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Abstract—Spectrum sensing is a key technique for dy-
namically detecting available spectrum in cognitive radio
networks (CRNs), which can introduce high resource de-
mands such as energy consumption. In this paper, we
propose a novel cluster-based cooperative sensing-after-
prediction scheme where a learning cluster and a sensing
cluster are jointly considered to perform cooperative pre-
diction and sensing efficiently. This enables us to skip the
complex physical sensing to reduce the demands when the
spectrum availability can be simply predicted using cooper-
ative prediction. Furthermore, the clustering is flexible, in
order to meet different performance requirements. We then
formulate two optimization problems to minimize the total
number of users in the two clusters or to minimize the
total energy consumption, to meet different performance
requirements, while in both cases guaranteeing the system
accuracy requirement and individual energy constraints. To
solve the two challenging integer programming problems,
the unconstrained problems are mathematically solved first
by relaxing the integer variable and fixing the cluster
size. Such analytical solutions serve as a foundation for
solving the original optimization problems. Then, two low-
complexity search algorithms are proposed to achieve the
global optimum, as they can obtain the same performance
with exhaustive search. Simulation results validate the
accuracy of the derived analytical expressions and demon-
strate that the total energy consumption and the number
of users contributing to learning and sensing can be greatly
reduced by applying our optimized clustered sensing-after-
prediction scheme.

Index Terms—Spectrum sensing, cognitive radio net-
works (CRNs), energy consumption, spectrum prediction.
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I. INTRODUCTION

The scarcity of useful radio spectrum and energy
consumption issue in cellular networks are getting severe
since the 6G communication networks are expected to
support more challenging applications and meet far more
stringent requirements such as Tbps data throughput,
sub-ms latency, ultra-dense networks, and ultra-low en-
ergy consumption [2]–[5]. These challenges can be tack-
led by using empowering technologies such as Terahertz
(THz) and sub-THz communications, joint communica-
tion and sensing, and efficient spectrum re-utilization [3],
[4], [6]. To address the severe spectrum scarcity issue,
it requires the effective usage of the existing low-band,
mid-band and high-band spectrum resources. Further-
more, future 6G networks are expected to support the
Internet of Everything (IoE) and Artificial Intelligence
(AI) services as an intelligent communication system.
This calls for revolutionary enabling technologies that
can achieve the deep integration of communication, AI,
computing and sensing [7]. Cognitive radio (CR), which
facilitates effective spectrum exploration and exploitation
and inherently has a close relationship with machine
learning (ML), is considered to be one of the key
enablers for AI-empowered 6G networks [8].

Mitola firstly proposed the concept of cognitive radio
in 2000, which was later identified as the candidate for
Opportunistic Spectrum Sharing (OSA) application by
FCC in December 2013 [9], [10]. After that, significant
attention has been drawn to cognitive radio networks
(CRNs) since they can greatly improve the spectrum uti-
lization by allowing secondary users (SUs) to share the
licensed spectrum with primary users (PUs) [11]–[13].
Cognitive radios sense the surrounding radio frequency
(RF) environment and make decisions as an intelligent
wireless communication system [14]–[18]. To improve
the sensing accuracy, cooperative sensing (CS) can be
applied by utilizing multiple SUs to sense collaboratively
and fuse all the sensing results at a fusion center (FC).



It has been shown that the sensing performance can
be greatly improved with an increase in the number of
cooperative SUs [19]. However, one drawback is that the
increase in the number of cooperative SUs results in the
increased energy consumption.

Low energy consumption is a key requirement of 6G
communications. In CRNs, energy consumption is also
a bottleneck issue because SUs are normally battery-
powered wireless devices. When more SUs participate in
CS, more energy is consumed. Given the limited battery
capacity, spending more energy in spectrum sensing will
result in less energy available for the other functions
[20]. To effectively reduce energy consumption while
maintaining system performance, studies have been con-
ducted on the usage of alternative approaches in spec-
trum exploration, for example, spectrum prediction using
ML techniques [21], [22]. Empirical studies have shown
that in real-life spectrum usage, certain patterns exist
[23]. This provides an opportunity to use ML-based pre-
diction methods for identifying underutilized spectrum,
leading to a reduced total energy consumption without
sacrificing the system accuracy. It has been shown that
the accuracy of spectrum prediction is normally close to
and sometimes even exceeds the accuracy of spectrum
sensing, depending on the randomness of environment
and the accuracy of ML algorithms [16], [24].

Some recent studies have started to focus on the
joint prediction-and-sensing scheme for CRNs. A three-
step cooperative sensing and prediction algorithm was
proposed in [25], where a spectrum prediction method
based on the historical sensing information was used.
By applying the joint prediction-sensing approach, the
overhead and complexity of spectrum sensing were re-
duced. To improve the accuracy of spectrum prediction,
Abdul Rahim et al [26] proposed an approach called "Ex-
ponential Weighted Moving Average (Holt’s EWMA)".
A sensing approach was combined with spectrum pre-
diction to reduce the interference caused by the SU. In
order to improve the accuracy of radio spectrum sensing,
a spectrum prediction model for multi-channel was de-
signed in [27]. The joint Long and Short Term Memory
(LSTM) and Convolutional Neural Network (CNN) were
used for model design. Different soft and hard fusion
methods for performing cooperative spectrum prediction
with trained LSTM-based local predictors were studied
in [28]. The results in [28] indicated that the LSTM-
based predictors have better accuracy performance than
the traditional fusion methods. These studies mainly
investigated the performance in terms of system accuracy
and reliability after applying the joint prediction-and-
sensing scheme, while energy consumption was not their

focus. Moreover, in these studies, the number of users
participating in sensing and prediction is fixed. A flexible
clustering approach is more suitable for future CRNs
to cope with various performance requirements of SUs,
compared to the traditional fixed clustering approach.

Taking energy consumption into consideration, some
studies have studied the joint prediction-sensing scheme
with substantial probability models to obtain the accu-
racy expressions and aimed to improve system perfor-
mance. A joint prediction-sensing model was introduced
in [21] that utilized a parallel fusion-based cooperative
spectrum prediction scheme to minimize errors and
increase efficiency for energy-constrained CRNs. The
accuracy was illustrated in [21] using simulation results,
however the exact analytical expressions were not given.
A spectrum sharing model based on spectrum prediction
and sensing was proposed in [22]. The authors investi-
gated a joint optimization design of transmit beamform-
ing at the secondary base station (BS) with energy and
sensing time constraints, where the probability models
in [22] were from the perspective of correlation between
single-user and cooperative results. These studies show
the benefits of using joint prediction-sensing scheme in
energy-constrained CRNs. However, the clustering of
users, the minimization of the number of users participat-
ing in CS, and the tradeoff between system performance
and total energy consumption were not studied in the
literature.

In this paper, we propose a novel joint cluster-based
sensing-after-prediction scheme where cluster size can
be dynamically optimized, while adopting an adjustable
decision threshold which decides when the scheme shall
not accept the prediction result and opt for sensing
instead. We formulate two optimization problems from
two different perspectives in order to adapt different
scenarios. First, we aim to find the minimum number of
participating users that is required for the cluster-based
CRN to maintain the system accuracy without violating
each user’s energy constraint. It will be demonstrated
that this flexible approach can reduce the total energy
consumption while minimizing the total number of par-
ticipating users, in comparison to the fixed cluster size
design in the literature. However, this optimization does
not guarantee that the total energy consumption of the
system is minimized. Hence, for the CRNs with strict
energy constraints, we formulate a second optimization
problem that aims to minimize the total energy con-
sumption of the cluster-based CRN under the constraints
of system accuracy and SU peak energy consumption.
These two optimization problems have different purposes
and are suitable in different scenarios. The analysis and
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simulations in this paper are based on the statistical
analysis of the proposed model. The overall contributions
of this paper are summarized as follows:

• Focusing on the proposed sensing-after-prediction
scheme, we derive the exact analytical expressions
for accuracy and energy consumption by utilizing
the probability models of system decisions. Then,
the analytical optimal solution of decision thresh-
old to the unconstrained accuracy maximization
is derived after relaxing the integer variable and
fixing cluster size, which will lay the foundation for
solving the two constrained optimization problems.

