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Abstract. Federated Learning (FL) is essential for building global
models across distributed environments. However, it is significantly
vulnerable to data and model poisoning attacks that can critically
compromise the accuracy and reliability of the global model. These
vulnerabilities become more pronounced in heterogeneous environ-
ments, where clients’ data distributions vary broadly, creating a chal-
lenging setting for maintaining model integrity. Furthermore, mali-
cious attacks can exploit this heterogeneity, manipulating the learn-
ing process to degrade the model or even induce it to learn incorrect
patterns. In response to these challenges, we introduce RFCL, a novel
Robust Federated aggregation method that leverages CLustering and
cosine similarity to select similar cluster models, effectively defend-
ing against data and model poisoning attacks even amidst high data
heterogeneity. Our experiments assess RFCL’s performance against
various attacker numbers and Non-IID degrees. The findings reveal
that RFCL outperforms existing robust aggregation methods and
demonstrates the capability to defend against multiple attack types.

1 Introduction
Federated learning (FL) [15] is a recent collaborative machine learn-
ing framework trained by widely distributed clients. In FL, clients
train model updates based on local training data and the updated
global model and then send these updates to the server. The server
aggregates them to create a new global model, which is then sent
back to the clients for the next training round. Since the training is
distributed across several clients and conducted in parallel, FL pro-
vides efficiency and scalability [4]. FL allows for sharing learning
models while preserving the privacy of the client’s data [10].

Although FL can aggregate heterogeneous data across many
clients to train a global model, it is a vulnerable structure. Data pro-
cessing and local training procedures under client control may ex-
pose the global aggregate model to attacks. FL is vulnerable to ma-
licious clients; simply one adversarial client may compromise the
entire performance of the global model [2]. Specifically, untargeted
poisoning attacks, like random noise [3] or sign-flipping attacks [2],
aims to push the global model in the wrong direction from the outset

∗ Corresponding Author. Emails: {e.alharbi, l.marcolino, a.gouglidis,
q.ni}@lancaster.ac.uk

of rounds. The result is a consistently high rate of test errors across
all test sets, illustrating the damaging implications of the initial devi-
ation in the model’s learning direction.

Several robust FL aggregation methods are proposed in the liter-
ature [3, 8, 23, 7]. However, recent studies have revealed that some
of the robust FL aggregation methods are susceptible to new attacks.
For instance, A Little Is Enough (ALIE) attack can exploit the empir-
ical variance between client updates to bypass Median [23] and Krum
[3], provided that the variance is high enough [1]. Similarly, the Inner
Product Manipulation (IPM) attack can significantly threaten Me-
dian [23] and Krum [3] by manipulating the inner product between
the true gradient and the robust aggregated gradients to be negative
[21]. Non-IID data can impact the robustness of the FL, particularly
in the presence of adversarial attacks that exploit data heterogeneity.
A small percentage of adversaries may be sufficient to launch a suc-
cessful attack, making it even more critical to address Non-IID data
in the context of potential attacks [1].

Existing defence methods try to distinguish between malicious and
benign clients by analyzing the statistical differences in their model
updates. However, these detection approaches demand many model
updates to make reliable decisions. Consequently, malicious clients
might have already poisoned the global model before being identi-
fied, reducing the efficacy of these defence strategies [23, 8].

Current defences against poisoning attacks in FL are developed to
prevent the global model from being compromised by a small num-
ber of malicious clients. Even when trained with malicious clients,
they ensure that the global model remains close to the one that would
have been learned without them. Moreover, some aggregation meth-
ods such as FLTrust [6], LearnDefend [14], and Zeno++ [22] require
the server to access part of or all the private data. This assumption
contradicts the FL framework’s zero server knowledge and privacy-
preserving principle.

The server implementing robust aggregator methods faces diffi-
culty distinguishing between benign and adversarial clients. This
challenge is aggravated by high-dimensional gradients, a higher pro-
portion of attackers, and significant heterogeneity (Non-IID).

