
Dissipative preparation and stabilization of many-body quantum states in a
superconducting qutrit array

Yunzhao Wang,1 Kyrylo Snizhko,2, 3 Alessandro Romito,4 Yuval Gefen,5 and Kater Murch1

1Department of Physics, Washington University, St. Louis, Missouri 63130
2Institute for Quantum Materials and Technologies,

Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
3Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 38000 Grenoble, France

4Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
5Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100 Israel

(Dated: August 21, 2023)

We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold
of quantum manybody entangled states with symmetry-protected topological order. Specifically,
we consider the experimental platform consisting of superconducting transmon circuits and linear
microwave resonators. We perform theoretical modeling of this platform via pulse-level simulations
based on physical features of real devices. In our protocol, transmon qutrits are mapped onto spin-1
systems. The qutrits’ sharing of nearest-neighbor dispersive coupling to a dissipative microwave
resonator enables elimination of state population in the Stotal = 2 subspace for each adjacent pair,
and thus, the stabilization of the manybody system into the Affleck, Kennedy, Lieb, and Tasaki
(AKLT) state up to the edge mode configuration. We also analyze the performance of our protocol
as the system size scales up to four qutrits, in terms of its fidelity as well as the stabilization time.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust
and self-corrected quantum manybody states that are topologically non-trivial.

I. INTRODUCTION

Dissipation is usually viewed as an undesirable pro-
cess in handling quantum information, it destroys
quantum coherence and should therefore be removed
by quantum error correction. However, dissipa-
tive processes can also contribute novel elements
for quantum information processing when controlled
and engineered [1, 2]. One such application is in
preparing a quantum manybody system into the
ground state of a generic manybody Hamiltonian [3].
This kind of preparation is typically achieved in one
of three ways. One can engineer the system with the
interactions of a certain Hamiltonian and relax the
system towards the ground state [4]. However, the
appropriate interactions or relaxation may not be
generally achievable, or sufficiently low temperatures
may pose a challenge. Alternatively, one can prepare
a manybody entangled state using adiabacity [5, 6],
where a system is initialized in a trivial ground state
and the Hamiltonian is slowly tuned to adiabatically
produce the manybody ground state. Here, high fi-
delity requires slow evolution and an absence of ex-
cess dissipation that induce quantum jumps between
states. Finally, one can start with a trivial state
and implement a time-dependent Hamiltonian that
will rotate the state into the desired target state,
not insisting on following the instantaneous ground

state, e.g. by sequential unitary operations [7]. How-
ever, determining and implementing the appropri-
ate Hamiltonian with robustness to other sources of
dissipation can be a challenging, if not impossible
task. The limitations of these three approaches mo-
tivate the investigation of driven dissipative methods
in preparing and stabilizing a manybody system in
a non-trivial state. Here, by designing the dissipa-
tive terms in the system Lindbladian [8], the desired
manybody state can be reached and stabilized as
the fixed point of the resulting dynamics [9]. Due
to the intimate connection between disspation and
measurement [10], this approach can be viewed as a
type of blind steering through measurement or equiv-
alently autonomous feedback.

First proposed by Affleck, Kennedy, Lieb, and
Tasaki (AKLT) in 1987, the AKLT state (Fig. 1(a))
is a prototypical example of the Haldane phase [11]
with a symmetry-protected topological order. It
works as a resource state for measurement-based
quantum computation [12, 13], and can be efficiently
represented by matrix-product states (MPS) [14].
Since the MPS representation efficiently describes
a large variety of low-energy states of manybody
Hamiltonians, protocols that can produce the AKLT
state may be generalized for a range of applications.
Compared with the typical preparation method of
the AKLT state based on its matrix product rep-
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resentation via postselection [15, 16], or based on
sequential unitary gates [7] and assisted by measure-
ments [17], driven-dissipative methods create the
manybody state with robustness and self-correcting
features. Here, the system coherence can last much
longer than the lifetime of a single component. Prior
proposals have addressed possible implementation in
ion trap and cold atom systems [18, 19]. Here, we
focus on the ALKT states under open boundary con-
ditions, where there is a four-fold degenerate ground
state. Our protocol stabilizes this subspace of states
in the superconducting transmon platform.

The superconducting circuit QED (cQED) platform,
which we consider, provides a versatile methodology
for controlling superconducting artificial atoms and
their interaction with electromagnetic cavities [20].
In recent years, the platform has been a mainstream
track for developing quantum processors [21]. Su-
perconducting NISQ processors are at the forefront
of the quest for quantum advantage [22] and quan-
tum error correction [23]. Beyond coherent manipu-
lation, cQED allows for designing driven-dissipative
dynamics, which has been shown to enable stabiliza-
tion of single-body states [24–31], two-body states
[32–36], as well as many-body entangled states [37].

In this article, we propose a scheme to dissipatively
stabilize the 1-dimensional AKLT state consisting of
spin-1 particles on such a platform. As is presented
in Fig. 1, a spin-1 chain can be realized with an ar-
ray of superconducting transmon circuits [38], where
each spin-1 particle is identified with the lowest three
energy levels as a qutrit [39]. Here the dissipative el-
ement is provided by autonomous feedback [32] from
reservoir engineering. With two qutrits both cou-
pled to a microwave resonator, local drives combined
with cavity dissipation pump the qutrit pair into the
subspace where their total spin Stotal ∈ {1, 0}. In
stabilization of the ground state of a frustration-
free Hamiltonian, the manybody entangled state
is achieved by applying such two-body dissipation
terms simultaneously on each nearest neighbor pair
as the system size scales up [10]. We thus demon-
strate the viability of preparing and stabilizing a
4-dimensional subspace of weakly entangled many-
body states, the AKLT states, within devices of su-
perconducting transmon qutrits, linear microwave
resonators, and specific microwave drives.

This work is structured as follows. In Section II, we
introduce the physical models to describe the exper-
imental platform and review the entanglement stabi-
lizing scheme via autonomous feedback for the case
of two qubits. In Section III, we propose a driven-
dissipative approach to stabilize the AKLT state in

a superconducting qutrit array and analyze its scala-
bility in terms of state preparation time and steady-
state fidelity. Section IV discusses future extensions
and concludes our article.

II. PHYSICAL MODELS

A. Strong dispersive regime

A spin-1 one-dimensional chain can be realized ex-
perimentally by identifying each spin-1 with the
lowest energy levels of a superconducting transmon
circuit [38–41]. Such encoding between the spin-
1 states and the native transmon states can be
achieved in a simple and direct way. The eigenstates
for the z component of the spin can be written as
|S = 1, Sz = ±1, 0⟩, and the energy levels of the su-
perconducting transmon qutrit can be written as |g⟩,
|e⟩ and |f⟩. Here we encode |S = 1, Sz = −1⟩ to |g⟩,
|S = 1, Sz = 0⟩ to |e⟩ and |S = 1, Sz = 1⟩ to |f⟩. As
is shown in Fig. 1(b), each two adjacent transmons
aligned in a 1D array are coupled to a common mi-
crowave resonator, which is coupled quasi-locally to
a dissipative environment. A transmon qutrit cou-
pled with a linear cavity can be described by the
generalized Jaynes-Cummings Hamiltonian,

ĤJC = ℏω0
r â

†â+ ℏ
∑
j

ω0
j |j⟩⟨j|

+ (ℏ
∑
j

gj,j+1|j⟩⟨j + 1|â† + h.c.),
(1)

with rotating wave approximation applied and qutrit
parameters approaching the transmon limit [38].
Here â†(â) is the cavity photon creation (annihila-
tion) operator, |j⟩ (ℏω0

j ) are the energy eigenstates
(eigenenergies) of the transmon, ω0

r /2π is the cav-
ity resonance frequency and gj,j+1 are the cavity-
transmon couplings. In the dispersive limit [42–44],
the detunings between the cavity frequency and the
qutrit transition frequencies are large compared to
the coupling strength such that |ωj−ωr|/gj,j+1 ≫ 1.
In this case, the system Hamiltonian can be approx-
imated by

Ĥ = ℏωrâ
†â+ ℏ

∑
j

ωj |j⟩⟨j|+ ℏ
∑
j

χj |j⟩⟨j|â†â, (2)

where ωr/2π and ωj/2π are the new cavity and
transmon frequencies which have been renormalized
due to the coupling. The dispersive interaction en-
ergies, ℏχj , shift the cavity resonance frequencies by
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χj/2π depending on the state of the qutrit |j⟩. Sim-
ilarly, for a cavity populated with n photons, the
transmon transition frequencies (ωj+1 − ωj)/2π are
also shifted by (χj+1 − χj)n/2π, which is propor-
tional to the photon number n.