• Two independent optimization problems are formu-
lated to optimize the proposed scheme in order
to adapt to different scenarios. The first problem,
denoted by P1, addresses the minimization of the
number of users contributing to the learning and
sensing process while supporting the required ac-
curacy and energy performance. The second prob-
lem, P2, focuses on the total energy consumption
minimization under the same constraints, which is
more suitable for energy-constrained scenarios.

• To solve P1 and P2, two low-complexity search
algorithms, named UBS-1 and UBS-2, are pro-
posed, by leveraging the analytical results and the
optimal solutions to the unconstrained problems.
Simulation results show that UBS-1 and UBS-2
perform optimally, by comparing with exhaustive
search. The performance of P1 and P2 is further
analyzed, by considering different prediction accu-
racy and utilizing the searched optimal results. It is
found that though the optimal solutions to P1 and
P2 are for totally different scenarios, they achieve
similar performance in a high prediction accuracy
environment.

• Comprehensive comparisons between the proposed
scheme and some benchmark schemes are con-
ducted. Simulation results demonstrate that the en-
ergy consumption and participated users of CRN are
greatly reduced by applying the proposed optimiza-
tions, while the trade-offs between accuracy and en-
ergy performance are analyzed. Furthermore, even
with the same cluster size, the proposed scheme can
still achieve a minimum energy consumption that is
much lower than benchmark schemes with the same
requirements.

The remainder of this paper is organised as follows.
Section II introduces the system model and the cluster-
based sensing-after-prediction scheme. In Section III, we
provide the optimization problem formulations and the
theoretical analysis on accuracy and energy consumption

for the proposed scheme. The optimal solutions are
provided in Section IV where the Pseudocodes of the
proposed UBS-1 and UBS-2 algorithms are also given.
Simulation results are included in Section V, followed
by conclusions summarized in Section VI.

II. SYSTEM MODEL

Fig. 1: System model.

Consider a CRN that consists of one PU, N SUs,
and one FC. The system model is shown in Fig. 1. It
is assumed that the primary channel has a regular usage
pattern, which conforms to the observation of empirical
study [23]. There are two possible channel states for the
PU, i.e., busy and idle. PB and PI are the probabilities of
PU being busy and idle respectively, where PB +PI = 1.
Two clusters of SUs are responsible for voting for
the channel state decision. A learning cluster N1 and
a sensing cluster N2 are formed by n1 SUs and n2
SUs, respectively, where n1, n2 ≤ N .1 PU and SUs
are assumed to be synchronized. Time division multiple
access (TDMA) is assumed in the system. Each time
slot T is divided into three sub-slots, namely Prediction
Stage, Reaction Stage and Transmission Stage. The slot
structure of the proposed system is shown in Table I,
where detailed explanations of stages are given below.

A. Prediction Stage

During the Prediction Stage, each SU in the learning
clusterN1, e.g., the SU i, predicts PU channel state using
ML techniques based on channel usage histories, and
reports a binary decision Di, ∀i ∈ N1, to FC to perform
cooperative prediction (CP). Di being 0 represents that
the SU i predicts that PU channel will be idle, while
Di equals 1 means that the SU i predicts that the PU

1In order to minimize the number of cognitive SUs participating in
both clusters so as to reduce resource demands, it is preferable that
each set is a subset of the other, i.e., N1 ∩N2 = N1 when n2 ≥ n1,
and N1 ∩N2 = N2 when n2 ≤ n1.
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TABLE I: Time and energy structure of one time slot.
Prediction Reaction Transmission

eM
DM: 0 0 if channel busy
IM: eS eT if channel idle

←− tP −→ ←− tR −→ ←− tT −→

channel is busy. The prediction results of SUs in the
learning cluster N1 are fused together to obtain the final
cooperative decision according to the logic rule (1) after
all the 1-bit decisions, i.e., Di, are received at the FC.
Let S be the state of the fused prediction decision.

S =


DM D ≥ σ
DM D ≤ n1 − σ
IM otherwise

, (1)

where D =
∑
i∈N1

Di. σ is a decision threshold that dis-

tinguishes between determinate (DM) and indeterminate
(IM) states. This threshold indicates that if at least σ
SUs’ prediction results are identical, the system will
enter the DM state and take what the majority of SUs
(at least σ SUs) agree on as the final result. Hence, it
is natural to assume σ ≥

⌈
n1+1

2

⌉
, in order to guarantee

when entering the DM state, at least half of the users
have made the same prediction.

In [23], it was observed that the primary channels
exhibit regular usage patterns. For example, the analysis
of a real-life GSM downlink channel usage shows that
every weekday exhibits high usage around noon but the
peak usage occurs around 20:00 in the evening [23].
Inspired by this usage behaviour of channel, the system
in our work is assumed to be in a long-term stable
PU behavior environment (e.g., school classrooms) with
a regular PU pattern but some randomness, while the
requirements of the secondary users may vary. In such
a stable environment, where the PU behavior follows
regular patterns, it may not be necessary for SUs to
perform sensing-based prediction if an acceptable accu-
racy performance can be achieved by using PU behavior
history for prediction. Hence, in our system, the ML
prediction scheme relies solely on the usage history of
the PU channel, and each SU has an identical dataset
of PU behavior history and prediction algorithm. This
implies that the probability of ML prediction being
correct for each SU, i.e., p, remains unaffected by the
current state of the primary channel, whether it is idle or
busy. Therefore, without loss of generality, we assume
that the accuracy of the ML prediction for each SU is
fixed for a given time period, and it remains the same for
all SUs. Hence, the probability that at least σ prediction

results of n1 SUs are correct is given by

Pacc =

n1∑
l=σ

Ç
n1
l

å
pl(1− p)n1−l. (2)

Recall (1) indicates that if at least σ prediction results
are the same, the system will be in DM state and accept
the CP result. Because the CP result can be either correct
(with a probability of Pacc) or wrong, the probability of
entering DM state can be calculated as the probability of
at least σ predictions being right plus the probability of at
least σ predictions being wrong. Hence, the probability
of entering DM state, i.e., PDM, and the accuracy of the
CP result, i.e., QDM = Pacc

PDM
, are expressed in (3a) and

(3b), respectively. The probability of the system in IM
state is then given by PIM = 1− PDM.

PDM =

n1∑
l=σ

ñÇ
n1
l

å
pl(1− p)n1−l +

Ç
n1
l

å
pn1−l(1− p)l

ô
,

(3a)

QDM =

∑n
l=σ

(
n1

l

)
pl(1− p)n1−l∑n1

l=σ

[(
n1

l

)
pl(1− p)n1−l +

(
n1

l

)
pn1−l(1− p)l

] .
(3b)

B. Reaction Stage

As mentioned above, when the system is in DM
state, it indicates that it believes the prediction result
is accurate. Then, all SUs will stay silent during the
Reaction Stage and the transmission decision is made
solely based on the CP result. On the other hand, if
the system state is IM, it indicates that the system
is not confident with the obtained CP result. Hence,
independent spectrum sensing will be performed by each
SU in the sensing cluster N2. The energy spent at each
SU for performing sensing is denoted by eS. The time
duration of Reaction Stage is tR.