We present RFCL, a novel Robust Federated aggregation CLuster-
ing technique to address security issues arising from data and model
poisoning attacks in heterogeneous data settings. The RFCL frame-



work employs clustering to group models from participating clients
and establishes cluster centres. Subsequently, it identifies the most
similar clusters by evaluating the cosine similarity between their re-
spective cluster centres, ensuring the selection of high-quality mod-
els. A meta-learning phase is conducted, consolidating the models
of clients within each chosen cluster to produce a global model tai-
lored to the particular cluster of clients. To enhance security and mit-
igate the impact of adversarial clients on the final model, RFCL in-
corporates a personalization process. This process selectively sends
updated models to clients associated with similar clusters, thereby
bolstering security measures. We assess RFCL’s performance across
various attack scenarios considering varying numbers of attackers
and non-IID data distributions. In summary, our contributions are
three-fold: (i) We develop and implement RFCL, an innovative ro-
bust aggregation method that leverages clustering and cosine simi-
larity to group the most similar clusters, providing a defence against
data and model poisoning attacks in FL. (ii) We perform a compre-
hensive evaluation of RFCL’s effectiveness across various attack sce-
narios, such as IPM [21], ALIE [1], sign-flipping, random noise,
and label-flipping, considering different numbers of attackers and
Non-IID data distributions. (iii) We compare RFCL’s performance
against recent robust methods [3, 23, 17, 9, 11] using several datasets
(MNIST, CIFAR-10, and Fashion-MNIST). Our comprehensive ex-
periments and analyses prove RFCL’s superior performance in FL.
RFCL exhibits remarkable efficacy in handling a large number of
malicious clients and adapting to significant heterogeneity.

2 Related Works

Several defence strategies have been proposed in FL to mitigate the
impact of poisoning attacks, with a particular emphasis on robustness
aggregation methods. These methods aim to enhance the FL system’s
resilience against adversarial manipulation of data and models.

Krum is a robust aggregation method that employs distance-based
outlier detection. It determines the similarity between client updates
by calculating Euclidean distances. The clients are then sorted based
on the total distances to their nearest clients. The client with the low-
est average distance is selected to update the global model. How-
ever, in Non-IID distributions, selecting updates from only one client
raises concerns regarding privacy and performance [3].

Trimmed mean is an aggregation method similar to FedAvg, which
focuses on providing robustness against outliers by removing a pro-
portion of the lowest and highest values per coordinate before calcu-
lating the mean [23]. Median-based algorithms, such as coordinate-
wise median [23] and geometric median [18], are more resistant to
outliers than mean-based algorithms, making them viable alterna-
tives for FL aggregation. Although the trimmed mean and median
exclude extreme values, it remains sensitive to outliers within the
trimmed range. Furthermore, these aggregators lack flexibility and
treat all client updates equally, disregarding differences in data qual-
ity and training conditions. This limitation can lead to suboptimal
aggregation results, particularly in heterogeneous environments. Ad-
ditionally, they do not support personalization by disregarding client-
specific characteristics and assigning uniform weights, thus limiting
their ability to adapt to individual clients’ contributions.

Bulyan handled the issue in Krum of selecting one client to be
a global model, which combines Krum and a trimmed mean [8].
Bulyan first iteratively selects local models using Krum, then aggre-
gates the local models utilizing a form of the trimmed mean. How-
ever, the effectiveness of Bulyan heavily depends on the assumption
that the majority of clients are benign and only a small fraction are

Byzantine. Additionally, Bulyan’s performance may degrade in sce-
narios with high levels of heterogeneity among clients.

Adaptive Federated Averaging (AFA) detects Byzantine clients.
AFA utilizes the cosine similarity between client model updates
and the global aggregated model to detect potentially malicious be-
haviour. It calculates the median, mean, and standard deviation for
each model. Then the clients whose similarity falls outside a prede-
termined threshold are considered to have provided arbitrary updates
and are subsequently blocked [17]. However, while AFA effectively
blocks outlier malicious clients in IID settings, it may inadvertently
block benign clients under Non-IID conditions due to the inherent
data distribution differences.

FedMGDA+ is a robust aggregating method. It assigns a score to
each client based on the similarity of their models, using a single-
layer Neural Network (NN) to minimize the loss. The input to the NN
is the difference between the client and global models, and the up-
dated weights are returned and utilized for aggregation. The central
server then seeks to learn the relevance of each client by considering
their assigned significance scores, which are initially determined by
the size of the client’s dataset. Malicious clients are deemed insignif-
icant and are only blocked once they surpass a specific threshold [9].

The Centered Clipping (CC) is an aggregation method that aims
to improve the robustness of FL against malicious and Byzantine up-
dates. The method operates by iteratively refining model updates by
clipping them around a centre and updating it accordingly. By focus-
ing on updates closer to the centre, CC mitigates the impact of poten-
tial outliers. The CC method’s robustness has been proven effective
when the variance of updates is bounded, and the proportion of mali-
cious clients is ≤ 0.15 [11]. It relies on a fixed clipping threshold to
limit the impact of extreme updates from malicious clients. However,
this fixed threshold may not be optimal for all scenarios, as it fails to
adapt to varying levels of adversarial behaviour or changing data dis-
tributions. Consequently, the CC method may not effectively handle
sophisticated attacks or situations with significant data heterogeneity.

