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Abstract

This thesis resides at the intersection of machine learning (ML) and cultural heritage,
addressing the unique challenges posed by the analysis of 3D point cloud data from
historic sites. The convergence of these sites with the modern age necessitates
innovative approaches to their documentation, interpretation and management.
Advances in remote sensing technologies, like LiDAR, offer a solution by enabling
non-invasive, high-resolution digital representations of these sites in the form of
point clouds. However, effectively utilising this digital medium for mapping and
inventory remains challenging. This thesis bridges the gap by researching, designing
and implementing an automated object extraction solution using ML and artificial
intelligence (AI) techniques, emphasising explainability to enhance human learning
from AI decision-making.

The core pursuit of this thesis revolves around the automatic extraction and
classification of objects from point cloud data within cultural heritage sites. A series
of interconnected articles form the foundation of this exploration. The initial article
introduces GeoPart-Transfer for automated extraction and labelling of memorial
objects. The second article presents XPCC, a prototype-based classification and
visualisation method for point clouds. It embraces interpretability and adaptability,
permitting continuous learning without extensive retraining. The final article presents
GeoPart-XPCC, a comprehensive framework applied to multiple scenes from various
burial ground sites.

Throughout these articles, a review of related research is undertaken, while
experimentation adds empirical weight to the findings. The experimental results
illustrate how these methodologies enhance the usability of digital point cloud data,
offering broad applicability across different scenarios. By addressing the challenge
of automatic object extraction from point cloud data, this thesis brings practical
and impactful contributions to the domains of cultural heritage, archaeology and AI.
Through comprehensive research, innovation, and experimentation, it illuminates the
potential of digital technologies in preserving our historical heritage. It also lays a
foundation for future explorations to other domains.
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Chapter 1

Introduction

This thesis sits at the interesting crossroads of machine learning (ML) and artificial
intelligence (AI) applied to 3D point cloud data and cultural heritage management.
Advances in remote sensing technologies, such as terrestrial and airborne light
detection and ranging (LiDAR) systems, have led to the development of versatile
mobile sensors capable of creating digital representations of heritage sites (Leica,
n.d.; A. F. Chase et al., 2011). The massive point datasets, called point clouds,
generated by these systems represent surface features by the spatial position of points
in three-dimensions and accurately preserve intrinsic information relating to geometric
shape, surface and depth. The surface features, or objects, of interest may include
buildings and their type, vehicles and their type, trees and their functional type and
so on. These object types define the categories or classes that objects can be grouped
into. Point clouds representing real world environments provide fine-resolution digital
proxies and offer a valuable data source for cultural heritage management and related
fields such as archaeology (Bewley, Crutchley, and Shell, 2005; Spina et al., 2011;
Ø. Trier et al., 2016; Gallwey et al., 2019). An important task for every heritage
management body is the mapping and management of such objects for the purposes
of curation, interpretation and assessment. However, the manual extraction and
labelling of memorial objects from these point clouds is a labour-intensive process.
Traditionally, it is necessary for the objects to be observed, recorded and processed
manually by an operator (Kramer, 2015). Therefore, it is of great significance to
automate these tasks.

1.1 Objectives and Focus

The primary objective of this thesis is to develop a robust and efficient system for
the detection, classification, and extraction of memorial objects, such as headstones
and grave markers, from 3D point cloud scenes. The study aims to bridge the gap
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Chapter 1. Introduction 1.2. Overview of Point Cloud Technology

between advanced computer vision techniques and the preservation and management
of burial sites, thereby offering valuable insights for cultural heritage preservation and
maintenance.

Cemeteries and other cultural heritage sites serve as important repositories of
cultural heritage, documenting historical narratives, genealogy, and the evolution of
societal norms. However, the accurate identification, cataloguing, and maintenance
of memorial objects within vast cemeteries remain a challenging and lab or-intensive
task. This thesis proposes innovative approaches that utilises 3D point cloud data
captured through LiDAR or structured light scanning technologies.

Subsequently, the thesis focuses on the development of novel detection and
classification methods specifically tailored for memorial objects. The research
explores the integration of deep learning architectures, such as convolutional neural
networks (CNN) and point-based networks, to analyse and classify different types of
memorial objects accurately. Additionally, the project investigates the incorporation
of explainable artificial intelligence (XAI) techniques to enhance the accuracy and
interoperability of the classification process.

