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Abstract

We demonstrate how the structure of auditory cortex can be investigated by combining computational modelling with
advanced optimisation methods. We optimise a well-established auditory cortex model by means of an evolutionary
algorithm. The model describes auditory cortex in terms of multiple core, belt, and parabelt fields. The optimisation
process finds the optimum connections between individual fields of auditory cortex so that the model is able to reproduce
experimental magnetoencephalographic (MEG) data. In the current study, this data comprised the auditory event-
related fields (ERFs) recorded from a human subject in an MEG experiment where the stimulus-onset interval between
consecutive tones was varied. The quality of the match between synthesised and experimental waveforms was 98%.
The results suggest that neural activity caused by feedback connections plays a particularly important role in shaping
ERF morphology. Further, ERFs reflect activity of the entire auditory cortex, and response adaptation due to stimulus
repetition emerges from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources.
Our findings constitute the first stage in establishing a new non-invasive method for uncovering the organisation of the
human auditory cortex.
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1. Introduction

Magnetoencephalographic (MEG) signals are generated
mainly by primary currents running in the apical dendrites
of a large number of synchronously active pyramidal cells
in the cortex (Hämäläinen et al., 1993). The cortical re-
sponse to a single stimulus is very weak and, thus, it is
buried in brain activity unrelated to stimulus processing
and in the noise of the MEG measurement. Hence, the
standard approach to obtain a detectable event-related
field (ERF) is to use a large number of stimulus repeti-
tions (typically > 100) and average the artefact-corrected
trials of the MEG signals. Apart from this technical con-
straint, the geometric properties of the network of the ac-
tive pyramidal cells themselves play a decisive role in the
generation and measurability of ERFs: The apical den-
drites of the pyramidal cells are locally aligned with each
other, and they are oriented perpendicularly to the corti-
cal surface. The total current running in these dendrites
reflects the size of the population generating the ERF and
therefore the size of the active cortical area.

MEG is particularly sensitive to signals originating from
sensory cortical areas such as the visual or auditory cor-
tex. In this work, we focus on auditory cortex (AC). The
anatomy of AC is characterised by a hierarchical core-
belt-parabelt structure, which is similar across mammals,
with cross-species differences appearing as variations in the

number of cortical fields and the pattern that reflects the
connectivity between them. In general, the core fields con-
nect to each other and to the surrounding belt fields, which
in turn are connected to nearest-neighbour belt fields and
to parabelt fields (Kaas and Hackett, 2000b; Hackett et al.,
2014). Information processing in the AC is mainly deter-
mined by two streams of signal flow. Feedforward connec-
tions drive the signal in the core→belt→parabelt direction
and contribute to an ERF deflection with a polarity such
as that shown by the P1m response. Feedback connections
represent signal flow in the opposite direction, from para-
belt to belt to core (Hackett et al., 2014). This results in
ERF deflections with opposite polarity as exhibited, for
example, by the N1m response (Ahlfors et al., 2015).

The auditory ERF is characterised by a series of waves.
These are generally categorised with respect to their peak
latency into early- (< 8 ms), mid- (8–40 ms) and late-
latency (> 40 ms) responses, with the latter being the
most prominent. The general structure of late auditory
ERFs to almost any transient auditory stimulus comprises
the sequence P1m, N1m, and P2m. These waves have al-
ternating polarities (indicated by P for positive and N for
negative), and their approximate peak latencies in rela-
tion to stimulus onset are 50 ms, 100 ms, and 150–180 ms,
respectively. The peak amplitudes and latencies of these
responses are sensitive to the intensity, duration, sound
source location, and frequency composition of the stim-
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ulus as well as to the stimulus-onset interval (SOI; for a
review, see May and Tiitinen, 2010).

The neural origin of the late-latency ERFs with regard
to the connectivity of fields within AC is not fully under-
stood. Fundamental information about the connectivity
of fields must usually be obtained from invasive record-
ings in animals, predominantly in non-human primates
and Mongolian gerbils, since, for ethical reasons, compara-
ble invasive measurements in humans are only permitted
in some clinical cases. Hence, the transfer of knowledge
about animal AC to human AC is a true challenge, as this
requires the linking of different types of recordings. On
the one hand, there are the electrophysiological measure-
ments on the single cell- and circuit level in animals. On
the other, there are the MEG measurements taken from
humans, where a large population of neurons is required
to obtain detectable ERFs.

Computational modelling has the potential to merge
the knowledge gained at the different levels of observa-
tion in humans and animals. May and Tiitinen (2010,
2013), May et al. (2015), and Westö et al. (2016) devel-
oped such a computational model of signal processing in
AC. The model takes into account the idiosyncratic ar-
chitecture of AC by mimicking the connectivity pattern
between AC fields. On the microscopic scale, the model
yields firing rates for excitatory and inhibitory neuron pop-
ulations, which are organised into cortical columns, which
are the basic units of the model. On the macroscopic scale,
it yields ERFs as the spatial sum of the synaptic inputs to
the excitatory populations.

This AC model has dynamics evolving on two time
scales. On the faster time scale, mean population firing
rates are translated into synaptic input currents, which in
turn feed into determining the firing rate. This kind of dy-
namics can be approximated as a set of normal modes that
spatially overlap with each other and extend over the entire
auditory cortex (Hajizadeh et al., 2019, 2021, 2022). On
the slower time scale, the excitatory connections are modu-
lated by short-term synaptic depression (STSD) which op-
erates as a function of the pre-synaptic firing rate. STSD
results in adaptation, the reduction of the response to a
repeated stimulus, and it also underlies the ability of the
model to mimic the selective responsiveness of AC neurons
to complex stimulation with a temporal and spectral struc-
ture. Further, STSD is the main mechanism which allows
the model to reproduce a wide variety of mismatch neg-
ativity responses of the auditory ERF (May, 2021). No-
tably, since the anatomy of the AC among mammals has a
comparable basic structure, it is relatively simple to mod-
ulate the structure of the model to mirror that of AC of
different species, thus allowing for cross-species compar-
isons of function.

Our modelling approach differs from those of other
groups by including, as key element, the detailed core-belt-
parabelt structure of the AC of mammals. Other models
investigate auditory processing at different levels of obser-
vation, such as a single AC field (see, for example, Loebel

et al., 2007; Noto et al., 2016; Wang and Knösche, 2013),
or in terms of large-scale dynamic networks of distributed
brain areas, where cortical areas are treated as nodes (Dy-
namic Causal Modelling, David et al., 2006) or the en-
tire AC is considered a single node (Virtual Brain project,
Ritter et al., 2013). These approaches, however, are not
intended to provide mechanistic explanations of how AC
processes and represents sound.