As an example of the strong-dispersive regime in the
context of qubits, Fig. 2(a) displays the cavity spec-
trum when the dispersive interaction with a qubit
shifts its resonance frequency. The strong dispersive
regime [45, 46] occurs when the cavity linewidth κ
is much smaller than the dispersive shifts χj , lead-
ing to well-resolved cavity spectral peaks. In turn,
the qubit spectrum is split depending on the cav-
ity photon number [45], and thus the statistics of
the field can be resolved [46]. The strong disper-
sive regime has proved to be useful in a range of
different experimental tasks. For example, because
of the large shifts of the cavity spectrum, quan-
tum non-demolition measurement can be performed
“selectively” between one state and its orthogonal
subspace [47]. In the context of multiple qubits,
this regime has been used to demonstrate a coher-
ent entangling gate between non-interacting qubits
[48, 49]. In addition, the strong dispersive regime
enables control and entanglement of quantum states
encoded in cavity modes [50–52]. In this proposal,
we will harness the strong dispersive regime to cre-
ate autonomous feedback on the quantum state of
two nearest-neighbor qutrits, the basic idea of which
is introduced below with a comparatively simpler
model of nearest-neighbor qubits.

B. Autonomous feedback scheme

The purpose of our proposal is to harness dissipa-
tion engineering to prepare and stabilize a partic-
ular subspace on a chain of spin-1 (qutrits). The
underlying mechanism is similar to the one used in
a recent work focusing on the stabilization of entan-
gled states of qubits [32]. Hence, in this Section, we
review the protocol in the simpler 2-qubit scenario,
before extension to the spin-1 system as presented
in Section III B.

The primary idea of stabilizing an entangled state
by autonomous feedback was put forward by Legh-
tas et. al. for a two-qubit Bell state [53], and was
then experimentally realized in the system of two
superconducting qubits [32], as well as with trapped
ions [54–56]. Representing a spin-half particle as a
two-level system denoted by |g⟩ and |e⟩, Fig. 2(a)
depicts the qubit-state-dependent cavity spectrum

FIG. 1. Schematic diagram of the AKLT chain
and proposed device. (a) The AKLT chain as repre-
sented in the form of a spin-1 chain, where neighboring
pairs of spin-1 particles are dissipativley excluded from
the Stotal = 2 manifold (indicated as red squiggly ar-
rows). (b) Sketch of the proposed one-dimensional super-
conducting transmon array, with shared resonators be-
tween nearest neighbors. Using this platform we present
a protocol for the dissipative preparation and stabiliza-
tion of the system in the AKLT subspace.

and Fig. 2(b) demonstrates Hilbert space engineer-
ing in this dissipative stabilization scheme. For a
linear cavity dispersively coupled with both qubits
A and B, the system Hamiltonian with rotating wave
approximation

Ĥ = ℏωrâ
†â+ ℏωA

σ̂A
z

2
+ ℏωB

σ̂B
z

2

+ ℏgA(σ̂A
+â+ σ̂A

−â
†) + ℏgB(σ̂B

+a+ σ̂B
−â

†)

(3)

becomes

Ĥeff = ℏχA
σ̂A
z

2
â†â+ ℏχB

σ̂B
z

2
â†â, (4)

in the rotating frame for qubits and the cavity, and
applying the dispersive limit (see Appendix A). Here
ℏωA(B) is the transition energy of qubit A(B), gA(B)

is the coupling strength between the cavity and qubit
A(B), and ℏχA(B) is the interaction energy between
the cavity and qubit A(B). This indicates a shift
in the cavity resonance frequency equivalent to the
addition of the shifts from qubits A and B, shown in
Fig. 2(a).

The cavity is driven at ωr − (χA + χB)/2 and
ωr + (χA + χB)/2, corresponding to the resonance
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spectrum peaks for two-qubit states |gg⟩ and |ee⟩.
Thus, whenever the qubits are in either |gg⟩ or |ee⟩,
the cavity photon population ramps up to an av-
erage number of n̄. Otherwise, the cavity photon
number exponentially decays to zero assuming that
χ ≫ κ limit (See Appendix B). When the cavity
is populated with n photons, the transition energies
for qubits A and B are shifted as ℏω′

A = ℏωA+ℏχAn
and ℏω′

B = ℏωB + ℏχBn.

Hence, we can consider two types of single-qubit
Rabi drives on both qubits. The “0-photon drive”
is applied at ωA(B) with Rabi frequency Ω(0) while
the “n-photon drive” is applied at ωA(B) + χA(B)n

with Rabi frequency Ω(n), given that n ≈ n̄. There-
fore, the former qubit drive is in resonance with the
cavity unpopulated while the latter requires a com-
ponent into the photon number eigenstate of n. The
effective Hamiltonian for those continuous drives are
given by

Ĥ
(0)
eff ∝ σ̂A

x ⊗ IB + IA ⊗ σ̂B
x ,

Ĥ
(n)
eff ∝ σ̂A

x ⊗ IB − IA ⊗ σ̂B
x ,

(5)

applied at their corresponding resonance frequen-
cies. We will now denote the cavity state with
average photon number n̄ in the rotating frame
of its driving frequency can be denoted as |n̄⟩C.
We also denote that |ϕ−⟩ = (|eg⟩ − |ge⟩)/

√
2 and

|ϕ+⟩ = (|eg⟩ + |ge⟩)/
√
2. When the qubit–cavity

system is in |gg⟩|0⟩C or |ee⟩|0⟩C, the cavity starts to
populate with photons and is driven to a coherent
state |gg⟩|n̄⟩C or |ee⟩|n̄⟩C. At this moment, the “n-
photon drives” come into resonance, rotating state
|gg⟩|n̄⟩C and |ee⟩|n̄⟩C into state |ϕ−⟩|n̄⟩C. Once
leaving the two-qubit subspace spanned by states
|gg⟩ and |ee⟩, with the system state in |ϕ−⟩|n̄⟩C, the
cavity probes are no longer in resonance. Subse-
quently, the cavity photon population decays into
|ϕ−⟩|0⟩C, setting the “n-photon drive” off-resonant
again. When Ω(n) has the same scale as the cav-
ity linewidth κ, the “n-photon drive” combined with
cavity probes drives the two-qubit state unidirec-
tionally from state |gg⟩|0⟩C and |ee⟩|0⟩C to the tar-
get Bell state |ϕ−⟩|0⟩C. As is shown in the inset of
Fig. 2(b), the effect of such an autonomous feedback
process is similar to that of quantum jump opera-
tors |ϕ−⟩⟨gg| and |ϕ−⟩⟨ee|, which occur at a rate
proportional to κ.

Aside from the above feedback loop, the “0-photon
drive” is applied to induce rotations between state
|ϕ+⟩|0⟩C and state |gg⟩|0⟩C or |ee⟩|0⟩C. Choosing
Ω(0) to be comparable with κ, any state of the

FIG. 2. Protocol to prepare a two-qubit Bell
state. As introduced in [32], a dissipative protocol can
prepare and stabilize a two-qubit Bell state. (a) The cav-
ity spectrum shifted by different two-qubit states, with
two cavity probes applied at the frequencies marked by
the orange arrows. (b) Hilbert space engineering for
the Bell state stabilization scheme [32]. The orange ar-
rows mark the states measured by the two cavity probes
shown in (a). The blue solid semicircle arrows represent
the “0-photon drive”, which comes into resonance with
the qubits when 0 photons are in the cavity. The green
dashed rectangle encircles the stabilized state, and the
zigzag red arrows are dissipative processes steering into
the stabilized state; the mechanism of which is shown in
the inset circled by the red solid rectangle. Inset shows
the realization of the jump operator from state |gg⟩ and
state |ee⟩ to the stabilized state. In the inset, the orange
solid arrow indicates populating and the red zigzag ar-
row indicates decaying of the cavity photons. The yellow
dashed semicircle arrows denote the “n-photon drive”.

