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The Kuramoto model serves as a paradigm for describing spontaneous synchronization in a sys-
tem of classical interacting rotors. In this study, we extend this model to the quantum domain
by coupling quantum interacting rotors to external baths following the Caldeira-Leggett approach.
Studying the mean-field model in the overdamped limit using Feynman-Vernon theory, we show how
quantum mechanics modifies the phase diagram. Specifically, we demonstrate that quantum fluctu-
ations hinder the emergence of synchronization, albeit not entirely suppressing it. We examine the
phase transition into the synchronized phase at various temperatures, revealing that classical results
are recovered at high temperatures while a quantum phase transition occurs at zero temperature.
Additionally, we derive an analytical expression for the critical coupling, highlighting its dependence
on the model parameters, and examine the differences between classical and quantum behavior.

I. INTRODUCTION

Synchronization is an emergent collective phenomenon
that can be observed in various physical systems, such
as pendula [1], fireflies [2, 3], and neurons [4]. In clas-
sical mechanics, synchronization can occur when two or
more oscillators interact with each other through a com-
mon coupling [5, 6]. Classical synchronization has been
witnessed in systems that can operate in the quantum
regime [7, 8], which is nowadays accessible to experiments
due to the recent advancements in the field of quantum
technologies. For example, optomechanical devices [9–
11] have allowed the coupling between light and mechan-
ical motion to be controlled, leading to the possibility of
implementing non-linear dynamics that can result in a
synchronized motion.

These perspectives, with their possible applications
in quantum technologies, have also posed a number
of new questions on how to characterize and quan-
tify synchronization in quantum systems. In this do-
main, synchronization becomes even more intriguing, as
it has to deal with quantum fluctuations and entan-
glement. Specifically, the problem of quantum fluctua-
tions has already attracted interest in theoretical stud-
ies, and has been addressed in models of coupled Van
der Pol rotors with non-linear dissipation [12, 13] and
non-dissipative Hamiltonian rotors [14]. Understand-
ing synchronization in the quantum realm may be a
useful resource for quantum technological applications
[15, 16], for example in quantum thermal machines [17–
19]. For this reason, an intense theoretical activity aimed
at quantifying synchronization in quantum systems from
continuous variables[20–28] to discrete degrees of free-
dom [18, 29–42]. Different measures of synchroniza-
tion have been introduced, ranging from phase-space or
correlation quantities [43–48] to information-theoretical
approaches[44, 49–51]. This large body of work, how-
ever, did not address a seemingly natural question: how

to extend a paradigmatic model of classical synchroniza-
tion, the Kuramoto model [52], to study synchroniza-
tion in the presence of quantum fluctuations. This is
the starting point for our work. The classical model de-
scribes the behaviour of interacting rotors with a non-
linear dynamics, and exhibits a phase transition from a
dynamically disordered phase, to an ordered one charac-
terized by phase locking. Generalizations of the model
[53–59] have allowed to explore and enrich the phase di-
agram by studying also the effects of noise, inertia, dis-
order and long-range interactions on the emergence of
synchronization, and extending the concept of rotors to
nonabelian objects [60]. Despite efforts to study and un-
derstand the emergence of collective behavior of rotors in
a semiclassical regime, where quantum fluctuations be-
come relevant and modify the system’s dynamics [61],
a systematic analysis of spontaneous synchronization in
the fully quantum regime is still lacking. Can quantum
synchronization emerge in a low-temperature regime or
do quantum fluctuations dominate the system’s behavior,
preventing spontaneous synchronization?

In this paper, we address this problem by exploring
whether the Kuramoto model can be extended to the
quantum regime. We study the dynamics of the model
from high to low temperature and show that synchro-
nization survives quantum fluctuations and a quantum
phase transition is still present in the zero-temperature
limit.

The rest of the article is organized as follows: in Sec. II
we describe the celebrated Kuramoto model with a path
integral formalism. We also present its phase diagram
and the most relevant results, focusing in particular on
the generalized massive model. In Sec. III we propose
a new quantum model, based on the classical model we
discuss in II. The limits in which the model is studied
are discussed, and the order parameter to detect quan-
tum synchronization is defined. In this section we also
show that in the high-temperature regime, our model re-
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produces correctly the classical one. In Sec. IIIA we
introduce the self-consistent equation to determine the
order parameter. The self-consistent equation allows us
to study the phase diagram of the quantum model in the
overdamped regime, and in particular to determine an-
alytically the critical coupling above which the system
enters a synchronized phase. The results of this anal-
ysis are reported in Sec. IV. The last section, Sec. V,
we present some conclusions that can be drawn from our
study.

II. CLASSICAL KURAMOTO MODEL
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Figure 1. Representation of the classical Kuramoto model for
N = 5. A set of rotors (dots on dashed circles) evolve with in-
dependent frequencies. Their mutual interactions (green solid
lines) induce a phase transition to synchronised dynamics.

The Kuramoto model describes the behaviour of N
interacting planar rotors. It exhibits two phases: an in-
coherent phase characterized by the rotors moving inde-
pendently, and a synchronized phase in which the sys-
tem behaves collectively. The mechanism underlying in
the synchronization process is phase locking, it causes the
emergence of a fixed relation between the phases of the
rotors.

The state of each rotor is characterised by a phase θi,
an angular velocity vi, with i = 1, ..., N . The evolution
of this state is determined by a frequency ωi, and damp-
ing γ. The characteristic frequencies ωi are independent
of each other and, throughout the paper, will be drawn
from an even, unimodal frequency distribution g(ω), with
average ω = ⟨ω⟩g(ω) = 0 and variance σ2.

