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Abstract

While safety is the primary objective in Phase I designs of pharmacological or novel treatment

development clinical trials, the focus shifts to detecting the effectiveness of the experimental

treatment in confirmatory seamless Phase II/III designs. The presence of patient heterogeneity

in modern medication development is widely acknowledged. The response of patients to the

same treatment might vary depending on factors such as their gender, age, lifestyle, or genetic

diversity. Therefore, it is necessary to determine which group of the population is more likely to

benefit from the experimental treatment in the Phase II/III designs. In order to save time and

cost, the adaptive enrichment design was proposed. The adaptive enrichment design concentrates

resources on promising subgroups by allowing modifications based on the interim analysis results.

However, the adaptive nature of the procedure complicates the estimation of the treatment effects

and makes the quantification of uncertainty in treatment effects challenging. In particular,

confidence intervals based on the naive maximum likelihood estimate and corresponding Fisher

information will tend to have incorrect coverage. Focusing on a two-stage design with two disjoint

subgroups, we develop a general method based on devising an appropriate p-value function. We

derive the conditional confidence intervals for selected subgroups by inverting their corresponding

conditional p-value functions, which are obtained using stage-wise, score, and MLE sample space

orderings methods. Comparing the confidence intervals produced from the aforementioned space

ordering methods reveals that score ordering treats each stage more evenly. Additionally, we

construct the unconditional p-value function for each subgroup and utilize the classic Bonferroni,

Bonferroni-Holm, and parameter-dependent weighted Bonferroni multiple testing procedures to

create simultaneous confidence intervals at the end of the trial. We demonstrate that Bonferroni-

Holm is most effective at detecting actual treatment effects, but its confidence interval for rejected

hypotheses is uninformative when not all hypotheses are rejected. In contrast, the traditional

Bonferroni simultaneous confidence intervals provide information regarding the magnitude of
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the real treatment effect but are less effective at rejecting false null hypotheses. The weighted

parameter-dependent Bonferroni method compromises between informativeness and power. The

confidence interval construction approach is illustrated through the application of two adaptive

enrichment designs. Simulation studies show that our approach constructs confidence intervals

with exact asymptotic coverage probabilities. Our method may be extended to k-stage m-

subgroup adaptive enrichment design with k ≥ 3 and m ≥ 3; although, the computation cost

will also increase.
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Chapter 1

Introduction

With the widespread adoption of human genome sequencing techniques, the necessity to identify

patient heterogeneity in medical practice has become apparent (Hodson, 2016). As a result,

precision medicine has become an appealing concept in clinical treatment development. The in-

creasing recognition of heterogeneity in clinical trials has led to the realization that the traditional

one-size-fits-all approach to treatment is insufficient (Knottnerus and Tugwell, 2013). Patients

may respond differently to the same treatment based on factors such as their gender, age, genes,

lifestyle, or environment. Precision medicine involves a series of decision-making actions, includ-

ing treatment selection and dose-finding, aimed at identifying the best treatment for specific

patients (Kosorok and Laber, 2019; FDA, 2018). For instance, breast tumors can be classified

into at least three subtypes: luminal, human epidermal growth factor receptor 2+ (HER2+),

and basal-like. Luminal tumors respond well to hormonal interventions, whereas HER2+ tu-

mors should be treated with anti-HER2+ therapies. As for basal-like tumors, still, no targeted

therapy is currently available (Polyak et al., 2011). Another example is the medication to treat

depression. Fournier et al. (2010) found that the antidepressant is more effective for patients

with HDRS scores above 25. For those patients with HDRS scores below 25, the medication is

not superior compared to the placebo. Therefore, it is essential to identify the most appropriate

patient population group before introducing a new treatment to the market. In order to screen

out the promising population of an experimental medication, the adaptive enrichment design

was introduced in Phase II/III clinical trials. The enrichment design allows for various modifi-

cations based on the interim analysis, such as sample size re-estimation and subgroup selection.

However, those adaptive modifications inevitably introduce bias and difficulties in parameter
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inference. This thesis concentrates on the adaptive enrichment design with two stages and two

subgroups, which includes one experimental arm and one control arm. Specifically, the design

proposed by Magnusson and Turnbull (2013) is given particular attention.

Because only promising subgroups are enriched and no data are collected for dropped sub-

groups in subsequent stages, unbiased point estimates for all subgroups have not yet been es-

tablished. Point estimates do not account for uncertainty and inference validity. Therefore the

FDA (2007) recommends that “appropriate measures include estimates of sensitivity and speci-

ficity pairs, likelihood ratio of positive and negative result pairs, and ROC (Receiver Operating

Characteristic) analysis along with confidence intervals” should be reported. Additionally, the

Consolidated Standard of Reporting Trials (CONSORT, 2010) states “for each primary and sec-

ondary outcome, results for each group, and the estimated effect size and its precision (such as

95% confidence interval)” should be reported. Although there is a significant amount of research

on constructing bias-reduced point estimates for the adaptive enrichment design, few papers

focus on constructing confidence intervals with coverage probability close to a nominal level.

Therefore, we propose a relatively straightforward approach that constructs confidence intervals

by inverting p-values that are a function of the treatment effect parameter.

In Chapter 3, we derive p-value functions for specific subgroups using the enrichment design

proposed by Magnusson and Turnbull (2013), based on the interim analysis decision results and

three sample space ordering methods. By inverting these functions, we obtain conditional confi-

dence intervals for the chosen subpopulation. In Chapter 4, we initially construct unconditional

p-value functions for individual subgroups regardless of selection results. To construct simul-

taneous confidence intervals for all subgroups, we utilize multiple testing procedures, such as

Bonferroni, Holm, and parameter-dependent weighted Bonferroni. Our methodology is further

expanded in Chapter 5, where we apply it to the sample size re-estimation design proposed by

Lin et al. (2021). Finally, Chapter 6 summarizes our research and highlights possible areas for

future work.
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Chapter 2

Literature review

2.1 Adaptive enrichment design

Traditional single-stage fixed sample size designs conduct analysis at the termination of the

trial only. Such designs are straightforward but inflexible since they do not allow desirable or

necessary changes to occur during the trial (Pallmann et al., 2018). In addition to that, the tra-

ditional fixed sample design usually requires larger patient recruitment (at least on average) than

the group sequential design to achieve the desired power (Kjaersgaard et al., 1994). Subgroup

analysis, which aims to determine whether the treatment effect differs across one or more patient

subgroups, is a common secondary analysis within clinical trials. However, traditional subgroup

analysis is prone to spurious false positive or negative results and lacks statistic power (Wagner

et al., 2009). Adaptive enrichment design (AED) is a novel approach in clinical trials that aims

to improve trial efficiency and accelerate drug development for situations where it is unclear

whether the whole patient population will benefit from the new treatment. The design allows

for modification of the study protocol during the trial based on accumulating data and aims to

enrich the study population with patients who are most likely to benefit from the intervention.

In this thesis, we focus on inferring the treatment effect of one targeted experimental treatment.

The clinical trial recruits patients from the whole population, however, patients might respond

differently to the novel treatment. Patients in certain subgroups might be more likely to have

positive response outcomes while others probably have no response at all. Therefore, the aim

of this type of enrichment design is to detect the subgroups that respond better to the targeted

experimental treatment via interim analyses. In the interim analyses, if the subgroup meets the
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eligible criteria, the subgroup will be retained. Otherwise, the design drops the subgroup and

there is no further data available on that subgroup. For instance, the diagram in Figure 2.1

illustrates the procedure of the two-stage two-arm (experimental and control) enrichment design

with two disjoint subgroups. Recent studies have shown that adaptive enrichment design can in-

crease the efficiency of clinical trials by reducing the number of patients required for a successful

trial (Burnett and Jennison, 2021; Lin et al., 2021; Pallmann et al., 2018). Moreover, adaptive

enrichment designs can allow for more efficient testing of interventions by incorporating a smaller

number of patients in the initial stages of the trial and gradually enrolling additional patients

as the study progresses. There is already a large body of research on enrichment designs, such

as the approach proposed by Wang et al. (2007, 2009) which considers adaption in sample size

and futility stopping in the first interim analysis. Wang et al. (2009) discussed three enrichment

design scenarios in their paper: total sample size fixed with futility stopping, total sample sized

adapted with futility stopping and total sample size adapted without futility stopping. Their

conclusion is that all of the enrichment design scenarios outperform the traditional one-size-fits-

all fixed design in terms of the probability of seeking out the responsive subsets. Magnusson

and Turnbull (2013) extended this approach to a k-stage design with multiple subpopulations.

Rather than allowing only one subgroup to be selected in the first interim analysis, Magnusson

and Turnbull’s design considers cases in which more than one subgroup treatment effect exceeds

the futility threshold and proceeds to subsequent stages. Magnusson and Turnbull (2013) assume

that the sampling rule following selection is fixed. In other words, for every possible selection

result, the sample size in subsequent stages should be prespecified. Based on Magnusson and

Turnbull’s approach, Lin et al. (2021) proposed a design involving sample size re-estimation for

stage 2 that depends on the observed statistic values in stage 1 to ensure the conditional power is

maintained at a desired level. Simon and Simon (2013) proposed an enrichment design that does

not pre-specify subgroups but rather updates the eligibility criteria by computing the threshold

that maximizes the log-likelihood of the data for the binary outcome.

Using decision-theoretic approaches to find the decision boundaries, sample sizes or both

in enrichment designs is on an upward trend recently. Ondra et al. (2019) and Burnett and

Jennison (2021) proposed Bayesian optimal rules for subgroup selection that maximize or improve

expected utilities at the interim analysis. Rosenblum et al. (2020) use sparse linear programming

to optimize the decision rule for subgroup selection and multiple testing procedures. The sample

space is divided into a large number of grid rectangles, and then a sparse linear programming

problem is solved to find the action associated with each rectangle.
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Figure 2.1: The general design procedure for the two-stage two-subgroup adaptive enrichment

design.

2.1.1 Group sequential adaptive enrichment design

Heterogeneity frequently presents in patient populations recruited for clinical trials. A specific

group of a population might respond positively to the experimental treatment whereas some

other group may not. To accommodate this fact, Magnusson and Turnbull (2013) put forward

an adaptive design that supports subgroups that respond in the first stage. This design focuses

the limited sample size on the subpopulation that has a large possibility to respond and enhances

the possibility of acknowledging the efficacy of the target treatment based on score statistics.

Magnusson and Turnbull (2013) developed the design in which statistics exit at the previous stage

should be more extreme than those terminates at succeeding stages. Additionally, spending error

functions are adopted to determine the acceptance and rejection boundaries. The sampling rule

of Magnusson and Turnbull (2013) design is prespecified which depends on the selection results.

Basic setups

This section introduces some basic setups of the design. We broadly follow the notation in

Magnusson and Turnbull (2013)’s paper but focus on the specific case of a two-stage, two-group

trial with normally distributed responses. Assume that the whole patient population Ω0 can be

separated into several disjoint subpopulations Ω1,Ω2,, which means Ω0 =
⋃

j=1,2 Ωj . Meanwhile,

we denote P as the index set of the subgroups under consideration, P = {0, 1, 2}. Let S∗ be the

random variable of the index of the subset that is selected in the interim analysis and S be the

index of the subset that is observed being chosen, S ⊆ P. Let ρj represent the prevalence of each

individual subgroup j, and it is assumed that patients are recruited into the first stage of the trial

5



with probabilities that correspond to these prevalences. For example, suppose that we recruit N1

patients in total at the first stage of the two-subgroup trial, then the expected number of patients

allocated to subgroup 1 and subgroup 2 will be N1,1 = ρ1N1 and N1,2 = ρ2N1 respectively. As

for N2, in the Magnusson and Turnbull (2013) design, the total sample size in the second stage is

fixed and equals to N1 but the sample size for each individual subgroup depends on the random

specific selection results in the interim analysis. In addition to that, we also consider cases

where the sample size in the second stage is different from the sample size in the first stage

in our simulation studies. Mk,j and Mk,S∗ are the accumulated number of patients recruited

for individual subgroup j and retained subpopulation S until stage k, where k ∈ {1, 2, ....,K}.

Hence Mk,j =
∑k

i=1Ni,j and Mk,S∗ =
∑k

i=1Ni,S∗ . We need to point out that the termination

stage index K is a random variable in our settings. For instance, if the trial consists of two

stages with two subgroups, K could either equal 1 or 2, which implies that the trial terminates

at stage 1 or stage 2. Furthermore, suppose that we have two arms (experimental and control)

in both subgroups and patients are randomly assigned to each arm with equal possibilities, the

expected sample size increment in the experimental arm and control arm in subgroup j at stage

k will be NE
k,j = NC

k,j = Nk,j/2.

Let ZE
k,j,1, Z

E
k,j,2, ..., Z

E
k,j,NE

k,j
be the patients’ outcomes for subgroup j at stage k in the exper-

imental arm and let ZC
k,j,1, Z

C
k,j,2, ..., Z

C
k,j,NC

k,j
be the patients’ outcomes for subgroup j at stage

k in the control arm. Assuming that ZE
k,j,i ∼ N(µE

j , σ
2
0) and ZC

k,j,i ∼ N(µC
j , σ

2
0), we define the

treatment effect for subgroup j as θj = µE
j − µC

j . For the selected subpopulation, we denote the

treatment effect as θS∗ =
∑

j∈S∗ ρjθj . We construct the accumulated score statistics:

Yk,j = (µ̂E
k,j − µ̂C

k,j)× (Mk,j/4σ
2
0)

where µ̂E
k,j and µ̂C

k,j are sample means of final outcomes for patients in subgroup j at stage k

in the experimental and control arm respectively. σ2
0 represents the common and known true

variance of both ZE
k,j and ZC

k,j . Let the Ik,j =Mk,j/4σ
2
0 be the Fisher information, therefore,

Yk,j ∼ N(θjIk,j , Ik,j)

In terms of the above distribution, the combined statistic of the selected subpopulation S∗ is

defined as Yk,S∗ =
∑

j∈S∗ Yk,j . Obviously,

Yk,S∗ ∼ N(θS∗Ik,S∗ , Ik,S∗)

where Ik,S∗ =
∑

j∈S∗ Ik,j . As statistics accumulate throughout stages in the adaptive enrichment

design, we denote Xk,j and Xk,S∗ as the statistic increment for the individual subgroup and the

6



chosen subpopulation S∗ at stage k, k ∈ {1, 2, ...,K}. Therefore,

Xk,j = Yk,j − Yk−1,j , for k = {2, ...,K};

Xk,S∗ = Yk,S∗ − Yk−1,S∗ , for k = {2, ...,K}.

Also, we define Y1,j = X1,j and Y1,S∗ = X1,S∗ . Moreover, we denote Yj = (Y1,j , ..., YK,j) and

YS∗ = (Y1,S∗ , ..., YK,S∗), where K is the termination stage. Let δk,j and δk,S∗ be the Fisher

information increment. Then δk,j and δk,S∗ are defined as

δk,j = Ik,j − Ik−1,j = Nk,j/4σ
2
0 , for k = {2, ...,K};

δk,S∗ = Ik,S∗ − Ik−1,S∗ = Nk,S∗/4σ2
0 , for k = {2, ...,K}.

Similarly, δ1,j = I1,j and δ1,S∗ = I1,S∗ .

If subpopulation S∗ is chosen in the first interim analysis, we denote H0,S∗ : θS∗ = 0 as

the null hypothesis. Meanwhile, we denote Ha,S∗ : θS∗ > 0 as its corresponding one-sided

alternative hypothesis for subset S∗. Analogously, the null and alternative hypotheses for an

individual subgroup are defined as H0,j : θj = 0 and Ha,j : θj > 0 respectively.

At each stage, k, upper and lower boundaries, uk and lk are defined to establish stopping

rules for efficacy and futility, respectively. The boundaries are chosen in order to control the

family-wise error rate (FWER) specified beforehand. Here we use the same error spending

approach proposed by Magnusson and Turnbull (2013) to determine standardized upper and

lower boundaries lk and uk. In order to ensure that the trial will terminate at the final stage K,

we make lK = uK . We illustrate more details of boundary calculation in the following sections.

Magnusson and Turnbull (2013) also proposed two decision rules to screen out responsive

subpopulations in the first interim analysis. We use the first decision rule which assumes no

prior ordering in treatment effects. In other words, we assume a prior that all subgroups have

the same response to the target experimental treatment. Let S∗ be the index of selected subset,

then S∗ = {j ∈ P : Y1,j > l1
√
I1,j}. We drop subgroups with Y1,j ≤ l1

√
I1,j and retain

the remainder. In this case, the sample size and Fisher information increment for the retained

subgroups are defined as Nk,S∗ =
∑

j∈S∗ Nk,j and δk,S∗ =
∑

j∈S∗ δk,j . The first stage adjusted

upper boundary for the retaining subgroups is defined as

ũ1,S∗ = u1
√

I1,S∗ .

Only subgroups in the remaining population will be sampled in succeeding stages. Therefore the
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scaled boundaries at stage k ≥ 2 will be

l̃k,S∗ = lk
√
Ik,S∗ and ũk,S∗ = uk

√
Ik,S∗ .

After subset S∗ is chosen at the interim analysis, if we observe Y1,S∗ > ũ1,S∗ , we will terminate

the trial and declare that the treatment is effective in subpopulation S∗. Otherwise, we proceed

the subpopulation S∗ to the next stage. For example, if we focus on the two-stage enrichment

design here, when the accumulated statistic Y2,S∗ is greater than ũ2,S∗ , we declare treatment

efficacy in subset S∗. If the accumulated statistic Y2,S∗ is smaller than ũ2,S∗ , we declare treatment

futility in subset S∗.

Figure 2.2 presents how the design works regarding to the sample space. As shown in Figure

2.2, the entire sample space in the Magnusson and Turnbull enrichment design could be par-

titioned into seven disjoint subspaces. If the observed paired statistics locate in region 1, the

trial terminates at the first stage and we declare futility in both subgroups. When the observed

paired statistics fall into region 2 or region 3, one subgroup is enriched in the second stage while

the other one stops for futility in the first stage. If the observed statistics belong to region 5 or

region 6. one subgroup stops for efficacy while the other one stops for futility at stage 1. Region

4 represents that both subgroups are enriched in the second stage and region 7 represents that

both subgroups stop for efficacy at stage 1.

Let PNR = {i ∈ P : θi = 0} be the index set of non-responsive population, Magnusson and

Turnbull (2013) define the strongly restricted FWER as

FWER = sup
θ∈Θ

Pr[Reject at least one HS ,S ⊆ PNR]

= sup
θ∈Θ

∑
S⊆PNR

Pθ(S∗ = S and reject HS in subsequently stages).

We employ the same definition of FWER as proposed by Magnusson and Turnbull (2013),

define the probability that the trial ends at stage k, and demonstrate that the treatment is

effective for participants in ΩS as follows:

ψk,S(l1, u1, ..., lk, uk;θ)

=Pr[Select S and the trial terminates for effectiveness at stage k]

=Pθ[S∗ = S, Y1,S < ũ1,S , Y2,S ∈ (l̃2,s, ũ2,S), ..., Yk,S ≥ ũk,S ].

(2.1)

Similarly, the probability that the trial terminates at stage k and shows the treatment is ineffec-

8



1 2

3
4

5

7

6
l12

u12

u10

l11 u11 u10

subgroup 1

su
bg

ro
up

 2

Figure 2.2: Sample space partition of conditional confidence interval construction in the Mag-

nusson and Turnbull design.

tive for subjects in ΩS could be written as:

ξk,S(l1, u1, ..., lk, uk;θ)

=Pr[Select S and the trial terminates for futility at stage k]

=Pθ[S∗ = S, Y1,S < ũ1,S , Y2,S ∈ (l̃2,s, ũ2,S), ..., Yk,S < l̃k,S ].

(2.2)

As we only retain subpopulations whose statistics exceed their corresponding lower boundary

l̃1,j , the probability of selecting S is

Pr[S∗ = S] =
∏
j∈S

[
1− Φ

(
l̃1,j − θj × δ1,j√

δ1,j

)]

×
∏
j /∈S

Φ

(
l̃1,j − θj × δ1,j√

δ1,j

) (2.3)

where Φ(·) is the cumulative function for the standard normal distribution. Given Equation

(2.1), (2.2) and (2.3), the marginal probability of stopping the trial at stage K due to efficacy

and futility can be expressed as

ψK(l1, u1, ..., lK , uK ;θ) =
∑
S⊆P

ψK,S(l1, u1, ..., lK , uK ;θ)× Pr[S∗ = S] and

ξK(l1, u1, ..., lK , uK ;θ) =
∑
S⊆P

ξK,S(l1, u1, ..., lK , uK ;θ)× Pr[S∗ = S].
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As for termination thresholds, Magnusson and Turnbull (2013) proposed an approach that

uses non-decreasing spend error functions specified beforehand to determine upper and lower

boundaries at each stage. When FWER = α, they define γU : [0, 1] → [0, α] and γL : [0, 1] →

[0, 1−α] as the upper and lower spending error functions with γU [0] = γL[0] = 0, γU [1] = α and

γL[1] = 1 − α. Let tk be the analysis time points that range from 0 to 1, we can search for uk

and lk that satisfy

ψk(l1, u1, ..., lk, uk;0) = γU [tk]− γU [tk−1] and

ξk(l1, u1, ..., lk, uk;0) = γL[tk]− γL[tk−1].

by plugging in Equation (2.1) and Equation (2.2) under the null hypothesis. In the two-stage

trial, we assume that the “error” is equally spent between analysis points. In other words,

γU [t2]− γU [t1] = γU [t1] = α/2 and γL[t2]− γL[t1] = γL[t1] = (1− α)/2.

Next, we establish equations to find the required maximum sample size (i.e. sample size

required if the trial proceeds to the second stage) which achieves the power at the desired level.

Let θ∗ be the clinically effective treatment effect and 1−β be the power level we desire, β ∈ (0, 1).

Magnusson and Turnbull (2013) has proposed various power criteria such as:

1. Assuming that the treatment effect is homogeneous across all subgroups, find Nmax to

ensure

Pr[reject H0,S ,S ∈ P|θj = θ∗,∀j ∈ P] = 1− β.

In other words, ∑
S⊆P

K∑
k=1

ψk,S(l1, u1, l2, u2;θ
∗) = 1− β.

The above equation means that we could deem at least some subpopulation S effective

with 1− β probability.

2. Suppose that θj = θ∗ for j ∈ P∗ and P∗ ⊆ S. For j /∈ P∗, θj = 0. Then we define the

power as:

Pr[reject H0,S for P∗ ⊆ S ⊆ P|θj = θ∗, j ∈ P∗ and θj = 0 else]

that is ∑
P∗⊆S⊆P

2∑
k=1

ψk,S(l1, u1, l2, u2;θ
∗) = 1− β.
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This criteria means that given the experimental treatment is only responsive in subpopula-

tion P∗ and P∗ ⊆ S ⊆ P, the probability with which we declare efficacy in subpopulation

S is guaranteed with 1− β.

Other criteria might be applicable as well. But in our work, we primarily use the first criteria to

determine the maximum sample sizes in our simulation studies.

Given X1,j ∼ N(θjδ1,j , δ1,j) and l̃1,j = l1
√
δ1,j where δ1,j = N1,j/4σ

2
0 , we denote

f1,j(x1,j |θj ,S∗ = {j}) = 1√
δ1,j

ψ(
y1,j − θjδ1,j√

δ1,j
)

[
1− Φ

(
l̃1,j − θjδ1,j√

δ1,j

)]−1

× I(x1,j > l̃1,j)

the conditional density function of X1,j |x1,j > l̃1,j . ψ(·) is the density function of the standard

normal distribution. Moreover,

I(x1,j > l̃1,j) =

1 if x1,j > l̃1,j

0 if x1,j ≤ l̃1,j .

