Preliminary
testing found that, as would be expected, using the entirety of each feature vector for
each pixel in authentication was too prone to the effects of noise to be accurate. Thus,
as a simplistic first fingerprinting technique, only a comparison between the central pixel
and the first pixel was used to generate the binary value of the central pixel. The example
in figure 3.2 describes this process. The central pixel is compared to the pixel circled in
red. As the circled pixel is lower in value than the central pixel this means the central
pixel is assigned a bit value of 0 in the final fingerprint. In this manner the fingerprinting
algorithm encodes gradient information in the y-axis rather than contrast information.
This process is repeated for each pixel in the image.

This algorithm is known as Reduced-LBP (R-LBP) due to the fact the binarization step
reduces the amount of information used from what is in LBP. By doing this we maintain
the global illumination invariance of LBP whilst removing the need to use the entire fea-
ture vector in authentication. However, this also reduces the number of pixel comparisons
down from N to 1. Thus making R-LBP.V1 vulnerable to noise. Any alteration to the
first or central pixel in a repeat image will result in a different value in the fingeprint.
This will be a particular issue for QD patterns that are ”flat” (texture is uniform with
all pixel values lying within a small range) in nature. It is used in this thesis however, as

20



an example of the simplest possible solution to compare to.

3.3.5 RLBP.V2

The driving force behind RLBP.V2 is to maximise the information that is encoded into
the value of the central pixel in the final fingerprint. As already discussed in section
3.3.4 comparing between only two pixels reduces not only the fingerprinting algorithm’s
resistance to noise or other outside effects but also the entropy present in the final fin-
gerprint. For example see figure 3.3. In RLBP.V1 a feature that spans any width of
the image will be the only area of comparison for the pixels spanning the same width a
distance of R below it. The QD pattern in figure 3.3 has a clear example of this within
the two large black areas within it, located in the top left and bottom right of the image.
In the fingerprint generated from the pattern there can be seen two black areas with no
variation that correspond to these. Similarly is the large bright areas in the middle and
top left of the image which have matching white areas in the fingerprint.

Figure 3.3: Left: Image of a quantum dot pattern taken from a tag made with InP in a
SEBS lacquer. Image is brightened for clarity of viewing. Right: Example fingerprints
of the pattern to the left made with each of the four techniques analysed in this paper.
Each was created at R = 7, R-MLBP and RLBP.V2 were created with N = 16. Each

fingerprint is 64x64 px in size.

In order to correct for these issues RLBP.V2 uses all of the circumference pixels in its
comparison (as can be seen in figure 3.4). The first part of the feature vector is generated
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in the same manner as LBP, with each pixel being compared to that of the central pixel.
Starting from the top pixel each is assigned a value of 1 in the feature vector if they are
greater than or equal to the central pixel in value, 0 if they are not. In this case however,
a final bit is added to the end of the feature vector. For this the central pixel value is
compared to the mean value of all of the pixels on the circumference. If the central pixel
is greater than or equal to the mean value then this final bit is given a value of 1, if not
it is given a value of 0. Not only does this now encode the relative brightness between
the central pixel and its local area it gives an odd numbered bit length feature vector
(as N is always even), see figure 3.3 for example. This now allows for the final value of
the central pixel that is passed to the fingerprint to be determined by majority voting.
The modal value of the feature vector is taken to create the bit value that is used in the
fingerprint. Thus, successfully using as much of the local texture information as possible
to create the fingerprint.

Figure 3.4: Left: Pictorial representation of the ”LBP circle” used by RLBP.V2. The
grey circle represents the central pixel. The black and white circles represent the pixels
being compared to the central pixel, each of which lies on the circumference of a circle
with radius R centred on the central pixel. A black circumference pixel represents that
it is lower in value than the central pixel, white represents that it is equal to or greater
than the central pixel in value. The numbers represent the order each pixel is compared
to the central pixel in. Right: Mock up of the section of an image the LBP circle to the

left is analysing (assuming R = 1). Again the central pixel is coloured in grey. The
values written in each pixel are arbitrary brightness values. Below the diagram is the

feature vector string that RLBP.V2 would have generated for this central pixel.

This particular method grants RLBP.V2 some advantages over the over three techniques
discussed here. The first of all is the entropy that the fingerprints produced from it
possess. As will be detailed in chapter 4 this allows for RLBP.V2 to produce fingerprints
with a high degree of uniqueness. Which in turn leads to it being able to be used to
accurately match tags through fuzzy authentication methods. Not only does it maintain
the global illumination invariance of LBP but it is also rotationally invariant. This is due
to the fact that it does not matter the order of the bits in an RLBP.V2 feature vector
when majority voting is applied. What this means is that if the challenge image is rotated
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through any number of 360
N

◦
increments the output fingerprint will be the exact same only

rotated through the same increment. This would not occur with the other LBP adjacent
schemes analysed here as they have directional dependence to their fingerprinting. There
is however, an issue with this technique. Every bit in the feature vector is dependant on
the central pixel, as such any shift in the value of the central pixel between the challenge
and reference image may change the value of the bit in the fingerprint. Thus, indicating
that RLBP.V2 will still be affected to damage to the challenge image.

3.3.6 RMLBP

To first discuss Reduced Modified-LBP (RMLBP) it is important to break down the two
key components within the fingerprinting algorithms. There is the feature extraction
algorithm that makes up the base of it (such as LBP) and the binarisation technique that
reduces the information for a pixel to a single bit value (such as majority voting). The
purpose of RMLBP is to create a fingerprinting algorithm that is as resilient to damage,
including image noise, to the image as possible.

To achieve this the base algorithm was altered from LBP to Modified-LBP (M-LBP).
The binarisation algorithm was kept the same however as this had shown to provide
some degree of noise resilience in other techniques during the refinement and testing
process. Modified-LBP[46] was designed to reduce the length of LBP feature vectors to
reduce the difficulty of using them in texture classification. It also acts to encode gradient
and local contrast information into the feature vector. Coupled with the majority voting
binarisation technique this gives Reduced MLBP (RMLBP). To first generate the feature
vector RMLBP splits the LBP circle into two halves, left and right, each with N

2
pixels.

The value of centre symmetric pixels across the LBP circle are then compared (pixels
with matching colours in figure 3.5). If the pixel in the right hand side of the LBP circle
is greater or less than the value of that in the right that pair is assigned a value of 1, if
it is lower the pair is assigned a value of 0. Finally the centre pixel value is compared to
the mean value of the circumference pixels. If the central pixel is greater than or equal to
the mean value then this final bit is given a value of 1, if not it is given a value of 0. All
of the pair bit values and the bit value of the centre-mean comparison are concatenated
together to make a feature vector N

2
+ 1 in length. To determine the final bit value of the

central pixel the modal value of the feature vector is taken.
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Figure 3.5: Left: Pictorial representation of the ”LBP circle” used by RMLBP[46]. The
grey circle represents the central pixel. The black and white circles represent the pixels
being compared to the central pixel, each of which lies on the circumference of a circle
with radius R centred on the central pixel. A black circumference pixel represents that
it is lower in value than the central pixel, white represents that it is equal to or greater
than the central pixel in value. The coloured rings represent which pixel is compared to
which. ”L” and ”R” represent which half of the LBP circle is dubbed the left and the

right. Right: Mock up of the section of an image the LBP circle to the left is analysing
(assuming R = 1). Again the central pixel is coloured in grey. The values written in
each pixel are arbitrary brightness values. Below the diagram is the feature vector

string that RMLBP would have generated for this central pixel.

The fact that this algorithm encodes gradient orientation, that the central pixel is only
used in the comparison for one bit in the feature vector and with the binarisation it
grants several boons to this method. Primarily that it makes this technique highly noise
resistant[46], even on flat QD patterns which are most prone to poor fingerprints in noisy
conditions. This is demonstrated in chapter 4 RMLBP produces the fingerprints with
the highest degree of repeatability, regardless of what damage is done to the challenge
image. The catch here however is that the fingerprints do bear large areas with little
variation similarly to RLBP.V1 (as can be seen in figure 4.1). This hampers the ability
to accurately tell them apart from fingerprints of other QD patterns despite fingerprints
of the same pattern being so alike (as later shown in chapter 4). This is because when all
the fingerprints contain large uniform areas the probability of two pixels having the same
value is increased. Further testing has shown however that RMLBP fingerprints contain
little enough noise that entropy increasing techniques (such as XOR debiasing detailed
in section 5.2) can be used to solve this issue and still give repeatable fingerprints.

3.3.7 AHB

The last of the algorithms analysed in this thesis is the only one not based on LBP or a
variant thereof. It is included in this thesis to build on the work performed by Marcinke-
vicius et al[2]. In that work it was demonstrated that Adaptive High Boost (AHB) can
be used to extract a binary fingerprint from a QD pattern when it is imaged under a
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microscope. Here we demonstrate that such a level of magnification is not needed and
compare it to other novel techniques.

AHB was proposed originally as an alternative to Gabor filters for use with speckle
pattern optical PUFs[2]. In simple terms AHB assigns a pixel a value of 1 or 0 depending
on its value relative to the values of its neighbouring pixels. It does this by passing a
convolution kernel over the image on a pixel-wise basis. For each position in the image,
the centre pixel brightness value is multiplied by 1 − n2 (where n is the size of the ker-
nel) and every other pixel covered by the kernel is multiplied by 1. The sum of all the
kernel values is then calculated. If the sum is less than 0 the central pixel is brighter
than its surroundings and dimmer if it is greater than 0. In the case of the former the
central pixel is assigned the value of 1 and in the latter a value of 0. This dependence on
relative brightness values over a neighbourhood of n2 pixels makes the generated binary
fingerprint independent of global shifts in pixel brightness. The kernel also ensures that
AHB is computationally simple to use, demonstrated in that it is quicker to generate a
fingerprint with that LBP based schemes (in order of fraction of seconds). At high R
values taking in so many pixels reduces the effect of noise on the final pixel result, at the
cost of a larger amount of data than needed for LBP techniques. It does also reduce the
ability of AHB to encode small scale details into its final fingerprint and its accuracy at
handling flat patterns.
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Chapter 4

Fingerprinting Algorithm
Performance Testing

In order to harness the uniqueness of the QD-PUFs discussed in this thesis a method is
needed to digitise them so that they can be used in authentication. Section 3.3 has de-
tailed the process by which the fingerprinting algorithms perform this process. Although
qualitative predictions can be made about their performance, these are no use when
looking to compare the algorithms and determine potential use cases. In this chapter the
algorithms will be quantitatively analysed in terms of their performance. The first test of
this will be a direct comparison. Three QD-PUFs have been chosen such that they each
have distinctly different textures. Fingerprints over a range of radii will be generated
from these by each of the algorithms, giving us figures of merit that can be compared.
This provides a baseline performance for the algorithms, showing how they perform in
optimal conditions. This is valuable information for the use and application of them.

In the majority of cases that QD-PUFs may be used outside of the laboratory they
will not be used in these optimal conditions. Thus, the remainder of this chapter is
dedicated to simulating less than optimal conditions. Chiefly by ”damaging” the QD-
PUF images by increasing amounts of damage and comparing them to their undamaged
counterparts. This will give a measure of which algorithms are the most resistant to
change in their output fingerprint outside of laboratory settings. The more robust an
algorithm is to damage to the input image the closer the generated fingerprint will be to
one created under optimal conditions. Two types of damage to the QD-PUF image are
tested, chosen as these are the most common to occur when using lower quality imaging
apparatus (such as a smartphone) in non-laboratory conditions. These are the addition
of blur to the image and separately the addition of noise. This will give highly useful
information for how the algorithms will perform in a more practical setting.

Section 4.1 provides an in depth analysis of the algorithms in terms of quantitative figures
of merit. It acts as a proof of concept of the fingerprinting process. Section 4.2 takes this
process further to analyse the limitations of each algorithm, with particular regards to
their robustness against blur and noise.
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4.1 Comparison of Algorithms

Although each algorithm in section 3.3 produces a binary output from a grey scale im-
age each encodes the information in a different manner. Even within the two separate
groupings, contrast based or gradient based, the number of data points is different. As
such it is important to test how each performs, this will inform us as to which of them
meet the aforementioned minimum criteria and what use case each is best suited to. This
section therefore will provide an in-depth quantitative analysis of the performance of the
fingerprinting techniques.

4.1.1 Analysis Process

To generate the data required for this analysis 25 repeat images of a series of three dif-
ferent quantum dot patterns is taken using the blackbox apparatus shown in figure 3.1.
Each QD pattern image is then fingerprinted by each of the four fingerprinting algorithms
(RLBP.V1, RLBP.V2, RMLBP and AHB). Fingerprints are generated for each integer
value radius in the range R = 1−R = 20, with R being measured in pixels. For RLBP.V2
and RMLBP a N value of 16 is used. The fingerprints are then grouped based on QD
pattern, algorithm and radius.

For intra hamming distance calculations the first two fingerprints of the 25 repeats for
the pattern at the radius being tested are used as ”challenge” fingerprints. The rest of
the fingerprints are then used as ”reference” fingerprints. The challenge fingerprints are
then compared to the reference fingerprints in order to generate the intra hamming dis-
tance distributions. For the inter hamming distance distribution the same two challenge
fingerprints are then compared to each of the fingerprints generated for other patterns.
In total each challenge fingerprint was compared to fingerprints generated from 47 other
separate QD patterns. This database of reference fingerprints is used throughout the the-
sis whenever figures of merit for fingerprints are generated. It is important to note when
comparing to only compare between fingerprints generated at the same radius. Intra and
inter hamming distance mean and standard deviation, FPR and ENIB are then calcu-
lated for each value of R. This process is then repeated for each pattern at each value of R.

For all of the analysis undertaken within this chapter, three different quantum dot pat-
terns will be used as the challenge QD-PUFs. CISPMS (CIS620 dots in PMS lacquer),
SEBS (InP dots in SEBS lacquer) and PVDFPLMA (InP dots in PVDFPLMA lacquer).
Given the number of different algorithms and parameters to be tested any more would be
impractical to cover in this chapter. Therefore in order to cover the algorithms in detail
the analysis is limited to these three. Each pattern was chosen because they represent
very different types of QD patterns. Quantitative classification of the types of patterns
is beyond the scope of this thesis so more qualitative terms will be used. This is because
texture classification is a complex field of computer vision within itself. The time required
to develop a classification system for the variety of quantum dot patterns used was not
viable within the time frame of this thesis. CISPMS represents QD patterns with a high
degree of contrast and discrete patterns (i.e. the bright dots on a black background).
PVDFPLMA represents ”flat” QD patterns, these have low variation in the brightness
values across the entire pattern and have no distinct features or features who’s scale is
comparable to the size of the whole QD-PUF. SEBS represents the middle ground be-
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tween the two with larger features and gradually changing brightness. Images of these
can be found in figure 4.1.

4.1.2 Analysis and Results

Figure 4.1: Examples of fingerprints generated by each algorithm at a radius of 10 for
each of the QD-PUFs tested in this section. Columns represent the same QD-PUF and

rows represent the same algorithm.
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Figure 4.2: a) image of a quantum dot pattern made with CIS620 dots in PMS lacquer.
Taken with the system shown in figure 3.1. b) Graph of log10 of the FPR against

increasing radius. c) Graph of fractional intra and inter hamming distances against
increasing radius. Error bars show the standard deviation of the hamming distance over

the fingerprints compared. The top line represents a given QD-PUF’s inter hamming
distance and the bottom the intra hamming distance. d) Graph of Effective Number of

Independent Bits against increasing radius.
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Figure 4.3: a) image of a quantum dot pattern made with InP dots in PVDFPLMA
lacquer. Taken with the system shown in figure 3.1. b) Graph of log10 of the FPR
against increasing radius. c) Graph of fractional intra and inter hamming distances
against increasing radius. Error bars show the standard deviation of the hamming
distance over the fingerprints compared. The top line represents a given QD-PUF’s
inter hamming distance and the bottom the intra hamming distance. d) Graph of

Effective Number of Independent Bits against increasing radius.
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Figure 4.4: a) image of a quantum dot pattern made with InP dots in SEBS lacquer.
Taken with the system shown in figure 3.1. b) Graph of log10 of the FPR against

increasing radius. c) Graph of fractional intra and inter hamming distances against
increasing radius. Error bars show the standard deviation of the hamming distance over

the fingerprints compared. The top line represents a given QD-PUF’s inter hamming
distance and the bottom the intra hamming distance. d) Graph of Effective Number of

Independent Bits against increasing radius.

When observing the FPRs of the different fingerprinting algorithms the most obvious
point is the differing performance of RLBP.V2 over the other three techniques. All of
the algorithms produce FPR minima many orders of magnitude below the requirement
of 10−6, even for PVDFPLMA of which is has the highest FPR minima for all of them.
Despite this however RLBP.V2 has minima multiple orders of magnitude lower than each
of the other algorithms. The origin of this lies in a matter discussed in section 3.3.5,
out of all of the algorithms RLBP.V2 produces the fingerprints with the highest degree
of entropy. As can be seen in figure 4.1 all but RLBP.V2 tend to produce fingerprints
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with more structured patterns, often consisting of large uniform areas of 1’s or 0’s (shown
pictorially as white or black pixels respectively). This poses an issue when considering
fingerprint uniqueness, large areas of singular value make it more likely a particular pixel
will match in value its corresponding pixel in a fingerprint of another pattern. This is even
more likely in the case of RMLBP who’s fingerprints show a bias for large uniform areas
stretching horizontally across the fingerprint. Therefore this increases the mean FPR of
RLBP.V1, RMLBP and AHB over almost all R when compared to RLBP.V2. This is
supported by the ENIB of each algorithm. At R = 15 where RLBP.V2’s FPR minima
tends to lie its ENIB is ∼ 1000 bits greater than the next closest algorithm in each case
presented here. Mathematically speaking this means that RLBP.V2’s fingerprints show
the least repeated patterns when one qualitatively observes over the fingerprints of all
patterns in the database.

This has a pay-off however in that RLBP.V2 does have the highest mean intra ham-
ming distance over all R values (in the case of PVDFPLMA matching closely with AHB
for R ≥ 7). The implications of this will be discussed in greater detail later. Despite this
fact RLBP.V2 still achieves the lowest FPR, this is due to it’s unique fingerprints granting
it the lowest inter standard deviation of the algorithms. Visually speaking this is due to
the more complex, higher entropy patterns in RLBP.V2 fingerprints. The lack of blocky
areas giving it a larger degree of difference between fingerprints of different QD-PUFs.
For example, in the case of SEBS where the intra over all R for RLBP.V2 is highest
relative to the other algorithms, it had an inter hamming distance of 0.491 ± 0.008 at
R = 15. RLBP.V1 achieved 0.49± 0.02, RMLBP achieved 0.49± 0.03 and AHB achieved
0.49 ± 0.01. Thus, indicating when creating a fingerprinting algorithm the uniqueness of
the fingerprints generated is more important for accurate identification than the consis-
tency of repeat fingerprints from the same pattern.