We consider here the massive version of this model
described by the following set of Langevin equations: θ̇i = vi

mv̇i +mγvi = F [θ;ωi] + ξi

(1)

Here, θ = (θ1, ..., θN ) and

F [θ;ωi] = ωi −
J

N

N∑
j=1

sin(θi − θj) . (2)

The noise in the Langevin equation is a Gaussian stochas-
tic process with ⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2Dδi,jδ(t−t′).
The initial conditions θ(0) = θ0, v(0) = v0 are drawn in-
dependently for every rotor from a distribution ρ(θ0, v0).
In the massless limit (mγ = const, m → 0) the

Langevin equation reduces to the Kuramoto-Sakaguchi
model [62]

θ̇i = F [θ, ωi] + ξi ∀i = 1, .., N . (3)

The synchronized behaviour is signaled by a non-zero
value, in the stationary state, of the modulus of the com-
plex order parameter ψ(t) defined as

ψ(t) = r(t) eiφ(t) =
1

N

N∑
j=1

eiθj(t) . (4)

The modulus r of the order parameter ψ is bounded to
the interval r(t) ∈ [0, 1]. It efficiently detects synchro-
nization since it averages to zero if the rotors evolve in-
coherently. The phase φ corresponds to the phase of the
collective motion of the rotors.
In the thermodynamic limit, the definition of the order

parameter is regarded as an average over the frequency
distribution, the noise distribution and the distribution
of the initial conditions, namely

ψ(t) =

∫ ∞

−∞
dω g(ω)

〈
eiθ(t;ω,ξ)

〉
ξ,θ0,v0

, (5)

where the phase θ(t;ω, ξ) satisfies the Langevin equa-
tion (1) with F [θ;ω] = F [θ;ω, ψ] = ω − Jr sin(θ − φ).
Notice that, to formally decouple the evolution of

the rotors, we have used J
N

∑N
j=1 cos(θi − θj) =

J
2 e

iθi
(

1
N

∑N
j=1 e

−iθj
)
+c.c. = Jr cos(θi − φ). This results

in (5) becoming a self-consistent equation for the order
parameter.
For further convenience it is useful to express the av-

erage that defines the order parameter in a path integral
form [55]. Discretizing à la Ito, one can express (5) as
(see Appendix A for details):

ψ(t) =

∫ 2π

0

dθ eiθ
∫ ∞

−∞
dv

∫ ∞

−∞
dω g(ω) ρ(θ, v, t;ω, ψ) .

(6)
.

Here ρ(θ, v, t;ω, ψ) is a probability distribution that quantifies the probability for the ith rotor to have phase and
angular velocity (θ, v) at time t, and can be expressed as [63–65], [66][Chap.4].

ρ(θ, v, t;ω, ψ) = N
∫ 2π

0

dθ0

∫ ∞

−∞
dv0

∫ θ(t)=θ

θ(0)=θ0

Dθ
∫ v(t)=v

v(0)=v0

Dv δ(θ̇(τ)− v(τ)) eiScl[θ(τ),v(τ)] ρ(θ0, v0), (7)
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where the classical action is given by:

Scl =
i

4D

∫ t

0

dt′
(
mv̇(t′) +mγv(t′)− F [θ(t′);ω, ψ(t′)]

)2
. (8)

Solving the self-consistent equation for the order pa-
rameter allows to gain knowledge about the phase tran-
sition. The behavior of the system is determined by the
interplay between the coupling strength J , the width of
the frequency distribution, σ, and of the noise distribu-
tion, D. In general, the phase transition for the model
described by Eq. (1) is first-order, but it becomes a con-
tinuous phase transition in the overdamped limit [5, 55].

An interesting case is the massless model, for which
the critical coupling is known analytically to be

Jcl
C = 2

(∫ ∞

∞
dω g(ω)

D

D2 + ω2

)−1

. (9)

From this formula, the effects of noise and the width
of the frequency distribution are evident. Noise hinders
the phase-locking mechanism, and so does increasing the
variance of the frequency distribution. In the case of
the noiseless model, the critical coupling becomes simply
Jcl
C = 2

πg(0) .

III. QUANTUM KURAMOTO MODEL
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Figure 2. Representation of the quantum Kuramoto model.
Same as Fig.1, with the rotors as quantum systems. The
coupling to independent identical quantum baths is explicitly
shown as a solid line connecting to a set of harmonic oscillators
(blue boxes)

Our goal is now to construct a model that reproduces
the classical one in the high-temperature limit. Since the
classical Kuramoto-Sakaguchi model is characterized by
noise and dissipation, it cannot be obtained as a classical
limit of a quantum Hamiltonian model. Thus, we intro-
duce dissipation in the quantum regime via a Caldeira-
Leggett [67] model made of N interacting rotors, each
one linearly coupled to a different and independent bath

of harmonic oscillators. The baths are assumed to be
identical.
The Lagrangian describing this model is

LTOT = LS + LB + LSB . (10)

LS is the Lagrangian of the system of rotors

LS =

N∑
i=1

mθ̇2i
2

+ ωiθi +
J

2N

∑
j ̸=i

cos (θi − θj)

 . (11)

The characteristic frequencies ωi are once again drawn
from a distribution g(ω) having the same characteristics
as in the classical case. LB is the baths’ Lagrangian:

LB =

N∑
i=1

LBi =

N∑
i=1

M∑
ji=1

[
Mẋ2ji
2

− 1

2
MΩ2

jix
2
ji

]
. (12)

LSB is the interaction Lagrangian

LSB =

N∑
i=1

LSBi
= C

N∑
i=1

θi

M∑
ji=1

xji . (13)

In order to decouple the equations, as in the classi-
cal case, it is convenient to work in the thermodynamic

limit with a mean-field model. We assume 1
N

∑N
j=1 e

iθj =〈
1
N

∑N
j=1 e

iθj
〉
+ δψ with δψ infinitesimal and define

ψ = reiφ =
〈

1
N

∑N
j=1 e

iθj
〉

where the quantum aver-

ages are taken over the rotors’ reduced density matrix.
The mean-field Lagrangian L becomes up to first order
in δψ

L =

N∑
i=1

(
LSi

+ LBi
+ LSBi

)
, (14)

with LSi
=

mθ̇2
i

2 + ωiθi + Jr cos(θi − φ). Notice that the
mean-field model is described by a Lagrangian decoupled
in a sum of terms depending only on the ith rotor. From
now on for brevity

V [θ] = −ωθ − Jr cos (θ − φ) . (15)

In order to reproduce the friction term in Eq. (1) in
the classical limit, The Caldeira-Leggett’s model requires
an Ohmic bath [67]. We therefore demand that, for each
and every bath, the distribution of frequencies for the
collection of harmonic oscillators is

M∑
i=1

C2

2MΩi
δ(Ωi − ν) −−−−→

M→∞

mγν

π
Θ(ωc − ν) , (16)
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where Θ(·) is the Heaviside fucntion and ωc is a cutoff
for the frequencies of the baths’ harmonic oscillators.

