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Abstract—This paper investigates the age of information (AoI)-
based online scheduling in multi-sensor wireless powered commu-
nication networks (WPCNs) for time-sensitive Internet of Things
(IoT). Specifically, we consider a typical WPCN model, where
a wireless power station (WPS) charges multiple sensor nodes
(SNs) by wireless power transfer (WPT), and then the SNs
are scheduled in the time domain to transmit their sampled
status information with their harvested energy to a mobile
edge server (MES) for decision making. For such a system,
we first derive a closed-form expression of the successful data
transmission probability in Nakagami-m fading channels. To
pursue an efficient online scheduling policy that minimizes the
Expected Weighted Sum AoI (EWSAoI) of the system, a discrete-
time scheduling problem is formulated. As the problem is non-
convex with non-explicit expression of the EWSAoI, we propose
a Max-Weight policy based on the Lyapunov optimization theory,
which schedules the SNs at the beginning of each time in terms of
the one-slot conditional Lyapunov Drift. Simulations demonstrate
our presented theoretical results and show that our proposed
scheduling policy outperforms other baselines such as greedy
policy and random round-robin (RR) policy. Especially, when
the number of SNs is relatively small, the gain achieved by the
proposed policy compared to the greedy policy is considerable.
Moreover, some interesting insights are also observed: 1) as the
number of SNs increases, the EWSAoI also increases; 2) when
the transmit power is relatively small, the larger the number of
SNs, the smaller the EWSAoI; 3) the EWSAoI decreases with the
increment of transmit power of the WPS and then tends to be
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flat; 4) the EWSAoI increases with the increment of the distance
between the SNs and the MES.

Index Terms—Age of Information (AoI), Nakagami-m fading,
wireless powered communication networks (WPCN), Lyapunov
optimization, online scheduling policy.

I. INTRODUCTION

A. Background

In recent years, with the rapid development of the Internet
of Things (IoT), a large number of real-time applications,
such as vehicle tracking [1], environment monitoring [2], have
emerged. In such applications, mobile edge servers (MESs)
or central controllers collect data from IoT devices and then
track real-time status information through wireless links to
perform system control or decision-making. In order to make
correct decisions in a timely fashion, the information collected
by MESs or central controllers needs to meet high freshness
requirements. To characterize the information freshness, a new
performance metric, i.e., age of information (AoI), has been
proposed in [3], which is defined as the time elapsed since
the generation time of the last received update. Since the
advent of the concept of AoI, it has attracted lots of interest
in wireless communication fields, where some studied the AoI
in queueing networks, see e.g., [4] and [5], some applied the
AoI to sampling and remote estimation networks, e.g., [6]
and [7], some designed the AoI-orientated unnamed aerial
vehicle (UAV)-assisted networks, see e.g., [8], [9] and [10],
and some others discussed the AoI in caching systems, e.g.,
[11] and [12]. Since most IoTs are multi-user/sensor systems
and different scheduling may yield different AoI performances
due to their different channel utilization pattern, designing
efficient scheduling policies to improve AoI performance in
multi-user/sensor wireless networks is of great importance
for IoT and AoI-based scheduling as such has recently been
attracting increasing attention [13]–[17].

On the other hand, in many IoT systems, a large number
of wireless sensors are deployed to periodically sense and
detect states [18]. Due to their small sizes and relatively low
manufacturing costs, wireless sensors are usually equipped
with limited-capacity batteries. As a result, frequent man-
ual battery replacement/charging is required to maintain the
regular operations of the energy-constrained IoT systems,
which may be inconvenient and also cause high operational
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costs, especially in large-scale IoT systems operating in harsh
environments. Specifically, for example, SNs in the oil and gas
industry, which are often deployed offshore or in the desert;
SNs in the agricultural sector, which are often deployed in
farmland, far from urban and electrical infrastructure; SNs in
field environmental monitoring, which are usually deployed
in the wilderness or forest. These practical examples show
that frequent manual battery replacement or recharging is not
advisable. To handle this issue, energy harvesting (EH) tech-
niques have been considered as effective alternative solutions
[19], [20]. Compared with harvesting energy from traditional
natural sources such as solar and wind, harvesting energy
from radio frequency (RF) signals is more controllable and
environment independent [21], [22]. Moreover, RF-based EH
has many practical applications, such as smart homes, medical
devices, and consumer electronics, etc. Therefore, wireless
powered communication network (WPCN) technology with
RF-based EH has been regarded as an attractive and promising
solution to provide a stable energy supply and extend the life
of low-power sensors in various IoT systems.