Hilbert space is driven into the target Bell state
{|ϕ+⟩, |gg⟩, |ee⟩} → |ϕ−⟩. A intuitive picture of
the entire stabilizing process is shown in Fig. 2(b),
where we map the two energy levels of a qubit into
a spin-1/2 particle. With state |g⟩ encoded into
|S = 1/2, Sz = −1/2⟩ and state |e⟩ encoded into
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|S = 1/2, Sz = 1/2⟩, we have |gg⟩ encoded into the
added spin |S = 1, Sz = −1⟩, |ff⟩ encoded into
|S = 1, Sz = 1⟩, |ϕ+⟩ encoded into |S = 1, Sz = 0⟩
and |ϕ−⟩ encoded into |S = 0, Sz = 0⟩.
As is shown in Fig. 2(a), when χ≫ κ, the density of
states corresponding to |ge⟩ and |eg⟩ is highly sup-
pressed at the applied cavity drive frequencies. How-
ever, if χ/κ is finite, as is expected in any reason-
able experimental realization, a difference in disper-
sive shifts (χA ̸= χB) results in different amplitudes
in the tails of the Lorentzian cavity spectrum line-
shapes. This difference distinguishes the |ge⟩ and
|eg⟩ states, corresponding to a measurement of the
qubits in those bases. This residual measurement,
therefore, dephases the |ϕ−⟩ state, mixing the state
populations of the stabilized state |ϕ−⟩ and the elim-
inated state |ϕ+⟩, and thus reducing the fidelity of
the autonomous feedback scheme. Considering the
scaling between the rate of this residual measure-
ment and the stabilizing rate to the target Bell state,
such a reduction in fidelity can be significant for a
large discrepancy between χA and χB. Hence, for
optimal operation, the scheme requires χA ≃ χB.

To summarize, the qubit protocol involves a “pump”
that drives unwanted states {|ϕ+⟩, |gg⟩, |ee⟩}|0⟩C to
{|gg⟩, |ee⟩}|n̄⟩C. This then activates a “reset” which
drives the qubits to |ϕ−⟩, and the cavity decays to
|0⟩C. In the language of Roy et al. [10], the protocol
belongs to the class of “shaking and steering”.

III. PROPOSAL

A. The AKLT state

The AKLT Hamiltonian can be obtained as

ĤAKLT =
∑
i

[S⃗i · S⃗i+1 +
1

3
(S⃗i · S⃗i+1)

2]. (6)

Here S⃗i is the angular momentum vector operator
for the spin-1 particle on the ith site. This model
was first proposed by Affleck, Kennedy, Lieb, and
Tasaki (AKLT) in 1987 as an exactly solvable model
exemplifying a gapped excitation spectrum [57–59]
and a symmetry-protected topological (SPT) order
for odd-integer spin chain [60, 61]. The topological
order of the 1-D AKLT chain is protected by the
Z2 × Z2 symmetry group, and can be detected by a
string order parameter [62, 63] or characterized by
the entanglement spectrum [64]. The AKLT ground
state is short-range entangled, can be efficiently rep-
resented via MPS, and cannot be modified into a

non-entangled product state without closing the gap
of the Hamiltonian or breaking the Z2 ×Z2 symme-
try [59]. Also, the computation capability of an open
AKLT chain as a quantum wire in measurement-
based quantum computation is shared by all states
in the Z2×Z2 symmetry-protected topological phase
[65].

Under periodic boundary conditions (PBC), ĤAKLT

has a unique ground state—the AKLT state. With
open boundary conditions (OBC), though, the
ground state becomes 4-fold degenerate, with two
fractionalized degrees of freedom emerging on each
of the two boundaries. The AKLT states with OBC
can be explicitly written in the matrix product form
[16, 66]

|AKLT⟩ =
∑
{s}

ψ(s1, s2, ..., sN )|s1s2...sN ⟩, (7)

where si ∈ {+,−, 0} are the three single particle
states |S = 1, Sz = 1⟩, |S = 1, Sz = −1⟩, and |S =
1, Sz = 0⟩ for the spin-1 particles in the array, and
the wave function is given by

ψ(s1, s2, ..., sN ) = [blA
T
As1As2 ...AsN brA]. (8)

Here the matrices A+, A0 and A− are represented
by

A+ =

(
0
√

2
3

0 0

)
, A− =

(
0 0

−
√

2
3 0

)
,

A0 =

(
− 1√

3
0

0 1√
3

)
,

(9)

and the boundary vectors blA and brA represent the
edge spin-1/2 modes and choose a specific state out
of the 4-dimensional AKLT manifold. In our work,
we achieve stabilization into this 4-dimensional man-
ifold with OBC, creating the AKLT state up to a
boundary configuration. The non-trivial SPT order
of the AKLT chain can be revealed by those edge
modes. The edge states are protected by symmetry,
which means that their degeneracy can resist local
perturbations that do not break the corresponding
symmetry [67]. For a better understanding of the
edge states, one can visualize the AKLT state on a
spin-1/2 chain. In this case, the AKLT state can be
obtained by dividing the chain into adjacent spin-
singlet pairs, and then projecting the Hilbert space
of each pair into the spin-triplet subspace. This is
the approach that is followed in optical systems for
the preparation of the AKLT state for measurement-
based quantum computation [15]. Such a represen-
tation views the edge modes as unpaired spin-1/2
particles.
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To represent the AKLT state in a more relevant way
to the driven-dissipative protocol, its parent Hamil-
tonian can also be written in the form of quasi-local
projectors,

ĤAKLT =
∑
i

P̂S=2
i,i+1. (10)

Here P̂S=2
i,i+1 projects a pair of neighboring spin-1 par-

ticles (the ith and the (i + 1)th) onto the subspace
where their total spin equals 2, thereby adding an
energetic cost to the Stotal = 2 subspace. Since
the AKLT Hamiltonian is frustration-free [59], its
ground state can be reached by independently driv-
ing each adjacent pair of qutrits into the Stotal ∈
{0, 1} subspace. The AKLT state can then be ob-
tained whenever the projection onto Stotal = 2 is
eliminated for each adjacent pair of sites, which is
schematically indicated in Figure 1(a).

B. Dissipative stabilization protocol

The AKLT Hamiltonian reviewed above is
frustration-free with a unique ground state on
periodic boundary conditions and a four-fold degen-
erate ground state subspace with open boundary
conditions. Thus, the AKLT state can be reached
by the strategy of driving each two adjacent spin-1
particles out of the Stotal = 2 subspace, as is man-
ifested by the projector form of ĤAKLT in Eq. 10.
Figure 3 presents an extension of the two-qubit
protocol onto a two-qutrit system, which instead
stabilizes the system into the two-qutrit subspace
representing Stotal ∈ {0, 1}.
Considering two qutrits coupled to a common lin-
ear cavity in the strong dispersive regime, without
applied drives, the effective Hamiltonian becomes

Ĥeff = ℏ
∑
j

(χA
j |j⟩A⟨j|A + χB

j |j⟩B⟨j|B)â†â, (11)

in the rotating frame for qutrit levels and the cav-
ity, with rotating wave approximation and then the
dispersive limit applied. Here |j⟩A(B) are the energy
eigenstates of qutrit A(B). ℏχA(B)

j are the interaction
energies between the cavity and qutrit A(B), indicat-
ing the cavity resonance frequency’s shift summed
over A and B. The cavity’s resonance frequencies
are shown in Fig. 3(a).

