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Abstract

The max-cut problem is a fundamental and much-studied NP-hard combinatorial optimisation

problem, with a wide range of applications. Several authors have shown that the max-cut problem

can be solved in polynomial time if the underlying graph is free of certain minors. We give a

polyhedral counterpart of these results. In particular, we show that, if a family of valid inequalities

for the cut polytope satisfies certain conditions, then there is an associated minor-closed family of

graphs on which the max-cut problem can be solved efficiently.
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1 Introduction

Given an undirected graph G, with rational weights on the edges, the max-cut problem (MCP) calls for

a partition of the node set into two subsets, such that the total weight of the edges crossing between

the subsets is maximised. The MCP is a fundamental combinatorial optimisation problem, with a

wide range of applications (e.g., [9, 24]). It is also NP-hard in the strong sense [14]. Current exact

algorithms struggle on graphs with more than 150 nodes or so (e.g., [19, 25]).

The convex hull of the incidence vectors of cuts in G is called the cut polytope of G, and denoted

by CUT(G). Cut polytopes have been studied in great depth, and many families of valid and facet-

defining inequalities are known (e.g., [3, 9]).

A graph G′ is called a minor of G if it can be obtained from G via a series of edge deletions, edge

contractions and/or deletions of isolated nodes. A celebrated theorem of Robertson and Seymour [26]
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(a) K5 (b) K3,3 (c) G12 (d) K++
5

(e) C2
6 (f) C2

7 (g) DW5 (h) V8

Figure 1: Eight fundamental graphs

states that any minor-closed family of graphs can be characterised by a finite set of minimal excluded

minors (sometimes called “obstructions”). For algorithmic implications of this result, see, e.g., [4,21].

Fig. 1 shows eight graphs that will be of importance in this paper. One can check that K5 and K3,3

are minors of G12 and K++
5 , which in turn are minors of C2

7 and DW5. One can also check that K3,3

is a minor of V8, and C2
6 is a minor of DW5. We remark that C2

6 is sometimes called the octahedron

(e.g., [10]).

Barahona [1] established a link between the MCP and graph minor theory, by showing that the

MCP can be solved in polynomial time when G does not have K5 as a minor. Barahona and Mahjoub

[3] gave a polyhedral counterpart to this result, by giving a complete linear description of CUT(G)

for K5-minor-free graphs. Later on, Barahona [2] showed that the cut polytope of any K5-minor-free

graph is the projection of a polytope with a polynomial number of facets.

Truemper [27] generalised the result in [1], by showing that the MCP is solvable in polynomial time

when G does not have G12 as a minor. Kamiński [17] proved an even more general result, by showing

that the MCP is solvable in polynomial time on H-minor-free graphs, for any graph H that can be

drawn in the plane with at most one edge crossing. Until now, however, no polyhedral counterparts

of these results had been derived.

This paper constitutes a first step in filling this gap in the literature. Our approach is as follows.

Given a (possibly infinite) family F of valid inequalities for cut polytopes of complete graphs, we

define a (possibly infinite) family of graphs, called “F -friendly” graphs. Under certain conditions on

F , we can show that (a) the family of F -friendly graphs is minor-closed, and (b) the max-cut problem

can be solved in polynomial time on F -friendly graphs.
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As a concrete application of our approach, we study the case in which F consists of all valid

inequalities involving up to five nodes. We show that, for this choice of F , the set of F -friendly graphs

is minor-closed and is a proper generalisation of the G12-minor-free graphs. This implies Truemper’s

result.

The structure of the paper is as follows. Subsection 1.1 introduces some notation and terminology.

Section 2 is a brief literature review. Section 3 defines F -friendly graphs and studies their properties.

Section 4 gives the application to inequalities involving no more than five nodes. Conclusions and

ideas for future research are given in Section 5.

1.1 Notation and terminology

Throughout the paper, all graphs are undirected and simple. The complete graph on n nodes is

denoted by Kn, and the complete bipartite graph with n nodes on one shore and m on the other is

denoted by Kn,m. Given a graph G = (V,E) and a set S ⊆ V , the set of edges in E that have exactly

one end-node in S is called a cut, and is denoted by δ(S). A set C ⊆ E is called a circuit if it induces

a connected subgraph of G in which every node has degree 2.

