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Abstract

Purpose - This paper aims to evaluate and compare the performance of different computer vi-
sion algorithms in the context of visual servoing for augmented robot perception and autonomy.
Design/methodology/approach - We evaluate and compare three different approaches: a
feature-based approach, a hybrid approach, and a machine-learning-based approach. To evalu-
ate the performance of the approaches, we conducted experiments in a simulated environment
using the PyBullet physics simulator. The experiments included different levels of complexity,
including different numbers of distractors, varying lighting conditions, and highly-varied object
geometry.
Findings - The experimental results show that the machine-learning-based approach outper-
forms the other two approaches in terms of accuracy and robustness. The approach can detect
and locate objects in complex scenes with high accuracy, even in the presence of distractors and
varying lighting conditions. The hybrid approach showed promising results but was less robust
to changes in lighting and object appearance. The feature-based approach performed well in
simple scenes but struggled in more complex ones.
Originality/value - This paper sheds light on the superiority of a hybrid algorithm that in-
corporates a deep neural network in a feature detector for image-based visual servoing, which
demonstrates stronger robustness in object detection and location against distractors and light-
ing conditions.

1 Introduction

Recent years have witnessed a notable increase in academic research pertaining to robot perception,
which involves leveraging a diverse range of sensors to facilitate comprehending and interpreting
the surrounding environment. With the advancements in computer vision and machine learning
techniques, robots can now recognize, interpret, and make decisions based on the perception infor-
mation gathered (Qiao et al. 2022). This has resulted in the widespread use of robot perception
in various applications, including the navigation of mobile robots, providing context-awareness for
service robots (Miao et al. 2023), robot arm manipulation (Lin & Wang 2021), manufacturing (Wan
et al. 2022, Zeng et al. 2018), mobile robots (Qiu et al. 2019), transportation guidance for logistic
(Bloss 2011), and many more.

Among these applications of robot perception, visual servoing stands out as one of the most
promising techniques. It utilizes visual feedback from a camera to control the motion and position
of a robot arm, making it a versatile and adaptable approach for human-robot interaction (Xue et al.
2020, Li et al. 2022, Bonci et al. 2021, Chen et al. 2020) and teleoperation (Huang et al. 2022, Bacha
et al. 2022, Wang et al. 2020, Huang et al. 2023, Wang, Fei, Huang, Rouxel, Xiao, Li & Burdet 2023).
One of the major advantages of visual servoing is its ability to work in unstructured environments,
as it can adapt to changes in the environment and the objects being manipulated. Moreover, it
can operate without requiring a precise or prior model of the robot’s dynamics, making it more
flexible and easier to implement in practice. There are two primary approaches to visual servoing:
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position-based visual servoing (PBVS) and image-based visual servoing (IBVS). In PBVS, vision
data is used to reconstruct the 3D pose of the robot and generate a kinematic error in Cartesian
space (Palmieri et al. 2012). On the other hand, IBVS generates an error directly from image plane
features. IBVS is known for its robustness with respect to camera calibration accuracy and stability
under noisy conditions, which makes it well-suited for operation in unstructured environments where
it can adapt to changes and operate without requiring a precise model of robot dynamics.

IBVS techniques can be classified according to the type of sensor used, with RGB cameras being
a popular and cost-effective option for low-cost robot systems (Bonci et al. 2021). These techniques
can be broadly categorized into three main branches: machine learning based approaches, feature-
based approaches, and hybrid approaches. Machine learning based approaches, such as YOLO
(Redmon et al. 2016), Faster R-CNN (Girshick 2015), Mask R-CNN (He et al. 2017), RetinaNet
(Lin et al. 2017), and SSD-6D (Kehl et al. 2017), take an image as input and output the object
location in either the image domain or the real-world coordinate system. These algorithms are
trained to recognize different types of objects and can adapt to variations in object appearance
and lighting. Transfer learning techniques can also be employed to fine-tune these methods for
specific tasks. On the other hand, feature-based approaches use extracted features such as edges,
corners, and SIFT features (Lowe 2004) to estimate the object pose and location. In contrast to
semantic segmentation, which classifies every pixel in the image, template matching uses predefined
templates of objects to find their matches and predict the object bounding box. Each template is
created by extracting specific features from a set of images containing the target object. Hybrid
approaches combine the strengths of both feature-based and machine learning based approaches by
leveraging the robustness of feature-based approaches to handle occlusions and changes in lighting
while utilizing the adaptability of machine learning-based approaches to handle variations in object
appearance.