Furthermore, the research addresses the challenge of segmenting individual
memorial objects from the 3D point cloud scenes. The proposed segmentation
algorithm aims to extract precise and well-defined segments of memorial objects, thus
facilitating better visualisation, analysis, and maintenance.

The ultimate goal of this thesis is to create an automated system capable of
efficiently detecting, classifying, and segmenting memorial objects in large-scale 3D
point cloud scenes. The developed system is expected to significantly reduce the
manual effort involved in cemetery maintenance, providing valuable insights for
historical research, cultural heritage preservation, and urban planning.

By combining computer vision techniques with the field of cultural heritage,
this research strives to contribute to the emerging interdisciplinary area of digital
archaeology and open new avenues for the preservation and appreciation of our
collective past.

1.2 Overview of Point Cloud Technology

Point clouds are produced by scanning processes and, as such, typically only represent
the surface of a physical object or an area of interest. The basic form of point cloud
is referred to as 3D point clouds, as each point is represented by its three-dimensional
vector of coordinates (x, y, z). However, additional dimensional data may also be
added. Observational data, such as colour values, (R, G, B), are typically added to
aid in visualisation and sometimes used in processing. A point cloud may also contain
surface normals (i.e., a vector that is perpendicular to the tangent plane line at a
particular point on the underlying surface). Visually, the orientation of the surface

2



Chapter 1. Introduction 1.2. Overview of Point Cloud Technology

normals are used to apply the shading and other visual effects from light sources
in computer graphics applications. The magnitude of the reflected signal from laser
systems is known as intensity and is also commonly used.

Three common approaches to generating point cloud data are depth cameras,
photogrammetry and LiDAR systems.

• Depth cameras are a special class of digital camera which combine a colour image
sensor and a depth sensor. The colour image sensor captures red, green and blue
(RGB) values, whereas the depth sensor captures per-pixel depth information
(Endres et al., 2014). For this reason, they are often denoted as RGB-D cameras,
where D is depth. By mapping the RGB images with the depth information,
this technology can create a coloured point cloud.

• Photogrammetry is a method to obtain reliable information about physical
objects and their environment from overlapping photographs of an object or area
and converting them into a 3D digital model (Mikhail, Bethel, and McGlone,
2001).

• Light detection and ranging, or LiDAR, is a method wherein light pulses are
measured to determine the distances and dimensions of physical objects or areas.
The LiDAR sensor emits a pulse of light towards a target which is then reflected
from the surface. A built-in receiver then detects the backscattered signal and
calculates the distance light has travelled. The 3D position of where the signal
was returned can then be calculated using the known position of the sensor, the
direction in which the light was sent and, as previously mentioned, the distance.
The inherent output format of LiDAR is a 3D point cloud. The point clouds
derived from LiDAR are typically coloured by the elevation (z value) or the
intensity value. RGB values can also be added by colourising the point cloud
from a digital orthomosaic (Wolf, Dewitt, and Wilkinson, 2014). A significant
benefit of LiDAR is that it uses an active sensor, meaning that it does not
depend on auxiliary illumination such as the Sun. Therefore, it is possible to
collect data through cloud cover and at night. Several common types of LiDAR
system are as follows.

– Airborne laser scanning (ALS) is a system of LiDAR which is installed to
an aircraft, such as an aeroplane, helicopter or unmanned aerial vehicle
(UAV), to create a point cloud model of the landscape. The use of an
aircraft makes it possible to quickly cover a large footprint. This type of
LiDAR is useful for creating detailed and accurate digital elevation models
(Atkinson and Tatnall, 1997). Furthermore, the true ground surface can be
extracted from the unprocessed point cloud to create a digital terrain model
(Lloyd and Atkinson, 2006). Flying at higher altitudes usually reduces the

3
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accuracy and point density of the point cloud but has the added benefit of
covering even larger areas more quickly. Conversely, the increased height
of airborne LiDAR results in poor coverage of oblique (vertical) faces of
structures. This makes it ineffective at capturing complex environments
with many small vertical objects, such as burial grounds.

– Terrestrial laser scanning (TLS) is a LiDAR system that is either stationary
or mobile but that is connected to the Earth in some way. The stationary
variety is commonly used as a survey method, where the LiDAR is fixed
to a stationary device, such as a tripod, connected to the ground (Pfeifer
and Briese, 2007). TLS can also be used to scan the interiors of structures
(S. Lee, Majid, and Setan, 2013).