A few comments about the definition domain of the
phases θi are in order. Two choices are possible: the
phases of the rotors can be defined over the circle, i.e.
θi ∈ [0, 2π], or they can be defined over the line θi ∈ R.
The difference lies in identifying or not the position θ
with θ + 2nπ, n ∈ Z. The Langevin equation that de-
scribes the classical model in Eq. (1) is not dependent
on the choice of the phases’ domain since it is inherently
2π periodic. For the quantum model we define θi ∈ R.
The tilted potential term ωθ and the linear coupling with
the bath are compatible with this choice [68][Chap.2].
We note that with this choice of phase domain, the La-
grangian in Eq. (11) can be regarded as the Lagrangian
of a resistively shunted Josephson Junction [69].

In order to understand if the system described by the
mean-field Lagrangian (14) can sustain synchronization,
an order parameter should be defined. In analogy with

the classical case, we define

ψ(t) = r(t) eiφ(t) =
1

N

N∑
j=1

Tr
{
eiθj ρS(t)

}
(17)

where ρS(t) is the reduced density matrix of the system
of rotors evolved to time t after tracing out the baths’
degrees of freedoms. Notice that, once again, in the
mean-field approximation this is a self-consistent equa-
tion for the order parameter, since the density matrix
evolves with a Lagrangian dependent on ψ.
The initial state of the evolution is chosen to be sep-

arable in the rotors; the mean-field approximation and
the choice of independent baths allow to maintain the
density matrix separable in the rotors at any time. For
this reason, from now on, the discussion will focus only

on the evolution of the density matrix ρ
(i)
SB of a single ro-

tor and its own bath. The initial density matrix for the
ith rotor and the bath is also assumed to be separable:

ρ
(i)
SB = ρi ⊗ ρB .

The evolution of the reduced density matrix of a single rotor can be obtained through Feynman-Vernon method
[70, 71], appropriate to treat quantum systems with a classical limit given by a stochastic equation of motion [72–75].
Applying the Feynman-Vernon method along the lines of Ref. [67], the density matrix element ρi(θ1, θ2) = ⟨θ2|ρ̂i|θ1⟩
is given at time t by

ρi(θ1, θ2, t) =

∫ ∞

−∞
dθ′1

∫ ∞

−∞
dθ′2

∫ θ1(t)=θ1

θ1(0)=θ′
1

Dθ1
∫ θ2(t)=θ2

θ2(0)=θ′
2

Dθ2 e
i
ℏ (S0[θ1]−S0[θ2]) F [θ1, θ2] ρi(θ

′
1, θ

′
2, 0) (18)

where S0 =
∫ t

0
dt′LSi

(t′) for the ith rotor, and F [θ1, θ2] is the Feynman-Vernon’s influence functional that accounts
for the effects of the interaction with the bath.

We can regard the previous equation as an evolution of the density matrix due to an effective action Seff [θ1, θ2] =
S0[θ1]− S0[θ2]− iℏ lnF [θ1, θ2]. Switching to the more convenient variables θ+ = (θ1 + θ2)/2, θ− = θ1 − θ2:

Seff [θ+, θ−] =

∫ t

0

dt′
(
mθ̇+θ̇− −

∑
q=±1

(−1)qV [θ+ + q θ−
2 ]−mγθ−θ̇+ +

iD

ℏ

∫ t

0

dt′′ θ−(t
′)K(t′ − t′′)θ−(t

′′)
)
. (19)

In the previous equation D = mγkBT , and K(t) is given by the Fourier transform K(t) =
∫ ωc

−ωc

dν
2πK(ν)e−iνt, with

K(ν) =
ℏν

2kBT
coth

(
ℏν

2kBT

)
. (20)

The temperature T is set by the bath, and the signatures of its interaction with the rotor are the friction termmγθ−θ̇+
and the imaginary term containing the memory kernel K(t). These terms are given, respectively, by the imaginary
and real part of the bath’s correlation function (ℏα(t′−t′′) in the notation of Ref. [67]). In Eq. (19), we have neglected
a Lamb-shift term in the energy originating from the influence functional, which does not affect the dynamics of the
model [72].

Before proceeding with the calculation of the order parameter, it is worth noticing how the classical dynamics
is recovered in the high temperature limit of the quantum model. In the infinite temperature limit, the memory

kernel becomes K(t)
T→∞−−−−→ δ(t) and the imaginary damping term prevents θ− to vary [72], [68][Chap.5]. This means

that, starting from a “classical” diagonal state with θ−(0) = 0, the density matrix will always remain diagonal (the
off-diagonal term are exponentially suppressed). Moreover, expanding up to first order θ−(t), the evolution becomes

ρi(θ+, θ−, t) =

∫ ∞

−∞
dθ′+

∫ θ+(t)=θ+

θ+(0)=θ′
+

Dθ+
∫ θ−(t)=0

θ−(0)=θ′
−=0

Dθ− e
i
ℏSeff [θ+,θ−] ρi(θ

′
+, θ

′
− = 0, 0) , (21)
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with the effective action being

Seff [θ+, θ−] =

∫ t

0

dt′

(
iD

ℏ
θ2−(t

′)− θ−(t
′)
(
mθ̈+ +mγθ̇+ − ω + Jr sin(θ+ − φ)

))
, (22)

where we have used the fact that, at first order in θ−, V [θ] ≈ θ−F [θ+] . With the change of variables θ−(τ)
ℏ → η(τ),

one recovers the classical effective action for the stochastic process (1) showed in Eq. (A3) after the integration of the
δ-function in the angular velocity. Thus, the quantum model reproduces correctly the massive Kuramoto-Sakaguchi
model in the infinite temperature limit.

A. The self-consistent equation for the order
parameter

In order to obtain a self-consitent equation for the or-
der parameter, we start noticing that the reduced den-
sity matrix of the rotors at time t is given by ρS(t) =⊗N

i=1 ρi(t). Eq. (17) then takes the form

ψ(t) =
1

N

N∑
j=1

Tr
{
eiθj ρj(t)

} N⊗
k ̸=j,k=1

Tr{ρk} (23)

=
1

N

N∑
j=1

Tr
{
eiθj ρj(t)

}
.