Continuing the comparison between the FPR behaviours of each technique we come
to the location of the minima of each of the algorithms. The four algorithms can be split
into two pairs, those that encode local contrast information (RLBP.V2 and AHB) and
those that encode local gradient information (RLBP.V1 and RMLBP). As we will see
throughout this thesis the algorithms show more similar behaviour to their pair partner
than the other algorithms. The location of FPR minima is one such example, in each case
the minima for the contrast based schemes occurs at a higher R value than those of the
gradient based schemes. Indicating that the gradient based schemes produce fingerprints
with more accurate authentication when encoding fine scale details. This is because at
higher R values local gradient changes become smeared out, causing the fingerprints to
be dependant on any gradients that are approaching global in scale. These being much
larger in size they create large uniform areas of 1’s and 0’s within the fingerprint. Whilst
this makes for highly repeatable fingerprints (see intra hamming distance discussion) it
has a negative impact on the entropy and uniqueness of the fingerprint. This is indicated
by a higher inter hamming distance standard deviation and a lower ENIB. As has already
been discussed the uniqueness of the fingerprint is more important than it’s repeatability
in achieving low FPR values thus, limiting the FPR minima of gradient based schemes
to lower R values. Contrast based schemes however are less effected by these global pat-
terns and so maintain their entropy whilst losing the issues of noise that plague at low R.
Causing them to outperform gradient based schemes at high R values. It should however,
be noted that due to the greater resilience to noise possessed by gradient based schemes
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their intra hamming distances at their FPR minimum are still lower than those of the
contrast based schemes at a higher R value.

The behaviour of the hamming distances of each of the pairs of algorithms gives further
insight into their behaviour. It is clear that the gradient based schemes produce lower
fractional intra hamming distances for all R values (this is less clear cut with CISPMS
which will be discussed shortly). As previously mentioned this is due to the fact that the
gradient based schemes are more resilient to noise than their contrast based counterparts.
This allows them to produce more repeatable fingerprints. Consistently over all of the
data analysed RMLBP does produce the lowest intra hamming distance for all R. It
achieves fingerprints whose mean difference to repeats from the same pattern can fall as
low as 2% (SEBS at R = 20) and in the worst case are as high as 25% (PVDFPLMA
at R = 1). This outstrips the other schemes whose ranges are: 3% − 31% for RLBP.V1,
4%− 42% for RLBP.V2 and 4%− 34% for AHB. This is because gradient based schemes
produce the most stable fingerprints and out of the two RMLBP takes in the most infor-
mation to generate each bit in the fingerprint, (9 bits are used in RMLBP as opposed to
2 in RLBP.V1). Thus, furthering improving its resilience to any camera noise. As well
as this RMLBP is the only one of the algorithms to not use its central pixel to calculate
every bit in its feature vector. Only one of RMLBP’s bits is calculated using the central
pixel. This grants it an advantage over the over algorithms in that any issue with the
central pixel (that the fingerprint value is being calculated for) will have no effect on the
final fingerprint bit. Granting RMLBP an extra degree of robustness that is reflected in
its highly repeatable fingerprints.

For the pair of contrast based schemes the difference between them also falls down to
how many bits are used to create the final fingerprint value. AHB takes in more bits than
RLBP.V2 this gives it a higher resilience to noise as any noisy pixels have less of an effect
on the final value. Although this grants AHB a lower intra hamming in most cases, it
reduces the entropy of AHB fingerprints. As the AHB kernel passes over the image there
will be a large amount of overlap between the pixels analysed for nearby central pixels.
Particularly for adjacent pixels with similar values this leads to the same fingerprint value
being calculated for all central pixels in a local area. As previously discussed in achieving
a low FPR the entropy of the fingerprint is more important than the repeatability of it.
Hence, AHB is the more resilient algorithm of the contrast based schemes but RLBP.V2
produces fingerprints with more accurate matches.

There is also a degree of difference in the performance of the schemes when looking
over the three different QD patterns analysed in this paper. For contrast based schemes
the fractional intra hamming distance is lower for CISPMS and highest for PVDFPLMA.
This is unsurprising as CISPMS shows the greatest contrast over all of the patterns, with
a dark background and bright dots. PVDFPLMA however has a much more flat pattern,
the lower contrast over the area meaning that pixel noise has a greater effect thus, wors-
ening the intra. On the opposite side the gradient based schemes show less of difference
between the different patterns in terms of intra. Indicating less of a dependence of QD
pattern ”type” for producing reliable fingerprints.

To summarise, most importantly all of the algorithms met the criteria set down in section
3.3.1. Each produces an FPR minima far below the required limit and (with the excep-
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tion of RLBP.V1 for PVDFPLMA) produce an ENIB about 512bits at the corresponding
radius. Gradient based algorithms produce the more repeatable fingerprints but contrast
based ones produce fingerprints with higher authentication accuracy due to higher en-
tropy, with RMLBP and RLBP.V2 being the best performing at these tasks out of each
group respectively.

4.2 Robustness Testing

In a more realistic setting outside of a laboratory the quantum dot patterns will be
fingerprinted in sub-optimal conditions. Whilst it is important to know the performance
of the fingerprinting techniques in laboratory conditions to set a standard for performance,
this same standard will not be met outside of a laboratory. Damage to the input image
will worsen the measured figures of merit, potentially to the point where the fingerprinting
technique is no longer useful for authentication. This section aims to quantify the effects
of common types of image damage on the quality of produced fingerprints.

4.2.1 Analysis Process

For the damage testing two different ”types” of damage were analysed, each with ten
increasing levels of severity (details of which are given below). To create the fingerprint
sets for the robustness testing a copy is made of the images of the QD pattern being
tested. This is done for each of the different types of ”damage” and levels of severity
applied to the QD pattern images. In each case the images that will become the challenge
fingerprints have the damage applied to them. The reference images are left unaffected.
This simulates an issue with the capture device when Bob is attempting to authenticate
the QD patterns. Fingerprints are then generated from these damaged images with each
of the algorithms at R = 1− 20. The rest of the analysis to generate hamming distances
and figures of merit then continues as detailed in section 4.1.1. It should be noted how-
ever that in the case of these tests the intra hamming distance now represents a measure
of how much the damage to the challenge image has changed the fingerprint from the
original. Giving a measure of how robust the fingerprinting algorithm is to the effects of
the damage.

The details of the different types of damage applied to the QD pattern challenge im-
ages are as follows (note, only one is ever applied at a time):

• Blurring: The challenge image has a Gaussian filter applied to it using the im-
gaussfilt function in MATLAB[47]. The levels of severity span from 1 to 10 in steps
of 1 and signify the standard deviation of the smoothing kernel applied. The higher
the standard deviation the more blurred the image becomes.

• Noise Adding: The imnoise function in MATLAB was applied to the challenge
image, with type set to ”speckle”. This ”adds noise adds multiplicative noise using
the equation J = I +nI, where n is uniformly distributed random noise with mean
0 and variance” defined by the user (quoted from[48]). I represents the initial pixel
value and J the final value of the pixel after noise has been applied. The levels of
severity are determined by the variance of n which spans the range of 0.1 to 1 in
steps of 0.1 with 0.1 being the least noisy and 1 being the most.
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4.2.2 Blurring

Figure 4.5: Table of example fingerprints generated for the blur section of robustness
testing. Rows represent different fingerprinting techniques. Columns represent

individual quantum dot patterns, with each column split into a fingerprint generated
from a blurred image on the left and an undamaged image on the right. Each

fingerprint shown was generated at R = 10 and the level of blur was set to a standard
deviation of 5 as this is the midpoint of the blur severity available with the imgaussfilt

function, as discussed in section 4.2.1.

The application of greater degrees of Gaussian blur to the challenge images serves to
smooth out larger and larger scale features with each increase in standard deviation. The
techniques that can produce the most accurate fingerprints from these damaged challenge
images will be those that can maintain the uniqueness of their fingerprints despite the
loss of small scale features. Disregarding AHB (as its performance under blur was unique
in comparison to the others), we can see in figure 4.5 that granular detail has been lost
in the fingerprints when blur is applied. What is most striking of these three is that
the damaged fingerprints of RMLBP appear almost untouched when compared to their
undamaged counterparts at this blur and R value. A fact that supports the hypothesis
put forward in section 4.1.2 that RMLBP can produce such low intra hamming distance
values because on a larger scale, changes of brightness within an image are unaffected by
any noise within them. The fact that when any noise and small scale details are removed
the fingerprints are so similar serves as proof of this. It should be remembered though
that such conclusions are qualitative and only apply under these particular parameters.
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Figure 4.6: a) image of a quantum dot pattern made with CIS620 dots in PMS lacquer,
the image was then blurred with a Gaussian filter with a standard deviation of 5. Taken
with the system shown in figure 3.1. b) Graph of the minimum intra hamming distance

achieved over all R at each increment of increasing blur severity. c) Graph of the
minimum inter hamming distance standard deviation achieved over all R at each

increment of increasing blur severity. d) Graph of the maximum ENIB achieved over all
R at each increment of increasing blur severity.
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Figure 4.7: a) Graph of log10 of the minimum FPR achieved at each increment of
increasing blur severity over all R for the CISPMS quantum dot pattern. Missing data
points occur when the generated FPR falls below the precision of MATLAB, 10−308. b)
Graph of the radius values R where the FPR minimum show in graph a) occurs at each
increment of increasing blur severity. c) Graph of the intra hamming distance at the R
value where the FPR minimum occurs at each increment of increasing blur severity. d)
Graph of the inter hamming distance standard deviation at the R value where the FPR
minimum occurs at each increment of increasing blur severity. e) Graph of the ENIB at

the R value where the FPR minimum occurs at each increment of increasing blur
severity.37



Figure 4.8: a) image of a quantum dot pattern made with InP dots in PVDFPLMA
lacquer, the image was then blurred with a Gaussian filter with a standard deviation of
5. Taken with the system shown in figure 3.1. b) Graph of the minimum intra hamming
distance achieved over all R at each increment of increasing blur severity. c) Graph of
the minimum inter hamming distance standard deviation achieved over all R at each

increment of increasing blur severity. d) Graph of the maximum ENIB achieved over all
R at each increment of increasing blur severity.
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Figure 4.9: a) Graph of log10 of the minimum FPR achieved at each increment of
increasing blur severity over all R for the PVDFPLMA quantum dot pattern. Missing

data points occur when the generated FPR falls below the precision of MATLAB,
10−308. b) Graph of the radius values R where the FPR minimum show in graph a)
occurs at each increment of increasing blur severity. c) Graph of the intra hamming

distance at the R value where the FPR minimum occurs at each increment of increasing
blur severity. d) Graph of the inter hamming distance standard deviation at the R

value where the FPR minimum occurs at each increment of increasing blur severity. e)
Graph of the ENIB at the R value where the FPR minimum occurs at each increment

of increasing blur severity.39



Figure 4.10: a) image of a quantum dot pattern made with InP dots in PVDFPLMA
lacquer, the image was then blurred with a Gaussian filter with a standard deviation of
5. Taken with the system shown in figure 3.1. b) Graph of the minimum intra hamming
distance achieved over all R at each increment of increasing blur severity. c) Graph of
the minimum inter hamming distance standard deviation achieved over all R at each

increment of increasing blur severity. d) Graph of the maximum ENIB achieved over all
R at each increment of increasing blur severity.
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Figure 4.11: a) Graph of log10 of the minimum FPR achieved at each increment of
increasing blur severity over all R for the SEBS quantum dot pattern. Missing data

points occur when the generated FPR falls below the precision of MATLAB, 10−308. b)
Graph of the radius values R where the FPR minimum show in graph a) occurs at each
increment of increasing blur severity. c) Graph of the intra hamming distance at the R
value where the FPR minimum occurs at each increment of increasing blur severity. d)
Graph of the inter hamming distance standard deviation at the R value where the FPR
minimum occurs at each increment of increasing blur severity. e) Graph of the ENIB at

the R value where the FPR minimum occurs at each increment of increasing blur
severity.41



As to be expected the contrast based schemes still produce the lower FPRs out of the
two groups of fingerprinting algorithms. This can once again be traced to the standard
deviation of their inter hamming distance at the FPR minima (figures 4.7c, 4.9c and
4.11c) the measures of uniqueness and entropy. RLBP.V2 for example almost always
has the highest intra hamming distance values (both in intra minima and intra at FPR
minima) but maintains the lowest FPR. This shows that in order to achieve an accu-
rate authentication of a blurred image of a QD pattern the uniqueness of the pattern is
more important than how close the damaged fingerprint is to the original. Logically this
makes sense. The ability to tell two fingerprints apart due to them being unique will aid
accurate authentication more. It is hypothesised however that there is an upper limit to
how far this can be taken. Given the upward trend of the intra hamming distance as
the severity of the blur is increased, eventually the damaged fingerprint will become too
dissimilar to the original to be a match as it will start to overlap with the inter hamming
distribution. It is at these more extreme cases where the other schemes would outperform
RLBP.V2 in terms of FPR thanks to their lower intra hamming distance values. This
could be potentially counteracted by increasing the range of R values that RLBP.V2 is
tested at. As can be seen from figures 4.7b, 4.9b and 4.11b the R value at which the FPR
minima occurs for RLBP.V2 consistently increases with increasing blur. Even flattening
out at the maximum R of 20 for PVDFPLMA and SEBS. This shows that the scale at
which RLBP.V2 is most accurate increases with the scale of structure made dominant by
the smoothing. Something which is achievable by the fact that RLBP.V2s fingerprints
lose their uniqueness at higher R much less than other algorithms (see the much lower
increase in inter SD with increasing damage).

Of the two contrast based schemes AHB’s FPR performance is the most interesting.
Unique to AHB its FPR minima values initially improve as blur is increased before be-
ginning increase themselves. Mathematically speaking this occurs because its inter ham-
ming distance standard deviation initially decreases before either flattening out or rising.
Physically speaking this is because a small amount of blur improves the uniqueness of
the fingerprints that AHB produces. As touched on with RLBP.V2, to a degree, this is
more important to accurate authentication using FPR than a close matching fingerprint.
The origin of this lies in the fact that for all three of the QD patterns the ENIB increases
blur standard deviation values where the FPR is improved (for example averaging over
the QD patterns at a blur of 4 sees a 41.7% ENIB increase). This indicates that the
blurring is causing the large uniform areas in the AHB fingerprint to break apart at low
blur values. This does cause an increase in the intra hamming distance, which we would
expect given the growing separation between the blurred and undamaged fingerprints.
The significant increase in entropy however, more than accounts for this. The reasoning
behind this improvement lies within the reduction of image contrast from the flattening
of local brightness areas that occurs with blur. For undamaged images areas of similar
brightness all are assigned the same value in the fingerprint (discussed in section 3.3.7).
This is because they are similar to each other but distinct to neighbouring regions. See
for example the large black area in the left of CISPMS in figure 4.2a and how it was
fingerprinted. When blur is applied similar regions are no longer as distinct from their
neighbours as such it is now more likely that a particular pixel will be assigned a different
value in the fingerprint than that of its neighbours (see figure 4.5). Thus, breaking apart
the large uniform regions. However, when the blur increases past a certain point we see
the ENIB decrease and the inter hamming standard deviation increase. Indicating that
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the blur is now creating larger uniform areas as its smoothing gets more severe. Thus,
showing that both the contrast based schemes can produce accurate authentication at
low blur values but both may suffer in performance as it increases.

The FPR minima trends of the gradient based schemes are similar to that of RLBP.V2
in that they increase with increasing applied blur. This is due not only to the increasing
intra hamming distance at the FPR minima as the damage increases but the increasing
inter standard deviation as well. The smoothing of the challenge image leads to small de-
tails being removed and as such large uniform areas are introduced in the fingerprint. As
fingerprints with low entropy are an issue with gradient based schemes without any ap-
plied damage (see section 4.1.2) this only serves to compound this matter, leading to the
gradient based schemes FPR minima performing worse than that of the contrast based
schemes. Their lower intra hamming distances at their FPR minima however raises an
interesting debate for use cases. It arises as the gradient based schemes are less affected
by the presence, or lack thereof, of small details and features. If only a certain value of
FPR is required for the use case, such as the 10−6 discussed in section 3.3.2 and both
sets of schemes meet this requirement then the optimal to chose would then be the one
with the lowest intra hamming at its FPR minima. Although the contrast based schemes
may produce more accurate results their fingerprints are not as consistent as those for
contrast based schemes. This would therefore provide a balance between a robustness
and accuracy.

One other interesting feature of the FPR minima of the gradient based schemes is how
the R value of the minima shifts with increasing damage. RLBP.V1 performs much as
RLBP.V2 did with the R value of the minima increasing as the damage increases, shift-
ing the focus of the fingerprinting to the larger scale features that are now dominant.
RMLBP does not do this however. Its R value for the FPR minima flattens out with
increasing damage at a value no higher than 7. It is due to this why RLBP.V1 displays
a lower intra hamming distance at its FPR minimum. As RMLBP fingerprints lose their
uniqueness at high R values in order to achieve its most accurate FPR some of the robust-
ness of the algorithm is sacrificed. Although the intra that can be achieved by RMLBP
outstrips that of the other algorithms, it’s robustness comes as a double edged sword at
the sacrifice of fingerprint uniqueness.

Stepping on from this point we can see that maximum achievable robustness of each
of the algorithms is separated in a similar manner to the accuracy of authentication
achievable. Figures 4.6b, 4.8b and 4.10b give this in the form of the minimum intra
hamming distance achieved by each algorithm at each level of applied blur. Although
CISPMS is less clear cut in each case the two gradient based schemes display lower intra
minima than their contrast based counterparts. Within each group of algorithms the
algorithm that takes in more data to create its fingerprint (AHB and RMLBP) consis-
tently produces lower intra hamming values. Showing that in the case of blur the more
data points used to create the fingerprint the more robust the algorithm will be. As
uniqueness is not a consideration here the intra minimum almost exclusively occur at
R = 20. Therefore, the gradient based schemes are more robust to the effects of blur as
the orientation of gradients between points on an image is less susceptible to change than
the absolute values of points. Especially given that smoothing will flatten out the values
of these points but not effect gradient orientation.
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How the intra minimum increases with increasing blur also raises interesting points on
the development of fingerprint algorithms resistant to blur. Between the undamaged
fingerprint and the maximally blurred fingerprint (Gaussian blur standard deviation of
10), RMLBP and AHB see the lowest average increase in intra minimum (given to three
significant figures to reflect that of the intra hamming distance values) over all three QD
patterns at 199% and 201% respectively. With RMLBP maintaining the lower absolute
values. RLBP.V1 and RLBP.V2 give increases of 266% and 274%, with RLBP.V1 giving
the lower absolute values. This is interesting to note as although RLBP.V1 gives lower in-
tra minimum values than AHB at all R values, AHB sees a significantly lower increase as
the blur applied increases. Suggesting that when designing a fingerprinting algorithm the
top priority for minimising damage as blur increases is the number of data points taken
in, rather than the exact method of converting the image to a fingerprint. Statistically
this is a logical conclusion as the more data is used to calculate a value the more accurate
it tends to be. The proximity of AHB’s percentage increase to that of RMLBP supports
this and suggests that RMLBP’s robustness could be further improved by increasing the
number of neighbour points used.

Even when not looking specifically at accuracy of authentication the robustness of the al-
gorithm’s comes at a cost. With the exception of CISPMS the gradient based algorithms
consistently give higher inter hamming standard deviation minima and lower ENIB val-
ues, as shown in sub figures c and d in figures 4.6, 4.8 and 4.10. With CISPMS this is only
clear cut between RLBP.V2 and the gradient schemes. The lower entropy fingerprints of
the gradient schemes give them a greater degree of robustness as they allow for a greater
chance of a pixel to match between the blurred and undamaged fingerprints. This is es-
pecially the case here where blurring removed granular features from fingerprints. From
a cryptographic standpoint however this lower achievable uniqueness will mean gradient
based fingerprints are less useful as secure cryptographic keys.