– Mobile LiDAR is a subdivision of TLS; however, the system is attached
to a moving mount and the point cloud is then acquired along the path of
travel. In comparison to ALS, Mobile LiDAR has a direct view of oblique
surfaces but cannot easily capture the tops of structures. As the system is
moving, the point density is more variable compared to the stationary TLS
and the ALS systems. It is therefore common for two or more scanners to
be used in combination to produce more even coverage. Mobile LiDAR are
typically mounted to vehicles and used to scan roadways and cityscapes
(Guan et al., 2016). However, the introduction of handheld, wearable
and other mobile systems has made it possible to apply this technology
to locations such as cultural heritage sites (Rodŕıguez-Gonzálvez et al.,
2017). The experiments presented in this paper were performed on point
cloud data produced from mobile LiDAR scanners.

1.3 Computation Challenges and Hardware Con-

straints

Processing 3D point clouds can pose significant computational demands, especially
when dealing with complex and dense scenes, particularly in tasks such as object
detection and classification. These tasks involve handling vast amounts of data
and complex algorithms, necessitating substantial computational power. Graphics
processing units (GPU) are commonly employed in such work due to their parallel
processing capabilities, which accelerate deep learning algorithms effectively. How-
ever, at the outset of this research, access to a GPU was limited, and the computations
primarily relied on a 2.7GHz Dual-Core central processing unit (CPU) with 8GB of
DDR3 random access memory (RAM).

The absence of GPU resources significantly influenced the research’s direction
and methodology. Traditional deep learning models and large-scale neural networks,
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which typically require extensive memory and processing power, were not viable
options without GPUs. Consequently, the research focused on exploring innovative
and resource-efficient approaches to achieve object detection and classification in 3D
point cloud scenes. As a result of the GPU limitations, interactions with deep learning
models were confined to CPU inference only.

The absence of GPU resources proved to be a pivotal aspect of this research,
prompting the development of methods applicable in resource-constrained environ-
ments where GPU availability may be limited. Emphasising lightweight algorithms,
transfer learning, and explainable AI techniques, the research produced solutions that
are less reliant on powerful GPUs, thus enhancing their suitability for implementation
in such settings.

Although GPU-accelerated computers became available two years into the thesis,
the research direction had already been established, and the benefits of earlier
limitations were apparent. The work carried out without GPU access underscored the
adaptability and practicality of the developed methods, enabling their application in
various contexts facing similar constraints. This adaptability bolsters the applicability
of the research in areas where access to high-end hardware is limited, ultimately
contributing to the accessibility and broader utility of the developed techniques in
cultural heritage preservation, archaeological studies, and related fields.

1.4 Deep Learning on 3D Point Cloud Data

AI is an academic discipline devoted to the research of machine systems which can
perceive their environment and act rationally towards a goal. The rationality is defined
as drawing conclusions based on a system of logic following reason (Dick, 2019).
Machine learning is strongly related to AI and is most often considered a subfield
(Langley, 2011). It is a broad term for the use and development of methods that
leverage information from sample data (i.e., learn) to make predictions or decisions.
The exact scope of machine learning is still being explored (Alpaydin, 2010). However,
the ability to make optimised predictions and decisions offers significant advantages
to enabling automation and problem solving.

Deep learning is a part of the family of terms used to describe machine learning and
describes methods that are composed of multiple layers. Most modern deep learning
models are classified as artificial neural networks (ANN) (LeCun, Bengio, and Hinton,
2015). ANN are computing models based on a collection of connected units called
artificial neurons. They are loosely modelled after the biological neural network of
animal brains (LeCun, Bengio, and Hinton, 2015). Each connection receives a real
number as a signal, processes it, and then messages the neurons connected to it. The
output of each neuron is computed by some non-linear function of the sum of its
inputs (Atkinson and Tatnall, 1997). ANNs can usually be represented as graphs
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and are typically organised into multiple layers and consist of the input layer, zero
or more hidden layers, and the output layer. Connections between the neurons are
called edges and typically have a weight associated with them. The weights control
the strength of the signal at a connection and are adjusted by the learning process.