Inspired by the qubit protocol, the cavity is driven
at its resonance frequencies for qutrit states |gg⟩ and
|ff⟩, which acts as part of the “pump”. With cav-
ity photon number n, the qutrit energy levels are

FIG. 3. Diagram of the two-qutrit protocol.
(a) The cavity spectrum shifted by different two-qutrit
states, with two cavity probes applied at the frequencies
marked by the orange arrows. (b) Hilbert space engi-
neering for the stabilization of two adjacent qutrits into
the Stotal ∈ {0, 1} subspace. The orange arrows mark the
states measured by the two cavity probes shown in (a),
and the blue semicircle arrows represent the “0-photon
drives”. The green dashed rectangle encircles the sta-
bilized subspace of Stotal ∈ {0, 1}, and the zigzag red
arrows are dissipative processes steering into the stabi-
lized subspace, with a similar mechanism as shown in
the inset of Fig. 2(b).

shifted to ℏωA(B)
j +nℏχA(B)

j . Here, the three anhar-
monic energy levels are denoted as |g⟩, |e⟩ and |f⟩,
with ωA(B)

ef = ω
A(B)
f −ωA(B)

e , ωA(B)
ge = ω

A(B)
e −ωA(B)

g ,

χ
A(B)
ef = χ

A(B)
f − χ

A(B)
e , χA(B)

ge = χ
A(B)
e − χ

A(B)
g ,

and χ
A(B)
gf = χ

A(B)
f − χ

A(B)
g . Thus, we apply the

“0 photon drive” at ω
A(B)
ge and ω

A(B)
ef simultane-

ously with the same Rabi frequency Ω(0), while the
“n photon drive” is applied at ωA(B)

ge + nχ
A(B)
ge and

ω
A(B)
ef + nχ

A(B)
ef with Rabi frequency Ω(n). The ef-

fective Hamiltonians for those continuous drives are
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given by

Ĥ
(0)
eff ∝ ŜA

x ⊗ IB + IA ⊗ ŜB
x ,

Ĥ
(n)
eff ∝ R̂A

gf ⊗ IB − IA ⊗ R̂B
gf ,

(12)

where Ŝ
A(B)
x are the spin angular momentum op-

erators of the spin-1 particles represented by qutrit
A(B), with ŜA(B)

x = |g⟩⟨e|+|e⟩⟨f |+h.c., and R̂A(B)
gf =

|g⟩ ⟨f | + h.c. The former is implemented with in-
phase and equal amplitude independent Rabi drives
between state |g⟩ and |e⟩ and between state |e⟩ and
state |f⟩, and the latter is induced by direct two-
photon transition on qutrit A(B). The precise form
of these drives is given in Appendix C and Ap-
pendix D we discuss alternative “n photon drives”.
The effective drive Hamiltonian Ĥ0

eff coincides with
the total spin angular momentum Ŝtotal

x . Thus, this
drive preserves the total spin represented by the
two-qutrit system, while it rotates between differ-
ent eigenstates of the z component for the total
spin Ŝtotal

z . Meanwhile, the “n-photon drive” does
not preserve the total spin and has non-zero com-
ponents linking states |gg⟩|n̄⟩C and |ff⟩|n̄⟩C to the
|Stotal = 0⟩|n̄⟩C and |Stotal = 1⟩|n̄⟩C subspace. Sim-
ilar to the process described in Section II B, with
those two drives combined, the two-qutrit system
undergoes unidirectional evolution into the target
subspace. The autonomous feedback loop here pro-
vides quantum jump operators from |gg⟩ and |ff⟩
to Stotal ∈ {0, 1} subspace, with an overall rate pro-
portional to the cavity linewidth κ.

Noticing that states |gg⟩ and |ff⟩ represent two
spin-1 particles’ states |Stotal = 2, Stotal

z = 2⟩ and
|Stotal = 2, Stotal

z = −2⟩, the drive Ŝtotal
x thus con-

nects the entire subspace Stotal = 2 with |gg⟩ and
|ff⟩. This “0-photon drive”, when applied contin-
uously, therefore assists to evacuate the Stotal = 2
subspace, leading to their stabilization into the tar-
get subspace where Stotal ∈ {0, 1}. Meanwhile, the
drive Ŝtotal

x has no cross term between the Stotal = 2
subspace and the target subspace, preventing leak-
age back from the stabilized states. Consequently,
the applied drives and dissipations ensure that the
degenerate AKLT manifold is a fixed point when the
protocol is applied on a qutrit chain. Since the “0
photon drive” continues to induce rotations within
this manifold, dynamics continue within the AKLT
manifold once the qutrit chain has been stabilized.

As is discussed in Section II B, the overlaps between
the peaks in Fig. 3(a) can cause redundant measure-
ments, compromising the fidelity of the target state.
In the stabilization protocol for the two-qubit Bell
state, the cavity-qubit detuning can be tuned in or-

der to achieve consistency between cavity shifts [32].
However, when it comes to the two-qutrit protocol,
where the stabilized subspace is four-dimensional,
such discrepancies are unavoidable even with full
tunability on the device parameters. Thus, finite
χ/κ becomes one of the main limiting factors for
the final fidelity. Possible optimization paths are
discussed in Appendices B and E.

C. Numerical simulations

Following the protocol discussed in Section III B,
we model the qutrits and cavities in Qutip [68, 69]
for numerical simulations, with the microwave drives
applied during the stabilization process. Details of
the simulation are given in Appendix C. Analyzing
the simulation results, we now study the protocol’s
effectiveness as well as its performance with an in-
creased number of qutrits in the chain.

As is shown in Fig. 4(a), an adjacent pair of qutrits
is initialized in a maximally mixed state of the nine-
dimensional Hilbert space. This choice of initial
state is only a matter of convenience and not neces-
sary for the protocol. The system then evolves un-
der the driven dissipative protocol which consists of
always-on drives. For the qutrit pair, all five states
representing Stotal = 2 have their state population
converging to zero in the course of the protocol,
while the four states in subspace Stotal ∈ {0, 1} are
preserved and stabilized. The protocol effectively
eliminates the Stotal = 2 subspace while steering the
system into the Stotal ∈ {0, 1} subspace. Figure
4(b) shows the total four-state population in sub-
space Stotal ∈ {0, 1}, which is the two-qutrit AKLT
subspace. The curve can be well fitted with an ex-
ponential function y = Ae−bx+C. In later analysis,
the fitting parameter C is extracted as the final fi-
delity of the target subspace and b as the stabiliza-
tion rate, with the convergence time for the protocol
calculated as 1/b.

The protocol, therefore, drives the spin-1 chain into
the AKLT manifold. The resulting quantum state
within this manifold may be a pure state, contain
coherences within the AKLT manifold, or be a mixed
state depending on the initial conditions at the start
of the protocol.

Extended from the two-qutrit case, we study the evo-
lution of the system with 2, 3, and 4 qutrits in the
AKLT chain. Here, the effective Hamiltonian of the
“0-photon drive” and the “n-photon drive” can be
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FIG. 4. Time evolution of two qutrits under the
stabilization protocol. (a) Stabilization process for
one pair of neighboring qutrits, with the entire subspace
Stotal = 2 eliminated and subspace Stotal ∈ {0, 1} stabi-
lized. The colored lines are the the relative weights of the
states, given by the diagonal entries of the density matrix
for eigenstates of both Ŝtotal and Ŝz

total. Although the
specific distribution of states inside the AKLT depends
on the initial state distribution as well as our choice of
“n-photon drive”, here we are just concerned about sta-
bilizing into the entire subspace. (b) The blue solid line
represents the change of total population in the targeted
subspace where Stotal ∈ {0, 1}. The black dashed line is
an exponential fit.

viewed as

Ĥ
(0)
eff ∝

Nsites∑
i=1

Ŝi
x,

Ĥ
(n),i
eff = R̂i

gf − R̂i+1
gf .

(13)

The “0-photon drive” is applied by in-phase, equal
amplitude single qutrit Sx drive on each site. The
“n-photon drives” are carried out with the ith pair
of qutrits, qutrit i and qutrit i + 1, at the shifted
qutrit frequencies due to the ith cavity. We notice
that the global drive Ĥ(0)

eff commutes with the AKLT
Hamiltonian. So, once the system is in the AKLT

FIG. 5. Protocol performance for larger qutrit
chains. (a) Starting from the qutrits’ ground state
|g . . . g⟩ (solid colored lines) and starting within the
AKLT subspace (dashed colored lines), we simulate the
time evolution of the AKLT chain with open bound-
ary conditions subspace population under the driven
dissipative protocol with varying number of qutrits, a:
Nsites = 2 (red), b: Nsites = 3 (blue) and c: Nsites = 4
(green) for comparison. Inset: The four qutrit time evo-
lution under the stabilizing protocol in terms of the sys-
tem population in the AKLT subspace, with the cavity
shift scaling as a: χ0/4, b: χ0/2 and c: χ0. (b) Ex-
tracted fitting parameters as the final fidelity and the
convergence time with the same method as in Fig. 4 (b)
on the total population in the AKLT subspace. The
blue round dots represent the varied final fidelity with
systems of two, three, and four qutrits (left axis), and
the green squared dots represent the convergence time
for the protocol (right axis).

subspace, applying the “0-photon drive” will not ro-
tate the system out of the ground state manifold. In
contrast, the “n-photon drives” are defined by each
individual resonator and come into effect whenever
there is an adjacent bond with Stotal = 2.