Group-Wise Robust Aggregation [24] is an alternative approach
that utilizes clustering techniques to safeguard against untargeted
attacks. Differing from this method, our approach integrates meta-
learning principles and personalization by assembling clients with
similar data distributions via clustering techniques. We then tailor the
global model to these specific clusters and update the global model
based on the most representative clusters, offering a more customized
and secure aggregation strategy in federated learning environments.

3 Methodology

RFCL’s method utilizes multi-centre, meta-learning, cosine similar-
ity, and selective personalization to improve the robustness of the
federated learning process against data and model poisoning attacks.

Problem Formulation. We consider a typical FL setting where
multiple clients collaboratively train a model maintained on a cen-
tral server [15]. At the beginning of the round, the server provides all
clients with the initial global model parameter M0. Then, at round
r, each client i gets the global model parameter Mr−1 from the
server, configures its local model parameters Mi

r−1 = Mr−1, and
performs local updates. Then, each client i sends its local model up-
date △Mi

t = Mi
r −Mr−1 to the server. The server aggregates lo-

cal model updates to provide a new global model for the next round
Mr = Mr−1 +

∑N
i=1 pi△Mi

r, where pi is the aggregation weight
of client i and △Mi

r is the gradient of client i at round r.
We make the following assumptions concerning attacker capabil-

ities, schemes, and objectives. First, the attacker controls a group of



Figure 1: Comparison of typical FL single-centre aggregation (left)
versus RFCL multi-centre internal aggregation (right).

clients. Second, the attacker can modify model updates before send-
ing them to the central server. Third, the attacker cannot compromise
the central server or influence other benign clients. Finally, the at-
tacker is unaware of the aggregation method used by the server.

RFCL Process. The key steps and high-level view of the RFCL
process, as outlined in Algorithm 1, are as follows: At the begin-
ning of each round, the server checks if it is the first round (r = 0).
If so, the server shares the initial model (M0) with all clients (Ni),
and the clients perform local training. For subsequent rounds, the
server shares the corresponding cluster centres models (Mcc) with
the clients associated with each cluster, and then the clients perform
local training. After local training, the server collects all models from
the clients (Mi). The server then performs PCA and HDBSCAN
clustering on the collected client models (Mi) to generate cluster
centres models (Mcc). Based on cosine similarity, the server selects
the most similar models among clusters centres models (Mbest). The
server computes a concentrated model (Mc) by aggregating the se-
lected most similar models (Mbest). The cluster centres (Mcc) of
the selected most similar models (Mbest) are updated with the con-
centrated model (Mc), and it is assigned Mc as a global model Mg.
Finally, the server tests the updated global model (Mg) on the test
dataset (Dtest) and records the error for the current round (E[r]).

Algorithm 1 RFCL Process
Require: M0, N , Dtest return E , Mg

1: for r = 0 to R− 1 do
2: if r == 0 then
3: Share M0 with all Ni and perform local training
4: else
5: Share Mcc with associated Ni and perform local training
6: end if
7: Mi← Collect all models
8: Mcc← Perform clustering on Mi ▷ See Algorithm 2
9: Mbest← Select the most similar Mcc ▷ See Algorithm 3

10: Mc← External Aggregate Mbest

11: Mcc← Update the cluster centres of Mbest with Mc ▷ See Algorithm 4
12: Mg ←Mc

13: E[r]← Evaluate Mg on test(Dtest)
14: end for
15: return E , Mg

Clustering Method: This technique groups models with similar
weight vectors. The Algorithm 2 starts by extracting the weights
from each model in the input list. These weights represent the learned
parameters of each model. The next step is to subject the weights to
Principal Component Analysis (PCA). This dimensionality reduction
technique identifies the principal components of the data and projects
the data onto these components. This helps reduce computational
costs and improve clustering performance by mitigating the curse of
dimensionality. The reduced-dimension data is then processed using
Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN), an advanced clustering technique that identifies
clusters of varying densities and can detect outliers. This is particu-
larly useful for handling outlier models significantly different from
the rest. Unlike many other clustering algorithms, HDBSCAN does
not require the user to specify the number of clusters beforehand and
can discover clusters of varying densities [5]. After applying HDB-
SCAN, the algorithm counts the number of clusters and initializes the
cluster centres and size. It then iterates through the models, assigns
them to their respective clusters, and computes the cluster centres by
the ModiAFA method, which will be explained below. The result-
ing cluster centres provide valuable insights into the similarities and
differences between models and can be used for further analysis.