Convolutional neural networks (CNNs) are a type of ANN that use convolutional
layers to systematically slide a learnable convolution matrix, or kernel, across an
input (LeCun, Bengio, and Hinton, 2015). This aggregates information from adjacent
entities into features that are then passed to the next layer. These layers progressively
extract multi-level features from a raw input. Low-level features can, in the case
of a pixel-wise input from a 2D image, include edges and lines; whereas high-level
features (also called latent features) describe more abstract characteristics (Alzubaidi
et al., 2021; Simonyan, Vedaldi, and Zisserman, 2013a). CNNs have been applied
to a considerable number of applications within image processing (Egmont-Petersen,
Ridder, and Handels, 2002) and natural language processing (Zulqarnain et al., 2020),
and more recently in the fields of cultural heritage and archaeology (Olivier and
W. V.-v. d. Vaart, 2021).

As an abstract data structure, point clouds are an unordered set of continuous
points in space and, as such, are not confined to a countable set of locations and have
no specific order (Qi, Su, Mo, et al., 2016). The effect of this is that permutations to
the order of points will yield the same point cloud representation. This property is
often called ’permutation-invariance’ (Qi, Su, Mo, et al., 2016). However, the point
locations are not isolated. There is an important interaction between neighbouring
points, that is, they form a meaningful subset Qi, Yi, et al., 2017a. The point cloud’s
structure is, instead, defined by the distance metric from the original (real world) data
space; the neighbouring points are neighbouring locations. This contrasts with 2D
images, where moving the order of a pixel would alter the representation, and each
pixel has explicitly defined neighbouring pixels as the data are restricted to a grid. It
is a non-trivial task to apply machine learning and AI to point cloud data, as it is this
structured format that ML and AI approaches typically rely on to input data into
models (Boulch, 2019). As such, previous archaeological and cultural heritage studies
do not use 3D point clouds directly and instead derive 2D visualisations that are
more immediately interpretable, such as digital elevation maps (W. B. V.-v. d. Vaart
and Lambers, 2019). These are then used as the input to traditional ML and AI
models such as CNN (Guyot, Hubert-Moy, and Lorho, 2018). However, by not using
point clouds directly, these approaches fail to take advantage of the intrinsic spatial
information present in true 3-dimensional data.

Recently, deep learning (DL) methods were introduced that are adapted to the
properties of 3D point cloud data (Bronstein, Bruna, et al., 2017). These deep learning
methods can be divided broadly into three types: multi-view (Su, Maji, et al., 2015),
volumetric (Qi, Su, Niessner, et al., 2016) and point-based (Qi, Su, Mo, et al., 2016)
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approaches. Methods that fall under the multi-view category project the point cloud
into multiple 2D representations (i.e., images) of the object or scene which are then
input into image-based deep learning methods such as traditional CNN. Therefore,
multi-view methods, by definition, do not act directly on the point clouds and so
cannot be used to retain the 3D spatial information. Volumetric methods use voxel
representations, such as occupancy grids (Maturana and Scherer, 2015), to impose
a structure. However, this accrues significant overhead to the computational cost of
processing and can include bias due to the grid-axis alignment. This thesis makes
use of point-based methods, which are capable of learning directly on the point cloud
structure without intermediate representations. As classifiers, these models use error-
correction to learn an embedding for each point and aggregate this information into
a global shape descriptor. Prominent network architectures for point-based deep
learning methods include graph convolution networks (Landrieu and Simonovsky,
2018), pointwise multi-layer perceptron (MLP) neural networks (Qi, Su, Mo, et al.,
2016) and kernel point CNNs(Thomas et al., 2019).

Artificial Intelligence has strong roots and significant contributions from academic
research and institutions, however, it is not limited to the confines of academia. AI is
a diverse and interdisciplinary field that spans beyond traditional academic settings
and has far-reaching applications across various industries and sectors. As research
into AI has progressed and technology advanced, it has found practical applications in
real-world scenarios, beyond the academic realm. As such, its development is driven
by collaboration between academia, industry, and various communities. AI is now an
integral part of numerous industries, including healthcare, finance, automotive, retail,
entertainment, and more. It has been integrated into various products, services, and
systems, transforming the way we interact with technology and influencing almost
every aspect of modern life.