Which algorithm is optimal will depend entirely on the situation it is being applied
in. If highly accurate authentication is needed but the expected blur that will occur on
input images will remain low then RLBP.V2 would be optimal. However, given RLBP.V2
is the least robust, if accuracy was paramount but a higher degree of blur was expected
then AHB would be a safer choice. In a scenario where a higher degree of accuracy wasn’t
as great an issue (such as where a maximum FPR limit is set), then RMLBP would be
the better choice. It’s robustness against the damage to fingerprint caused by blur is
greater than all that of the others. Giving a greater degree of confidence that a matching
fingerprint can be generated from a legitimate QD pattern, no matter the blur applied.
RLBP.V1 does produce lower intra hamming distances when comparing FPR minima but
if RMLBP is not restricted to its FPR min R value then this is not an issue. As well
as this is the FPR minimum of RLBP.V1 is not consistently lower than that of RMLBP
and thus, it gains no advantage there.

In reference to the figures of merit discussed in section 3.3.2 it is promising to note
that none of the algorithms for any of the QD patterns fall above the required FPR
threshold of 10−6 for any level of blur tested. Indicating that in broad terms they are all
capable of being used as fingerprinting algorithms for the situation when the challenge
image may suffer damage from blur. Only one of the algorithms also ever falls below the
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required ENIB of 256bits, RLBP.V1 for PVDFPLMA at high blur values.

Finally there is the matter of how each different QD pattern behaved under differing
levels of applied blur. Despite CISPMS possessing the lowest intra hamming distance
and FPR in the undamaged dataset, with the application of blur it suffers the heaviest
losses in terms of FPR minima and intra minima performance. The order of magni-
tude of CISPMS’ FPR when averaged over all fingerprinting algorithms increases by 73%
when comparing undamaged FPR to maximum applied blur, compared to the 68% of
PVDFPLMA and the 61% of SEBS. Similarly CISPMS intra min when averaged other
all algorithms increases by 430%, compared to 88% for PVDFPLMA and 190% for SEBS.
This dramatic difference is due to the feature size in each case. The predominant features
in CISPMS are the bright dots present on the QD pattern. SEBS does possess smaller
features but is mostly dominated by gradual changes in brightness. PVDFPLMA is a
similar story to SEBS albeit with less detail and lower contrast. When blur is applied
the predominant features in CISPMS are smoothed out. Thus, removing the original
information that would have been fingerprinted. This drastic change is the likely origin
of the odd behaviour for AHB with CISPMS and the reason that many of the graphs
show sporadic jumps or decreases. As the blur standard deviation increases the features
that would have dominated are removed, leading to others dominating the texture. As
shown from chapter 4.1 different features do fingerprint better or worse. For example the
relatively flat PVDFPLMA consistently gave the highest intra hamming distance values,
especially when compared to the discretely patterned CISPMS. In line with this SEBS
and PVDFPLMA being dominated by larger scale features ensures that less information
is lost when blur shifts the focus to larger scales as their features are already predomi-
nately at this scale. Overall the greater degree of variation in the quantum dot pattern
of SEBS leads to better performance.
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4.2.3 Noise Adding

Figure 4.12: Table of example fingerprints generated for the noise section of robustness
testing. Rows represent different fingerprinting techniques. Columns represent

individual quantum dot patterns, with each column split into a fingerprint generated
from a noise affected image on the left and an undamaged image on the right. Each

fingerprint shown was generated at R = 10 and the level of noise was set to a variance
of 0.5 as this is the midpoint of the noise severity available with the imnoise function,

as discussed in section 4.2.1.

When observing the fingerprints in figure 4.12 we can see a very distinct difference to
their undamaged counterparts and those in figure 4.5. With the exception of AHB the
addition of noise has broken down larger uniform areas, as one would expect. In all cases
CISPMS visually shows the least difference with the addition of noise, PVDFPLMA by
far showing the most. As expected the presence of the distinct high contrast features
in CISPMS makes its fingerprints more resistant to damage to the input image. The
relative lack of features in PVDFPLMA making the noise the dominant factor in the
fingerprinting. AHB is the exception as the addition of noise appears has caused a
significant change in the white to black pixel bias of the fingerprints. Averaging over all
three quantum dot patterns AHB showed a change of 27.9% in bias (as opposed to for
example 6.1% change for RMLBP). A factor that will affect the inter hamming standard
deviation of AHB and thus, its FPR.
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Figure 4.13: a) image of a quantum dot pattern made with CIS620 dots in PMS lacquer,
noise was then added to the images with a variance value of 0.5. Taken with the system
shown in figure 3.1. b) Graph of the minimum intra hamming distance achieved over all
R at each increment of noise severity. c) Graph of the minimum inter hamming distance
standard deviation achieved over all R at each increment of noise severity. d) Graph of

the maximum ENIB achieved over all R at each increment of noise severity.
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Figure 4.14: a) Graph of log10 of the minimum FPR achieved at each increment of noise
severity over all R for the CISPMS quantum dot pattern. Missing data points occur

when the generated FPR falls below the precision of MATLAB, 10−308. b) Graph of the
radius values R where the FPR minimum show in graph a) occurs at each increment of
noise severity. c) Graph of the intra hamming distance at the R value where the FPR
minimum occurs at each increment of noise severity. d) Graph of the inter hamming
distance standard deviation at the R value where the FPR minimum occurs at each

increment of noise severity. e) Graph of the ENIB at the R value where the FPR
minimum occurs at each increment of noise severity.
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Figure 4.15: a) image of a quantum dot pattern made with InP dots in PVDFPLMA
lacquer, noise was then added to the images with a variance value of 0.5. Taken with the
system shown in figure 3.1. b) Graph of the minimum intra hamming distance achieved
over all R at each increment of noise severity. c) Graph of the minimum inter hamming
distance standard deviation achieved over all R at each increment of noise severity. d)
Graph of the maximum ENIB achieved over all R at each increment of noise severity.
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Figure 4.16: a) Graph of log10 of the minimum FPR achieved at each increment of noise
severity over all R for the PVDFPLMA quantum dot pattern. Missing data points

occur when the generated FPR falls below the precision of MATLAB, 10−308. b) Graph
of the radius values R where the FPR minimum show in graph a) occurs at each

increment of noise severity. c) Graph of the intra hamming distance at the R value
where the FPR minimum occurs at each increment of noise severity. d) Graph of the
inter hamming distance standard deviation at the R value where the FPR minimum

occurs at each increment of noise severity. e) Graph of the ENIB at the R value where
the FPR minimum occurs at each increment of noise severity.
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Figure 4.17: a) image of a quantum dot pattern made with InP dots in PVDFPLMA
lacquer, noise was then added to the images with a variance value of 0.5. Taken with the
system shown in figure 3.1. b) Graph of the minimum intra hamming distance achieved
over all R at each increment of noise severity. c) Graph of the minimum inter hamming
distance standard deviation achieved over all R at each increment of noise severity. d)
Graph of the maximum ENIB achieved over all R at each increment of noise severity.
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Figure 4.18: a) Graph of log10 of the minimum FPR achieved at each increment of noise
severity over all R for the SEBS quantum dot pattern. Missing data points occur when

the generated FPR falls below the precision of MATLAB, 10−308. b) Graph of the
radius values R where the FPR minimum show in graph a) occurs at each increment of
noise severity. c) Graph of the intra hamming distance at the R value where the FPR
minimum occurs at each increment of noise severity. d) Graph of the inter hamming
distance standard deviation at the R value where the FPR minimum occurs at each

increment of noise severity. e) Graph of the ENIB at the R value where the FPR
minimum occurs at each increment of noise severity.

52



Noise is a prevalent issue in image capture, every capture device suffers from it. As such
when expanding the fingerprinting algorithms to use on more noisy systems than the
controlled environment detailed in figure 3.1 a key consideration will be the generation of
repeatable fingerprints from noisy images. This is of course best encapsulated by the intra
hamming distances in sub figure b of figures 4.13, 4.15 and 4.17. As already discussed
the gradient based schemes produce lower intra minima when no damage is applied than
their contrast based counterparts. This remains so as the applied noise level is increased.
With RLBP.V2 and AHB showing similar sized increases in intra hamming min of 0.279
and 0.271 respectively. RMLBP achieves the lowest increase by a fair margin at 0.207
with RLBP.V1 at 0.249. This shows us that the gradient based schemes are more resis-
tant to the effects of noise in the input image. This will have arisen due to their usage
of differences in pixel values rather than absolute values, the direction of gradients is far
less affected by noise after all. RMLBP has given significantly better results than the
others for two key reasons. For the first, it has improved upon RLBP.V1 owing to the
fact that it takes in significantly more data points to produce a single fingerprint value.
The extra averaging step resulting in greater robustness to noise. On top of this RMLBP
is the only one of the schemes that does not use the central pixel in generating the bi-
nary string for the fingerprint bit (including AHB as this compares every pixel to the
central pixel). Thus, if the central pixel is noisy it will only affect 1 bit out of the 17-bit
binary string of RMLBP. For every other algorithm a noisy central pixel will affect every
bit of the string (or kernel). This is further consolidated by the average intra hamming
minimum of RMLBP at the highest level of noise tested (a variance of 1) being at 0.245.
In comparison the next lowest was RLBP.V1 at 0.302, followed by AHB at 0.359 and
RLBP.V2 at 0.372. Thus, on average, RMLBP even at the highest noise levels, produces
fingerprints over 12% more similar to if there was no noise at all than RLBP.V2. A point
of interest to note however is that unlike the equivalent for the blur damage testing the
intra minimum graphs appear to be following a logarithmic curve. Perhaps suggesting a
asymptotic value of intra hamming distance they are tending towards. A fact which may
allow for the determination of the maximum degree of noise that an algorithm can sustain.

For further discussion and comparison of the algorithms in regards to other figures of
merit we must first address AHB’s shift in black/white pixel bias with the application of
noise. The addition of noise has caused the bias to shift from the maximal entropy case of
a 50/50 split of black and white towards one or the other dominating the fingerprint.As
it is a contrast based fingerprinting algorithm the sensitivity to the effects of noise is not
unexpected as RLBP.V2 also displays this. It is true however, that one would expect the
sensitivity to noise to shift the bias closer to the perfect case of an equal split. Thus,
making the behaviour of AHB so odd. The changing magnitude of the difference from this
optimal value traces a similar path to the changing inter hamming standard deviation.
Indicating an increase in larger uniform areas and thus, a decrease in entropy (this can
be seen visually in figure 4.12). This effect is not present in the other algorithm’s finger-
prints and is the origin of the anomalous behaviour of AHB’s inter hamming standard
deviation (see sub figure d in figures 4.13, 4.15 and 4.17). This effect causes the FPR
minimum, and so accuracy of authentication, of AHB to be consistently the highest with
all damage values. The exact origin of this behaviour is unknown. Given the difference
between the behaviour of AHB with the algorithms that can trace their heritage back to
LBP in some way, it is hypothesised that it arises from AHB including every pixel within
its perimeter within it’s calculation of the final fingerprint bit.
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The FPRs shown in figures 4.14a, 4.16a and 4.18a highlight a situation in which the
entropy of the fingerprint is less important than its repeatability for accurate authentica-
tion. As expected, with increasing damage the minimum achievable FPR also increases.
In all cases the major contributor to this is the increasing intra hamming separation
between damaged and undamaged fingerprints. With the exception of AHB none of the
inter hamming distance standard deviations indicate a significant degree of net change
over the noise variance range. Highlighting that it is in fact the intra hamming distance
that is dominating here. As can be expected from previous results figures 4.13 to 4.18
show that for the contrast based schemes (excluding AHB for reasons previously dis-
cussed) the inter hamming standard deviation remains lower and ENIB higher than that
of the gradient based schemes. For noise damage however, the FPR of contrast based
schemes is no longer consistently lower than that of gradient based. This suggests that
there is a limit to how high the intra hamming distance of the algorithms can get before
a higher uniqueness can no longer compensate and the authentication accuracy suffers.
As such with noisy capture equipment the contrast based schemes will suffer in regards
to authentication despite them outperforming their counterparts by a wide margin with
more stable equipment. A final point of interest is that similarly to the intra hamming
minima, the FPR minima also tend towards an asymptote with increasing noise, indicat-
ing a degree of noise where the FPR will no longer worsen.

The R value at which the FPR minima occurs reveals information on how the algorithms
handle increasing noise. In all cases apart from AHB we see an overall net increase in
the R value that the FPR minima occurs at. AHB remains almost constantly at the
maximum possible value of 20. This indicates that in order to achieve the lowest pos-
sible combination of intra hamming distance and inter hamming standard deviation the
algorithms are requiring to shift focus to larger and larger scale patterns to reduces the
effect of the noise. Figure 4.16b being a clear example of this. AHB’s requirement for
taking in larger data sets to minimise its intra hamming distance is highlighted clearly as
undoubtedly with a larger R range it would find its minimum FPR at a higher R value.
This highlights a downside of AHB as larger datasets require more processing time despite
not showing appreciable improvements in figures of merit over other the algorithms. It is
also important to note that despite intra hamming distances decreasing with increasing R
(see figures 4.2 to 4.4) the gradient based schemes display lower intra hamming distances
at their FPR minimum. Given the lack of clear improvement in contrast based algorithm
FPR minimum with damage greater than zero this would suggest gradient based schemes
to be the optimal choice.

In two out of the three tags analysed (CISPMS and SEBS) all of the algorithms meet all
of the requirements for figures of merit set out in section 3.3.2 for all tested noise values.
CISPMS gives the lowest intra hamming distances and FPR minima. This suggests that
the best type of quantum dot texture for accurate authentication, as well as, generating
repeatable fingerprints is one with a high level of contrast and discrete features. Logically
this makes sense as they allow for the features to be more readily picked out within the
noise. PVDFPLMA however highlights an issue with noise and the generation of finger-
prints. A uniform pattern lacks the variation in brightness topography for any features
to not be smeared out by noise. Each algorithm fails the maximum allowed FPR require-
ment, RMLBP and RLBP.V1 failed at 0.7 and 0.5 noise variance respectively whereas
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AHB and RLBP.V2 failed at 0.4 and 0.3 respectively. Once again bringing focus to the
main conclusion of this section. The contrast based schemes show the least robustness
against noise. To the degree that it causes the accuracy of their authentication to suffer
as a result. RMLBP handles noise the best providing both fingerprints that are the clos-
est to their undamaged counterparts and FPR minima close or better than the contrast
based schemes.

4.3 Concluding Remarks

In this chapter it has been demonstrated that it is indeed possible to extract digital
fingerprints from QD-PUFs. When authenticating these fingerprints two major factors
come into play in regards to the accuracy of authentication, these are the repeatabil-
ity of the fingerprints (intra hamming distance) and the uniqueness of the fingerprints
(inter hamming standard deviation). When the intra hamming distance is low enough
the uniqueness of the fingerprints dominates the accuracy of authentication. When the
intra hamming distance passes a certain threshold however, accurate authentication is no
longer possible even with a high degree of uniqueness. When the upper bound of the intra
hamming distribution and the lower bound of the inter distribution start to overlap FPR
increases significantly. Examples of this can be seen in figures 4.3c and 4.4c at low R for
RLBP.V2. In other words the fingerprints of the same tag must be sufficiently similar to
each other before other factors are considered. The determination of this threshold and
its dependence of QD-PUF type, algorithm, radius and damage would make for interest-
ing further work.

The trade off that arises in regards to the four algorithms tested (RLBP.V1, RLBP.V2,
RMLBP and AHB) is that they produce fingerprints with a high degree of uniqueness or
fingerprints that are highly repeatable. The gradient based schemes encode the direction
of gradients within the input image which do not change to significant enough degree
to give neighbouring pixels different bit values. Thus, they are highly resistant to small
scale changes and noise. Giving them a low intra hamming distance. This does however
mean they produce fingerprints with large uniform areas with little to no change in them.
Thus, limiting their uniqueness.

On the other hand, the contrast based schemes produce lower false positive rates when
applied to undamaged images of QD-PUFs. It has also been indicated that such schemes
produce fingerprints with a higher level of entropy than their gradient based counterparts.
Comparing the value of the central pixel to the immediate surrounding area is much more
dependent on the effects of noise and small scale local features. RLBP.V2 being the ex-
emplar of this, as it compares every pixel on its perimeter to the central pixel. Thus,
preventing the formation of the large uniform areas and improving fingerprint uniqueness
at the cost of repeatability. It should be noted however that the lower intra hamming
distance of RMLBP means that its uniqueness can be improved through methods such
as XOR de-biasing (see chapter 5). The repeatability is more limited into how it can be
improved.

Despite the promise the contrast based schemes show when applied to undamaged QD-
PUF images they suffer the most when damage is applied to the input images. The value
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of the perimeter pixels is much more likely to change under noise than the direction of
the local brightness gradient. RLBP.V2 suffers the most here, its encoding method may
allow a high degree of uniqueness but it also compounds the effects of noise. Similarly the
contrast based schemes are most affected by the application of blur to the input image.
As it smooths out much of the small scale features they are dependant on. Something
that the gradient based schemes are not affected by. Thus, the gradient based schemes
show the most robustness against both applied blur and noise, their produced fingerprints
being closest to their undamaged counterparts. RMLBP’s higher number of neighbour
points and limited use of the central pixel making it stand out as the most resistant to
the effects of noise.

In regards to accuracy of authentication when considering the effects of damage the
discussion is less clear cut. With the application of blur RLBP.V2 still produced the
lowest FPR owing to its fingerprints high degree of uniqueness. With the application
of noise however, the contrast based schemes produced fingerprints with a low enough
repeatability that accurate authentication was hampered. Something the gradient based
schemes did not suffer as badly from.

The type of QD-PUF used also has an effect on the results obtained. QD-PUF pat-
terns with a higher contrast over the image and discrete clear features allow for lower
FPRs and a greater resistance to noise. These same tags however suffer the most with the
application of blur, as it easily smears out the once clear features. Tags with a ”uniform”
pattern that lack any significant variation in brightness topography produce the highest
FPRs, their lack of features leading to being more greatly affected by noise and producing
more blocky fingerprints. The optimum QD-PUF pattern for use in fingerprinting would
therefore be one with larger discrete features than CISPMS and a high degree of contrast.

In terms of optimal use cases we see two distinct categories. If the QD-PUF imaging
process will take place in a controlled environment with optimised parameters (noise, ex-
posure, etc) then RLBP.V2 is the best candidate. In its vanilla form it generates the most
unique fingerprints with the highest degree of randomness (if de-biasing is not used). The
use of specialised equipment would balance out it’s lack of robustness to any damage,
whereas its uniqueness grants a higher degree of security. Such an example might be us-
ing a QD-PUF on a passport in order to determine its authenticity in an airport. On the
opposite end of the spectrum is RMLBP which is more suited to public use applications
that require the use of non-specialised equipment (such as smartphones) and a lessened
security concern. The extra robustness of the algorithm means that it is best suited to
dealing with the sub-optimal conditions (such as lower quality imaging apparatus, uncon-
trolled ambient lighting and user errors) it may find itself used in. For applications such
as anti-counterfeiting of luxury items or medication the lessened uniqueness is less of a
concern. For matters where the security is a greater concern and the environment can
be better controlled (such as dedicated scanning devices in warehouses) XOR de-biasing
(see section 5.2) may be used to address this concern.
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Chapter 5

NIST Randomness Testing and XOR
Debiasing

When discussing matters of authentication it is important to consider factors that may
aid an attacker in determining information that would aid them. Although the simulation
attack prevention discussed in section 2.2.3 prevents the possibility of a forgery it is still
important to limit the information that any not authorised party has of a particular QD-
PUF token. As well as this, the uniqueness of each QD-PUF makes creating a replica at
the least a fruitless endeavour if not impossible given the effort required. Although at the
moment we believe such systems can not be broken it is prudent to still ensure optimal
security at all stages within the process. The particular weak link in the authentication
process is not the physical QD-PUFs themselves but instead the cryptographic part of
the process and the fingerprints themselves.