Algorithm 2 Clustering
Require: models return Mcc

1: X ← extract_weights(models) ▷ Extract weights from models
2: X ← PCA(X) ▷ Apply PCA to weights for dimensionality reduction
3: cluster← HDBSCAN(X) ▷ Apply HDBSCAN clustering
4: cluster_labels← cluster.labels ▷ Retrieve the cluster labels
5: cluster_count← max(cluster_labels) + 1 ▷ Count clusters
6: indices← [[] for _ in range (cluster_count)]
7: for i, l ∈ enumerate(cluster_labels) do
8: if l ̸= −1 then
9: cluster_centres_len[l]+ = 1 ▷ Increment size of clusters

10: append i to indices[l] ▷ Append model index to respective cluster
11: end if
12: end for
13: cluster_centres_len/ = len(N) ▷ Normalization
14: for i, ins ∈ enumerate(indices) do
15: Mcc[i]← ModiAFA(ins,models)
16: end for
17: return Mcc

Multi-Centres Internal Aggregation Method. RFCL leverages
multiple centres of models aggregation method to address the chal-
lenges deriving from the heterogeneity in FL. Local models are clus-
tered into numbers of clusters. Each covers a subset of local mod-
els. Figure 1 depicts an intuitive comparison between typical FL and
multi-centre FL. In typical FL, only one centre global model exists,
as illustrated in the left Figure 1. The multi-centre FL depicted on the
right, on the other hand, has three centres, M(1)

cc , M(2)
cc , and M

(3)
cc ,

and each centre represents a cluster of clients with similar data distri-
butions and models. The Modified AFA (ModiAFA) is an enhanced
method of the original AFA [17]. Unlike the original method, Modi-
AFA does not block clients; instead, it adjusts their contributions
based on the quality of their updates. It detects outlier models in
each cluster and generates new cluster centres. The process is ini-
tiated by computing similarities (si) between the previous Mcc and
the updated model Mi provided by every client in each cluster. Fol-
lowing this, three statistical measures - mean (µ̂s), median (µ̄s), and
standard deviation (σs) - are calculated for these similarities. Outlier
models are then identified by comparing the mean and median of the
similarities of Mcc and Mi. Two conditions are checked to deter-
mine if a client’s model is an outlier: if µ̂s < µ̄s and si < µ̄s − ξσs,
or if µ̂s ≥ µ̄s and si < µ̄s + ξσs. Here, ξ is a parameter that can be
adjusted to regulate the sensitivity of the outlier detection process. If
a client’s model meets either of these conditions, it is considered to
have sent an outlier update. Instead of blocking the client, its weight
is set to 0, excluding its model from contributing to the next round
of model aggregation. This approach enables the effective detection
and management of outliers without blocking clients outright.

Similarity Analysis Method: It identifies models’ highest degree
of similarity. The algorithm selects the top K most similar cluster
centres models Mcc, where K is determined by the smaller of either
a predefined hyperparameter or the count of non-outlier clusters. This
methodology assists in filtering out any outliers that may have evaded



the cluster centres’ detection process. Rather than choosing all clus-
ter centres models, the algorithm favours the most similar ones of
Mcc. A comprehensive explanation of this similarity analysis proce-
dure is provided in Algorithm 3. 1) Checking for outliers: This step
counts the number of not outliers clusters (i.e., labelled as -1).

unoutliers =
{

len(cluster_labels) if− 1 /∈ cluster_labels∑n
i=1 I[cluster_labelsi ̸= −1] otherwise

where I is the indicator function.2) Number of clusters to select:
Determine the number of Mcc to select num_select by taking the
minimum between K and unoutliers. 3) Calculating cosine sim-
ilarity: Generate cluster centre weights, X, and compute the co-
sine similarity for every pair of weights. The similarity is stored in
sims. Cosine similarity between two vectors a and b is calculated
as: cos(a,b) = a·b

∥a∥2·∥b∥2
. 4) Selecting the most similar Mcc: Find

the indices of each model’s num_select largest similarities. If these
similarities exceed best_val, update best_val and best_indices.
This step is expressed as: indicesbest = argmax

i

∑
j∈indices sij

where indices are the indices of the num_select largest similar-
ities for each model i. 5) Normalizing similarity scores: Normalize
the similarity scores to get the probabilities ps of choosing each clus-
ter, and express as:
psi =

si∑n
j=1 sj

, where should be n is the number of clusters, and

si is the similarity score of the i model. 6) Reconfiguring the prob-
abilities: Adjust the weights based on the size of each cluster and
normalize again, and express as:

psi =
psi · len(cluster_centresi)∑n

j=1 psj · len(cluster_centresj)

In the end, the selected similar cluster centres models (Mbest), their
corresponding probabilities (ps), and their indices (indicesbest) are
returned.