For n ≥ 6, we let C2
n denote the square of the circuit on n nodes (see Figs. 1e and 1f). For n ≥ 3,

we let DWn denote the double-wheel graph, formed by taking a circuit C on n nodes, and connecting

each node in C with two adjacent nodes not in C (see Fig. 1g). We also let DW denote the set of all

double-wheel graphs.

Contracting an edge of G means identifying the end-nodes, deleting the resulting loop, and replac-

ing each pair of parallel edges (if any) with a single edge. Given a graph G and an edge e, we let G \ e

and G/e denote the graphs obtained by deleting e and contracting e, respectively.

We say that G is k-connected if |V | > k and G remains connected whenever any set of k− 1 nodes

is removed. The graph G is called a k-sum of G1 and G2 if there are cliques Si ⊆ V (Gi), i = 1, 2, each

of cardinality k, such that G is obtained through the identification of S1 and S2, possibly followed

by the removal of some edges inside the clique. A k-separation of G is a pair of induced subgraphs

{G1, G2} such that V (G1) ∪ V (G2) = V (G), E(G1) ∪ E(G2) = E(G), V (G1) ∩ V (G2) = k and

V (G1) \ V (G2) 6= ∅ 6= V (G2) \ V (G1).

Finally, we say that a graph is 4-vertex-coverable if there exists a set of four nodes such that every

edge is incident on at least one node in the set (see Fig. 2). We also let K denote the class of all

4-connected 4-vertex-coverable graphs.
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(a) K4,3 (b) K6 \ e

Figure 2: Two 4-vertex-coverable graphs

2 Literature Review

We now review the relevant literature, covering graph minors in Subsection 2.1, cut polytopes of

complete graphs in Subsection 2.2, and cut polytopes of general graphs in Subsection 2.3.

2.1 Graph minors

Wagner [28] proved that a graph is planar if and only if it contains neither K5 nor K3,3 as minors. He

also proved that a graph has no K5 minor if and only if it can be decomposed, via k-sums with k ≤ 3,

into planar graphs and copies of V8. Hall [16] showed that a graph has no K3,3 minor if and only if it

can be decomposed, via k-sums with k ≤ 2, into planar graphs and copies of K5.

Results for other forbidden minors are given in, e.g., [10–13, 22, 23, 27]. Four of those results will

be of relevance to us:

1. Truemper [27] showed that any G12-minor-free graph can be constructed by applying k-sums,

with k ≤ 3, to planar graphs and/or copies of the seven non-planar graphs shown in Fig. 3.

2. Ding [10] showed that a graph has no C2
6 minor if and only if and only if can be constructed by

k-sums, with k ≤ 3, of graphs in {K1,K2,K3,K4} ∪ {C2
2n−1 : n ≥ 3} ∪ {L′4, L5, L

′
5, L

′′
5, P10}, the

last five graphs appearing in Figure 4.

3. Ferguson [13] showed that a graph has no K++
5 minor if and only if it can be constructed by

applying k-sums, with k ≤ 3, to planar graphs, V8 and/or copies of non-planar graphs with no

more than six nodes.

4. Ding et al. [12] showed that a 4-connected graph is C2
7 -minor-free if and only if it is either planar

or belongs to DW ∪K ∪
{
K6, L

(
K3,3

)
,Γ1,Γ2, . . . ,Γ5

}
. Here, L

(
K3,3

)
denotes the line graph of

K3,3, and Γ1, . . . ,Γ5 are five specific graphs with no more than eight nodes. We omit details for

brevity.
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Figure 3: Seven non-planar G12-minor-free graphs, as listed in [27, Theorem 10.5.21]

Figure 4: Five basic octahedron-minor-free graphs, as listed in [10, Theorem 1.2]
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2.2 Cut polytopes of complete graphs