As described within this chapter the fingerprints bear no encryption of any kind. Given
that the fingerprinting algorithms encode structural information of the QD-PUF image
it is hypothesised that it may be possible to replicate the original image from a finger-
print. Such a process will likely require the usage of machine learning algorithms and is
beyond the scope of this discussion. Such matters are however, well documented[49]. For
example Ruhrmair et al[50] successfully attacked five different kinds of electronic PUF
using machine learning algorithms. The complexity of PUFs often acts as their strongest
defence. Computational processing power is frequently not great enough to attack a PUF
successfully using machine learning within the time frame required for an attack to be
worthwhile (i.e. within the lifetime of the item the QD-PUF is associated with). This
could be a point that sets this matter to rest given the complexity of the QD-PUFs. If
not for the fact that it has been demonstrated that machine learning attacks can be en-
hanced when used in hybrid with other techniques[51]. Thus, there is a very strong case
for machine learning being a threat to QD-PUFs, a matter which needs to be addressed.

Although the resizing step within the fingerprint generation process does destroy fine
grain information it may not be sufficient to protect against such attacks. This is not the
only source of potential information leakage within the fingerprints. As discussed previ-
ously the algorithms can lack in entropy, especially at high radii and most notably for the
gradient based schemes. As well as this many produced fingerprints lack a white/black
pixel bias that is close to a perfectly equal split. Both of these are known as information
or entropy leakage[52].

57



In an optimal situation each bit in the fingerprint is independent of any other, namely
the fingerprint is completely random. This means that for a brute force approach to
replicate a fingerprint an attacker has at best a 50% chance to correctly guess any bit.
When scaled up to the every bit in the 4096 bit fingerprint this gives the attacker the
infinitesimally small probability of success of 1 in 101234. With entropy leakage however
at attacker has supplementary information to better guess a bits value and so can dras-
tically reduce these odds[52].

Entropy leakage poses a great issue therefore when considering the usage of fingerprints
generated from QD-PUFs in situations outside of a laboratory setting (a problem that has
been discussed before for matters such as biometric data[52], but never QD-PUFs). The
QD-PUFs themselves are underpinned by the principles of quantum mechanics but the
fingerprints themselves may form a weak link in the chain when it comes to cryptographic
security. Although the simulation attack prevention discussed in section 2.2.3 may pre-
vent such matters from ever being a concern it is prudent to ensure that every possible
avenue of attack is addressed. As such this chapter discusses these issues in greater detail
and explores method to solve them in order to provide a complete picture of the security
of a QD-PUF authentication process. In order to counteract both the entropy leakage
and the potential to replicate the QD-PUF image from the fingerprint we can use post
processing methods such as the XOR debiasing discussed in this chapter. This not only
destroys structural information in the fingerprint but improves upon the bias of it as well,
as shown in section 5.3. Although other techniques do exist that perform debiasing for
other types of binary strings[53] this is the first time one has been created that can be
applied to fingerprints from QD-PUFs.

5.1 NIST Randomness Test Suite

There are a infinite number of statistical tests that can be used to determine if a string
of bits is random or not. The NIST Randomness Test Suite sets out 15 different tests
designed to minimise the possibility of a false positive result (type 2 error)[54]. The
tests also focus on determining uniformity of the bit string, the scalability of a sequence
(whether or not conclusions drawn about the string as a whole can be applied to sub-
sections) and the consistency of the random number generator that produced the string.
In this case we will be using our QD-PUFs as a random number generator (RNG) and
the fingerprint as the bit string generated from them. Such a series of tests had been
performed by Kim et al[30] in the analysis of bit strings generated from their silk PUFs,
demonstrating their usefulness in this matter. They have never been applied to QD-PUF
fingerprints however. Each test compares the input bit string to an ideally random string
for the type of randomness being tested for. Whether or not the input string is random is
then determined to a chosen degree of confidence, as per the documentation a confidence
of 99% was chosen.

Six of the tests were chosen to be applied to the fingerprints. The reasons why they
were chosen are detailed next to their summaries below. Those that were not chosen
were not applicable to the fingerprints. The numbering of the tests is kept consistent
with that in the official documentation[54].
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• Test 1: Frequency (monobit) test. Checks if the bias of the string as a whole is
close to the optimal 50/50 split of 1’s and 0’s (or white and black pixels for a
fingerprint). Alongside test 2 below, was chosen to observe the presence of entropy
leakage through bias.

• Test 2: Frequency test within a block. Breaks down the string into blocks and
analyses the bias within each block. This tests the scalability of the string, even if
the global bias is optimal subsections of the string may show heavy bias.

• Test 3: Runs test. This tests for the number of ’runs’ within a string of bits. A
run is a continual unbroken chain of the same value bit. Optimally a high number
of runs is wanted. A low amount would indicate a fingerprint with large uniform
areas. Something we have seen in the gradient based schemes.

• Test 6: Discrete Fourier transform test. Applies a discrete Fourier transform to
the string in order to observe the presence of periodic patterns and determine is
these deviate from the optimum. Chosen as periodic patterns would provide a great
degree of information to an attacker, these can occur due to printing artefacts in
some QD-PUF creation methods.

• Test 11: Serial test. Determines the frequency of all overlapping m-bit patterns
within the string. Periodic or otherwise. For a perfectly random string all patterns
should have a equal frequency of occurring. This is of particular interest as the
fingerprinting algorithms have certain patterns that are more frequent than others,
such as those representing an edge or corner within the image.

• Test 12: Approximate entropy test. Compares the frequency of all overlapping
blocks of patterns of consecutive lengths (m and m+1) to that of an ideally random
string. Useful as a comparison of the entropy of the fingerprints.

To perform the testing an (undamaged) fingerprint at a chosen radius is separated into
its individual rows. These rows are then concatenated together in order (the end of row
1 attached to the start of row 2 etc...) to form a 1x4096bit long string. The reduction of
dimensions is not a concern as many of the tests are dimensionless. For those that are
not, the concern is lifted as if the fingerprint is not random across one dimension it will
not be across two.

The string is then subject to each of the tests detailed above. From which it is de-
termined if the string is random according to that test at that radius. 48 fingerprints,
each from different QD-PUFs (as discussed in section 3.1), were tested in total at radii
from 1 to 20 inclusive. A success rate was determined for each radius by calculating the
percentage of fingerprints that passed that particular test. Only RMLBP and RLBP.V2
have been analysed in this section as they display the highest and lowest inter ham-
ming standard deviation (as such the highest and lowest entropy in the fingerprints they
produce) respectively.

5.2 XOR de-biasing

As discussed in the beginning of this section there are three key areas of information leak-
age within fingerprints generated from QD-PUFs. Structural information of the QD-PUF
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encoded in the fingerprint, issues surrounding non-optimal bias and a lack of entropy or
the presence of large uniform areas within fingerprints. With noiseless cryptographic keys
one could use a method such as a hash function[55] in order to correct for this. This is
because such a method would map a non-uniformly random string to a uniformly ran-
dom one. QD-PUF fingerprints (as well as other types of fingerprints) are however too
noisy for such a method to be applied. Fuzzy extraction schemes likewise can remove
non-uniform entropy but also require helper data[56], something that is not appropriate
in this application.

This subsection details a process using the XOR operation to destroy structural informa-
tion within a fingerprint as well as debias it. Although other de-biasing algorithms such
as Von Neumann de-biasing[57] do exist they are not appropriate in this case as they are
commonly used in conjunction with a random number generator for encoding a PUFs
response. The XOR function however, is well known to debias binary strings and has no
information leakage[58], without the need for helper data.

The XOR operation is a logic gate operation commonly used in programming. It takes
in two separate bits as its input and outputs a single bit dependant on the input. This
output bit will have a value of 1 if the input bits were different values or a value of 0
if they were the same. As such an output of 1 or 0 from an XOR operation has two
possible inputs it could have come from (0,1 or 1,0 and 1,1 or 0,0 respectively) with no
indication of which it may be. This gives a maximum probability to correctly chose the
input combination of 50%. It is because of this property that an XOR operation can
take in two biased input strings and will produce a de-biased output as both the possible
bits from the XOR operation have an equal probability of occurring. Secondly the XOR
operation is the only binary operation that does not leak information[58], hence why it
is used in digital ciphers. When taken in tandem with the fact that no helper data is
required these properties make the XOR operation highly suitable for use in debiasing
QD-PUF fingerprints.

Figure 5.1: Step by step process of applying XOR de-biasing to a fingerprint. a) Resize
the 650x650 px fingerprint down to 128x128 px. b) Split this in half vertically to

produce two 64x128 px binary patterns. XOR these patterns together to produce a
single 64x128 px binary pattern. c) Split the new binary pattern in half horizontally to

produce two 64x64 px binary patterns. d) XOR the two 64x64 px binary patterns
together to produce a single 64x64 px binary pattern. e) This final pattern is the XOR

de-biased fingerprint.

60



Figure 5.1 details how this can be applied to a fingerprint. Whereas in a non-de-biased fin-
gerprint the 650x650 px binary pattern produced by the algorithm is resized to a 64x64 px
fingerprint(see section 3.3) and then is complete, this resizing step is replaced by an addi-
tional post-processing sequence. The application of two XOR operation ensures that the
bias is optimised. The probability of an attacker guessing all four of the pixels used to
generate just a single fingerprint pixel is 12.5%. Therefore any structural information of
the QD-PUF cannot be determined accurately from just the de-biased fingerprint alone.

Figure 5.2: Table of example fingerprints generated by the application of an additional
XOR de-biasing post-processing step. Rows represent different fingerprinting

techniques. Columns represent individual quantum dot patterns, with each column split
into the de-biased fingerprint on the left and an unchanged fingerprint on the right.

Each fingerprint shown was generated at R = 10.

As can be seen from figure 5.2 the XOR de-biasing process drastically alters the appear-
ance of the fingerprints and breaks up large areas of single bit values. Visually none of
the structure from the unchanged fingerprint can be discerned. Interestingly SEBS for
RMLBP still shows the largest uniform areas, indicating that there is an upper limit to
the size of what can be broken down.

For all of the QD-PUFs tested in section 5.1 de-biased fingerprints were generated for
both RMLBP and RLBP.V2, at radii of 1 to 20 inclusive. The same testing process for
the NIST suite was then applied.
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5.3 NIST Results and Discussion

Figure 5.3: Graphs displaying the results of applying the selected NIST randomness
suite tests to 48 different fingerprints generated using RMLBP and RMLBP with an
XOR de-biasing post processing step. The y-axis of each shows the percentage of the

tested QD-PUFs that were deemed to pass the test, this is known as the success rate for
the test. a) Success rate of tested fingerprints for test 1 of the NIST randomness test

suite (monobit frequency). b) Success rate of tested fingerprints for test 2 of the NIST
randomness test suite (block frequency). c) Success rate of tested fingerprints for test 3
of the NIST randomness test suite (runs test). In each case the blue line represents the

unchanged fingerprints and the orange the XOR de-biased fingerprints.
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Figure 5.4: Graphs displaying the results of applying the selected NIST randomness
suite tests to 48 different fingerprints generated using RMLBP and RMLBP with an
XOR de-biasing post processing step. The y-axis of each shows the percentage of the

tested QD-PUFs that were deemed to pass the test, this is known as the success rate for
the test. a) Success rate of tested fingerprints for test 6 of the NIST randomness test

suite (discrete Fourier transform test). b) Success rate of tested fingerprints for test 11
of the NIST randomness test suite (serial test). c) Success rate of tested fingerprints for
test 12 of the NIST randomness test suite (approximate entropy test). In each case the

blue line represents the unchanged fingerprints and the orange the XOR de-biased
fingerprints.

The concerns of a potential for information leakage within RMLBP discussed in the be-
ginning of this section are given light in figures 5.3 and 5.4. As can be seen all of the
tests have a low success rate for RMLBP by itself. Indicating that as expected and as
discussed throughout chapter 4 the fingerprints from RMLBP, whilst they may be unique,
have a low degree of randomness. a and b in figure 5.3 demonstrate the importance of
scalability. As we see a significant drop in success rate between the two. The reasoning
behind this can be seen visually in RMLBP fingerprints. Although some may achieve
optimal bias globally, the large uniform areas prevent this on a local scale. A fact which
would greatly aid a brute force attacker.

The only other test in which RMLBP saw any degree of success is the discrete Fourier
transform test. Again the large uniform areas likely posed an issue here. Runs of one
value or another would be seen as a repeating pattern and so would contribute to a lack
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of randomness. It is likely that those with smaller features such as CISPMS would have
been the ones to pass this test.

Finally there are the cases of figures 5.3c, 5.4b and 5.4c, wherein RMLBP achieved a
0% success rate at all tested radii. As already covered the production of large uniform
areas in RMLBP fingerprints is the cause of this. It comes as no surprise as to why they
would cause problems for RMLBP in the Runs Test. For the Serial and Approximate
Entropy tests this poses a similar problem. The uniform areas will be seen as repeated
patterns of single bit runs thus, reducing the randomness of the fingerprints in the eyes of
these tests. Although the gradient encoding method of RMLBP grants high repeatability
and robustness it comes at the cost of randomness.

As is immediately clear XOR de-biasing has, at almost all radii, resulted in an improve-
ment in the results of the majority of randomness tests for RMLBP. First and foremost it
is important to note that in figure 5.3a the de-biasing aspect of the post-processing step
has worked as expected. This shows particular gains in the block frequency test, where
the breaking up of the uniform areas has brought local and global bias closer in value
(in all cases the variation with radii will be discussed below). Such an improvement can
also be noted in the improvement in the DFT test success rate. This supports the con-
cept that the XOR de-biasing is obscuring structure has it has clearly removed periodic
patterns from the fingerprint. The fact that either bit has an equal chance of occurring
has ensured the output lacks the clear patterns of the input fingerprint. This suggests
that in terms of repeatable patterns XOR debiasing has improved the randomness of the
RMLBP fingerprints.

The less substantial improvements seen in figures 5.3c and 5.4c supports a hypothesis
proposed in section 5.2. Namely that although the XOR de-biasing has broken down
large uniform areas, there is a limit to the size of them that can broken down. As can
be seen below with RLBP.V2 which lacks the large uniform areas, XOR de-biasing pro-
duces much more substantial improvements in these tests. Then there is the serial test
which showed only a minuscule 1% improvement at a single radius. Most likely this is
an outlier. Certain patterns within the fingerprinting algorithms are more common than
others, this would suggest that XOR de-biasing has not sufficiently removed this to be
deemed random by this test.
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Figure 5.5: Graphs displaying the results of applying the selected NIST randomness
suite tests to 48 different fingerprints generated using RLBP.V2 and RLBP.V2 with an
XOR de-biasing post processing step. The y-axis of each shows the percentage of the

tested QD-PUFs that were deemed to pass the test, this is known as the success rate for
the test. a) Success rate of tested fingerprints for test 1 of the NIST randomness test

suite (monobit frequency). b) Success rate of tested fingerprints for test 2 of the NIST
randomness test suite (block frequency). c) Success rate of tested fingerprints for test 3
of the NIST randomness test suite (runs test). In each case the blue line represents the

unchanged fingerprints and the orange the XOR de-biased fingerprints.
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Figure 5.6: Graphs displaying the results of applying the selected NIST randomness
suite tests to 48 different fingerprints generated using RLBP.V2 and RLBP.V2 with an
XOR de-biasing post processing step. The y-axis of each shows the percentage of the

tested QD-PUFs that were deemed to pass the test, this is known as the success rate for
the test. a) Success rate of tested fingerprints for test 6 of the NIST randomness test

suite (discrete Fourier transform test). b) Success rate of tested fingerprints for test 11
of the NIST randomness test suite (serial test). c) Success rate of tested fingerprints for
test 12 of the NIST randomness test suite (approximate entropy test). In each case the

blue line represents the unchanged fingerprints and the orange the XOR de-biased
fingerprints.

Although RLBP.V2 shows an improvement on the success rates of RMLBP without any
de-biasing, figures 5.5 and 5.6 clearly indicate that in all but the DFT test, RLBP.V2 still
fails the randomness tests the majority of the time. This is despite RLBP.V2 possessing
the highest ENIB and lowest inter standard deviation of the algorithms (in the undam-
aged case), indicating a higher uniqueness. Supporting the fact once again that although
the fingerprints may be highly unique they lack in randomness, a fact that would benefit
an attacker.

Although the two algorithms are close in their success rates in the monobit frequency
test, RLBP.V2 shows a marked improvement on its gradient based counterpart. This is
due to the lack of such blocky single bit areas within the fingerprints of RLBP.V2 gives it
an improvement on its local bias. Such improvements are even more significant when we
look at figure5.6a. RLBP.V2 achieves success rates in the DFT test that are comparable

66



to RMLBP with XOR de-biasing. A clear indicator that RLBP.V2 produces fingerprints
with less repeated patterns, as to be expected given the finer scale details it can encode.
However, it should be noted that another contributing factor to this may be RLBP.V2’s
higher susceptibility to noise. Randomly distributed noise would break up periodic pat-
terns.

Figures 5.5c, 5.6b and 5.6c display a similar result to RMLBP with low success rates.
Each of these can be attributed to the fact that despite the more granular nature of
the fingerprints RLBP.V2 produces it still follows the structures within the QD-PUFs.
Although such structures are unique they bear clear, repeated structural features. These
include things such as edges, corners and flat spaces, each represented by their own ar-
rangement of bits. Each also exists in an orderly fashion in regards to the other, edges
must surround a flat area, corners are attached to two edges, for example. This will
reduce the randomness of any fingerprint.

The application of XOR de-biasing to RLBP.V2 shows even more substantial improve-
ments to success rates than for RMLBP. As to be expected given the hypothesis that
XOR de-biasing works best with fingerprints that lack large uniform areas. In particular
figures 5.5a, 5.5b and 5.6a show success rates that on average remain higher than 90%.
Indicating that in terms of global and local bias as well as the absence of periodic pat-
terns the majority of RLBP.V2 fingerprints with XOR de-biasing are deemed random.
Significantly reducing entropy leakage.

Figures 5.5c and 5.6c still show a significant improvement in success rate with the ap-
plication of de-biasing but lack the consistent success at all radii. In figures 5.3, 5.4, 5.5
and 5.6 we see this pattern of an initial decrease in success rate, followed by alternat-
ing spikes. Although they do occur at similar radii the trend is not exactly the same
each time, often showing significant differences. It is also not consistent in which tests
it appears in across all of the figures relating to the NIST test results. The origin of
this is unknown and would require further testing that is not necessary to the conclusion
of this experiment. It is likely however, linked to the size of features within the tested
QD-PUFs given the consistent radii it occurs at. Aside from this figures5.5c and 5.6c do
achieve success rates above 90% indicating that XOR de-biasing coupled with RLBP.V2
can remove most information leakage at particular radii.