Algorithm 3 Similarity Analysis
Require: Mcc , K return Mbest, ps, indicesbest

1: if ∄i : cluster_labelsi = −1 then ▷ Checking for outliers
2: unoutliers← len(cluster_labels)
3: else
4: unoutliers←

∑n
i=1 I[cluster_labelsi ̸= −1]

5: end if
6: num_select← min(K,unoutliers)
7: X ← _generate_weights(Mcc)
8: for each m1 in X do ▷ Calculating cosine similarity
9: for each m2 in X do

10: sim← cos(m1,m2)
11: Append sim to sims
12: end for
13: end for
14: for each s in sims do ▷ Selecting the most similar models
15: indices← indices of the num_select largest values in s
16: val←

∑
j∈indices s[j]

17: if val > best_val then
18: best_val← val
19: indicesbest ← indices
20: end if
21: end for
22: ps ← p∑

i sims[i]
for p in sims[i] for i in indicesbest ▷ Normalization

23: Mbest ←Mcc[i] for i in indicesbest
24: ps ← ps.mul(cluster_centre_len) ▷ Probabilities
25: ps ← ps

ps.sum()

26: return Mbest, ps, indicesbest

Meta-learning for External Aggregation Method. It involves
using the concept of meta-learning on the best models (Mbest), their
corresponding probabilities (ps), and their indices (indicesbest)
for external aggregation and obtaining an updated model, which
is effectively learning from various data distributions. The method

retrieves the model’s probability of only the cluster centres cur-
rently considered the best indices to perform this aggregation.
These probabilities are then stored in a list conc_ps, conc_ps =
[ps[i] for i in indicesbest]. Then it normalizes the probabilities of
the selected models. This is important because, in FL, each client’s
model update is typically weighted by the proportion of the to-
tal data it has. By normalizing the probabilities, the method en-
sures that the relative importance of each client’s update is pre-
served. conc_ps = [p/

∑
p∈conc_ps

p for p in conc_ps]. Finally, the

method computes the average of the selected local model updates,
weighted by the normalized conc_ps. This is done using the Fe-
dAvg, passing in a list of pairs conc_ps, i where conc_ps is the
normalized proportion of data held by the ith client, and Mbest is
the list of selected similar cluster centres models. The external ag-
gregation can be represented as follows:

Mc =
∑

i∈indices_best

conc_psi ·Mbest[i]

The resulting model Mc is a concentrated model that captures the
shared knowledge across the participating clients.

Personalized Model Sharing: RFCL focuses on each client’s
unique data distribution. The process, detailed in Algorithm 4, in-
volves distributing the model of Mc not to all clients but only to
those associated with the selected most similar cluster centres. This
ensures each cluster acquires a model suited to its specific data dis-
tribution, which can then be further refined using local client data.
The refined model, Mc, is then used by clients in the most similar
clusters, updated with their local data. This mirrors the principles of
transfer learning, where Mc is adapted to fit the specific data dis-
tribution of a cluster. Unselected cluster centres receive their unique
Mcc models, designed to isolate potential attacker updates and avoid
sharing the model of Mc with them. This approach helps counter po-
tential security threats and manage heterogeneity.

Algorithm 4 Personalization (Cluster-based Model Sharing)
1: for i ∈ 0, 1, ..., len(Mcc)− 1 do
2: if i ∈ indicesbest then
3: Mcc[i]←Mc

4: end if
5: end for

4 Experiments
We assess the effectiveness of the RFCL method in image classifica-
tion tasks, employing a machine learning model across three public
datasets under various scenarios. The efficiency of RFCL is com-
pared with six existing aggregation methods. The RFCL implemen-
tation is publicly available on GitHub1.

Datasets and Models. We conduct experiments on MNIST
dataset [13], CIFAR-10 dataset [12], and Fashion-MNIST dataset
[20] for image classification. We utilise a client-server structure con-
sisting of a central server and multiple clients to conduct our experi-
ments until convergence. For all experiment methods, i.e., all clients
are selected to provide model updates at each round. The error rate is
computed on the test set to evaluate the performance of each aggre-
gation method. Default experimental settings for MNIST, Fashion-
MNIST, and CIFAR-10 datasets are in Table 1.