B. Related Work
In order to design self-sustainable WPCNs for IoT ap-

plications, some works have discussed the AoI in WPCNs,
see e.g., [23]–[28], thus far. In [23], the average AoI of
the WPCN with a first-come-first-served (FCFS) sensor node
was investigated in the low SNR region. In [24], the optimal
online status update policies were proposed for a wireless
power transfer (WPT)-enabled sensor with various battery
sizes. In [25], the average AoI for a sensor network with WPT
capabilities was minimized. In [26], the uplink average AoI
of a unilaterally wireless powered two-way data exchanging
network was analyzed and minimized. In [27], the average
urgency-aware AoI for an RF-EH enabled network was inves-
tigated, where the urgency-aware AoI was characterized by
an exponential increase in dissatisfaction with data staleness
over time. In [28], the average α-β AoI penalty of WPCN was
presented, where a uniform AoI expression was designed and
then applied to evaluate the performance of WPCNs.

In all aforementioned existing works [23]–[28], only the sin-
gle sensor-destination pair WPCN models were investigated.
Since in most practical IoT scenarios, multiple sensors have to
be powered and scheduled to sense and deliver their collected
status update information, some recent works, see e.g., [29]–
[32], began to study the AoI-aware user/sensor scheduling in
multi-user/sensor WPCNs. In [29], the resource scheduling
was designed to maximize the long-term system utility in-
cluding fairness, throughput, and age-related data processing
penalties of wireless powered mobile-edge computing (MEC).
In [30], the long-term weighted sum-AoI of the system was
minimized, where the WPT and transmission scheduling were
jointly optimized. In [31], the long-term average weighted
sum of AoI in a multi-user WPCN was minimized, where
a deep reinforcement learning (DRL) algorithm was proposed
to schedule the users. In [32], an online user scheduling policy
was developed to minimize the long-term average AoI, where
EH users were scheduled to transmit generated status updates
to their intended receivers.

C. Motivations and Contributions

Nevertheless, only the Rayleigh fading channel was dis-
cussed for AoI-based multi-sensor WPCNs in the literature,
where moreover, the energy and information were delivered
separately in different time slots in existing works [29]–[32].
However, in some wireless-powered IoT applications, such
as smart agriculture scenarios, line-of-sight (LOS) wireless
links may exist. In such cases, the Rayleigh fading model
will not be valid any longer due to the existence of LOS
links. Significantly, the Nakagami-m fading model reflects the
various realistic LOS and non-line-of-sight (NLOS) fading
channels experienced in practice. To fill the gap, this paper
focuses on designing an AoI-based online scheduling policy
for the multi-sensor WPCN by considering the Nakagami-m
fading channel model.

We consider a typical multi-sensor WPCN, where a WPS
can wirelessly power multiple sensor nodes (SNs), and the
SNs are scheduled to sample and transmit real-time status
information by using their harvested energy. Different from
previous works, in this paper, the WPT and data transmission
are operated over different frequency bands to realize uninter-
rupted WPT and RF-based EHs. That is, in our work, the SNs
are allowed to harvest and accumulate RF energy continuously
to provide a better communication service.

Our goal is to minimize the long-term Expected Weighted
Sum AoI (EWSAoI) of the multi-sensor WPCNs by finding
an efficient online scheduling policy. The main contributions
of this paper are summarized as follows.

• For the considered multi-sensor WPCN, the AoI evolution
expression of the data packet collected from each SN
over Nakagami-m fading channels is analyzed. Particu-
larly, since the successful data transmission probability
implicitly affects the EWSAoI of the WPCN, we first
discuss it and derive a closed-form expression for it by
using the additivity of the Gamma distribution and the
integral operation. Then, the AoI evolution of the system
is modeled by utilizing the obtained expression of the
successful data transmission probability.

• In order to find an efficient online scheduling policy to
minimize the EWSAoI of the system, we formulate a
discrete-time scheduling problem to determine which SN
should be scheduled at the beginning of a time slot, where
the interference among the SNs’ information transmission
is taken into account.

• As the problem is a typical integer non-linear pro-
gramming problem with the non-explicit expression of
the optimization variable and cannot be solved by us-
ing conventional optimization methods, we decompose
it into a series of deterministic per-time-slot prob-
lems with independent time slots. Then, we propose
a Lyapunov optimization-based low-complexity online
scheduling policy, i.e., Max-Weight policy, to solve it,
which schedules a SN based on the current state of SNs
(i.e., the AoI and the harvested energy) in each time slot.

• Simulations demonstrate our presented theoretical results
and show that our proposed scheduling policy is able
to achieve the lower EWSAoI than some benchmark
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Fig. 1. (a) Typical IoT application scenarios, and (b) System model.

policies, such as greedy policy and random round-robin
policy. Especially, when the scale of the system is rela-
tively small, the gain of the proposed policy compared
with the greedy policy is considerable. Moreover, the
EWSAoI decreases with the increment of transmit power
of the WPS, and the value of the EWSAoI decreases
slowly and finally tends to be zero. Besides, it is also seen
that when the transmit power is relatively small, the larger
the number of SNs, the smaller the EWSAoI. Conversely,
when the transmit power of the WPS is relatively large,
the larger the number of SNs, and the larger the EWSAoI.