The results of the serial test are again however, lacking in any improvement. Adding
further support to the concept that the balancing of the frequency off all overlapping
patterns with fingerprints is likely not possible using XOR de-biasing.
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Figure 5.7: Figures of merit of RMLBP, RLBP.V2 and their XOR de-biased
counterparts for the SEBS QD-PUF first detailed in section 4.1. a) Fractional intra

hamming distance of each of the algorithms with increasing radius. b) Inter hamming
standard deviation of each of the algorithms with increasing radius. c) log10 of the false

positive rate of each of the algorithms with increasing radius.

Finally we address the effect that the de-biasing has on the figures of merit that were
discussed in chapter 3. SEBS was chosen of the three QD-PUFs analysed chapter 4 as it
lacked the distinct pinprick pattern of CISPMS or the almost lack of features of PVDF-
PLMA. Here we can see immediately the drawback of the application of XOR de-biasing.
Given that the process involves the combination of four separate pixels it magnifies the
effect of any noise within the fingerprint. Although this undoubtedly aids in the addi-
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tion of randomness it greatly reduces the repeatability of the fingerprints. This is seen
in figure 5.7a with the significant increase in intra hamming distances at all radii. To
the extent that at certain radii RLBP.V2 with de-biasing achieves intras of around 0.5,
indicating that the repeat fingerprints are entirely unique from one another. RMLBP
fairs significantly better owing to its increased robustness against the effects of noise.

Both algorithms do see a reduction in their inter hamming standard deviation. RLBP.V2
with de-biasing achieving the lowest at almost all radii. This may not necessarily be a
positive however, although it shows its fingerprints are the most unique, the intra ham-
ming distance values indicate repeats of itself are unique from each other. RMLBP on
the other hand shows the greatest difference between its unchanged and de-biased inter
standard deviation. This shows that the presence of the large uniform areas was indeed
what was hampering the uniqueness of its fingerprints.

Finally this bring us to the FPR of the fingerprints where we see another example of
an occasion where the repeatability of fingerprints outweighs their uniqueness for accu-
rate authentication. Similarly to the results seen in section 4.2.3 it does not matter how
unique the fingerprints produced are if the intra hamming distance of them is too high.
The lack of robustness to noise shown by RLBP.V2 here significantly worsens its FPR,
to the point where at low radii it fails the maximum requirement of 10−6. Conversely
however, the improvement to the uniqueness of RMLBP has resulted in a significant im-
provement in FPR. Although the repeatability of its fingerprints has decreased it has not
reached the point wherein this hampers accurate authentication.

5.4 Concluding Remarks

To summarise, it has been demonstrated that the issues of information leakage with fin-
gerprints can be addressed. It is clear that information of the original structure of the
QD-PUF can be destroyed using the leak proof operation of XOR de-biasing without
creating a fingerprint that cannot be accurately authenticated. Thus, removing the pos-
sibility of the QD-PUF fingerprints being the weak link in the authentication chain. This
however, comes with the caveat that the fingerprinting algorithm used must be highly
robust to noise. The nature of XOR means that it does indeed break down prexisting
patterns in a manner that cannot be reverse engineered. The process is however highly
prone to the effects of noise, as if even one of the bits at any of the stages has been
changed due to noise the effect is compounded.

It should also be noted that, at least with the two algorithms tested, there is a trade
off between fingerprint repeatability and randomness achievable. As such for the appli-
cations of these QD-PUFs discussed in chapter 4 section 4.3, RMLBP is best suited if
de-biasing is needed. For applications such as those commonly used in Von Neumann
de-biasing where the PUF response is encoded and helper data is required, RLBP.V2’s
higher achievable randomness would be better suited.

For all further experiments detailed outside of this section XOR de-biasing will not be
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applied. This is because it adds another factor to consider when drawing conclusions.
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Chapter 6

Addressing QD-PUF Degradation
over Time

Chapter 4 demonstrates clearly that QD-PUFs can be used as secure authentication to-
kens. There are however further considerations when these are used in a practical setting.
The foremost of which is the degradation of the quantum dots with time[19]. Covered in
further detail in section 2.1.3 oxidization, of the quantum dots causes their emission to
decrease. Given that the emission pattern is what the fingerprinting algorithms process
this poses an issue with using the QD-PUFs for any long term authentication purposes.
For example a QD-PUF used in a passport whose must have emission that remains bright
enough to be authenticated for the entire decade long lifespan of the passport. The pur-
pose of this chapter is to address this issue.

The stability of emission of colloidal quantum dots is dependant on their specific chem-
istry and morphology[19]. In all cases however oxidization on exposure of the CQDs
with air causes the emission to decrease[59]. The suspension of the CQDs in a polymer
matrix limits exposure to oxygen and thus, improves the emission stability[22]. Section
6.1 details the process of producing the QD-PUFs. Two groups of five different polymers
(PMMA, PS, PMS, PVDF and SEBS) were chosen, the latter group consisting of the
the same five as the first only with PLMA added as a co-polymer. As the effectiveness
of suspension in polymer depends on the oxygen diffusion rate of the polymer and the
compatibility with the CQDs, this allows for a wide range to be tested and the effects
of blended polymers to be observed. The key stability factors to be tested are the pho-
toluminesence (PL) of the QD-PUF with time as well as any change in the fingerprint
with time compared to a fingerprint generated on the day the QD-PUF was made. These
results are discussed in section 6.2.

6.1 Degradation methodology

6.1.1 QD-PUF Creation

For this experiment InP/ZnS quantum dots with oleylamine ligands were chosen as the
quantum material. These were chosen due to their high quantum yield (the ratio of
the number of photons emitted to the number absorbed), at greater than 65%, narrow
full width half-maximum of 50 nm, as well as their lower toxicity than cadmium based
CQDs[5]. Their maximum emission of 630 nm also allows for easy filtering of the excita-
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tion light when the produced QD-PUFs are analysed using the apparatus shown in figure
3.1. As previously discussed these particular CQDs also show a sensitivity to degradation
due to oxygen in their photoluminescence[21]. This should give clearer results to interpret.

The creation of the QD-PUFs was performed by Dr Nema Abdelazim (of Lancaster
University at the time). In each case solutions of the InP/ZnS CQDs were mixed with
the hydrophobic polymers in toluene. Using a micrometre doctor-blade this mixed so-
lution was then applied to a black polyethene substrate. This formed a dry film on the
substrate at a thickness of 5µm. Each was then cured in a vacuum oven.

Two groups of five polymers were chosen for testing. The first consisted of Poly(methyl
methacrylate) PMMA, Polystyrene PS, Poly(styrene-ethylene-butylene-styrene) SEBS,
poly(vinylidene) fluoride PVDF, and Poly 4-methlstyene PMS. These were chosen ow-
ing to their optical transparency and their solubility in organic solvents, making them
appropriate to mix with the InP/ZnS CQDs[22][5]. To create these QD-PUFs, InP/ZnS
CQDs were dissolved in toluene. The chosen polymer was then dissolved in toluene to
create two separate solutions. These were then mixed together and followed by sonica-
tion for 30 minutes to agitate them in the solution. This produced a CQD and polymer
solution with CQD concentration of 80 mgml−1. 300µl of this solution was then placed in
the doctor-blade and deposisted onto the substrate to for a 5µm thick, 10mm by 10mm
quantum dot pattern. The QD-PUFs were then cured overnight at 60◦C in a vacuum
oven.

The second group of QD-PUFs made consisted of the same five polymers as in group
1, only with the addition of polylauryl methacrylate (PLMA) as a co-polymer in a 95/5
polymer/co-polymer ratio. This was done as PLMA showed rapid photoluminescence
stabilization in preliminary testing. Thus, the two groups would show if the addition of
PLMA would improve upon using just a single encapsulation polymer. PLMA was not
used by itself however as in the initial testing its high viscosity meant that it took many
days to properly cure. The preparation of mixtures for group 2 varied slightly to that
of group 1. The process proceeded in the same manner aside from the addition of the
co-polymer to the polymer-toluene solution.

6.1.2 QD-PUF Testing

After creation each of the QD-PUFs were stored in open air and in ambient conditions.
This ensured that they were subject to conditions similar to if they were in use on a
product in a practical setting and so would decay in a similar manner. Periodically the
QD-PUFs would be placed in the apparatus shown in section 3.2 and imaged using the
process detailed in that section. Exposure values were chosen to maximise the brightness
of the image taken without causing any saturation. 25 repeat images of each QD-PUF
were taken.

From the first of these a measure of the QD-PUF’s photoluminescence was derived at
each day they were imaged. The image was cropped to just the area containing quantum
material and the average pixel brightness calculated. From this was then subtracted the
measured background noise level for the camera and the result calibrated for the expo-
sure the image was taken at. For each QD-PUF this calibrated average pixel brightness
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was then plotted against days since the QD-PUF was created with the first measurement
taken as soon as the QD-PUF was cured.

For analysis of the fingerprints both RMLBP and RLBP.V2 were chosen. These showed
the lowest intra hamming distance and lowest FPR respectively in chapter 4. With
RMLBP being the most robust against change to the input image and RLBP.V2 being
the least. This also gives an example of a gradient and a contrast based fingerprinting
scheme, in order to compare how each handles degrading fingerprints.

For each day that an image was taken fingerprints were generated from each of the repeat
images at radii from 1 to 20. For the first day the first two of these fingerprints were used
as the challenge fingerprints and the other 23 repeats used as the reference fingerprints to
generate the intra hamming distance. The same database of 48 other unique fingerprints
as used in chapter 4 were then compared to the challenge fingerprints to generate the
inter hamming distance distribution. As in chapter 4 the FPR for each radii was then
calculated from these two distributions.

For each day after the first, the first two fingerprints were still used as the challenge
fingerprints and still compared to the database of 48 other QD-PUFs to generate the
inter hamming distance distribution. For intra hamming distance however the challenge
fingerprints were compared to the reference fingerprints from day 1. This gives a measure
in the intra hamming distance of how much the fingerprints have changed as the QD-PUF
they were generated from degrades. This is reflective of how a QD-PUF authentication
system would work, as the reference fingerprints would be generated well before a con-
sumer wishes to authenticate a QD-PUF. The FPR is then calculated as normal.

The minimum FPR and intra hamming distance mean achieved over all radii is then
plotted against days since the QD-PUFs creation.
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6.2 QD-PUF Degradation Results and Analysis

6.2.1 Group 1

Figure 6.1: a) Top - image of each Group 1 QD-PUF captured on the day they were
created using the apparatus detailed in section 3.2. Bottom - image of each QD-PUF

captured 15 days after their creation captured under the same conditions. These images
have been increased in brightness by 30%, post capture, to aid in comparison for this

sub figure only. i-PMMA, ii-PMS, iii-PS, iv-PVDF and v-SEBS. b) A plot showing the
average PL intensity of each QD-PUF as a function of time since their creation. The

dashed line represents an exponential fit with linear offset that was applied to each data
set. The colour of the lines corresponds to the colour surrounding the QD-PUF image in
sub-figure a. The black dotted line represents the CCD-sensor’s background noise signal.

As expected from the theoretical background covered in section 2.1.3, figure 6.1a clearly
shows that the photoluminescence of quantum dots in polymer does indeed degrade with
time. Owing to the oxidization mechanism responsible for the degradation of CQDs, an
exponential decay fit with linear offset (y = y0 +Aexp(R0x)) is appropriate for use to ex-
trapolate the anticipated emission intensity following stabilization after a long period of
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time[19]. The values of y0 garnered from the fits show that for each of the polymers used
the photoluminescence will stabilise to a value above the background count of the CCD
sensor. The lowest of these being PVDF, the asymptote of which sits at 4.5 times greater
than the value of the background count. Indicating that for each of these QD-PUFs we
can expect them to keep emitting, when excited, at an intensity great enough to detect
for the feasible lifetime of a practical application (e.g. such as several years required for
anti-counterfeiting applications).

Of the five polymers tested PS showed both the highest asymptote value for its PL
as well as the smallest loss of PL at 20%. Making it clear that it has the best com-
patibility with the InP/ZnS CQDs and thus, resisted oxidization the most. Conversely
PVDF starts with the highest PL but has the lowest value asymptote, losing 80% of its
initial PL. This large change in emission intensity indicating that it is far less suited as
a polymer matrix in which to embed the CQDs used. Overall this shows us that the use
of a matched polymer minimizes ligand loss in the encapsulation process and minimizes
oxygen diffusion to the QD surface. As well as this the oxygen diffusion rate of the
polymer that the dots are embedded in plays a role in stability. For example, the SEBS
triblock co-polymer has higher oxygen diffusion rate than the PS block[60] and in the
process gives a greater loss of PL at 60%
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Figure 6.2: For both sub figures the top row represents the fingerprints generated from
the Group 1 QD-PUFs on the day of their creation. The middle row represents the
fingerprints generated from the same QD-PUF 18 days later. All fingerprints were
generated at R=5.The bottom row represents the XOR of the top an bottom row,

showing the pixels that are different between the two. i-PMMA, ii-PMS, iii-PS,
iv-PVDF and v-SEBS. a) Fingerprints generated using RMLBP. Percentage difference
between day 1 and day 18 fingerprints: i-21%, ii-25%, iii-19%, iv-48% and v-20%. b)

Fingerprints generated using RLBP.V2. Percentage difference between day 1 and day 18
fingerprints: i-36%, ii-43%, iii-30%, iv-49% and v-40%.

As expected from the work discussed in chapter 4, the fingerprints produced by RMLBP
show the characteristic low noise but ”blocky” patterns of gradient based fingerprinting
schemes. For all of the polymers bar PVDF we see little visual difference between the
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fingerprints generated at the two extremes of the available data. As can be seen in figure
6.2 the areas of difference also appear to be randomly distributed (save for a fraction of
pixels at the tops of PMS and SEBS). This indicates that for each QD-PUF the change
in fingerprints at this radius was owed to a changing signal to noise ratio as PL decreases.
This is as opposed to it being due to significant change in the texture of the quantum
dot pattern. A fact supported by the lack of any distinct visible change in figure 6.1a.
Interestingly, PS shows the least change between the day 1 and day 18 fingerprint at
19% with the lowest PL decrease. PVDF on the other hand shows by far the largest PL
decrease and a change in fingerprint almost double that of the next closest at 48%. This
would suggest that the change in PL dictates the difference between the fingerprints,
if not for the fact that the other three QD-PUFs in group 1 for RMLBP following no
discernible link. Suggesting that although PL stability plays a role in this another factor
also has an influence. As discussed in chapter 4 this may well be texture of the quantum
dot pattern. As it was shown that some are better suited to the effects of increasing noise
than others.
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Figure 6.3: a) Graph of the minimum FPR at each day achieved for each of the Group 1
QD-PUFs generated using RMLBP. b) Graph of the minimum intra hamming distance

at each day achieved for each of the Group 1 QD-PUFs generated using RMLBP. c)
Graph of the minimum inter hamming distance standard deviation at each day achieved

for each of the Group 1 QD-PUFs generated using RMLBP. Note: the minimum for
each day is the lowest value reached for that figure of merit for radii between 1 and 20.
This R value may not be consistent between days or figures of merit. Any values that

fell below MATLABs precision of 10−308 were set to a value of 10−308 for plotting.

As the PL intensity of the QD-PUFs decreases, the signal to noise ratio of the images
captured of them will also decrease. As alluded to in analysis of figure 6.2 this is the
dominating factor in the changing fingerprints as more days pass from the QD-PUF’s
creation. It was discussed in section 4.2 that increasing noise in a QD-PUF image does
worsen the intra-hamming distances. This is now reflected in a more practical environ-
ment in figure 6.3b. With all bar PVDF appearing to increase following a logarithmic
curve, tending to some asymptote in the same manner as the PL intensity. This would
make sense as when the PL stabilises so too will the signal to noise ratio, resulting in
the intra hamming curve flattening out. This is a useful feature to note as this shows
that even after an indefinite period of time, any challenge fingerprint generated from
a QD-PUF has a maximum possible separation from the reference. Much like with its
change in PL, PVDF seems to have behaved anomalously poorly in comparison to the
other QD-PUFs, with the data after day 12 showing a sharp increase. This unpredictable
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nature and the large PL decay makes PVDF on its own with InP/ZnS CQDs unsuitable
for use in the creation of QD-PUFs for long term use.

Another hypothesis raised in the discussion of figure 6.2 was the fact that PL stabil-
ity is not the only factor influencing fingerprint stability. This is supported here in figure
6.3. There is no correlation between the magnitude of the decrease in PL and the in-
crease in intra hamming distance minimum over the days tested. Despite SEBS and PMS
showing the same change in PL of a 60% decrease, SEBS only shows an increase in intra
minimum of 0.079 whereas PMS shows double that at 0.161. PS then follows PMS with
an intra increase of 0.123, despite showing the least change in PL. This confirms that
although a change in PL is what causes the difference in the fingerprints, the magnitude
to which this occurs is influenced by another factor entirely. This factor will most likely
be the texture of the QD-PUF and its influence on intra hamming distance, especially
as the damage is increased however, the texture analysis required to quantitatively study
this is beyond the scope of this thesis.

Following the influence of the decreasing signal to noise ratio on the intra hamming
distance of the QD-PUFs the change in FPR comes as no surprise. As the challenge fin-
gerprints become more and more dissimilar to their reference counterparts the accuracy
of authentication will indeed decrease. In fact, as figure6.3a shows the FPR curves all
follow similar trends to their intra counterparts. Supporting the fact that as the QD-
PUFs PL stabilises so too does the authentication accuracy. Giving us a definitive value
for how high the FPR of a certain QD-PUF will get after a prolonged time has past.
Fortunately, (excluding PVDF) the highest value of each of the FPRs is significantly
below the maximum limit of 10−6. Once again however, neither the absolute value of the
PL nor the magnitude of its change shows any correlation with which QD-PUF gives the
lower FPR or the change in FPR over the time tested.

Instead, once again, this appears to be due to the texture and how it influences the
fingerprint produced. As we can see in figure6.3c, the ordering of the inter hamming dis-
tance standard deviation minima does bear semblance to that of the FPR. Although more
rigorous analysis involving accounting for different intra hamming distances is needed to
give a definitive answer; this does give proof towards the influence of texture over PL
change on the magnitude of the FPR values. It should also be noted that across all five
tested QD-PUFs there is no consistency in how the degradation of the QD-PUF affects
the uniqueness of the fingerprint produced for RMLBP.
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Figure 6.4: a) Graph of the minimum FPR at each day achieved for each of the Group 1
QD-PUFs generated using RLBP.V2. b) Graph of the minimum intra hamming distance
at each day achieved for each of the Group 1 QD-PUFs generated using RLBP.V2. c)

Graph of the minimum inter hamming distance standard deviation at each day achieved
for each of the Group 1 QD-PUFs generated using RLBP.V2. Note: the minimum for

each day is the lowest value reached for that figure of merit for radii between 1 and 20.
This R value may not be consistent between days or figures of merit. Any values that

fell below MATLABs precision of 10−308 were set to a value of 10−308 for plotting.