Attack Methods. Several attack methods are considered to evalu-
ate the robustness of the RFCL framework.
1 https://github.com/EbtisaamCS/RFCL



MNIST and Fashion-MNIST Model Architecture
DNN (784 × 512 × 256 × 10), with 2 Hidden layers

Activation functions: Leaky ReLU
Batch size: 64, Loss function: Cross-Entropy

Optimizer: SGD (learning rate = 0.1) Dropout: p = 0.5
CIFAR-10 Model Architecture

DNN (3072 × 256 × 128 × 10), with 2 Hidden layers
Activation functions: Leaky ReLU

Batch size: 128, Loss function: Cross-Entropy
Optimizer: SGD (learning rate = 0.5)

Table 1: Models and parameters in the experiments.

Inner Product Manipulation Attack. The IPM attack aims to evade
detection by disguising the attack within the original gradient direc-
tion while maintaining the same norm as the original gradient, thus
avoiding detection. This results in a compromised model with re-
duced accuracy. The attack manipulates the gradients of the clients
by computing a malicious gradient update ∆gi

t according to the
equation: ∆gi

t = ϵ ·
∑d

j=1 g
i
t,j ·wj. Where d is the dimension of

the model parameters, wj is the j-th element of the model parame-
ters, and ϵ is a scalar multiplier chosen by the attacker to maximize
the impact on the final model parameters while avoiding detection
[21]. The epsilon (ϵ) is a scalar multiplier used to control the magni-
tude of the perturbations applied to the gradients.

A Little is Enough Attack. The ALIE attack aims to manipulate
the noise in an undetected way while still deceiving the aggregation
rules. It assumes that the benign updates are typically distributed.
The attackers exploit the high empirical variance between the up-
dates of clients and upload a noise in a range without being detected.
To achieve this, for each coordinate i ∈ [d], the attacker calculates
the mean (µi) and standard deviation (δi) over benign updates. The
attacker then sets the corrupted updates to values within the range
(µi − zmaxδi, µi + zmaxδi), where zmax ranges from 0 to 1 and is ob-
tained from the Cumulative Standard Normal Function [1].

Sign Flipping (SF) Attack. SF attack does not require access to
model updates from other clients like IPM and ALIE attacks [11].
Instead, the SF flips the signs of the gradient. This strategy aims to
maximize the loss via gradient ascent rather than gradient descent.

Random Noise (RN) Attack. RN introduces random noise to the
model parameters during training by generating a perturbation based
on a Gaussian distribution. Byzantine clients added these perturba-
tions to the model parameters to mislead the training process and
degrade the model’s performance [17].

Label Flipping (LF) Attack. LF is a data poisoning attack in which
malicious clients modify their dataset to conduct targeted attacks on
the model [19]. The attack involves changing the class of each in-
stance in the dataset to be the target of a misclassification attack.

Non-IID Degree. A Dirichlet distribution simulates a Non-IID by
splitting training images into 30 clients. A high value of the α pa-
rameter results in a low variance of both class and quantity, resulting
in low deviation splitting amongst clients. In contrast, a low value
of the α parameter increases the variance of the clients, resulting in
a significantly Non-IID data split. Non-IID data distributions with
two degrees are simulated: a slightly Non-IID (α = 0.5) and an ex-
tremely Non-IID (α = 0.1).

Number of Attackers. In our training process, we allocated a cer-
tain number of clients each round, with a portion of these clients
programmed to initiate attacks. We put our RFCL method to the test
under six distinct attacker scenarios, with the count of attackers vary-
ing across scenarios, specifically being 3, 6, 9, 12, 15, and 18 clients.

Comparison Methods. We compared our method performance,
RFCL, to the baseline robust aggregation rules that depend on

distance-based outlier detection as MKrum [3], Median [23], AFA
[17], FedMGDA+ [9], and CC [11].

Experiment Results. On the MNIST dataset, we run FedAvg and
other robust methods MKrum, Median, AFA, FedMGDA+, CC, and
RFCL, to train the federated model. Then we measure the perfor-
mance of these methods in the presence of IPM, ALIE, SF, RN, and
LF attackers under Non-IID distribution. We repeat all experiments
re-sampling the dataset five times and evaluate the average results. In
all plots, the error bars show the confidence interval ρ = 0.01. When
we say that a result is significantly better than another, we mean with
statistical significance considering ρ ≤ 0.01.
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Figure 2: Performance comparison of FedAvg, Median, MKrum,
AFA, FedMGDA+, CC, and RFCL methods on MNIST dataset un-
der a Non-IID (α = 0.5) scenario. The methods are evaluated against
various numbers of IPM, ALIE, SF, RN, and LF attackers.