The purpose of computational modelling is to unravel
the complex mechanisms underlying experimental obser-
vations. Such modelling is often realised by reducing the
complexity of the modelled system by projecting hidden
information onto a well-defined parameter space. These
model parameters can then be interpreted in terms of
quantitative information about the biological system un-
der investigation. Based on our previous modelling work
(Hajizadeh et al., 2019, 2021, 2022; Turczak, 2022), we hy-
pothesise that the still elusive anatomical structure of the
human AC is reflected in the morphology of ERFs recorded
by MEG. Here, we use the original nonlinear version of the
AC model developed by May and Tiitinen (2013) and May
et al. (2015), where the model parameters were chosen on a
trial-and-error basis. This was largely because the knowl-
edge base does not yet exist, especially in the case of the
human brain, that would allow one to look up parame-
ter values based on biological data. In the present work,
we demonstrate that parameter values can be derived by
employing the advanced optimisation method of the evo-
lutionary algorithm (EA, Michalewicz, 1996). Specifically,
consecutive iterations of the EA lead to the ERF gener-
ated by the model to match that measured in an MEG
experiment on a human participant. As a result, we ar-
rive at estimates of relative connection strengths between
distinct AC fields.

In Sect. 2, we briefly introduce the AC model. Sect. 3
provides a description of the MEG data used for the opti-
misation of the model. Sect. 4 presents the building blocks
of the EA used in this work. In Sect. 5, we show results of
the EA optimisation of the AC model. Finally, Sect. 6 pro-
vides some discussion and sketches perspectives for future
research.

2. Computational modelling of auditory cortex

2.1. Architecture of the model

We are working with the AC model developed by Patrick
May and colleagues; see, for example, May and Tiitinen
(2010, 2013) and May et al. (2015). Key features of the
model are the specific anatomical structure of the audi-
tory cortex of mammals and the inclusion of STSD. In
general terms, the AC of mammals is divided into three
hierarchically organised areas, the core, belt, and parabelt.
Each of these main areas is further subdivided into fields,
the number of which strongly differs across species. Since
the exact number of fields in the human AC is unknown,
we have turned to the AC of primates (in particular of
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Figure 1: Schematic representation of the core-belt-parabelt struc-
ture of the AC of the macaque monkey (May et al., 2015), along
with the subcortical thalamus which provides the afferent input to
AC. Dark and light arrows indicate high and low density of connec-
tions between two fields, respectively.

macaque monkeys) as an animal model of the human AC.
Based on cytoarchitectonic, anatomical, and physiologi-
cal differences, one can identify thirteen distinct fields in
the macaque AC, which are interconnected according to a
specific pattern (Romanski and Averbeck, 2009; Kaas and
Hackett, 2000a). Fig. 1 summarises the experimental re-
sults regarding the field parcellation and connectivity pat-
tern of the macaque AC. The core area consists of three
fields, the primary auditory field (AI), the rostral field (R),
and the rostral temporal field (RT), which receive parallel
input from subcortical regions. The core is surrounded by
eight belt fields, the anterolateral (AL), the middle lat-
eral (ML), the caudolateral (CL), the caudomedial (CM),
the mediomedial (MM), the rostromedial (RM), the me-
dial rostrotemporal (RTM), and the lateral rostrotempo-
ral (RTL) field. Laterally, the belt is bounded by the para-
belt, which, in the macaque monkey, is divided into two
fields: the rostral parabelt (RPB) and the caudal para-
belt (CBP) field.

In the computational model, the interactions between
fields are described using a 14 × 14 matrix. This includes
the thirteen AC fields as well as a subcortical field rep-
resenting thalamus, specifically the ventral division of the
medial geniculate nucleus (MGN). The MGN is used as
an input field which relays activation to the cortex. This
means that there are a total of 196 possible connections
between fields, including intra-field connections. Each AC
field is further subdivided into 16 cortical columns, each
composed of an excitatory and an inhibitory neuron popu-
lation. The different connection types between excitatory
and inhibitory populations are shown in Fig. 2. Thus,
per connection type, there are (14 · 16)2 potential net-
work connections between columns. The number of actual
connections present in the model network is bounded by
the experimentally determined connectivity pattern of the
macaque AC.

Figure 2: Possible connections between populations of excitatory
(label e) and inhibitory (label i) neurons of two cortical columns of
the model.

In the model, the interactions between neuronal popu-
lations are represented by the elements of weight matrices
denoted by W , reflecting the strength of a given type of
connection. The W matrices are separated into four types,
according to the direction of interactions occurring within
and between the populations of excitatory and inhibitory
neurons. They are denoted as follows:

• Wee for excitatory populations targeting excitatory
populations,

• Wei for inhibitory populations targeting excitatory
populations,

• Wie for excitatory populations targeting inhibitory
populations,

• Wii for inhibitory populations targeting inhibitory
populations.

2.2. Model dynamics

The dynamics of the model are based on the works of
Wilson and Cowan (1972) and Hopfield and Tank (1986).
They are described by two coupled nonlinear differen-
tial equations comprising the time-dependent state vari-
able u = [u1(t), . . . , uN (t)]T for the excitatory and v =
[v1(t), . . . , vN (t)]T for the inhibitory population, with N
being the total number of columns in the network and T

denoting transpose:

τm
du

dt
= Wee Q(t) g(u(t)) −Wei g(v(t)) − u(t) + iaff(t),

(1a)

τm
dv

dt
= Wie Q(t) g(u(t)) −Wii g(v(t)) − v(t). (1b)

Here, τm denotes the membrane time constant, and
iaff(t) is the afferent current reflecting the input due to
auditory stimulation. The weight matrices Wee, Wei, Wie,
and Wii have been introduced in Sect. 2.1. The output of
the excitatory and inhibitory populations are represented
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by the mean firing rates g(u) and g(v), respectively; see
Eq. (2) for g(u):

g(un) =

{
tanh

(
2
3 (un − θ)

)
for un ≥ θ,

0 for un < θ,
(2)

with n ∈ {1, . . . , N}. The firing rates are nonlinear, mono-
tonically increasing functions of the state variables un(t)
and vn(t) that take values in the [0, 1] interval. Initially, as
un(t) and vn(t) increase, the values of g(un) and g(vn) re-
main zero, until the state variables exceed a certain thresh-
old θ, at which point the populations of neurons begin to
fire. In our simulations, we used θ = 0.05.

To reflect STSD, the weights in Wee and Wie are scaled
via the time-dependent diagonal matrix Q(t),

Q(t) = diag(q(t)), (3a)

dq

dt
= −q(t) ◦ g(u(t))

τo
+

1− q(t)

τrec
, (3b)

where, for each time point t, diag in (3a) transforms the
synaptic efficacy q into Q with elements of q on the lead-
ing diagonal, and ◦ in (3b) denotes element-wise multi-
plication (Hadamard product). Eq. (3b) is a simplified,
continuous-time description of STSD (c.f. Tsodyks and
Markram, 1997; Loebel et al., 2007). In this view, the
depression of synaptic activity between pre- and post-
synaptic excitatory cell populations depends only on the
firing rate of the pre-synaptic excitatory cell population,
g(un(t)), and STSD is characterised by two stages: a fast
drop-off in synaptic efficacy determined by the time con-
stant τo occurring directly after stimulus onset when the
firing rate g(un(t)) is non-zero, and a slow recovery de-
termined by the time constant τrec, when the firing rate
g(un(t)) returns to zero after stimulus offset. The values
qn(t) range from 1 (no STSD) to 0 (connection fully de-
activated due to STSD). In our simulations, τo and τrec
were set to 0.100 s and 1.600 s, respectively, for the AC,
whereas, for the thalamus, they were set to 0.020 s and
0.100 s. The order-of-magnitude difference of the time con-
stants of STSD in the different parts of the model reflects
the different time scales of the dynamics observed experi-
mentally along the lemniscal part of the auditory pathway
(Ulanovsky et al., 2004; Pérez-González and Malmierca,
2014).