Aside from the higher entropy patterns the starkest difference between figures6.2a and
b is the change in fingerprints between day 1 and 18. RLBP.V2 being a contrast based
fingerprinting scheme is much more sensitive to noise than RMLBP. Thus, the decreasing
signal to noise ratio has resulted in an increase in the percentage difference across the
board. Another key difference is the fact that features in the day 1 fingerprint appear to
have flipped bit value in the day 18 fingerprint (in particular PMS, PVDF and SEBS).
This is not due to the quantum dot pattern itself changing, as we can visually confirm
that it does not (see figure6.1a) but instead due to the decreasing PL. By comparing to
figure6.1a we can see that the areas that change bit value all appear dark on day 1 and
appear mostly in the three QD-PUFs with the lowest PL at day 18. As the average PL of
the QD-PUFs decreases the change for these dark areas will be much less, they are dark
as they contain much lower concentrations of quantum dots. Thus, the relative difference
between the values of these areas and their surroundings is not maintained. This is not
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an issue for RMLBP as the direction of gradients remains unaltered. For RLBP.V2 which
depends on relative difference between areas this has a significant effect. Highlighting a
shortfall in using RLBP.V2 for long term QD-PUF authentication. The presence of more
randomly arranged pixels however suggests that reduced signal to noise ratio is still the
dominating factor in the change.

The increased change in fingerprints over the time the experiment was performed when
compared to RMLBP is reflected in figure 6.4b. As expected from RLBP.V2 the initial
intra hamming distance values are larger than for RMLBP, as well as this however, the
increase in intra hamming distance minimum is also greater. Showing that of the two
RLBP.V2’s fingerprints are more affected by the degradation of the QD-PUFs PL. Once
again there also appears to be no clear correlation between the magnitude of the change
in PL and the change in intra hamming distance. With the similarly degrading SEBS and
PMS showing a change of 0.125 and 0.194 respectively. The least degrading of PS shows
an intra increase of 0.17, the second lowest. Each does follow a similar trend to RMLBP
though, with PVDF showing anomalous behaviour. Thus, showing that this was not an
artefact of RMLBP and is in fact a physical phenomena. However, the greater change
in intra hamming distance suggests that it will stabilise at a higher value, an issue when
producing repeatable fingerprints for long term use.

When we look at figure 6.4a we see the advantages of a contrast based scheme such
as RLBP.V2 but also potential downfalls. The FPR of RLBP.V2 is consistently lower
than that of RMLBP for all but PVDF between day 12 and 18. The origin of this is
clear to see in figure 6.4c as the inter hamming standard deviations produced are lower
than that of RMLBP. Therefore within the data range tested RLBP.V2 gives more accu-
rate authentication, even when the QD-PUF is degraded. It is when we consider further
degradation outside of the tested range that issue begin to occur. A fact that must be
considered in light of the fact that the change in FPR is much greater over the time
period for RLBP.V2. For example SEBS increases by a factor of 1052 for RMLBP but a
factor of 10220 for RLBP.V2. The data within figure 6.4a is ill suited to a fit for quantita-
tive extrapolation. We can however, consider the fact that we know from chapter 4 that
there is a point wherein low inter standard deviation no longer dominates FPR and intra
hamming distance becomes more important. If the intra hamming distances of RLBP.V2
flatten out as the PL does then this will not be an issue. This would stabilise the FPR
and RLBP.V2 would produce more accurate authentication at any time after the creation
of the tag. Making it a very useful tool. If the intra does continue to increase however
then the FPR will become worse than that of RMLBP, making RLBP.V2 only a useful
tool for short term applications. Further testing is needed to confirm this.

To summarise, all of the QD-PUFs show degradation in their photoluminescence due
to oxidization as time passes. There is a clear link between compatibility of the poly-
mers with the CQDs and the stability of the PL. Regardless of the type of fingerprinting
algorithm applied however, the PL or change in PL is not the sole factor influencing
the fingerprints figures of merit. The likely other factor is the texture of the quantum
dot pattern itself and the effect this has on the algorithms handling of noise. RMLBP
produces fingerprints that show the least change due to PL degradation but within the
time frame tested RLBP.V2 allows for more accurate authentication.

81



6.2.2 Group 2

Figure 6.5: a) Top - image of each Group 1 QD-PUF captured on the day they were
created using the apparatus detailed in section 3.2. Bottom - image of each QD-PUF

captured 15 days after their creation captured under the same conditions.
vi-PMMAPLMA, vii-PMSPLMA, viii-PSPLMA, ix-PVDFPLMA and x-SEBSPLMA.

b) A plot showing the average PL intensity of each QD-PUF as a function of time since
their creation. The dashed line represents an exponential fit with linear offset that was
applied to each data set. The colour of the lines corresponds to the colour surrounding
the QD-PUF image in sub-figure a. The black dotted line represents the CCD-sensor’s

background noise signal.

Figure 6.5a shows a clear difference in the textures produced between the quantum dot
patterns of Groups 1 (see figure 6.1 and 2). In Group 2 the most obvious difference
is the dispersal of the quantum dots as shown by the fact that the proportion of each
pattern that consists of dark areas (that lack or have low CQD concentration) is signif-
icantly reduced. Large featureless areas are now replaced with more detailed textures,
the most obvious example being the difference between PMMA and PMMAPLMA. As
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demonstrated in chapter 4, large uniform areas within the patterns leads to worse intra
hamming distances as they are more affected by noise. As such, the more apparent tex-
turing should (and indeed does, see figures 6.7b and 6.8b) lead to lower intra hamming
distances than their Group 1 counterparts. The presence of such change is likely due to
PLMA being, unlike the other polymers, a highly viscous oily liquid, thus allowing for
better CQD dispersal[61]. The only concern however is the parallel vertical strips present
in PVDFPLMA and SEBSPLMA. These will most likely be printing artefacts and will
affect inter hamming standard deviations given the highly non-random nature of them.

Once again the PL data proved a good fit for an exponential decay model. Showing
that the PL of the QD-PUFs stabilises to a fixed value given time. With the addition of
PLMA however this stabilisation has occurred much quicker and with significantly less
loss of PL. The worst performing of Group 2 was PVDFPLMA with a 13% loss of PL
between it’s starting value and it’s asymptote. This outperforms the best of Group 1, PS,
which showed a loss of 20%. Indicating that the addition of PLMA has indeed improved
upon the photoluminescence stability of the QD-PUFs, this is due it blocking the ambient
oxygen from reaching the CQDs surface[60]. It should be noted however that once again
the PVDF QD-PUF is the worst performing for PL stability. This shows us that there is
a lack of compatibility between PVDF and the CQDs[22]. Finally to give a direct show of
performance we can see that even the lowest of the measured photoluminescence, that of
PMSPLMA, is still 12.5 times greater than the background count. Giving the worst PL
of group 2 a signal to noise ratio 3 times better than the best of Group 1 at stabilisation,
despite their initial PL’s being lower.

83



Figure 6.6: For both sub figures the top row represents the fingerprints generated from
the Group 1 QD-PUFs on the day of their creation. The middle row represents the
fingerprints generated from the same QD-PUF 14 days later. All fingerprints were
generated at R=5.The bottom row represents the XOR of the top an bottom row,

showing the pixels that are different between the two. vi-PMMAPLMA,
vii-PMSPLMA, viii-PSPLMA, ix-PVDFPLMA and x-SEBSPLMA. a) Fingerprints

generated using RMLBP. Percentage difference between day 1 and day 14 fingerprints:
vi-36%, vii-32%, viii-13%, ix-23% and x-15%. b) Fingerprints generated using

RLBP.V2. Percentage difference between day 1 and day 14 fingerprints: vi-51%,
vii-48%, viii-24%, ix-36% and x-28%.

Building on the postulation that the addition of PLMA has led to smaller scale detail
in the fingerprints we have figure 6.6a. When compared to figure 6.2a we can see that
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the fingerprints now show much finer grain patterns. Quantitatively this is supported by
the lower inter hamming standard deviations reported in figure 6.7c. PSPLMA, PVDF-
PLMA and SEBSPLMA all show relatively low percentage differences between their first
and final days (no direct comparison to Group 1 can be drawn here due to lack of data on
matching days). However, once again they display no correlation between this difference
and change in PL. A feature of commonality that can be drawn with Group 1 for RMLBP
however is the lack of any clear features present in the difference maps, showing that any
difference is due to noise.

PMMAPLMA and PMSPLMA are both outliers over the entirety of Group 2. This
will be addressed here to save further repeating. In all cases the percentage difference
between their first and last fingerprints, their intra hamming distances between these two
and their FPRs at these values are anomalously high. Namely that they are the only two
that have these values higher than their Group 2 counterparts. This is despite in figure
6.6, for both RMLBP and RLBP.V2, their fingerprints appearing almost identical. This
has arisen because of a misalignment in the image taken on day 14 of each of these QD-
PUFs. It is only a few pixels of horizontal translation but this is enough to significantly
worsen the intra hamming distance and percentage change between the fingerprints on
day 1 and day 14. For example when we look at the percentage difference between day 1
and day 8 for PMMAPLMA for the same RMLBP radius, we see a percentage difference
of 15%. Which is line for what we see for PSPLMA at 12% under the same conditions,
thus, highlighting the error.
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Figure 6.7: a) Graph of the minimum FPR at each day achieved for each of the Group 2
QD-PUFs generated using RMLBP. b) Graph of the minimum intra hamming distance

at each day achieved for each of the Group 2 QD-PUFs generated using RMLBP. c)
Graph of the minimum inter hamming distance standard deviation at each day achieved

for each of the Group 2 QD-PUFs generated using RMLBP. Note: the minimum for
each day is the lowest value reached for that figure of merit for radii between 1 and 20.
This R value may not be consistent between days or figures of merit. Any values that

fell below MATLABs precision of 10−308 were set to a value of 10−308 for plotting.

As expected, the intra hamming distance of each QD-PUF worsens with time. Albeit, in
keeping with the different PL decay, not in the same manner as for Group 1. Although
it may be due to requiring more data, there is no longer a clear logarithmic curve that
can be fit with a sufficient goodness of fit to this data. Regardless, as already discussed
the difference in fingerprints as time progresses bears most semblance to noise, indicat-
ing the signal to noise ratio is still the dominating factor. More evidence to show that
although changing PL is causing the fingerprints to change it is not the sole contributing
factor to the quantitative measures of this is also present here. All of Group 2 show a
significantly reduced decay in PL. The fact that the the images taken of them change so
little in signal to noise ratio is a key factor in why they show a lessened change in intra
hamming distance. PSPLMA gives an intra increase of 0.059, PVDFPLMA gives 0.048
and SEBSPLMA gives 0.001. The significant difference in the decay of their PL curves
compared to Group 1 (PSPLMA loses 10% less, PVDFPLMA 67% less and SEBSPLMA
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60% less) likely makes the changing signal to noise the dominating factor. When we
compare within Group 2 though where the PL loss percentages are much closer in value
their is no direct correlation with intra hamming distance change.

With the exception of PMMAPLMA and PMSPLMA for already discussed reasons, we
see that this lessened change in intra hamming distance is reflected in the change of
authentication accuracy as the QD-PUFs degrade. Overall the QD-PUFs show little ap-
preciable change in their inter hamming distance standard deviation over the time tested,
thus making the intra hamming distance the dominant factor. Thus, showing that the
increased PL stability leads to being able to accurately use these QD-PUFs in a long
term use case scenario.

Despite similarities between Groups 1 and 2 in terms of initial starting intra hamming
distance we see that initial FPRs in all cases but PVDFPLMA are lower in Group 2. This
stems from the change seen in the texture of the quantum dot patterns, which has in
turn lead to lower inter hamming standard deviations for RMLBP. PVDFPLMA shows
a higher FPR and inter standard deviation but with a lower intra hamming distance,
suggesting a trade off of uniqueness for repeatability. Which given PVDF’s much higher
intra hamming distance values is easily argued to be an acceptable trade. Overall then
this indicates that for RMLBP, the addition of PLMA as a co-polymer is beneficial to
authentication accuracy, owing to the effect it has on the quantum dot pattern.
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Figure 6.8: a) Graph of the minimum FPR at each day achieved for each of the Group 2
QD-PUFs generated using RLBP.V2. b) Graph of the minimum intra hamming distance
at each day achieved for each of the Group 2 QD-PUFs generated using RLBP.V2. c)

Graph of the minimum inter hamming distance standard deviation at each day achieved
for each of the Group 2 QD-PUFs generated using RLBP.V2. Note: the minimum for

each day is the lowest value reached for that figure of merit for radii between 1 and 20.
This R value may not be consistent between days or figures of merit. Any values that

fell below MATLABs precision of 10−308 were set to a value of 10−308 for plotting.

For reasons already discussed PMMAPLMA and PMSPLMA will not be covered here
in reference to figure 6.6b. The remaining fingerprints generated by RLBP.V2 do show
interesting changes over the time frame they were tested however. First of all there
is the difference between RMLBP and RLBP.V2, although the percentage differences
for RLBP.V2 do show significant improvement they are still much higher than their
RMLBP counterparts. Thus, showing that even with a reduced loss of PL, RMLBP will
always outperform RLBP.V2 in terms of producing repeatable fingerprints. A fact sup-
ported by comparing the intra hamming distances of the two. The fingerprints generated
by RLBP.V2 also show clear features created by the vertical lines that originated from
printing artefacts in PVDFPLMA and SEBSPLMA. This is to be expected given that
RLBP.V2 is a contrast based fingerprinting scheme, it is however an issue as these impose
areas of low entropy onto the fingerprint. A fact reflected by the increase in inter stan-
dard deviation between these two and their Group 1 variants. In fact SEBSPLMA even
displays a higher value than the fingerprints generated by RMLBP. Therefore, highlight
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that although in general RLBP.V2 produces higher entropy fingerprints the presence of
anything non-random in the quantum dot pattern has a distinct influence on the output.

As expected RLBP.V2 shows a higher set of intra hamming distance values than RMLBP.
Interestingly however it also shows in three out of five cases a higher intra hamming dis-
tance than Group 1 variants. Only PMMAPLMA and PMSPLMA show a decrease
in their initial intra hamming distances. Although this is similar to the scenario with
RMLBP the magnitude of the differences is greater, showing around a 1.5 times increase.
This would be cause for concern but for the fact that the three whose final intra hamming
distance we can comment on (which are also the three that display a higher initial intra)
all are lower than the same day for their Group 1 counterparts. The enhanced stability of
Group 2 has balanced out the higher noise sensitivity of RLBP.V2 to an extent. Although
the initial values may be higher, what is important is the intra hamming distance that
they stabilise at.

This is a matter that is reflected in the FPRs for Group 2 (bar the two outliers), each
show a higher initial FPR but a lower one at day 14. Showing us that the type of pat-
tern that the addition of PLMA as a co-polymer creates is worse for RLBP.V2 in terms
of generating fingerprints for accurate authentication. The enhanced stability however,
again provides a useful trade off. As with Group 1 we see that the final PL generated by
RLBP.V2 is lower than that of RMLBP. Showing that once again, further data would be
useful to confirm if RLBP.V2 stabilises at a lower value. Given the higher PL stability
of Group 2 this is more likely and despite the fingerprints showing a lower repeatability
this would allow for more accurate authentication than RMLBP.

A matter that is of interest is of SEBSPLMA. Overall when calculating the PL percent-
age difference it shows, we find that it has a PL decrease of 0%. This is only surpassed
over both groups by PMMAPLMA which shows a PL increase of 3% (either as a out-
come of a non-optimal fit or due to the lacquer not being properly cured on the first PL
measurement). For both RMLBP and RLBP.V2 SEBSPLMA shows the lowest change
in figures of merit. Showing an increase in FPR of 20 and 1 orders of magnitude for
RMLBP and RLBP.V2 respectively. As well as an increase in intra hamming distance
of 0.001 for RMLBP and 0.003 for RLBP.V2. In both cases a mere fraction of the next
lowest (0.059 for RMLBP and 0.047 for RLBP.V2). Although the values its figures of
merit do not stand out, often being the middle of the pack, they are still well within
requirements. Thus, it can be argued that SEBSPLMA is the optimal candidate for the
polymer composite with which to produce long term usage QD-PUFs. In such a matter
as this stability is more important than performance.

Within Group 2 we have found a universal improvement in the stability of CQDs with
the addition of PLMA as a co-polymer. Improvements in PL stability have lead to div-
idends with the improvement of fingerprint figures of merit. There is however, still no
clear link between the magnitude of change in PL and the change seen in such figures of
merit. Once again the PVDF containing QD-PUF showed the worst PL stability. This
time however SEBSPLMA and PMMAPLMA showed the most stable PL, suggesting
an enhanced compatibility with the InP/ZnS CQDs when PLMA is added. Although
RLBP.V2 has once again shown lower FPRs than RMLBP and the usage of a QD-PUF
like SEBSPLMA should counteract the algorithms noise sensitivity, it should be noted
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the conditions in which this data was taken. Compared to many practical settings the
apparatus used here was a far more controlled environment. As such if, for example,
the images were taken on a mobile phone instead, the extra camera noise may cause a
drastic increase in the intra hamming distances generated with RLBP.V2 (as discussed
in section 4.2). Thus, limiting it once again to more controlled environments. RMLBP
whilst showing lower authentication accuracy would therefore be more useful given its
higher degree of robustness.

6.3 Concluding Remarks

The key issue facing QD-PUF being used in long term practical settings is photolumines-
cence degradation due to oxidization. Within this chapter we have catalogued the photo-
luminescence behaviour of five different single polymer matrices in which were suspended
InP/ZnS colloidal quantum dots. The data gathered from this clearly demonstrated the
effect of the oxidization on PL. Though each QD-PUF tested in this group had a PL that
stabilised above the background count, each suffered a loss in PL from their initial value.
With the lowest loss being the QD-PUF containing PS at 20% and the highest, PVDF,
at 80%.

To address the issue of these losses a second group was tested which used the same
five polymers only with the addition of PLMA as a co-polymer. PLMA was well suited
for this task and indeed reduced the oxidization of the CQDs suspended within it when
used as a co-polymer[60]. The worst PL loss in the second group was PVDFPLMA at
13%, lower than even the best of Group 1. PMMAPLMA from Group 2 appeared to
gain a 3% increase and SEBSPLMA’s PL remained unchanged thus, clearly addressing
the issue of PL degradation in long term QD-PUF applications.

The QD-PUFs require fingerprints generating from them in order to be used for au-
thentication purposes. As such the stability of the fingerprints is as important as that
of the QD-PUFs PL. In all cases, both Group 1 and 2, there is no link between the
accuracy of authentication or the repeatability of fingerprints and PL. To expand further
upon this it was shown however that change in these figures of merit was indeed however
caused by the changing PL. As the reduction of PL causes the signal to noise ratio of the
QD-PUF images to decrease thus, furthering challenge images on later days from their
day 1 reference counterparts. The degree to which this occurs however, appears to not
solely be affected by the magnitude of the particular QD-PUFs change in PL. Where the
change in PL is similar, there is no discernible link between change in PL and change in
fingerprint figures of merit (such as comparing within Group 2). When there is a large
difference between PL changes (such as between Groups 1 and 2) their does appear to be
a correlation. It is hypothesised that the factor that influences this change alongside the
PL is the texture of the quantum dot pattern, as it has been shown that this does affect
a QD-PUFs robustness against noise. An interesting point of note is that the addition of
PLMA as a co-polymer changed the texture of the quantum dot pattern significantly. In
most cases adding more fine grain detail. To quantitatively analyse the effects of texture
on the robustness would be an interesting topic of further study as one would have to
first be able to classify the different textures. Whilst this would be a significant feat of
texture analysis it would arguably be worthwhile in order to allow for the comparison of
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many different textures.