In the two-stage two-subgroup design, if both subgroups are chosen at the first interim analysis,

it indicates that y1,1 > l̃1,1 and y1,2 > l̃1,2. Since y1,0 = y1,1+y1,2, we define the density function

for y1,0 at the first stage given the overall group is chosen as

f1,0(y1,0|θS∗ ,S∗ = {0}) =
∫ y1,0−l̃1,2

l̃1,1

f1,1(y1,1|θ1)f1,2(y1,0 − y1,1|θ2)dy1,1 (2.4)

As for the conditional density function in the second stage, though statistics accumulated

when subgroups proceed to the second stage, the density of y2,S only depends on y1,S given

S∗ = S. Therefore X2,S |x1,S ∼ N(θSδ2,S , δ2,S) and X2,S = Y2,S − Y1,S . Since δ2,S = N2,S/4σ
2
0 ,

we denote the conditional density function of Y2,S |y1,S as

f2,S(y2,S |y1,S ,S∗ = S, θS) =
1√
δ2,S

ψ

(
(y2,S − y1,S)− θSδ2,S√

δ2,S

)
. (2.5)

We notice that in Equation (2.4), the density function for the overall group relies on the

individual treatment effect of subgroups (i.e. θ1 and θ2); but in Equation (2.5), it depends on

the combined treatment effect (i.e. θS). The difference of inference subject in density functions

might cause inaccuracy of confidence interval construction when the true treatment effect is

heterogeneous among subgroups. Recall that we assume that the sampling of subgroups is

proportional to the population prevalence. However, if the prevalence of the sampling is different

from the real prevalence of the population (though it rarely happens), the inference of the

treatment effect would be more inaccurate when θ1 ̸= θ2.
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2.1.2 Sample size re-estimation adaptive enrichment design

Lin et al. (2021) proposed an enrichment design for two-arm trials that re-estimates the sample

size in the second stage to compare a targeted treatment with a standard control treatment. In

the Magnusson and Turnbull design, the sample size assigned to each subgroup is determined

by the power requirement and the selection results of the interim analysis. We calculate the

maximum total sample size by using the criteria we mentioned in Section 2.1.1 and assign an

equal number of patients to each stage. The number of patients assigned to each subgroup

depends on which subpopulation is enriched in the subsequent stages. In contrast, Lin et al.

(2021) proposed that the sample size in the second stage should be determined by the observed

statistic values in the first stage rather than merely the screening results in the interim analysis.

In their paper, they mainly focus on the clinical trial including two stages and two subgroups,

which is the usual case in practice.

Again, let ZE
k,j,i and ZC

k,j,i be the observed outcome of patient i in subgroup j at stage k

in the experimental arm and control arm correspondingly. Assume that ZE
k,j,i ∼ N(µE

j , σ
2
0) and

ZC
k,j,i ∼ N(µC

j , σ
2
0), the treatment effect for subgroup j is defined as θj = µE

j − µC
j . Suppose

that Nk is the total number of patients recruited at stage k, then Nk,j = ρjNk patients will be

allocated to subgroup j. Each patient will be assigned to the experimental or control arm with

equivalent probability. Based on these setups, they construct the Wald statistics for subgroup 1,

subgroup 2, and the overall group in the first stage:

X1,1 =
µ̂E
1 − µ̂C

1√
4σ2

0/N1,1

,

X1,2 =
µ̂E
2 − µ̂C

2√
4σ2

0/N1,2

, and

X1,0 =
µ̂E
0 − µ̂C

0√
4σ2

0/N1

.

where µ̂E
j and µ̂C

j are sample means of the treatment effects in the experimental arm and the

control arm. Obviously, X1,j ∼ N(θj/
√
4σ2/N1,j , 1) for j = {1, 2} and X1,0 =

√
ρ1X1,1 +

√
ρ2X1,2. For the entire population, they denote the treatment effect as θ0 = ρ1θ1 + ρ2θ2 where

ρj is the prevalence for subgroup j. In practice and simulation studies, the pooled sample variance

σ2 is used in place of σ2
0 . When the trial proceeds to the second stage, the test statistic for the

chosen subpopulation is defined as:

X2,S =
µ̂E
S − µ̂C

S√
4σ2/N2
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where S ∈ {0, 1, 2}. µ̂E
S and µ̂C

S is the sample mean for the experimental treatment arm and

control arm within chosen group S. The accumulated statistic from stage 1 and stage 2 is given

by

y2,S =
√
ωY1,S +

√
1− ωX2,S

where ω = N1,S/(N1,S + N2) is the information fraction and Y1,S = X1,S . Under θS , the true

treatment effect for the target treatment for selected group S, the stage 2 statistic increment is

normally distributed:

X2,S |θS ∼ N(
θS√

4σ2/N2,S
, 1).

Lin et al. (2021) specify a conditional error function E(·) to control FWER, which satisfy∫ ∞

−∞
E(x1,S)f(x1,S)dx1,S = α. (2.6)

By plugging the circular conditional error function

E(x1,S) =


0 if x1,S ≤ l1,

1− Φ(
√
u21 − x21,S) if l1 < x1,S < u1,

1 if x1,S ≥ u1

proposed by Proschan and Hunsberger (1995) into Equation (2.6), we are able to determine the

stopping boundaries lk and uk for k = 1, 2. As for the sample size in the second stage, it is

decided by the conditional power function proposed by Lin et al. (2021):

Pr(Y2,S > u|y1,S , θS) = 1− Φ(
u−

√
ωy1,S√

1− ω
− θS√

4σ2/N2,S
).

We can determine the sample size in the second stage that maintains the power at a level of 1−β

by setting Pr(Y2,S > u|y1,S , θS) = 1− β.

Let gmax = argmaxj(y1,j ; j = 1, 2) and gmin = argminj(y1,j ; j = 1, 2). According to Lin et al.

design, the trial will be carried out as below:

1. If y1,gmin
≥ u1, stop the trial and declare treatment efficacy in both subgroups.

2. If y1,gmax
≥ u1 and y1,gmin

≤ l1, stop the trial and declare treatment efficacy in subgroup

gmax and treatment futility in subgroup gmin.

3. if y1,gmax ≥ u1 and l1 < y1,gmin < u1, stop the trial and declare treatment efficacy in

subgroup gmax and inconclusive treatment effect in subgroup gmin.
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4. if l1 < y1,gmax < u1 and y1,gmin ≤ l1, the trial proceeds to the second stage and we only

enrich subgroup gmax.

5. if l1 < y1,gmin
≤ y1,gmax

< u1, the trial proceeds to the second stage and we enrich both

subgroups.

6. if y1,gmax
≤ l1, stop the trial and declare treatment futility in both subgroups.

In Figure 2.3, if (y1,1, y1,2) falls into region 1, we conclude that both subgroups stop for futility in

the first stage. If (y1,1, y1,2) locates in regions 2, 3, or 4, it represents that at least one subgroup

will be enriched in the second stage. Region 5 and 9 show cases where one subgroup terminates

for efficacy while the other one exits for futility. If (y1,1, y1,2) belongs to region 7, then we

can declare that the experimental treatment is effective for the entire population. Note that in

regions 2, 3, and 4, when statistics are close to the lower boundary at stage 1, the sample size

required in the second stage is large. By contrast, when statistics approach the upper boundary

at stage 1, we are supposed to recruit fewer patients at stage 2 as we believe that the experimental

treatment has a promising effect based on the statistics we observed in the first stage.

2.2 Point estimation of treatment effects

Developing an unbiased or consistent point estimator of the treatment effect remains a significant

research area because of the impact of treatment or subgroup selection characteristics in adaptive

enrichment. As the naive maximum likelihood estimate fails to account for the selection bias in

the initial stage, it often yields an overestimation of the actual treatment effect. Consequently,

multiple researchers have proposed different unbiased or bias-reduced point estimators to address

this issue. For instance, Magnusson and Turnbull (2013) evaluated the conditional and uncondi-

tional bias of the naive maximum likelihood estimate of the treatment effect. However, they also

note the absence of a perfectly unbiased estimator and suggest utilizing the bootstrap method

to reduce bias.

Kimani et al. (2013) proposed two estimators for a two-stage multi-arm enrichment design,

where the most effective treatment in the first stage proceeds to the second stage, and any inef-

fective treatments are dropped at the first stage for futility. One of the estimators is an extension

of the uniformly minimum variance conditionally unbiased estimator (UMVCUE) proposed by

Cohen and Sackrowitz (1989). However, Cohen and Sackrowitz (1989) assumed that the design

would always continue to the second stage, whereas Kimani et al. (2013)’s approach allows for
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Figure 2.3: Lin et al. design’s sample space partition manner. l1 and u1 are standardized

boundaries. The red dotted lines are the adjusted boundaries for the individual subgroups. In

the Lin et al. design, region 1 in Figure 2.3 corresponds to Ωc
1, region 2 corresponds to Ωc

2, region

3 corresponds to Ωc
3, region 4 corresponds to Ωc

4, region 5 and region 6 corresponds to Ωc
6, region

8 and region 9 correspond to Ωc
5, and region 7 corresponds to Ωc

7.

an early stop in the first stage. The other estimator proposed by Kimani et al. (2013) is the

bias-adjusted estimator, which extends the estimator proposed by Stallard and Todd (2005).

Kimani et al. (2013) defined the selection time, denoted as t, as the ratio of the sample size in

the first stage to the sum of sample sizes in both stages (n1/(n1 + n2), where n1 and n2 are the

sample sizes at stage 1 and stage 2, respectively). According to their simulation study, when

t > 0.6, the unbiased estimator and the bias-adjusted estimator performed similarly in terms

of mean squared error. However, they noticed that the bias-adjusted estimator was negatively

biased, while the unbiased UMVCUE estimator was practically unbiased.

However, the UMVCUE estimator is possibly unavailable for the dropped subgroups as no
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unbiased second-stage data is available. Kunzmann et al. (2017) propose hybrid estimators

for the two-subgroup two-stage design. In their design settings, they only compare one target

experimental treatment with the control treatment. However, the entire population is partitioned

into two disjoint subgroups. The decision rule is that either the most promising subgroup or the

entire population will proceed to the subsequent stage. In other words, the less responsive

subgroup never proceeds alone. They also assume that the patients in each subgroup are equally

likely to be assigned to the experimental arm and the control arm, hence each arm has an

equal sample size. For the selected subgroup S, the UMVCUE for the true treatment effect θS

can be seen as the expectation of the second stage statistic given its statistic value observed in

both stages, the interim analysis result, and the statistic value observed for the complementary

subgroup. As the UMVCUE is unavailable for the unselected subgroup S ′
when only S is

selected, due to the lack of data in the second stage, Kunzmann et al. (2017) propose to use

the conditional moment estimator (CME) in this situation. The main idea of the CME is that

the conditional expectation of the statistic of the target subgroup S given interim analysis result

and the observed statistic of the complimentary subgroup is a function of the true treatment

effect θS and does not depend on θS′ . Let D be the random selection options and d be the

observed selection result. Assuming that Xk,S and Xk,S′ to be the target subgroup statistic and

its complementary subgroup statistic at stage k, and they define XS =
∑

k∈{1,2} ωkXk,S with

information fraction ωk. The conditional moment estimator can be solved from the following

equation:

EθS [XS |D = d,X1,S′ = x1,S′ ] = xS

where xS and xk,S′ is the observed value for XS and Xk,S′ respectively. Kunzmann et al.

(2017) also compared the naive maximum likelihood estimator, empirical Bayesian estimator,

and parametric bootstrap estimator with the hybrid estimator by running simulation studies.

Simulation results show that both the empirical Bayesian estimator and parametric bootstrap

estimator underestimate the treatment effect for the responsive subgroup and overestimate the

treatment effect for the non-responsive subgroup when the true treatment effect of the responsive

subgroup is positive. The CME and the hybrid estimator reduce the bias significantly, however,

variance and root mean squared error are increased. Additionally, only the CME and the hybrid

estimator take the decision rule into account.
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2.3 Confidence interval construction

An adaptive enrichment design may involve terminating a trial prematurely if a particular sub-

group shows a high likelihood of treatment success. However, this determination is based on

interim data, which carries a risk that the estimate of the treatment effect may be unreliable or

inaccurate. To better comprehend the uncertainty associated with the estimate of the treatment

effect and to make more informed decisions regarding the trial design and whether to proceed

with the study, confidence intervals can be established. These intervals help estimate the prob-

able range in which the true treatment effect lies, with a certain level of confidence. The use of

point estimates alone neglects the uncertainty and validity of parameter inference, which is why

many regulations mandate reporting confidence intervals for all treatment effects in clinical trials.

Furthermore, the ICH E9 guideline (1998) requires that “Estimates of treatment effects should

be accompanied by confidence intervals, whenever possible, and the way in which these will be

calculated should be identified”. To address this, numerous studies have focused on developing

confidence interval construction for various different types of adaptive designs. One such method

is the confidence region approach proposed by Posch et al. (2005) for the flexible group sequential

design, which utilizes the close testing procedure to adjust p-values at each stage and combines

them using various combination functions. Stallard and Todd (2005) adopt the straightforward

p-value inversion approach to construct confidence intervals, however, their design only allows

the most effective treatment to be chosen at the interim analysis.

Specifically, in the case of their adaptive enrichment design, Magnusson and Turnbull (2013)

suggested using a double bootstrap technique for constructing confidence intervals. This ap-

proach commences with the basic maximum likelihood estimators and generates the initial set of

bootstrap samples by simulating new datasets assuming the MLE values are correct. Next, they

compute the mean of the bootstrap maximum likelihood estimators for each subset. The second

set of bootstrap samples is then produced using the bias-corrected simulated bootstrap estimate

obtained from the first sample run. Once again, the final estimate is determined by correcting

the bias based on the first round of simulated bootstrap estimates. Finally, the 1−α confidence

interval is formed by using the α quantile of the last simulated bootstrap estimates. However, a

simulation study showed that the coverage probability of this method is poor.
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2.3.1 Space orderings for p-value function construction

It is complicated to construct confidence intervals via inverting p-value functions in group se-

quential adaptive designs as the distribution of the test statistic relies on the null and alternative

hypotheses of interest (Emerson and Fleming, 1990). Therefore, it is necessary to define the

sample space ordering before deriving the p-value functions. In this thesis, we mainly focus on

three sample space ordering methods proposed by Armitage (1957), Rosner and Tsiatis (1988),

and Emerson and Fleming (1990).

Armitage’s method for ordering a sample space involves a step-by-step process where priority

decreases as the stages progress. This means that the statistic observed in each subsequent stage

should be less extreme than the one observed in the previous stage. To determine which statistic

is more extreme, we use the following criteria: if both X1 and X2 are observed in the same stage,

and X1 is greater than X2, then X1 is more extreme than X2; if X1 stops at an earlier stage

than X2 and X1 crosses the upper boundary in its stage, then X1 is more extreme; and if X1

stops at a later stage than X2 and X2 crosses the lower boundary in its stage, then X1 is more

extreme. It is evident that this method favours earlier stages over later ones. In the rest of this

thesis, we call this method “stage-wise ordering”.

In contrast, the ordering method presented by Rosner and Tsiatis (1988) gives equal weight to

all stages. To begin with, if we observed standardized statistics, all statistics are transformed into

score statistics by multiplying the standardized statistic with the square root of its corresponding

Fisher information. The score statistic with the higher value is then deemed the most extreme.

Hence, this method is named “score ordering”.

Emerson and Fleming (1990) proposed an alternative approach for ordering which relies on

the maximum likelihood estimate (MLE) of statistics. This method entails regarding the statistic

with a higher MLE value as more extreme, similar to the score ordering method. This method

is referred to as MLE ordering or sample mean ordering (Hsu, 1996).

2.3.2 P -value inversion approach

In the p-value inversion method, the goal is to estimate the parameter values of a model that best

explains the observed p-value. This is done by using the inverse cumulative distribution function

(ICDF) of the test statistic to determine the treatment effect that corresponds to the observed

p-value. This critical value is then used to estimate the true treatment effect. Whitehead (1997)

has described an approach to construct confidence intervals based on the relationship between
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hypothesis testing and confidence intervals. Assuming the parameter to be estimated is denoted

by θ, Kimani et al. (2014) summarized the general p-value function based on such relationship

as

p(θ,x) = Pr(X ≥ x; θ) (2.7)

where X is the possible data set and x is the observed data set. Whitehead (1997) also described

that if the value of p(θ,x) is monotonically increasing on θ and θα(x) is defined by p(θα(x),x) =

α, then

Pr(θ ≤ θα(X)) = α (2.8)

Equation (2.8) provides a method for obtaining a distinct value of θ for a given data set x with

a minimum coverage probability of 1− α.

This p-value inversion approach is adopted by Stallard and Todd (2005) in their paper to

construct the confidence region for the multiple-arm enrichment design that selects the most

effective treatment arm in the first interim analysis. Their p-value function is based on the or-

dering method proposed by Armitage (1957) and Fairbanks and Madsen (1982) which prioritizes

subgroups that stop at the earlier stage for efficacy over those that stop at the later stages.

When two subgroups stop at the same stage, the statistic with a greater value is considered more

extreme than the one with a smaller value. Stallard and Todd (2005) define the overall p-value

function for k treatments as:

p(θ,x) =

k∑
j=1

pj(θ,x)I(S = j). (2.9)

The function I(·) is an indicator function that evaluates to 1 when the jth treatment is chosen

and proceeds to the following stages, and evaluates to 0 otherwise. The value of the p-value

function follows a standard uniform distribution U [0, 1] for the true value of θ. Therefore, the

confidence region for θ with one-sided coverage probability α is given by {θ : p(θ,x) ∈ (−∞, α)}.

However, one limitation of this approach is that when we reduce the confidence region for all

treatment arms to the confidence interval for the selected subgroup j, we are supposed to assume

that the treatment effect for subgroup j ̸= S equals 0 or their maximum likelihood estimate.

This leads to inaccurate coverage probabilities for the confidence intervals which are caused by

the bias of the estimators.

Stallard and Todd (2005)’s approach focuses on designs in which only the most effective

experimental treatment arm is selected. For those designs that allow flexible selection of treat-

ment arms, Magirr et al. (2013) proposed an approach that utilizes the closed testing principle
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and p-value combination functions to construct a confidence region for all experimental treat-

ment arms which strongly controls the family-wise error rate at the desired level. Let θj be the

treatment difference between the experimental treatment j and the control treatment and Q be

the combination function that combines p-values at stage 1 and stage 2. The confidence region

obtained for all experimental treatments can be reduced to simultaneous confidence intervals.

Their algorithm is described below:

1. Perform the closed test procedure.

2. If not all null hypotheses H0,j : θj ≤ 0 of the experimental treatment arms which proceed

to the second stage are rejected at the second stage, then the lower bound for the re-

jected experimental treatment equals 0 while the lower bound for the accepted experiment

treatment should be below 0.

3. Else if all null hypotheses of the selected experimental arms are rejected at the second

stage, we compute pmax = maxi⊂(T1/T2) p
(1)
i where T1 is the index set of all experimental

treatment arms, T2 is the index set of experimental arms that proceeds to stage 2. When

i = ∅, pmax = 0. Then the lower bound for treatment j is defined as

lj = max
(
0, sup{θ : Q[max{pmax, p

(1)
j (θ)}, p(2)j (θ)]}

)
where p

(1)
j and p

(2)
j are adjusted p-values at stage 1 and stage 2.

From the algorithm above, we notice that the lower bounds will only be informative when the

selected treatment arms are rejected in the second stage. Also, this design takes no account of

the early termination of selected treatment arms in the first stage.

Kimani et al. (2020) developed a method for constructing two-sided confidence intervals for

time-to-event data using the confidence region construction method proposed by Magirr et al.

(2013). Another feature of the design proposed in their paper is that the subgroup partition

is not prespecified but depends on the observed outcomes of patients. The approach involves

constructing score statistics and using the closed testing procedure to adjust p-values in each

stage. A combination function is then used to merge the adjusted p-values across all stages.

Nevertheless, similar to Magirr et al.’s confidence intervals, Kimani et al.’s confidence intervals

do not offer information for rejected hypotheses when just a subset of hypotheses are rejected,

which potentially contributes to the conservativeness of the confidence region.
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In addition to proposing an adaptive design that permits early stopping for efficacy or futility,

as well as the addition of a new treatment in the first stage, Posch et al. (2005) also suggest

a method for constructing confidence intervals for this flexible selection design. They create

a rectangular confidence region that encompasses the simultaneous confidence intervals for two

experimental treatments. Assume that k experimental treatments are compared with the control

treatment, the hypothesis for the jth treatment is

Hj,0 : θj ≤ µj against Hj,a > µj

where θj is the true treatment effect for experiment treatment j. Assuming padjj and qadjj are

adjusted p-values obtained from the Bonferroni, Simes, or Sidak test for the first and second

stage, let a and b be the decision thresholds for the first stage. If padjj is less than a, treatment j

is stopped due to efficacy, while if padjj is greater than b, treatment j is stopped due to futility. For

cases where padjj is within the range (a, b), treatment j proceeds to the second stage. Likewise,

if qadjj is less than c, treatment j is considered effective, while if qadjj is greater than or equal

to c, treatment j is considered ineffective. Then Posch et al. (2005) define that the one-sided

confidence interval for treatment j is

Ij = {µj |ψC(p
adj
j (µj), q

adj
j (µj)) = 0}

where

ψC(p
adj
j , qadjj ) =

0 if padjj ≤ a or both padjj ≤ b and C(padjj , qadjj ) ≤ c

1 otherwise

C(·) is the p-value combination function (i.e. C(p, q) = pq). From the simulation study, they

conclude that the conservativeness of the confidence interval is affected by the p-value adjustment

approach used. A limitation of their method is that the simultaneous confidence intervals they

construct may not necessarily be compatible with the closed testing procedure. Additionally,

these intervals may be inconsistent with the test decision.

2.4 Multiple testing procedures

The control of Type I errors in multiple testing is a topic that is presently of great interest.

Various techniques have been proposed by researchers, such as those introduced by Bauer and

Kohne (1994), Bauer and Kieser (1999), Posch et al. (2005), and Rosenblum et al. (2016). These

methods include the closed testing procedure (Magirr et al., 2013), the p-value combination
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method, conditional power (Lin et al., 2021), and combinations of these methods, among others

(Burnett and Jennison, 2021; Ondra et al., 2019; Rosenblum et al., 2016, 2020). Magnusson and

Turnbull (2013) have developed an approach that is similar to sequential designs, with boundaries

in the current stage being dependent on boundaries in all previous stages, but they use the

property of the joint distribution of statistics throughout all stages to control the familywise

error rate (FWER).

Dynamic programming is utilized by both Ondra et al. (2019) and Rosenblum et al. (2020)

to identify the optimal adaption rule under certain constraints. Specifically, in the approach

presented by Rosenblum et al. (2020), the goal is to minimize a pre-defined loss function based

on observed data, while also ensuring that the FWER is preserved and the Bayesian risk is

limited. To achieve this objective, the problem is transformed into a sparse linear programming

problem.

The Bonferroni method is regarded as the most straightforward multiple comparison pro-

cedure, enabling the simultaneous testing of many hypothesis statements while ensuring that

the overall type I error rate remains below a certain level. In earlier research, this method

was primarily employed in ANOVA scenarios, where specific sets of pairwise comparisons were

pre-selected. According to Hsu (1996), the Bonferroni method is applicable for both equal and

unequal sample sizes, and it is founded on Boole’s inequality, which is expressed as follows:

Pr(

m⋃
i=1

Ei) ≤
m∑
i=1

Pr(Ei) (2.10)

To elaborate, suppose Ei denotes the event that the i-th confidence level constructed does not

encompass the true value. Then, the probability of at least one interval missing its true value is

represented by the left-hand side of the inequality. Similarly, the right-hand side of the inequality

is the sum of probabilities of each interval failing to capture its true value. Therefore, to restrict

the family-wise error rate of multiple interval estimates to α, it is necessary to restrict the type

I error rate of each interval to α/m, where m is the number of comparisons or statements.