We consider two initial preparations: either one of
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the AKLT states or the product state of single-qutrit
ground states, |g . . . g⟩. For the choice of the former,
since we observe that the decay features of the AKLT
subspace total population are similar for different
initial states within the subspace, we simply initial-
ize the simulation with a particular state within the
AKLT subspace. The evolution of the populations
in the AKLT subspace under the protocol is shown
in Fig. 5(a). Here we can extract the final fidelity
and stabilization time for different chain sizes de-
fined by the same method as in Fig. 4(b), which is
presented in Fig. 5(b). While stabilization of the
AKLT state is observed, the final fidelity decreases
for larger chains.

The decrease in final fidelity is due to the finite value
of χ/κ, which we explore in the inset of Fig. 5(a).
Here we plot the AKLT state population starting
from the AKLT state or the ground state with cav-
ity shifts χ given as χ0, χ0/2, and χ0/4. As is shown
in inset of Fig. 5(a) and in Fig. 6(a), smaller values of
χ bring extra measurements on the preserved two-
qutrit states, causing dephasing out of the AKLT
state. This effect of extra dephasing is similar to
the effect caused by a shortened T2, reducing the
fidelity as Nsites increases since the extra dephasing
occurs for each pair of neighboring qutrits. For simi-
lar reasons, the stabilization time increases for larger
qutrit chains because these errors can diffuse around
the chain before being eliminated by the protocol.

For this reason, the protocol favors a large value of χ,
however, reasonable values of χ are an experimental
limitation set by the dispersive condition. The value
of χ0 we choose here is quite large for typical trans-
mon systems. We have chosen this value for clarity
of demonstration. However, as we explore in Ap-
pendix E, large effective values of χ can be achieved
with very reasonable experimental parameters. Such
a realistic implementation requires a more complex
set of drives, yet achieves even higher state fidelities
than the symmetric case presented in the main text.

In actual experiments, the qutrits are not perfectly
realizable as in the model simulated above. For ex-
ample, there is limited control over the qutrit-cavity
coupling parameters. In the above simulations, we
assume that the cavity frequency shifts induced by
qutrits are approximately equivalent, with discrep-
ancies smaller than 5 percent. This relation requires
equally spaced cavity frequency shifts from qutrit
states |g⟩, |e⟩, and |f⟩, as well as equal cavity-qutrit
interaction terms among different qutrits. Such an
assumption is made for the sake of simplicity, but
may be difficult to realize in experiments.

FIG. 6. Fidelity in the four-qutrit AKLT sub-
space estimated under experimental imperfec-
tions. The stabilized state fidelity is defined by the
same method as in Fig. 4 (b) according to the tendency
of the state population vs. time. (a) The impact of fi-
nite dispersive shift χ (Sec. IIA) to cavity decay rate κ
(Sec. II B), smaller χ/κ degrades the stabilized state fi-
delity. (b) Running the protocol with mismatched device
parameters. The protocol is relatively robust to small
parameter mismatches. (c,d,e) Evaluating the protocol
fidelity under the dissipation channel with finite qutrit
T1/Tϕ/T1&Tϕ between adjacent levels. The final state fi-
delity is degraded when the qutrit lifetime becomes com-
parable with the stabilization time.

In the experimental realization with transmon
qubits [32] matching between the cavity shift of
qubit A and B, χA = χB, was achieved by tuning the
qubit frequencies, where χA(B) ∝ g2A(B)/(ωA(B)−ωr)
with g denoting the coupling strength. However,
for the current protocol involving qutrits, match-
ing all the dispersive shifts by simple frequency tun-
ing of the qutrit levels is not possible. Figure 6(b)
shows the protocol fidelity on a four-qutrit chain
with qutrit-cavity coupling parameters mismatched
to varied degrees; The choice of device parameters
is introduced in Appendix B. The final fidelity of
the protocol decreases slowly from ∼ 85% to ∼ 70%
with larger parameter mismatches from 10% to 40%,
indicating a relatively small impact on the protocol
performance.

Overall, the protocol retains a robustness to pa-
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rameter mismatch because the “0-photon drive”
can always be achieved by adjusting the amplitude
and phase of single qutrit drives regardless of the
qutrit parameters. Also, between each two adja-
cent qutrits, the consistency of cavity shifts from |g⟩
to |f⟩ can be always achieved with one-by-one tun-
ing of qubit frequencies, allowing the application of
the “n-photon drive”. These tunings allow variations
in qutrit parameters in the array can be tolerated.
Also, there are no specific requirements for the re-
lation between cavity shifts of a single qutrit from
state |g⟩ to |e⟩ or from state |g⟩ to |f⟩, to aim for
a good protocol fidelity. The slight decrease in the
fidelity results from increased extra dephasing in-
duced by residual measurements, since the spectrum
peaks shown in Fig. 3 (a) no longer perfectly overlap
considering the parameter mismatch. This effect can
nevertheless be eliminated by an even higher ratio of
χ/κ, as is described in Appendix B

The other aspect of imperfect qutrits considers their
intrinsic relaxation and dephasing. In previous nu-
merical simulations, we set the qutrit T1 and T2 at
an optimistically high level (T1 = T2 = 500 µs, thus
Tϕ = 1000 µs) for isolating the protocol performance
from the effects brought up by extra environmental
coupling. However, in realistic setups, the relaxation
towards the ground state of every single qutrit, as
well as the decoherence between qutrit levels, will
drive the manybody system out of the AKLT sub-
space, impairing the effectiveness of the protocol.
Nevertheless, we find that the driven dissipative pro-
tocol is still able to stabilize the system coherence far
beyond the single qutrit coherence time. As is shown
in Fig. 6(c,d,e), the final fidelity in the AKLT sub-
space is extracted for finite values of T1 and Tϕ, as
well as both T1 and Tϕ, between adjacent qutrit lev-
els. In Fig. 6(c,d) we consider the case where we
keep T1 at the optimistically high value when we set
Tϕ to a limited value, and vice versa. With T1 or
Tϕ solely set to a finite value from 10 µs to 40 µs,
the protocol final fidelity increases from ∼ 40% to
∼ 70%. With T1 and Tϕ both set to a finite value
from 10 µs to 40 µs [Fig. 6(e)], the AKLT subspace
fidelity increases from ∼ 25% to ∼ 55%. Consider-
ing the 34 = 81 dimensions of the four-qutrit Hilbert
space, where a maximally mixed state would have
a ∼ 5% fidelity to the ALKT subspace, this result
further confirms the ability of a driven-dissipative
method to maintain the state coherence beyond na-
tive relaxation or dephasing time.

IV. DISCUSSION

In this work, we proposed and analyzed a driven-
dissipative protocol to achieve preparation and sta-
bilization of the AKLT state with OBC in a one-
dimensional superconducting qutrit array. Our sta-
bilization of a manifold of edge states opens up the
opportunity to study dynamics within that mani-
fold, rather than just preparing a pure state. Via
numerical simulation, we verified the effectiveness of
our protocol for a pair of two adjacent qutrits as well
as with extended system sizes.