This thesis uses a transfer learning approach to overcome the problem of applying
ML and AI directly to point clouds of cultural heritage scenes. Transfer learning
is used to adapt a ML model trained on one data source (i.e., the domain), by
transferring information related to another data source (Weiss, Khoshgoftaar, and
D. Wang, 2016). Importantly, this allows for the training data and application data
to be from different, but related, domains. Point-based ANN are trained to learn
discriminative latent features from the input point clouds representing general (non-
memorial type) objects. These networks are then frozen and transferred to another
learner to perform classifications, that is, predict the categories (class labels) for a
given example of input data.
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1.5 Cultural Heritage Sites as an Application

Several characteristics of cultural heritage sites make them an interesting application
case, as the design of a process suitable for the automatic extraction and labelling
of objects is not immediately obvious. The sites’ age, location and cultural setting
affect the physical environment and appearance. Moreover, the objects contained
within them will likely reflect these characteristics and may appear in different styles,
designs or materials. For example, cultural heritages sites, such as burial grounds, and
especially those in the United Kingdom (UK), can date back hundreds of years and
are often planted with intentional or voluntary forms of vegetation, such as gardens,
trees, grass and shrubbery. Over time, the condition of objects may degrade, and
the vegetation can become more prominent. Older sites may still be in use today as
either active sites or tourist attractions and might contain examples of both traditional
objects and more modern ones. Additionally, sites located in different geographical
regions might have unique traits or variation in the typical objects found locally.
Inversely, sites from the same region might exhibit differences based on cultural
aspects such as religion and economics. In the context of developing an automated
solution for the extraction and classification of memorial objects from these sites, the
above characteristics pose significant challenges.

This thesis develops a proof-of-concept approach applicable to the National Burial
Ground Survey project being conducted by Atlantic Geomatics (UK) Limited for the
Church of England. The survey is a nationwide digital churchyard mapping project
that will see all of England’s some 19,000 Anglican burial grounds digitally scanned
and mapped over a seven-year period. The scans are performed using a wearable
mobile LiDAR platform to generate fine-resolution point clouds. The current approach
to processing the point cloud data relies on a user to manually identify and segment
the memorial objects from each scene. This approach has a clear limitation: the
point cloud dataset is massive, containing many millions of points, and processing
these data manually is a very time-consuming task. Furthermore, to do so requires
expert knowledge of the scenes, objects of interest and how to identify them, as
well as of the software and tools necessary to do so. Moreover, it can be difficult
for even an expert human operator to identify objects heavily occluded by another
object or dense vegetation. Similarly, it can be difficult to identify objects concealed
by earthen ground surfaces. For example, grave kerbs, which form a rectangular
edge around a grave plot, can be flush with the ground surface and makes them
difficult to perceive. Software tools can be used to support such manual operations.
However, their deployment to real-world datasets has limitations. For example,
Atlantic Geomatics reported difficulty applying tools to burial grounds on sloped
surfaces or hills. Therefore, automation of the mapping process in such a way as
to overcome the current limitations of manual processing is critical to achieving this
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goal.
In developing this thesis, careful consideration was taken to define the require-

ments, scope, and limitations of the project, as this was crutial to defining the
boundaries and expectations of the research. While the ultimate goal is to automate
the extraction and classification of memorial objects from 3D point cloud scenes, it is
essential to carefully delineate the project’s scope to ensure feasibility and practicality.
The primary focus of the project is on detecting and classifying memorial objects, such
as headstones and grave markers, using specialised ML and AI techniques. This choice
is rooted in the significance of cultural heritage preservation and site maintenance.
By automating the extraction and classification of memorial objects, archaeologists,
historians, and site caretakers can benefit from efficient and accurate data analysis,
facilitating the identification and documentation of these objects for further research
and preservation efforts.

However, while there was potential to extend the project’s scope to include
extraction of further details, such as text extraction from gravestones, doing so
would introduce non-trivial challenges and complexities. Text extraction from 3D
point clouds involves additional specialised techniques and could lead to a significant
increase in computational complexity. Additionally, the accuracy of text recognition
in irregular and varying point cloud data might not be as reliable as conventional
2D text recognition methods. This challenge is further compounded by the variable
states of repair in which many memorial objects are found. Moreover, the preservation
of textual content requires careful consideration of privacy concerns and ethical
implications, as gravestones often contain personal information about the deceased.

Considering these factors, it is reasonable for the project to conclude at the point
of memorial object extraction without further detail extraction. Focusing on memorial
object detection and classification aligns with the primary objectives of the research,
offering practical and meaningful outcomes for the preservation and understanding
of cultural heritage sites. The potential complexities and ethical considerations
associated with text extraction can be addressed in future research, as a separate and
specialised endeavour, allowing for more focused investigations and advancements in
the respective field. By adhering to a well-defined scope, the project maintains a
strong and coherent focus on its primary objectives, ensuring the development of
a robust and effective solution for memorial object extraction from 3D point cloud
scenes.