The rest of the paper is organized as follows. In Section II,
the system model and channel model are presented, and AoI
model is described. In Section III, the successful data trans-
mission probability is analyzed and derived. In Section IV, the
scheduling problem in the multi-sensor WPSN is formulated,
and a low-complexity sub-optimal online scheduling policy is
proposed. Some numerical results and analysis are presented
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider an outdoor intelligent environmental monitor-
ing system consisting of a WPS, a MES, and N SNs indexed
by N = {1, 2, · · · , N}, as illustrated in Fig. 1. The MES
collects status updates (in data packets) from N SNs via
wireless links, where the SNs sample the real-time status
information of different physical processes, such as ambient
temperature and humidity, and soil acidity. Since the SNs are
energy limited, the SNs are powered by the WPS with WPT
technology. Specifically, the WPS first broadcasts RF signals
to charge the SNs and then the SNs transmit the sampled
status information to the MES for computing. It is assumed
that the WPS, the SNs, and the MES are all equipped with
single antenna due to their small sizes. Since the amount of
harvested energy over the wireless link cannot be very large,
each SN is equipped with a rechargeable capacity battery
to accumulate the harvested energy [33]. We assume that
information transmission and energy transfer are operating

over orthogonal frequency bands. Thus, the SN is able to
harvest and accumulate energy while transmitting the current
data packet.

The system is operated in a discrete-time manner, where
the time is equally slotted, with t ∈ {1, 2, · · · , T} denoting
the slot index and Ts being the length of each time slot. To
avoid inter-sensor interference, at most one SN is allowed to
be scheduled to transmit data in each time slot. If a SN is not
scheduled in a time slot, it will only harvest energy, and not
sample and not transmit data in the slot in order to save energy.
It is assumed that each SN has a data buffer with one packet-
length buffer size. At the beginning of time slot t, the SN who
is scheduled will sample a new data packet and replace the
old undelivered one stored in its data buffer.1

Let ai(t) ∈ {0, 1} denote the scheduling indicator of
the system at the beginning of time slot t, where i ∈
{1, 2, · · · , N}. If ai(t) = 1, SN i is scheduled and transmits
its sampled data packet in time slot t. Otherwise, if ai(t) = 0,
SN i is not scheduled and does not sample and transmit data
packet. As at most one SN is scheduled in each time slot, it
satisfies that

N∑
i=1

ai(t) ≤ 1, ∀t ∈ {1, 2, · · · , T}. (1)

B. Channel Model

To be general, we consider both the large-scale path loss and
the small-scale fading effects. Let dwi and dim be the distance
between the WPS and SN i and between SN i and the MES.
The log-distance path loss model is adopted, so the large-scale
channel gain between WPS and SN i and between SN i and
the MES can be expressed as ζd−κwi and ζd−κim , respectively,
where ζ is a constant and κ is the path loss factor.

1Since SNs can be passive sensors, the energy consumed by them to
generate data packets is much less than that for packet transmission [34] and
ignored here with the similarly treatment as in [25] and [26]. Moreover, since
the sensed and generated data packets are usually short, it can be assumed that
generating data packet also consumes a little bit of time, so ignored as in [25],
[26]. Therefore, this paper ignores the time and energy costs of generating
data packets at the SNs, which may be taken into account in the future.
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Let gi(t) and hi(t) denote the small-scale channel coeffi-
cients of the links from the WPS to SN i and from SN i to
the MES in time slot t, respectively. Block fading channel
model is employed and the interval of Ts is less than the
channel coherence time, so channel coefficients are regarded
to be static within each time slot but they may change from one
slot to the next randomly following independent Nakagami-m
distribution. As a result, the fading channel power gains |gi|2
and |hi|2 follow the Gamma distribution with means power
ui and vi, respectively. Thus, the probability density function
(PDF) of |gi|2 and |hi|2 can be respectively expressed by [35]

f|gi|2(x) =
λmii

Γ(mi)
xmi−1e−λix, (2)

and
f|hi|2(x) =

βnii
Γ(ni)

xni−1e−βix, (3)

with λi = mi/ui and βi = ni/vi being the ratio parameter,
and mi and ni representing the Nakagami-m fading factors.
Assuming that both mi and ni are integers, the cumulative
distribution function (CDF) of |gi|2 and |hi|2 are expressed as

F|gi|2(x) = 1− e−λix
mi−1∑
k=0

(λix)k

k!
, (4)

and

F|hi|2(x) = 1− e−βix
ni−1∑
k=0

(βix)k

k!
, (5)

respectively.