Our results illuminate the possibility for efficient
generation of manybody entangled states on super-
conducting qutrit platforms. Generalization from
the AKLT state to other matrix product states or
projected entangled pair states [70] may be possible.
Since the spin-1 ALKT state represents a quantum
wire in measurement-based quantum computing, it
only allows for performing quantum computation of
a limited scope. Universal computation, in contrast,
can be realized by the spin-2 AKLT state on a 2-
dimensional square lattice [71], which would be a
natural next step beyond our work.
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Appendix A: The dispersive limit

Here we provide a detailed derivation of the system
effective Hamiltonian in the dispersive limit, as in
Eqn. 4 and Eqn. 11 (equivalent to Eqn. C4). For
two transmon qudits coupled to a common linear
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cavity [42, 43], after applying the rotating wave ap-
proximation, the system Hamiltonian should be,

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = ℏ
∑
j

ωA
j |j⟩A⟨j|A + ℏ

∑
j

ωB
j |j⟩B⟨j|B + ℏωrâ

†â,

V̂ = ℏ
∑
i

gAi,i+1(|i⟩A⟨i+ 1|Aâ† + |i+ 1⟩A⟨i|Aâ)

+ ℏ
∑
i

gBi,i+1(|i⟩B⟨i+ 1|B â† + |i+ 1⟩B⟨i|B â).

(A1)

Here the coupling strength gi,i+1 ≈
√
i+ 1g0 [38]. In

the dispersive limit, the detuning between adjacent
energy level differences of the qutrit is much larger
than the coupling strengths. This allows us to per-
form the Schrieffer-Wolff transformation, which can
approximately diagonalize the system Hamiltonian
in the dispersive limit, Ĥeff = e−ŜĤeŜ , with

Ŝ =
∑
i

λAi (|i+ 1⟩A⟨i|Aâ− |i⟩A⟨i+ 1|Aâ†)

+
∑
i

λBi (|i+ 1⟩B⟨i|B â− |i⟩B⟨i+ 1|B â†),
(A2)

where λA(B)
i = g

A(B)
i,i+1/(ω

A(B)
i,i+1 − ωr), and ω

A(B)
i,i+1 =

ω
A(B)
i+1 − ω

A(B)
i . We can have

[Ŝ, Ĥ0] = ℏ
∑
i

λAi (−ωA
i+1 + ωA

i + ωr)(|i+ 1⟩A⟨i|Aâ

+ |i⟩A⟨i+ 1|Aâ†) + ℏ
∑
i

λBi (−ωB
i+1 + ωB

i + ωr)

(|i+ 1⟩B⟨i|B â+ |i⟩B⟨i+ 1|B â†),

[Ŝ, V̂ ] = ℏ
∑
i

(λAi+1g
A
i,i+1 − λig

A
i+1,i+2)(|i+ 2⟩A⟨i|Aââ

+ |i⟩A⟨i+ 2|Aâ†â†) + 2ℏ
∑
i

χA
i,i+1|i+ 1⟩A⟨i+ 1|A+

2ℏ
∞∑
i=1

(χA
i−1,i − χA

i,i+1)|i⟩A⟨i|Aâ†â− 2ℏχA
0,1|0⟩A⟨0|Aâ†â

+ ℏ
∑
i

(λBi+1g
B
i,i+1 − λig

B
i+1,i+2)(|i+ 2⟩B⟨i|B ââ

+ |i⟩B⟨i+ 2|B â†â†) + 2ℏ
∑
i

χB
i,i+1|i+ 1⟩B⟨i+ 1|B+

2ℏ
∞∑
i=1

(χB
i−1,i − χB

i,i+1)|i⟩B⟨i|B â†â− 2ℏχB
0,1|0⟩B⟨0|B â†â

+ ℏ(
∑
i

gBi,i+1|i⟩B⟨i+ 1|B)(
∑
i

λAi |i+ 1⟩A⟨i|A)

+ ℏ(
∑
i

gBi,i+1|i+ 1⟩B⟨i|B)(
∑
i

λAi |i⟩A⟨i+ 1|A)

+ ℏ(
∑
i

λBi |i+ 1⟩B⟨i|B)(
∑
i

gAi,i+1|i⟩A⟨i+ 1|A)

+ ℏ(
∑
i

λBi |i⟩B⟨i+ 1|B)(
∑
i

gAi,i+1|i+ 1⟩A⟨i|A),

(A3)

where the relation [Ŝ, Ĥ0] + V̂ = 0 stands. Also,
from the Baker-Campbell-Hausdorff relation, there
is Ĥeff = Ĥ0 + V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] + 1

2 [Ŝ, [Ŝ, Ĥ0]] +
1
2 [Ŝ, [Ŝ, V̂ ]] + . . .. Then we have, Ĥeff = Ĥ0 +
1
2 [Ŝ, V̂ ] + O(λ2). Here, the two-photon transition
terms involving ââ and â†â† are small and can be
omitted [38]. We also notice that cavity-mediated in-
teraction terms emerge between next-nearest neigh-
bor layout of qutrits. However, when the qutrits in
the array are also far-detuned from each other, this
term becomes counter-rotating when we go to the ro-
tating frame of the qutrit and the cavity. The final
Hamiltonian, in the rotating frame for the shifted
qutrit Hamiltonian and the cavity frequency, be-
comes,

Heff = ℏ
∞∑
i=0

(χA
i |i⟩A⟨i|A + χB

i |i⟩B⟨i|B)â†â. (A4)
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Here χi = (χi−1,i −χi,i+1) for i ≥ 1 and χi = −χ0,1

for i = 0, and χi,i+1 is defined as λigi,i+1 which is
g2i,i+1/(ωi,i+1 −ωr). Then we obtain Eqn. 11, which
becomes Eqn. C4 when we only consider the first
three levels of the qudit. This becomes Eqn. 4 when
we only consider the first two levels.

Appendix B: The strong dispersive limit

In the strong dispersive limit, we have the relation
χ ≫ κ for the cavity-qutrit coupling parameters.
The cavity resonance amplitude, T = 1/(1 + x2),
is of a Lorentzian spectral line shape, which is pre-
sented in Fig. 2(a) as well as in Fig. 3(a). Here
x = 2(ω − ωr)/κ and ωr is the cavity resonance fre-
quency, Thus, as we probe the system at one of the
peaks, there is a high ratio between the resonance
amplitudes for probed and unprobed states. How-
ever, with a relatively long protocol time, a small res-
onance amplitude still causes residual measurements
that distinguish between stabilized two-qutrit states.
Such extra measurements induced by the probe, as
introduced in Section III B, have a visible effect on
the final fidelity of the stabilization for the many-
body entangled state. As is shown in the inset of
Figure 5(a) as well as Figure 6(a), such an effect
can hinder the scalability of our protocol if unelimi-
nated. To explore this further, we study the perfor-
mance of the protocol for smaller values of χ, which
exacerbates the residual measurement effect. Here
the “0 photon drives” and the measurement probe
are applied to systems with qutrit number Nsite = 3
and Nsite = 4, as is described in Section III B. The
system is initialized in one of the open boundary
AKLT states, and the decreases in the AKLT sub-
space population are fitted with exponential func-
tions y = Ae−bx+C. The extracted dephasing rates
b are plotted in the insets of Figure S1, showing that
the decay rate grows significantly as χ is decreased.
This trend favors larger values of χ, which can be
achieved by optimizing the device parameters, via
enhanced coupling parameter g or reduced cavity-
qutrit frequency detuning, as well as by working in
the so-called straddling regime for transmon circuits
[38] as discussed in Appendix E. On current plat-
forms, we can expect efficient stabilization as long
as the residual measurement-induced dephasing is
reduced to some negligible level compared to the
intrinsic dephasing and relaxation of the supercon-
ducting qutrits.

FIG. S1. Dephasing out of the AKLT subspace
due to extra measurements caused by the cav-
ity probes. Initialized with a three- (panel a) or four-
(panel b) qutrit AKLT state, the system dephases un-
der the “0-photon drives” and the cavity probes, with
qutrit induced cavity shift set as a: χ = χ0/4 (red), b:
χ = χ0/2 (blue), c: χ = χ0 (green) and d: χ = 2χ0 (yel-
low). The AKLT subspace population curves are fitted
with exponential functions. Insets display the extracted
dephasing rate of the system versus the relative cavity
shift χ/χ0.