1.6 Explainable AI for Cultural Heritage

The importance of explainability in object detection of cultural heritage objects
from 3D point clouds arises from the intricate nature and critical significance of
preserving historical sites and cultural artefacts. Precise identification of objects
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like archaeological artefacts and memorial markers holds paramount importance
for archaeologists, historians, and site caretakers. However, the utilisation of
deep learning models for object detection often presents a “black box” problem,
lacking transparency in decision-making, thereby raising concerns about the model’s
reliability and trustworthiness. This lack of interpretability hampers its practical
implementation in real-world scenarios and obstructs the opportunity to learn valuable
insights from the model’s operations.

The scope of explainability in this thesis aims to develop a transparent mechanism
that sheds light on the rationale behind the model’s object detection predictions. By
incorporating explainability techniques, users can gain a comprehensive understanding
of how the classification model identifies and classifies cultural heritage objects from
point cloud data. This understanding proves critical for domain experts to validate
the accuracy of label predictions, assess potential biases, and promote confidence in
the model’s outcomes.

However, the application of explainability to 3D point cloud data presents several
challenges and limitations. Unlike traditional 2D image data, point clouds lack a
well-defined structure, making it more intricate to interpret the model’s decisions
based on individual pixels or voxels. Additionally, the complexity of objects
and their contextual variations within scenes further complicates the explainability
process. Moreover, achieving explainability without compromising detection accuracy
and computational efficiency requires a delicate balance that necessitates careful
consideration.

To address the need for explainability in object detection of cultural heritage
objects from 3D point clouds, a prototype-based explainable classifier has been
selected as the preferred approach. Prototype-based classifiers represent objects in
a high-dimensional space using prototypes or centroids that encapsulate essential
characteristics of each class. This approach is well-suited to offer interpretable
insights, allowing users to comprehend how the model associates new data points
with the learned prototypes.

By utilising a prototype-based explainable classifier, users can visualise the
prototypes, serving as representative points for each object class, thereby aiding in
understanding decision boundaries and object characteristics. The transparency of
the classifier allows for manual inspection and manipulation of prototypes, facilitating
fine-tuning of the model’s decision-making process based on user expertise. Further-
more, this approach inherently handles variable states of repair and preservation of
cultural heritage objects by capturing essential object features instead of relying solely
on pixel-level details.

Consequently, the prototype-based explainable classifier approach stands as
a fitting solution to address the necessity for transparency and interpretability
in the object detection of cultural heritage objects from 3D point clouds. It
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empowers domain experts to validate and refine the model’s predictions, ensuring the
preservation and understanding of invaluable cultural artefacts and historical sites.

The graphical user interface (GUI) presented in Appendix B aims to bridge the gap
between machine learning and non-expert users by providing a proof-of-concept for an
intuitive and user-friendly application for the Geometric-Partitioning and eXplainable
Point Cloud Classifier framework, that will be in introduced in Chapter 4 as GeoPart-
XPCC. As the adoption of machine learning and AI methods continues to expand
across various domains, user-oriented applications become crucial to make these
powerful tools accessible to a wider audience. This GUI serves as a proof-of-concept
for the GeoPart-XPCC framework, enabling users to interact with the methodology
without the need for extensive knowledge in machine learning or programming. In
this section, we introduce the key features and functionalities of the GUI, which can
potentially open doors for broader utilisation of the GeoPart-XPCC framework by
researchers, practitioners, and cultural heritage experts alike.

1.7 Aims and Significance

In this thesis, several detailed methodologies involving specialised ML and AI
techniques are developed to automate the extraction and labelling of objects from 3D
point cloud scenes (i.e., object extraction) with a particular focus on cultural heritage
sites. The body of the thesis is made up of a series of related articles, each relating
to the design, development and implementation of solutions to this application, and
experimentation to explore them. In the context of point cloud data, object extraction
consists of finding the points belonging to an object and partitioning them from
the scene. It shares similarities with object detection and semantic segmentation.
Object detection involves finding the location and label of objects in a scene using a
bounding box. However, object detection does not isolate the object from the scene,
and the objects typically have a spatial context (Thomas, 2019). Similarly, semantic
segmentation is a further development that gives a label to each point of a scene
to partition it semantically. However, semantic segmentation does not distinguish
between individual objects (i.e., multiple objects in a single category are treated as
one entity) (Guo et al., 2018). Instead, in the case of object extraction, each individual
object is identified as an instance belonging to a category and the result of performing
object extraction is a collection of sub-set point clouds, where each (ideally) contains
only one object. This task is very similar to 3D instance segmentation, as is sometimes
used in the literature. However, the distinction made in this thesis is that object
extraction targets one or more class categories of interest found in the scene, rather
than all.