Figure 2 shows the performance of aggregation methods and
RFCL method under the Non-IID degree α = 0.5 with an increas-
ing number of attackers: RFCL outperforms the other methods.

As shown in Figure 2(a) when the number of IPM attackers is
3 and 6, RFCL, Median, AFA, FedMGDA+, and CC can defend
against these attacks. Whereas the accuracy significantly drops for
FedAvg and MKrum methods. Furthermore, when the number of at-
tackers increases, the RFCL, Median, and CC are still robust.

For further analysis, we evaluated Median, CC, and RFCL under
IPM attacks with increased perturbation magnitude.Figure 3 demon-
strates the effect on the performance of various aggregation methods
when the value of ϵ is increased, considering different numbers of
attackers. When the value of ϵ increases from 0.5 to 100.0, the mag-
nitude of the perturbations applied to the gradients also increases.
This means that the gradients are changed more drastically, poten-
tially leading to larger changes in the model parameters during the
update step. This can cause the learning process to deviate more sig-
nificantly from the desired direction, which may negatively affect the
performance of the aggregation methods.

Figure 2(b) shows the performance of aggregation rules under
ALIE attacks. When the number of attackers is 3 and 6, all methods
perform approximately equivalent to a low average error rate. How-
ever, the robust methods record a high average error rate when the
number of ALIE attackers increases. It shows that, even at this level
of Non-IID, RFCL can eliminate ALIE gradients from the global
model aggregation. This is because RFCL used clustering with a per-



sonalization model-sharing method.
Figure 2(c), (d), and (e) shows the performance of aggregation

rules under SF, RN, and LF attacks. RFCL outperform the other ro-
bust aggregation rules with the lowest testing error rate.

(a) 6 IPM Attackers (b) 12 IPM Attackers (c) 18 IPM Attackers

Figure 3: Comparison of each round performance of Median, CC,
and RFCL Methods on MNIST under Non-IID (α = 0.5) scenario
against the different number of IPM (ϵ = 100.0) attacks.

To further validate the RFCL method, we evaluate robust aggre-
gation schemes on CIFAR-10. Figure 4 shows RFCL achieves the
highest performance when compared to other methods in this situa-
tion with non-ID degrees of α = 0.5 and an increasing number of
attackers. RFCL, CC, and Median performance have the lowest test-
ing error rate under various IPM (ϵ = 0.5) attackers, while the other
methods are entirely disabled, as shown in Figure 4(a). Figure 4(b),
(c), (d), and (e) depicts the impact of ALIE, SF, RN, and LF attacks
on the aggregation methods, highlighting that RFCL achieves the
lowest error rate among them. RFCL’s combination of multi-centre,
clustering, similarity analysis, and personalized model sharing en-
ables it to outperform other robust methods, particularly when the
number of attackers exceeds half the total number of clients. This
is because it effectively isolates attackers within outlier clusters and
focuses on the most similar models for aggregation, reducing the im-
pact of adversaries on the FL process.
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Figure 4: Performance comparison of FedAvg, Median, MKrum,
AFA, FedMGDA+, CC, and RFCL methods on CIFAR-10 dataset
under a Non-IID (α = 0.5) scenario. The methods are evaluated
against various numbers of IPM, ALIE, SF, RN, and LF attackers.

Figure 5 demonstrates the error rate for each round when the meth-
ods encounter 6, 12, or 18 ALIE and LF attackers. RFCL perfor-

(a) 6 ALIE Attackers (b) 12 ALIE Attackers (c) 18 ALIE Attackers

(d) 6 LF Attackers (e) 12 LF Attackers (f) 18 LF Attackers

Figure 5: Comparison each round performance of FedAvg, Median,
MKrum, AFA, FedMGDA+, CC, and RFCL Methods on CIFAR-10
under Non-IID (α = 0.5) scenario against the different number of
ALIE and LF attacks.

mance has the lowest testing error rate. The combination of HDB-
SCAN clustering and PCA helps identify and group similar models.
This method is robust against high-dimensional attacks and helps iso-
late the effect of malicious clients, even when they form a majority.
RFCL selects the most similar clusters using cosine similarity, likely
to contain benign models. This helps identify and exclude outlier
models not detected in the clustering phase. When many attackers
are present as 12 and 18, this method ensures that the most similar
models are selected for aggregation.
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(b) ALIE Attack
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(d) RN Attack
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Figure 6: Performance comparison of FedAvg, Median, MKrum,
AFA, FedMGDA+, CC, and RFCL methods on Fashion-MNIST
dataset under Non-IID (α = 0.5). The methods are evaluated against
various numbers of IPM, ALIE, SF, RN, and LF attackers.