Appendix C: Numerical simulation setups

For the two-qutrit protocol, we simulate the Lind-
blad master equation

d

dt
ρ(t) = − i

ℏ
[Ĥ(t), ρ(t)] + κD[â]ρ(t)+

∑
l=ge,ef
j=A,B

(
1

T j,l
1

D[σj,l
− ]ρ(t) +

1

2T j,l
ϕ

D[σj,l
z ]ρ(t)

)
.

(C1)

Here, TA(B),ge
1 and TA(B),ef

1 are the realaxation time
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FIG. S2. Cavity photon population during the
stabilization process. (a) The system is initialized
with a fully mixed state and then evolves under the pro-
tocol. a-f: The state population for cavity photon num-
ber 0-5 (b) The system is initialized in the ground state.
Insets show the stabilization process calculated with a
maximal photon number cutoff of n = 3 instead of n = 9.
a-d: The state population for cavity photon number 0-3

from state |e⟩ to state |g⟩ and from state |f⟩ to state
|e⟩. The pure dephasing rate is given by,

1/T
A(B),ge(ef)
ϕ = 1/T

A(B),ge(ef)
2 − 1/2T

A(B),ge(ef)
1 ,

where TA(B),ge(ef)
2 are the dephasing times between

the corresponding two adjacent levels. The Lind-
blad superoperator for an observable Ô acting on
the density matrix ρ is defined as

D[Ô]ρ = ÔρÔ† − 1

2
Ô†Ôρ− 1

2
ρÔ†Ô. (C2)

For the unitary part of system evolution, we have
the Hamiltonian,

Ĥ = Ĥsystem + Ĥprobe + Ĥ0 + Ĥn. (C3)

Since we work in the rotating frame for the qutrit
transition energies as well as for the center of the

cavity resonance frequencies of corresponding to |gg⟩
and |ff⟩, this Hamiltonian consists of

Ĥsystem = ℏ

(
χA
gf

2
σA,gf
z +

χA
ge − χA

ef

2
|e⟩A⟨e|A

+
χB
gf

2
σB,gf
z +

χB
ge − χB

ef

2
|e⟩B⟨e|B

)
â†â,

(C4)

Ĥprobe = 2ℏϵC cos

(
χA
gf + χB

gf

2
t

)(
â+ â†

)
, (C5)

Ĥ0 = ℏΩ(0)
(
σA,ge
x + σA,ef

x + σB,ge
x + σB,ef

x

)
, (C6)

and,

Ĥn = ℏΩ(n)

(
cos

(
n
χA
gf + χB

gf

2
t

)
(σA,gf

x − σB,gf
x )

− sin

(
n
χA
gf + χB

gf

2
t

)
(σA,gf

y − σB,gf
y )

)
.

(C7)

Here χA(B)
ge/gf/ef are the cavity shifts induced by qutrit

A(B), and ϵC is the amplitude of the cavity probe
with ϵC = κ

√
n/2. The qutrit operators are defined

similarly to the qubit case, where σge
+ = |e⟩⟨g|, σge

− =

|g⟩⟨e|, σgf
+ = |f⟩⟨g|, σgf

− = |g⟩⟨f |, σef
+ = |f⟩⟨e|, and

σef
− = |e⟩⟨f |. Thus we have σge/ef/gf

x = σ
ge/ef/gf
+ +

σ
ge/ef/gf
− , σge/ef/gf

y = i
(
σ
ge/ef/gf
+ − σ

ge/ef/gf
−

)
, as

well as σgf
z = −|g⟩⟨g|+|f⟩⟨f |. Here we choose n = 3.

The parameters we used for the cavity-qutrit inter-
action term and the cavity linewidth are shown in
the first line of Table I. The T1s and T2s are set to
optimistically large values of 500 µs, so that these
decay channels contribute negligibly to the dynam-
ics. The Rabi frequencies for the “0 photon drive”
and the “n photon drive” are chosen as Ω(0) = κ/2
and Ω(n) = κ for optimization.

With the protocol applied to a 1-D qutrit chain con-
taining N qutrits, the Hamiltonian terms become

Ĥsystem = ℏ
N−1∑
i=1

(
χi
gf

2
σi,gf
z +

χi
ge − χi

ef

2
|e⟩i⟨e|i

+
χ′ i
gf

2
σi+1,gf
z +

χ′ i
ge − χ′ i

ef

2
|e⟩i+1⟨e|i+1

)
â†i âi,

(C8)

Ĥprobe = 2ℏ
N−1∑
i=1

ϵiC cos

(
χi
gf + χ′ i

gf

2
t

)(
âi + â†i

)
,

(C9)
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Ĥ0 = ℏΩ(0)
N∑
i=1

(
σi,ge
x + σi,ef

x

)
, (C10)

and,

Ĥn = ℏ
N−1∑
i=1

Ω
(n)
i (−1)i−1

(
cos

(
n
χi
gf + χ′ i

gf

2
t

)
(σi,gf

x −

σi+1,gf
x ) − sin

(
n
χi
gf + χ′ i

gf

2
t

)
(σi,gf

y − σi+1,gf
y )

)
.

(C11)

Here χi
ge/gf/ef and χ′ i

ge/gf/ef are the cavity shifts on
the ith cavity induced by the ith and the (i + 1)th
qutrit, and âi(â

†
i ) is the annihilation(creation) op-

erator for the ith cavity. With κi being the cav-
ity linewidth of the ith cavity, we apply the probe
strength for this cavity ϵiC = κi

√
n/2. The terms

σ
i,ge/ef/gf
x,y,z are the qutrit matrices for the ith qutrit.

The “0 photon drive”, Ω(0), is chosen to be related to
the averaged cavity linewidth as

∑N−1
i=1 κi/2(N − 1)

and the “n photon drive” applied on the ith cavity,
Ω

(n)
i , is chosen to be κi. The averaged photon num-

ber n, is chosen to be n = 3 up to optimization.
The qutrit-cavity parameters and cavity linewidths
are assumed to be the same for each cavity, equiv-
alent to the two-qutrit case, which is shown in the
first line of Table I. The T1 and T2 settings are also
the same as in the two-qutrit case unless otherwise
specified.

For the qutrit number Nsites ≤ 3, we use the Qutip
master equation solver to obtain the time evolution
of the expectation value for the AKLT subspace pro-
jector. For Nsites = 4, the Monte Carlo solver is
chosen for its better performance the in case of large
dimensional Hilbert spaces. In the latter solver, the
equivalence to the system evolution under the mas-
ter equation is obtained by stochastically calculating
the trajectories for quantum jumps. The parameter
settings are shown in the first line of Table I, with a
general ratio between χge and κ around 20.

Table I displays the dispersive shifts and cavity
linewidths used for the simulations. To ensure
that our results do not hinge on perfect parameter
matches, we performed all simulations with “base
parameters” that were near to what might be con-
sidered ideal. The base parameters and the “tar-
get” parameters are given in the first two lines of
the table. The base parameters are used for the
simulations displayed Fig. 4, Fig. 5, and Fig. 6(a),
(c), (d). In Fig. 6(b) we display simulation results
where the neighboring qutrits and cavities have mis-
matched parameters. With an overall control of the

Josephson inductance, we can assume that perfect
matching between χi

gf and χ′ i
gf can be achieved for

each cavity i and its two coupled qutrits i and i+1,
via flux tuning on the qutrits. Other parameters,
including the qutrit-cavity interaction term and the
cavity linewidth, are mismatched. These parame-
ters are given in lines 3-5 of Table I. For larger mis-
matches displayed in Fig. 6(b), the deviations are
simply scaled accordingly.

For optimization of the simulation process, it is de-
sirable to make a cutoff at the maximal cavity pho-
ton population at the lowest value possible while
maintaining accurate results. As is presented in
Fig. S2, we thus monitored the cavity photon num-
ber population throughout the same stabilization
process shown in Fig. 4. With the ground state
or the maximally mixed state unidirectionally pro-
jected into the Stotal ∈ {0, 1} subspace, the cavity
photon number ramps up in about the first 500 ns
and then decays monotonically. Whichever initial
state we chose, the cavity photon numbers for n ≥ 4
are quite small throughout the stabilization pro-
cess. Actually, the behavior of cavity photon num-
ber n ∈ {0, 1, 2, 3} makes up 90 percent of the cavity
state population, thus enabling a representative de-
scription of the overall system behavior with limited
photon numbers. Consequently, we make a reason-
able cutoff of the cavity photon population n ≤ 3,
with which the simulation results are shown in the
insets of Fig. S2(a), (b). By comparing the insets of
Fig. S2(a), (b) (with n ≤ 3) to the main panels (with
n ≤ 9) we see very similar photon number dynamics
further confirming that a simulation cutoff of n ≤ 3
produces accurate results.