C. Energy Harvesting Model

The WPS keeps broadcasting RF signals to charge the SNs
with a fixed transmit power Pw over the downlink energy
transfer channel. The linear EH model is employed2, so the
amount of energy harvested by SN i from the WPS within
time slot t is given by

ei(t) = ηPw|gi(t)|2ζd−κwi Ts, (6)

where η ∈ (0, 1) is the energy conversion efficiency.
To improve the successful data transmission probability, SN

i uses all accumulated energy in its battery to transmit the
packet if it is scheduled at time slot t.3 Let Ei(t) denote the

2Although the non-linear EH model is more general and actual, it is also
more challenging to analyze. As a result, many recent works have still adopted
the linear EH model to study the basic performance of networks. Moreover, it
is noted that the linear EH model is also meaningful in most cases. Especially,
when the input energy is relatively small or the distance between the WPS
and the sensor is not very short, the EH circuit may still work in the linear
region [21], [36]. Thus, similar to many existing works, see, e.g., [25] and
[26], the linear EH model is adopted in our work to analyze the performance
of the multi-sensor WPCN system.

3For the considered system, on the one hand, due to the small transmit
power and the long wireless charging distance, the amount of energy harvested
by each SN in each time slot is very small. On the other hand, in order to
achieve the goal of minimizing the average AoI, the energy harvested by SNs
over a period of time will be consumed, and it is difficult for the battery to
be fully charged. Therefore, in our work, SN i uses all accumulated energy
in its battery to transmit the packet if it is scheduled at time slot t. Moreover,
the available energy at each SN can be intelligently harnessed using DRL
methods, which we will take into account in future work.

available energy of SN i at the beginning of time slot t. Sup-
pose K time slots has elapsed since SN i was last scheduled
and transmitted a data packet, Ei(t) can be expressed by

Ei(t) = E
(K)
i (t) =

K∑
n=1

ei(n)

=

K∑
n=1

ηPw|gi(n)|2ζd−κwi Ts

= ξi

K∑
n=1

|gi(n)|2,

(7)

where ξi = ηPwζd
−κ
wi Ts.

Initially, SNs have no harvested energy, so at the beginning
of the 1st time slot, one have that

Ei(1) = 0, ∀i ∈ {1, 2, · · · , N}.

D. The Long-Term Expected Weighted Sum AoI

AoI, defined as the time elapsed since SN generates the last
received data packet, is employed to measure the timeliness
of the sampled data. Thus, the AoI of the data collected by
SN i at the t-th time slot is given by

∆i(t) = (t− Ui(t))Ts, (8)

where Ui(t) is the time slot index denoting the generation time
of SN i’s latest data packet received by the MES.

Let bi(t) denote the binary variable that indicates whether
a packet from SN i has been successfully delivered to the
MES in time slot t. Specifically, bi(t) = 1 indicates that the
data packet from SN i has been successfully delivered to the
MES in time slot t, and bi(t) = 0 indicates that the data packet
from SN i was not delivered successfully in time slot t. Let Di

denote the size of the data packet sampled by SN i and ci(t)
denote the amount of data that can be delivered within time
slot t. Since only when ci(t) ≥ Di, the MES can successfully
receive the data packet from SN i, the probability that the data
packet of SN i at time slot t is successfully received can be
expressed by

pi(t) = Pr{ci(t) ≥ Di}. (9)

As the data packet from SN i can be successfully received
by the MES only when ci(t) ≥ Di, the probability of bi(t) = 1
is equal to the probability of ci(t) ≥ Di. Thereby, one have
that 

Pr{bi(t) = 1} = pi(t), if ai(t) = 1;

Pr{bi(t) = 0} = 1− pi(t), if ai(t) = 1;

Pr{bi(t) = 0} = 1, if ai(t) = 0.

(10)

Particularly, if the MES successfully receives a new data
packet of SN i during time slot t, the AoI of the data packet
collected from SN i is reset to Ts, i.e., ∆i(t+ 1) = Ts. If the
MES does not receive a new data packet of SN i during time
slot t, the AoI of the data packet collected from SN i increases
Ts, i.e., ∆i(t + 1) = ∆i(t) + Ts. Without loss of generality,
in this paper, we assume that the initial AoI of all SNs is
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equal to Ts, i.e., ∆i(1) = Ts,∀i. With such an observation,
the evolution of ∆i(t) is described by

∆i(t+ 1) =

{
Ts, if bi(t) = 1;

∆i(t) + Ts, otherwise.
(11)

Then the average AoI of SN i at the MES over T time
slots can be captured by E

[∑T
t=1 ∆i(t)

]
/T , where E(·) is

the expectation operation. Thus, the long-term EWSAoI of
the entire network is given by

∆̄ = lim
T→∞

1

NT
E
[ T∑
t=1

N∑
i=1

αi∆i(t)

]
, (12)

where αi > 0 is the predefined weight of SN i measuring the
importance of SN i’s status update.