There are two key metrics to evaluate the performance
of spectrum sensing, namely the probability of detection
(Pd) and the probability of false alarm (Pf ), respectively.
Pd indicates the probability that the SU declares the
primary channel is occupied when the primary channel
is indeed busy. Pf indicates the probability that the
SU declares the primary channel is occupied when the
primary channel is idle. Pd and Pf are respectively given
by [11]

Pd = Qu(
√

2γ,
√
λ), (4)

Pf =
Γ
(
u, λ2

)
Γ(u)

, (5)

where λ and γ represent energy detection thresh-
old and signal-to-noise ratio (SNR), respectively. u
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refers to the time-bandwidth product of the energy
detector. Γ is the incomplete gamma function, given
by Γ(a, x) =

∫∞
x
ta−1e−t dt. Q indicates the gen-

eralized Marcum Q-function, given by Qu(a, x) =
1

au−1

∫∞
x
tue−

t2+a2

2 Iu−1(at) dt, where I(·) is the mod-
ified Bessel function.

After performing the independent spectrum sensing,
each SU reports its binary decision to the FC. At the
FC, all binary decisions are fused together according to
a fusion rule. A voting rule is used for CS decision
in our system. For example, the primary channel is
sensed to be busy if at least q sensing results of n2 SUs
declare the channel as occupied. Therefore, the detection
probability and the false alarm probability of CS decision
are respectively given by

Qd = P (H1|H1) =

n2∑
l=q

Ç
n2
l

å
P ld (1− Pd)n2−l , (6)

Qf = P (H1|H0) =

n2∑
l=q

Ç
n2
l

å
P lf (1− Pf )

n2−l , (7)

where H0 represents that the primary user is predicted
to be absent and H1 represents that primary user is
predicted to be present. H0 and H1 represent the channel
state, where the probabilities are given by P (H0) = PI
and P (H1) = PB. Let QS denote the accuracy of CS.
We can get that

QS =P (H1H1) + P (H0H0)

=P (H1)P (H1|H1) + P (H0)P (H0|H0)

=PBQd + PI(1−Qf ).

(8)

C. Transmission Stage

Transmission action is decided based on the CP or
CS decision obtained in the first two stages. If the
system believes that the PU channel state is idle, the
transmission will start by consuming the energy eT and
occupying the time period tT. The decision tree diagram
of the sensing-after-prediction scheme is illustrated in
Fig. 2. The system decision accuracy, denoted by Q,
can be finally obtained and given by

Q = PDMQDM + PIM (PBQd + PI (1−Qf )) . (9)

Recall that QS = PBQd+PI(1−Qf ). Hence, (9) can be
simplified by using (8), yielding Q = PDMQDM+PIMQS.
It clearly reflects the system decision accuracy depends
on the prediction accuracy and the sensing accuracy.
Note that the system accuracy is impacted by the learning
cluster size n1, the sensing cluster size n2, as well as
the decision threshold σ. To better reflect that, Q will

Fig. 2: Decision tree diagram of the system.

be written as Q(σ, n1, n2) in the following sections. As-
sume that a majority rule is used for CS, i.e., q =

⌈
n2+1

2

⌉
in (6) and (7). Then, by inserting (3a), (3b), (6) and (7)
into (9), the analytical expression of system accuracy can
be finally given by (10). To verify the accuracy of (10),
Monte-Carlo simulations will be provided in Section V.

III. PROBLEM FORMULATION AND THEORETICAL
ANALYSIS

Based on the proposed cluster-based sensing-after-
prediction scheme and the system accuracy analysis
given in Section II, in Section III we will formulate
the optimization problems, with the aim of reducing the
number of participating users and the total energy con-
sumption for CRNs while maintaining system accuracy
and energy performance. To solve the challenging integer
programming problems, in this section we will first focus
on the unconstrained problems and derive the optimal
solutions for them. The provided analysis can serve as
a foundation for the ultimate solutions to the original
constrained optimization problems.

A. Problem Formulation

The transmission states of the system are summarized
in Table II, where Ts indicates that a transmission is
scheduled consuming the energy eT, while NT represents
no transmission. In Table II, Qi represents the probability
of cooperative sensing correctly detecting the idle state
of primary channel, i.e., P (H0|H0). From (7), we can
get that Qi = 1 − Qf . When the primary channel
is busy, the miss detection probability of cooperative
sensing is denoted by Qm, equal to 1−Qd. Recall that
QDM represents the correct probability of CP. Hence,
the error probability of the CP decision is given by
QFM = 1−QDM.

In each time slot, the total energy consumption of
the proposed scheme is evidently the summation of
consumed energy during the Prediction Stage, Reaction
Stage and Transmission Stage. The energy consumption
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Q (σ, n1, n2) =

n1∑
l=σ

Ç
n1
l

å
pl(1− p)n1−l

+

Ñ
PB

n2∑
l=q

Ç
n2
l

å
P ld (1− Pd)n2−l + PI

Ñ
1−

n2∑
l=q

Ç
n2
l

å
P lf (1− Pf )

n2−l

éé
×

(
1−

n1∑
l=σ

Ç
n1
l

å
pl(1− p)n1−l −

n1∑
l=σ

Ç
n1
l

å
pn1−l(1− p)l

)
.

(10)

TABLE II: Transmission states of the system.
Channel
condition

Prediction
state

Energy cost per slot Status ProbabilityPrediction Reaction Transmission

Busy
DM

eM

0 NT, 0 Correct silence PBPDMQDM
0 Ts, eT Fault transmission PBPDMQFM

IM eS NT, 0 Correct silence PBPIMQd

eS Ts, eT Fault transmission PBPIMQm

Idle
DM 0 NT, 0 Miss transmission PIPDMQFM

0 Ts, eT Correct transmission PIPDMQDM

IM eS NT, 0 Miss transmission PIPIMQf

eS Ts, eT Correct transmission PIPIMQi

of transmission is assumed to be fixed, and thus is
omitted in the discussions below for simplicity. Assume
that there are in total L slots during one experimental
period. According to the probabilities provided in Table
II, it can be calculated that the consumed energy, in
Joule, for performing prediction and sensing during one
experimental period is

ET(σ, n1, n2) = n2LPIMeS + n1LeM

= n2L

(
1−

n1∑
l=σ

Ç
n1
l

å
pl(1− p)n1−l

−
n1∑
l=σ

Ç
n1
l

å
pn1−l(1− p)l

)
eS + n1LeM,

(11)

where eM and eS are the slot-wise energy spent at a SU
during prediction and sensing, respectively.

Because the SUs are all battery-powered devices, it is
important to limit the peak energy consumption of each
device to extend their battery life. In our cluster-based
sensing-after-prediction scheme, the maximum energy
consumption of a typical SU occurs when the user,
denoted by np, is in the learning cluster as well as in
the sensing cluster, i.e., np ∈ N1 ∩ N2. Its peak energy

consumption, denoted by E(σ, n1), can be given by

E(σ, n1) = LPIMeS + LeM

= L

(
1−

n1∑
l=σ

Ç
n1
l

å
pl(1− p)n1−l

−
n1∑
l=σ

Ç
n1
l

å
pn1−l(1− p)l

)
eS + LeM.