The computation of a synthetic MEG signal based on ac-
tivity in the model network relies on the summation of the
excitatory input currents to the excitatory neuron popula-
tions, i.e., the first term on the right-hand side of Eq. (1a).
This reflects the fact that, in-vivo, the MEG signal is, to
a large extent, generated by dendritic currents flowing in
the apical dendrites of synchronously activated pyramidal
neurons in the cortex (Hämäläinen et al. (1993); see Ha-
jizadeh et al. (2019) for a detailed discussion of the com-
putation of the MEG response in the AC model). In the
traditional view, inhibitory synapses compared to excita-
tory ones are thought to contribute only little to dendritic

current and therefore to the generation of the MEG (Bar-
tos et al., 2007; Mitzdorf, 1985). This is because the re-
versal potentials of inhibitory synapses are relatively close
to the resting membrane potential. However, the situation
changes when the membrane potential is elevated, and this
is indeed supported by experimental results (e.g., Buzsáki
et al., 2012). Nevertheless, the actual magnitude of these
effects in MEG generation remains to be explored, and is
likely to be small when the pyramidal neuron is close to its
resting state. For this reason, we opted for the parsimo-
nious approach of ignoring the contribution of inhibitory
synapses in order to minimise the number of model param-
eters. We note that this approximation will be better when
the pyramidal population is responding in an adapted way,
with short SOIs, when the deviations from the resting state
are smaller.

The MEG signal R(t) of the model is computed as:

R(t) =
∑
i,j

ki,j wi,j qj(t) g(uj(t)), (4)

where the indices i and j range from 1 to N (the num-
ber of cortical columns in the network) and identify post-
and presynaptic columns respectively, wi,j represents ele-
ments of the weight matrix Wee, and ki,j is a scaling factor.
For connections located in thalamus, ki,j = 0, because
thalamic activation does not contribute to the auditory
ERF. For intra-field (i.e., for i = j) as well as for feedback
connections, ki,j = 1, and for feedforward connections,
ki,j = −1 (May et al., 2015). The opposite polarity of
the scaling factor k for feedforward and feedback connec-
tions reflects the fact that the different connection types
target the apical dendrites of pyramidal neurons at differ-
ent cortical depths. Feedforward connections tend to form
in the middle cortical layers, predominantly in layer IV,
targeting proximal locations of the pyramidal dendrites,
and thus result in a dendritic current directed towards the
cortical surface. In contrast, active feedback connections
result in a dendritic current directed away from the corti-
cal surface. This is because they target the upper layers I
and II, and thus the distal locations on the apical dendrite
(see, for example, Ahlfors et al., 2015; Douglas and Martin,
2004; Kohl et al., 2022; Schroeder and Foxe, 2002). Fig. 3
maps out the non-zero k values for the different connection
types. Connections beyond the macaque AC connectivity
pattern have zero weights and the corresponding scaling
factors ki,j were set to zero too.

The MEG signal depends both on the strength and ori-
entation of the primary current, and therefore the cur-
vature of the cortical surface due to cortical folding will
affect the MEG (Hämäläinen et al., 1993). We decided
to ignore this curvature effect for two reasons. First, the
effect of cortical folding is mathematically simple enough
to include as a location-specific scaling factor, as was done
in our previous work (Hajizadeh et al., 2021). However,
its inclusion is not a practical concern in this stage of our
current work. It would require a priori knowledge — not
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Figure 3: Distribution of the scaling factor ki,j . Feedback connec-
tions with ki,j = 1 are shown in burgundy, feedforward connections
with ki,j = −1 in green, and intra-field connections with ki,j = 1
in orange. The scaling factor for the remaining elements shown in
white is zero.

currently available — of the subject-specific cortical topog-
raphy onto which each field of the core, belt, and parabelt
are projected. Second, the simplification can be partly jus-
tified by considering the macroanatomy of the human AC,
which is located in the Sylvian fissure, on the supratem-
poral plane. The AC is characterised by two flat areas,
the planum temporale and the planum polare, surround-
ing Heschl’s gyrus (HG). Core areas are located along HG,
and, in the left hemisphere, the parabelt may be located
on the external part of PT, with the belt areas presumably
situated in between (Moerel et al., 2014). Thus, it is likely
that the majority of cortical columns in AC are oriented
in a direction roughly perpendicular to the supratemporal
plane — although we note that this is unlikely to be true
for all belt fields.

In this work, we simplified the architecture of the AC
model by reducing the parameter space and represented
each field by a single column to focus on connectivity pat-
terns across fields. The main aim of this work was to
optimise the values of two real-valued 14 × 14 matrices of
connection weights shown in Fig. 4. All computations were
done in MATLAB (MathWorks, USA).

Figure 4: Weight values in the Wee and Wie matrices that were used
in the AC model (May et al., 2015; May, 2021) before we started with
our EA optimisation work. For Wee, non-zero (non-white) weights
are equal to 6 on the leading diagonal and 0.5 elsewhere. For Wie,
leading-diagonal weights are equal to 3.5, and the connections be-
tween the three core areas (RT, R, AI) and MGN were set to 1.
These values are used to create the initial population for our EA
implementation; see Sect. 4.2.

Figure 5: Trial-averaged time courses from an MEG measurement
with a single subject. Tones were presented in five discrete blocks
which differed in SOIs ranging from 0.5 s to 10 s. With increasing
SOI, a gradual increase of the N1m-peak amplitude and of the cor-
responding N1m-peak latency is observed. t = 0 ms reflects stimulus
onset.

3. MEG data

MEG recordings were acquired from a subject who
gave written informed consent to participate in the MEG
study, which was approved by the Ethics Committee of
the Otto von Guericke University in Magdeburg, Ger-
many. The subject was passively listening to sequences of
pure tones (audio frequency: 1.5 kHz, duration: 100 ms,
sound-pressure level: 80 dB), which were presented in five
separate blocks (111 stimuli per block) of a regular-SOI
paradigm. Each block was characterised by the constant
SOI between two consecutive stimuli. The SOI intervals
were 0.5 s, 1.0 s, 2.5 s, 5.0 s, and 10.0 s, which translates
to stimulation rates of 2.0 Hz, 1.0 Hz, 0.4 Hz, 0.2 Hz, and
0.1 Hz, respectively (Zacharias et al., 2012). The presen-
tation of the blocks was randomised.