In this paper, we have selected some of the most representative algorithms for each category
and tested them respectively. For machine learning-based approaches, we have tested a state-of-
the-art semantic segmentation model, namely DeepLabv3+ (Chen et al. 2018). For feature-based
approaches, we have tested SIFT (Lowe 2004) and ORB (Rublee et al. 2011). For the hybrid
approaches, we have tested the method proposed in (Kim et al. 2017). This algorithm comprises a
convolutional neural network (CNN) extractor to extract features in both the template and captured
image and compare their similarities using Normalized Cross-Correlation (NCC) (Yoo & Han 2009).
The hybrid approach combines the strengths of both feature-based and machine learning-based
approaches to achieve flexible object recognition and localization.

The main contributions of this paper are: (1) providing a comprehensive comparison of three
categories of robot arm visual servoing using only RGB information; (2) evaluating the methods on
a dataset of rendered synthetic images captured by an RGB camera mounted on a robot arm in
simulation; (3) analyzing the strengths and weaknesses of each method and providing suggestions
for future work. To achieve these objectives, we select representative algorithms for each category
and conduct experiments in a simulated environment.

The rest of this paper is organized as follows: Section 2 reviews related works on robot arm
visual servoing methods using RGB information or RGB-D information; Section 3 describes the
three methods we compare in detail; Section 4 presents our experimental setup and results; Section
5 discusses our findings and implications; Section 6 concludes this paper.

2 Related Works

IBVS tasks can be addressed using various image processing and computer vision techniques. These
tasks can be divided by whether the image has depth information. Depth information provides
a detailed representation of the scene’s three-dimensional geometry, allowing for a more accurate
understanding of the scene’s structure and spatial relationships between objects (Litvak et al. 2019,
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Zeng et al. 2022). In comparison, RGB images have become increasingly popular for robot ap-
plications due to their widespread availability, high-resolution imaging capability, and ability to
provide color information for object detection (Kumar et al. 2015), recognition (Wu et al. 2021) and
classification.

However, relying solely on RGB information can pose challenges and limitations, such as oc-
clusion, changes in illumination, and noise, which can adversely affect the accuracy and reliability
of the control system (Park et al. 2019). Despite these challenges, researchers have continued to
explore ways to improve the performance and robustness of visual servoing systems that use only
RGB information. For example, (Wang, Tao & Zheng 2023) proposes an attention-based network
that is still able to estimate depth information even when an object is partially obstructed from
view, which can lead to incomplete RGB information. Direct visual odometry methods have also
been used to compensate for illumination changes, which can cause significant variations in RGB
information, leading to misinterpretation or incorrect interpretation of visual data (Kim et al. 2015).
Additionally, semantic segmentation is utilized in the RGB-based approach to deal with noisy and
unstructured environments (Wong et al. 2017).

In this paper, we provide an overview of the state-of-the-art IBVS techniques for robot arm
control that rely solely on RGB information and present a comprehensive comparison of IBVS
techniques for robot arm control that relies solely on RGB information. The focus of our study is to
evaluate and compare the performance of different IBVS methods in terms of their accuracy, stability,
and adaptability to changes in the environment and the objects being manipulated. Through our
comparative analysis, we provide insights into the strengths and limitations of these methods, and
identify areas for further research and development in the field.

Figure 1: Sample scenes in the simulation environment, which includes a 6 degree-of-freedom (DoF)
UR5e robot, a wrist camera, and randomly generated objects and backgrounds.

3 Methods

In this section, we present the methodology employed in the object detection and location system
for robot arm IBVS, which comprises three sub-approaches: machine learning, feature-based, and
hybrid. Our machine learning approach trains a deep learning model for semantic segmentation
and uses connected component labeling to locate the object in the image. In contrast, the feature-
based approach extracts distinctive features from the object and scene using Scale-Invariant Feature
Transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) feature detectors and matches
them to obtain correspondences between the two. The hybrid approach combines the strengths of
both approaches by using the output of the semantic segmentation as a mask to limit the search
for matching features, thereby improving efficiency and accuracy. In the following subsections, we
provide a detailed description of each approach used to evaluate their performance. We implemented
all code and conducted experiments using Python 3.7 and the OpenCV 4.5.1 library.
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3.1 Machine Learning-Based Approach

Our machine learning-based approach uses a deep neural network to perform semantic segmentation
of the image, followed by connected component labeling to locate the object. Specifically, we employ
a fine-tuned DeepLabv3+ (Chen et al. 2018) with a ResNet-50 (He et al. 2016) backbone for semantic
segmentation. DeepLabv3+ is a state-of-the-art model that uses atrous convolution and a decoder
module to refine the segmentation output. ResNet-50 is a widely used backbone architecture that
has shown excellent performance in various computer vision tasks. We fine-tuned the model on our
own dataset, which was generated in a simulator and included corresponding ground truth labels,
using the cross-entropy loss function.