The cut polytope of Kn, denoted by CUTn, is the convex hull of vectors x ∈ {0, 1}(
n
2) satisfying the

following triangle inequalities [3]:

xij + xik + xjk ≤ 2 (1 ≤ i < j < k ≤ n), (1)

xij − xik − xjk ≤ 0 (1 ≤ i < j ≤ n; k 6= i, j). (2)

Many facets of CUTn are known; see for instance [3, 9, 24]. We will need two results from [3]:

• Given any disjoint sets S, T ⊂ V with |S| > |T | and |S|+ |T | ≥ 3 and odd, the inequality

∑
{i,j}⊆S

xij +
∑
{i,j}⊆T

xij −
∑
i∈S

∑
j∈T

xij ≤
⌊
(|S| − |T |)2/4

⌋
(3)

defines a facet of CUTn. (The set T may be empty.)

• Given any vector v ∈ Zn with
∑n

i=1 vi odd, the inequality

∑
1≤i<j≤n

vivjxij ≤

( n∑
i=1

vi

)2

/ 4

 (4)

is valid (though not necessarily facet-inducing) for CUTn.

Note that the triangle inequalities are a special case of (3), which in turn are a special case of (4).

We will also need a definition from [7]. Let αTx ≤ β be any valid inequality for CUTn. Collapsing

the edge {i, j} means constructing a valid inequality for CUTn−1 as follows. The edge {i, j} is

contracted, by identifying j with i. For any k ∈ {1, . . . , n} \ {i, j}, the coefficient of xik in the

new inequality is set to αik + αjk. The coefficients for the edges that were not incident on i and j

remain unchanged. (See Subsection 3.3 for examples.)

2.3 Cut polytopes of general graphs

The cut polytope CUT(G) of a graph G = (V,E) is the projection of CUTn onto RE . Barahona [1]

showed that, if the pair {G1, G2} forms a k-separation of G, with k ≤ 3, then a linear description

of CUT(G) is obtained simply by juxtaposing the linear descriptions of CUT(G1) and CUT(G2). He

used this to show that the MCP is polynomially solvable on graphs with no K5 minor.

As mentioned in the introduction, Truemper [27] and Kamiński [17] proved that the MCP is

polynomially solvable on some more general families of graphs. Their proofs did not involve polytopes,

however.
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The following results from [3] will also be useful:

• CUT(G) is the convex hull of the vectors x ∈ {0, 1}E satisfying the co-circuit inequalities

∑
e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1, (5)

for all chordless circuits C ⊆ E and all F ⊆ C with |F | odd.

• CUT(G) is described by co-circuit inequalities and the trivial bounds 0 ≤ xe ≤ 1 if and only if

G has no K5 minor.

• Let αTx ≤ β be valid for CUT(G). For any S ⊂ V , the “switched” inequality

∑
e∈E\δ(S)

αexe −
∑
e∈δ(S)

αexe ≤ β −
∑
e∈δ(S)

αe

is also valid for CUT(G).

Finally, we mention that Barahona [2] showed that projecting the polytope defined by the triangle

inequalities onto R|E| yields the polytope defined by co-circuit inequalities and trivial bounds.

3 F -Friendly Graphs

In this section, we introduce the idea of F -friendly graphs. Subsection 3.1 gives a formal definition.

Subsection 3.2 gives some procedures for checking whether a given graph is F -friendly. Subsection 3.3

gives a sufficient condition for F -friendly graphs to be minor-closed.

3.1 Definition

Let F be a (possibly infinite) set of valid inequalities for cut polytopes of complete graphs. We will

make the following three assumptions:

• F is closed under permutations of nodes. That is, if the inequality

∑
1≤i<j≤n

αijxij ≤ β (6)

belongs to F , and φ is any permutation of 1, . . . , n, then the inequality

∑
1≤i<j≤n

αφ(i),φ(j)xφ(i),φ(j) ≤ β
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belongs to F .

• F is closed under switching (see Subsection 2.3).

• F is closed under “zero-lifting”. That is, if the inequality (6) is one of the inequalities for CUTn

that belongs to F , then we obtain an inequality for CUTn+1 that lies in F simply by assigning

the coefficient zero to all edges incident on node n+ 1 [7].

So, for example, F could consist of all triangle inequalities, all inequalities of the form (3), or all

inequalities of the form (4).