However, the Bonferroni procedure tends to be a bit conservative (Hsu, 1996). To demonstrate

this, we can calculate the probability of observing at least one significant result. Let α = 0.05.

Assuming that there are 15 hypotheses to be tested, and the individual p-values are independent

of each other, the probability of observing at least one significant result can be calculated as
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follows:

Pr(at least one significant result) = 1− Pr(no significant result)

= 1− (1− 0.05

15
)15

= 0.0485

The probability is less than 0.05, which highlights the conservative nature of this method. To

obtain the lower bound of the one-sided Bonferroni confidence interval for all subgroups, we

can set the individual p-value function equal to α/m. Although all the resulting Bonferroni

confidence intervals are informative, they are conservative as we stated above.

The fundamental concept of the step-down method is to determine whether there is sufficient

evidence to suggest that the target treatment, which has the smallest p-value, or, in other words,

the treatment that appears to be the most significant, is indeed superior (Holm, 1979). The power

of the step-down method is greater than that of the Bonferroni method due to the fact that,

given the same assumptions and observation values, the critical value of the Bonferroni method

is always greater than or equal to the critical value of the step-down method. As a result, the

step-down method tends to reject more hypotheses than the Bonferroni method. However, it is

worth noting that the lower bounds of the Bonferroni method are more informative than those

of the step-down method, since many of the bounds in the stepwise procedure are zero, as noted

by Strassburger and Bretz (2008).

Although rejections using single-step simultaneous confidence intervals such as the Bonfer-

roni method or single-step Dunnet method are typically informative, the simultaneous confidence

intervals used in stepwise multiple procedures are often non-informative. Specifically, these con-

fidence intervals only offer information on the parameters of rejected hypotheses in situations

where all null hypotheses are rejected. As a consequence, Brannath and Schmidt (2014) have

introduced a novel approach known as the weighted Bonferroni procedure, wherein the weight

assigned to each hypothesis is contingent on its respective parameter values. By incorporating

the penalizing function, this method successfully trades-offs between power and informative re-

jections. Compared to the Bonferroni procedure, it rejects more null hypotheses, while compared

to the Holm, the confidence interval shrinkage implies that Brannath and Schmidt’s procedure

provides more information in a partial rejection case. Nevertheless, even though this method’s

algorithm is relatively simple to conduct, it still has its drawback: the choice of the weight

function is difficult in practice.
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2.5 Conclusion

Having already addressed the shortcomings of point estimates in adaptive enrichment designs,

the remainder of this thesis employs the p-value inversion approach to establish both conditional

and simultaneous confidence intervals for group sequential designs featuring subgroup selection

during interim analysis. Initially, we establish conditional confidence intervals for chosen sub-

groups in the Magnusson and Turnbull (2013) design, utilizing three sample space ordering

methods discussed earlier in this chapter. Subsequently, we generate unconditional intervals for

all subgroups by using a similar idea to the CME discussed in Section 2.2 and by implement-

ing multiple testing procedures such as Bonferroni, Holm, and Brannath and Schmidt (2014).

Lastly, we extend the construction method to general two-group two-stage enrichment designs

and provide an illustration of the generalized approach utilizing the Lin et al. (2021) design.
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Chapter 3

Conditional confidence interval

for selected subgroups

As we mentioned in the literature review chapter, a large body of literature has investigated the

topic of how to construct point estimators in the enrichment design. However, none of them is

unbiased. In order to address the uncertainty and bias issue of the parameter inference, many

regulation institutions(i.e. FDA and CONSORT) require to include the confidence interval in

clinical trial reports. Magnusson and Turnbull (2013) presented a double bootstrap method

but the coverage is poor. In this chapter, we suggest a p-value inversion method to establish

and verify the coverage probability of the nominal level. We concentrate on the construction of

confidence intervals conditional on certain subpopulations being selected at the initial interim

analysis. We also concentrate on the case of a two-stage design with two possible subgroups.

Nevertheless, as in Section 8, we show our approach can be extended to the three-stage design

in generality.

Based on the aforementioned effectiveness exit probability (Equation (2.1)), we can define

the probability of observing a statistic greater than u at stage k as:

ψ∗
k,S(l1, u1, ..., lk, uk;θ, u)

=Pr[Select S and observing a statistic greater than u at stage k]

=Pθ[S∗ = S, Y1,S < ũ1,S , Y2,S ∈ (l̃2,s, ũ2,S), ..., Yk,S ≥ u].

(3.1)

In this case, if S is not an empty set, the p-value function which conditions on the event that
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S∗ = S can be written as:

ψ†
k,S(l1, u1, ..., lk, uk;θ, u)

=Pr[observing a statistic greater than u at stage k conditional on selecting S]

=Pθ[Y1,S < ũ1,S , Y2,S ∈ (l̃2,s, ũ2,S), ..., Yk,S ≥ u|S∗ = S].

(3.2)

By incorporating the above basic p-value functions with various space ordering methods, we are

able to construct the conditional p-value functions for the corresponding conditional confidence

intervals. Throughout the rest of this thesis, the term “conditional” refers to the creation of con-

fidence intervals specifically for the subpopulation that is retained following the interim analysis,

based on its selection via the screening rule.

3.1 P -value functions based on specific space ordering meth-

ods

As we mentioned in Chapter 2, the p-value function construction is dependent on the space or-

dering approach (Emerson and Fleming, 1990). Here we first use stage-wise ordering to construct

p-value functions which are defined as the p-value of statistics that is observed in the previous

stage should be more extreme than whose statistics observed in the afterward stage. In addition

to stage-wise space ordering methods, we also introduce p-value functions constructed under the

score and MLE ordering methods in this section.

Let I be the stage reached, Y be the statistic, and (i, y) be the pair of observed values of

(I, Y ) when the trial terminates. Then, we define the probability of observing values as extreme

or more extreme than (i, y) under the null hypothesis H0,S given S∗ = S as

pH0,S = Pr[Observe pair of values as extreme

or more extreme than (i, y)|S∗ = S,θ]

= Pr((I, Y ) ≫ (i, y)|S∗ = S,θ)

Note that the definition of “extreme” is different under different space ordering methods. If

(i1, y1) is ranked higher than (i2, y2) given certain space ordering method, we denote (i1, y1) ≫

(i2, y2).
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3.1.1 Stage-wise ordering

When we apply the stage-wise space ordering method to the p-value function construction, the

stage at which the trial terminates takes precedence. If any of the following three conditions

holds:

• i2 = i1 and y2 ≥ y1

• i2 < i1 and y2 ≥ ui2

• i2 > i1 and y1 ≤ li1

we draw the conclusion that (i2, y2) ≫ (i1, y1). ui2 is the upper bound at stage i2; li1 is the lower

bound at stage i1. For instance, consider the test of H0 : θ = 0 against alternative hypothesis

Ha : θ > 0 with 4 interim analyses. We know that u1 = 4.6, u2 = 3.2, u3 = 2.9 and u4 = 2.1. If

the trial stops at interim 4 with y4 = 4, given stage-wise ordering, then the one-sided p-value is

Pr(observing statistics greater than y4)

=Pr{Y1 ≥ 4.6 or Y2 ≥ 3.2 or Y3 ≥ 2.9 or Y4 ≥ 4}.

According to the above definition, we define the p-value function for the two-stage enrichment

design that conditions on subgroup S is chosen as:

Pr(YS > u|S∗ = S, θS)

=Pr(Y1,S > max(u, ũ1,S)|S∗ = S, θS)× I(trial terminates at stage 1)

+[Pr(Y1,S > ũ1,S |S∗ = S, θS) + Pr(Y2,S > u|S∗ = S, θS)]

×I(trial terminates at stage 2).

(3.3)

Recall that Xk,S follows a normal distribution with mean θS and variance δk,S , we explicate

Equation (3.3) as:

Pr(YS > u|S∗ = S, θS)

=

∫ ∞

max(u,ũ1,S)

f1|S(y1,S |θS)dy1,S × I(trial terminates at stage 1)

+
{∫ ∞

ũ1,S

f1|S(y1,S |θS)dy1,S

+

∫ u1,S

l1,S

f1|S(y1,S |θS)

[
1− Φ

(
(u− y1,S)− θSδ2,S√

δ2,S

)]
dy1,S

}
×I(trial terminates at stage 2).

(3.4)
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If δk,S = Nk,S/4σ
2, then

f1|S(y1,S |θS) =



1√
δ1,S

ψ(
y1,S−θSδ1,S√

δ1,S
)

1− Φ

(
l̃1,S−θSδ1,S√

δ1,S

) × I(x1,S > l̃1,S) S ∈ {1, 2}

∫ y1,S−l̃1,2

l̃1,1

f1,1(y1,1)f1,2(y1,S |y1,1)dy1,1 S = {0} .

(3.5)

ψ(·) and Φ(·) are the density and cumulative distribution functions of the standard normal

distribution.

3.1.2 Score ordering

Let yi be the standardized statistic. According to the score ordering method, if (i2, y2) and

(i1, y1) satisfy

y2
√
I2 > y1

√
I1,

we declare (i2, y2) ≫ (i1, y1) (Rosner and Tsiatis, 1988). Here, I1 and I2 are the cumulative

Fisher information corresponding to i1 and i2. Under the score ordering method, we only focus on

the observed score statistic value, regardless of the stage at which the trial terminates. Because

we solely rely on statistical data within our p-value function, it is essential to account for every

potential scenario in which the trial concludes. To clarify, the p-value computed based on score

ordering encompasses the probability of observing a statistic that exceeds the threshold (denoted

as u) throughout all stages of the trial.

We use a similar example as in the stage-wise ordering method where: u1
√
I1 = 4.6, u2

√
I2 =

3.2, u3
√
I3 = 2.9, u4

√
I4 = 2.1 and y4

√
I4 = 4. Since y4

√
I4 is smaller than u1

√
I1 but greater

than u2
√
I2, u3

√
I3 and u4

√
I4, the p-value function could be defined as below based on score

ordering method:

Pr(observing statistics greater than y4
√

I4)

=Pr{Y1
√

I1 ≥ 4.6 or Y2
√
I2 ≥ 4 or Y3

√
I3 ≥ 4 or Y4

√
I4 ≥ 4}.

In our two-stage adaptive enrichment design, we denote the probability of observing an out-

come greater than u conditional on selecting S at the first interim analysis under the score

ordering method as:

Pr(YS > u|S∗ = S, θS)

=Pr(Y1,S > max(u, ũ1,S)|S∗ = S, θS)

+Pr(Y2,S > u|S∗ = S, θS)

(3.6)
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By plugging in density functions in Equation (3.6), we explicate the conditional p-value function

as:

Pr(YS > u|S∗ = S, θS)

=

∫ ∞

max(u,ũ1,S)

f1|S(y1,S |θS)dy1,S

+

∫ u1,S

l1,S

f1|S(y1,S |θS)×

[
1− Φ

(
(u− y1,S)− θSδ2,S√

δ2,S

)]
dy1,S

where f1|S(·) is the first stage density function given subpopulation S is chosen.

3.1.3 MLE ordering

Under the MLE ordering method, outcomes are ordered according to the value of the MLE when

the trial terminates. We denote θ̂MLE = Yi/Ii, where Yi is the score scaled statistic and Ii is

the cumulative Fisher information at stage i. If (i2, y2) satisfy

y2/I2 > y1/I1,

then we can conclude that (i2, y2) ≫ (i1, y1) (Emerson and Fleming, 1990).

Note that the definition of MLE ordering involves a transformation of the score statistic.

To simplify the calculation, we convert the MLEs back into score statistics after we found their

corresponding MLE-scaled statistics. However, for the second converting process, we need to

take the possible termination stage into account. If subset S exits at stage 1, then the converted

statistic will be Y1,S,mle = YS/I1,S ×I1,S and Y2,S,mle = YS/I1,S ×I2,S corresponding to stage 1

and stage 2 respectively. If the original statistic YS proceeds to stage 2, the converted statistics

are Y1,S,mle = YS/I2,S × I1,S and Y2,S,mle = YS/I2,S × I2,S corresponding to stage 1 and stage

2 respectively. Analogously, let c1,mle and c2,mle be the corresponding converted observed values

at stage 1 and stage 2. Next, we define the conditional p-value function as

Pr(Ymle,S > cmle|S∗ = S, θS)

=Pr(Y1,S > max(c1,mle, ũ1,S)|S∗ = S, θS)

+Pr(Y2,mle,S > c2,mle|S∗ = S, θS)

(3.7)

By plugging in density functions of Ymle,S , Equation (3.7) is equivalent to

Pr(Ymle,S > cmle|S∗ = S, θS)

=

∫ ∞

max(c1,mle,ũ1,S)

f1|S(y1,S,mle|θS)dy1,S,mle

+

∫ ũ1,S

l̃1,S

f1|S(y1,S,mle|θS)

[
1− Φ

(
c2,mle − y1,S,mle − θSδ2,S√

δ2,S

)]
dy1,S,mle

(3.8)
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One property of the converted statistics is that they are more likely to be greater than the

rejection threshold in the first stage, therefore the MLE ordering prioritizes the first stage in the

same way as the stage-wise ordering approach.

3.1.4 Conditional confidence intervals

Recall that we are testing the one-sided hypothesis H0,S : θS = 0 vs Ha,S : θS > 0. All p-value

functions we derived above are nondecreasing on θ, thereby we can find certain θ̂S that satisfy

Pr(YS > u|S∗ = S, θ̂S) = α based on certain ordering manner by using uniroot function which

implements a line search to find the root assuming there is one within a specified interval. The

uniroot function adopts the algorithm proposed by Brent (2013), which guarantees a superlinear

convergence. Then, the conditional confidence interval for subgroup S is (θ̂S ,∞).

For the two-sided confidence interval, assuming that each side is tested at α/2 significance

level, we can find a unique solution corresponding to the equation Pr(YS > u|S∗ = S, θ̂α/2,S) =

α/2 and Pr(YS > u|S∗ = S, θ̂1−α/2,S) = 1− α/2. Therefore we denote the two-sided confidence

interval conditional subpopulation S selected as (θ̂α/2,S , θ̂1−α/2,S).

3.2 Simulation study

In this section, we assess the coverage properties of the proposed conditional confidence intervals

by simulating datasets from adaptive enrichment trials following the Magnusson and Turnbull

(2013) design. We test the one-sided hypothesis H0,S : θS = 0 at 0.025 significance level. The

maximum total sample size, determined to be 1250 based on the first power criteria in Section

2.1.1, allows for maintaining the power at 90%. This is based on the assumption that the clinically

effective treatment effect for subgroups 1 and 2 is 0.2 and 0.2, respectively. Suppose that patients

are equally allocated in each stage, hence N1 = N2 = 625. Given the prevalence of subgroup 1 ρ1

equals 0.6, we randomly generate the sample size of each subgroup by drawing from a binomial

distribution. For each space ordering method, we also compare the proportion of trials for which

the result is inconsistent between the confidence interval and the design decision. By using the

spending error functions in Section 2.1.1, the standardized boundaries are determined as follows:

(l1, u1) = (0.5192, 2.5529); (l2, u2) = (2.4072, 2.4072).

We consider two possible situations here. The first one is that only subgroup 1 is chosen in the

first interim analysis. In other words, in the simulations, we only retain trials that Y1,1 exceeds
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its lower adjusted boundary l̃1,1. When the trial proceeds to the second stage, we only recruit

patients for subgroup 1. At the end of the second stage, the statistic for subgroup 1 accumulates

in the pattern of X2,1 = Y2,1 − Y1,1. The second case is that the entire population is selected,

which means both Y1,1 and Y1,2 are greater than their corresponding lower boundaries. Then,

when we make the decision of whether to reject the null hypothesis for the overall group at the

first stage, we combine the two statistics as Y1,0 = Y1,1+Y1,2 and compare it with ũ1,0 = u1
√
I1,0.

If the trial proceeds to the second stage, we use the same prevalence as stage 1 to assign patients

between subgroups. Then the accumulated statistic of the overall group is X2,0 = Y2,0 − Y1,0

where X2,0 ∼ N(θ0δ2,0, δ2,0). We illustrate a specific trial in Table 3.1. From the definition in

Section 2.1.1, we know δ2,0 = N2,0/4σ
2
0 . Throughout our simulation studies in this section and

subsequent sections, we assume a common variance σ2
0 as 1, yet we estimate it using the pooled

variance σ2. Let n1j and n1 be the observed number of patients recruited for subgroup j and

the total number of patients recruited in the first stage respectively. sE1j and sC1j are the sample

variance of the experimental arm and control arm of subgroup j. The trial’s pooled sample

variance is calculated from the formula below

σ2 =
(n11/2− 1)sE11 + (n11/2− 1)sC11 + (n12/2− 1)sE12 + (n12/2− 1)sC12

n1 − 4

which equals 1.0166 in this simulation study. Since X1,1 is greater than l̃1,1 and X1,2 is smaller

than l̃1,2, we only retain subgroup 1 after the first interim analysis. At the second stage, the

final statistic equals 59.1081 which is greater than the adjusted second stage upper boundary

of 37.1767, hence we reject the null hypothesis and deem that there is a treatment difference

between the experimental treatment and the control treatment in subgroup 1.

3.2.1 One-sided conditional confidence interval with equal sample sizes

assigned to two stages

Next, we simulate 10,000 runs of trials under three different scenarios and show their coverage

probabilities of conditional confidence intervals in Table 3.2. Suppose that σ2
0 = 1 in the patient’s

outcome distribution. Again, in the score statistic distribution Xk,j ∼ N(θjδk,j , δk,j) where

δk,j = Nk,j/4σ
2
0 , σ

2
0 is estimated by the pooled sample variance σ2. The three scenarios represent

three possible situations. Under the null scenario, the fact is that the target treatment cause

no difference from the placebo treatment in the entire population i.e. θ = (0, 0). In the second

scenario, θ = (0.2, 0) which means that subgroup 1 is more promising compared to subgroup

2. The last scenario (0.2, 0.2) represents that the target treatment is effective for the entire
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Table 3.1: Result of one simulated trial described in Section 3.2.

stage 1 X1,j N1,j δ1,j l̃1,j ũ1,j

Ω1 11.5565 370 90.9896 4.9532 24.3521

Ω2 -7.6191 255 62.7090 4.1120 20.2165

stage 2 X2,j N2,j δ2,j l̃2,j ũ2,j

Ω1 47.5516 625 153.6986 37.6563 37.6563

Ω2 \ \ \ \ \

Total Y2,S NS I2,j ũ1,S ũ2,S

Ω1 59.1081 995 244.6882 24.3521 37.6563

population and treatment effect is homogeneous among them.

Table 3.2: The empirical coverage probability and power of nominal 97.5% one-sided confidence

intervals in Magnusson and Turnbull design conditioning on subgroup 1 is selected.

scenario
number of cases where

the overall group is selected

coverage probability power

naive stage-wise score MLE naive stage-wise score MLE

θ = (0, 0) 2074 0.9161 0.9745 0.9711 0.9745 0.0839 0.0255 0.0289 0.0255

θ = (0.2, 0) 6369 0.9677 0.9731 0.9742 0.9731 0.9146 0.7233 0.7365 0.7233

θ = (0.2, 0.2) 1270 0.9583 0.9646 0.9717 0.9646 0.9110 0.7205 0.7276 0.7205

As shown in Table 3.2, confidence intervals constructed under all three space ordering methods

have coverage probabilities close to the nominal level for all scenarios. One interesting point is

that the stage-wise confidence intervals are close to MLE confidence intervals as both of them

prioritize stage 1 over stage 2. When we observe an extreme value, stage-wise ordering prefers to

believe that it occurs in the first stage while score ordering does not have such preference. For

the MLE method, since the converted statistic is more likely to be extreme at the first stage,

it also favors stage 1 over stage 2. Figure 3.1 presents the scatter plots of confidence intervals

given subgroup 1 is selected in terms of three different scenarios. Under all scenarios, when the

trial terminates at stage 2, the confidence intervals derived from score ordering shrink upward

compared to the stage-wise and MLE ordering approach.

Histograms of lower bounds under different scenarios are shown in Figure 3.2. Each row
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Figure 3.1: Lower bounds of one-sided confidence intervals conditioning on subgroup 1 is chosen

in the two-stage two-subgroup Magnusson and Turnbull design. The circle and triangle dots

indicate that the trials end at stages 1 and 2, respectively. Lower bounds obtained from the

MLE, score, and stage-wise ordering approaches are represented by the dots filled in light green,

light purple, and light orange, respectively.

displays lower bounds of confidence intervals obtained under scenario θ = (0, 0), θ = (0.2, 0) and

θ = (0.2, 0.2) respectively given subgroup 1 is chosen. Each column is based on stage-wise, score,

and MLE ordering approaches respectively. The red vertical line in every single histogram is the

97.5% quantile. Obviously, they are located around the true treatment effect of subgroup 1. In

other words, approximately 2.5% of lower bounds are above the true treatment effect which also

indicates that the coverage probability of those confidence intervals nearly reaches the nominal

level.

However, one limitation of our p-value inversion approach is that the conclusion obtained

from the conditional confidence interval probably does not necessarily agree with the design

procedure proposed by Magnusson and Turnbull (2013). Table 3.3 shows the proportion of

trials that has different results given that only subgroup 1 is chosen in the interim analysis

under three scenarios. We notice that the design procedure rejects more null hypotheses than

the confidence interval approach in general and the minimum inconsistency appears in the null

scenario. Additionally, the stage-wise ordering method usually draws the same conclusions as the
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Figure 3.2: Histogram for the lower bounds of nominal one-sided 97.5% confidence intervals given

subgroup 1 is selected in the two-stage design.

MLE ordering method. The confidence interval is uniformly more conservative than Magnusson

and Turnbull (2013) test. There are several possible explanations for this result. One of those

reasons is that these confidence intervals are controlling Type I error conditional on the selection

which is stronger than the Magnusson and Turnbull (2013) test which controls the unconditional

Type I error. Furthermore, none of the proposed ordering methods directly aligns with the

testing boundaries. Therefore, we propose a new ordering approach in Section 3.3 which ensures

the alignment between the two-stage upper boundaries by finding the appropriate power of the

Fisher information.

There are 932 and 7965 out of 10,000 trials that both subgroups are retained after the in-

terim analysis under scenario θ = (0, 0) and θ = (0.2, 0.2) respectively. When both subgroups

are selected at the first interim, Table 3.4 shows that under the same treatment effect scenario,

the coverage probability is again close to nominal. However, when the treatment effect is hetero-

geneous across subgroups, the situation becomes complicated. One possible solution is to find

the smallest rectangle which contains the contour of the possible pairs of treatment effects. How-

ever, obviously, this approach is more conservative compared with the straightforward p-value

inversion method. Moreover, in this case, the p-value is based on the joint distribution of the
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Table 3.3: The proportion of simulated trials that have different conclusions regarding the design

procedure and conditional confidence intervals (CI) under three scenarios.

θ = (0, 0)
proportion of trials rejected by design

but accepted by CI

stage-wise 0.0135

score 0.0101

MLE 0.0135

θ = (0.2, 0)
proportion of trials rejected by design

but accepted by CI

stage-wise 0.1061

score 0.0930

MLE 0.1061

θ = (0.2, 0.2)
proportion of trials rejected by design

but accepted by CI

stage-wise 0.1079

score 0.1007

MLE 0.1078
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statistics from all subgroups, which probably is not uniformly distributed as in the univariate

case.