To accommodate the irregular shape and varying color of the objects in our settings, we train
the machine learning model to recognize background instead of object recognition. This approach
allows the trained algorithm to detect any non-background objects within the field of view. During
the inference stage, the trained model is applied to the input image Im to generate a pixel-wise
semantic segmentation map M , with each pixel classified into one of the pre-defined categories. The
binary mask of the object is then obtained using a connected component labeling function, which
represents the object’s region in the image. Finally, a bounding box of the object is computed based
on the binary mask, which is defined as the minimum rectangle that encloses the binary mask. This
approach accurately localizes the object in complex and cluttered scenes, and the use of semantic
segmentation and connected component labeling makes the approach robust to variations in lighting,
viewpoint, and object appearance, which makes it suitable for a wide range of applications.

3.2 Feature-Based Approach

In addition to the machine learning-based approach, we also explore feature-based approaches for
object detection and location. Feature-based approaches involve extracting distinctive features from
the object and matching them with the features extracted from the scene. In our study, we compare
two popular feature detection algorithms (i.e., SIFT and ORB). Both algorithms are widely used and
have been verified to be robust to scale, rotation, and illumination changes. The SIFT algorithm
detects key points in an image and computes descriptors for each key point based on the scale-
space extrema. ORB, on the other hand, computes the descriptor using binary robust independent
elementary features (BRIEF) with additional orientation information.

To locate the object using feature-based approaches, we first extract features from both the object
template and the input image using either SIFT or ORB. We then match the extracted features
from the template and input images using brute-force matching, which results in a set of candidate
correspondences. To obtain the final set of correspondences, we use the Random Sample Consensus
(RANSAC) algorithm to filter out any outliers. Finally, we locate the object by drawing a bounding
box around the set of matched points.

We note that feature-based approaches can be complementary to machine learning-based ap-
proaches, as they can provide an alternative means of object detection and location that may be
more suitable for certain applications.

3.3 Hybrid Approach

The hybrid approach combines the use of a CNN for feature extraction with similarity comparison
algorithms to locate the object in a lower dimension. In our proposed method, we use the VGG-16
backbone neural network to extract feature maps Ft and Fm from both the template image It and
the input image Ii, respectively.

We first pass the template and input images through the VGG-16 network and extract the
feature maps Ft and Fm from the last convolutional layer of the network. The feature maps are then
normalized to have zero mean and unit variance. To locate the object in the input image, we use
NCC (Yoo & Han 2009) to measure the similarity between the extracted feature maps as a function
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Figure 2: Variation of distractors in the image, ranging from 0 to 5, can affect the performance of
image-based visual servoing.

of their relative displacement. NCC is defined as the ratio of the cross-correlation of two images to
the product of their standard deviations and is calculated as below:

γ =

∑
i

[
Fm − F̄m

] [
Ft − F̄t

]√∑
i

[
Fm− F̄m

]2 ∑
i

[
Ft − F̄t

]2 . (1)

Here, F̄m is the mean of Fm in the range under Ft, and F̄t is the mean of Ft. The coordinate
of the matching point (xmax, ymax) is located at the peak γmax in the cross-correlation. This
approach benefits from the ability of CNNs to extract high-level features from images and NCC’s
ability to accurately locate the object in a lower dimension, making it robust to scale, rotation, and
illumination changes.

4 Experimental Setup and Results

We describe the experimental setup and methodology for evaluating and comparing several object
detection and location systems for the robot arm IBVS. We utilized PyBullet (Coumans & Bai
2016–2021), a real-time collision detection and multi-physics simulator, to evaluate our approach in
simulation. The simulated environment consists of a 6 DoF UR5e robot and a wrist camera with
a field of view of 60 degrees and an image size of 256 × 256 pixels. The robot is controlled using a
Cartesian space position controller, and the simulation includes a set of randomly generated rigid
objects or daily objects. The background of the working area is generated randomly and it includes
both pure color backgrounds and texture backgrounds. The simulation environment is depicted in
Figure 1, which shows sample scenes with randomly generated objects and backgrounds. To evaluate
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the robustness of the algorithms to changes in the environment, we varied the number of distractors
in the scene and the lighting conditions, including the distance between the light source and the
object being rendered, the amount of ambient light, and the amount of diffuse and specular lighting
in the scene.