In the thermodynamic limit the previous expression
corresponds to an average over the frequency distribution
g(ω). Denoting as ρ(t) the density matrix of a single rotor
we have:

ψ(t) =

∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ+ e

iθ+ ρ(θ+, θ− = 0, t) . (24)

To get a more explicit expression of the self-consistent
equation for the order parameter, the path integration
in Eq. (18) should be performed. The specific form of
the potential (15) appearing in the effective action does
not allow for a general calculation of the path integral.
However, the knowledge of the behaviour of the classi-
cal model helps: in the overdamped limit the classical
phase transition to the synchronized phase is of second-
order. We expect that the quantum phase transition in
the overdamped limit is second order too. If this is the
case, assuming J ∼ JC , we can perform a perturbative
expansion in r for r ∼ 0 of (24) to gain insight onto the
quantum dynamics. Thus, we will hereafter focus explic-
itly on the overdamped regime mγ

ℏ ≫ 1 of the model.

The perturbative expansion of terms in the evolution
of the density matrix in Eqs. (18),(19) involves only the
approximation

exp

{
−iJr
ℏ

∫ t

0

dt′
∑
q=±

q cos
(
θ+(t

′)− q θ−(t′)
2 − φ(t′)

)}
∼ 1 − iJr

ℏ

∫ t

0

ds cos
(
θ+(s)− θ−(s)

2 − φ(s)
)

+
iJr

ℏ

∫ t

0

ds cos
(
θ+(s) +

θ−(s)
2 − φ(s)

)
.

The zeroth order of the expansion of the density matrix
(18) gives an evolution according to a Lagrangian with
potential V [θ] = −ωθ. This Lagrangian does not contain
terms that can synchronize the rotors, hence it does not
contribute to the self-consistent equation for the order
parameter. The first order expansion, together with the

Ansatz φ(t) = 0 and r ∼ 0 constant, yields, for t→ ∞

r = rJC lim
t→∞

∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ+e

iθ+ρ′(θ+, θ−, t) (25)

where

ρ′(θ+, 0, t) =
−i
2ℏ

∑
c,c′=±1

c′
∫ t

0

ds

∫ ∞

−∞
dθ′+

∫ ∞

−∞
dθ′−

∫ θ+(t)=θ+

θ+(0)=θ′
+

Dθ+
∫ θ−(t)=0

θ−(0)=θ′
−

Dθ−

exp

{
i

ℏ
S′
eff [θ+, θ−; s, t]c,c′

}
ρ(θ′+, θ

′
−, 0) , (26)
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and

S′
eff [θ+, θ−; s, t]c,c′ = S′

Re[θ+, θ−; s, t]c,c′ + i S′
Im[θ−; s, t]c,c′

=

∫ t

0

dt′
{
mθ̇+θ̇− −mγ θ−θ̇+ + ω θ−

+iℏc θ+(t′)δ(t′ − s)− iℏcc′

2
θ−(t

′)δ(t′ − s) +
iD

ℏ

∫ t

0

dt′′θ−(t
′)K(t′ − t′′)θ−(t

′′)

}
. (27)

The details of the derivation of Eqs. (27) can be found in Appendix (B).

If Eq. (25) admits a solution for r ̸= 0, then the model
admits a phase transition to a synchronized state in the
overdamped limit, and the resulting JC gives the value
of the critical coupling for the phase transition. Notice
that the first order expansion does not contain informa-
tion about the order of the phase transition, that could
only be understood through a third order expansion. The
goal is now to find the critical coupling and to study its
dependence on the parameters that characterize the sys-
tem: m, γ, kBT , and the variance σ of the even unimodal

frequency distribution g(ω).
From now on, we will work taking the limit t → ∞

since we are interested in the steady-state properties of
the system.
The expansion to first order in the self-consistent equa-
tion has produced a Gaussian path integral that can now
be performed [74, 75]. The calculation can be performed
via a decomposition of the effective action (27) in its real
and imaginary part S′

eff = S′
Re[θ+, θ−]+ iS

′
Im[θ−], as can

be seen from the previous equation.

The calculation, reported in Appendix B, produces the following result for the first order expansion of the self-
consistent equation:

r = rJC lim
t→∞

∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ+ e

iθ+

(−i
2ℏ

)
mγ

2πℏ
∑

c,c′=±1

c′
∫ t

0

ds

∫ ∞

−∞
dθ′+

∫ ∞

−∞
dθ′− ρ(θ

′
+, θ

′
−, 0)

exp

{
− 1

ℏ
S′
Im[θ̃−; s, t]c,c′ −

i

ℏ
mθ′−

˙̃
θ+(0) + ic θ̃+(s)

}
(28)

where θ̃±, are the solutions of the equations
¨̃
θ−(t

′) − γ
˙̃
θ−(t

′)− ℏc
m δ(t

′ − s) = 0

¨̃
θ+(t

′) + γ
˙̃
θ+(t

′)− ω
m + ℏcc′

2m δ(t′ − s) = 0

. (29)

The explicit solution of these equations is reported in
appendix C.

The term c = 1 in the sum does not contribute because
it gets completely damped by the imaginary part of the
action. From now on we will consider only the term c =

−1. The expression for
˙̃
θ+(0) and θ̃+(s) can be deduced

from the result in appendix C. It is convenient to proceed

by calculating the integration over θ+ first. Isolating the
integration and all the terms of (28) involving θ+, we find

mγ

2πℏ

∫ ∞

−∞
dθ+e

iθ+(−mγ
ℏ θ′

−− e−γs)) = δ
(
θ′− − ℏ

mγ e
−γs
)
.

(30)
This constraints the initial value of θ− as determined
by the delta function. In the massless limit (γ → ∞) the
value that the delta function selects is θ′− = 0, in the gen-
eral overdamped limit mγ

ℏ ≫ 1 (m and γ finite) we select
θ′− ∼ 0. Performing now the integration over θ′− to elim-
inate the delta function and denoting θ̃−(t

′)
∣∣
θ′
−= ℏ

mγ e−γs

as θ∗−(t
′; s, t), the self-consistent equation becomes

r =
−iJCr
2ℏ

lim
t→∞

∫ ∞

−∞
dω g(ω)

∫ t

0

ds
∑

c′=±1

c′ exp

{
ic′

ℏ
2mγ

− i
ω(t− s)

mγ
− 1

ℏ
S′
Im[θ∗−; s, t]

}
(31)

where we have used the fact that in the overdamped limit∫ ∞

−∞
dθ′+ ρ(θ

′
+,

ℏ
mγ

e−γs) ∼
∫ ∞

−∞
dθ′+ ρ(θ

′
+, 0) = Tr{ρ(t = 0)} = 1 .