Now, for a given integer n ≥ 3, let Pn(F ) denote the polyhedron that is defined by all inequalities

in F that are valid for CUTn. Note that, by definition, CUTn ⊆ Pn(F ) for all F and n. Also, given a

graph G = (V,E), with |V | = n, let πG(F ) denote the projection of Pn(F ) into the subspace defined

by the edges in E. By definition, we have CUT(G) ⊆ πG(F ) for all F and G. This leads naturally to

the following definition.

Definition 1 A graph is F -friendly if CUT(G) = πG(F ).

To make this concept more concrete, we give a couple of examples.

Example 1 Let B denote the set of all trivial bounds of the form 0 ≤ xe ≤ 1. A graph is B-friendly

if and only if it is a forest. (This follows from the fact that a graph is a forest if and only if it contains

no circuit, and the fact that, whenever G contains a circuit, CUT(G) has at least one facet-defining

co-circuit inequality.)

Example 2 Let K3 denote the set of all triangle inequalities. A graph is K3-friendly if and only if it

does not contain K5 as a minor. (This follows from the fact that CUT(G) is described by co-circuit

inequalities and trivial bounds if and only if G is K5-minor free [3], and the fact that the triangle

inequalities imply the trivial bounds [2].)

3.2 Checking F -friendliness

A natural question is, given a set F of inequalities and a graph G, how can we check whether G is

F -friendly? Here is a general procedure:

1. Enumerate all extreme points of CUT(G).

2. Use a software package such as PORTA [6] or PANDA [20] to compute all facets of CUT(G).

3. Let I be the set of all facet-defining inequalities. Partition the members of I into equivalence

classes, based on permutation and switching.
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4. For each equivalence class, select one inequality as a representative, and solve a linear program

(LP), in which (i) there is a variable for each edge in Kn, (ii) the objective is to maximise the

left-hand side of the inequality, and (iii) the constraints are the inequalities in F .

5. If the optimal profit of the LP solution exceeds the right-hand side, for any of the inequalities

tested, the graph G is not F -friendly; otherwise, declare G as F -friendly.

For example, suppose we wish to check whether the graph K5 is K3-friendly. There are two

equivalence classes. One contains the triangle inequalities, and the other contains the inequalities (3)

with |S|+ |T | = 5. The inequality
∑

1≤i<j≤5 xij ≤ 6 is a representative of the latter class. Maximising

the left-hand side of this inequality subject to all triangle inequalities yields a fractional point with

xe = 2/3 for all e. The profit of this point is 2/3× 10 = 20/3 > 6. Thus, K5 is not K3-friendly.

Unfortunately, our experience is that this procedure is useful only for graphs with up to 25 edges

or so. Fortunately, for some graphs (namely, graphs that are not 4-connected), we can use k-sums to

speed up the process further.

Proposition 1 The k-sum of F -friendly graphs, with k ≤ 3, is F -friendly.

Proof. As mentioned in Subsection 2.3, Barahona [1] showed that, if the pair {G1, G2} forms a

k-separation of G, with k ≤ 3, then CUT(G) has no further facet-defining inequalities other than the

ones appearing in the description of CUT(G1) and CUT(G2). Now let n1 and n2 be the number of

nodes in G1 and G2, respectively. If G1 is F -friendly, then every inequality that defines a facet of

CUT(G1) is implied by inequalities in F that are valid for CUTn1. By zero-lifting, such an inequality

is also implied by inequalities in F that are valid for CUTn1+n2. A similar argument applies to G2.

Thus, every valid inequality for G is implied by inequalities in F that are valid for CUTn1+n2. That

is, G is F -friendly. �

3.3 When are F -friendly graphs minor-closed?

Recall (Example 1) that a graph is B-friendly if and only if it is a forest. This is equivalent to saying

that the graph does not contain K3 as a minor. Thus, the set of B-friendly graphs is closed under

taking minors. Recall also (Example 2) that a graph is K3-friendly if and only if it does not contain

K5 as a minor. Thus, the K3-friendly graphs are minor-closed as well.