III. SUCCESSFUL DATA TRANSMISSION PROBABILITY

Since the evolution of AoI depends the probability that the
data packet of SN i is successfully received by MES at time
slot t, we first derive an explicit expression of the successful
data transmission probability in this section.

Let Pi(t) represent the available transmit power of SN i at
time slot t. Following (7), one have that

Pi(t) =
E

(K)
i (t)

Ts
=
ξi
∑K
n=1 |gi(n)|2

Ts
. (13)

Thus, if SN i is scheduled to perform information transmis-
sion in time slot t, according to Shannons formula, the amount
of data that can be delivered within time slot t is given by

ci(t) = TsW log2

(
1 +

Pi(t)|hi(t)|2ζ
N0dκim

)
, (14)

where W denotes the communication bandwidth and N0

represents the noise power at the MES.

Proposition 1. In the considered multi-sensor WPCN system,
assuming SN i has uninterruptedly harvested energy over K
slots before time slot t over a Nakagami-m fading channel,
the successful data transmission probability of SN i at time
slot t is

pi(t) =
2

Γ(ni)

miK−1∑
k=0

(λiβiFi)
ni+k

2

k!
Kni−k(2

√
λiβiFi),

(15)
where Fi = RiTs

ξi
with Ri = (2

Di
TsW − 1)N0d

κ
im/ζ.

Proof. According to (9) and (14), one have that

pi(t) =Pr
{
TsW log2

(
1 +

Pi(t)|hi(t)|2ζ
N0dκim

)
≥ Di

}
=Pr{Pi(t)|hi(t)|2 ≥ Ri},

(16)

where Ri = (2
Di
TsW − 1)N0d

κ
im/ζ. By applying the represen-

tation of Pi(t) in (13), (16) can be re-expressed by

pi(t) = Pr

{
ξi

(∑K
n=1 |gi(n)|2

)
|hi(t)|2

Ts
≥ Ri

}
= Pr

{(∑K

n=1
|gi(n)|2

)
|hi(t)|2 ≥ Fi

}
,

(17)

where Fi = RiTs
ξi

.

For convenience, we define Xi =
∑K
n=1 |gi(n)|2 and Yi =

|hi(t)|2, and Zi = XiYi. According to the additivity of the
gamma distribution, the PDF and CDF of Xi can be expressed
as [35]

fXi(x) =
λmiKi

Γ(miK)
xmiK−1e−λix, (18)

and

FXi(x) = 1− e−λix
miK−1∑
k=0

(λix)k

k!
. (19)

Thus, the CDF of Zi can be expressed as

FZi(z) =

∫ ∞
0

FXi

(z
y

)
fYi(y)dy. (20)

Then, we obtain Eq. (21), which can be found at the top of
the next page.

Using the following equation,∫ ∞
0

xne−axdx =
Γ(n+ 1)

an+1
, n > −1, a > 0, (22)

we can show I1 = 1.
Moreover, by utilizing the fact [ [37], 3.471.9], I2 is further

given by

I2 =

∫ ∞
0

[
e−λi

z
y

miK−1∑
k=0

(λi
z
y )k

k!

] [
βnii

Γ(ni)
yni−1e−βiy

]
dy

=
βnii

Γ(ni)

miK−1∑
k=0

(λiz)
k

k!

∫ ∞
0

e−λi
z
y−βiyyni−k−1dy

=
2βi

ni

Γ(ni)

miK−1∑
k=0

(λiz)
k

k!

(
λiz

βi

)ni−k
2

Kni−k

(
2
√
λiβiz

)
=

2

Γ(ni)

miK−1∑
k=0

(λiβiz)
ni+k

2

k!
Kni−k(2

√
λiβiz),

(23)

where Kv is the v-th order modified Bessel function of the
second kind. According to (21), (22) and (23), the CDF of Zi
can be written as

FZi(z) = 1− 2

Γ(ni)

miK−1∑
k=0

(λiβiz)
ni+k

2

k!
Kni−k(2

√
λiβiz).

(24)
Therefore, we obtain

pi(t) =Pr
{
Zi ≥ Fi

}
= 1− FZi(Fi)

=
2

Γ(ni)

miK−1∑
k=0

(λiβiFi)
ni+k

2

k!
Kni−k(2

√
λiβiFi).

(25)
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FZi(z) =

∫ ∞
0

[
1− e−λi

z
y

miK−1∑
k=0

(λi
z
y )k

k!

] [
βnii

Γ(ni)
yni−1e−βiy

]
dy

=

∫ ∞
0

[
βnii

Γ(ni)
yni−1e−βiy

]
dy︸ ︷︷ ︸

I1

−
∫ ∞

0

[
e−λi

z
y

miK−1∑
k=0

(λi
z
y )k

k!