(12)

After obtaining the above expressions, we can then
start to formulate the optimization problems. As men-
tioned in the previous sections, two optimization prob-
lems will be formulated, namely P1 and P2. P1 aims
to minimize the number of participating SUs under
the constraints of energy consumption and accuracy
requirement, while P2 focuses on the minimization of
total energy consumption in the system, under the same
constraints. Thus, P1 can be formulated as

P1: min
n1,n2,σ

M(n1, n2) (13a)

s.t. Q(σ, n1, n2) ≥ ε, (13b)
E(σ, n1) ≤ Emax, (13c)°
n1 + 1

2

§
≤ σ ≤ n1, (13d)

1 ≤ n1 ≤ N, (13e)
1 ≤ n2 ≤ N, (13f)
n1, n2, N, σ ∈ Z, (13g)

where M(n1, n2) is the total number of SUs participat-
ing in learning and sensing, i.e., M(n1, n2) = n1+n2. ε

6



and Emax represent the minimum accuracy requirement
and the maximum energy value, respectively. For P2, we
minimize the total energy consumption ET(n1, n2, σ),
under the constraints of energy consumption and system
accuracy, formulated as

P2: min
n1,n2,σ

ET(n1, n2, σ) (14a)

s.t. Q(σ, n1, n2) ≥ ε, (14b)
E(σ, n1) ≤ Emax, (14c)°
n1 + 1

2

§
≤ σ ≤ n1, (14d)

1 ≤ n1 ≤ N, (14e)
1 ≤ n2 ≤ N, (14f)
n1, n2, N, σ ∈ Z. (14g)

B. Theoretical Analysis

The formulated optimization problem P1 and P2 can
be categorized as integer programming problems which
are challenging to solve. To solve them, we first provide
the theoretical analysis for the system accuracy and the
total energy consumption that will reveal the properties
of constraints and objective functions in P1 and P2.

1) Accuracy Analysis
Let us first focus on the unconstrained accuracy

maximization problem where the learning and sensing
cluster sizes are assumed to be fixed. The threshold
σ is the only variable, in this case. We first relax the
integer variable σ by treating it as a continuous one.
The optimal threshold σ∗0 that maximizes the system
accuracy Q(σ, n1, n2) for the fixed cluster sizes n1 and
n2 can be obtained by taking the first derivative of
Q(σ, n1, n2) with respect to σ. According to [11], we
get that ∂Q(σ,n1,n2)

∂σ ≈ Q(σ + 1)−Q(σ), yielding

∂Q(σ, n1, n2)

∂σ
= (QS − 1)

Ç
n1
σ

å
pσ(1− p)n1−σ

+QS

Ç
n1
σ

å
pn1−σ(1− p)σ. (15)

By setting ∂Q(σ,n1,n2)
∂σ = 0, we get the expression of σ∗0

as follows.

σ∗0 =

® †
1
2 log p

1−p

QS
1−QS

Ä
p

1−p

än1
£

when n1 > 1,

1 when n1 = 1.
(16)

Note that σ∗0 should be in the range of
⌈
n1+1

2

⌉
≤ σ∗0 ≤

n1 to be feasible. By substituting (16) into the feasible

range, it results in the following requirements of QS:
α ≥ QS > 0.5 when n1 is even and p > 0.5,

α ≤ QS < 0.5 when n1 is even and p < 0.5,

α ≥ QS > 1− p when n1 is odd and p > 0.5,

α ≤ QS < 1− p when n1 is odd and p < 0.5,
(17)

where α = pn1

(1−p)n1+pn1
and p 6= 0.5. The detailed

proof can be found in Appendix A. Hence, if (17) is
satisfied, σ∗0 that maximizes the system accuracy can be
calculated using (16), assuming n1 and n2 are fixed. If
the condition (17) is not met, the accuracy expression be-
comes a monotonic function and the maximum accuracy
is achieved at endpoints, i.e, σ∗0 = n1 or σ∗0 =

⌈
n1+1

2

⌉
.

2) Energy Analysis
Correspondingly, we can also obtain the first derivative

of total energy consumption ET (σ, n1, n2), given by

∂ET(σ, n1, n2)

∂σ
≈ n2eSL

ñÇ
n1
σ

å
pσ(1− p)n1−σ

+

Ç
n1
σ

å
pn1−σ(1− p)σ

ô
,

(18)

which is always greater than or equal to 0. It means
that the total energy consumption increases or remains
flat with decision threshold σ. This conclusion will also
be verified in Section V-B. As a result, by assuming
the fixed n1 and n2, when there is no constraint, the
optimal value of σ for minimizing energy consumption
is obtained at

⌈
n1+1

2

⌉
.

IV. ALGORITHM DESIGN

The analytical results given in Section III-B reveal the
properties of accuracy and energy consumption, which
provide the optimal solutions to maximize the system
accuracy and minimize the total energy consumption
when there is no constraint and when the cluster sizes
are fixed. Based on what have been analyzed, in this
section we propose the ultimate solutions to solve the
optimization problems P1 and P2. We start from analyz-
ing the individual consumed energy E(σ, n1) in order
to obtain the range of σ that is constrained by the per-
user maximum energy consumption. Assuming that n1
is a fixed value, we find E(σ, n1) has the following
properties:
• Property 1: E(σ + 1, n1) ≥ E(σ, n1).

This is obtained by applying ∂E(σ,n1)
∂σ ≈

E(σ + 1, n1) − E(σ, n1), yielding ∂E(σ,n1)
∂σ ≈

eSL
[(
n1

σ

)
pσ(1− p)n1−σ +

(
n1

σ

)
pn1−σ(1− p)σ

]
which is always greater than or equal to 0. It
indicates that E(σ, n1) monotonically increases or
stays stable with the increase in σ.
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• Property 2: E(σ, n1 − 1) ≥ E(σ, n1). To illustrate
this, Fig. 3(a) is plotted which shows that PIM de-
creases with n1. Since E(σ, n1) monotonically in-
creases with PIM, therefore in our system, E(σ, n1)
becomes smaller with a larger n1.

• Property 3: E(σ, n1) ≥ E(σ − 1, n1 − 1) ≥
E(σ, n1 + 1). This can be confirmed by Fig. 3(b).

• Property 4: E(n1, n1) > E(n1 − 1, n1 − 1). The
detailed proof of this property is provided in Ap-
pendix B. By recursively using this property, we can
conclude that the upper bounds for each n1 follow
E(N,N) > E(N−1, N−1) > E(N−2, N−2) >
· · · > E(1, 1).

By leveraging these function properties, for any given
n1, an Upper-Bound Search (UBS) method can be de-
signed to find the feasibility region of σ constrained by
the energy consumption limit. The design strategies of
UBS are summarized as below:

1) We first find the smallest value i that satisfies
E(i, i) > Emax, ∀i ∈ [1, N ]. According to Property
4, we can note that for any n1 ∈ [1, i− 1], we have
E(n1, n1) ≤ Emax satisfying the maximum energy
constraint. According to Property 1, we know that
E(σ, n1) monotonically increases or stays stable
with the increase in σ. Hence, for any n1 ∈ [1, i−1],
the feasibility region of σ satisfying the energy
consumption constraint is σ =

⌈
n1+1

2

⌉
: n1.

2) Since i is the smallest integer that satisfies E(i, i) >
Emax, ∀i ∈ [1, N ], according to Property 2, we have
that E(i, i+ 1) ≤ Emax. Furthermore, according to
Property 3, we have E(N − 1, N) ≥ · · · ≥ E(i +
1, i+ 2) ≥ E(i, i+ 1). Hence, we can continue the
search by increasing the parameter values until we
find those violating the energy limit, i.e., E(i+l, i+
1 + l) > Emax, where 1 ≤ l ≤ N − i− 1. Then, we
can see that for any n1 ∈ [i, i + l], the feasibility
region of σ satisfying the energy consumption limit
is [
⌈
n1+1

2

⌉
, n1 − 1].