Fig. 5 shows the SOI-dependence of the artefact-
corrected trial-averaged magnetic fields B(t) for the five
SOIs. Recordings taken from the MEG channel with the
largest N1m signal above the left hemisphere are shown.
The important features of the waveforms are the increase
of the N1m peak amplitude with increasing SOI, the com-
mon rising slope of all five waveforms towards the N1m
peak, and the different falling slopes after the peak.

4. Evolutionary algorithm

Evolutionary algorithms (EAs) are a group of algorithms
that search the space of alternative solutions to find the
optimal one. These algorithms are called evolutionary be-
cause they are based on mechanisms known from genetics
and evolutionary theory. The operation of an EA starts
with the initiation of an initial population, which consists
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of a given number of specimens. Each such specimen rep-
resents a specific solution to a given problem. An EA op-
erates in a space called the environment, which is created
by the problem to be solved. The adaptation of specimens
to the environment is measured through a fitness func-
tion, which assigns to each specimen a numerical value
indicating the quality of the solution it offers. As in bi-
ology, each specimen is assigned a genotype consisting of
(the so-called) chromosomes and these are composed of el-
ementary units called genes (Arabas, 2001; Michalewicz,
1996).

4.1. Assumptions and representation of chromosomes

So far, the values of the weight-matrix elements of our
AC model have been chosen by trial-and-error; they have
not been optimised using advanced optimisation methods.
Hence, we decided to investigate how such an optimisation
would improve the MEG response generated by the model
in comparison to the corresponding ERF recorded in an
MEG experiment with a human subject. In the current
approach, we have limited ourselves to the optimisation of
the matrices Wee and Wie. The weights in the other two
matrices Wei and Wii remained fixed at the values reported
in previous publications (May et al. (2015); May (2021);
ei-connections on the leading diagonal with a weight of 3.5
and equal to zero otherwise; no non-zero ii-connections
(omitted for simplicity)).

If, in the context of our EA optimisation, a vectorized
connection matrix were to be presented as a chromosome,
the computational and memory complexity of the EA al-
gorithm would become unnecessarily large, because only
a fraction of elements is assumed to be non-zero. These
elements are defined by the pattern of field connections
known from the macaque monkey (see elements in differ-
ent shades of red in Fig. 4). Specifically, no additional
connections beyond the known pattern were allowed to be
generated. Thus, in our implementation, the chromosome
that is the vector representing the Wee matrix has a size
of 1×92 and the chromosome representing the Wie matrix
has a size of 1× 17. We restricted the weight values in the
chromosomes to the range [0, 10]. Since one of the defin-
ing characteristics of the cortical column is the coupling
of the neurons it comprises (for a review, see, for exam-
ple, Gerstner et al., 2014), we allowed one exception: the
range for the leading-diagonal elements of Wee (represent-
ing weights intra-column connections) had a lower bound
of 10−3 instead of zero.

4.2. Initial population

The operation of the EA begins with the generation of
the initial population. We constrained the solution space
such that the initial specimens were created using the
weight values shown in Fig. 4, i.e. in accordance with May
and Tiitinen (2013); May et al. (2015). However, in order
to increase the diversity of the initial population (which is
a desired feature in an EA design), we decided to add a

random value from the uniform distribution U(−0.5, 0.5)
to each gene in the chromosome of each specimen of the
initial population. This approach resulted in good conver-
gence (see the fitness function introduced in Sect. 4.3 and
Fig. 9) at an acceptable time cost (see Sect. 6).

4.3. Fitness function

Once created, the initial population is evaluated by ex-
amining how well a specimen x has adapted to the environ-
ment. This is done for each specimen of the population.
Since the time-independent AC structure reflected by Wee

and Wie is assumed not to depend on temporal proper-
ties of the stimulus, we ran the EA optimisation for all
SOIs simultaneously, as the same optimised Wee and Wie

apply for all SOIs. For this purpose, the fitness function
Φ(x) was used, which we defined as the dot product of the
concatenated form of the true MEG signal (see Sect. 3),
MEGtrue

conc =
[
MEGtrue

1 , . . . ,MEGtrue
S

]
with S = 5 denot-

ing the number of considered SOIs, and its ℓ2 normalised
counterpart generated by the model using the optimised
weight values of the W opti

ee and W opti
ie matrices offered by

specimen x:

Φ(x) =

〈
MEGtrue

conc,
MEGopti

conc(x)∥∥MEGopti
conc(x)

∥∥
2

〉
. (5)

Normalisation of the MEG signal generated by the opti-
mised model provides all specimens with equal chances in
the competition for the best fit in terms of signal mor-
phology. The value of Φ(x) is maximised during subse-
quent iterations of EA. This means that a specimen with
a greater value of Φ(x) is better than those with smaller
values. The value of Φ(x) constitutes the scaling factor for
the normalised synthetic signal to obtain optimal fits with
respect to the reference signal. In order not to complicate
the notation by introducing a new name or label, MEGopti

will denote this scaled synthetic signal in later sections.

To constrain the fitness function Φ(x) given by Eq. (5)
to [0, 1] for visualisation purposes, we normalised it by its
upper bound, that is, by〈

MEGtrue
conc,

MEGtrue
conc∥∥MEGtrue
conc

∥∥
2

〉
=

∥∥MEGtrue
conc

∥∥
2
. (6)

Hence, the normalised fitness function Φn(x) — see Fig. 9
— is given by

Φn(x) =
Φ(x)∥∥MEGtrue

conc

∥∥
2

. (7)

In order to reduce computational burden, we restricted
the MEG time signal to the [−50, 200]-ms time window,
which suffices for a good optimisation with respect to the
N1m waveform (see Fig. 5).
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4.4. Selection

The purpose of selecting the best parents for reproduc-
tion is to obtain best possible offspring. There are many
methods to model the selection process. Preliminarily,
in the process of designing our algorithm, the roulette
method was used for selection, but it did not prove suc-
cessful due to too little selection pressure, i.e. poor differ-
entiation of specimens with a similar value of the fitness
function. Therefore, the ranking method was eventually
used (Rutkowska et al., 1997). This method consists in
arranging specimens in a temporary population according
to the value of the fitness function and assigning each spec-
imen to the rank R. If we define the size of the temporary
population as N , then the worst specimen in this popu-
lation is assigned rank 1, and the best one rank N . To
increase selection pressure in the ranking method, the re-
production probability for a specimen to become a parent
is calculated according to the formula:

Pr(x) =
R(x)∑

z ∈ pt
R(z)

, (8)

where R(x) ∈ {1, . . . , N} is the rank value of a given spec-
imen, and

∑
z ∈ pt

R(z) is the sum of the rank values of all
specimens belonging to the current temporary population
pt. The operation of the ranking method after defining the
probability according to the above formula is still similar
to the roulette wheel method, and therefore to the game
of roulette, yet, it offers an increased selection pressure. If
we imagine that each specimen is assigned an area on the
roulette wheel proportional to the calculated probability
of reproduction Pr(x), then the choice of the specimen de-
pends on what area the ball will land on. Better specimens
will have a larger Pr(x), so they will occupy a larger area
on the roulette wheel, which means they will have a better
chance of becoming a parent (Arabas, 2001; Michalewicz,
1996; Rutkowska et al., 1997).