RMLBP and RLBP.V2 both encode the information within a quantum dot pattern to
produce a fingerprint in distinctly different ways. This makes each of them suited best to
different use case scenarios than the other. This remains the case when looking at QD-
PUF degradation. As expected RMLBP is less affected than RLBP.V2 with the reduction
of the signal to noise ratio from the QD-PUF images. When coupled with the reduced
degradation of Group 2 (in particular SEBSPLMA) this makes RMLBP well suited for
long term authentication applications with QD-PUFs. Although it’s authentication ac-
curacy is less than RLBP.V2 it is still well below the required limit and when discussing
degradation stability is more important than performance. It is not to say RLBP.V2
is without merit. With the use a a highly stable QD-PUF and controlled imaging en-
vironment (such as within a customs office or identity card scanner) its higher entropy
fingerprints could be harnessed for higher security applications.
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Chapter 7

Behaviour of QD-PUFs Under
Varying Wavelengths of Incident
Light

Throughout the chapters preceding this one the quantum dot patterns analysed have all
been excited with light passed through a short-pass filter. As such, although it does not
feature the entire visible spectrum, it still contains a wide bandwidth of wavelengths. Ex-
tensive work has also been performed to show that a white light source (such as the flash
from a smartphone) can be used to excite the QD-PUF to a degree that a response can
be measured[7][6][62]. The key point of commonality here though is only one challenge is
being used to excite the QD-PUF and one response is being returned each time. In other
words in their current authentication process the QD-PUFs only produce one challenge
response pair, making them what is known as a ”weak PUF”[31].

This is not to say that weak PUFs are not useful. Strong PUFs which produce many
challenge response pairs are generally deemed to be more secure[29], and can be used to
generate other cryptographic measures such as encryption keys[32]. Weak PUFs however
are useful in anti-counterfeiting as discussed and in cases where a unique identifier is re-
quired such as passports[32]. Weak PUFs also tend to be easier to interrogate, requiring
less specialised equipment as demonstrated in chapter 4 and Fong et al[6].

This chapter aims to improve upon the security of the QD-PUFs with the demonstration
of a process in which the number of challenge response pairs generated is increased, whilst
still maintaining the ease of use that the QD-PUFs currently possess. Quantum dots do
not possess a linear response to changing wavelength of incident light[12]. As shown
in figure 2.3, the absorbance of quantum dots is dependant on the wavelength incident
upon them. As has already been discussed in previous chapters the electronic states of
quantum dots shift when deposited on to a substrate due to inter cluster interactions.
The hypothesis that forms the foundation of this chapter is that if this also affects the
photoluminescence excitation spectra (PLE), then the PLE over a whole quantum dot
pattern will not be homogeneous. Thus, different areas of the pattern will change in
brightness at different rates as the incident wavelength is varied. This will cause the
fingerprint generated at different wavelength intervals to appear different, thus allowing
for different challenge response pairs. The changing PLE of quantum dots based on the
density of CQD clusters is not unfounded as such matters have been demonstrated, such
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as in Artemyev et al[12]. It has not been observed before however, how this will affect a
quantum dot pattern deposited onto a substrate that possesses a range of different CQD
cluster densities. The practical applications of such a phenomena have also not been
explored, especially in the form of QD-PUF fingerprints.

This chapter will break down the proposed hypothesis into two parts to provide a thor-
ough testing of it. The first, covered in section 7.2 analyses whether or not the PLE of a
quantum dot pattern is indeed inhomogeneous over the entire sample. The second part of
the analysis, detailed in section 7.3, then analyses the variation in fingerprints generated
at multiple different wavelengths for both RMLBP and RLBP.V2.

7.1 Data Capture and Analysis

In preliminary testing the apparatus detailed in figure 3.1 was used to excite and image
the QD-PUF samples. However, the long and short pass filters were replaced by band-
pass filters in order to achieve the different singular wavelength excitation light required.
However, the light source in that set-up proved to not be powerful enough with most
of the output blocked by the bandpass filter. As such instead a microscope was used
with the set-up detailed in figure 7.1. This allowed for greater greater illumination of the
sample and thus, a measurable signal.

Figure 7.1: Pictorial cross-section of the microscope arrangement used to image the
QD-PUFs under different incident wavelengths of light. A bandpass filter is placed in

front of the camera with peak transmission as close to the peak emission of the
QD-PUF as possible. Varying bandpass filters are then placed in front of the white light
source in order to produce excitation light of different wavelengths. Each were chosen
such that there is no overlap with the filter in front of the camera. As such only light
from the QD-PUF is detected. The magnification of the microscope was set to 10x.

To achieve multiple different excitation wavelengths bandpass filters were used. Although
this does not produce a singular wavelength of light, the filters used had a bandwidth of
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10 nm to get as close as possible to this. The excitation filters used for the CIS sample
were: 440 nm, 480 nm, 510 nm, 530 nm, 550 nm, 580 nm, 600 nm and 620 nm. As the CIS
quantum dots have a peak emission at 650 nm, a 650 nm bandpass filter was placed in
front of the camera, again with a bandwidth of 10 nm. For the InP/ZnS sample emission
intensity has a peak at 625 nm and was lower than that of the CIS QD-PUF. As such
as 650 nm bandpass with a 40nm bandwidth was placed in front of the camera instead.
Owing to this the 620 nm excitation filter was not used for InPPMMA as it would have
resulted in overlap with the camera’s filter. It is due to such filters as well that a sample
of the substrate of the QD-PUFs was not tested as a control. As the substrate is not
photoluminescent and the filter blocks all of the excitation light no signal would have
been measured.

The microscope used a ZEISS EC EPIPLAN 10x magnification objective[63] which does
not have a uniform transmittance over the wavelengths used (i.e. some wavelengths are
absorbed more than others by the lens). As such a mirror was placed where the sample
would sit in figure 7.1 and the average pixel brightness of a histogram maximised image
calculated for each excitation wavelength. This was then used to calibrate all future
images of the samples to remove any effect from the objective.

Figure 7.2: Flowchart of the process to generate multiple fingerprints from a single
QD-PUF sample. A single sample is placed into the measurement apparatus, the image
on the left shows the sample under white light with no filter in front of the camera. The
sample is then excited by different wavelengths of incident light and an image captured

at each incident wavelength. From this image a fingerprint can then be generated.

As demonstrated by figure 7.2 to capture data a QD-PUF sample was placed within the
apparatus, it was then imaged with each of the bandpass filters placed in front of the
light source. All imaging was performed in a darkened environment to remove any effects
of ambient light. In each case the exposure of the camera used was set such that the
intensity histogram of the image spanned the entire available range. For each incident
wavelength three repeat images were taken.
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For the first part of the analysis the variation of the quantum dots absorption spectra with
location on the sample needed to be determined. If we take the brightness of a chosen
pixel in the sample image and plot how its brightness varies over each of the progressive
images taken at different wavelengths and then apply a fit to it we will get a measure
of the absorption spectra of that pixel. Each input image was originally 1000x1000 px in
size, this was resized to 900x900 px using the ”imresize” function in MATLAB to reduce
noise in the image. To the brightness values of each of the pixels the below equation was
applied to generate a fitted curve:

y = a exp

(
−
(
x− b

c

)2
)

+ d (7.1)

The equation itself was chosen as the expected change in the absorption spectra follows
an Gaussian decay curve. As the fitting process in MATLAB is an iterative process limits
were set on the parameters within the fit equation. These were based on logical reasoning
and experience from preliminary testing (e.g. only a could be negative for the curve to
have the correct shape and allowing the values to have too large a range led to inaccurate
results). The chosen limits were:

• −1 ≤ a ≤ 0, gives the difference between the asymptote and the minima of the
curve.

• 0 ≤ b ≤ 4, the x-value of the minima of the fit.

• 0 ≤ c ≤ 4, gives a measure of the width of the curve.

• 0 ≤ d ≤ 2, value of the asymptote of the fit.

As well as this the fits were subject to a pair of goodness of fit tests to ensure that the
fitted curves matched well to the data points. The first was a residuals test, the sum
of the residuals (the difference between the value of the curve and the measured value)
for each point cannot exceed 0.0005. The second was an R2 test, the R2 value of the fit
must not fall below 0.7. These values were determined empirically by taking a series of
random points over several heatmap plots and manually verifying the quality of the fit.
The values were chosen to be as strict as possible whilst still allowing for some variation
over the heatmap. Any pixel that failed either of these tests had the fit removed and
was not included in the final result (shown as a white pixel in the heatmaps in section
7.2). The values of each of the parameters were then plotted in a heatmap for each pixel
for each sample tested. If the absorption spectra are indeed inhomogeneous over the
quantum dot pattern then the heatmaps will show a change in the value of the fitted
parameters. This will also provide insight into what may cause a change in the spectra.

The second part of the analysis focusses on the fingerprints generated at different in-
cident wavelengths. For each sample the same 1000x1000 px area as used in the PLE
spectra analysis was used. As per previous chapters the same process was used to gen-
erate the fingerprints. RMLBP and RLBP.V2 were used in order to give a comparison
between fingerprints generated by the most robust and the most accurate authenticating
algorithm respectively. For each sample a fingerprint was generated using each algorithm
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at a radius of 10. The fractional hamming distance between each wavelength’s finger-
print and the fingerprint generated from the shortest wavelength was then calculated and
plotted. This provides a measure of how much the fingerprints vary as wavelength is
varied.

7.2 Quantum Dot Pattern PLE Results and Analysis

Figure 7.3: a) Image of the CIS QD-PUF sample taken in the apparatus shown in figure
7.1 at 10x magnification. Each number corresponds to a data curve in sub-figure b) and
labels the location the data was taken from. b) Pixel brightness of five separate points

on the CIS QD-PUF sample with varying incident wavelength of light.

Figure 7.3 serves as a useful first insight into the variation of PLE across a QD-PUF
sample, even from just these five point we can clearly see that the PLE does not remain
constant over the entire area of the sample. Mirroring findings that we have seen before
[12]. It is interesting to note that clearly none of the curves exactly match the shape
shown in figure 2.3 but the quality of the fits indicates that they are indeed correct. We
can also clearly see that there is consistency in the results found, the two point chosen
on QD clusters and the two chosen in low concentration areas show matching curves,
despite being widely separated in the image. Furthermore the large central cluster, which
appears unlike any other within the image displays a completely different curve. Why
these particular variations occur is discussed further on. Overall, this adds a lot of
credence to the fact that the measured fits are accurate.
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Figure 7.4: a)-d): Heatmaps showing the variation of each of the parameters in
equation 7.1 over the area of the QD pattern displayed in sub-figure e). The label of the
sub-figure matches to the parameter in equation 7.1 it is displaying. x and y-axis labels
are in pixels, the scale is in arbitrary units for a) and d) and in eV for b) and c). This

figure displays the results for the CIS sample.

The most obvious result from figure 7.4 builds on the conclusion drawn from figure 7.3b).
It is that very clearly none of the parameters are uniform over the entirety of the CIS
QD-PUF analysed. Showing that, as predicted, the PLE of CQDs deposited onto a sub-
strate is indeed inhomogeneous. What is most promising is the lack of rejected pixels
that can be seen in the heatmaps. This can be seen most clearly in figure 7.4d. This is a
clear indicator that the vast majority of the fits applied to each pixel passed the goodness
of fit tests. As well as this most pixels sit within the ranges chosen for the parameters
indicating that the ranges were suitable. This gives us a great degree of confidence that
the fittings applied over the wavelength images for each pixel are indeed accurate.

Further information can be gleaned when we compare the heatmaps to the image of
the area of the quantum dot pattern that was analysed. For example we can see in figure
7.4a that the clusters with clear definition in figure 7.4e show a value of a below -0.9.
Such as the area within 600 ≤ x ≤ 700 and 650 ≤ y ≤ 750. The fact that these areas
are so clearly defined indicates that this is a physical property of these dense clusters.
Conversely areas with a much lower density of quantum dots, such as the area within
100 ≤ x ≤ 200 and 300 ≤ y ≤ 400, all have consistently the same range of values for a,
roughly between -0.4 and -0.5. Physically this result is as expected. As the magnitude
of a gives a measure of the range between the fit’s maximal asymptote and its minima,
lower concentration areas will give a lower value of the magnitude of a. As they lack
quantum material they will not show the PLE curve expected and the brightness of these
areas will instead remain relatively unaffected by changing incident wavelength. This
fact is further supported by figure 7.4c. These low concentration areas show the highest
values of c, showing that the curves fitted to them are the flattest in the sample area. As
they lack quantum material we would expect the pixel brightness of these areas to remain
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unchanged, something this value of c is indeed showing. Further supporting this is that
the areas with more disperse concentrations of quantum dots than the distinct clusters
have values of a and c that are in-between those of these two extremes. The fact that
the concentration of quantum dots is affecting the PLE curve gives one of the reasons as
to why the PLE is not uniform over the quantum dot pattern.

In some regards the determined value of b in figure 7.4b is as expected. The low concen-
tration areas show values close to 0. As expected when they have fits that are almost flat.
The majority of pixels in more concentrated areas also behave as expected. Due to the
shape of the PLE curve for CIS quantum dots (see figure 2.3) it is difficult to determine
where the minima of it, and so the value of b, should lie. We do know however, that
it must be at a greater wavelength than the maximum wavelength used in the range of
excitation filters. That is 620 nm or ∼2eV. As we can see in figure 7.4b the more con-
centrated areas do have b values below that of 2eV, with most being below 1.5eV. This
further supports the accuracy of the fits generated as they are agreeing with expected
values. The exception to this is the large central cluster which will be addressed shortly.
The exact value of b that certain pixels show however appears to have less of a dependence
on the concentration of quantum dots than the other parameters analysed. Whilst more
concentrated areas are easily distinguishable from the much darker areas in figure 7.4e in
regards to each other the values are far more similar. In fact looking at the area between
500 ≤ x ≤ 700 and 500 ≤ y ≤ 800 we can see some interesting phenomena. The edges
of this area show higher values of b than the middle despite visually appearing to have
less quantum material in figure 7.4e. This in of itself is of little consequence if not for
the fact that the distinct clusters within this area, of which are a higher concentration
of quantum dots than the edge areas, show similar values, distinct from their immediate
surroundings. This pattern is repeated elsewhere within the sample and suggests another
unknown mechanism is affecting the value of b found. Another factor which is contribut-
ing to an inhomogeneous PLE over the sample.

Finally we come to the matter of the anomalously large cluster of quantum dots in
the centre of the sample area (roughly within 400 ≤ x ≤ 600 and 400 ≤ y ≤ 550). As
we can first note from figure 7.4d it’s brightness asymptote is far greater than that of
any other cluster within the sample, unsurprising given that visually it is clearly much
brighter than the rest of the sample area image. What is most interesting however, is
the fact that the parameters within it do not remain uniform like with other clusters.
This is most likely due to its size. The relative diminutive nature of other clusters and
the resolution of the image not allowing for us to determine variation within them. It’s
anomalous size also appears to have led to, or at least allowed for the observation of,
properties that do not fit with previous observations. Most notably the values of b and
c within it are higher than predicted for dense clusters. Indicating a flatter curve than
expected as well as significant blue shift. Although the exact mechanisms behind why
this occurs is not known the stark contrast of this cluster with the rest of the sample
will prove useful for the generation of fingerprints. A likely proposition will be that it
is denser than the other clusters and as such this has caused a change in behaviour. To
confirm this however, we would need further analysis to quantify cluster density.
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Figure 7.5: a) Image of the InPPMMA QD-PUF sample taken in figure 7.1 at 10x
magnification. Each number corresponds to a data curve in sub-figure b) and labels the

location the data was taken from. b) Pixel brightness of five separate points on the
InPPMMA QD-PUF sample with varying incident wavelength of light.

Figure 7.5 reflects the results seen in figure 7.3. Once again for each of the selected
pixels we see that not only do the fits match the data well but there are clear patterns
to their shapes. Lines 2 and 5 are each in low concentration areas and is show the same
shape curve. Line 4 however, shows a different shape and one that is reminiscent of the
predicted PLE curve for InP as shown in figure 2.3. It does display though, a blue shift
in the location of its minima from the expected value of 2.24eV. The theorised reasoning
for this phenomena is discussed further on. 1 and 3 are also interesting lines to note as,
visually, the areas they are measured from are distinctly different and this is reflected in
the PLE measured from them.
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Figure 7.6: a)-d): Heatmaps showing the variation of each of the parameters in
equation 7.1 over the area of the QD pattern displayed in sub-figure e). The label of the

sub-figure matches to the parameter it is displaying. x and y-axis labels are in pixels,
the scale is in arbitrary units for a) and d) and in eV for b) and c). This figure displays

the results for the InP sample.

Despite the greatly different PLE spectra the InP sample shows the same overall result
as the CIS sample, the PLE of the sample is not homogeneous. Similarly there are also
indicators as to the accuracy of the fits that have been applied. Again there have only
been a small minority of pixels that failed the goodness of fit tests and the values of the
parameters sit within the range with minimal saturation.

In the same manner as the CIS sample we see a clear difference between the areas of
higher quantum dot concentration and those with little to no quantum dots present.
Unlike the CIS sample however, the areas with a greater concentration show a lower
magnitude of a, as can be seen in figure 7.6a. This is not however, contradictory to
the results shown in figure 7.4a. As both have very different PLE spectra we would
not expect the parameters found in areas of high quantum dot concentration to be the
same. Given that the measured PLE for InP, given in figure 2.3, is that of a dip which
then increases we would expect the magnitude of the change to be lower than that of
CIS which continually decreases. Low concentration areas are more difficult to identify
given the more disperse nature of the quantum dot arrangement in the InP sample. We
can however, see a clear range of values of a starting with the lower concentration areas
at roughly -0.65 and increasing with concentration to -0.15. Indicating, again, the link
between the changing parameters and concentration and supporting the concept of an
inhomogeneous PLE not just being limited to CIS quantum dots.

The low concentration areas across each of the two samples each show a similar range of
values, sitting between -0.45 and -0.65. Whilst this is a fifth of the entire range of a given
that higher concentration areas can show a difference of ∼0.5 from these areas there is
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something to suggest that perhaps this is a consistent range for this parameter over all
samples for these areas. Further testing would be needed to confirm this but it could
allow for better calibration of the fits by setting the value of low concentration areas. It
would also allow for a measure of QD concentration based on the deviation from this value.

To build upon this previous point we can see that in fact there is a link between the
distance a pixels a value is from this range of -0.45 to -0.65 and the value of c measured
at that pixel. This further supports a point made about CIS, that the higher concen-
tration areas display a lower c value than the lower concentration areas. This is owed
to the fact that the lower concentration areas show a much reduced response to the in-
cident light and so would give flat PLE curves with larger c values, as we saw with the
CIS sample. Figure 7.6c also provides us with one of the clearest examples of a key
difference in the distribution of the PLE variation. The clusters within the CIS sample
appear with well defined edges and uniform QD density across them. This is not the
case with the InP sample. Even for the structures that appear to have well defined edges
and shapes (such as the ”dots” scattered throughout the darker areas), closer inspec-
tion reveals that internally they are not uniform in QD density. This is reflected in the
PLE curves fitted. Take for example the shape between roughly 100 ≤ x ≤ 250 and
700 ≤ y ≤ 750 in figure 7.6c. It is not easy to match to its counterpart in figure 7.6e as
they do not bear the same shape. With the PLE response varying within this grouping
of quantum dots. This is certainly not just limited to this area and is repeated across the
sample. Further supporting the effects of quantum dot concentration and indicating that
the shape and composition of clusters greatly affects how the PLE response is distributed.