3) By reusing Property 2, we know that E(i+l, i+2+
l) ≤ Emax. Hence, we can use the same strategy to
search starting from E(i+ l, i+2+ l) until we find
the next violating point, i.e., E(i+ l+ l1, i+2+ l+
l1) > Emax, where 1 ≤ l1 ≤ N − i − 2 − l. Then,
we can see that for any n1 ∈ [i+ 1 + l, i+ 1 + l+
l1], the feasibility region of σ satisfying the energy
consumption limit is [

⌈
n1+1

2

⌉
, n1−2]. Let ct denote

the number of times that the (σ, n1) pair violates
the energy consumption constraint, i.e., E(σ, n1) >
Emax. From the above discussions, we can note that
by using our search method, for any learning cluster
number ∈ [n1, n1 + lct−1], the feasibility region of

σ satisfying the energy consumption limit can be
given by [

⌈
n1+1

2

⌉
, n1 − ct].

A. Upper-Bound Search Algorithm (UBS)

After obtaining the optimal solutions to the uncon-
strained problems and finding the feasibility region of
σ under the energy consumption constraint, we can
start searching the optimal solution (n∗1, n

∗
2, σ
∗) to P1.

Recall that P1 aims to minimize the number of SUs
in learning and sensing clusters, i.e., n1 + n2, while
satisfying accuracy and energy constraints. As shown in
the Pseudocode of UBS-1, given in Algorithm 1, each
n2 value, where n2 ∈ [1, N ], needs to be evaluated.
Then, for any n2, the search of n1 stops if there is σ
meeting both constraints (13b) and (13c). Since P1 has
an accuracy requirement, hence for any given n1 and n2,
it is important to first check if the maximum accuracy
obtained for the unconstrained accuracy maximization
problem, given in Section III-B1, can satisfy the accu-
racy requirement (13b). If that does not hold, it means for
the considered n1 and n2, there is no such σ satisfying
the constraint (13b). Hence, we should continue the
search by increasing the values of n1 or n2. If that holds,
it means that for the given n1 and n2, there is at least
one σ that can satisfy the constraint (13b). Then, we
need to check if these σ values satisfying (13b) also meet
the constraint (13c). According to the analysis given at
the beginning of Section IV, for any given n1 and n2,
we can find the range of σ constrained by the energy
consumption limit, meaning that the constraint (13c) can
be now converted into the feasible range of σ. Hence, we
just need to check if these σ values satisfying (13b) also
fall in the feasible range constrained by (13c). Note that
for any n1 and n2, only those σ values that can satisfy
both (13b) and (13c) are possible solutions to P1. It is
possible that for a given (n1, n2) pair, there are multiple
σ values satisfying both constraints. In this case, we pick
the σ that achieves the highest accuracy Q(σ, n1, n2).
Each feasible tuple (n1, n2, σ) that meets all constraints
(13b)-(13g) is stored in a matrix F . Among all the
feasible solutions, the optimal solution (n∗1, n

∗
2, σ
∗) is

the one that achieves the minimum n1 + n2.
Let us analyze the complexity of UBS-1. The inner

loop "while n1 ≤ N" is designed to find the first minimal
n1 that meets the requirements. Since the range of σ
for each n1 is σ =

⌈
n1+1

2

⌉
: n1, the complexity of

Q(σ, n1, n2) and E(σ, n1) for each inner loop step is
O(n1). The inner loop is stopped when algorithms find
the first optimal solution from n1 = 1 to N , while the
maximum complexity of the inner loop becomes O(N2).
The outer loop "while n2 ≤ N" is designed to explore
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Fig. 3: Properties of different functions.

the sensing cluster size of each n1. Each n2 needs to
search its corresponding minimal n1 value in the inner
loop in order to find the minimal n1 + n2. The outer
loop "while n2 ≤ N" will not stop until n2 = N and
the complexity of the outer loop will be O(N). Since

Algorithm 1 UBS-1

Input: N , ε, Emax, Pd, Pf , p, PB, PI
1: Set n1 ← 1, n2 ← 1, σ ← 1,
F = ∅, I = [], QI = ∅

2: while n2 ≤ N do
3: while n1 ≤ N do
4: if E(σ, n1) > Emax then
5: ct ← ct + 1;
6: end if
7: Set I =

[⌈
n1+1

2

⌉
, · · · , n1 − ct

]
8: if Q(σ∗0 , n1, n2) ≥ ε then
9: if σ∗0 ∈ I then

10: Set F ← F
⋃
{(n1, n2, σ∗0)};

11: break
12: else
13: Insert σ = (I1, Iend) into (10) to calculate

Q(σ, n1, n2);
14: Set QI ← {Q(σ, n1, n2)|σ =

(I1, Iend), Q(σ, n1, n2) ≥ ε};
15: if QI 6= ∅ then
16: F ← F

⋃
{(n1, n2, σ)|σ ←

arg maxQI};
17: break
18: end if
19: end if
20: end if
21: n1 = n1 + 1;
22: σ = n1 − ct;
23: end while
24: n2 = n2 + 1;
25: end while
Output: (n∗1, n

∗
2, σ
∗)← arg min

(n1,n2,σ)∈F
n1 + n2

there are two nested loops from 1 to n1 and from 1
to N respectively, their maximum complexity will be
O(N3). If the exhaustive search is used for optimization,
all n1, n2, σ need to be searched in three nested loops.
Moreover, the computation of each σ still includes the
totalization of σ =

⌈
n1+1

2

⌉
: n1. Since the upper bound

of each variable is N, the complexity becomes a constant
O(N4). It can be noticed that the complexity of our
proposed algorithm is lower than the exhaustive search.

Recall that P2 aims to find the (n∗1, n
∗
2, σ
∗) that mini-

mize the total energy consumption ET of the scheme,
while satisfying accuracy and energy constraint. As
shown in the Pseudocode of UBS-2, given in Algorithm
2, each n2 value in n2 ∈ [1, N ] needs to be evaluated.
For any n2, the search for each n1 and its total energy
consumption ET is established. According to the analysis

9



Algorithm 2 UBS-2

Input: N , ε, Emax, Pd, Pf , p, PB, PI
1: Set n1 ← 1, n2 ← 1, σ ← 1,
F = ∅, I = [], QI = ∅

2: while n2 ≤ N do
3: while n1 ≤ N do
4: if E(σ, n1) > Emax then
5: ct ← ct + 1;
6: end if
7: Set I =

[⌈
n1+1

2

⌉
, · · · , n1 − ct

]
8: Insert each σ ∈ I into (10) to calculate

Q(σ, n1, n2);
9: Set QI ← {Q(σ, n1, n2)|σ =

I,Q(σ, n1, n2) ≥ ε};
10: Update I ← {σ|Q(σ, n1, n2) ≥ ε, σ = I};
11: if QI 6= ∅ then
12: Insert σ = I1 into (11) to calculate

ET(σ, n1, n2);
13: F ← F

⋃
{ET(σ, n1, n2)|σ ← I1};

14: end if
15: n1 = n1 + 1;
16: σ = n1 − ct;
17: end while
18: n2 = n2 + 1;
19: end while
Output: (n∗1, n

∗
2, σ
∗)← arg min

ET(n1,n2,σ)∈F
ET(n1, n2, σ)

given at the beginning of Section IV, same as P1, for any
given n1 and n2, we can find the range of σ constrained
by the energy limit, meaning that the constraint (14c)
can be now converted into the feasible range of σ. Since
P2 has the same accuracy requirement as P1, hence for
any given n1 and n2, it is important to check if the
accuracy obtained for each σ in the feasible range can
satisfy the accuracy requirement, i.e., we need to check
if these σ values in the feasible range constrained by
(14c) also satisfy (14b). The σs that do not satisfy the
accuracy requirement need to be dropped. The range of
σ that meets all constraints is stored in a matrix I . Recall
that in Section III-B2, we have shown that ET is a non-
decreasing function with σ. Hence, for a given n1 and
n2, the σ∗ for the minimum total energy consumption
will be the first value of the obtained range, i.e., σ∗ = I1.
We store the minimum ET that meets all constraints
(14b)-(14g) for this specific (n1, n2, I1) in a matrix F .
Finally, among all feasible solutions, the optimal solution
(n∗1, n

∗
2, σ
∗) is the one that achieves the minimum ET.