4.5. Reproduction

After choosing a pair of parents from the temporary pop-
ulation, reproduction takes place, i.e. the process of creat-
ing offspring. In our implementation, four types of arith-
metic crossover were used: one-point, two-point, single-
point, and whole, which are presented in Fig. 6. Each of
these four operators has an equal chance of being used, but
only one of them works for a single pair of parents. The
task of crossovers in EAs is to explore new solution spaces,
because as a result of these operations, offspring differ from
their parents. Via an arithmetic crossover of two parental
chromosomes, x1 and x2, two offspring chromosomes, y1
and y2, are created, which are linear combinations of those
from the parents according to the formula:

y1 = αx1 + (1 − α)x2, (9a)

y2 = (1 − α)x1 + αx2. (9b)

Depending on the problem to be solved, different ap-
proaches to the value of the α parameter are used. For

example, α may have a value that does not change over
the course of the EA, or it changes with each iteration or
crossover. Our implementation uses a technique in which
the value of α is randomly selected from the range (0, 1)
in each crossover. Values 0 and 1 are excluded, since they
could result in a replication of a specimen (Michalewicz,
1996).

4.6. Mutation

After the creation of offspring, they are subject to ran-
dom mutations, which do not cause changes as large as
for arithmetic-crossover operations, because the mutated
specimens resemble their previous version. In our EA,
the possibility of the lack of mutation in a specimen was
allowed, which resulted in an additional parameter that
can be adjusted, that is, the mutation probability Pm.
The mutation was simulated by three operators: insertion,
deletion, and inversion, whose operation is illustrated in
Fig. 7. Only one of these three operators acts on a speci-
men randomly selected for mutation, but each of the three
has equal chance of occurrence. Initially, we used uniform
mutation, but since it resulted in too large changes in the
chromosomes, we eventually used non-uniform mutation,
which was designed to counteract the excessive random-
ness present in the uniform mutation. The principle of the
non-uniform mutation at a randomly selected position i
in the chromosome is to randomly draw γ ∈ {0, 1}, which
translates to deriving a new value gnew of a gene at posi-
tion i, taking into account the previous value gold of that
gene, according to the formula:

gnew =

{
gold + ∆(t, UB − gold) if γ = 0,

gold − ∆(t, gold − LB) if γ = 1.
(10)

Here, LB is the lower bound for gold, equal to 10−3 for
genes located on the leading diagonal of Wee and 0 for
the other genes, UB is the upper bound for gold, equal to
10 for all genes, and t is the EA iteration number. Note
that ∆(t, ρ) attains values in [0, ρ], approaching zero with
increasing EA iterations, when its changes become smaller.
At these last iterations, the EA explores the solution space
more locally than in the initial phase of operation when it
explores the space in a more “courageous” fashion. The
function ∆(t, ρ) is defined as:

∆(t, ρ) = ρ
(

1 − r(1−t/T )b
)
, (11)

where r is a random number from [0, 1], t is the current
EA iteration, T is the maximum number of iterations, and
b is a parameter that determines the degree of dependency
on the iteration number (Michalewicz, 1996).

4.7. Succession and stopping criterion

After producing a certain number of offspring, the value
of the fitness function is calculated for each of them. Then
the set of parent specimens and the set of offspring spec-
imens are merged, and this new set is sorted according
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Figure 6: The four types of arithmetic crossover implemented in the EA. In all cases, two offspring y1 and y2 are produced from two parents
x1 and x2. One-point crossover involves drawing a cut locus ln denoting the cut between genes n and n + 1, where n ∈ {1, . . . , N − 1}
and N is the length of the chromosome. The first offspring y1 is then formed by transcribing the values of the genes from the chromosome
of the first parent x1 located at positions 1 to n, while operations specified by Eq. (9a) are performed at positions n + 1 to N . Similarly,
the second offspring y2 is formed by transcribing the values of genes with indices 1 to n from the chromosome of parent x2, while Eq. (9b)
operates at positions n + 1 to N . In a two-point crossover two loci, ln1 and ln2 , are drawn, where n1 < n2. Offspring y1 is formed by
rewriting parental genes at positions 1 to n1 and n2 + 1 to N from parent x1, whereas (9a) operates at positions n1 + 1 to n2. Similarly,
offspring y2 inherits unchanged genes from parent x2 at positions 1 to n1 and n2 + 1 to N , whereas (9b) operates at positions from n1 + 1
to n2. Single-point crossover involves drawing a position k ∈ {1, . . . , N}. Offspring y1 is then formed by inheriting all but one genes from
parent x1, that is, all except the gene at position k, where Eq. (9a) holds. Similarly, offspring y2 is formed from parent x2, with the crossover
given by Eq. (9b) operating at the kth gene. Whole crossover produces two offspring, y1 and y2, according to Eqs (9a) and (9b) at all gene
locations.

6 2

4 5

Figure 7: The three types of mutation implemented in the EA. Insertion and Deletion operate at a randomly selected location i ∈ {1, . . . , N}
in the yn chromosome, where gnew is derived according to Eq. (10). In Insertion, a new gene is inserted at the position preceding i, this
location becoming the new position i, and this is followed by deletion at the former position N (now N + 1) in order to preserve the original
length of the chromosome equal to N . In Deletion, the randomly drawn index i indicates the position of the gene to be deleted from the
yn chromosome, resulting in a chromosome of length N − 1. In order to preserve the length of the chromosome, gnew derived according to
Eq. (10) is then appended at the end of the chromosome. In Inversion, two loci, ln1 and ln2 , are randomly drawn, with ln1 < ln2 , and then
the order of genes in the chromosome fragment between these two loci is reversed.
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Figure 8: The principle of operation of an evolutionary algorithm.

to the value of the fitness function of each of its mem-
bers. Subsequently, succession takes place, i.e. a certain
number of the best specimens pass to the next genera-
tion. Later, reproduction, mutation, and succession are
performed again, in a loop, as depicted in Fig. 8. There
are two possible criteria for stopping this loop: (1) the
number of iterations predetermined by the programmer
or (2) the fitness function reaching a certain value. Our
implementation uses the first criterion.

4.8. In search of optimal EA parameters

Once the process of designing and implementing the EA
has been completed, another task must be solved, which is
tuning the parameters of the algorithm, such as the num-
ber of specimens or probability of mutation. These pa-
rameters were eventually assigned values listed in Tab. 1.
The first parameter in the table determines the number of
generations after which the EA will stop. Then there is
Number of specimens which denotes how many specimens
were created in the initial population. It was assumed
that this number would be kept constant in consecutive
generations. Next comes Selection method, specifying the
strategy chosen for selecting specimens to become parents.
Then there is also a parameter called Mutation, which indi-
cates the probability that the given offspring will undergo
one of the three implemented mutations (see Sect. 4.6).
Due to the fact that the values on the leading diagonal
of the Wee matrix cannot be equal to zero, another pa-
rameter was created and called Minimum diagonal value
of Wee. The last parameter in the table, Initial popula-
tion, describes the method of creating specimens that will
be included in the initial population. The setting shown
in the table indicates that all specimens carried a similar
pattern of connection strengths across fields, which dif-
fered slightly due to the addition of random numbers from
a uniform distribution U(−0.5, 0.5).