Table 3.4: The empirical coverage probability and power of nominal 97.5% one-sided confidence

intervals in the Magnusson and Turnbull design conditioning on all subgroups are selected.

scenario
number of cases where

the overall group is selected

coverage probability power

naive stage-wise score MLE naive stage-wise score MLE

θ = (0, 0) 816 0.8155 0.9742 0.9764 0.9763 0.1845 0.0258 0.0236 0.0258

θ = (0.2, 0) 236 0.9079 0.9520 0.9520 0.9520 0.8208 0.2670 0.3599 0.2777

θ = (0.2, 0.2) 3371 0.9702 0.9778 0.9775 0.9778 0.9789 0.4645 0.6645 0.5231

Additionally, we formulated the simple one-sided confidence interval upon concluding the

trial, which can be mathematically represented as:

θS > (yK,S − 1.96
√
IK,S)/IK,S .

Upon analyzing the data presented in Table 3.2 and Table 3.4, we can infer that the naive

confidence intervals exhibit subpar performance in terms of coverage probability. This deficiency

stems from the fact that these intervals fail to account for the intricacies of selection behavior

during their construction.

3.2.2 Two-sided conditional confidence interval with equal sample sizes

assigned to two stages

In this section, we conduct simulation studies to assess the coverage probability and power of

the dual-sided confidence intervals constructed under the score ordering approach. We assume

a significance level that is constrained to be at or below 0.025. The outcomes for the three

scenarios are detailed in Table 3.5. Coverage probabilities exhibit favorable performance across

all scenarios, particularly when retaining only subgroup 1 after the interim analysis. The power

of the two-sided confidence intervals for subgroup 1 is slightly lower than that of the one-sided

confidence intervals, yet it remains above 55% for scenarios θ = (0.2, 0) and θ = (0.2, 0.2). For

the two-sided confidence intervals that account for both selected subgroups, coverage probabilities

remain consistently near 97.5% across all scenarios. However, the power is merely 25.63% for the

scenario involving a true difference in treatment effects. Nevertheless, this outcome aligns with

the findings from the one-sided conditional confidence intervals that are conditioned solely on
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the selection of subgroup 1. The construction of the naive two-sided confidence intervals takes

the form:

(yK,S − 2.24
√

IK,S)/IK,S < θS < (yK,S + 2.24
√
IK,S)/IK,S

where K is the ultimate stage of trial termination. The naive confidence interval disregards any

selection process that takes place during the interim analysis. The simulation outcomes for the

naive two-sided confidence intervals are also detailed in Table 3.5. We note that their coverage

probabilities deviate more significantly from the intended level, yet their statistical power exceeds

that of the conditional confidence intervals constructed through the score sample space ordering.

Table 3.5: The coverage probability and power of the conditional two-sided confidence intervals

under the score ordering method when the sample sizes assigned to stage 1 and stage 2 are equal.

They are compared with the naive two-sided confidence intervals.

scenarios

S∗ = {1} S∗ = {1, 2}

coverage probability power coverage probability power

score naive score naive score naive score naive

θ = (0, 0) 0.9754 0.9484 0.0246 0.0516 0.9753 0.8777 0.0247 0.1223

θ = (0.2, 0) 0.9727 0.9750 0.5966 0.8684 0.9742 0.9459 0.2563 0.7358

θ = (0.2, 0.2) 0.9717 0.9701 0.5858 0.8646 0.9749 0.9833 0.5406 0.9584

3.2.3 One-sided conditional confidence interval with unequal sample

sizes assigned to two stages

Simulation studies are conducted to evaluate the performance of the conditional confidence in-

terval when varying the number of patients assigned to stage 1 and stage 2. Table 3.6 presents

a summary of the coverage probability and power for different scenarios, with one-third and

two-thirds of the total patients allocated to stage 1. With one-third of the total sample size

allocated to the first stage, the boundaries are set as follows:

(l1, u1) = (0.1766, 2.6585), (l2, u2) = (2.2917, 2.2917).

To ensure a 90% power level, a maximum total sample size of 1203 is necessary to detect the

minimum significant treatment effect of θ = (0.2, 0.2). When allocating two-thirds of the total
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sample size to the first stage, the boundaries are defined as follows:

(l1, u1) = (0.8641, 2.4688), (l2, u2) = (2.5104, 2.5104).

Likewise, in order to achieve a 90% power level for detecting the minimum significant treatment

effect of θ = (0.2, 0.2), a maximum total sample size of 1290 is required. The results indicate

that coverage probabilities are consistent across different sample size allocations. Nonetheless,

in scenario θ = (0.2, 0), the power is relatively reduced for the combined overall group. Again,

this discrepancy can be attributed to the underlying assumption of a consistent treatment effect

in the p-value function.

Table 3.6: The coverage probability and power of the conditional confidence interval when the

sample sizes assigned to stage 1 and stage 2 are unequal.

scenario S∗ = {1} S∗ = {1, 2}

N1 = 401, N2 = 802 coverage probability power coverage probability power

θ = (0, 0) 0.9783 0.0217 0.9761 0.0239

θ = (0.2, 0) 0.9751 0.8359 0.9779 0.4027

θ = (0.2, 0.2) 0.9793 0.8289 0.9746 0.7932

N1 = 833, N2 = 417 coverage probability power coverage probability power

θ = (0, 0) 0.9785 0.0215 0.9764 0.0236

θ = (0.2, 0) 0.9763 0.7059 0.9572 0.4198

θ = (0.2, 0.2) 0.9719 0.7014 0.9758 0.7000

3.3 Generalized space ordering method

As we mentioned in Section 3.2, we notice an inconsistency between the design procedure decision

and our confidence interval conclusion. This is partly due to none of the ordering methods

ensuring that a statistic at u1 in stage 1 is treated as equivalent to a statistic at u2 in stage 2.

Hence, we propose a generalized space ordering method that can ensure there is an alignment

between the upper rejection boundaries at stage 1 and stage 2 which is achieved by considering

different ways to scale the statistic by a power of the Fisher information.

Let Zk,S be the standardized statistic for the selected subpopulation S at stage k and we
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denote the adjusted statistic as

X∗
k,S = Zk,SI

λS
k .

where λS is a control parameter that can be chosen. Note that Ik will increase between stages 1

and 2 meaning the relative weighting given to stage 1 versus stage 2 is controlled by the value of

λS . When λS = 0, X∗
k,S is the standardized score, while choosing λS = −0.5, X∗

k,S is the MLE

of θ. Suppose we choose λS so that

u1I
λS
1 = u2I

λS
2 (3.9)

where u1 and u2 are upper boundaries at stage 1 and stage 2 in the Magnusson and Turnbull

(2013) design. Equation (3.9) implies that

λS =
log u1 − log u2
log I2 − log I1

. (3.10)

Using this value of λS then ensures that the value of X∗
k,S is the same at the stage 1 and stage 2

boundaries. However, as seen in Section 3.2, the conditional confidence intervals had uniformly

lower power than the unconditional Magnusson-Turnbull test, and using the proposed ordering

does not remedy this issue. Instead, it is possible, in terms of Equation (3.9) and Equation

(3.10), and under the null hypothesis, to define the adjusted significance level αS as

Pr[X∗
S > u1I

λS |θS = 0] = pS(u1; θS = 0, I1) = pS(u2; θS = 0, I2) = αS .

Hence, we can say that confidence intervals based on this ordering have the property that a

100(1− αS)% one-sided confidence interval for θS conditional on S∗ = S will be consistent with

the one-sided α Magnusson-Turnbull test that defined the boundaries u1 and u2. Note, however,

that the value of λS and also αS are themselves dependent on the selected subgroup S and so it

is only possible to get complete consistency between the test and confidence intervals when the

α-level for the conditional confidence intervals itself depends on S.

For instance, if u1 = 2.5530, u2 = 2.4072, and the Fisher information for the individual group

in the first stage is I11 = 6 and I12 = 4 respectively. Therefore, for S = {1}, I1 = 6, I2 = 16,

and

λ{1} =
log(2.5530)− log(2.4072)

log(16)− log(6)
= 0.0600

Hence, in this case, the scaling means stage 2 is favoured over stage 1 to a greater degree than

either the stage-wise or MLE orderings.

Similarly, first of all, we need to convert the raw statistics at stage 1 and stage 2 into standard-

ized statistics ZS . If the trial stops at the first stage, the adjusted statistic will be Z∗
1,S = ZSI

λS
1 ;
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if the trial terminates at stage 2, the adjusted statistic will be Z∗
1,S = ZSI

λS
2 . Then, we need to

convert them back to standardized statistics. However, each adjusted score statistic corresponds

to more than one converted score statistic due to the different cumulative Fisher information in

each stage. Let the converted score statistic be Z̃1,S and Z̃2,S for stage 1 and stage 2 respectively.

Therefore, if the subpopulation S exits at stage 1,

Z̃1,S = ZS × IλS
1 = Z∗

1,S

Z̃2,S = ZS × IλS
2 = Z∗

1,S/I
λS
1 × IλS

2 ;

while if the score statistics proceed to stage 2,

Z̃1,S = ZS × IλS
1 = Z∗

1,S/I
λS
2 × IλS

1

Z̃2,S = ZS × IλS
2 = Z∗

2,S .

Let ζ1,S and ζ2,S be the observed value after converting, then we define the p-value function

conditioning on subgroup S selected as

Pr(Z̃S > ζS |S∗ = S, θS) =
∫ ∞

max(ζ1,S ,ũ1,S)

f1|S(z̃1,S |θS)dz̃1,S

+

∫ ũ1,S

l̃1,S

f1|S(z̃1,S |θS)

[
1− Φ

(
ζ2,S − z̃1,S − θSδ2,S√

δ2,S

)]
dz̃1,S

By plugging in corresponding density functions in the above equation and inverting it based on

the adjusted significance level, we obtain conditional confidence intervals that agree with the

trial decision. However, it would be difficult to extend this idea to other adaptive enrichment

designs.

3.3.1 Numerical study

Here we use similar assumptions and setups as in Section 3.2. Firstly, we calculate the adjusted

significance level and Fisher information power corresponding to different selection results given

N1,1 = 375, N1,2 = 250, and σ2 = 1 (shown in Table 3.7). Obviously, the adjusted significance

level is greater than the normal significance level (α = 0.025). The inflation is due to its

dependence on the selection results.

Table 3.8 shows the proportion of inconsistent cases conditioning on the event that only

subgroup 1 is selected. The inconsistent rate in the first row is obtained by using the adjusted

significance level while the inconsistent rate in the second row is got from the unadjusted sig-

nificance level (0.025). The inconsistency is completely eliminated when the significant levels
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depend on the corresponding selection results. Table 3.9 indicates the same conclusion for the

overall group selected cases.

Table 3.7: Adjusted significance level and Fisher information power

Selected population αS λS

S={1} 0.0385 0.0600

S={2} 0.0500 0.0391

S={1,2} 0.0974 0.0847

Table 3.8: The proportion of simulated trials that have different conclusions between the design

procedure and conditional confidence intervals (only subgroup 1 is selected) using the new or-

dering method when the true treatment effect is θ = (0.2, 0).

Scenario: θ = (0.2, 0)
the proportion of trials rejected by the design

but accepted by the CI

the proportion of trials rejected by the CI

but accepted by the design

new method: αS = 0.0385 0 0

new method: α = 0.025 0.0947 0

stage-wise 0.1061 0

score 0.0930 0

MLE 0.1061 0

The histogram in Figure 3.4 displays the lower bounds from conditional confidence intervals

using the new ordering approach. The histogram filled in light green is the distribution of the

lower bounds we obtained when the significance level equals 0.025 while the histogram filled in

light yellow is the lower bounds we obtained when the significance level equals αS . Histograms

in the upper row present cases that subgroup 1 is selected at the first interim analysis whilst

histograms in the lower row present cases that both subgroups are selected at the first interim

analysis. The vertical red line is the 1− α quantile. In general, we may claim that the coverage

probabilities of both significant level unadjusted and adjusted confidence intervals are close to

the nominal level since all of the 1− α quantiles are located around the true treatment effect of

0.2.

Figure 3.3 reveals that despite the positive relationship between the lower bounds of the

confidence intervals and the observed final statistic value, the generalized ordering lower bounds

obtained from stage 1 and stage 2 are closer to each other in all scenarios compared to stage-wise
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and MLE ordering methods, indicating that the generalized space ordering method favors stage

2 over stage 1 to a greater degree. In other words, the generalized ordering approach treats each

stage more evenly.
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Figure 3.3: Lower bounds of one-sided confidence intervals conditioning on subgroup 1 is chosen

in the two-stage two-subgroup Magnusson and Turnbull design. The circle and triangle dots

indicate that the trials end at stages 1 and 2, respectively. Lower bounds obtained from the

general, MLE, score, and stage-wise ordering approaches are represented by the dots filled in

light green, light purple, light orange, and light yellow respectively.

Table 3.9: The proportion of simulated trials that have different conclusions between the design

procedure and conditional confidence intervals (both subgroups are selected) using the new or-

dering method when the true treatment effect is θ = (0.2, 0.2).

Scenario: θ = (0.2, 0.2)
the proportion of trials rejected by the design

but accepted by the CI

the proportion of trials rejected by the CI

but accepted by the design

new method: αS = 0.0974 0 0

new method: α = 0.025 0.2841 0

stage-wise 0.4765 0

score 0.2765 0

MLE 0.4178 0

3.4 Conditional confidence intervals in the three-stage Mag-

nusson and Turnbull design

Up to now, we have focused on the two-stage Magnusson and Turnbull (2013) design with two

disjoints subgroups. However, the p-value function inversion approach can be extended to a three-
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Figure 3.4: Distribution of lower bounds under the scenario θ = (0.2, 0.2) based on generalized

ordering approach. The upper row shows lower bounds for subgroup 1 given only subgroup 1 is

chosen. The bottom row displays lower bounds for the overall group given the entire population

is selected. The red vertical lines are 1− α and 1− αS quantiles.

stage adaptive enrichment design relatively easily. Suppose that the entire population consists

of two disjoint subgroups as before, we construct one-sided conditional confidence intervals given

that only subgroup 1 is selected and the entire population is chosen. We derive conditional

p-value functions based on three different ordering methods as previously. This section solely

illustrates the establishment of conditional confidence intervals using the score ordering approach.

Appendix A contains the stage-wise and MLE ordering p-value derivation.

According to the definition of the score ordering approach, the conditional p-value function

could be defined as

Pr(YS > u|S∗ = S, θS)

=Pr(Y1,S > max(u, ũ1,S))|S∗ = S, θS)

+Pr(Y2,S > max(u, ũ2,S)|S∗ = S, θS)]

+Pr(min(u, l̃2,S) < Y2,S < l̃2,S |S∗ = S, θS)]

+Pr(Y3,S > u|S∗ = S, θS)].

(3.11)
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Hence, the probability of observing a value greater than u can be written as

Pr(YS > u|S∗ = S, θS)

=

∫ ∞

max(u,ũ1,S)

f1|S(y1,S |θS)dy1,S

+

∫ ũ1,S

l̃2,S

f1|S(y1,S |θS)

[
1− Φ

(
max(u, ũ2,S)− y1,S − θSδ2,S√

δ2,S

)]
dy1,S

+
{∫ ũ1,S

l̃2,S

f1|S(y1,S |θS)

[
1− Φ

(
min(u, l̃2,S)− y1,S − θSδ2,S√

δ2,S

)]
dy1,S

−
∫ ũ1,S

l̃2,S

f1|S(y1,S |θS)

[
1− Φ

(
l̃2,S − y1,S − θSδ2,S√

δ2,S

)]
dy1,S

}
+

∫ ũ1,S

l̃2,S

∫ ũ2,S

l̃2,S

f1|S(y1,S |θS)f2|S(y2,S |y1,S , θS)

×

[
1− Φ

(
u− y1,S − θSδ3,S√

δ3,S

)]
dy2,Sdy1,S .

where f1|S(·) and f2|S(·) is same to Equation (3.5) and (2.5) respectively.

By searching for possible θ̂S that satisfy Pr(YS > u|S∗ = S, θ̂S) = α, we construct the one-

sided confidence interval that conditions on subpopulation S being enriched in succeeding stages

as (θ̂S ,∞). In principle, the p-value inversion approach could be extended to a multi-stage design

with an arbitrary number of stages (k ≥ 3), but the computation cost will increase, primarily

due to the need to numerically evaluate integrals of dimension k − 1.

3.4.1 Numerical study

Here we again use the similar settings as we mentioned in Section 3.2. We simulate 10,000

runs of trials for the three-stage Magnusson and Turnbull (2013) design with dividing the entire

population into two disjoint subpopulations. The prevalence of subgroup 1 and subgroup 2 are

0.6 and 0.4 respectively. We totally assign 450 patients to each stage and the power is maintained

at 90% given θ = (0.2, 0.2).

Suppose that the significance level is 0.025, we calculate the boundaries in each stage using the

spending error functions we mentioned in Section 2.1.1 but extend them to three-stage formulas.

The spending error function is defined as:

γU [t1] = 0.025/3, γU [t2] = 2× 0.025/3, γU [t3] = 0.025;
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and

γL[t1] = 0.975/3, γL[t2] = 2× 0.975/3, γL[t3] = 0.975.

By recursively solving the above equations, we get the boundaries:

(l1, u1) = (0.1766, 2.6585), (l2, u2) = (0.5867, 2.5635), (l3, u3) = (2.4265, 2.4265).

Table 3.10 displays the coverage probabilities and powers of three space ordering methods condi-

tioning on two possible selection results. Only subgroup 1 is retained after the first interim anal-

ysis in 2467, 5201, and 1141 of 10,000 simulated trials, respectively, under scenarios θ = (0, 0),

θ = (0.2, 0), and θ = (0.2, 0.2). The full population is retained after the first interim analysis

in 1875, 4130, and 8725 out of 10,000 simulated trials, respectively, under scenarios θ = (0, 0),

θ = (0.2, 0) and θ = (0.2, 0.2). Apparently, coverage probabilities of scenario θ = (0.0) and

θ = (0.2, 0.2) are close to the nominal level, which agrees with the conclusion we drew from the

two-stage design. However, again, the coverage probability and power of scenario θ = (0.2, 0)

are less satisfying. Each row of Figure 3.5 shows the distribution of lower bounds of conditional

confidence intervals obtained under scenarios θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2) given

subgroup 1 is chosen in the three-stage Magnusson and Turnbull (2013) design, respectively.

Histograms in each column present the distribution of lower bounds derived from stage-wise,

score, and MLE ordering approaches, respectively. The red vertical line is the 97.5% quantile.

Figure 3.5 also indicates that coverage probabilities are guaranteed as around 2.5% of lower

bounds in each histogram are greater than the treatment effect. Additionally, we notice that

the lower bounds of the stage-wise and MLE ordering approaches are generally above the score

ordering lower bounds in the first stage, but the ordering is reversed at stage 2 and stage 3 (see

Figure 3.6). It implies that the score ordering treats each stage more evenly, while the other two

ordering methods clearly favor stage 1 over succeeding stages. This may also explain why the

score ordering method has greater power than the stage-wise and MLE ordering methods across

all scenarios in Table 3.10.

3.5 Conclusion

In this chapter, we concentrated on deriving p-value functions conditional on the first interim

analysis decision. Taking cases where a single subgroup is selected into consideration or the

complete population is enrolled, by inverting its corresponding p-value functions, we showed
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Table 3.10: The coverage probability and power of conditional confidence intervals for three-stage

Magnusson and Turnbull design.

selection result: only subgroup 1 is chosen

scenario
coverage probability power

stage-wise score MLE stage-wise score MLE

θ = (0, 0) 0.9732 0.9728 0.9732 0.0268 0.0272 0.0268

θ = (0.2, 0) 0.9742 0.9706 0.9746 0.8381 0.8391 0.8379

θ = (0.2, 0.2) 0.9754 0.9702 0.9754 0.8755 0.8773 0.8755

selection result: subgroup 1 and subgroup 2 are chosen

scenario
coverage probability power

stage-wise score MLE stage-wise score MLE

θ = (0, 0) 0.9743 0.9754 0.9743 0.0257 0.0246 0.0257

θ = (0.2, 0) 0.9683 0.9678 0.9683 0.3019 0.4058 0.3092

θ = (0.2, 0.2) 0.9753 0.9719 0.9753 0.6286 0.7554 0.6579
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Figure 3.5: Distribution of the confidence interval lower bounds given subgroup 1 is chosen in

the three-stage Magnusson and Turnbull design. The red vertical line is the 97.5% quantile.
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Figure 3.6: The lower bounds of one-sided confidence intervals conditional on subgroup 1 are

chosen in the three-stage two-subgroup Magnusson and Turnbull design. The circle, triangle,

and square dots indicate that the trials end at stages 1, 2, and 3 respectively. Lower bounds

obtained from the MLE, score, and stage-wise ordering approaches are represented by the dots

filled in light green, light purple, and light orange, respectively.

that conditional confidence intervals can be obtained that have coverage probabilities close to

the nominal level. As the construction of the p-value function relies on the space ordering

criterion, three commonly utilized ordering approaches were compared: stage-wise, score, and

MLE. Despite the fact that each of them provides intervals with good coverage probabilities,

the score ordering dominates the other two methods. This is because the stagewise and MLE

ordering usually prefers situations where the trial terminates at an earlier stage as compared to

succeeding stages, unlike the score ordering which treats every stage approximately equally.

One limitation common to all three ordering methods is the inconsistency between the con-

fidence interval conclusion (i.e. based on whether the interval contains 0) and the decision

implied by the testing procedure proposed in the design. Hence, we proposed a generalized

ordering approach to reduce the disagreement. While it is not possible to give a conditional

97.5% confidence interval that agrees with the 2.5% Magnusson and Turnbull (2013) test result,

it is possible to construct a (1-αS)100% confidence interval that will agree with the test result.

Finally, we showed that our p-value inversion method that can be extended to a multiple-stage
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design (k ≥ 3). Simultaneously, the computation cost would increase as well.