In the worst case, the complexity of search algorithm P2
will become O(N4), which is the same as exhaustive

search. However, in most cases, the calculation steps
of our algorithm are much less than exhaustive search
because the searching of each σ is avoided.

Regarding the feasibility of this system in real-world
settings, we would like to provide the following dis-
cussions. Firstly, the assumption of regular PU chan-
nel usage patterns in this work is based on real-life
measurement data collected from a school building,
which is considered a relatively stable environment [23].
Therefore, the prediction model does not need to be
frequently retrained, as long as the PU exhibits a stable
frequency of presence during specific times of the day.
In some extreme scenarios, PU behavior may drastically
change, but this will not happen frequently. Thus, the
possibility of retraining our prediction model in real-
time (or in a short period of time) is low. Secondly,
the requirements of SUs are not updated in real-time.
Instead, it is reasonable to allow SUs to report their
energy consumption and accuracy requirements at the
beginning of regular intervals. After collecting the up-
dated requirements of SUs, the algorithm will be invoked
to generate optimal decisions for the subsequent interval.
Thirdly, the algorithm does not select specific SUs to
include in a cluster. Instead, the algorithm determines
the optimal clustering strategy and calculates the optimal
number of SUs required with its optimal threshold in
learning and sensing clusters. As a result, the arrival or
departure of an individual SU will not trigger the re-
execution of our algorithm in real time. Even if an SU
departs from a cluster, we only need to add another SU
to maintain the optimal number of SUs in the cluster.
Therefore, in conclusion, even with a large number
of users, calculations only need to be performed once
within a given time period under a static environment.
It is thus worth sacrificing processing time to reduce
energy consumption by adjusting the parameters n1, n2,
and σ.

V. SIMULATION RESULTS

In this section, we will simulate the proposed sensing-
after-prediction scheme in a CRN and compare it with
the other benchmark schemes. Simulations will be also
provided to validate the derived analytical expressions
of system accuracy and energy consumption. We will
simulate and show the expressions of system accuracy
in Section V-A. The optimal threshold values to the
unconstrained problems given in Section III-B are also
simulated and compared with exhaustive search results.
Then, in Section V-B, we will simulate and show the
energy consumption of different schemes. The trade-offs
between energy performance and accuracy are also dis-
cussed after deriving the expression of energy efficiency.
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In Section V-C, to validate the search algorithms UBS-1
and UBS-2, we compare their search results with that
of exhaustive search, under the necessary constraints of
system accuracy and energy consumption. Finally, we
provide performance analysis about optimizations P1 and
P2.

For the simulations, we assume that eS = 100 mJ,
eM = 10 mJ, L = 1000, Pf = 0.1 and Pd = 0.775
[29], unless otherwise indicated. We also have that PB =
1/6 and PI = 5/6, inspired by [23] and [21]. It is also
assumed that the accuracy requirement ε = 0.995 and the
total number of SUs in the network is 50, i.e., N = 50.
The ML prediction accuracy p is 0.85 in Section V-A
and V-B unless otherwise indicated. Since Section V-A
and V-B do not involve optimization results, the learning
and sensing cluster sizes n1 and n2 are set to be identical
in these two subsections unless otherwise indicated, i.e.
n1 = n2 = n, in order to clearly show the results and
avoid excessive parameters.

A. Accuracy performance

In this subsection, we aim to validate the derived ana-
lytical expressions of system accuracy, given in Section
II and Section III-B1. Fig. 4 plots the accuracy versus
the threshold σ where the analytical results using the de-
rived analytical expression (10) and Monte Carlo results
are both shown. It can be observed that the analytical
results closely match with Monte Carlo simulations. It
confirms the accuracy of the derived expression (10).
Recall that when we analyze the optimal solution to
the unconstrained accuracy maximization problem in
Section III-B1, we find that the optimal solution depends
on the values of n and p, where the detailed conditions
are given in (17). In order to validate our analysis in
Section III-B1, Fig. 5 plots the system accuracy versus
the threshold σ for different cluster sizes. In order to
show the impact of (17), different values of p are used.
From figure 5(b) and 5(c), it can be observed that there
exists an optimal threshold for each given cluster size n
where the system reaches its maximum accuracy. When
p = 0.4, the condition (17) is not satisfied. Figure
5(a) shows that in this case, the accuracy becomes a
monotonic function, which confirms our analysis. Then,
we want to provide simulations to validate the accuracy
of the derived analytical optimal solution to the uncon-
strained accuracy maximization problem discussed in
Section III-B1. Fig. 6 is thus plotted showing the optimal
threshold versus the cluster size. It can be noticed that the
analytical results of optimal threshold perfectly match
with the exhaustive search results.

In order to show the advantage of the proposed
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Fig. 4: Comparison of accuracy between analytical re-
sults and Monte-Carlo simulations.

sensing-after-prediction scheme, Fig. 7(a) plots the accu-
racy versus the cluster size for the proposed scheme and
two benchmark schemes. The two benchmark schemes
are the CS-only scheme or the CP-only scheme respec-
tively. As their names suggest, each of them only uses
a single method (sensing or prediction) instead of our
joint approach to identify the underutilized spectrum.
From this figure, it can be noticed that the accuracy
of our sensing-after-prediction scheme is higher than
the two benchmark schemes. Furthermore, it can be
shown that the CS scheme performs better than the CP
scheme when n is small. The reason is when Pf = 0.1
and PI = 5/6, at small values of n, a low Pf and
a high PI will cause 1 − Qf dominate QS, resulting
in an amplified influence of p < 1 − Pf . When the
cluster size n becomes larger, CP performs better than
CS. In fact, all schemes reach a similar level when n
is very large but our sensing-after-prediction scheme
remains the highest accuracy. Fig. 7(b) shows the en-
ergy performance of the proposed scheme (cooperative
learning-sensing) and parallel CS scheme (cooperative
sensing only). The parallel CS scheme is assumed to
use the same decision model and optimizations as the
proposed scheme but it replaces the ML prediction phase
of the proposed scheme with spectrum sensing. Fig. 7(b)
illustrates that under the same condition, the scheme only
uses spectrum sensing consumes more energy than the
proposed scheme. Moreover, the energy consumption of
both schemes is increased with decision threshold σ.

B. Energy performance

In this section, we aim to evaluate the energy perfor-
mance and the trade-offs of the proposed scheme. Energy
efficiency (EE) of proposed scheme is also derived
and analysed in this section. Finally, we will simulate
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Fig. 5: System accuracy versus σ with different n and p
values.

and show the energy performance of different schemes.
Because we set n1 = n2 = n, it means all users are
assumed to perform both CP and CS.