This approximation becomes exact in the massless limit. Also notice that the sign of the sine, sin
(

ℏ
2mγ

)
∼ ℏ

2mγ ,
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is always defined (and positive) in the overdamped limit,
and that the expression does not depend on the initial
state of the system.

We conclude that a non-trivial solution to the self-
consistent equation exists (if the time limit exists), thus
a phase transition happens at JC .

IV. RESULTS

From the analysis in Section IIIA, and Eq. (31) in
particular, it follows that the quantum Kuramoto model
in the overdamped limit admits a transition to a synchro-
nized phase with a critical coupling given by

JC = 2mγ
1

lim
t→∞

∫∞
−∞dω g(ω)

∫ t

0
ds e−i

ω(t−s)
mγ − 1

ℏS′
Im[θ∗

−;s,t]
(32)

In the limit of high temperature ℏγβ ≪ 1 and vanishing
mass, the critical value (9) is recovered. In this limit
K(τ) → δ(τ), and θ∗− has non-zero value only on the time

interval [s, t], over which θ∗−(t
′) = ℏ

mγ (see Appendix C).

This implies that S′
Im[θ∗−] = ℏ kBT

mγ (t− s), thus

JC

∣∣∣∣
ℏγβ≪1

= 2

(∫ ∞

−∞
dω g(ω)

kBT

(kBT )2 + ω2

)−1

= Jcl
C (kBT ) .

The last result corresponds to the classical result re-
ported in the literature for D = kBT [5, 55]. It is impor-
tant to keep in mind that it holds only in the classical
regime ℏγβ ≫ 1, nonetheless we will extend this formula
to low temperatures in order to provide a comparison
with the behaviour of the quantum result in the follow-
ing discussion.

The dependence of the critical coupling on tempera-
ture and the comparison with its classical counterpart
are reported in Fig. 3, where a Gaussian frequency distri-
bution for the characteristic frequencies has been chosen
to obtain the plots (see Appendix D) for the comparison
with a Cauchy distribution). From the analysis of panel
(a) and (b), the existence of three regimes emerges. In

the classical regime, defined by kBT
ℏγ ≳ 1, the classical re-

sults are recovered (cf upper fading line corresponding to
the classical critical coupling for the overdamped mass-
less model). The critical coupling in this latter case is
(9), and becomes Jcl

C = 2kBT for kBT ≫ σ. The plots
shows that this limit is reached asymptotically also by
the quantum results.

A semiclassical region is met when decreasing the tem-
perature. Comparing the result in this region with the
classical one extendend to lower temperature, we notice
that the quantum results start to deviate quantitatively
from the classical, although the behaviour of the quan-
tum and classical critical coupling remains qualitatively
similar. Notably, the quantum critical coupling is con-
sistently higher than the classical one, as shown in panel
(c). This is due to the emergence of quantum fluctua-
tions, that as an extra source of noise, make the synchro-
nization harder to be established [61]. The behaviour of
JC in this region can be understood through the expan-
sion in θ− ∼ 0 already performed in Eq. (21) to recover
the classical limit. Going beyond the first order expan-
sion therein, a semi-classical regime is obtained from a
third-order expansion[72].

The latter yields a potential term:

−Jr
∑
s=±1

(−1)s cos
(
θ+ + s θ−2

)
∼ Jr (1 + ∆J) θ− sin (θ+ − φ) , (33)

with ∆J ∝ ℏ
mγ

ℏγ
kBT considering γ to set the relevant time scale.

The above expansion tells us that in the semiclassical
regime the motions happens in a potential of the same
form of the classical one, but renormalized by ∆J . This
yields the first deviation from the classical behaviour.

The quantum region, characterised by kBT
ℏγ ∼ 0 shows

the most significant deviations from the classical result.
In this region quantum fluctuations make the behaviour
of the two critical couplings different and the deviation
appears to be stronger than linear in the decrease of tem-
perature

This is particularly evident from panel (c) showing the

ratio between the quantum and the classical extended re-
sult JC

Jcl
C

. The ratio is greater than one, enforcing the fact

the it is more difficult to reach the synchronized phase
in the quantum regime, as it increases approaching zero
temperature.

An important result emerging from this discussion is
the existence of a finite critical coupling at any tempera-
ture ranging from T = 0 to infinite T . A phase transition
to a synchronized state is possible at every temperature
and thus quantum fluctuations do not menage to prevent
the emergence of this collective phenomenon.
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Figure 3. Temperature-dependence of the inverse of critical
coupling in units of temperature (a) and (b) in logarithmic
scale for different values of mγ

ℏ . The legend in (a) holds for
all the panels. In (a) the classical critical coupling (upper
fading line) is plotted for reference for high temperatures. (c)
Ratio between the quantum results and the classical one (ex-
tended to low temperatures) vs temperature. The difference
in behaviour of the classical and quantum critical couplings
is clearly evident close to zero temperature. All results are
obtained for g(ω) Gaussian with zero mean and σ = 2

0.00 0.02 0.04 0.06 0.08 0.10
kBT
h̄γ

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

J
C

h̄
γ

σ = 2

σ = 1

σ = 0.5

Figure 4. Critical coupling as a function of temperature for
different choices of the variance σ of the Gaussian frequency
distribution. The overdamped ratio is fixedmγ

ℏ = 7. The dots

shown for kBT = 0 represent
Jcl
C
ℏγ for the classical noiseless

model compatible with D = kBT = 0. The colors of the dots
are related to the choice of σ as shown in the legend.