When treatment effects are diverse across subgroups, the inference subject differs between

the initial and subsequent stages. At the initial stage, we construct density functions based on

the individual treatment effect; however, in the following stages, we combine the treatment effect

for the selected subgroups. The true treatment effect would then be a weighted average of θ1

and θ2. One potential solution is to construct a joint p-value function for θ1, θ2 and find the

smallest rectangle that encloses the non-linear interval given by the following equation:

{(θ1, θ2) : Pr[Y1 > y1, Y2 > y2|θ1, θ2] ≥ α}

={(θ1, θ2) :
⋃

Ω
⊆
i Ω0

∫∫
Ωi∩ Ωobs

f(y1,1, y1,2)dy2,1dy1,1 ≥ α} (3.12)

where Ωobs, Ωj , and Ω0 is the sample space for the observed value, the statistic of individual

subgroup, and the entire population respectively. f(·) is the joint p-value density function of

y1,1 and y1,2. However, this method is excessively conservative because the joint p-value is not

generally uniformly distributed given the true treatment effect. An alternative way to address

this issue is to find the critical value cα(θ1, θ2) that satisfies Pr(pθ(Y1 > y1, Y2 > y2|θ1, θ2) >

cα(θ1, θ2)) = α. The confidence region will encompass every potential pair of (θ1, θ2) such that

pθ(Y1 > y1, Y2 > y2|θ1, θ2) > cα(θ1, θ2). This approach is, however, computationally demanding.
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Chapter 4

Unconditional confidence interval

for an individual subgroup

4.1 Introduction

So far this thesis has focused on constructing confidence intervals given a certain subpopulation

has been chosen in the first interim analysis. Due to the multiple subgroups involved in the design,

we need to test more than one null hypothesis (i.e. H0,j : θj = 0, j = {1, 2, ..,m}) at the same

time and construct simultaneous confidence intervals for all subgroups. We will again use the

straightforward p-value inversion approach here, hence, first of all, we derive the unconditional

individual p-value function for a single subgroup. The term “unconditional” here is used to refer

to the confidence intervals for the individual subgroup irrespective of the selection result in the

first interim analysis. However, in general, the distribution of the score statistic for a given

subgroup will depend on the whole vector of treatment effects. To circumvent this issue, we will

therefore work with the conditional distribution of the score statistic for a given subgroup given

the stage 1 score statistics for the other groups. The confidence interval construction approach we

propose in the following sections is similar to the main idea of the conditional moment estimator

we mentioned in Chapter 2, which is the expectation of XS conditioning on subgroup S chosen

at the interim analysis and the observed statistic of the dropped subgroup XS′ is a function of

the treatment effect θS and does not depend on θS′ (Kunzmann et al., 2017). Here, our p-value

for the individual subgroup j will be only conditional on observed statistics of other subgroups

at stage 1 instead of θj . Therefore, we can find the bounds of the confidence intervals for the
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true treatment by inverting the corresponding p-value function. Assuming that the data from

every disjoint subgroup is independent of each other (usually, it is also the case in practice), we

adopt the classic Bonferroni, Bonferroni-Holm and Brannath and Schmidt procedure to construct

simultaneous confidence intervals for the two-stage Magnusson and Turnbull (2013) enrichment

design with two disjoint subgroups and illustrate their simulation study results. In the interest

of comparing these three simultaneous confidence interval construction procedures, we extend

the simulation study to the three-subgroup case in Section 4.2.3.

4.2 Simultaneous confidence intervals in the two-stage Mag-

nusson and Turnbull design

In Chapter 3, we constructed confidence intervals given certain subpopulation is chosen regarding

the corresponding conditional p-value function. Similarly, before constructing an unconditional

confidence interval for an individual group, it is necessary to derive its corresponding uncondi-

tional p-value function in the first place. Based on the individual p-value function, in Section

4.2.2, we construct simultaneous confidence intervals based on the classic Bonferroni procedure,

Bonferroni-Holm stepdown procedure, and a new weighted Bonferroni approach proposed by

Brannath and Schmidt (2014).

4.2.1 P -value function and the worked example of Magnusson and

Turnbull design

In this section, we first introduce the p-value function for an individual subgroup which only

conditions on the observed statistics of remaining subgroups in the selected subpopulation. Then,

we provide a worked example for the Magnusson and Turnbull (2013) enrichment design, with

individual rejection bounds calculated in the meanwhile.

p-value function

We again focus on the two-arm two-stage Magnusson and Turnbull (2013) design with two disjoint

subgroups and use similar setups as in conditional confidence interval construction in Chapter 3.

Recall that in subgroup j, the outcome of the ith patient in both the experimental and control

arm follows the normal distribution with mean µE and µC respectively, and a common variance

σ2. Hence the treatment effect of subgroup j is defined as θj = µE
j − µC

j where µE
j and µC

j
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are the treatment effects in the experimental arm and control arm. Given that we recruit the

same number of patients for each stage (i.e. N1 = N2 =, ...,= NK , k = {1, 2, ...,K}) and the

prevalence of subgroup j is ρj , the number of patients allocated to subgroup j at stage k would

be Nk,j = ρjNk. We assign an equal number of patients to the experimental and the control

arm. Therefore, the score statistic of subgroup j at stage k is distributed as follows:

Xk,j ∼ N(θjδk,j , δk,j).

where δk,j = Nk,j/4σ
2
0 . We define that Y1,j = X1,j and the score statistic is accumulated in the

second stage, the statistic for individual subgroup j at stage 2 can be written as Y2,j = Y1,j+X2,j .

According to the above definition, we can write the first stage density function for subgroup j as

f1,j(y1,j |θj) =
1√
δ1,j

ψ

(
y1,j − θjδ1,j√

δ1,j

)

where ψ(·) is the density function for the standardized normal distribution. Since the second

stage accumulated statistic y2,j only depends on y1,j , the density function at stage 2 is explicated

as

f2,j(y2,j |y1,j , θj) =
1√
δ2,j

ψ

(
y2,j − y1,j − θjδ2,j√

δ2,j

)
.

We notice that the density function for the conditional and unconditional p-value functions are

different in the first stage but are the same in the second stage.

Despite the first stage density function, another notable difference is the upper boundary

in the first stage. As we are deriving the p-value function for an individual subgroup, we are

supposed to find the individual boundaries for the target subgroup based on different selection

results. Here we use the approach similar to the conditional moment estimator proposed by

Kunzmann et al. (2017). The fundamental idea of Kunzmann et al. (2017)’s point estimator is

that the conditional expectation of Yj given the interim analysis result and observed statistics of

other subgroups is a function in the true treatment effect. In our case, rather than seeking the

expectation of statistics, our focus shifts towards investigating the probability of encountering

a statistic exceeding a predetermined threshold. Drawing inspiration from the notion of the

conditional moment estimator, instead of conditioning on the true treatment effects, we derive

the individual p-value function for subgroup j based on the observed outcomes of the rest chosen

subgroups. As the adjusted upper boundaries combined all the information from all the chosen

subgroups by adding them up in the Magnusson and Turnbull (2013) design, we need to segregate

information for the target subgroup. This is accomplished by subtracting the observed outcomes
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of the remaining selected subgroups from the boundaries scaled based on selection results. For

instance, if the overall group is chosen, the upper boundary for subgroup 1 would be ũ1,0 − y1,2

where ũ1,0 is the adjusted boundary for the entire population.

In Chapter 3, we introduced three ordering methods to construct confidence intervals given

a specific subpopulation is selected, and the simulation results showed that the score ordering

is superior to other ordering methods. Hence we choose to use the score ordering to construct

the p-value function for the individual subgroup here. The probability of observing a statistic

greater than u could be described as

Pr(Yj ≥ u|y1,ℓ, θj) =
∫ ∞

max(max(u,l̃1,j),ũ1,S−y1,ℓ)

1√
δ1,j

ψ

(
y1,j − θjδ1,j√

δ1,j

)
dy1,j

+

∫ ũ1,S−y1,ℓ

l̃1,j

1√
δ1,j

ψ

(
y1,j − θjδ1,j√

δ1,j

)

×

[
1− Φ

(
u− y1,j − θjδ2,j√

δ2,j

)]
dy1,j × I(u ≥ l̃1,j)

(4.1)

where {ℓ : ∀j /∈ S} and I(·) is the indicator function. Assume that α is the significance level, we

search for possible θ̂j that satisfy Pr(Yj ≥ u|y1,ℓ, θ̂j) = α. Let Pr(Yj ≥ u|y1,ℓ, θj) = pj(θj), we

assume that pj(θj) satisfied the following property: pj(θj) is a non-decreasing function on θj ∈ R,

and pj(θj) ∈ (0, 1). Hence CI = (θ̂j ,∞) is the unconditional one-sided 1− α confidence interval

for subgroup j. If we are supposed to test a two-sided hypothesis, let Pr(Yj ≥ u|y1,ℓ, θ̂α/2,j) = α/2

and Pr(Yj ≥ u|y1,ℓ, θ̂1−α/2,j) = 1−α/2, the unconditional confidence interval for subgroup j will

be (θ̂1−α/2,j , θ̂α/2,j).

Worked example

In this section, we still focus on a two-stage Magnusson and Turnbull (2013) design with two

disjoint subgroups. Assuming that the family-wise error rate is required to be controlled under

0.025, we simulate 10,000 runs of trials and construct simultaneous confidence intervals for each

individual subgroup in every single trial. As we mentioned in Section 4.2.1, suppose that each

patient’s outcome follows a normal distribution, we construct the score statistic for the treatment

effect which distributes with mean θjIk,j and variance Ik,j where Ik,j = Mk,j/4σ
2
0 . Note that

in all numerical studies, we report in this chapter, we estimate the variance σ2
0 by the pooled

sample variance. To maintain a power of 0.9, 625 patients are recruited in each stage, assuming

the clinically effective treatment effect is θ = (0.2, 0.2). 60% of them are assigned to subgroup

1 and 40% of them are assigned to subgroup 2 in the first stage. However, the sample size for
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each subgroup in every trial is not fixed, we use the binomial distribution to randomize them

according to the prespecified proportion. If we apply the first decision rule at the first interim

analysis, then when only subgroup j is selected, we enrich it by recruiting 625 more patients. If

both subgroups exceed their corresponding lower bounds in the first stage, then we use the same

prevalences observed in the first stage to determine the sample size assignment between the two

subgroups in the second stage. Block randomization is adopted here, which means that each

patient is equally likely to be assigned to the experimental arm and control arm. By solving the

spending error equation we mentioned in Chapter 3 Section 2.1.1, the boundaries are determined

to be

(l1, u1) = (0.5192, 2.5529); (l2, u2) = (2.4072, 2.4072).

A worked example of the two-stage two-subgroup Magnusson and Turnbull (2013) design in

which the overall group is selected at the first interim analysis is presented in Table 4.1. The

pooled sample variance σ2 in this simulated trial is 0.94823. The Fisher information scaled upper

boundary in the first stage equals 33.6557, thereby the adjusted boundary for subgroup 1 and

subgroup 2 are 28.7783 and 9.9998 respectively. Note that while each of the individual p-values

will have a marginal U [0, 1] distribution for the true value of θj , the p-values will not necessarily

be independent and have a complicated distribution. We summarize the correlation between

subgroups under different scenarios in Table 4.2. In situations when the trial is more likely to

terminate at the second stage and more than one subgroup is selected, the dependence between

subgroups is greater. One possible explanation is that the Magnusson and Turnbull design defines

that when more than one subgroup proceeds to stage 2, their statistics are combined and then

accumulated hence the dependence is plausibly increased. However, we notice the correlations

are not substantial as all their magnitudes are less than 0.05.

In their study, Magnusson and Turnbull (2013) proposed a double bootstrap method for

creating simultaneous confidence intervals for all subgroups in the design. The first round of

bootstrapping employs the maximum likelihood estimates from the trial as the true treatment

effect and calculates bias-corrected estimates using the sampled data. In the second round, the

bias-corrected estimates are used as the treatment effect parameter inputs, and higher-order

bias-corrected estimates are computed again. This process is repeated for multiple trials, and

the lower bound of the simultaneous confidence interval is determined by taking the α quantile

of the bias-corrected estimates. Furthermore, we present the simulation outcomes for the naive

simultaneous confidence intervals in Table 4.3. To construct these naive simultaneous confidence

intervals, we employ a simple Bonferroni correction, thereby subjecting each subgroup to a
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Table 4.1: Result of one simulated trial under scenario θ = (0.2, 0.2).

stage 1 X1,j N1,j δ1,j

Ω1 23.6559 367 96.7531

Ω2 4.8774 258 71.7434

stage 2 X2,j N2,j δ2,j

Ω1 22.3110 367 96.7531

Ω2 28.4639 258 71.7435

Ω1 Ω2

adjusted u1 for

individual subgroup j
28.7783 9.9998

Table 4.2: Correlation coefficients between subgroup 1 and subgroup 2 using Kendall tau test.

scenario correlation
proportion of trials

terminate at stage 2

proportion of trials

select both subgroups

θ = (0, 0) 0.0014 0.4997 0.0932

θ = (0.2, 0) 0.0023 0.6489 0.2790

θ = (0.2, 0.2) 0.0364 0.4655 0.7965

θ = (2, 2) -0.0107 0 1
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Table 4.3: Coverage probabilities and powers for double bootstrap sampling confidence intervals

and naive simultaneous confidence intervals.

scenario
double bootstrap naive

overall coverage probability power overall coverage probability power

θ = (0, 0) 0.9874 0.0126 0.9328 0.0672

θ = (0.2, 0) 0.9123 0.4526 0.8318 0.7861

θ = (0.2, 0.2) 0.6559 0.6213 0.8173 0.8813

significance level of 0.0125. Consequently, the formulation of the naive one-sided simultaneous

confidence intervals is as follows:

θ1 > (yK,1 − 2.24
√
IK,1)/IK,1

θ2 > (yK,2 − 2.24
√
IK,2)/IK,2.

Unfortunately, the coverage probabilities and powers perform poorly under all scenarios as shown

in Table 4.3, indicating the need to investigate alternative methods for constructing simultaneous

confidence intervals in subsequent sections.

4.2.2 Simultaneous confidence intervals

At the termination of the trial, we need to test null hypotheses for all individual subgroups

simultaneously, therefore it is necessary to apply multiple comparison procedures, such as the

classic Bonferroni correction (Hsu, 1996), Bonferroni-Holm (Strassburger and Bretz, 2008), and

Brannath and Schmidt (2014) method to construct the simultaneous confidence intervals. How-

ever, the classic Bonferroni procedure is less powerful in rejecting hypotheses while the lower

bounds of the Holm method are uninformative where only part of the hypotheses are rejected

(Strassburger and Bretz, 2008). In this context, the term “uninformative” characterizes situa-

tions where the confidence interval offers no insights into the magnitude of the actual treatment

effect, whereas “informative” denotes cases where the confidence interval imparts some level of

understanding about the true treatment effect. To illustrate, consider the Holm procedure, which

yields identical lower bounds for rejected hypotheses when not all hypotheses are rejected, hence

referred to as uninformative lower bounds. Conversely, the conventional Bonferroni procedure

yields lower bounds that differ based on the actual treatment effect for rejected hypotheses,
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making them informative. Therefore, Brannath and Schmidt (2014) proposed a new weighted

Bonferroni approach in which the weight depends on parameters. In Section 4.2.3, we compare

all three methods and show that the new weighted approach has uniform improvement in the

number of rejections and informativeness.

Classic Bonferroni procedure

The Bonferroni correction is one of the most commonly used methods for controlling the family-

wise error rate in multiple comparisons. It allows many comparison hypothesis statements to be

made simultaneously while ensuring the overall type I error is strongly restricted under a certain

level. The Bonferroni method is valid for both equal and unequal sample sizes and it is based on

Boole’s inequality (Hsu, 1996) which is presented in Equation (2.10) where Ei is the event that

the ith constructed confidence level does not contain the true value. In this case, the left-hand

side of the inequality is the probability that at least one interval does not cover its true value

while the right-hand side of the inequality is the sum of the probabilities of each of the intervals

missing their true values. Hence, if the family-wise error rate of the multiple interval estimates

is desired to be restricted under α, then we can restrict the type I error rate of each interval

by α/m where m is the number of statements or comparisons. For instance, we focus on the

two-stage Magnusson and Turnbull design with two disjoint subgroups here thereby m = 2 and

we are going to test the null hypothesis H0,j : θj = 0 at α/2 level for j = {1, 2}.

A natural property of Equation (4.1) is that the p-value functions are continuously increasing

from 0 to 1 in θj hence we can find the unique solution of the equation Pr(Yj ≥ u|y1,ℓ, θj) =

pj(θj) = α/m. Therefore p−1
j (α/m) is the lower bound of the one-sided simultaneous confidence

interval for subgroup j, which can be explicated as

θ̂BF
j = p−1

j (α/m). (4.2)

We denote CIBF
j = (θ̂BF

j ,∞) as the one-sided simultaneous confidence interval for subgroup j.

If 0 /∈ CIBF
j , we reject Hj : θj = 0 and declare treatment effective in subgroup j; otherewise, we

accept Hj and declare futility in subgroup j.

The classic Bonferroni procedure makes no assumption about the dependence among hy-

potheses. However, the main limitations of the Bonferroni correction method are the inflation

of the Type II error rate. If there are m ≥ 2 comparisons, the coverage probability of the

Bonferroni is defined as (1 − α/m)m which is obviously greater than 1 − α. When the number

of comparisons increases, the corresponding confidence interval becomes more conservative. In
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addition, compared to the Bonferroni-Holm method proposed by Strassburger and Bretz (2008),

the standard Bonferroni method rejects fewer hypotheses under the same scenario.

Numerical study Here we utilize the same setups as we proposed in the worked example.

However, like the simulation study we presented in Chapter 3, we ran simulations under three

scenarios: θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2). According to the classic Bonferroni

approach, the significant level assigned to each subgroup is α/2. Table 4.4 compares the coverage

probability, overall power, and average number of rejections in each trial of three scenarios. We

notice that all of those coverage probabilities are close to the nominal level we desired but not

all of them are greater than 97.5%. Theoretically, by adopting the classic Bonferroni correction,

the FWER should be more conservative and equal (1 − (1 − α/2)2) = 0.0248. However, under

the null scenario, the FWER is less conservative than expected although it is not far away from

the nominal level. The most likely causes of the lack of conservation are the limited number

of comparisons (i.e.we only have two subgroups here), the use of pooled sample variance, and

not accounting for random in the simulation procedure (i.e. the prevalence in the simulation

procedure is inconsistent with the true prevalence).

Table 4.4: The coverage probability, overall power, and average number of rejections by applying

the classic Bonferroni procedure under three scenarios.

scenarios coverage probability overall power
average number of

rejections in one trial

θ = (0, 0) 0.9737 0.0263 0.0263

θ = (0.2, 0) 0.9752 0.7236 0.7290

θ = (0.2, 0.2) 0.9758 0.7740 0.9245

Histograms for the distribution of the simultaneous confidence interval lower bounds are

presented in Figure 4.1. Each row displays lower bounds of confidence intervals obtained under

scenario θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2) respectively. The left column lists all lower

bounds from subgroup 1 simultaneous confidence intervals and the right column lists those from

subgroup 2. What can be clearly seen in Figure 4.1 is that the 98.75% quantiles (vertical red

line) are approximately located around the true treatment effect for every case which also implies

that our individual p-value functions ensure the individual confidence intervals have coverage

probabilities close to the nominal level.
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Figure 4.1: Distribution of the classic Bonferroni simultaneous confidence interval lower bounds

with FWER constrained at or below 0.025. The vertical red lines are the 98.75% quantiles.

Bonferroni-Holm procedure

In order to increase the power of the multiple tests, Holm (1979) proposed a step-down procedure

that rejects more null hypotheses while still preserving the coverage probability. The reason for

naming this procedure “step-down” is that the first step is to order the individual p-value of each

test. We denote p(1) ≤ p(2) ≤, ...,≤ p(m) as the ordered p-values and H0,(1), H0,(2), ...,H0,(m)

as the corresponding individual null hypotheses. According to the classic version of the Holm

step-down procedure, we compare each p-value with α/(m − r + 1) where m is the number of

subgroups and r is the rank of the corresponding individual p-value ordering. The scheme can

be described as follows:

1. Check whether p(1) < α/m. If so, we reject H0,(1), and proceed to step 2; otherwise, accept

all hypotheses and stop.

2. Check whether p(2) < α/(m− 1). If so, we reject H0,(1) and H0,(2), then proceed to step 3;

otherwise, we reject H0,(1), accept H0,(2), ...,H0,(m) and stop.
...

m. Check whether p(m) < α. If so, we reject all hypotheses and stop; otherwise, we reject

H0,(1), ...,H0,(m−1), accept H0,(m) and stop.
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The above scheme suggests that the rejection threshold increases as the procedure continues,

therefore the Holm test is more likely to reject null hypotheses compared to the classic Bonferroni

method. However, if we regard the coefficients: 1/m, 1/(m− 1), ..., 1 as the weight of FWER, we

can say that the classic Bonferroni test assigns equal weight (1/m) to every test while the Holm

procedure assigns increasing weights to tests. Therefore, we also call the classic Holm procedure

the “Bonferroni-Holm” procedure.

According to the definition of the Bonferroni-Holm testing procedure, Strassburger and Bretz

(2008) computed the lower bounds of the one-sided simultaneous confidence intervals for subgroup

j:

θ̂BH
j =


0 if H0,j is rejected but H0,i̸=j is accepted

p−1
j (

α

m− r
) if H0,j is accepted

max(0, p−1
j (

α

m
)) if all hypotheses are rejected

(4.3)

where r is the number of rejected hypotheses and α is the nominal FWER. Although the classic

Bonferroni method is conservative and lacks power compared to the Bonferroni-Holm method, its

corresponding confidence intervals contain more informative rejections. Equation (4.3) indicates

that the lower bound of the Bonferroni-Holm method is positive only when all hypotheses are

rejected. If only part of the hypotheses is rejected, the lower bound of rejected hypotheses is 0 by

definition whereas the lower bound of the accepted hypotheses is negative in terms of the Holm

testing procedure (Strassburger and Bretz, 2008). θ̂BH
j > 0 always implies θ̂BF

j > 0, however,

when θ̂BH
j equals zero, θ̂BF

j might still probably greater than zero. The zero lower bound shows

no additional information about the true treatment effect (i.e. how far the treatment effect is

from zero), thereby we say that the Bonferroni-Holm method is less informative.

Numerical study In order to show that the Bonferroni-Holm approach gives an improvement

in the power of rejection, we simulate trials based on the same setups we proposed in Section

4.2.2. In total, 1,250 patients are recruited and half of them are assigned to the first stage. We

randomly allocate 60% of them to subgroup 1 and 40% of them to subgroup 2. Again, suppose

that we use block randomization in simulating trials, thereby each patient is equally likely to

be assigned to the experimental or control arm. However, the Bonferroni-Holm test differs from

the classic Bonferroni test in that it requires ordering p-values in advance. Therefore, after the

simulation process, we calculate individual p-values for each subgroup under the null scenario

and order them from small to large in every trial.

After running 10,000 trials, we compute and present the coverage probability, the proportion
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of rejecting either hypothesis (over power), and the average number of rejected hypotheses in one

trial in Table 4.5. What stands out in the table is the mean of the number of rejections, which is

apparently greater than the classic Bonferroni method (shown in Table 4.4), although the overall

powers (in terms of rejecting any null hypothesis) of these two methods are very close. Perhaps

counter-intuitively, the coverage probability is very conservative when the true treatment effects

are not both zero. A possible explanation is that we order the individual p-value according to the

null hypothesis because they are what we intend to test; however, the lower bounds are computed

based on the statistics simulated under true treatment effects. Another limitation of the step-

down method is also clearly shown in Figure 4.2. Compared to the classic correction way, we

barely see positive informative lower bounds under all scenarios when adopting the Bonferroni-

Holm test to construct simultaneous confidence intervals. This implies the difficulty to have an

idea about the scale of the true treatment effect in the Bonferroni-Holm testing procedure.

Table 4.5: The coverage probability, overall power, and average number of rejections by applying

the Bonferroni-Holm procedure under three scenarios.

scenarios coverage probability overall power
average number of

rejections in one trial

θ = (0, 0) 0.9737 0.0263 0.0265

θ = (0.2, 0) 0.9817 0.7236 0.7368

θ = (0.2, 0.2) 0.9874 0.7742 1.0267

Weighted Bonferroni approach

From the above sections, we can say that the Bonferroni method rejects fewer hypotheses while

the simultaneous confidence intervals for rejected hypotheses are informative. On the other

hand, the Bonferroni-Holm method rejects more hypotheses while the lower bounds for rejected

hypotheses are informative unless all hypotheses are rejected (i.e. the simultaneous confidence

interval for the rejected hypothesis is (0,∞) when not all hypotheses are rejected). Therefore,

Brannath and Schmidt (2014) proposed a new weighted Bonferroni approach that trades-off

informativeness against the proportion of hypotheses rejected in one trial.