To further validate our method, we evaluate it on Fashion-MNIST.
Figure 6 shows RFCL achieves the highest performance compared to
other methods in this situation with non-ID degrees of α = 0.5 and
an increasing number of attackers.
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(b) ALIE Attack
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(d) RN Attack

3 6 9 12 15 18
Number of Label Flipping Attackers

0.2

0.4

0.6

0.8

E
rr

o
r 

R
a
te

 (
%

)

(e) LF Attack

Figure 7: Performance comparison of methods on Fashion-MNIST
dataset under Non-IID (α = 0.1).

A comprehensive analysis of all methods and RFCL method in
a highly heterogeneous scenario. Figure 7 shows that the RFCL
method performs well in extremely heterogeneous data distribu-
tions. RFCL’s clustering with the personalization approach ensures
that each client receives a model more aligned with its data dis-
tribution. This benefits non-IID settings, allowing clients to learn
more effectively from their local data. However, other methods share
the final global model with all clients. To conclude, RFCL’s meth-
ods of multi-centre meta-learning, selective personalization, cosine
similarity-based selection, and advanced clustering techniques make
it highly effective against data and model poisoning attacks, even
when the number of attackers is increased and in non-IID settings.

Different Clustering Methods. In the RFCL method, we further
explore its robustness using different clustering methods, such as Ag-
glomerative, K-Means, and HDBSCAN. The comparative analysis
is illustrated in Figure 8, depicting the performance of these meth-
ods under the IPM and ALIE attack on the CIFAR-10 dataset. HDB-
SCAN seems to provide the best results.

K-Means, a widely used clustering technique, however, requires a
predefined number of clusters. While this might limit its flexibility
in certain scenarios, its ability to adapt to different data distributions
can be advantageous in specific use cases. In our experiments, we
adjust the number of K-means clusters (C) to be five more than the
number of attackers (M), i.e., C = M + 5. This adjustment ensures
comprehensive data analysis using the K-means algorithm.

Agglomerative clustering operates differently. It initially treats
each data point as a separate cluster, gradually merging them bottom-
up based on their similarities [16]. This hierarchical technique can
help visualize the data and decide the number of clusters. However,
the computational complexity of Agglomerative clustering can make
it less suited for larger datasets.

HDBSCAN, a density-based clustering method, excels in identify-
ing clusters of various densities and does not necessitate specifying
the number of clusters beforehand [5]. This can provide a distinct ad-
vantage in identifying dense regions of similar models while isolat-
ing outliers in the RFCL method. Setting appropriate parameters for
min_cluster_size and min_samples in the HDBSCAN algorithm
relies on domain knowledge and empirical experimentation. Specif-
ically, the min_cluster_size parameter could be established be-
tween [24− 18], anticipating varying attacks smaller than 12 attack-

ers. Concurrently, min_samples can be between [6−12]. In scenar-
ios where the number of attackers escalates to a higher proportion,
such as 15 or 18, would involve adjusting the min_cluster_size
between [12-9] while setting min_samples between [18-21]. This
configuration is based on a domain-driven approach that considers
the expected number of attackers and empirical observations derived
from the performance of the clustering algorithm under various pa-
rameter settings. It’s important to note that these parameter settings
should be continually evaluated and adjusted to optimize the model’s
ability to detect and handle outliers effectively.

(a) 18 IPM Attackers (b) 18 ALIE Attackers

Figure 8: Impact of Kmeans, Agglomerative, and HDBSCAN clus-
tering methods on CIFAR-10

Ablation study. We conduct ablation studies to evaluate the im-
pact of each component of our method. Figure 9 demonstrates the
performance of RFCL when PCA is removed from the process. The
RFCL’s performance exhibits minimal noise without PCA when sub-
jected to RN and LF attacks. This indicates that the RFCL can main-
tain a degree of robustness even without the PCA step. However, it is
worth noting that the inclusion of PCA does enhance the overall per-
formance slightly, suggesting that while not critical, PCA contributes
positively to the resilience and effectiveness of the RFCL method.

(a) Random Noise Attack (b) Label Flipping Attack

Figure 9: Ablation Study concerning using PCA

5 Conclusion

RFCL presents a novel, robust federated learning approach that ad-
dresses the significant security concerns of data and model poisoning
attacks in heterogeneous data settings. The method employs a unique
clustering strategy, focusing on grouping similar models from partic-
ipating clients, consequently enhancing the selection of high-quality
models. RFCL’s innovative meta-learning phase and the subsequent
personalization process significantly enhance the performance and
security of the federated learning system.
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