One very useful feature of the PLE spectra of the InP quantum dots is the absorption
minima at 555 nm or 2.24 eV (as shown in figure 2.3). This distinct dip in the spectra
allows us to sanity check the quality of the fits and observe which areas match and which
deviate from the expected result. At first glance figure 7.6b seems to indicate that the
vast majority of the fits applied to the sample sit close to this value. This is however,
misleading. The expected full width half maximum for this absorption dip is ∼0.17eV.
Comparing between 7.6b and c therefore, we can see that much of the sample matches
these two parameters. It appears to be in areas where the QD density is lower, as one
would expect as the PLE in figure 2.3 was measured at low concentrations. This greatly
supports the accuracy of the this process of extracting PLE spectra from samples on
substrates. It also highlights the degree of deviation that we can see from the expected
spectra.

Based on the assumption that the more concentrated areas show a values shifted from
the centre of the scale and lower c values, it is clear to see that in most cases we see a
similar phenomena to CIS, in that these areas appear to be blue-shifted in their value
of b compared to less concentrated areas. The repetition of this phenomena across two
different quantum dot types would suggest that it is not just a quirk of the fitting pro-
cess. The exact physical process responsible for this effect is not known. Given its link to
quantum dot density however, it could be linked to the effect of ligands on the electronic
states within CQDs. More experimentation is needed however to confirm the origin of
this effect. Especially as in this sample it does not occur in all occasions that the afore-
mentioned indicators of higher concentration occur. Such as in the central region of the
sample we see a higher a value, a lower c value but the value of b is of the expected value.
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The only difference between these areas is seen in figure 7.6d with differing values of d.

Throughout this section it has been shown that it is possible to take a measure of the
PLE of CQDs deposited onto a substrate. It is also very clear that the PLE spectra of
a quantum dot pattern on a substrate does not remain uniform over the entirety of the
sample. Variations are introduced through the concentration of quantum dots present
and potential other as of yet unknown factors. The distribution of the variation is also
highly dependant on the type of CQD being used. As each cluster together in a different
manner. In theory this suggests that it is indeed possible to generate differing fingerprints
from a single QD-PUF by exciting it using different wavelengths of light.

102



7.3 Multi-wavelength Fingerprints Results and Anal-

ysis

Figure 7.7: Sub-figures labelled a) relate to RMLBP, those labelled b) relate to
RLBP.V2. The labelling with Roman numerals is consistent across both algorithms. i -
Fingerprints generated at a chosen four of the wavelengths tested. All fingerprints are
generated at a radius of 3 and have had the resize step applied to them, making them

64x64 px in size. ii - graph of the fractional hamming distance of the fingerprints
generated at each incident wavelength compared to the fingerprint at 440 nm for the

CIS sample.
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Figure 7.8: Sub-figures labelled a) relate to RMLBP, those labelled b) relate to
RLBP.V2. The labelling with Roman numerals is consistent across both algorithms. All

fingerprints are generated at a radius of 3 and did not have the resize step applied to
them making them 1000x1000 px in size. Each fingerprint was captured at the

wavelength labelled beneath it and was generated from the CIS sample.

One of the greatest strengths of RMLBP is the fact that it is robust against small changes
in the input image. In this case however it is provably a disadvantage to it. Visually we
can see the issue with using RMLBP in the generation of fingerprints at different incident
wavelengths in figure 7.7a)i-iv. There is very little change in the fingerprints themselves
over the span of the 160 nm wavelength range displayed. The major change is in the
central area with smaller areas around the fingerprint also altering in size. This clearly
shows that it is primarily only the area around the large central cluster that undergoes
any major change. This is reflected in figure 7.8a)i-iv. Where we can see that the only
clear variation is in that large central cluster. Thus, the lack of sensitivity in RMLBP
makes it unable to determine any significant difference between different wavelength im-
ages. The fact that RMLBP determines it’s final bit value based on gradient orientation
is the reason why this occurs. Such a parameter will likely not change in many cases and
will be lost if the radius of the algorithm is larger than the size of the feature that changes.

This is not to say however that with this CIS sample, RMLBP has produced no pos-
itive outcomes. It has still demonstrated that variations in the PLE of the input image
can be detected, they however have to be large in scale. It also shows that areas with
starkly contrasting PLE spectra next to each other produce the most significant change
in a fingerprint. To be expected when the fingerprinting algorithms generate their binary
strings based on local texture information. A maximum possible difference of 18% of

104



pixels over the entire range of wavelengths tested is not significant enough to say that
multiple challenge response pairs have been generated.

RLBP.V2 on the other hand shows significantly more difference between each of its differ-
ent wavelength fingerprints. As shown in figure 7.7b)v even the lowest fractional hamming
distance from the 440 nm fingerprint is on par with the highest generated by RMLBP.
RMLBP’s method of encoding the information in the QD-PUF uses the direction of gra-
dients present, highly robust to noise but a property that does not vary as much with
incident wavelength. RLBP.V2 on the other hand encodes based on local contrast infor-
mation compared to the central pixel. Although this is much more sensitive to noise it
picks up the changes due to varying PLE much better, twice as good in fact basing it
off of the highest hamming distance achieved. Even for the resized fingerprints in figure
7.7b)i-iv we can visually see change as the incident wavelength increases. Though the
shift in bias, due to the low concentration areas decreasing in brightness compared to the
clusters, would be an issue in regards to inter hamming distance standard deviation dur-
ing authentication. Although each fingerprint is clearly not a distinct challenge response
pair, this has still demonstrated that significantly different fingerprints can be generated
from a single QD-PUF.

Figure 7.8b)i-iv gives an interesting texture map of how RLBP.V2 sees the input image
as it changes with incident wavelength. It serves as further evidence that the different
regions of the sample are not changing uniformly as the wavelength increases. The cen-
tral cluster clearly undergoes significant and non-uniform change, as reflected by its fit
parameters in figure 7.4. The smaller clusters can also be seen along the bottom right
and in fact two of the low concentration areas are highlighted as their relative brightness
to their surroundings varies. Unfortunately however, this highlights an issue with this
process. The majority of this detail is lost in the resize step. Unfortunately though this
step is needed in order to make the fingerprints noise free enough for authentication to
be viable. Therefore either larger features or greater magnification are needed.
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Figure 7.9: Sub-figures labelled a) relate to RMLBP, those labelled b) relate to
RLBP.V2. The labelling with Roman numerals is consistent across both algorithms. i -
Fingerprints generated at a chosen four of the wavelengths tested. All fingerprints are
generated at a radius of 3 and have had the resize step applied to them, making them

64x64 px in size. ii - graph of the fractional hamming distance of the fingerprints
generated at each incident wavelength compared to the fingerprint at 440 nm for the

InP sample.
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Figure 7.10: Sub-figures labelled a) relate to RMLBP, those labelled b) relate to
RLBP.V2. The labelling with Roman numerals is consistent across both algorithms. All

fingerprints are generated at a radius of 3 and did not have the resize step applied to
them making them 1000x1000 px in size. Each fingerprint was captured at the

wavelength labelled beneath it and was generated from the CIS sample.

Given the determination that RMLBP cannot differentiate the minor changes between
incident wavelength images as well as its contrast based counterpart and the fact that
starkly differing areas of PLE produce the best response in the fingerprint it is of little
surprise at the performance shown in figure 7.9a)v. As discussed in section 7.2 InP does
not show the clearly defined areas of PLE spectra and instead changes gradually from one
value to another. This matter unfortunately means that there is very little variation in
its fingerprints generated with RMLBP. With even the highest hamming distance below
just 4%. This is not an issue born of the resizing step destroying detail either, as we can
see in figure 7.10a)i-iv that there is little to no variation before the resize step is applied.
Whilst this is a disappointing result it does confirm two criteria required for differing
fingerprints to be generated from a single QD-PUF. There must be large clusters with
distinct boundaries and a contrast based fingerprinting algorithm will give the highest
variation.

This is a conclusion solidified by figure 7.9b)i-iv. Which gives fractional hamming dis-
tances roughly five times greater than that generated by RMLBP. It however does not
achieve hamming distances as great as even the lowest as that for the CIS sample. Thus,
showing the limited usefulness of a sample such as this for such an application. Look-
ing to figure 7.10b)i-iv we can see that some change has indeed be detected despite the
limitations of the sample. The areas that change corresponding with areas of low c, a
fact reflected too in the CIS sample, as these areas undergo the most variation over the
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tested wavelengths. They are however in this case too small to have any great effect on
the resized fingerprints.

From the experiments performed in this section it is clear that the fingerprints gener-
ated from QD-PUFs do indeed change when the wavelength of incident light is varied;
there are however, some caveats to this. In order for the most change to appear in a
fingerprint we require large areas of uniform PLE response (such as the clusters in CIS)
set against a highly contrasting background. The latter in its simplest form would be a
low concentration area of quantum dots, as these appear to have the largest difference
with the higher concentration areas. As the fingerprinting algorithms compare relative
brightness levels in the local area, in one manner or another, this would make the local
area appear different at each wavelength. On the topic of fingerprinting algorithms it is
very clear that the robust nature of RMLBP makes it too insensitive for use in the gen-
eration different wavelength fingerprints. A contrast based algorithm such as RLBP.V2
is required in order to pick out the subtle changes in the brightness topography.

7.4 Concluding Remarks

Although it would have been preferable within this chapter to see each QD-PUF pro-
duce a distinctly different fingerprint at each wavelength tested it is not to say that this
experiment has not yielded useful results. It serves as a proof of concept for the idea of
generating multiple CRPs from a single QD-PUF. It has highlighted the limitations of
the concept as it stands and the criteria required to improve upon it moving forwards.

The first point that is clear is that as predicted in section 2.1.4, is that the PLE spectra
of a quantum dot pattern is not homogeneous. It is also possible to measure the PLE
of quantum dots deposited onto a substrate using apparatus such as that show in sec-
tion 7.1. Although the accuracy of this method would require further experimentation
to quantitatively measure; it cannot be denied that this is both a simpler method than
what is currently employed and allows for the analysis of the PLE of CQDs outside of
solution.

Furthermore, the matter of inhomogeneous PLE raises interesting further experimental
avenues. It is not currently completely clear why the deposition of CQDs onto substrate
causes a change in the PLE spectra. The current theories surrounding the effects of CQD
concentration in clusters and ligand bond altering electronic states require further exper-
imentation to confirm[12]. Such matters are beyond the scope of this paper as the aim
was simply to demonstrate the presence of such variation. Another interesting avenue
of experimentation would be to optimise the quantum dot pattern to create as clear a
change in spectra as possible. It has been made clear that the areas of variation in PLE
are small in scale. The InP sample tested gave areas of varying PLE too small to influence
a fingerprint generated from an image of the sample. On the other hand the CIS sample
with a large central cluster did produce a significant variation in generated fingerprints.
The surrounding clusters however, failed to influence the final resized fingerprint to the
same extent. Indicating that to generate fingerprints that vary with wavelength a mini-
mum size of features are needed. Further research into what this size is and the effects
of magnification would make QD-PUFs suited to this task a reality.
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As has been mentioned, fingerprints generated from different wavelength images are dif-
ferent from each other, not to the extent however that they are distinct from each other.
They could still however be used in authentication. The user of the QD-PUF would
image the sample under different wavelengths. Then requiring that each of them match
to a reference fingerprint generated under the same wavelength would add a second layer
of security. Although each are only subtly different they are still different. A simulated
attack, such as a photograph of a QD-PUF would not respond to the varying incident
wavelengths in this manner.

The fingerprints levels of entropy could also be improved upon. By using them as ran-
dom sources one could apply fuzzy extraction techniques to them[38][64]. This would
generate a uniformly random response from the fingerprint that is highly dependant on
the input. As such the proximity in hamming distance each wavelength’s fingerprint pos-
sesses would be immaterial as the outputs from this step would be unique to each other.
There are drawbacks to this approach though, as it is highly influenced by noise this may
pose practical problems in implementation. An alternative would be the application of
a debiasing technique (as detailed in section 5.2), although they do not provide as much
separation as fuzzy extractors they are less noise dependant. As such despite the result
of this chapter not being as expected a great deal of promise is shown.
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Chapter 8

Concluding Remarks and Further
Work

8.1 Concluding Remarks

The aim of this thesis was to demonstrate that QD-PUFs could indeed be harnessed using
fingerprinting algorithms and to explore what is possible with them. In order to achieve
this we first analysed the performance of four fingerprinting algorithms. Two of which
employed a gradient based encoding method, the simplistic RLBP.V1 and its successor
RMLBP. The other two focused on encoding local contrast information, AHB which was
the only pre-existing algorithm used and RLBP.V2. Within chapter 4 all four of these
demonstrated that indeed it is possible to digitise QD-PUF’s into fingerprints that are
suitable for authentication. Each of these however, showed very different performance
in doing so. The gradient based schemes give more repeatable fingerprints at the cost
of uniqueness, whereas the contrast based ones give more accurate authentication at the
cost of stable fingerprints, with RLBP.V2 producing the highest degree of accuracy. Indi-
cating that when no damage is present in the input image, fingerprint entropy produces
the better authentication accuracy. Another key influencing factor in the performance
of the QD-PUF fingerprints was the texture of the quantum dot pattern itself. Patterns
with clear features, showing high degrees of contrast produce fingerprints that authenti-
cate much better.

Furthermore a key factor when testing the algorithms for their performance is their
robustness against common image damage, namely noise and blur. Two issues that when
QD-PUFs are taken outside of a controlled laboratory environment will become unavoid-
able. As expected, given their stable fingerprints in the previous experiment, gradient
based schemes were far more robust than their contrast based counterparts. Thanks to it
taking in more data points than RLBP.V1, RMLBP outperformed the simpler algorithm.
With contrast based schemes now authenticating with a lower accuracy than the gradient
based ones, showing that there is a limit to just how bad their repeatability can get before
their higher entropy fingerprints cannot balance it out.

Overall, this tells us several key factors when harnessing QD-PUFs using fingerprint-
ing algorithms. Firstly there is a trade off between the robustness of the algorithm and
the accuracy with which it can correctly authenticate a QD-PUF. This is due to the ran-
domness of the fingerprint produced, a fact supported by the application of the NIST test
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suite. Indicating that from an attackers standpoint the gradient based schemes produce
fingerprints that have a higher probability to be successfully brute force attacked. The
number of data points taken in by the algorithm has a great affect on the robustness of
the algorithm and the repeatability of fingerprints produced. As well as this to maximise
any gains from the fingerprinting algorithm the QD-PUF being fingerprinted must have
a clear, high contrast pattern with distinct features. This therefore, brings forth two
stand-out algorithms, RMLBP and RLBP.V2. The former is better suited for use when
the imaging environment and apparatus is not optimal but a high degree of security is
not as necessary. Such as a QD-PUF attached to a luxury product to be authenticated
via smartphone. RLBP.V2 on the other hand may lack the robustness required for more
widely used applications but its incredibly low false positive rates in controlled environ-
ments and high degree of randomness cannot be ignored. As such it would be suited to
applications such as authenticating a QD-PUF embedded in a passport using specialised
equipment.

Given that it has been demonstrated that fingerprints can be generated from QD-PUFs
the next question is the viability of them for long term use. There is little point after
all in a fingerprint which cannot be repeated a period of time after it was first generated
due to the QD-PUF degrading. As signal to noise ratio is an influencing factor on a
fingerprint and the photoluminesence of QD-PUFs decreases with time due to oxidation
this matter must be addressed. It became clear that the addition of the viscous PLMA
as a co-polymer greatly reduced the loss of PL due to oxidization. With some hybrid tags
such as SEBSPLMA and PMMAPLMA showing little or no loss of PL over an indefinite
time period. Addressing the issue of long term QD-PUF usage. To further capitalise
on this it is recommended that for long term usage RMLBP is used over RLBP.V2. Its
robustness to noise demonstrated in earlier chapters ensured that it was less affected by
any change in signal to noise ratio.

As the behaviour of different fingerprinting algorithms as well as the long term appli-
cability of QD-PUFs has been demonstrated the mind naturally turns to how QD-PUFs
can be further adapted and improved upon. One such avenue for this is the increasing of
the number of challenge response pairs that can be generated from a single QD-PUF. To
do this we would need a method to change the quantum dot emission pattern without
altering the QD-PUF itself. This concept was demonstrated to in fact be possible, albeit
in its current state its applicability is limited. It was indeed shown that quantum dot
emission patterns do indeed vary when the wavelength of the light incident upon them is
varied. However, the areas of variation were not large enough to cause significant enough
difference for each wavelength’s fingerprint to be deemed a separate CRP. Clear difference
was achieved using a CIS quantum dot sample but an InP/ZnS sample failed to produce
any variation in fingerprint. Thus, although the concept has been shown to be indeed
possible, further work is needed to bring it to complete fruition.

To summarise it has indeed been shown that the unique nature of QD-PUFs can be
harnessed by fingerprinting algorithms for digital authentication purposes. Based on the
fingerprinting algorithm used their are a range of use cases they can be applied to and
they can remain usable for authentication for an indefinite amount of time. As the last
of the experimental chapters showed however, there is as always more to learn.
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8.2 Further Work

Throughout this thesis it has been mentioned that the QD-PUFs can be authenticated
using a smartphone. This has indeed been demonstrated [7][6] and is a key point of de-
velopment to bring the QD-PUFs into public use. This however takes a degree of applied
knowledge and experimentation which is beyond the scope of what can be discussed here.
The application of RMLBP and a QD-PUF such as the CISPMS one used in chapter 4
would be the best manner to approach this. The two of these maximise the repeatability
of generated fingerprints and so will counteract the wide ranging environmental factors
they will be subject to.

The expansion of QD-PUFs into public use also brings about the question of data security
and storage. If they can be used by anyone then everyone must have access to the data
of stored reference fingerprints. This is a weakness in the security of the authentication
process as discussed in chapter 5. In said chapter a solution was proposed in terms of
XOR debiasing which would essentially remove any information from the QD-PUF from
the fingerprint. This is not the only solution however, nor was it subject to as rigorous
a cryptographic analysis as could be possible. Primarily because the latter could form
a thesis of its own. More detailed work into this however would be beneficial and not
just to the concept of QD-PUFs. It is highly likely that it would contribute greatly to
the field of fuzzy authentication as well as the use of noisy digital signatures as a whole[4].

To further build upon this there is the concept of more rigorous attack testing against not
just the fingerprints but QD-PUFs themselves. Although simulation attack prevention
can stop many attacks there is still the question of how the bane of many PUFs fares
against QD-PUFs, machine learning. Machine learning attacks are being employed to
attempt to replicate or at least produce convincing fakes of PUFs[49][50][51]. Such a test
has not been applied to QD-PUFs.

As already discussed there is the matter of the generation of more CRPs from a single
QD-PUF. In chapter 7 ways of achieving this were discussed. Such as higher magnifi-
cation or quantum dot patterns with larger features. Overall though this avenue shows
promise. Even if distinct CRPs cannot be generated, fingerprints that vary with wave-
length still are useful as they can be used as another factor for authentication.

Finally there is the topic of other fingerprinting algorithms. There is a whole plethora
of feature mapping[65] and authentication algorithms in existence[66] Many more were
tested and created for use in QD-PUFs than were discussed here. Some focus on map-
ping out key points in an image and authenticating based on their presence in a challenge
image. Others binarised based on the presence of features such as edges or corners. The
ones chosen here showed more promise than those that were cut. It could be however,
that one better performing than those in the preceding chapters exists. Finding or devel-
oping it could greatly improve upon QD-PUF fingerprints or it may not. Only time will
tell.
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