] [
βnii

Γ(ni)
yni−1e−βiy

]
dy︸ ︷︷ ︸

I2

.
(21)

IV. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

The goal is to develop a low-complexity online scheduling
policy such that the long-term EWSAoI of the system could be
minimized. We denote the scheduling policy π as a sequence
of actions π = (aπ(1),aπ(2), · · · ,aπ(t), · · · ) ∈ Π, where
aπ(t) = (aπ1 (t), aπ2 (t), · · · , aπN (t)) and Π denotes the set of all
feasible scheduling policies, with aπi (t) being the scheduling
indicator of the system on SN i at the beginning of time
slot t with policy π. Specifically, aπi (t) = 1 indicates that
SN i is scheduled and aπi (t) = 0 indicates that SN i is not
scheduled. Then, the scheduling problem formulation can be
mathematically expressed by

P1 : min
π∈Π

lim
T→∞

1

NT
E
[ T∑
t=1

N∑
i=1

αi∆
π
i (t)

]
(26a)

s.t. aπi (t) ∈ {0, 1}, i ∈ {1, 2, · · · , N}, ∀t, (26b)∑N

i=1
aπi (t) ≤ 1, ∀t, (26c)

where ∆π
i (t) is AoI of SN i at the MES in time slot t with

policy π. The constraint (26c) follows the fact that at most
one SN is scheduled in each time slot to transmit data packet.
Since Ei(1) = 0 for i ∈ {1, 2, · · · , N}, no SN is scheduled to
transmit data packet in the first time slot. That is, aπ(1) = 0.

B. Problem Transformation

Problem P1 is a typical integer non-linear programming
(INLP) problem with the non-explicit expression of the objec-
tive function, so it is difficult to solve it directly. As is known,
Lyapunov method is able to make an online decision with au-
tonomous learning, we propose a low-complexity suboptimal
online scheduling policy based on Lyapunov function, which
is also referred to as the Max-Weight Policy in the sequel.

The Lyapunov optimization method does not require any
predictive information of random variables in the decision-
making process and is able to gradually optimize the decision
at each time period according to the changes of the external
environment [38], [39]. In addition, the Lyapunov optimization
algorithm has low complexity, which can effectively ensure the
rapidity of AoI-based task scheduling decisions. Accordingly,
we decompose the original scheduling problem into a series
of scheduling problems to minimize the one-slot conditional
Lyapunov Drift in each time slot.

Following the goal of minimizing EWSAoI, we first define
a quadratic Lyapunov function in terms of the weighted AoI,
i.e.,

L(∆(t)) =
1

2

N∑
i=1

αi∆
2
i (t), (27)

where ∆(t) is a state vector at time slot t with ∆(t) =
[∆1(t),∆2(t), · · · ,∆N (t)].

Then, the one-slot conditional Lyapunov Drift is defined as

δ(∆(t)) = E[L(∆(t+ 1))− L(∆(t))|∆(t)], (28)

where δ(∆(t)) actually represents the expected growth of
L(∆(t)) from time slot t to the next slot (t+ 1).

Therefore, the scheduling decisions for time slot t can be
obtained by solving the following Problem P2,

P2 : min
aπ(t)

δ(∆(t)) (29a)

s.t. aπi (t) ∈ {0, 1}, (29b)∑N

i=1
aπi (t) ≤ 1. (29c)

C. Online Scheduling Policy
According to (11), the dynamic evolution of the AoI of SN

i can be given by

∆i(t+ 1) = bπi (t) · Ts +
(
1− bπi (t)

)
·
(
∆i(t) + Ts

)
, (30)

where bπi (t) ∈ {0, 1} indicates whether a data packet from SN
i with policy π has been successfully delivered to the MES
in time slot t.

Substituting (30) into (27) and then substituting the updated
(27) into (28), the expression of the one-slot conditional
Lyapunov Drift can be given by

δ(∆(t)) =−1

2

N∑
i=1

E
[
bπi (t)|∆(t)

]
αi∆i(t)

(
∆i(t) + 2Ts

)
︸ ︷︷ ︸

term 1

+

N∑
i=1

αi∆i(t)Ts +
1

2

N∑
i=1

αiT
2
s︸ ︷︷ ︸

term 2

.

(31)

One can see that policy π is only related to the first term of
(31), i.e., term 1. In order to efficiently solve Problem P2 that
aims to minimize δ(∆(t)), the scheduling policy π should
maximize

N∑
i=1

E
[
bπi (t)|∆(t)

]
αi∆i(t)

(
∆i(t) + 2Ts

)︸ ︷︷ ︸
wi(t)

,∀t.
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Fig. 2. The corresponding workflow for all process chains.

That is, for SN i, if it is with the largest value of wi(t) among
all SNs, its corresponding bi(t) approaches to 1. Moreover, as
bi(t) depends on ∆(t) through ai(t), one have that

E[bi(t)|∆(t)] = E[bi(t)|ai(t)].