This leads immediately to the question: what conditions need to be imposed on the set F to ensure

that the set of F -friendly graphs is minor-closed? We do not have a full answer, but we do have a

sufficient condition. In order to present it, we will need the following lemma and definition.

Lemma 1 Regardless of the set F , the set of F -friendly graphs is closed under edge deletion.
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Proof. Let G = (V,E) and e ∈ E. By definition, CUT(G \ e) is the projection of CUT(G) onto

RE\{e}, and πG\e(F ) is the projection of πG(F ) onto the same subspace. Thus, if πG(F ) = CUT(G),

then πG\e(F ) = CUT(G \ e). �

Definition 2 We say that a set F of inequalities is “closed under collapsing” if, given any inequality in

F and any edge e, the inequality obtained by collapsing e satisfies one of the following three conditions:

• It belongs to F .

• It is implied by two or more inequalities in F .

• It is vacuous (being equivalent to 0 ≤ 0).

We illustrate this definition with a few examples.

Example 3 The set K3 is closed under collapsing. For example, if we take the triangle inequality

x12 − x13 − x23 ≤ 0 and collapse the edge {1, 2}, we obtain the trivial inequality −2x13 ≤ 0, which

is implied by triangle inequalities. If we collapse on {1, 3} or {2, 3} instead, we obtain the vacuous

inequality 0 ≤ 0. If we collapse any other edge, the triangle inequality remains unchanged.

Example 4 The set of inequalities of the form (4) is closed under collapsing. For example, if we

collapse the edge {n− 1, n}, the resulting inequality can be written as

∑
1≤i<j≤n−1

v′iv
′
jxij ≤

(n−1∑
i=1

v′i

)2

/ 4

 ,
where v′ is a new vector of length n − 1, obtained from v by replacing the last two components, vn−1

and vn, with a single component equal to vn−1 + vn.

Example 5 The set of inequalities of the form (3) is not closed under collapsing. For example, if we

take the inequality
∑

1≤i<j≤7 xij ≤ 12 and collapse the edge {6, 7}, we obtain the inequality

∑
1≤i<j≤5

xij + 2
∑

1≤i≤5
xi6 ≤ 12.

This latter inequality is of the form (4), and it defines a facet of CUT6 [3, Theorem 2.4], but it is not

of the form (3).

We are now ready for the final result in this section.

Theorem 1 If F is closed under collapsing, then the family of F -friendly graphs is minor-closed.
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Proof. By Lemma 1, it suffices to prove closure under edge contraction. For a given graph G = (V,E)

and edge e = {i, j} ∈ E, let A be the set of nodes in G that are adjacent to both i and j, and let P

be the face of CUT(G) induced by the trivial bound xe ≥ 0. Note that, if x is an extreme point of P ,

then it satisfies not only the equation xe = 0, but also the equation xik = xjk for all k ∈ A. Thus,

we can construct CUT(G/e) as follows: take P , eliminate the variable xe, and identify the variables

xik and xjk for all k ∈ A. This implies that every valid inequality for CUT(G/e) can be obtained by

collapsing a valid inequality for CUT(G). Thus, if πG(F ) = CUT(G), then πG/e(F ) = CUT(G/e). �

4 K5-Friendly Graphs

Let K5 be the set of all inequalities of the form (3) such that |S| + |T | ≤ 5. (Note that K5 includes

all triangle inequalities.) Given that K5 contains O
(
n5
)

inequalities, it is possible to optimise a linear

function over Pn(K5) in polynomial time. Accordingly, one can solve the MCP on K5-friendly graphs

in polynomial time. In this section, we explore these graphs in detail.

Throughout this section, we let K−6 denote the graph obtained by deleting one edge from K6.

4.1 Four useful lemmas

We start with the following lemma.

Lemma 2 K5 is closed under collapsing.