Apart from energy consumption, EE is another crit-
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exhaustive search for the unconstrained optimal σ∗0 .

5 10 15 20 25 30 35 40 45 50

Cluster size

0.975

0.98

0.985

0.99

0.995

1

A
c
c
u

ra
c
y

The proposed scheme

Sensing-only scheme

Learning-only scheme

(a) Accuracy comparison between the proposed scheme and two
benchmark schemes.

10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140

160

180

200

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

n=20 proposed scheme

n=20 paralleled CS

n=24 proposed scheme

n=24 paralleled CS

(b) Energy comparison between the proposed scheme and
benchmark scheme.

Fig. 7: Comparison between the proposed scheme and
benchmark schemes.

ical reflection of energy performance. We will show
the performance of the adopted sensing-after-prediction
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scheme in terms of both metrics and discuss the tradeoff
between energy performance and accuracy performance.
Let us first derive the expression of EE. According to
the probabilities provided in Table II, it can be calculated
that the probability of data being successfully transmitted
is Psucc = PI (PDMQDM + PIMQs). Let r indicate the
data rate of the channel. The amount of data transmitted,
denoted by CT, equals rtT bits. After obtaining the
above equations, the total amount of data successfully
transmitted per user can be obtained and expressed as
Csucc = PsuccLCT bits.

The effective energy efficiency (bit/J) per user is
defined as the ratio of data successfully transmitted
to the energy spent during the sensing-after-prediction
process, yielding η = Csucc

E = rtTPI(PDMQDM+PIMQs)
eM+PIMeS

. The
data rate r is set to be 1Mb/s and the transmission
stage duration tT = 10ms. Fig. 8(a) shows that the
effective energy efficiency monotonically decreases with
decision threshold σ, while Fig. 8(b) shows that the
energy consumption monotonically increases with σ. The
maximum accuracy and minimum energy consumption
cannot be achieved by one same σ, which lead to our
optimization problem. On the other hand, maximum
efficiency and minimum energy consumption cannot be
achieved by one same σ, which is another trade-off.

In order to show the energy performance of the
proposed scheme, we simulate and compare the energy
consumption between different schemes. Fig. 9(a) and
Fig. 9(b) illustrate the average and total energy con-
sumption versus the cluster size n for the proposed
scheme and benchmark schemes. In Fig. 9(a), it is as-
sumed that there are no energy and accuracy constraints.
The two benchmark schemes are cooperative spectrum
prediction model (CPM) in [30] and the CS-only [11]
scheme. CPM is a joint sensing-prediction scheme where
in spectrum prediction phase, SUs perform CP using
HMM/MLP model. However, cluster size and DM/IM
state control of sensing and learning cluster are not
considered in CPM. Because there is no accuracy con-
straint in this section, the optimal threshold is used
to reach maximum accuracy. Fig. 9(a) shows that the
average energy consumption per SU of our proposed
sensing-after-prediction scheme is much smaller than
two benchmark schemes at large cluster size. Recall
that the average energy consumption of the proposed
scheme is E = LPIMeS + LeM. In comparison, for
the CS-only scheme, the average energy consumption
is given by ES1

= LeS. When the cluster size becomes
larger, the probability of entering the IM state, i.e., PIM,
is reduced. Hence, in our proposed scheme, there is a
smaller probability that SUs need to perform sensing,
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Fig. 8: Trade-offs between energy performance and
system accuracy.

resulting in a smaller energy consumption.
Fig. 9(b) is plotted to illustrate that the total energy

consumption for the sensing-after-prediction scheme is
also smaller than the other benchmark schemes under
the same requirements. Using maximum cluster size
max(n1, n2) as the x-axis is because it can show the
flexibility of the proposed scheme and can be compatible
with other benchmark schemes to perform comparisons.
In each cluster size, we find the optimal n1, n2 com-
bination of different schemes for minimizing the total
energy consumption under the same requirements. Sim-
ilar energy optimizations are performed for the semi-
fixed scheme, the parallel CS scheme and the proposed
scheme. It is assumed that the semi-fixed scheme only
exists one cluster and each SU in the cluster performs
CS and CP, i.e., n1 = n2. From Fig. 9(b), it can
be observed that the total energy consumption of the
proposed scheme is lower than the semi-fixed scheme at
smaller cluster sizes and performs similarly at a larger
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Fig. 9: The comparison of energy consumption between
the proposed scheme and benchmark schemes.

cluster sizes. Thus, the proposed scheme consumes less
energy due to the flexibility of n1, n2.

On the other hand, benchmark schemes "equivalent
cooperative spectrum sensing (CS)" and "equivalent co-
operative prediction (CP)" are plotted in Fig. 9(b). The
equivalent scheme aims to illustrate that under the same
conditions and requirements, the amount of energy con-
sumed by CP and CS schemes in order to reach the same
required performance as our proposed scheme. Fig. 9(b)
shows that the proposed scheme consumes much less
energy than the equivalent CS and CP schemes. Finally,
Fig. 9(b) plots a parallel CS scheme as a benchmark.
The parallel scheme is assumed to use the same decision
model as the proposed scheme but it replaces the ML
prediction phase of the proposed scheme with spectrum
sensing. From Fig. 9(b), it can be observed that under the
same conditions and requirements, the proposed scheme
consumes much less energy than parallel CS scheme.
Moreover, the parallel scheme still consumes less energy

than the equivalent CS scheme because the decision
structure of parallel scheme is same as the proposed
scheme.

C. Model comparison

In this section, we will simulate the proposed search
algorithms and compare their optimal solutions with
exhaustive search. Then, we will show the performance
of the proposed optimizations and compare it with a
benchmark scheme.

Recall that the optimization problem P1 aims to find
the minimum number of participating users and P2 aims
to minimize the total energy consumption, solved by
search algorithms UBS-1 and UBS-2, respectively. Table
III and Fig. 10 are provided to compare the simulation
results of the proposed search algorithms and exhaustive
search. From a practical point of view, the prediction
accuracy p is set to be larger than 0.6. It can be noticed
that the obtained optimal solutions of UBS-1 and UBS-
2 perfectly match with the exhaustive search results
under different values of p. From Fig. 10, it can be
observed that n1 or n2 does not always decrease with
p. This is because the optimization aims to minimize
the summation, i.e., n1 + n2. Furthermore, it can be
noticed that n1 and n2 reduce to 1 when prediction
accuracy becomes large. This is because CP can now
easily meet the accuracy requirement hence the demand
for performing spectrum sensing becomes relatively low
when p is large.

Due to the fact that the power consumption of per-
forming sensing is normally larger than conducting
learning, it can be observed from Table III that a smaller
sensing cluster can reduce the power consumption signif-
icantly. In our proposed scheme, the probability of sens-
ing cluster performing spectrum sensing is determined by
n1 and its threshold σ, while the energy consumption and
the system accuracy are determined by n1, n2, and σ.
If the accuracy requirement is low, small values of
n1, n2 will be preferentially chosen by our algorithm
and the power consumption will be reduced significantly.
However, in some extreme cases such as low prediction
accuracy or high accuracy requirement scenarios, where
more sensing users are needed to achieve the accuracy
requirement, a very small sensing cluster size would not
be feasible. In this case, our algorithm will pick a cluster
size that is as small as possible while satisfying the
accuracy requirements.