To ensure the reliability and validity of our experimental findings, we created a diverse and
extensive dataset for object detection and localization. The fine-tuning process of the pre-trained
semantic segmentation model required collecting both RGB images and their corresponding labeled
segmentation images. However, manual labeling can be a time-consuming task. To overcome this
challenge, we employed a combination of synthetic data generation techniques, real-world textures,
and scanned 3D objects to automatically generate a large volume of template images, RGB images,
and their segmented counterparts. Our dataset encompassed a wide range of objects with varying
shapes, sizes, textures, and colors. We also introduced variations in lighting conditions, backgrounds,
and camera placements to realistically simulate various real-world scenarios. By utilizing this diverse
and rich dataset in our experiments, we were able to comprehensively evaluate the performance of
different IBVS methods under a variety of challenging conditions.

In this study, we compare the accuracy, efficiency, and robustness of the proposed IBVS tech-
niques. The accuracy and robustness of the algorithms are evaluated using Intersection over Union
(IoU), which is calculated by measuring the overlap between the predicted and ground truth bound-
ing boxes. We tested the algorithms on a set of 50 different objects with varying textures and back-
grounds while controlling the camera parameters and environment. Additionally, to add difficulty
to the evaluation, we introduced distractors by creating cluttered environments for 2D image-based
algorithms. We believe that these evaluations would provide valuable insights into the suitability of
different algorithms for IBVS applications.

To evaluate efficiency, we tested the processing time of different algorithms, which directly affects
the performance of the robotic system. In an IBVS system, the robot must be able to quickly and
accurately locate the object of interest in the image frame and use that information to guide its
motion toward the desired goal. If the object recognition and location process is slow, it can
significantly degrade the overall performance of the system, leading to slower and less accurate
robotic movements. This can be particularly problematic in applications where the robot needs to
perform tasks in real-time or where there are time-sensitive constraints. Therefore, it is crucial to
develop fast and efficient algorithms for object recognition and location that can meet the speed
requirements of the IBVS system. The efficiency evaluation results are presented in Table 1, where
we report the average processing time in seconds and the standard deviation across multiple trials.

Table 1: Efficiency Evaluation

Algorithm Avg (%) Std
Semantic 0.136 0.0979
ORB 0.0335 0.0672
SIFT 0.0198 0.00614
Hybrid 0.867 0.187

Based on our experiments, we have found that testing algorithms’ success rates under various
lighting conditions are critical to assess their robustness to environmental changes. In our experi-
ments, we evaluated the performance of the algorithms under different lighting conditions, including
changes in the distance between the light source and the object, variations in the ambient, dif-
fuse, and specular coefficients. By controlling these parameters, we were able to simulate various
real-world lighting conditions and test the algorithms’ ability to generalize. To better illustrate the
results, we use the Blinn-Phong model to calculate the illumination for a given set of ambient, dif-
fuse, and specular coefficients. Our findings suggest that machine learning based approach (semantic
segmentation and hybrid approach) performs better under diverse lighting conditions and have a
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better potential for deployment in real-world applications.

Table 2: Accuracy Evaluation with Different Numbers of Distractors (Accuracy %)

Algorithm 0 1 2 3 4 5
Semantic 91.5 - - - - -
ORB 83.9 57.2 49.2 29.9 32.7 4.63
SIFT 88.9 73.9 50.7 34.2 54.6 29.8
Hybrid 89.1 74.2 69.6 58.3 35.0 26.4
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Figure 3: Failure Analysis.

The images in Figure 2 illustrate the effect of adding different numbers of distractors to an image
in an IBVS system. The images show examples of the same object with varying degrees of clutter and
complexity, which can affect the speed and accuracy of object recognition and localization algorithms.
This is a demonstration of the importance of developing robust and efficient algorithms that can
handle varying levels of clutter and background noise in image-based visual servoing applications.

5 Findings and Implications

The results of the accuracy evaluation with different numbers of distractors are presented in Table
2. It shows the accuracy percentages of four IBVS algorithms (Semantic, ORB, SIFT, and Feature)
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under varying numbers of distractors. The results show that Semantic performs the best with an
accuracy of 91.5% on average, even with five distractors. ORB, SIFT, and Feature have lower
accuracy compared to Semantic. The accuracy decreases as the number of distractors increases for
all algorithms. The highest decrease in accuracy is observed for ORB, which drops from 83.9%
without any distractors to only 32.7% with four distractors. SIFT also shows a significant drop
in accuracy as the number of distractors increases. These results demonstrate the effectiveness of
hybrid approaches over other algorithms in cluttered environments.