Proof. Suppose first that |S| = 5 and T = ∅. Assume w.l.o.g. that S = {1, . . . , 5} and we collapse

the edge {4, 5}. The resulting inequality is x12 + x13 + x23 + 2
(
x14 + x24 + x34

)
≤ 6. This is the sum

of the triangle inequalities x12 + x14 + x24 ≤ 2, x13 + x14 + x34 ≤ 2 and x23 + x24 + x34 ≤ 2. A similar

argument can be used when |S| ∈ {3, 4}. �

Together with Theorem 1, this implies that the set of K5-friendly graphs is minor-closed. It also

implies that there exists a finite set of minimal K5-unfriendly graphs, by the Robertson–Seymour

Theorem [26]. The following proposition gives three of them.

Lemma 3 K6, C2
7 and DW5 are minimal K5-unfriendly graphs.

Proof. It is shown in [3] that K6 and DW5 give rise to inequalities that are facet-defining for

CUTn, but are not of the form (3). The same is shown for C2
7 in [15]. Hence, all three graphs are

K5-unfriendly.
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We have enumerated all non-isomorphic graphs that can be obtained from one of the three graphs

mentioned by either deleting or contracting an edge. Then, using the method described in Subsection

3.2, we have verified that all such graphs are K5-friendly. �

Now recall that K denotes the class of all 4-connected 4-vertex-coverable graphs. We will find the

two following lemmas useful later on.

Lemma 4 If a graph G on n nodes is in K, and n ≤ 8, then G is K5-friendly.

Proof. The unique maximal member of K with n ≤ 8 is obtained by taking 8 nodes, selecting 4 of

those nodes, and then connecting each of the selected nodes to every other node. This graph has 8

nodes and 22 edges. Using the method described in Subsection 3.2, we have verified that this graph

is K5-friendly. �

Lemma 5 If a graph G on n nodes is in K, and n ≥ 9, then G contains K−6 as a minor.

Proof. Let the nodes forming the cover of all other nodes be 1, 2, 3 and 4, i.e., each of the nodes

5, . . . , n is connected to each of 1, . . . , 4. If we contract the edges (1, n), (2, n − 1) and (3, n − 2) of

G, we obtain a graph G′ in which nodes 1, . . . , 4 form a clique, hence nodes 1, . . . , 6 induce K−6 as a

subgraph. Therefore, the original graph G contains K−6 as a minor. �

4.2 Some families of K5-friendly graphs

In this subsection, we show that various families of graphs are K5-friendly. Our first result is fairly

straightforward.

Proposition 2 Let H be any 3-connected graph with no more than ten edges. All H-minor-free graphs

are K5-friendly.

Proof. Ding and Liu [11] characterised the H-minor-free graphs for each such graph H. In particular,

Theorems 3.2-3.9 in [11] show that, for any such H, the H-minor-free graphs can be constructed via k-

sums, with k ≤ 2, from 3-connected planar graphs, K5, V8, and/or 3-vertex-covered graphs. Barahona

and Mahjoub [3] showed that planar graphs and V8 are K3-friendly, which implies that they are also

K5-friendly. K5 is K5-friendly by definition. Finally, the edge-wise maximal 3-vertex-covered graphs

can be obtained by 3-summing copies of K4 over a common triangle. Therefore, by [1, Theorem 3.1],

their cut polytopes are described by triangle inequalities, since K4 is planar. �

In particular, graphs with no K3,3 minor are K5-friendly. Let us now provide a different sufficient

condition for K5-friendliness.
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Proposition 3 If a graph contains neither K++
5 nor K6 as a minor, it is K5-friendly.

Proof. [13, Theorem 4.1] states that any non-planar graph without a K++
5 minor can be composed by

k-summing planar graphs (with k ≤ 3), and then, if necessary, k-summing the resulting graph (with

k ≤ 2) with V8 and/or non-planar graphs with at most six nodes. We know that V8 is K5-friendly, as

mentioned in the proof of Proposition 2. By Lemma 3, any graph with at most six nodes, other than

K6 itself, is K5-friendly. �

Our next result is quite more involved.

Theorem 2 A graph without a G12 minor is K5-friendly.

Proof. [27, Theorem 10.5.21] states that every graph without G12 minors is a k-sum (k = 0, 1, 2, 3)

or is planar, or is isomorphic to K5, K3,3, G8, G13, G
1
14, G

2
14, G

1
15, G

2
15, G

3
15, or G4

15 (see Figure 3). All

these graphs, except G4
15 (the Petersen graph), can be composed through repetitive 3-sums of K4’s

and subgraphs of K−6 , which is K5-friendly by Lemma 3.