Another analysis should be carried on. Figure 4 shows
the critical coupling for a fixed value of the overdamped
ratio and for different choices of σ, the variance of the
frequency distribution g(ω). This plot suggests that in
the quantum realm, the width of the frequency distribu-
tion affects the critical coupling more than in the classical
case. In both cases (quantum and classical), we notice
that the wider the frequency distribution, the more dif-
ficult to synchronize. The quantum regime seems to be
more affected by this effect. This can be understood
studying the behaviour of just two rotors. Suppose the
rotors θ1 and θ2, have characteristic frequencies ω1 = σ,
ω2 = −σ. Their phase difference Θ− = θ1 − θ2 has a
behaviour that is determined by the washboard poten-
tial V [Θ−] = −σΘ− − J cos(Θ−) and the coupling with
the bath. If Θ− is locked in a minimum of the poten-
tial, phase locking happens. From the shape (suppose
σ < J) of the potential it is clear that decreasing σ, the
height of the energy barrier that separates two minima

(∆V = 2J
√

1− σ2

J2 +2σ sin−1
(
σ
J

)
− πσ) increases, mak-

ing it easier to lock Θ− in a minimum. Notice that, in
the semiclassical region, Eq. (33) suggests that the am-
plitude of the oscillations are given by J(1 + ∆J) > J ,
explaining the enhancement of the disorder effect outside
the classical regime,
It should also be noticed that for any finite variance

σ of the frequency distribution, the critical coupling at
zero temperature is finite, yielding a quantum phase tran-
sition to a synchronized state. The interplay of different
element emerges from this plot: decreasing the temper-
ature increases the effects of quantum fluctuations and
yields higher critical couplings with respect to the clas-
sical case, decreasing the width of the distribution helps
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the emergence of synchronization.
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Figure 5. Phase diagram of the quantum model in the
coupling-temperature space, the region below the curves cor-
responds to the synchronized phase. A quantum phase tran-
sition appears at zero temperature. The result is obtained
for a Gaussian distribution of frequencies with zero mean and
variance σ = 2.

These considerations are summarized in Figure 5, that
shows the phase diagram of the quantum model. The
perspective to study the model in this plot is reversed:
the coupling is fixed to a value J and the plot shows the
behaviour of the critical temperature TC , below which
the system is synchronized. The synchronized phase cor-
responds to the one below the lines in the plot, the part
above the curves corresponds to the incoherent motion
phase. Two important features are captured in this pic-
ture. The quantum phase transition is evident: it is re-
quired a finite coupling to synchronize the system at zero
temperature. Moreover, the classical result for the mass-
less overdamped model, given by kBTC = J/2 is reached
by our results in the high temperature limit.

V. DISCUSSION AND CONCLUSIONS

In this work we introduced a generalization to the
quantum regime of the well-known Kuramoto model.
The model is built out of quantum interacting rotors
coupled to environments modelled à la Caldera-Leggett
as a collection of harmonic oscillators. The Feynman-
Vernon technique allows us to obtain an evolution for the
reduced density matrix that describes the subsystem of
the rotors. The coherences in the reduced density matrix
are exponentially damped in the high-temperature limit,
yielding a classical distribution that satisfies the Klein-
Kramer’s equation associated to the classical stochastic
process that defines the noisy classical Kuramoto model.
The mean-field quantum model has been studied in its
overdamped limit, that enables to perform a perturba-

tive expansion around the critical coupling and carrying
out the calculations analytically.

This shows that the introduced quantum Kuramoto
model in the overdamped regime admits a phase transi-
tion from a incoherent motion phase, to a synchronized
one. The phase transition occurs at any temperature,
yielding also a quantum phase transition at zero temper-
ature. The critical coupling for the phase transition has
been calculated analytically. It correctly reproduces the
classical one in the high-temperature and shows devia-
tion from this result extended to lower temperatures. In
particular two regions can be observed, beyond the clas-
sical regime. A semiclassical region is first met when de-
creasing the temperature below the inverse damping rate
1
ℏγ , here quantum fluctuations make the critical coupling

slowly deviate from the classical result, yet behaving
qualitatively similarly to the classical one. The quantum
region, met around zero temperature kBT

ℏγ ≪ 1, shows

significant deviations from the classical result: around
zero temperature a sudden increase of the ratio JC

Jcl
C

hap-

pens, and at T = 0 the critical coupling for the quantum
model is higher than the classical one but finite (for finite
variances of the distribution of the characteristic frequen-
cies). The ratio between the quantum and the classical
extended result is always greater than one, signaling the
fact that quantum fluctuations play against the emer-
gence of synchronization without destroying it. The ques-
tion of whether the behavior we found undergoes changes
beyond the mean-field limit remains open. Gaining in-
sight into the role that entanglement plays in quantum
synchronization would be interesting. More specifically,
it would be pertinent to determine whether entanglement
monogamy and dissipation processes suffice to constrain
the effects of entanglement on the findings of our work.
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Appendix A: Path integral formulation for the classical stochastic process

The average value over disorder of the observable eiθ(t;ω,ξ) must encode the fact that the phase θ satisfies the
Langevin equation (1). With a path integral formalism and discretizing à la Ito, it gives:

〈
eiθ(t;ω;ξ)

〉
ξ

= N
∫ 2π

0

dθ

∫ ∞

−∞
dv

∫
Dξ
∫ θ(t)=θ

θ(0)=θ0

Dθ
∫ v(t)=v

v(0)=v0

Dv exp

{
− 1

4D

∫ t

0

dt′ξ2(t′) + iθ(t)

}
δ(θ̇τ − vτ ) δ

(
mv̇τ +mγvτ − F [θτ ;ω, ψ] + ξτ

)
. (A1)

The second delta function, enforcing the Langevin dynamics, can be represented in exponential form through the use
of an auxiliary field η(τ):

δ
(
mv̇τ +mγvτ − F [θτ ;ω, ψ] + ξτ

)
) ∝

∫
Dη exp

{
i

∫ t

0

dt′η(t′)ξ(t′)

}
exp

{
i

∫ t

0

dt′η(t′) [mv̇(t′) +mγv(t′)− F [θ(t′);ω, ψ(t′)]]

}
. (A2)

Notice that choosing this representation of the delta function we now have a Gaussian path integral over the noise
variable ξ(t) with both quadratic and linear term. This integration generates another Gaussian form in the auxiliary
variable η:

〈
eiθ(t;ω;ξ)

〉
ξ

= N
∫ 2π

0

dθeiθ
∫ ∞

−∞
dv

∫
Dη
∫ θ(t)=θ

θ(0)=θ0

Dθ
∫ v(t)=v

v(0)=v0

Dv δ(θ̇(τ)− v(τ))

exp

{
−D

∫ t

0

dt′η2(t′)