Brannath and Schmidt (2014) fix a penalizing function λj : R → [0,∞) to construct a

weight function that depends on the parameter θ = (θ1, θ2, ..., θm). λj can be any continuously

non-decreasing functions. For instance, we specify it as λj(x) = exp(max(0, ax)) in the two-
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Figure 4.2: Distribution of the Bonferroni-Holm simultaneous confidence interval lower bounds

with FWER constrained at or below 0.025. The vertical green lines are the true treatment effects.

stage two-subgroup simulation studies. Then, the weight function depending on the parameter

θ = {θ1, θ2, ..., θm} for subgroup j will be:

ωj(θ) =
λj(θj)

−1∑m
i=1 λi(θi)

−1
. (4.4)

Note that in Equation (4.4) the value of λj(θj) increases, the weight assigned toH0,j in the overall

p-value p(θ) decreases hence why λj is referred to as the penalizing function. In Brannath and

Schmidt’s procedure, hypothesis H0,j is tested at ωj(θ)α level, therefore we let

pj(θj) = ωj(θ)α (4.5)

Equation (4.5) indicates that

pj(θj)λj(θj) =

(
m∑
i=1

λi(θi)
−1

)−1

α, for all j = 1, ...,m, (4.6)

where the right hand of the equation is a constant. Therefore, we have p1(θ1)λ1(θ1) =, ...,=

pm(θm)λm(θm). Based on this property, Brannath and Schmidt (2014) define the overall p-

valaue for each intersection hypothesis Hθ = H0,1 ∩ ... ∩H0,m as:

p(θ) = min

((
min

j=1,..m
{pj(θj)λj(θj)}

m∑
i=1

λi(θi)
−1

)
, 1

)
(4.7)

Let Θ = {θ ∈ R : p1(θ1)λ1(θ1) =, ..,= pm(θm)λm(θm)}, Brannath and Schmidt (2014) proved

that p(θ) is increasing on Θ, thereby we can find a unique solution θ̂ to p(θ) = α. Note that
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if we fix one element in Θ, the rest elements could be recursively solved according to Equation

(4.6).

We use a straightforward algorithm that is different from Brannth and Schmidt’s bisection

searching algorithm. Our algorithm relies on uniroot zero root searching function in R, which we

mentioned in the previous chapter. uniroot function is constructed based on the root searching

algorithm proposed by Brent (2013) which is “never much slower than bisection, but which

has the advantage of superlinear convergence to a simple zero of a continuously differentiable

function”. By utilizing uniroot function multiple times, our algorithm can be described below:

1. Let ϑ = (ϑ1, ..., ϑm) be the m-dimensional set of treatment effect that satisfies p(ϑ) = α,

then p1(ϑ1)λ1(ϑ1) =, ...,= pm(ϑm)λm(ϑm).

2. Then, if we choose ϑj , every ϑi for i ̸= j can be expressed as a function of ϑj by applying

uniroot function in R. Hence the dimension of the root search is reduced from m to 1.

3. Finally, we search for possible value of ϑj in (a, b) that satisfies

p(ϑ1, ..., ϑj , ..., ϑm) = α.

The above algorithm gives us a set of unique roots θ̂ = (θ̂1, ..., θ̂m) of equation p(θ) = α on

θ̂j ∈ (a, b).

Note that when λj(θj) = 1 for all j = 1, ...,m, we get the Bonferroni bound CIBF
j =

p−1
j (α/m). Also, Bonferroni-Holm bounds can be obtained by letting λi(θi) = 1 for accepted

hypotheses and letting λi(θi) → ∞ for rejected hypotheses. Since there are no clear definitions

of weights when all hypotheses are rejected, we define wi(θi) =
1
m in this case. If only part of

the hypotheses is rejected, we define λ−1
i (θi) = 0 and allocate zero weight to those hypotheses.

This means we obtain no power from individual p-value functions pi(δi) in this situation.

Brannath and Schmidt (2014) proved that the proposed weighted Bonferroni method provides

a uniform improvement of the classic Bonferroni confidence interval. Consider the penalizing

function λj(x) = exp(max(0, ax)), a continuous nondecreasing function that has the range λi :

R → [1,∞). Obviously,

ωj(θ) =
λj(θj)

−1∑m
i=1 λi(θi)

−1
≥ 1

m
,

which means the Brannath and Schmidt (2014) approach always tests the hypothesis H0,j at

a level greater than the Bonferroni method does in terms of Equation (4.5). This implies all

hypotheses rejected by the Bonferroni test will be rejected by the new weighted Bonferroni test.

Namely, it provides more informative rejections than Bonferroni bounds θ̂BF
i = p−1

i ( α
m ). When
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θ̂BF
i > 0, then θ̂BS

i > 0 for all i = 1, ..,m at every point. Note that the above conclusion only

implies that the θ̂BS
i are greater than zero whenever the θ̂BF

i is but does not necessarily imply

that θ̂BS
i > θ̂BF

i . In fact, compared to the Bonferroni lower bound, the Brannath and Schmidt

lower bound shrink close to each other. For instance, we consider two subgroups design and let

the penalty function be λj(x) = exp(ax). Then the weight for each subgroup will be

ω1(θ) =
1

1 + exp(a(θ1 − θ2))
and ω2(θ) =

1

1 + exp(a(θ2 − θ1))

respectively. Apparently, if θ1 > θ2, then ω1 < α/2, and vice versa. When θ̂BF
1 > θ̂BF

2 , we

have p1(θ̂
BS
1 ) < α/2 = p1(θ̂

BF
1 ). Since pj(θj) is an increasing function on θj , we conclude that

θ̂BS
1 < θ̂BF

1 . Analogously, as p2(θ̂
BS
2 ) > α/2 = p2(θ̂

BF
2 ), we say that θ̂BS

2 > θ̂BF
2 . Therefore θ̂BS

are closer to each other than θ̂BF . This shrinkage property helps to explain the improvement of

Brannath and Schmidt (2014) approach compared to the classic Bonferroni method. When at

least one lower bound among subgroups are positive, the parameter-dependent weighted approach

decreases the bounds (though still positive) to detect more rejections.

A main limitation of the Bonferroni-Holm confidence intervals is that when only part of the

null hypotheses is rejected, the lower bounds of the one-sided simultaneous confidence intervals

are 0 for those rejected subgroups. Brannath and Schmidt improve this by producing simultane-

ous confidence intervals that have positive lower bounds on the above occasion. However, when

θ̂BH
j = 0, the Brannath and Schmidt approach allows its simultaneous confidence intervals θ̂BS

j

below 0 which means the new procedure rejects less null hypotheses the Holm procedure.

Until now, the new parameter-dependent weighted Bonferroni approach showed improvement

regarding the power of rejection and informativeness theoretically. In Section 4.2.3, we will

compare the three methods based on the simulation study that involves three subgroups in the

Magnusson and Turnbull (2013) design.

Numerical study In this section, we adopt similar setups as in the above numerical studies.

We still recruit 625 patients for each stage. The prevalence of subgroup 1 and subgroup 2 is 0.6

and 0.4 respectively. What distinguishes the Brannath and Schmidt approach from the classic

Bonferroni confidence interval is the introduction of the parameter-dependent weight function.

Here, we let the penalizing function λj(x) be exp(max(0, ax)) and take a = 1. In the same way,

as the classic Bonferroni and Bonferroni-Holm numeric studies did, we simulate 10,000 trials

based on three scenarios (i.e.θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2)) with coverage probability

constrained equivalent or above 0.975. Recall that we are testing one-sided hypotheses for two
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disjoint subgroups, the unconditional confidence interval for subgroup j will be (θ̂j ,∞).

From Table 4.4 and Table 4.6, we notice that the Brannath and Schmidt (2014) approach

has a similar overall power compared with the classic Bonferroni method. As for the coverage

probability, still, no significant improvement is detected. Under the null scenario, we find no

difference in the power of rejection between the classic method and the new weighted approach,

however, in the cases where the treatment is effective, the average number of hypothesis rejections

is slightly greater than the classic Bonferroni method.

Table 4.6: The coverage probability, overall power, and average number of rejections by applying

the Brannath and Schmidt procedure under three scenarios.

scenarios coverage probability overall power
average number of

rejections in one trial

θ = (0, 0) 0.9737 0.0263 0.0263

θ = (0.2, 0) 0.9759 0.7236 0.7293

θ = (0.2, 0.2) 0.9778 0.7742 0.9291
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Figure 4.3: Distribution of the Brannath and Schmidt simultaneous confidence interval lower

bounds for two subgroups with FWER constrained at or below 0.025. The green vertical lines

are the true treatment effects.

Distributions of the simultaneous confidence interval lower bounds are presented in Figure

4.3. The light pink histograms illustrate the distribution of lower bounds for subgroup 1 and
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the light blue histograms show the distribution of lower bounds for subgroup 2. Compared with

histograms we got from the classic Bonferroni correction (Figure 4.1), the parameter-dependent

weighted Bonferroni approach has more non-negative lower bounds when the true treatment

effect is greater than zero. This implies that the new weighted Bonferroni approach rejects

more null hypotheses. In contrast, the Brannath and Schmidt procedure provides a greater

number of positive bounds than the Bonferroni-Holm procedure, suggesting that its confidence

intervals are more informative. Nevertheless, the Brannath and Schmidt method generates fewer

non-negative bounds than the Bonferroni-Holm method, which may indicate lower efficacy in

rejecting hypotheses.

4.2.3 Comparison of the three simultaneous confidence interval con-

struction approaches in the two-stage three-subgroup Magnus-

son and Turnbull design

From Sections 4.2.2, we know that the new weighted Bonferroni approach proposed by Brannath

and Schmidt has a uniform improvement in hypotheses rejection compared with the classic

Bonferroni method. On the other hand, the new approach provides more informative rejections

than the Bonferroni-Holm method. However, theoretically, the improvement is more substantial

when the number of comparisons increases. Until now, we have only focused on a two-stage two-

subgroup design. In order to enhance the improvement of the Brannath and Schmidt approach,

we consider the two-stage Magnusson and Turnbull (2013) design with three subgroups.

We start from the simple design which assumes that the statistics of subgroup j follows

the normal distribution N(θj , 1) with j = {1, 2, 3}. We are interested in the case where only

subgroup 1 and subgroup 2 are promising, thereby we fix the individual p-value for subgroup 3

as 0.5. Suppose that the FWER needs to be restricted at or below 0.05, Figure 4.4 displays the

rejection regions for all three multiple test procedures. The pink rectangle is the region where

both H0,1 and H0,2 are rejected by the classic Bonferroni test. The green region indicates cases,

whereH0,1 andH0,2, are rejected by the Brannath and Schmidt test and the Bonferroni-Holm test

but at least one of the null hypotheses is accepted by the classic Bonferroni test. The blue region

includes occasions on which both of the null hypotheses are only rejected by the Bonferroni-Holm

test procedure. It is apparent from the figure that the rank of the power of the three tests to detect

the true treatment effects is: PowerHolm > PowerBrannath > PowerBonferroni. Furthermore,

when the value of a in the penalizing function λ(x) = exp(max(0, ax)) increases, we notice
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that the rejection boundary of the Brannath and Schmidt procedure approaches the Bonferroni-

Holm’s boundary. This agrees with the conclusion that when a approaches infinity, the power

of the Brannatha and Schmidt procedure increases and becomes closer to the Bonferroni-Holm

procedure. However, the cure of the boundary of the Brannath and Schmidt test will never

exceed the diagonal line between (p1, p2) = (0.025, 0) and (p1, p2) = (0.05/3, 0.05/3).
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Figure 4.4: Rejection region for the classical Bonferroni test procedure, the Bonferroni-Holm test

procedure and the Brannath and Schmidt procedure. The x-axis is the p-value of subgroup 2

under the null scenario. The y-axis is the p-value of subgroup 1 under the null scenario.

Now, we consider the three-subgroup case in the two-stage Magnusson and Turnbull enrich-

ment design. The p-value function of the simultaneous confidence interval for the three-subgroup

design is quite similar to the two-subgroup case, except that the p-value is computed conditional

on the first-stage results for the other two subgroups. Hence, when computing the upper bound-

ary for the target subgroup when the entire population is selected in the first stage, we must

deduct the observed statistics from the two remaining subgroups. Therefore, we define the un-
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conditional p-value function for subgroup j as

Pr(Yj ≥ u|y1,ℓ, θj) =

∫ ∞

max(u,ũ1,S−y1,ℓ)

1√
δ1,j

ψ

(
y1,j − θjδ1,j√

δ1,j

)
dy1,j

+

∫ ũ1,S−y1,ℓ

l̃1,j

1√
δ1,j

ψ

(
y1,j − θjδ1,j√

δ1,j

)

×

[
1− Φ

(
u− y1,j − θjδ2,j√

δ2,j

)]
dy1,j

(4.8)

where y1,ℓ =
∑

i∈ℓ y1,i and δk,j = Nk,j/4σ
2 with k = {1, 2}.

To guarantee the null hypothesis is rejected with probability 1 − β = 0.9 based on the

first criteria we mentioned in Chapter 2 beforehand with θ1 = θ2 = θ3 = 0.2, we need to

recruit a maximum of 1560 patients in total. However, we round the sample size up to 1600 by

considering the drop-off at the first interim analysis. We allocate an equal number of patients to

each stage and the prevalence for subgroups are assumed to be ρ1 = 0.6, ρ2 = 0.2, and ρ3 = 0.2

respectively. As described in previous numerical studies, the sample size of each subgroup is

randomly generated according to its corresponding prevalence. As for σ2, again, we estimate

it by the pooled sample variance. Moreover, every patient is supposed to be assigned to the

experimental or control arm with equivalent probability. If the trial proceeds to the second

stage, the proportion randomized to subgroup j is defined as ρj/
∑

i∈S∗ ρi, where S∗ is the index

set of the selected population. By recursively solving spending error functions given in Chapter

3, we get the standardized boundaries for the three-subgroup design:

(l1, u1) = (0.7962, 2.7625); (l2, u2) = (2.5204, 2.5204).

Moreover, when implementing the Brannath and Schmidt method, we choose λj(x) = exp(max(0, x))

to be the penalizing function.

Table 4.7 presents a worked example of the three-stage two-subgroup Magnusson and Turnbull

(2013) design. The estimation for the pooled sample variance is 1.0061. Since only group 1 and

group 2 are selected, the Fisher information scaled upper boundary in the first stage is 35.0528.

By subtracting the statistic observed for subgroup 2, the adjusted upper boundary for subgroup

1 is 15.9276. Analogously, the adjusted upper boundary for subgroup 2 only equals 25.4110.

Note that subgroup 3 is dropped at the first interim analysis. In this case, we deduct observed

values for all selected subgroups when computing the individual upper boundary for the dropped

subgroup.

Then we compare the three simultaneous confidence interval approaches by running 10,000

simulated trials. The results of coverage probabilities and overall powers are summarized in

70



Table 4.7: Result of one simulated trial under scenario θ = (0.2, 0.2, 0.2).

stage 1 X1,j N1,j δ1,j

Ω1 9.6419 491 121.9970

Ω2 19.1252 157 39.0092

Ω3 -4.9219 152 38.2393

stage 2 X2,j N2,j δ2,j

Ω1 55.8415 606 150.6136

Ω2 8.4422 194 48.1595

Ω3 \ \ \

Ω1 Ω2 Ω3

adjusted u1 for

individual subgroup j
15.9276 25.4110 6.2858

Table 4.8. Here, overall power refers to the probability of detecting at least one true treatment

effect. We notice the Brannath and Schmidt procedure is slightly more conservative than the

classic Bonferroni method, which agrees with the conclusion we drew from the two-subgroup case.

Meanwhile, the overall power of the new procedure is quite close to the classic Bonferroni method.

The Bonferroni-Holm method has greater overall power in general, however, the superiority is

not substantial. What stands out in this table is that the Brannath and Schmidt approach

has a greater number of rejections in one trial on average compared with the classic Bonferroni

method but slightly fewer than the Bonferroni-Holm approach. In Figure 4.5, we illustrate

the distribution of the simultaneous confidence interval lower bounds for subgroup 1. Lower

bounds in the first row are simulated under the null scenario, while the lower bounds in the

second row and third row are simulated under θ = (0.2, 0, 0) and θ = (0.2, 0.2, 0.2) respectively.

Additionally, the distribution of lower bounds obtained from the classic Bonferroni procedure,

the Bonferroni-Holm procedure, and the parameter-dependent weighted approach are presented

in the light pink, light blue, and light green histograms respectively. Apparently, Figure 4.5

shows that the lower bounds of Bonferroni-Holm simultaneous confidence intervals are much less

informative than the other two methods as there are fewer positive bounds. Taken together,

these results suggest that the Brannath and Schmidt simultaneous confidence intervals are more

powerful in rejecting hypotheses than the classic Bonferroni simultaneous confidence intervals and

provide more information about the true treatment effect compared with the Bonferroni-Holm
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simultaneous confidence intervals. However, the classic Bonferroni procedure gives approximately

nominal coverage probabilities for all scenarios whereas the Bonferroni-Holm and Brannath and

Schmidt procedure clearly become substantially conservative in non-null scenarios. We guess

that the extreme conservativeness in the Bonferroni-Holm procedure is owing to the pre-ordering

of p-values under the null scenario which is inconsistent with the actual simulation scenario. The

conservativeness of the Brannath and Schmidt procedure under non-null scenarios stems from

the property that it lowers the positive lower bounds to detect more rejections, which makes the

lower bounds less likely to cover the true treatment effect compared with the classic Bonferroni

approach.

Table 4.8: The simulation results are presented for the Bonferroni, Holm, and parameter-

dependent weighted Bonferroni simultaneous confidence interval lower bounds. The overall power

is the probability of rejecting any null hypothesis when they are false. The average number of

rejected hypotheses is the mean of the number of rejections in 10,0000 simulation runs.

scenario
classic Bonferroni Bonferroni-Holm Brannth and Schmidt

coverage probability

θ = (0, 0, 0) 0.9730 0.9730 0.9729

θ = (0.2, 0, 0) 0.9716 0.9767 0.9728

θ = (0.2, 0.2, 0.2) 0.9759 0.9968 0.9792

θ = (0.2, 0.3, 0.5) 0.9761 0.9901 0.9804

overall power

θ = (0, 0, 0) 0.027 0.0271 0.0271

θ = (0.2, 0, 0) 0.7835 0.7836 0.7835

θ = (0.2, 0.2, 0.2) 0.7799 0.7800 0.7799

θ = (0.2, 0.3, 0.5) 0.9389 0.9390 0.9390

average number of rejected hypotheses

θ = (0, 0, 0) 0.0272 0.0274 0.0273

θ = (0.2, 0, 0) 0.7931 0.7992 0.7934

θ = (0.2, 0.2, 0.2) 0.9621 1.0542 0.9656

θ = (0.2, 0.3, 0.5) 1.5723 1.7970 1.5896

Now we consider the effect of the penalizing function. As we require the penalizing function

to be monotonically continuously increasing, so we choose λj(x) = exp(max(0, ax)). As can be
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Figure 4.5: Distributions of the classic Bonferroni, Bonferroni-Holm and Brannath and Schmidt

simultaneous confidence intervals lower bounds for subgroup 1 under scenario θ = (0, 0, 0),

θ = (0.2, 0, 0) and θ = (0.2, 0.2, 0.2). The green vertical lines are the true treatment effects.

seen from Figure 4.6, when a increases, the average number of rejections increases as well. When

a = 0, the average number of rejections of the weighted approach and the classic Bonferroni

are the same, which agrees with the conclusion that when λj(x) = 1, the parameter-dependent

weighted approach is exactly the classic method. When a increases, the value of λj(x) approaches

infinity, and the average number of rejections of Brannath and Schmidt (2014) method is close to

the average number of rejections of the Holm procedure. This also indicates that the Bonferroni-

Holm test is a specific form of the parameter-dependent weighted Bonferroni test.

As we mentioned beforehand, there is a trade-off between the power of rejecting a hypothesis

and the informativeness in the parameter-dependent weighted Bonferroni approach. Brannath

and Schmidt (2014) proposed an utility function to describe this trade-off for subgroup j:

Uj(θj) =π × Power + (1− π)× Informativeness

=πPr(θ̂j ≥ 0) + (1− π)Eθj [min(max(θ̂j/θj , 0), 1)]

If the number of responsive subgroups is greater than one, the overall utility for the trial is
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Figure 4.6: Average number of rejected hypotheses when the true treatment effects for all sub-

groups are 0.2 with λj(x) = exp(max(0, ax)) plotted as a function of a. The dotted line is the

average number of rejections for the Holm procedure. The dashed line is the average number of

rejections for the classic Bonferroni procedure.

74



defined as:

U(θτ ) =
∑
i∈τ

Ui(θi)

=π
∑
i∈τ

Pr(θ̂i ≥ 0) + (1− π)
∑
i∈τ

Eθi [min(max(θ̂i/θi, 0), 1)]
(4.9)

where τ = {i : θi > 0} and
∑

i∈τ Pr(θ̂i ≥ 0) = Eθτ
(number of correct rejections). In general,

the optimal a depends on π, and π is chosen based on the preference for power compared to

informativeness. As an illustration, we choose π such that the utilities of the classic Bonferroni

and the Bonferroni-Holm procedures are the same. After that, we search for possible a that

ensures the Brannath and Schmidt approach outperforms those two methods by substituting the

π fixed beforehand.

For instance, considering the 10,000 trials simulated under the scenario θ = (0.2, 0.2, 0), the

powers for the classic Bonferroni and Holm method are 0.9006 and 0.9434. As for informativeness,

the expected distances between the lower bound and the true treatment effect are 0.2951 and

0.0018 respectively. By letting the utilities of those two methods be equivalent, the π is supposed

to be fixed as 0.8726. As can be seen from Figure 4.7, when a is approximately smaller than 82,

the Brannath and Schmidt procedure has greater utility than both the classic Bonferroni and

Bonferroni-Holm methods. Therefore, we are supposed to choose a value in (0, 82) for a. When

a approximately equals 17, the utility is maximized. Additionally, in Figure 4.7, we can see that

there is a downward trend for a ≥ 17. Meanwhile, Figure 4.6 demonstrates that as a approaches

infinity, the power of the Brannath and Schmidt procedure’s rejection gradually converges to that

of the Bonferroni-Holm procedure, but never quite reaches the same level of power. However,

an increase in a results in a decrease in informativeness. Thus, the reduction in utility shown in

Figure 4.7 may be due to the fact that the decrease in informativeness outweighs the increase in

power when a becomes extremely large.

4.3 Conclusion

In this chapter, the aim is to construct simultaneous confidence intervals for the individual sub-

groups in the Magnusson and Turnbull (2013) enrichment design. We adopted three approaches:

the classic Bonferroni procedure, the Bonferroni-Holm step-down procedure, and the Brannath

and Schmidt procedure. We notice that the lower bounds of the Bonferroni simultaneous confi-

dence intervals are informative but lack the power to reject hypotheses. In other words, those

lower bounds provide information about how far the true treatment effect is from zero but are
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Figure 4.7: Utility of the Brannath and Schmidt procedure with π = 0.8726 against a. The

horizontal dashed green line is the utility of the classic Bonferroni and Bonferroni-Holm methods.

weak in detecting subgroups that respond to the treatment. On the contrary, the Bonferroni-

Holm step-down procedure is able to reject more hypotheses when their corresponding subgroups

have treatment effects in fact, however, in order to control the FWER, we need to define that

the positive lower bounds only exist when all hypotheses are rejected. This means that we

have no idea about the scale of the true treatment effect when not all of the hypotheses are re-

jected. Therefore, Brannath and Schmidt (2014) proposed a new weighted Bonferroni procedure

whose weight depends on the parameter. The weighted approach is more powerful in rejecting

hypotheses in a single trial while ensuring the simultaneous confidence interval is informative.