To show this, we apply an inverse procedure: we select in the given graph G a node v of degree

3, add edges (if missing) between any two of its neighbors and then delete v to obtain graph G′.

Practically we apply what is know in the literature as Y −∆ operation, in order to show that G is a

3-sum of G′ and K4. If this procedure can be repeated n − 6 times and the last graph obtained is a

subgraph of K−6 , the initial graph is K5-friendly.

For G13, if we apply this procedure first for the upper-most node and then for the lowest one,

we obtain a graph with 6 nodes that is a subgraph of K−6 because the upper-left and the lower-right

nodes in that graph are not connected with an edge. For G1
14, the nodes to be selected for applying

this procedure are the upper-most, the right-most and the lowest. For G2
14, the nodes to be selected

are the left-most, the right-most and the ‘central’ one. Regarding G1
15, if we number the nodes from

0 to 9, the procedure is applied to nodes 0, 2, 4 and 6. For G2
15 and G3

15, we present the procedure in

Figures 5 and 6 respectively. (In these figures, we use squares to represent the selected nodes with

degree three. The edges that are removed in the process are dotted, while the ones that are introduced

are dashed.)

To show that the Petersen graph is K5-friendly, we use the fact that CUT(G4
15) is defined by four

families of inequalities [8]. Three of them are the bounds inequalities and cycle inequalities for cycles of

length 5 or 6 that are known to be implied by triangle inequalities in CUTn. To show a representative

inequality of the fourth family, let 0, . . . , 4 be the nodes of the inner 5-cycle in the Petersen graph,

5, . . . , 9 be the ones in the outer 5-cycle and node i in the inner cycle be a neighbor of node i + 5 in
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(a) G2
15 = K4 ⊕3 G

2
15,1 (b) G2

15,1 = K4 ⊕3 G
2
15,2

(c) G2
15,2 = K4 ⊕3 G

2
15,3 (d) G2

15,3 = K4 ⊕3 G
2
15,4

(e) G2
15,4 ' K−

6

Figure 5: Iterative application of the Y −∆ operator on G2
15 that shows its K5-friendliness.

(a) G3
15 = K4 ⊕3 G

3
15,1 (b) G3

15,1 = K4 ⊕3 G
4
15,2

(c) G3
15,2 = K4 ⊕3 G

3
15,3 (d) G3

15,3 = K4 ⊕3 G
3
15,4

(e) G3
15,4 ' K−

6

Figure 6: Iterative application of the Y −∆ operator on G3
15 that shows its K5-friendliness.
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the outer one. Then, the inequality has the form:

x01 + x12 + x23 + x34 + x04 + x57 + x79 + x69 + x68 + x58 + 2x05 + 2x16 + 2x27 + 2x38 + 2x49 ≤ 16,

and is the sum of a K5 inequality and certain triangle inequalities. �

Note that Proposition 3 is not implied by Theorem 2, since K++
5 is not a minor of G12, and G12

is a minor of K6.

The following can be shown in a manner similar to Theorem 2.

Proposition 4 If a graph contains neither the octahedron nor C2
7 as a minor, it is K5-friendly.

Proof. [10, Theorem 1.2] proves that a graph is octahedron-free if and only if it is constructed by

k-sums (k = 0, 1, 2, 3) of graphs in {K1,K2,K3,K4} ∪ {C2
2n−1 : n ≥ 3} ∪ {L′4, L5, L

′
5, L

′′
5, P10}, the last

five graphs appearing in Figure 4. As all graphs {C2
2n−1 : n ≥ 3} have C2

7 as a minor and C2
5 is K5,

it follows that a graph containing neither the octahedron nor C2
7 as a minor can be constructed by

k-sums (k = 0, 1, 2, 3) of graphs in {K1,K2,K3,K4,K5} ∪ {L′4, L5, L
′
5, L

′′
5, P10}.