}
exp

{
i

∫ t

0

dt′η(t′)
(
mv̇(t′) +mγv(t′)− F [θ(t′);ω, ψ(t′)]

)}
. (A3)

It is straightforward to see that the Gaussian integration over the auxiliary field η yields:

〈
eiθ(t;ω;ξ)

〉
ξ

= N
∫ 2π

0

dθ eiθ
∫ ∞

−∞
dv

∫ θ(t)=θ

θ(0)=θ0

Dθ
∫ v(t)=v

v(0)=v0

Dv δ(θ̇(τ)− v(τ))

exp

{
− 1

4D

∫ t

0

dt′
(
mv̇(t′) +mγv(t′)− F [θ(t′);ω, ψ(t′)]

)2}
. (A4)

The previous expression describes the average value of the observable eiθ(t;ω,ξ) for a stochastic process in the form of
Eq. (1). It is also convenient to write down the same average value for the same stochastic process in the massless

limit. Keeping in mind that the only constraint is now satisfying the Langevin equation θ̇ = F [θ;ω, ψ] + ξ(t), one can
follow the previous steps and write:

〈
eiθ(t;ω;ξ)

〉
ξ
= N

∫ 2π

0

dθ eiθ
∫ θ(t)=θ

θ(0)=θ0

Dθ exp
{
− 1

4D

∫ t

0

dt′
(
θ̇(t′)− F [θ(t′);ω, ψ(t′)]

)2}
. (A5)

Appendix B: First order expansion of the self-consistent equation

The expansion to first order of the self-consistent equations along with the Ansatz φ(t) = 0 and r ∼ 0 constant,
yields

r = − iJCr
ℏ

lim
t→∞

∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ+ e

iθ+

∫ ∞

−∞
dθ′±

∫ θ+(t)=θ+

θ+(0)=θ′
+

Dθ+
∫ θ−(t)=0

θ−(0)=θ′
−

Dθ−∫ t

0

ds

(
cos

(
θ+(s)−

θ−(s)

2

)
− cos

(
θ+(s) +

θ−(s)

2

))
exp

{
i

ℏ

∫ t

0

dt′
(
mθ̇−θ̇+ −mγθ−θ̇+ + ωθ−

)}
exp

{
−D

ℏ2

∫ t

0

dt′dt′′θ−(t
′)K(t′ − t′′)θ−(t

′′)

}
ρ(θ′+, θ

′
−) . (B1)
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Rewriting the trigonometric term in exponential form, one gets straightforwardly

r = − iJCr
2ℏ

lim
t→∞

∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ+ e

iθ+

∫ ∞

−∞
dθ′±

∫ θ+(t)=θ+

θ+(0)=θ′
+

Dθ+
∫ θ−(t)=0

θ−(0)=θ′
−

Dθ−∫ t

0

ds
∑

c,c′=±
c′ exp

{
icθ+(s)−

icc′

2
θ−(s)

}

exp

{
i

ℏ

∫ t

0

dt′
(
mθ̇−θ̇+ −mγ θ−θ̇+ + ωθ−

)}
exp

{
−D

ℏ2

∫ t

0

dt′dt′′θ−(t
′)K(t′ − t′′)θ−(t

′′)

}
ρ(θ′+, θ

′
−) . (B2)

Denoting the argument of the exponential as S′
eff [θ+, θ−] and regarding it as a new effective action, one finally gets

Eq. (27).
The path integration that now should be calculated is simply Gaussian. Decomposing the new effective action (27)

in its real and imaginary part S′
eff = S′

Re[θ+, θ−]+ iS
′
Im[θ−], one can easily get the result of the path integration. The

real part of the effective action contains quadratic and linear terms in both fields θ+ and θ−. The imaginary part
contains only a quadratic term in θ−. Notice that there are not quadratic terms just in the field θ+.

The strategy is now to find the saddle point of S′
Re, i.e. to find θ̃+(t

′) and θ̃−(t
′) such that the first derivative in

both fields is zero, respecting the boundary conditions θ̃±(t) = θ±(t) and θ̃±(0) = θ±(0).

Then, the following change of variables should be performed: θ±(t
′) = θ̃±(t

′) + δθ±(t
′), with δθ±(0) = δθ±(t) = 0.

The path integration will be now performed over the fields δθ+(τ) and δθ−(τ). After having performed the change of
variables, it is convenient to rewrite the action in matrix form:

S′
eff [δθ+, δθ−; s, t]c,c′ = S′

eff [θ̃+, θ̃−; s, t]c,c′ + (B3)

=
1

2

∫ t

0

dt′dt′′
(
δθ+(t

′) δθ−(t
′)
)
A(t′ − t′′)

(
δθ+(t

′′)
δθ−(t

′′)

)
+

∫ t

0

dt′B(t′)T
(
δθ+(t

′)
δθ−(t

′)

)
with

A(t′ − t′′) =

(
0 −mδ′′(t′ − t′′) +mγδ′(t′ − t′′)

−mδ′′(t′′ − t′)−mδ′(t′′ − t′) 2iD
ℏ K(t′ − t′′)

)
,

B(t′) =
iD

ℏ

(
0∫ t

0
dt′′
(
K(t′ − t′′) +K(t′′ − t′)θ̃−(t

′′)
))

and N (t) = mγ
2πℏ(1−e−γt) . A is the matrix that contains the coefficients of the quadratic terms in the fields θ̃−, and

B contains the coefficients of the linear terms. Notice that the first entry of both A and B is zero, since there aren’t
quadratic and linear terms in the fiels δθ+ only.
The Gaussian path integration over the variables δθ± yields

ρ′(θ+, 0, t) =
−i
2ℏ

∑
c,c′=±1

c′
∫ t

0

ds

∫ ∞

−∞
dθ′+

∫ ∞

−∞
dθ′− N (t) exp

{
i

ℏ
S′
eff [θ̃+, θ̃−; s, t]c,c′

}

exp

{
−1

4

∫ t

0

dt′dt′′B(t′)TA−1(t′ − t′′)B(t′′)

}
. (B4)

Since the inverse of the matrix A has the form A−1 =

(
a b
c 0

)
, the matrix product appearing above gives BTA−1B = 0

and does not contribute to the result of the path integration.
Thus, the last issue we are left with is finding the solutions to the saddle point equations:

∂S′
Re

∂θ+

∣∣∣∣
θ̃±

=
¨̃
θ−(t

′)− γ
˙̃
θ−(t

′)− ℏc
m
δ(t′ − s) = 0 (B5)

∂S′
Re

∂θ−

∣∣∣∣
θ̃±

=
¨̃
θ+(t

′) + γ
˙̃
θ+(t

′)− ω

m
+

ℏcc′

2m
δ(t′ − s) = 0

The solutions to these equations have jump discontinuities in the derivatives, the jump is proportional to ℏ
mγ thus it

gets smaller in the overdamped limit. In the massless limit the discontinuities appear directly in the solutions (not
just in the derivatives). The solutions to the saddle point equations can be found in appendix C.