5. Results from optimising the AC model

5.1. Connection matrices and waveforms

Due to the fact that EAs belong to the group of heuris-
tic algorithms, we decided to run the EA implementation

Table 1: Summary of the parameters of the evolutionary algorithm
that were used to obtain the optimisation results.

Parameter Setting
Number of iterations 103

Number of specimens 102

Selection method ranking method
Mutation non-uniform

Probability of mutation 0.9
Minimum diagonal value of Wee 10−3

Initial population identical + U(−0.5, 0.5)

ten times with the parameter settings listed in Tab. 1.
Fig. 9 shows, as an example, results of the EA run with
the largest value of the normalised fitness function Φn(x)
— see Eq. (7) — which happened to be the first of the
ten runs; see Tab. 2. The results for the nine remain-
ing runs can be found in Supplementary material. The
panels in the top row of Fig. 9 show, for each SOI, three
different waveforms. The black trace represents the ex-
perimental MEGtrue

s signal with s ∈ {1, . . . , 5} indexing
across the five SOIs, the blue trace represents the scaled
(see Sect. 4.3) MEGinit

s signal generated by the AC model
for the initial W init

ee and W init
ie matrices, and the red time

course represents the model-generated MEGopti
s signal for

the optimised W opti
ee and W opti

ie matrices. For each SOI,
we make two distinct observations: 1) MEGopti

s matches
the time course of MEGtrue

s much better than MEGinit
s

does. 2) There is a good agreement between MEGopti
s and

MEGtrue
s . This holds even for the case of the 0.5-s SOI,

where the match is likewise acceptable, given the small
magnitude of the MEGtrue

1 signal and the overall complex
morphology of its entire time course between 0 ms and
200 ms.

The bottom row of Fig. 9 depicts the progression of the
normalised fitness function Φn(x) with growing number of
iterations as well as the Wee and Wie matrices in their
initial and EA-optimised forms. As a result of the optimi-
sation process, the MEG response generated by the model
significantly improves from MEGinit

s to MEGopti
s . This im-

provement manifests itself in the monotonic increase of
Φn(x). Further, in the course of EA optimisation, the dis-
tance between the best and the worst specimen understood
as the difference between the corresponding Φn(x) values
declined steadily. This behaviour is characteristic of EA al-
gorithms, and it is observed in each of the ten runs. Tab. 2
lists the respective Φn(x) values obtained from the final of
the 103 iterations for all ten EA runs.

The excellent agreement between true and optimised
waveforms is attributed to the transformation of the con-
nections matrices Wee and Wie during the optimisation
process, as indicated in the panels of the bottom row of
Fig. 9. The homogeneity of the initial matrix W init

ee is char-
acterised by two different main values, one on the leading
diagonal and the other one above and below it. These only
vary slightly due to the addition of random numbers from
a uniform distribution U(−0.5, 0.5) to generate a geneti-
cally diversified initial population (see Sect. 4.2). Over the

9



Table 2: Values of Φn(x) — see Eq. (7) — for the ten EA runs together with arithmetic-mean (AM) and standard-deviation (SD) values
across the runs.

EA run 1 2 3 4 5 6 7 8 9 10 AM SD
Φn(x) 0.983 0.978 0.981 0.981 0.981 0.977 0.981 0.981 0.981 0.981 0.981 0.002

course of the optimisation, the homogeneity of weight val-
ues across the leading diagonal as well as of weight values
above and below it was transformed to a pattern of weights
in W opti

ee , in which the difference of the weight values be-
tween intra-field and feedforward or feedback connections
was modified compared to W init

ee . Further implications of
these findings are discussed in Sect. 5.2. The changes from
W init

ie to W opti
ie were more subtle and did not entail a simi-

larly large change in the intra-field weights as obtained for
Wee.

Fig. 10 displays the MEG time courses from all ten EA
runs. The true MEG signals (MEGtrue

s ) are plotted in
black, whereas the vivid-blue trace displays the arithmetic
mean of the ten initial MEG signals (MEGinit

s , shown in
pale blue). The pale-red traces (MEGopti

s ) are the ten
MEG signals computed with the ten EA-optimised con-
nection matrices, and their arithmetic mean is shown in
vivid red. Note that for each run, the EA does not return
identical results due to EA’s stochastic properties. Nev-
ertheless, Figs 9 and 10 show that the MEG signals pro-
duced by the AC model after EA optimisation of the two
connection matrices Wee and Wie are very similar to the
true MEG, especially in the vicinity of the N1m waveform.

Fig. 11 shows the arithmetic-mean and standard-
deviation representations of the W opti

ee and W opti
ie matrices

computed across all ten EA runs. Notably, standard devi-
ations are relatively small compared to the means, which
speaks for a decent reproducibility of the W opti

ee and W opti
ie

estimates across EA runs.

5.2. Asymmetry in feedforward and feedback connections

As shown in the bottom row of Fig. 9, the opti-
misation approach resulted in an asymmetry of weight
values between feedforward and feedback connections in
the EA-optimised Wee matrices. Mean feedback connec-
tion weights from parabelt to belt, wopti

b←p = 1.307, be-
tween belt fields, wopti

b←b = 1.592, and from belt to core,
wopti

c←b = 0.800, are stronger than the respective feedfor-
ward connection weights of wopti

b→p = 1.247, wopti
b→b = 1.394,

and wopti
c→b = 0.729. This asymmetry is also reflected in

the corresponding waveforms shown in the upper row of
Fig. 12. Here, for each SOI of the run whose wave-
forms and matrices are presented in Fig. 9, the MEGopti

s

waveforms (red curves) are broken down into feedforward
(green curves), feedback (burgundy curves) and intra-
field contributions (orange curves). Both feedback and
intra-field connections provide positive contributions to
the overall MEG response, with the feedback contribu-
tions being roughly 1.5 times as large as the intra-field
contributions. In general, the dominance of feedback over
intra-field contributions holds true for all SOIs and across

all ten EA runs, with feedback contributions being be-
tween 1.5 times and twice as large as intra-field contri-
butions. The feedforward contributions are of opposite
polarity, and, thus, reduce the sum of the large positive
feedback and intra-field contributions to the MEGopti

s re-
sponse. The difference between the absolute values of the
feedback and feedforward waveforms is indicated by the
grey curves. The initial dominance of feedforward con-
tributions around the P1m can be explained by the de-
layed onset of feedback activity relative to feedforward ac-
tivity. Subsequently, the feedback contribution becomes
dominant during the N1m. Again, this holds true for all
SOIs and all ten EA runs (see bottom row of Fig. 12).
This confirms that the stronger feedback connections in
the time-independent W opti

ee matrix, described earlier, also
results in a difference at the level of the dynamic response
of the model.