In order to demonstrate the performance of our pro-
posed cluster-based scheme after applying cluster con-
trol and threshold optimizations, Figure 11 presents the
total energy consumption and the number of partici-
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TABLE III: Optimal (n1, n2, σ) obtained using our algorithms and exhaustive search.
ML accuracy p 0.6 0.7 0.8 0.9 1

For P1
UBS-1 (32,13,21) (11,9,9) (13,1,8) (6,1,4) (1,1,1)

Exhaustive search (32,13,21) (11,9,9) (13,1,8) (6,1,4) (1,1,1)
Total users in clusters 42 20 14 7 2

For P2
UBS-2 (50,11,30) (26,5,15) (11,3,7) (6,1,4) (1,1,1)

Exhaustive search (50,11,30) (26,5,15) (11,3,7) (6,1,4) (1,1,1)
Total users in clusters 66 31 14 7 2
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Fig. 10: The comparison of solutions between UBS
algorithms and exhaustive search.

pating users, while adopting optimal solutions to P1
and P2. Additionally, the figure also includes a parallel
prediction-sensing scheme and another scheme where P1
and P2 are jointly considered. In the joint scheme, total
energy consumption is considered as a constraint when
minimizing the total participating users. In Figure 11,
a total energy consumption limitation of 6000J and an
accuracy requirement of 0.98 are assumed for the joint
scheme. Similar to the scheme discussed in section V.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Prediction accuracy p

0

0.5

1

1.5

2

2.5

3

3.5

4

T
o

ta
l 
e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 E

T
 (

J
)

10
4

Proposed scheme with P1 optimal solutions

Parallel scheme without cluster control

Proposed scheme with P2 optimal solutions

Proposed scheme with P1 and P2 jointly considered

(a) Total energy consumption versus p

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Prediction accuracy p

0

10

20

30

40

50

60

70

80

90

100

110

P
a

rt
ic

ip
a

ti
n

g
 u

s
e

rs
 n

1
+

n
2

Proposed scheme with P1 optimal solutions

Parallel scheme without cluster control

Proposed scheme with P2 optimal solutions

Proposed scheme with P1 jointly considered

(b) Total participated users versus p

Fig. 11: Performance comparison between the proposed
scheme with optimal solutions and benchmark schemes.

B, the parallel scheme assumes a fixed cluster size with
n1 = n2 = 50, and the optimal threshold that maximizes
the system accuracy is used.

Figure 11(a) demonstrates that the energy consump-
tion decreases with prediction accuracy p after adopting
the optimal solutions for P1 and P2. The energy con-
sumption obtained with P2 solutions is either less than
or equal to that of P1, as P2 aims to minimize the total
energy consumption while P1 focuses on minimizing
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the number of required users. Notably, the total energy
consumption of our proposed cluster-based scheme is
consistently lower than that of the parallel scheme. When
the prediction accuracy is low, e.g., 0.65, by adopting
our optimal P2 solution, the total energy consumption
can be reduced by 87.5%. In contrast, the joint scheme
serves as a compromise between P1 and P2, and as
depicted in Figure 11(a), its energy consumption falls
between P1 and P2, with closer proximity to P1 in the
high prediction accuracy interval. Additionally, it can
be observed from Figure 11(a) that the performance of
using P1 solutions and the parallel scheme are similar
when p ∈ [0.72, 0.75]. This is because n2 needs to be
slightly larger than n1 in order to satisfy the accuracy
requirement, and the required energy limitation can
be easily met, resulting in a sacrifice of total energy
consumption when minimizing n1 + n2.

Figure 11(b) shows that the number of participating
users decreases with p when the optimal solutions for
P1 and P2 are adopted. The number of participating
users obtained with optimal P1 solutions is not greater
than that of P2, as P1 aims to minimize the number of
participating users while P2 focuses on minimizing the
total energy consumption. As depicted in Figure 11(b),
the number of required users in our proposed cluster-
based scheme is significantly lower than that of the
parallel scheme. When the prediction accuracy is high,
e.g., 0.9, by adopting our optimal P1 solution, the total
participating users can be reduced by 95%. Similarly, in
the joint scheme, which serves as a compromise between
P1 and P2, it can be observed from Figures 11(a) and
11(b) that the number of participating users is sacrificed
to meet the energy consumption requirement in a low
prediction accuracy range. Furthermore, the optimal so-
lutions for P1 and P2 provide similar performance in
a high prediction accuracy range, as shown in Figure
11(b).

VI. CONCLUSIONS

This paper proposed a novel cluster-based sensing-
after-prediction scheme with flexible cluster size where
the learning cluster and sensing cluster are jointly con-
sidered/optimized. Theoretical analysis were conducted
and analytical expressions were derived for system accu-
racy and energy consumption. With the aims of reducing
the total number of participating users and total energy
consumption while guaranteeing the system accuracy
requirement and individual energy constraints, the opti-
mization problems P1 and P2 were formulated. To solve
it effectively, the unconstrained problems were mathe-
matically solved first by relaxing the integer variable

and fixing the cluster size, the analytical solutions of
which serve as a foundation for solving the original op-
timization problems. Finally, two low-complexity search
algorithms UBS-1 and UBS-2 were developed to solve
the two optimization problems P1 and P2 and validated
by comparing with exhaustive search. Simulation results
validated the accuracy of the derived analytical expres-
sions and demonstrated that the total energy consumption
and the number of users contributing to learning and
sensing can be greatly reduced by applying our proposed
scheme. Furthermore, it is also shown that the proposed
scheme outperforms benchmark schemes. Moreover, the
simulation results revealed that optimizations P1 and
P2 achieve a similar performance in high prediction
accuracy region.

APPENDIX A
PROOF OF CONDITION (17)

Note that σ∗0 needs to satisfy a feasible range⌈
n1+1

2

⌉
≤ σ∗0 ≤ n1, where n1 ∈ Z. After obtaining

the expression of σ∗0 in (16), it can be substituted into
the range, yielding°
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≤
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≤ n1.

(19)
Let us first focus on the first inequality, i.e.,

⌈
n1+1

2

⌉
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σ∗0 . When n1 is odd, we have
⌈
n1+1

2
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= n1+1

2 ,
meaning that n1−1

2 < n1+1
2 ≤ σ∗0 . Thus, we get
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> n1 − 1. When n1 is even, we
have
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2 , meaning that n1
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2 ≤ σ∗0 .

Thus, we get log p
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> n1.
For the second inequality,i.e., σ∗0 ≤ n1, by as-

suming p 6= QS, the inequality can be written as
1
2 log p

1−p

QS
1−QS

Ä
p

1−p

än1 ≤ n1. It is known that the
monotonicity of a logarithmic function depends on its
base. For a function loga x, it is monotonically in-
creasing if a > 1 and monotonically decreasing if
0 < a < 1. Hence, we note that log p

1−p

QS
1−QS

Ä
p

1−p

än1

is monotonically increasing if p > 0.5 and monotonically
decreasing if p < 0.5. Finally, by combining all the
results, we have (17).

APPENDIX B
PROOF OF PROPERTY 4 IN SECTION IV

It can be confirmed from Property 1 that the E(σ, n1)
monotonically increases or stays stable with the increase
in σ. For each n1, E(σ, n1) reaches its upper bound
when σ = n1. When σ = n1, we have

E(n1, n1) = (1− (pn1 + (1− p)n1))LeS , (20)
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∂E(n1, n1)

∂n1
= −LeS [pn1 ln p+ (1− p)n1 ln(1− p)] .

(21)
Since ln p and ln(1 − p) are always less than 0 when
0 < p < 1, hence ∂E(n1,n1)

∂n1
is always larger than or

equal to 0, which means that E(n1, n1) will increase
or stay stable when n1 increases. As a result, E(σ, n1)
reaches its upper bound of E(n1, n1) when σ = n1 and
reaches its maximum value E(N,N) when σ = N and
n1 = N .
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