An issue that was not addressed in this study is the choice of the penalizing function in the

weighted Bonferroni approach. Brannath and Schmidt (2014) propose that we are supposed

to choose a that ensures the utility function favors Brannath and Schmidt procedure over the

classic Bonferroni and Bonferroni-Holm procedure. However, in order to optimize the expected

utility, it would be necessary to specify a prior distribution for the true treatment effects and

to estimate (via simulation) the utility for given realizations from the prior distribution, which

is very complicated in practice. Therefore, considerably more work will need to be done to

determine the optimal choice of the penalizing function.
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It is somewhat surprising that the Bonferroni simultaneous confidence intervals give satisfying

coverage in all scenarios whereas the other two procedures are conservative in non-null scenarios.

Furthermore, as Magnusson and Turnbull (2013) design already make decisions about rejecting

and accepting null hypotheses, we are more interested in getting knowledge about the scale of

the true treatment effects. When the number of tests in the multiple comparisons is large, the

advantage of the Brannath and Schmidt procedure is more substantial. However, the number

of subgroups involved in the enrichment design usually is less than five. Hence we prioritize the

informativeness of the simultaneous confidence interval construction approach and recommend

the classic Bonferroni procedure.
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Chapter 5

Generalized method to construct

confidence intervals in the

enrichment design

5.1 Introduction

In this chapter, we describe the generalized form of our method to construct confidence intervals

for a specifically selected subpopulation or an individual subgroup regardless of selection results

in the interim analysis. In order to illustrate how the generalized approach works, we apply

it to the adaptive enrichment design proposed in Lin et al. (2021)’s paper as an example in

simulation studies. An essential assumption in our approach is that the outcomes of patients

follow the normal distribution. However, in fact, our approach can also be applied to designs

where the outcome of the patient follows non-normal distribution as long as the approximately

normal distributed score statistics are available.

5.2 Generalized approach to constructing confidence inter-

vals

In previous chapters, we derived conditional and unconditional p-value functions for Magnus-

son and Turnbull (2013) design. Given certain subgroups are selected, the conditional confi-
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dence intervals are obtained by inverting their corresponding p-value functions. Similarly, the

simultaneous confidence intervals at the termination of the trial are obtained by inverting the

corresponding unconditional p-value functions based on a certain multiple-testing procedure. In

this section, we generalize the approach of confidence interval construction for enrichment design

from what we did in Magnusson and Turnbull design and apply it to Lin et al. (2021) design as

an example in Section 5.3.

5.2.1 Conditional confidence intervals given a certain subgroup se-

lected

In this section, we propose a generalized approach to constructing confidence for those subpop-

ulations that are retained after the interim analysis. The general approach could be applied

in various adaptive enrichment designs as long as the selection rule is specified beforehand. In

this manuscript, we concentrate on the two-stage adaptive enrichment design with two disjoint

subgroups. The selection rule varies in different enrichment designs. However, all of the entire

sample spaces in the first stage Ω0 should be able to be partitioned into the following disjoint

subspaces for conditional confidence intervals construction:

Ωc
1 = {all subgroups stop for futility},

Ωc
2 = {only enrich subgroup 1 at stage 2},

Ωc
3 = {only enrich subgroup 2 at stage 2},

Ωc
4 = {enrich both subgroups at stage 2},

Ωc
5 = {subgroup 1 stops for efficacy and subgroup 2 stops futility at stage 1},

Ωc
6 = {subgroup 2 stops for efficacy and subgroup 1 stops futility at stage 1},

Ωc
7 = {the overall group stops for efficacy at stage 1} .

Again, the term “conditional” refers to conditioning on the information that certain subgroups are

chosen in the first interim analysis. The boundaries of these disjoint subspaces are determined

by the selection rule and FWER restrictions. As seen in Figure 2.2 for the Magnusson and

Turnbull (2013) design, region 1 corresponds to the sample space Ωc
1 in this case. Regions 2

and 3 correspond to the sample spaces Ωc
2 and Ωc

3, respectively. If the observed statistics fall

within regions 4 or 7, it indicates that the whole group has been chosen and may be enriched
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in the second stage or discontinued for efficacy in the first. Finally, sample space Ωc
5 and Ωc

6

corresponds to region 5 and region 6.

Let S∗ be the possible index set of the selected subpopulation after the interim analysis. ρj

is the prevalence of subgroup j, which determines the sample size of subgroup j. Assuming that

N patients in total will be recruited in the trial, the number of patients allocated to stage 1 and

stage 2 will beN1 andN2 respectively. Among theN1 patients, N1,j = ρjN1 of them are expected

to be recruited from subpopulation j. Let Yk,S∗ be the accumulated and combined statistic for

chosen subset S∗ at stage K. Additionally, we denote the statistic increment for the selected

subset at stage k as Xk,S∗ (k = {1, 2}), then the accumulated statistic is defined as Y1,S∗ = X1,S∗

at stage 1. When the trial proceeds to stage 2, the statistic increment for the enriched subset S

is defined as X2,S∗ = Y2,S∗ −Y1,S∗ . Note that in general the combined statistic Yk,S∗ depends on

the stage 2 sample sizes which may themselves be a function of the stage 1 statistics. Therefore

we use a function to describe the combined statistic Yk,S∗ = τ(yk,∀j∈S∗ , Nk,∀j∈S∗). Since we

concentrate on the two-stage adaptive enrichment design with two disjoint subgroups, Yk,0, the

combined statistic for the entire group, can be explicated as Yk,0 = τ(yk,1, yk,2, Nk,1, Nk,2). For

example, we construct score statistics in the Magnusson and Turnbull (2013) design, thereby the

combined statistic is defined as Yk,S∗ =
∑

j∈S∗ Yk,j and Xk,S∗ =
∑

j∈S∗ Xk,j . However, in Lin

et al. (2021) design, the definition is different and we will show this in Section 5.3.1. Let u be

the observed statistic value. We denote the set Ωobs
1 = {(y1,1, y1,2) : [y1,1 ∈ (u,∞), y1,2 ∈ R]}

as the sample space for observed value given subgroup 1 is selected, Ωobs
2 = {(y1,1, y1,2) : [y1,1 ∈

R, y1,2 ∈ (u,∞)]} as the sample space for observed value given subgroup 2 is selected and

Ωobs
0 = {(y1,1, y1,1) : [τ(y1,1, y1,2, N1,1, N1,2) ∈ (u,∞)]} as the observed value region given that

the entire population is retained after the interim analysis. The maximum total sample size

usually is determined by the power constraints. But in the second stage, the sample size depends

on the first interim analysis results and the observed statistic values in the first stage. Therefore,

we define the second stage sample size as N2,S∗ = N2(y1), where N2(·) is the second stage sample

size function and y1 = (y1,1, y1,2).

We are supposed to test the null hypothesis H0,S : θS = 0 given that subpopulation S is

selected at the first interim analysis. The one-sided alternative hypothesis is Ha,S = θS > 0,

which implies that the experimental treatment is effective for subpopulation S. The following

setups of the generalized approach are quite similar to what we proposed in Chapters 3 and

4. We have two arms in our trials: experimental and control. If the ith patient in subgroup

j belongs to the experimental arm at stage k, his or her outcome ZE
k,j,i will follow a normal
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distribution with the mean equals to µE
j and variance σ2

0 . On the other hand, if the ith patient

is from subgroup j and assigned to the control arm, then the outcome follows the distribution

ZC
k,j,i ∼ N(µC

j , σ
2
0). We denote the treatment effect for subgroup j as θj = µE

j −µC
j . The overall

treatment effect θ0 will be a linear combination of the treatment effects for individual subgroups.

Let fk|S(·) and Fk|S be the conditional density and cumulative distribution functions of the

cumulative score statistics for group S at stage k, where k = {1, 2}. Suppose that σ2
0 is known,

the p-value function for subgroup 1 can be defined as follows conditioning on the event that only

subgroup 1 is selected at stage 1 by using the score ordering method:

Pr(Yk,1 > u|θ1,y1 ∈ Ωc
2 ∪ Ωc

5) =

∫
Ωobs

1 ∩Ωc
5

f1|1(y1,1|θ1,y1 ∈ Ωc
2 ∪ Ωc

5)dy1,1

+

∫
Ωc

2

f1|1(y1,1|θ1,y1 ∈ Ωc
2)

× F2|1(u|y1,1, θ1)dy1,1.

(5.1)

We can derive the conditional p-value function for subgroup 2 in a similar manner. For the

overall group, we map the combined statistic τ(y1,1, y1,2, N1,1, N1,2) to the new sample spaces

Ω∗
4 (i.e. Ω∗

4 = {(y1,1, y1,2) : τ(y1,1, y1,2, N1,1, N1,2) ∈ Ωc
4}) and Ω∗

7 (i.e. Ω∗
7 = {(y1,1, y1,2) :

τ(y1,1, y1,2, N1,1, N1,2) ∈ Ωc
7}). Below is the probability of observing a value more extreme than

u in the entire population given that no subgroup is dropped in the interim analysis:

P(Yk,0 > u|θ0,y1 ∈ Ω∗
4 ∪ Ω∗

7) =

∫
Ωobs

0 ∩Ω∗
7

f1|0(y1,0|θ0,y1 ∈ Ω∗
4 ∪ Ω∗

7)dy1,0

+

∫
Ω∗

4

f1|0(y1,0|θ0,y1 ∈ Ω∗
4)

× F2|0(u|y1,0, θ0)dy1,0

(5.2)

where N2,0 = N2.

As we are testing the one-sided null hypothesis H0,S : θθS = 0 given that subpopulation

S is chosen at the interim analysis, the one-sided conditional confidence interval for selected

subpopulation S will be CIcon = (θ̂S ,∞), where θ̂S is obtained by searching for possible zero

roots of the equation Pr(YS > u|θS ,S∗ = S,y1) = α. 1 − α is the coverage probability we

specified beforehand. As for the two-sided test, such as testing H0,S = 0 vs. Ha,S ̸= 0, the two-

sided conditional confidence interval construction approach is quite similar to the one-sided case.

Because the conditional p-value function is monotonically increasing on the treatment effect,

we search for θ̂1−α/2,S and θ̂α/2,S that satisfy Pr(YS > u|θ1−α/2,S ,S∗ = S,y1) = 1 − α/2 and

Pr(YS > u|θα/2,S ,S∗ = S,y1) = α/2 correspondingly. Then the two-sided confidence interval

will be (θ̂α/2,S θ̂1−α/2,S).
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5.2.2 Unconditional confidence intervals for individual subgroups

Recall that the term “unconditional” here refers to the case that we construct confidence intervals

for an individual subgroup regardless of the interim analysis result. If the target subgroup is

chosen, we condition on the statistics observed in other selected subgroups to construct the p-

value function. Otherwise, if the subgroup is dropped, we use all the information we observed

from selected subgroups. For the individual p-value function for subgroup j, we need to adjust

decision boundaries based on the statistic values of the rest of chosen subgroups {Y1,P† : P† =

S∗\j}. Let Pj be the index of the subset that subgroup j is included (i.e. P1 = {0, 1}). When

constructing a confidence interval for subgroup j, Ω0 will be re-partitioned in an adjusted way

for the two-stage two-subgroup design:

Ωuc
1 = {subgroup j stops for futility at stage 1},

Ωuc
2 = {only enrich subgroup j at stage 2},

Ωuc
3 = {the overall group is proceeded to stage 2} ,

Ωuc
4 = {subgroup j stops for efficacy at stage 1}.

Note that the above sets also depend on the statistics observed in other selected subgroups. Let

fuck,j(·) and Fuc
k,j(·) be the unconditional density and cumulative distribution function for subgroup

j at stage k. We can write the general form of subgroup j’s individual p-value function as below:

Pr[Yj > u|θ1,y1,P† ] =

∫
Ωobs

1 ∩(Ωuc
4 ∪Ωuc

1 )

fuc1,j(y1,j |θj ,y1,P†)dy1,j

+

∫
Ωuc

2 ∪Ωuc
3

fuc1,j(y1,j |θj ,y1,P†)

× Fuc
2,j(u|y1,j ,y1,P† , θj)dy1,j

(5.3)

where again, Ωobs is the sample space for which the statistic for group j exceeds the value, u,

observed. In general, there are two possible cases where subgroup j is involved after the interim

analysis: exits at stage 1 or proceeds to stage 2. The first term in Equation (5.3) describes

the case where subgroup j exits in the first stage. The second line describes the probability

of observing the statistic y2,j greater than u when subgroup j proceeds to the second stage

for cases where only subgroup j or the entire population is enriched. However, the cumulative

distribution function might change when the interim decision reveals that the overall subgroup

selected instead of only subgroup j is chosen. Therefore, in order to take all possible selection
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results into account, the second term probably will expand to several terms to correspond to

different results.

Since the unconditional p-value functions are monotonically increasing according to θj and we

are testing one-sided hypotheses, the confidence interval for group j will be (θ̂j ,∞) and θ̂j satisfy

{θ̂j : Pr(Yj > u|θ) = αSCI} that ensures an exact coverage probability at level 1 − αSCI . Let

pj(θj) = Pr[Yj > u|θ1,y1,P† ] be the individual p-value function. By plugging in the individual

p-value function into a specific multiple-testing procedure, we are able to construct simultaneous

confidence intervals for all subgroups at the end of the trial.

5.3 Example: Sample size re-estimated adaptive enrich-

ment design

In the subsequent sections, we are going to use the above adaptive enrichment design which re-

estimates the sample size in the second stage to illustrate that our confidence interval construction

approach could be generally applied in various types of enrichment designs.

5.3.1 Conditional confidence intervals in the Lin et al. design

As the confidence interval is obtained by inverting the corresponding p-value function, first of

all, we derive the probability of observing a statistic greater than u, the observed threshold. Let

y = (y1,1, y1,2) and µ
C
j = 0 in the entire population. According to the statistic distribution we

stated above, the density function and cumulative distribution function in the Equation (5.1)

can be specified as below:

fk|S∗(y1,j |θj) =
ψ(y1,j − θj/

√
4σ2/N1,j)

1− Φ
(
l1 − θj/

√
4σ2/N1,j

) ,

F2|j(u|y1,j , θj) = 1− Φ

(
u−

√
ωy1,j√

1− ω
−
√
N2,jθj√
4σ2

)
.
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Under the score ordering method, the probability of observing a statistic greater than u condi-

tioning on the event that only subgroup j is selected can be written as:

Pr(Yj > u|θj ,S∗ = {j},y1) =

∫ ∞

max(u,u1)

ψ(y1,j − θj/
√
4σ2/N1,j)

1− Φ
(
l1 − θj/

√
4σ2/N1,j

)dy1,j
+

∫ u1

l1

ψ(y1,j − θj/
√
4σ2/N1,j)

1− Φ
(
l1 − θj/

√
4σ2/N1,j

)
×

[
1− Φ

(
u−

√
ωy1,j√

1− ω
−
√
N2,jθj√
4σ2

)]
dy1,j

(5.4)

where ψ(·) and Φ(·) are the standard normal density and cumulative distribution functions

respectively, and N2,j = N2(y1,1, y1,2).

When the entire population is selected in the first interim analysis, we consider two possible

occasions. Since only when y1,gmin
> u1 and l1 < y1,gmin

≤ y1,gmax
< u1 the overall group will

either be claimed to have treatment efficacy or enriched in the second stage, the conditional

p-value function for the overall subgroup can be separated into two components:

Pr(Y0 > u|θ,S∗ = {1, 2},y)

=
Pr(y1,0 > u, y1,gmin > u1|θ)

Pr(y1,gmin
> u1|θ) + Pr(l1 < y1,gmin

≤ y1,gmax
< u1|θ)

+
Pr(y2,0 > u, l1 < y1,gmin ≤ y1,gmax < u1|θ)

Pr(y1,gmin
> u1|θ) + Pr(l1 < y1,gmin

≤ y1,gmax
< u1|θ)

.

(5.5)

The denominator in the above equation corresponds to the probability of observing the first

stage statistics belonging to Ω∗
4 ∪ Ω∗

7. Moreover, according to the distribution of y1,1 and y1,2

we defined in Section 5.3, the overall statistic combination function can be explicated as y1,0 =

τ(y1,1, y1,2, N1,2, N1,2) =
√
ρ1y1,1 +

√
ρ2y1,2 with ρ1 = N1,1/N1 and ρ2 = N1,2/N1.

For the second component, since the overall group proceeds to the second stage only when

both subgroup statistics locate between boundaries at stage 1, the density function and the

cumulative distribution function for the overall group in the first stage can be explicated as:

f1|S∗=0(y1,0|θ)

=

∫ min(u1,
y1,0−

√
1−ρl1√
ρ )

max(l1,
y1,0−

√
1−ρu1√
ρ )

ψ(y1,1 − θ1/
√
4σ2/N1,1)

Φ(u1 − θ1/
√
4σ2/N1,1)− Φ(l1 − θ1/

√
4σ2/N1,1)

× 1√
1− ρ

ψ(
y1,0−

√
ρy1

1√
1−ρ

− θ2/
√
4σ2/N1,2)

Φ(u1 − θ2/
√
4σ2/N1,2)− Φ(l1 − θ2/

√
4σ2/N1,2)

dy1,1

(5.6)
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and

F2|S∗=0(y1,0|θ)

=1− Φ

(
u−

√
ωy1,0√

1− ω
−
√
N2,0θ0√
4σ2

)
(5.7)

By plugging in Equation (5.6) and (5.7), terms in Equation (5.5) can be expressed as following:

Pr(y1,0 > u, y1,gmin
> u1|θ)

=

∫ ∞

max(u,u1(
√
ρ+

√
1−ρ))

ψ(y1,0 − θ1/
√
4σ2/N1,1)

1− Φ(u1 − θ1/
√
4σ2/N1,1)

×
1− Φ(

u−√
ρt1√

1−ρ
− θ2/

√
4σ2/N1,2)

1− Φ(u1 − θ2/
√
4σ2/N1,2)

dy1,0

×Pr(y1,gmin
> u1|θ);

Pr(y2,0 > u, l1 < y1,gmin
≤ y1,gmax

< u1|θ)

=

∫ u1(
√
ρ+

√
1−ρ)

l1(
√
ρ+

√
1−ρ)

f1|S∗=0(y1,0|θ)×

(
1− Φ

(
u−

√
ωy1,0√

1− ω
−
√
N2,0θ0√
4σ2

))
dy1,0

×Pr(l1 < y1,gmin ≤ yg1,max < u1|θ);

where

Pr(y1,gmin
> u1|θ)

=(1− Φ(u1 − θ1/
√
4σ2/N1,1))× (1− Φ(u1 − θ2/

√
4σ2/N1,2)),

Pr(l1 < y1,gmin
≤ y1,gmax

< u1|θ)

=(Φ(u1 − θ1/
√
4σ2/N1,1)− Φ(l1 − θ1/

√
4σ2/N1,1))

×(Φ(u1 − θ2/
√
4σ2/N1,2)− Φ(l1 − θ2/

√
4σ2/N1,2)).

Let the nominal coverage probability level be fixed at 1 − α. Recall that we are testing the

one-sided hypotheses:H0,S = θS = 0 versus Ha,S : θS > 0 conditioning on subset S is chosen.

By inverting Pr(YS |θ̂S ,S∗ = S,y1) = 1 − α based on the observed selection results and Wald

statistic values in the trials, we get the one-sided confidence intervals CIlin,con = (θ̂S ,∞).

85



5.3.2 Numerical study

In this section, we are going to run 10,000 simulated trials to test the performance of the confi-

dence intervals under various scenarios. Given that the prevalence of subgroup 1 and subgroup 2

are ρ1 = ρ2 = 0.5, we randomize the number of patients allocated to each subgroup by utilizing

the binomial distribution with probability equaling 0.5. We also assume that each patient has

an equivalent probability of being assigned to the experimental arm and control arm. A total

of 620 patients are enrolled at stage 1. The futility and efficacy stopping boundaries in the first

stage are 1.036 and 2.212 respectively. Sample sizes in the second stage are updated based on

the value of test statistics observed in the first stage.

We present two of the simulated trials in Table 5.1 to illustrate how the Lin et al. (2021)

design works. In both trials, the statistic of subgroup 1 exceeds l1 but the statistic of subgroup 2

does not, therefore only subgroup 1 will be enriched in the second stage. What stands out is that

the statistic of subgroup 1 in Trial 1 is smaller than the statistic observed in Trial 2 while the

sample size required in the second stage is much larger for Trial 1 than Trial 2. This is because

the design aims to preserve a constant conditional power and when the statistics observed in the

first stage are closer to the lower boundary, we need more information in the second stage to

maintain the power of rejection.

Table 5.1: Two worked examples for the Lin et al. design with only subgroup 1 is chosen.

Trial 1 Trial 2

stage 1 X1,j N1,j X1,j N1,j

Ω1 1.3261 319 1.5916 304

Ω2 0.8416 301 -1.1963 316

stage 2 X2,j N2,j X2,j N2,j

Ω1 2.2498 1571 2.3842 479

Ω2 \ \ \ \

Total Y2,S NS Y2,S NS

Ω1 3.5759 1890 3.9759 783

Also, given that only subgroup 1 is chosen in the first interim analysis, we present the dis-

tribution of lower bounds obtained under three different scenarios in Figure 5.1 based on 10,000

simulated trials in each case. All lower bounds in the light blue histogram are calculated from

the null scenario. The light pink and light green histogram present lower bounds from scenario
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θ = (0.2, 0) and θ = (0.2, 0.2) respectively. The red vertical line is the 97.5% quantile of the

distribution. Obviously, our p-value inversion approach still has nominal coverage probabilities

in Lin et al. design as the quantile lines locate around the true treatment effect in all scenarios.
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Figure 5.1: Distribution of lower bounds under scenario θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2)

given subgroup 1 is selected.

Our simulation also contains the case where the entire population is retained at the interim

analysis. However, we again need to address the limitation of our approach that is we are not able

to obtain conditional confidence intervals for the overall group that account for the possibility

that the treatment effect is heterogeneous among the disjoint subgroups. Although, we still

run simulations under scenario θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2), unsurprisingly, the

performance under the second scenario is poor. Figure 5.2 provides the distribution of lower

bounds for the overall group conditioning on the event that it is selected. The red vertical lines

are the 97.5% quantile. It is apparent from the figure that the 97.5% percentile of the lower

bounds lies below the true treatment effect which implies that our approach has a coverage

probability that is close to the nominal level for scenario θ = (0, 0) and θ = (0.2, 0.2).

We present coverage probabilities and powers for selected subpopulations in Table 5.2. In

cases where only subgroup 1 is selected, again we find that both the coverage probabilities and

powers are close to the nominal level. However, when the entire population is chosen in the

interim analysis, we notice that the coverage probability is conservative under the null scenario.

This is due to the fact that the number of trials in which both subgroups are selected is small

(236 out of 10,000 trials). Under the scenario where the true treatment effects are heterogeneous

among subgroups, our p-value function assumes that treatment effects are homogeneous and this
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Figure 5.2: Distribution of lower bounds under scenario θ = (0, 0), θ = (0.2, 0) and θ = (0.2, 0.2)

given the entire population is selected.

also leads to the conservation of coverage probability and poor power (as shown in Figure 5.2).