Tab. 3 summarises means across feedforward, feedback,
and intra-field connections calculated using the classifica-
tion depicted in Fig. 3. Note that the ratio of the mean
feedback weight to the mean feedforward weight in W opti

ee

— that is, wopti
FB /wopti

FF — ranges from 1.073 to 1.338, com-
pared to the respective range of winit

FB /winit
FF spanning from

0.625 to 1.162 for the initial conditions reflected by W init
ee .

Some small asymmetries in the weights of the initial Wee

matrices are caused by the aforementioned diversification
of the initial population by adding random numbers from
the uniform distribution U(−0.5, 0.5) to the fixed values
inherited from May et al. (2015); see Sect. 4.2 and Fig. 4.
Also, the feedback connections appear to be stronger than
previously assumed by May et al. (2015) and May (2021);
see Fig. 4. Moreover, the earlier assumption of identical
connection weights across the entire leading diagonal of
both Wee and Wie turns out not to hold, as revealed by
the EA-optimised versions of these matrices. For clarity,
data for the ten EA runs from Tab. 3 are visualised in
Fig. 13.

5.3. Spatial distribution of optimised waveforms

In the traditional view, ERFs are considered to arise
from spatially discrete, local (point-like) sources. The in-
clusion of the anatomy of the auditory cortex as an essen-
tial part of our AC model provides an alternative perspec-
tive on the generation of ERFs. In this view, there is only
one underlying process distributed throughout the entire
network: ERFs are generated by the network properties
of the whole AC (Hajizadeh et al., 2019, 2022). Specif-
ically, all AC fields contribute to the ERF, which, as a
corollary, can be broken down into individual contribu-
tions from core, belt, and parabelt. An example of this
decomposition of the optimised ERF is shown in Fig. 14.
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Figure 9: Results for the one EA run (out of ten) that resulted in the largest value of the fitness function in the last iteration. The top
row shows MEG waveforms, with black traces representing the true MEG, blue traces the MEG output of the AC-model for the best initial
specimen, and red traces the MEG output of the AC-model for EA optimised Wee and Wie. The left panel in the bottom row shows the
progression of the normalised fitness function (see Eq. (7)), while the panels to the right depict the initial and optimised Wee as well as the
initial and optimised Wie matrices.

Figure 10: EA optimisation results for the five SOIs. In each panel, the black curve represents the true MEG signal, the vivid-blue curve
the MEG signal created by averaging the ten MEG signals (shown in pale blue) simulated with the AC model using the initial Wee and Wie

matrices, and the vivid-red curve the MEG signal computed by averaging the MEG signals (in pale red) simulated with the AC model using
the EA-optimised Wee and Wie.

Figure 11: Arithmetic-mean (AM) representations of the optimised weight matrices Wee (first panel) and Wie (third panel) computed across
the ten EA runs along with the corresponding standard deviations (SD, second and fourth panel, respectively). The standard deviations are
small relative to the respective mean weight values.
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Figure 12: Decomposition of MEGopti
s , that is, the net simulated ERF into contributions from the different connection types. Akin to Fig. 10,

the top row shows results for the one EA run (out of ten) that resulted in the largest value of the fitness function in the last iteration. Here,
in each of the five panels the net ERF (red curve) is decomposed into contributions from feedforward connections (green curve), feedback
connections (burgundy curve) and intra-field connections (orange curve) for a given SOI. Additionally, the difference between the absolute
values of the time courses for feedback and feedforward contributions is plotted in grey. In the bottom row, this time course difference is
plotted across all ten EA runs of the EA and for each SOI respectively.

Table 3: Arithmetic means of wi,j values (see Eq. (4)) of the initial
and EA-optimised Wee matrices across feedforward (FF), feedback
(FB), and intra-field (IF) connections, respectively (see Fig. 3). The
last two rows show the arithmetic mean (AM) and standard deviation
(SD) of these mean values across the ten EA runs.

EA run winit
FF winit

FB winit
IF wopti

FF wopti
FB wopti

IF
1 0.479 0.430 6.178 1.001 1.137 2.027
2 0.433 0.470 5.981 0.982 1.245 1.600
3 0.477 0.428 5.905 0.945 1.095 1.835
4 0.426 0.495 5.823 0.985 1.318 1.581
5 0.456 0.402 5.956 0.953 1.230 1.868
6 0.491 0.454 5.928 0.935 1.191 1.540
7 0.428 0.459 5.921 1.053 1.172 1.685
8 0.467 0.339 6.118 1.023 1.327 1.606
9 0.536 0.335 6.033 0.928 0.996 2.018
10 0.454 0.430 5.832 0.986 1.080 1.961

AM 0.465 0.424 5.968 0.979 1.179 1.772
SD 0.034 0.053 0.115 0.040 0.106 0.191

Figure 13: Visual representation of the data from Tab. 3 for the ten
EA runs.

Here, the dominant contribution to the overall ERF sig-
nal (red curves) stems from the summation across the eight
belt fields (cyan curves), which clearly exceeds the summed
contribution from the three core fields (lime curves). This
observation applies for all SOIs and also holds true for a
total of six out of the ten EA runs. In the remaining four
runs, contributions from core and belt were roughly equal
across all SOIs. The contributions from the two parabelt
fields (purple curves) are the weakest across all SOIs. This
was the case across all EA ten runs. We also noticed a clear
shift of the parabelt waveform to higher N1m-peak latency
values compared with the core and belt waveforms.

Adaptation, the reduction of a neuronal response due to
stimulus repetition, has a lifetime which is traditionally es-
timated through using the regular-SOI paradigm. In this
approach, the amplitude of the response increases as a
function of SOI, and this dependence is described by fit-
ting the peak amplitudes with an exponentially saturating
function (Lü et al., 1992; Lu et al., 1992). The steepness
of the fitted function provides the adaptation time con-
stant τSOI. For the MEGopti signal, the mean adaptation
time constant across the ten EA runs was τSOI = 2.029 s
(SD = 0.054 s). The decomposition of the waveforms
into core, belt, and parabelt contributions enabled the
computation of area-specific τSOI values: The shortest
τSOI = 1.841 s (SD = 0.128 s) was found in the belt area,
whereas the means for core and parabelt barely differed
from each other, with τSOI = 2.459 s (SD = 0.151 s) for
the core and τSOI = 2.431 s (SD = 0.242 s) for the para-
belt.
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Figure 14: Decomposition of MEGopti
s , that is, the net simulated ERF into contributions from the three different AC areas for the one EA

run (out of ten) that resulted in the largest value of the fitness function in the last iteration. In each panel, the net ERF (red curve) is
decomposed into contributions from core (lime curve), belt (cyan curve), and parabelt (purple curve) for a given SOI.