According to (10), we have that

E[bi(t)|ai(t)] = pi(t)ai(t). (32)

Based on the analysis above, to minimize δ(∆(t)), the SN
with the largest value of Wi(t) = pi(t)w(t) should be
scheduled. Thus, the optimal solution to Problem P2 can be
expressed by,

aπi (t) =

{
1, if i = arg max

i∈N
Wi(t);

0, otherwise.
(33)

That is, the SN with the largest Wi(t) will be scheduled. So,
our presented scheduling policy is called Max-Weight Policy.
Particularly, if there are two or more SNs with the same largest
Wi(t) in time slot t, one can be arbitrarily selected. For clarity,
the details of the presented Max-Weight Policy is summarized
in Algorithm 1.

Algorithm 1 The Presented Max-Weight Scheduling Policy.
Input: The distances dwi and dim, fading channel parameters,

the number of time slots elapsed since SN i last transmit-
ted data packet in time slot t, ∀i ∈ {1, 2, · · · , N}.

1: Observe the AoI of SN i at the MES in time slot t.
2: Calculate the probability of successful transmission for SN
i, i.e., pi(t);

3: Calculate the weight for SN i. The expression of weight
is given by

Wi(t) = pi(t)αi∆i(t)
(
∆i(t) + 2Ts

)
;

4: Select the SN with the maximum weight Wi∗(t), i∗ =
arg max

i∈N
Wi(t). Therefore, we get

aπi (t) =

{
1, if i = i∗;
0, otherwise.

Output: The optimal aπ(t).

The corresponding workflow for all process chains is shown
in Fig. 2.
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Fig. 3. The successful data transmission probability p versus the number of
slot time K.

D. Complexity Analysis

In time slot t, the weight of each SN needs to be calculated,
so the time complexity of each slot of Max-Weight Policy is
O(N). As problem P2 has to be solved for each time slot,
the complexity of the Max-weight policy over time T is about
T ·O(N).

V. SIMULATION RESULTS

In this section, simulation results are provided to validate
the proposed scheduling policy and demonstrate the AoI
performance of the considered multi-sensor system under the
proposed scheduling policy.

According to [14], [25], [30], the simulation parameters are
set as fellow. The transmit power of the WPS is Pw = 0.1 W,
and the energy conversion efficiency is η = 0.7. The system
bandwidth is W = 0.1 MHz, and the noise power at the
receiver is set as N0 = −60 dBm. The time slot length is
set as Ts = 1 s, and the size of data packet is D = 3000 bits.
The distances between the WPS and SN i and between SN i
and the MES are set as dwi = dim ∈ {12, 16} meters. The
large-scale path loss factor is set as κ = 2, and constant ζ is
set as 10−3. For the Nakagami-m small-scale fading channel,
mi and ni are set to be 2 for ∀i, and the ratio parameter
λ1 and βi are set to be 1 for ∀i. Generally, to highlight
the different importance of each SN, the weight of SN i is
αi = (N + 1− i)/N, ∀i ∈ {1, 2, · · · , N}.

First, to verify the correctness of the theoretical analysis
results of successful data transmission probability, Fig. 3 is
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Fig. 4. The EWSAoI versus the number of SNs under three different policies.
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Fig. 5. The normalized gain of the EWSAoI achieved by the Max-weight
policy to the EWSAoI achieved by the benchmark policies.

shown. It can be seen that the analytical results and the
simulation results match well, which validates our obtained
theoretical results. The simulation results are obtained by
the Monte Carlo simulation up to 5 ∗ 105 realizations. The
successful data transmission probability p increases with the
increase of K, while the increment decreases gradually. The
reason is that with the increase of K, the energy harvested by
the sensor increases, so the transmitted power increases, but
according to Shannon’s theory, the transmission rate will not
continue to increase.

For comparison, the greedy policy and random round-
robin (RR) policy are simulated as the benchmark policies.
In the greedy policy, the SN with the highest expected AoI is
scheduled in each time slot. In the random round-robin policy,
N time slots are a frame, and the channel in each frame is
allocated to each sensor for scheduling in a random cycle.

Fig. 4 shows the EWSAoI versus the number of SNs under
three scheduling policies. It is seen that compared with the
random RR policy, the EWSAoI achieved by our proposed
policy and the greedy policy are much smaller when N is
greater than 10. When the number of SNs is relatively small,
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Fig. 6. The EWSAoI versus the transmit power Pw under different N .

the gain of the proposed policy compared with the greedy
policy is more obvious. For the greedy policy, the SN with
the highest EWSAoI is scheduled in each time slot. This
policy may have the same SN continuously scheduled when
the number of SNs is relatively small. However, the scale of
the WPCNs are often not too large, so our proposed scheduling
policy is more efficient. It can also be seen that as the number
of SNs increases, the EWSAoI also increases (except under
the greedy policy). The reason may be that as the number of
SNs increases, the effect on EWSAoI of increasing the time
interval at which each SN is scheduled is greater than the
effect on EWSAoI of increasing transmit power.