Substituting the solutions (C1),(C2), in the first order approximation of the self-consistent equation, one gets in
the infinite time limit
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Appendix C: Solutions to the saddle point equations

The solutions to the saddle point equations (B5) that respects the boundary conditions θ̃±(0) = θ′±, θ̃−(t) = 0,

θ̃+(t) = θ+ are:

θ̃−(t
′) =


θ′− +

(
eγt′−1

)(
−θ′

−+
ℏceγs−ℏc−γmθ′−eγs

γm(eγt−1)
−

eγt−γs(ℏceγs−ℏc−γmθ′−eγs+)
γm(eγt−1)

)
eγs−1 0 ≤ t′ ≤ s

e−γs
(
eγt′−eγt

)
(cℏeγs−cℏ−γmθ′

−eγs+)
γm(eγt−1) s < t′ ≤ t

(C1)

θ̃+(t
′) =


−

(
e−γt′−1

)( eγt(e−γs−e−γt)(−cℏc′eγs+cℏc′−2γmθ′++2γθ+m−2tω)
2γm(eγt−1)

+θ′
+−θ++ tω

γm

)
e−γs−1 + θ′+ + ωt′

γm 0 ≤ t′ < s

− eγt
(
e−γt′−e−γt

)
(−cℏc′eγs+cℏc′−2γmθ′

++2γθ+m−2tω)
2γm(eγt−1) + θ+ + ωt′

γm − tω
γm s ≤ t′ ≤ t

(C2)

It is interesting to notice that in the massless limit (mγ
ℏ =cost, γ → ∞), the expressions of the saddle point equations

get easier but discontinuities appear:

lim
γ→∞

mγ/ℏ=cost

θ̃−(t
′) =


θ′− 0 ≤ t′ < s

θ′− − c ℏ
mγ s < t′ < t

0 t′ = t

(C3)

lim
γ→∞

mγ/ℏ=cost

θ̃+(t
′) =


θ′+ t′ = 0

θ+ + cc′ ℏ
2mγ + ω(t′−t)

mγ 0 < t′ < s

θ+ + ω(t′−t)
mγ s ≤ t′ ≤ t

(C4)

Appendix D: Critical coupling for a Cauchy
distribution

The expression for the critical coupling in eq. (32)
holds for all even unimodal frequency distributions g(ω)
with zero-mean. It is interesting to consider also a
Cauchy distribution, and compare the results for the crit-
ical coupling with the one obtained with the Gaussian
distribution already considered above. For this reason
we introduce the Gaussian distribution g1(ω) and the
Cauchy distribution g2(ω)

g1(ω) =
1√
2πσ2

e−
ω2

2σ2

g2(ω) =
1

π

σ

ω2 + σ2

The results for the critical coupling JC obtained for the
two choices are contained in the following plot. From
the above figure it is clear that the behaviour is the
same for the two distributions: a phase transition can
happen at any temperature and a quantum phase tran-
sition is present at kBT = 0. Both quantum results
approach their classical limit (dashed lines) for higher
temperatures. As expected from the classical model [5],
the Cauchy distribution yields a higher critical coupling.
This is related to the fact that a Cauchy distribution
with width σ has higher tails than a Gaussian distribu-
tion with variance σ, and thus the system with a Cauchy

0.00 0.01 0.02 0.03 0.04 0.05 0.06
kBT
h̄γ

10−1

3× 10−2

4× 10−2

6× 10−2

J
C

h̄
γ
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0.15 0.20 0.25
3× 10−1

4× 10−1

5× 10−1

Figure 6. Critical coupling as a function of temperature for
a Gaussian (darker line) and Cauchy (lighter line) distribu-
tion in logarithmic scale. The overdamped ratio is fixed to
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[21] S. Sonar, M. Hajdušek, M. Mukherjee, R. Fazio, V. Ve-
dral, S. Vinjanampathy, and L.-C. Kwek, Squeezing en-
hances quantum synchronization, Phys. Rev. Lett. 120,
163601 (2018).

[22] C. Davis-Tilley, C. K. Teoh, and A. D. Armour, Dynam-
ics of many-body quantum synchronisation, New Journal
of Physics 20, 113002 (2018).

[23] A. Chia, L. C. Kwek, and C. Noh, Relaxation oscillations
and frequency entrainment in quantum mechanics, Phys.
Rev. E 102, 042213 (2020).

[24] S. Walter, A. Nunnenkamp, and C. Bruder, Quan-
tum synchronization of a driven self-sustained oscillator,
Phys. Rev. Lett. 112, 094102 (2014).

[25] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum
synchronization of two van der pol oscillators, Annalen
der Physik 527, 131 (2015).

[26] N. Lörch, S. E. Nigg, A. Nunnenkamp, R. P. Tiwari, and
C. Bruder, Quantum synchronization blockade: Energy
quantization hinders synchronization of identical oscilla-
tors, Phys. Rev. Lett. 118, 243602 (2017).

[27] O. Zhirov and D. Shepelyansky, Quantum synchroniza-
tion, The European Physical Journal D 38, 375 (2006).

[28] A. Cabot, G. L. Giorgi, and R. Zambrini, Metastable
quantum entrainment, New Journal of Physics 23,
103017 (2021).

[29] A. Roulet and C. Bruder, Quantum synchronization and
entanglement generation, Phys. Rev. Lett. 121, 063601
(2018).

[30] A. Roulet and C. Bruder, Synchronizing the smallest pos-
sible system, Phys. Rev. Lett. 121, 053601 (2018).
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