6. Discussion

The human auditory cortex is poorly understood in
terms of its anatomical structure, that is, in terms of its
parcellation into fields and the connectivity between fields.
It is also poorly understood how the interaction between
these fields shapes the auditory ERF. Here, we demon-
strated that computational modelling combined with ad-
vanced optimisation methods could be useful for tackling
these questions. We propose an EA optimisation of the AC
model by May et al. (2015) and May (2021) so that the
model is able to synthesise auditory ERFs measured with
a variety of SOIs. In this approach, the model parameters
to be optimised are the connection strengths between the
various fields of the model. The optimisation resulted in a
strong improvement of the synthesised MEG outputs of the
model in terms of their fits to true MEG signals. In par-
ticular, the N1m waveforms elicited by stimuli presented
at various SOIs could be synthesised with a very good fit
to the experimental data. In earlier work of May et al.
(2015) and May (2021), feedforward connection weights
were assumed to be symmetrical with feedback weights,
and intra-field connection weights expressed on the lead-
ing diagonals of the weight matrices were assumed to be
identical across the fields (Fig. 4). These assumptions did
not survive EA optimisation (see Fig. 9): In the optimised
model, feedback connections were stronger than feedfor-
ward ones, and the intra-field connections varied from field
to field.

The function and significance of cortical feedback con-
nections are still unclear, with the literature containing
various views. Crick and Koch (1998) and Sherman and
Guillery (2011) reported that feedback connections are
weak and modulatory. Bastos et al. (2012) assumed that
they are functionally inhibitory, supporting suppressive
top-down prediction signals in the predictive coding frame-
work. Our results indicate otherwise: feedback connec-
tions are neither weak nor functionally inhibitory. This
result is consistent with that of Hajizadeh et al. (2019)
who investigated the differential contributions to the syn-
thesised MEG signal made by active feedforward and feed-
back connections. The weights of these contributions are
expressed in the k terms in Eq. (4). By systematically
varying the weights of the feedforward contributions to

the MEG signal while keeping the feedback contributions
fixed, and vice versa, they found that the P1m reflects pri-
marily feedforward activation, whereas feedback activation
predominantly drives the N1m and P2m. In the current
optimised model, therefore, the prominence of the N1m
response of the auditory ERF is linked to the prominence
of feedback connections over feedforward ones.

We inspected ERF generation and adaptation in the
three areas of AC separately. The core, the belt, and
the parabelt all contributed to ERF generation across the
whole time course of the response. The ERF, therefore,
does not arise out of spatially discrete, localised sources
but, rather, reflects the activity of the entire AC. The
contribution to the ERF from each area adapts, and thus
adaptation emerges from a complete reorganisation of AC
dynamics rather than a reduction of activity in discrete
sources (see also Hajizadeh et al., 2019, 2021, 2022). Fur-
ther, the lifetime of adaptation is area-specific, with the
belt recovering more quickly than the core and the para-
belt. This offers a prediction that might be testable
through non-invasive measurements.

An inspection of the results across the ten EA runs
reveals a diversity both in the optimised forms of Wee

and Wie (see Supplementary material) as well as in the
synthetic MEG waveforms, due to the stochastic na-
ture of EAs. The diversity in the connection matri-
ces might potentially indicate the risk that the mapping
M : {Wee,Wie} → MEG is non-injective surjective.1 How-
ever, since we have never obtained two identical MEG time
courses from any pair of independent EA runs optimising
the AC model, we identify no formal objections to recapit-
ulate the hypothesis stated in Sect. 1 that the anatomical
structure of the human AC is reflected in the signatures of
auditory evoked responses recorded by MEG (Hajizadeh
et al., 2019, 2021, 2022). Further, noting the diversity of
the synthetic MEG waveforms, we derived their respective
arithmetically averaged versions, as depicted in Fig. 10.

Calculations using EAs can be demanding. In order
to decrease time cost, we parallelised the pipeline wher-
ever it was possible so that efficient performance could be

1 https://www.wolframalpha.com/examples/mathematics/

mathematical-functions/injectivity-and-surjectivity
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achieved using multi-thread processing. Using a computer
with two 24-core 2.9-GHz Intel Xeon Platinum 8268 CPUs,
a single EA iteration takes only about 10 s. Further re-
duction of the total time can be achieved by distributing
the computations across multiple nodes of a computational
cluster or by using GPU architectures.

In future work, it would be worth exploring other op-
timisation methods such as gradient-based algorithms.
These tend to approach the optimal solution faster than
evolutionary algorithms when the objective function is dif-
ferentiable and has an unambiguous extremum. Neverthe-
less, evolutionary algorithms, due to their stochastic na-
ture and ability to explore the solution space, can avoid
getting stuck in local minima more easily and thus search
for a global solution more effectively, although this does re-
quire more time (Yu and Gen, 2010). An effective method
that could also be used in advanced optimisation of pa-
rameters of computational models is the Sequential Neural
Posterior Estimation (SNPE), which provides both opti-
mised parameters and their distributions (Gonçalves et al.,
2020). However, Gonçalves et al. (2020) state that scaling
SNPE to optimise more than 30 parameters is challeng-
ing, as estimating full posterior scales exponentially with
the dimensionality determined by the number of parame-
ters. Note that in our work, we are optimising 109 weight
values (92 constituting genes in the chromosome reflect-
ing the non-zero entries in Wee and 17 constituting genes
in the chromosome reflecting the non-zero entries in Wie).
Regardless, the SNPE method could be used in our prob-
lem to adjust other parameters than weight values. In
the future, we intend to explore alternative optimisation
methods to determine if the optimisation results are re-
producible with acceptable variance and free from bias.

The current work represents a promising first step in de-
veloping a new tool for exploring the connection patterns
of human auditory cortex. This relies on MEG measure-
ments being used as the basis for optimising the structure
of a computational model of AC. The main limitation of
the current approach is the a priori parcellation of the
model into fields. This field structure is poorly under-
stood in humans, and we therefore used the organisation
of the monkey auditory cortex (Kaas and Hackett, 2000b;
Hackett et al., 2014) as the template. In future work, we
look forward to extending our approach so that the field
structure itself can be optimised.
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Buzsáki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extra-
cellular fields and currents: EEG, ECoG, LFP and spikes. Nature
Reviews Neuroscience 13, 407–420.

Crick, F., Koch, C., 1998. Constraints on cortical and thalamic
projections: the no-strong-loops hypothesis. Nature 391, 245–250.

David, O., Kiebel, S.J., Harrison, L.M., Mattout, J., Kilner, J.M.,
Friston, K.J., 2006. Dynamic causal modeling of evoked responses
in EEG and MEG. NeuroImage 30, 1255–1272.

Douglas, R.J., Martin, K.A.C., 2004. Neuronal circuits of the neo-
cortex. Annual Review of Neuroscience 27, 419–451.

Gerstner, W., Kistler, W.M., Naud, R., Paninski, L., 2014. Neu-
ronal dynamics: From single neurons to networks and models of
cognition. Cambridge University Press.
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