The failure images are shown in Figure 3. In analyzing the failure examples of the tested al-
gorithms, it was found that ORB and SIFT algorithms were prone to failure in situations where
there were occlusions, lighting changes, or when the object of interest was rotated or scaled. On the
other hand, the semantic segmentation algorithm failed when the background texture was complex
and resembled objects, leading to confusion between the object and the background. The hybrid
approach showed better performance than the other algorithms in terms of accuracy and robustness.
However, it was found to be more computationally expensive and slower than the other algorithms.
These findings suggest that while the hybrid approach may be suitable for applications where accu-
racy is paramount and computational resources are not a constraint, other algorithms such as ORB
and SIFT may be more suitable for real-time applications where speed and efficiency are critical
factors.

Although semantic segmentation cannot be directly used to match unseen objects with the pro-
vided template image, we observed that it can be adapted to segment such objects with fine-tuning,
which has a relatively low cost compared to the potential accuracy gains. Additionally, we found
that the output of semantic segmentation can be used as a mask to narrow down the search space for
feature matching. Combining this approach with feature detectors can lead to a promising hybrid
solution that reduces computational complexity while improving the accuracy of feature match-
ing. This technique has the potential to enhance the performance of image-based visual servoing in
robotic systems, especially in situations where computational resources are limited.

The efficiency evaluation results are shown in Table 1. The semantic method has the highest
processing time, with an average of 0.136s, while the SIFT method has the lowest, with an average
of 0.0198s. The ORB and hybrid methods have processing times of 0.0335s and 0.867s, respectively.
The hybrid method, which combines deep learning and feature matching algorithms, has a higher
processing time than the other methods but also achieves the highest accuracy, as shown in Tables
1 and 2. Overall, our results demonstrate the trade-off between accuracy and efficiency in IBVS
systems and highlight the importance of developing algorithms that can achieve both high accuracy
and fast processing times.

Although our experimental results demonstrate the effectiveness of these IBVS approaches, it
is important to consider the limitations and potential challenges of each method when applied to
real-world scenarios. For example, machine learning-based methods may be prone to false pos-
itives or missed detections in complex scenes with high variability. Additionally, feature-based
approaches may struggle with scalability when applied to large datasets. Therefore, it is important
for researchers and practitioners to carefully evaluate the strengths and weaknesses of each method
before applying them in real-world scenarios.

However, it is crucial to acknowledge that the practicality of the RGB-based IBVS approach can
vary depending on the specific environmental conditions. In scenarios where the environment is well-
structured and the height of the background is known, depth cameras have the advantage of providing
more precise object recognition and detection. Consequently, in cases where there is sufficient budget
or familiarity with the environment, the RGB-based approach may be less competitive.

Furthermore, PBVS utilizing deep learning models is an alternative solution for low-cost robot
visual servoing. PBVS relies on inferring object pose estimation from 2D information, which may not
be as accurate as IBVS which directly estimates errors in the image space. However, the advantage
of PBVS lies in its image-to-Cartesian space mapping, which simplifies the design of control laws in
the image domain and reduces dependency on camera location. As such, PBVS shows promise as
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a viable option for certain applications where accuracy requirements are less stringent and ease of
control law design is a priority.

6 Conclusion

In this paper, we have presented a comprehensive study of various feature extraction and match-
ing algorithms for image-based visual servoing applications. Our experimental results demonstrate
that the hybrid approach, which combines deep neural networks with traditional feature detectors,
achieves the highest accuracy and efficiency among the tested algorithms. We have also identified
some of the limitations and failure cases of each algorithm, which can guide future research in this
area.

While our proposed approach was developed specifically for visual servoing tasks, it has the po-
tential to be applied to other tasks and scenarios as well. For instance, the utilization of RGB-based
robot arm visual servoing algorithms can demonstrate significance in the operations of unmanned
aerial or autonomous underwater vehicles within diverse contexts. However, it is important to con-
sider that the effectiveness of these algorithms may vary depending on the environment and specific
task at hand. Variations in lighting conditions, and camera placement may impact the efficacy of
object recognition and detection.

In summary, our study provides insights into the performance and limitations of various feature
extraction and matching algorithms for image-based visual servoing applications. Further research
could focus on enhancing the efficiency and robustness of these algorithms, as well as exploring their
potential for other computer vision applications.

Figure 4: Example results of semantic segmentation, where each color represents a different object
class.
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