Table 5.2: The probability of covering the true treatment effect (coverage probability) and re-

jecting at least one null hypothesis (power) given the subgroup 1 and the overall group is chosen.

scenario
S = {1} S = {1, 2}

coverage probability power coverage probability power

θ = (0, 0) 0.9667 0.0333 0.9775 0.0225

θ = (0.2, 0) 0.9739 0.6400 1 0.2936

θ = (0.2, 0.2) 0.9710 0.6313 0.9740 0.7946

5.3.3 Simultaneous confidence intervals in the Lin et al. design

Recall that the outcome of each patient recruited follows the normal distribution, thereby Lin

et al. (2021) proposes to construct a Wald statistic,

Xk,j =
µ̂E
j − µ̂C

j√
4σ2/Nk,j

(5.8)

where µ̂E
j and µ̂C

j are the sample mean for subgroup j at stage k. Apparently, Equation (5.8) is

normally distributed with mean (θj − θ0)/
√
4σ2/Nk,j and variance 1. Note that σ2 is the pooled

sample variance.
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For the unconditional p-value function for an individual subgroup j, the probability depends

on statistics of subpopulation P†. Let l⋆1 = l1×I(y1,P† < u1)+u1×I(y1,P† ≥ u1), the probability

of observing a statistic greater than u for an individual subgroup j is

Pr(Yj > u|θj , y1,P†)

=[1− Φ(max(u, u1)−
θj√

4σ2/N1,j

]

+Φ(l⋆1 −
θj√

4σ2/N1,j

)− Φ(min(u, l⋆1)−
θj√

4σ2/N1,j

)

+

∫ u1

l1

ψ(y1,j −
θj√

4σ2/N1,j

)[1− Φ(
u−

√
ωy1,j√

1− ω
−
√
N2,jθj

4σ2
)]dy1,j

×I(y1,P† < l1)

+

∫ u1

l1

ψ(y1,j −
θj√

4σ2/N1,j

)[1− Φ(
u−

√
ωy1,j√

1− ω
−

√
N

′
2,jθj

4σ2
)]dy1,j

×I(l1 < y1,P† < u1)

(5.9)

where I(·) is the indicator function and Φ(·) is the cumulative distribution function for standard

normal distribution. Compared to the unconditional p-value function we derived for Magnusson

and Turnbull design, we utilize the information of the remaining subgroup in the selected sub-

population in a quite different way. We divide the p-value function into three parts; (1) subgroup

j stops at stage 1 (line 1 and line 2 in Equation (5.9)); (2) subgroup j terminates at stage 2 but

only subgroup j is enriched (line 3 and line 4); (3) the overall group is enriched in the second

stage (line 5 and line 6). This is owing to the fact that the sample re-estimation in the second

stage depends on the statistic we observed in the first stage. Since the statistics are different in

cases where only subgroup j is chosen and the overall group is selected, the number of patients

we are required to recruit varies. Therefore, the term N2,j in line 3 and N
′

2,j in line 5 might have

different values according to the different statistics observed at stage 1.

In Chapter 4, we discussed three multiple-test procedures to construct simultaneous confi-

dence intervals for Magnusson and Turnbull design and concluded that the classic Bonferroni

correction approach is more appropriate than the two others. We recommended the classic

Bonferroni test due to the fact that although the classic Bonferroni approach rejects fewer null

hypotheses, it provides the most information about the scale of the true treatment effect, and the

testing procedure in Magnusson and Turnbull design itself already made decisions about whether

accept the null hypotheses or not. Here, we again construct simultaneous confidence intervals

based on those three multiple test procedures and check whether the same conclusion holds in
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the Lin et al. design via numerical studies we present in Section 5.3.4.

5.3.4 Numerical study

In this section, we compare three multiple testing procedures: the classic Bonferroni, Bonferroni

Holm and the new parameter-dependent weighted Bonferroni approach proposed by Brannath

and Schmidt (2014) applied in Lin et al. design. Again, we focus on the two-stage Lin et al.

design with two subgroups. Being similar to the numerical study we performed in the conditional

confidence interval session, we run simulations under three scenarios: θ = (0, 0), θ = (0.2, 0) and

θ = (0.2, 0.2). In the first stage, we recruit 620 patients in total and randomly assign them to

two subgroups by utilizing binominal distribution with ρ1 = ρ2 = 0.5. Also, each patient is

equally likely to be involved in the experimental arm or the control arm (i.e. we adopt block

randomization here). According to the design procedure we described in Section 5.3, the sample

size in the second stage depends on the statistic value we observed in the first stage.

In Table 5.3 we again find that both the Bonferroni-Holm procedure and Brannath and

Schmidt procedure are more conservative than the classic Bonferroni procedure as their coverage

probabilities are greater than the classic Bonferroni’s, especially under the non-null scenarios.

However, the Bonferroni-Holm test and the Brannath and Schmidt test detect more rejections.

These conclusions all agree with what we found for the confidence intervals for the Magnusson

and Turnbull design in Chapter 4. In Figure 5.3, we display the distributions of the lower

bounds in the simultaneous confidence intervals based on the three multiple testing procedures.

We assume that the true treatment effects are 0.2 for subgroup 1 and 0 for subgroup 2. The

light blue histograms represent the distribution of lower bounds for subgroup 1 and the light

pink histograms represent the distribution of lower bounds for subgroup 2. In the first row, all

lower bounds are obtained by the classic Bonferroni test. We notice that around 98.75% of them

(i.e. the red vertical line) locate below 0.2 and 0 for subgroup 1 and subgroup 2 respectively,

which again implies that the one-sided classic Bonferroni simultaneous confidence intervals have

coverage probabilities close to the nominal level. The lower bounds in the second row are obtained

by utilizing the Bonferroni-Holm procedure. We find that a large proportion of lower bounds are

0 for subgroup 1. This is due to the fact that when only part of the null hypotheses is rejected

in a single trial, the lower bounds of the rejected hypotheses are defined to be 0 in the Holm

test procedure. As for the lower bounds derived from the Brannath and Schmidt procedure, we

observe that their distribution is quite similar to the classic Bonferroni procedure except that

Brannath and Schmidt procedure rejects slightly more null hypotheses than the classic Bonferroni
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test.

Again, the simulation results above indicate that the Bonferroni-Holm procedure is very

powerful in rejecting null hypotheses but worse in providing information about the scale of

the true treatment effect. On the contrary, the classic Bonferroni procedure gives the most

information but is relatively weak in detecting false hypotheses. Brannath and Schmidt (2014)

procedure trades off between informativeness and the power of rejecting non-null hypotheses,

however, it still sacrifices informativeness of the positive lower bounds to detect more non-null

hypotheses. As Lin et al. design already determined to reject which hypothesis, we prefer to use

the multiple test procedure that provides more information to construct simultaneous confidence

intervals for individual subgroups. Therefore, the classic Bonferroni procedure might be the most

appropriate approach in Lin et al. design’s case.

Table 5.3: The coverage probability, power of rejecting the null hypotheses, and the average

number of rejections in each trial for different scenarios.

scenario
classic Bonferroni Holm Brannath and Schmidt

coverage

probability
power

average

rejection

coverage

probability
power

average

rejection

coverage

probability
power

average

rejection

θ = (0, 0) 0.9703 0.0297 0.03 0.9703 0.0297 0.0302 0.9703 0.0297 0.03

θ = (0.2, 0) 0.9737 0.668 0.6728 0.9799 0.668 0.6819 0.9747 0.668 0.6734

θ = (0.2, 0.2) 0.9732 0.8424 1.0325 0.9839 0.8425 1.1474 0.9747 0.8425 1.0383

5.3.5 Comparison between Magnussona-Turnbull design and Lin et al.

design

In this section, we will compare the confidence intervals obtained for the Magnussona and Turn-

bull design to the Lin et al. design in situations where the data collected is the same. First of

all, we assume that the prevalences of subgroup 1 and subgroup 2 are 0.6 and 0.4 respectively.

Note that whereas in the Magnusson and Turnbull design, the stagewise sample sizes are fixed,

Lin et al. (2021) set the stage 2 sample size to maintain a level of conditional power. Specifically,

recall that Lin et al. (2021) proposed a conditional power function for selected subset S

Pr(Y2,S > y|θS , y1,S) = 1− Φ

(
y −

√
ωy1,S√

1− ω
− θS√

4σ2/N2

)
(5.10)

to calculate the sample size in the second stage. By setting Pr(Y2,S > y|θS , y1,S) = 1− βS (i.e.

1 − βS is the required conditional power level), we can get a unique solution for N2. Note that

91



0

500

1000

1500

−0.50 −0.25 0.00 0.25 0.50 0.75
lower bounds

co
un

t

0

200

400

600

−0.75 −0.50 −0.25 0.00
lower bounds

co
un

t

0

2000

4000

6000

−0.50 −0.25 0.00 0.25
lower bounds

co
un

t

0

200

400

600

−0.75 −0.50 −0.25 0.00
lower bounds

co
un

t

0

500

1000

1500

−0.50 −0.25 0.00 0.25 0.50 0.75
lower bounds

co
un

t

0

200

400

600

−0.75 −0.50 −0.25 0.00
lower bounds

co
un

t

Figure 5.3: Distribution of lower bounds of the classic Bonferroni (top row), Bonferroni-Holm

(middle row) and Brannath and Schmidt (bottom row) simultaneous confidence intervals under

scenario θ = (0.2, 0).
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we replace θS in Equation (5.10) by the maximum likelihood estimate θ̂S = y1,S/
√
4σ2/N1,S

when computing the conditional power. In the simulation study of the Magnusson and Turnbull

design, we assume that the sample sizes in the first and second stages are fixed to be 625. To

compare these two designs, we calculate the corresponding first stage statistics in the Lin et al.

design by setting N2 to 625 in Equation (5.10) and solving for y1,S , which yields a value of

1.8235. Hence, we can directly compare results from the Magnusson and Turnbull’s design with

Lin et al.’s design in the case where the stage 1 statistic is y1,S = 1.8235 since both designs

will yield a stage 2 sample size of N2 = 625. Suppose that only subgroup 1 is chosen at the

first interim analysis, the lower bounds for conditional confidence intervals in the two designs are

presented in Table 5.4 and Figure 5.4 where we vary the observed data from subgroup 1 at stage

2. It is evident from the results that the lower bounds for the Magnusson and Turnbull design

are lower than the lower bounds of the Lin et al. design when the trial intends to terminate

for futility (i.e. when X2,1 is negative). Nonetheless, in case the trial is expected to progress

to the second stage or discontinued due to effectiveness, the confidence intervals resulting from

Magnusson and Turnbull design have a smaller range than those acquired from Lin et al. design.

At the point when the standard statistic increment is around 1.8, it is clear that the lower limit

slopes rise. Based on the data presented in Table 5.4, we observe that at the transition point,

the standardized accumulated statistic reaches the first stage upper boundary for both designs.

Table 5.4: The lower bounds of the one-sided confidence interval given subgroup 1 is selected in

the Magnusson and Turnbull and Lin et al. design.

lower bounds of the one-sided conditional confidence interval

X2,1(standardized) Y1 (standardized)
Magnusson and Turnbull

((l1, u1) = (0.5192, 2.5529))

Lin et al.

((l1, u1) = (1.0364, 2.5197))

-3 -1.2551 -0.3629 -0.2904

0 1.1166 -0.1420 0.1455

1.8 2.5396 -0.0471 -0.0514

2.1 2.7768 -0.0082 -0.0109

2.2 2.8559 0.0030 0

5 5.0694 0.2511 0.1687
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statistic increment at stage 2.
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5.4 Conclusion

A main factor that distinguishes various types of adaptive enrichment design is the specific

decision rules utilized by the conductor. As long as the decision rule in the interim analysis is

fixed in advance, we are able to partition the entire sample space in the first stage into a few

disjoint subspaces. By integrating over those subspaces, we can obtain p-values conditioning

on certain subpopulations chosen or for an individual subgroup. Then we search for a unique

solution for the true treatment effect that makes the p-value function equal to the significance

level. Since we assume that we are testing the one-sided null hypothesis, the unique solution

will be the lower bound of the conditional or unconditional confidence interval. Note that the

way we divide the entire sample space for the conditional confidence interval might be different

from the way we partition it for the unconditional confidence interval. Furthermore, although

we focus on the two-stage two-subgroup design in this chapter, the generalized method can be

extended to the k-stage enrichment design with m subgroups where k ≥ 2 and m ≥ 2.

When constructing conditional confidence intervals for the Magnusson and Turnbull (2013)

design, we adopted three sample space ordering approaches: stagewise, score, and MLE. The

score ordering method outperforms the other two approaches as it treats all stages equally. Hence

when generalizing the method of constructing confidence intervals given the selection result, we

merely utilize the score ordering method. If desired, it would be relatively straightforward to

adapt the procedure to MLE ordering by changing the definitions of f and F . The conditional

p-value functions given a single subgroup is selected are quite similar across different designs as

the only difference is the density function for the single subgroup statistics. However, if more

than two subgroups are chosen, the conditional p-value function will rely on both the decision

rule and the statistic combination rule of the specific design. When treatment effects vary among

subgroups, constructing a conditional p-value function using multiple chosen subgroups becomes

more intricate because it requires determining the joint distribution and correlation among the

subgroups.
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Chapter 6

Discussion

Based on the p-value function inversion approach and through appropriate conditioning on stage

statistics, we are able to construct confidence intervals for selected subsets along with individual

subgroups in a more direct way. Magnusson and Turnbull (2013) proposed an iterative bootstrap

method for the purpose of constructing confidence intervals, however, the coverage probabilities of

the resulting intervals are often poor. Compared to the bootstrap method, our method has closer

to nominal coverage probabilities while controlling the FWER at the desired level. At the end

of the trial, we are supposed to construct the simultaneous confidence intervals for all subgroups

ensuring the simultaneous coverage is close to the nominal level. In this thesis, we employed the

classic Bonferroni, Bonferroni-Holm and parameter-dependent weighted Bonferroni procedures

for the simultaneous confidence interval construction. Numerical studies show that the Bonferroni

simultaneous confidence intervals are informative but at the expense of some power to reject false

null hypotheses. Conversely, the Bonferroni-Holm simultaneous confidence intervals are most

powerful in detecting rejected hypotheses but provide no information for rejected subgroups

when only part of the hypotheses are rejected. The parameter-dependent weighted Bonferroni

procedure obtained through the procedure proposed by Brannath and Schmidt (2014) trades off

the informativeness and the power of rejecting null hypotheses and it can asymptotically approach

either the classic Bonferroni procedure and the Bonferroni-Holm procedure by modifying the

penalizing function. Nonetheless, our simulation studies show that the gain in power from the

weighted Bonferroni intervals is relatively small in the usual situation where there are two or

three subgroups, whilst they lead to intervals that have conservative coverage when the null

hypothesis is false. Furthermore, as we can observe the decision of each subgroup (i.e. stop for
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futility or exit for efficacy) at the termination of the trial, we prioritize the informativeness and

consider the classic Bonferroni procedure most appropriate.

Our method has a limitation in that there is no guarantee of agreement between the rejection

or acceptance of a hypothesis in the testing procedure proposed in the design, and the inclusion

or exclusion of the corresponding null value to the constructed confidence interval. This usually

occurs when the one-sided confidence interval includes 0 but the corresponding statistic observed

crosses the upper boundary. This is due to the selection made during the interim analysis. The

design’s decisions are based on all data observed in the trial, while the conditional confidence

intervals mostly rely on data from the retained subgroups. To address this inconsistency between

design decisions and confidence intervals for Magnusson and Turnbull’s design, we proposed a

new ordering method that pulls the adjusted boundaries of each stage to the same level by

transforming the cumulative score statistic at stage 2 by an appropriate power of the Fisher

Information. However, this method requires adjusting the significance level based on the selection

result, making it difficult to extend to other designs.

When constructing a confidence interval for the combined treatment effect of all selected

subgroups, we assume homogeneity of treatment effects across all selected subgroups. However,

when only one of the two subgroups had a true treatment effect, but both were chosen (i.e.

θ = (0.2, 0) ), the conditional confidence interval for the overall group was quite conservative.

To address this issue a general approach would be to first construct a joint confidence region for

(θ1, θ2) and then find the smallest rectangle containing the joint confidence region. To find the

confidence region, we could construct a joint p-value function of the form

p(t1, t2; θ1, θ2) = Pr(Y1 > t1, Y2 > t2|θ1, θ2)

where the idea would be to only include values of (θ1, θ2) for which p(t1, t2; θ1, θ2) is not “small”.

However, unlike in the univariate case where the probability integral transform ensures the p-

value function has a standard uniform distribution for the true value of θ, in higher dimensions,

this is not the case (Genest and Rivest, 2001). Instead p(t1, t2; θ1, θ2) has a different distribution

depending on (θ1, θ2). Nevertheless, in principle it is possible to find the cα(θ1, θ2) that satisfies

Pr{p(Y1, Y2|θ1, θ2) > cα(θ1, θ2)} = α for each pair (θ1, θ2). Hence the confidence region would

contain all possible values of the treatment effects (θ1, θ2) which lead to a joint p-value greater

than cα(θ1, θ2). As an alternative to the conditional moment approach presented in Chapter 4,

a similar method can be used to obtain an unconditional simultaneous confidence region for θ1

and θ2. However, this approach may be very computationally intensive and would become even
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worse for more than two subgroups.

In this thesis, we have only focused on the problem of interval estimation. However, having

constructed p-value functions it should be straightforward to construct median unbiased esti-

mators (see Robertson et al., 2023, Section 5.2) of the treatment effects. Specifically, given the

p-value defined in the earlier chapters, which is a function of the true treatment effect, and

conditioned on the decision made in the interim analysis and statistic values of complementary

subgroups, a median unbiased estimator can be obtained by taking the value θ̂ that satisfies

p(x; θ̂) = 0.5 where x is the observed data set. Therefore, our future work might include evalu-

ating the performance of this point estimator.

The main focus of this thesis is on designs that assume consistency between the endpoints

used in the interim and final analyses. Nevertheless, some trials adopt diverse endpoints for these

analyses, as exemplified in the Jenkins et al. (2011) design that utilizes progression-free survival

(PFS) to establish population enrichment in the second stage, while collecting overall survival

(OS) data in both stages for the final analysis. Since there is scarce literature on constructing

confidence intervals for this category of design, it could be a prospective field for future research.

Lastly, in the calculations performed in the thesis we have assumed the individual patient

responses are normally distributed. However, the same approach can be applied to binary (Simon

and Simon, 2013) and time-to-event data (Kimani et al., 2020) to give confidence intervals by

assuming that the stage-wise score statistics are approximately normally distributed.
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Appendix A

P -value functions under

stage-wise and MLE ordering in

the 3-stage Magnusson and

Turnbull design

A.1 Stage-wise ordering

Stage-wise ordering defines that the probability of observing a value at stage k − 1 should be

considered more extreme than stage k. Therefore, the conditional p-value function is defined as:

Pr(YS > u|S∗ = S, θS)

=Pr(Y1,S > u)|S∗ = S, θS)× I(Y1,S > ũ1,S)

+[Pr(Y1,S > ũ1,S)|S∗ = S, θS) + Pr(Y2,S > u|S∗ = S, θS)]I(Y1,S < ũ1,S)

×I(Y2,S > ũ2,S or Y2,S < l̃2,S)

+[Pr(Y1,S > ũ1,S)|S∗ = S, θS) + Pr(Y2,S > ũ2,S |S∗ = S, θS) + Pr(Y3,S > u|S∗ = S, θS)]

×I(Y1,S < ũ1,S)I(l̃2,S < Y2,S < ũ2,S)

where I(·) is the indication function.

Assume that Xi,j ∼ N(θjδi,j , δi,j) and Xi,j only depends on Xi−1,j , if the subpopulation S

is selected, we can explicate the p-value function for three-stage design as following by applying
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stage-wise ordering

Pr(YS > u|S∗ = S, θS)

=

∫ ∞

u

f1|S(y1,S |θS)dy1,S × I(y1,S > ũ1,S)

+
{∫ ∞

ũ1,S

f1|S(y1,S |θS)dy1,S

+

∫ ũ1,S

l̃1,S

f1|S(y1,S |θS)×

[
1− Φ

(
u− y1,S − θSδ2,S√

δ2,S

)]
dy1,S

}
×I(y1,S ≤ ũ1,S)I(y2,S < l̃2,S |y2,S > ũ2,S)

+
{∫ ∞

ũ1,S

f1|S(y1,S |θS)dy1,S

+

∫ ũ1,S

l̃1,S

f1|S(y1,S |θS)×

[
1− Φ

(
ũ2,S − y1,S − θSδ2,S√

δ2,S

)]
dy1,S

}
×I(y1,S ≤ ũ1,S)I(l̃2,S ≤ y2,S ≤ ũ2,S)

+

∫ ũ1,S

l̃1,S

∫ ũ2,S

l̃2,S

f1|S(y1,S |θS)f2|S(y2,S |y1,S , θS)

×

[
1− Φ

(
u− y2,S − θSδ3,S√

δ3,S

)]
dy2,Sdy1,S

×I(y1,S ≤ ũ1,S)I(l̃2,S ≤ y2,S ≤ ũ2,S)

where

f1|S(y1,S |θS) =


1√

N1,S/4σ2
ψ

(
y1,S − θSδ1,S√

δ1,S

)
Φ

[
l̃1,S − θSδ1,S√

δ1,S

]−1

S ∈ {1, 2}

∫ ũ1,S−l̃1,2

l̃1,1

f1|1(y1,1|θ1)f1|2(y1,S − y1,1|θ2)dy1,1 S = {0} .

A.2 MLE ordering

For MLE ordering method, since it needs to convert the standardized score statistic to MLE

scaled statistics corresponding to different stages, we denote the converted statistics in three

stages as below:

1. If the trial stops at stage 1:

Y1,mle,S = ZS/I−0.5
1 = Y1,S ,

Y2,mle,S = ZS/I−0.5
2 = Y1,SI

−0.5
1 /I−0.5

2 ,

Y3,mle,S = ZS/I−0.5
3 = Y1,SI

−0.5
1 /I−0.5

3 ;
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2. If the trial stops at stage 2:

Y1,mle,S = ZS/I−0.5
1 = Y2,SI

−0.5
2 /I−0.5

1 ,

Y2,mle,S = ZS/I−0.5
2 = Y2,S ,

Y3,mle,S = ZS/I−0.5
3 = Y2,SI

−0.5
2 /I−0.5

3 ;

3. If the trial stops at stage 3:

Y1,mle,S = ZS/I−0.5
1 = Y3,SI

−0.5
3 /I−0.5

1 ,

Y2,mle,S = ZS/I−0.5
2 = Y3,SI

−0.5
3 /I−0.5

2 ,

Y3,mle,S = ZS/I−0.5
3 = Y3,S ;

where ZS is the standardized statistic and Yk,S is the raw statistic. Similarly, let c1,mle, c2,mle

and c3,mle be the transformed observed value at each stage. Then we define the conditional

p-value function in terms of the converted statistics:

Pr(YS > u|S∗ = S, θS)

=Pr(Y1,mle,S > max(c1,mle, ũ1,S))|S∗ = S, θS)

+Pr(Y2,mle,S > max(c2,mle, ũ2,S)|S∗ = S, θS)]

+Pr(Y3,mle,S > c3,mle|S∗ = S, θS)]

(A.1)

Equation (A.1) can also be expressed as:

Pr(YS > u|S∗ = S, θS)

=

∫ ∞

max(c1,mle,ũ1,S)

f1|S(y1,S |θS)dy1,S

+

∫ ũ1,S

l̃2,S

f1|S(y1,S |θS)

[
1− Φ

(
max(c2,mle, ũ2,S)− y1,S − θSδ2,S√

δ2,S

)]
dy1,S

+

∫ ũ1,S

l̃2,S

∫ ũ2,S

l̃2,S

f1|S(y1,S |θS)f2|S(y2,S |y1,S , θS)

×

[
1− Φ

(
c3,mle − y1,S − θSδ3,S√

δ3,S

)]
dy2,Sdy1,S .
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