In order to clearly observe the benefits brought by our
proposed Max-weight policy, Fig. 5 plots the normalized gain
of the EWSAoI achieved by the Max-weight policy to the
EWSAoI achieved by the greedy policy and that by the random
RR policy, respectively. The result shows that when N = 8,
the normalized gain to greedy policy and random RR policy
are about 67.6% and 7.2%, respectively.

Fig. 6 describes that the EWSAoI versus the transmit power
of the WPS Pw under different numbers of SNs. In the
simulations, the EWSAoI is obtained by the proposed Max-
wight policy. It is observed that the EWSAoI decreases with
the increment of transmit power Pw and then tends to be flat,
because higher Pw makes the battery charge faster and thus
increases the transmit power of the SN. Furthermore, due to
Shannon’s capacity theorem, the data transmission rate of the
SN cannot increase infinitely, so as Pw increases, the amount
of EWSAoI decrease slowly tends to zero. Interestingly, we
have also observed that when the transmit power Pw is
relatively small, the larger the number of SNs, the smaller
the EWSAoI. Conversely, when the transmit power Pw is
relatively large, the larger the number of SNs, and the larger
the EWSAoI. The reason is that when the transmission power
is small, the probability of successful transmission is small.
When the number of SNs increases, the time interval for
each SN to be scheduled increases, which increases the time
for harvesting energy, thereby increasing the probability of
successful transmission.
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different channel parameters.
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Fig. 8. The EWSAoI versus the number of SNs under different energy
conversion efficiency η.

Fig. 7 displays that the EWSAoI versus the distance between
the SNs and the MES under different shape parameters of
Nakagami-m channels mi and ni. In the simulations, the
EWSAoI is obtained by the proposed Max-wight policy, and
dwi is set as 16 m, ∀i. One can see that the EWSAoI increases
with the increment of the distance between the SNs and the
MES. The reason is that in order to obtain more energy, the
longer the distance, the more time is required. It can also
be seen that when the transmission channel fading model is
close to Rayleigh fading (i.e., mi and ni are close to 1), the
AoI performance of the system is worst. This is because the
probability of successful data transmission decreases, so the
EWSAoI increases. It can also be seen that the change of
parameter values of the data transmission channel has a greater
impact on the EWSAoI.

Fig. 8 shows the EWSAoI versus the number of SNs under
different energy transmission efficiency η. It can be seen that
the larger η is, the smaller EWSAoI is, because the larger η
is, the more energy harvested by SNs, and thus the greater the
transmit power. However, in practice, the energy conversion
efficiency is generally small, so the value of the energy
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Fig. 9. The successful data transmission probability p versus the transmit
power Pw under different K.

conversion efficiency should be set reasonably. In particular, it
can be seen from the figure that when η = 0.5, the EWSAoI
of the system with 8 SNs is greater than the EWSAoI of the
system with 10 SNs, and the EWSAoI of the system with
10 SNs is greater than the EWSAoI of the system with 12
SNs. This is because the energy harvesting interval of the
SN is small and the energy conversion efficiency is small,
so the harvested energy is small and the data transmission
always fails. Therefore, the EWSAoI is relatively large. This
observation in Fig. 8 is useful when considering a IoT system
design. It indicates that the proposed system analysis approach
is a useful tool, especially for the SN number is not too big.

To evaluate the effect of the transmit power on the success-
ful transmission probability. Fig. 9 illustrates the successful
data transmission probability p versus the transmit power Pw
under different K. It can be observed that as the transmit
power Pw increases, the successful transmission probability
grows logarithmically. Additionally, the larger K is, the greater
the successful transmission probability becomes. This is be-
cause the larger K is, the more energy is harvested by SNs.

VI. CONCLUSION

This paper studied the online scheduling policy for multi-
sensor WPCNs to minimize the EWSAoI of the system, in
which a WPS charges multiple SNs by WPT, and then SNs
are scheduled to transmit their sampled real-time status infor-
mation to the MES for decision making. For such a system,
we first analyzed the successful data transmission probability
and derived a closed-form expression for it over Nakagami-m
fading channels. Next, to pursue an efficient online scheduling
policy that minimizes the long-term EWSAoI of the sys-
tem, we formulated a discrete-time scheduling problem for
scheduling the SNs at the beginning of each time. Then, an
efficient online scheduling policy, i.e., Max-Weight policy, was
proposed based on Lyapunov optimization theory. Simulations
verify our presented theoretical results and show that our
proposed policy outperforms other benchmark policies such
as greedy policy and random RR policy. Especially, when the
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scale of the system is relatively small, the gain of the proposed
policy compared with the greedy policy is considerable, which
indicates that a simple and flexible system design is more
attractive in the viewpoint of power supply and sensing data
freshness for IoT.
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