Appendix D: Alternative “n photon drives”

The “n photon drive” serves to drive states back into
the ALKT subspace. The drives are activated when
there are n photons in the cavity. This drive can be
chosen as any operator that has components rotat-
ing between the two subspaces inside and outside
Stotal = 2. With different choices of the n pho-
ton drive, the stabilization can in theory be accom-
plished with a varied converging time. For example,
one alternative to the second line in Eq. 12 could be

Ĥn
eff = ŜA

x ⊗ IB − IA ⊗ ŜB
x . (D1)

This alternative protocol is shown in Fig. S3 for the
two-qutrit case as well as its scaling performance.
Applied to two qutrits (Fig. S3(a)), the protocol still
effectively stabilizes the target subspace, but with a
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FIG. S3. Performance comparison for the proto-
col with different “n photon drives” . (a) For the
stabilization of one adjacent pair of qutrits initially pre-
pared with fully mixed state with an alternative drive
given in Eq. D1. (b,c) The performance of the proto-
col with system size scaling up in terms of stabilization
time and fidelity. Round dots mark the stabilized state
fidelity and square dots mark the stabilization time. In
panel (b) the rotation is Ĥn

eff ∝ ŜA
x ⊗ IB− IA⊗ ŜB

x while
in panel (c) the rotation is Ĥn

eff ∝ R̂A
gf ⊗ IB − IA ⊗ R̂B

gf .
Here the cavity shifts scale as a: χ = χ0/4 (blue), b:
χ = χ0/2 (green), c: χ = χ0 (red) and d: χ = 2χ0

(black).

different distribution of states in the four-fold target
subspace. However, by comparing Fig. S3(b) (with
the rotation Eq. D1) and Fig. S3(c) (with the rota-
tion Eq. 12) we see that the choice of Eq. 12 performs
better at a larger number of sites.

Appendix E: Potential experimental layout

We propose an experimental design that can be re-
alized with state-of-the-art fabrication capabilities,

FIG. S4. Potential experimental device. Sample
layout of a N = 6 qutrit chain, where dissipative cou-
pling between neighboring transmon circuits is mediated
by resonators. Individual lines allow for flux tuning and
microwave pulse control of each transmon.

as a proof of principle of our scheme. This is shown
in Fig. S4. Each qutrit is attached to a flux line and
a control line, where the qutrit frequencies can be
tuned and the qutrit rotations can be applied. For
the microwave cavity coupled to each adjacent pair
of qutrits, there is a drive line to apply probes to
the shared cavity. The shared cavities can also be
utilized for state readout to perform quantum state
tomography.

In the main text, we analyzed an idealized set of pa-
rameters that yields the clearest setup for pedagog-
ical reasons. Here we provide physical parameters
to realize the high value of χgf required for high-
fidelity operation of the protocol. We first introduce
the straddling regime [38] for the dispersive shift
between superconducting transmon and the cavity.
As is shown in Appendix A, χgf = χ2 − χ0 =
χ1,2−χ2,3+χ0,1. Since χi,i+1 = g2i,i+1/(ωi,i+1−ωr),
and the coupling strengths have gi,i+1 =

√
i+ 1g0,

we have

χgf = g20(
2

ω1,2 − ωr
− 3

ω2,3 − ωr
+

1

ω0,1 − ωr
). (E1)

Since for the transmon energy level, we have [38],

Em ≃ −EJ +
√
8ECEJ(m+

1

2
)− EC

12
(6m2+6m+3)

(E2)
Then E01 =

√
8ECEJ −EC , E12 =

√
8ECEJ −2EC ,

E23 =
√
8ECEJ − 3EC . For EC/h = 400 MHz

= α/2π, and
√
8ECEJ/h = 7 GHz, we have reason-

able qubit frequency and anharmonicity, and a good
ratio of EJ/EC ∼ 40 that enables less fluctuations
on the |f⟩ state. When we have ω1,2 − ωr = α/2,
then ω0,1 − ωr = 3α/2 and ω2,3 − ωr = −α/2, and
thus χef = 32g20/3α. To obtain χef/2π = 80 MHz,
we can have g0/2π = 55 MHz which still stays in
the dispersive limit. In this case, though, the cavity
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FIG. S5. Cavity probe and corresponding two-
qutrit stabilization in the straddling regime. (a)
A diagram of the cavity spectrum that can be obtained
in the straddling regime, where cavity shift of state |f⟩
is positive and the value is negative for state |e⟩. In this
case, the cavity probe at the |gg⟩ peak would induce a
large amount of extra dephasing, so only the |ff⟩ peak
is driven. This spectrum is diagrammatic with certain
shifts and widths exaggerated to show the structure. (b)
The two-qutrit protocol performance under the single-
sided cavity probe. The protocol still efficiently drives
the two-qutrit state into the 4-dimensional target sub-
space. Here since the cavity drive is single-sided, we
adjust the “0-photon drive” frequency of the qutrits to
be shifted with a small photon number induced by the
single-side cavity probe.

spectrum peaks are arranged in a different way since

χge = χ1 − χ0 = g20(
2

ω0,1 − ωr
− 2

ω1,2 − ωr
), (E3)

where χge = −8g20/3α is a negative value, χge/2π =
−20 MHz. Thus, a slightly new driving strategy
should be adopted. A diagram of the cavity spec-
trum is shown in Fig. S5 (a), where we probe the
cavity only at the |ff⟩ peak. The corresponding
protocol performance is shown in Fig. S5 (b), and

FIG. S6. Protocol performance with multiple
qubits in the straddling regime. (a) The AKLT
subspace population starting from the qutrits’ ground
state |g . . . g⟩ (solid colored lines) and starting within
the AKLT subspace (dashed colored lines), we simulate
the time evolution of the AKLT chain with open bound-
ary conditions subspace population under the driven dis-
sipative protocol with a varying number of qutrits, a:
Nsites = 2 (red), b: Nsites = 3 (blue) and c: Nsites = 4
(green) for comparison. (b) Extracted fitting parame-
ters as the final fidelity and the convergence time with
the same method as in Fig. 4 (b) on the total popula-
tion in the AKLT subspace. The blue dots represent the
varied final fidelity with systems of two, three, and four
qutrits (left axis), and the green dots represent the con-
vergence time for the protocol (right axis).

the multi-qutrit protocol performance is shown in
Fig. S6. Here, we show that the good isolation of
the |ff⟩ peak is achievable in realistic physical de-
vices, and the consequential high performance can
be expected.
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χge/2π (MHz) χgf/2π (MHz) χ′
ge/2π (MHz) χ′

gf/2π (MHz) κ/2π (MHz)

Base parameters used in all simulations 40.00 79.20 38.00 76.00 2.00

Ideal “target” parameters 40.00 80.00 40.00 80.00 2.00

Cavity 1 mismatched 10% from target 43.64 87.81 39.67 87.81 1.93
Cavity 2 mismatched 10% from target 36.66 79.83 39.87 79.83 1.99
Cavity 3 mismatched 10% from target 41.52 76.96 42.79 76.96 1.94

TABLE I. The cavity-qutrit interaction parameters and the cavity linewidth for one cavity in the chain.
Line 1: The base parameters we choose for simulating two-qutrit as well as multi-qutrit protocol performance in the
article, except in Fig. 6(b). This set of base cavity parameters already exhibit a small (5%) mismatch from the ideal
“target” parameters. Line 2: The ideal device parameters as the target of device fabrication processes. This set of
parameters is the reference for generating the mismatching parameter. Line 3-5: The mismatched cavity parameters
for a four-qutrit chain with its three cavities, the parameter deviations are randomly generated within 10 percent
deviation from the ideal values. Such deviations are enlarged proportionally for generating the 20%, 30%, and 40%
mismatching parameters as given in Fig. 6(b).
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