All complete graphs with less than 6 nodes are trivially K5-friendly as subgraphs of K−6 , which is

K5-friendly by Lemma 3. All graphs {L′4, L5, L
′
5, L

′′
5, P10} can be composed through repetitive 3-sums

of K4’s and subgraphs of K−6 , thus shown to be K5-friendly by Proposition 1. To check this, observe

that each among the graphs in Figure 4 has a sufficiently large number of nodes of degree 3 for the

procedure of successive Y −∆ operations in Theorem 2 to be applied. Specifically, the upper 4 nodes

of L′4, L5, and L′5 have degree 3, the same holding for the outer 6 nodes of L′′5 and the outer 5 nodes

of P10. Repeating the procedure of successive Y −∆ operations per graph shown in Figure 4 and for

the aforementioned nodes of degree 3 always leaves a subgraph of K−6 . �

Let us now provide a similar result regarding 4-connected graphs.

Proposition 5 If a 4-connected graph has none of K−6 , C2
7 and DW5 as a minor, then it is K5-

friendly.

Proof. Let us observe that 4-connected graphs without any of K−6 , C2
7 or DW5 as a minor are a

subset of C2
7 -free graphs. By [12, Corollary 1.2], 4-connected C2

7 -free graphs are only planar graphs

P, double wheels DW, 4-vertex covered graphs, L(K3,3) and graphs Γ1, . . .Γ5 (as listed in [12]). The

last six individual graphs can be shown to be K5-friendly through the procedure of Subsection 3.2.

Planar graphs are K5-friendly. Among the double wheels DW, observe that DW3 and DW4 are the

only ones not having DW5 as a minor, and both of those are minors of K−6 , hence being K5-friendly.

Last, graphs in K are either K5-friendly or contain K−6 as a minor, as implied by Lemmas 4 and 5. �
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Interestingly, we can also show the following.

Lemma 6 G12 is the unique maximal common minor of K6, C2
7 and DW5.

Proof. G12 is trivially a minor of K6. It can be obtained from C2
7 , viewed as K7 \C7, by contracting

an edge connecting two nodes of distance 3 in the C7. It can also be obtained from DW5, viewed as

K7 \ C5, by contracting an edge connecting two non-adjacent nodes in the C5 and then deleting two

(appropriately chosen) edges.

To show that G12 is a maximal common minor, let us consider C2
7 . To obtain a common minor

with K6, one must delete a node or contract an edge. Deleting any node and the adjacent edges from

C2
7 yields a subgraph of G12. One can contract an edge connecting two nodes of distance 2 or 3 in C2

7 .

One can check that, in either case, one obtains G12. �

4.3 A conjecture

The results in the previous subsection, together with experiments that we have conducted with various

graphs, lead us to make the following conjecture:

Conjecture 1 A graph is K5-friendly if and only if it does not contain any of K6, C2
7 and DW5 as

a minor.

We note that this conjecture is consistent with Propositions 3 and 4, since (a) K++
5 is a minor of both

C2
7 and DW5, and (b) the octahedron is a minor of both K6 and DW5. Moreover, we have verified

that the conjecture holds for n ≤ 8.

5 Further Work

We conclude the paper with some suggestions for further work. The most obvious direction would be

the complete characterisation of K5-friendly graphs, although this would seem to require a complete

characterisation of C2
7 -minor-free graphs (or at least graphs with no K6, C

2
7 or DW5 minor).

We remark that polynomial-time separation algorithms are known for two exponentially-large

families of facet-defining inequalities for the cut polytope: the switched odd bicycle wheel inequalities [5]

and certain inequalities related to circulants [18]. It would be natural to study graphs that are friendly

with respect to either or both of those families. First, however, one would have to check whether those

families are closed under collapsing.

Relevant to that is whether the sufficient condition in Theorem 1, for the set of F -friendly graphs

to be minor-closed, is also necessary. As it stands, we do not even know whether friendliness with

respect to the inequalities (3) is minor-closed (see Example 5).
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More generally, one could attempt to apply the concept of F -friendliness to other graph optimi-

sation problems, besides max-cut. Note however that an operation analogous to collapsing may not

exist for some problems.
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