Aims were identified that make applying machine learning and AI methods to the
domain of cultural heritage management and related fields, such as archaeological and
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historic sites, unique. These are outlined below:

1. Decrease the time needed for a user to complete the task of extracting and
labelling of 3D objects for the purpose of mapping cultural heritage sites.
Efficiently reducing the time required for users to complete object extraction and
labelling tasks is essential to enhance productivity and streamline archaeological
and heritage preservation workflows. By developing automated methods that
accurately identify and classify objects, manual intervention can be minimised,
resulting in faster data processing and mapping, which is critical for time-
sensitive applications and large-scale heritage site documentation projects.

2. Create a method that can correctly extract and classify an object better than
the state-of-the-art methods. Advancing the accuracy of object extraction
and classification methods beyond the state-of-the-art is crucial to improve
the reliability of heritage site mapping and analysis. By achieving higher
classification accuracy, the developed method can provide more trustworthy
results, instilling greater confidence in the detected objects’ identities and
attributes. This improvement has significant implications for archaeological
studies, cultural heritage management, and research, as it enhances data quality
and facilitates more informed decision-making.

3. Use point clouds directly to take full advantage of the spatial information
encoded in the 3D data. Directly leveraging the inherent spatial information
within 3D point clouds is vital to capture and preserve the fine-grained details of
cultural heritage objects and their surroundings accurately. By harnessing point
cloud data without intermediate conversions or data loss, the developed method
can maintain the rich geometric and topological properties of the objects, leading
to more accurate and comprehensive representations of the heritage sites.

4. Address the need for ground references and annotated point cloud data of the
objects of interest, specifically, cultural heritage scenes and objects, to be used as
training data. This is a major challenge towards the application of ML methods,
as the data does not already exist. The lack of annotated and ground-referenced
point cloud data is a significant challenge in applying machine learning methods
to cultural heritage object detection. Addressing this limitation by developing
innovative techniques to create ground truth annotations and training data
is crucial for the successful implementation of machine learning models. The
availability of curated and annotated data enables the development of accurate
and robust classifiers and contributes to the broader application of AI methods
in cultural heritage research.

5. Objects or classes of interest should be able to be added easily to the
classification model without imposing significant costs in time or effectiveness.
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It is necessary to process scenes from different scanning technologies and
with varying point densities at both the object and scene level. It is also
entirely possible for one scene to contain unique objects of interest. The
above necessitates the need for adaptable solutions. Designing an adaptable
classification model that allows easy addition of new object classes is essential
to accommodate the dynamic nature of cultural heritage sites. As new objects
or classes of interest are discovered, integrating them into the model without
incurring substantial retraining costs or compromising performance ensures
the scalability and longevity of the developed solution, supporting continuous
updates and refinements as new archaeological findings emerge.

6. The predictions and decision-making process should be clear and human
understandable. Inherently explainable models enable this form interaction
without an operator having extensive knowledge of the underlying algorithms.
Developing interpretable and explainable models is crucial to enable meaningful
interactions between users and the system. By providing clear insights into the
model’s decision-making process, operators can perform diagnostics and updates
to enhance the model’s performance and adapt it to specific applications.
This transparency empowers non-expert users, such as archaeologists and site
caretakers, to validate the model’s outputs and make informed decisions, leading
to increased trust and acceptance of AI methods in heritage site mapping and
preservation efforts.

1.8 Dataset Description

The dataset utilised in this research comprises 3D point clouds representing five
cultural heritage sites of burial grounds found across England. These sites were
thoughtfully selected to encompass diverse archaeological characteristics and varia-
tions in environmental conditions. The dataset was generously provided by the burial
ground management system team at Atlantic Geomatics (UK) Limited, and it includes
operator-labelled mappings for accurate ground truth annotations.

The point clouds in the dataset were acquired using the Leica Pegasus capture
platform, with the exception of Scene 11, which was collected using UAV-mounted
sensors and photogrammetry techniques. The variation in data acquisition methods
introduces diversity in the dataset, capturing distinct characteristics and attributes
of each scene.

The point cloud scenes in this thesis encompass a diverse array of objects
commonly found in cultural heritage sites and burial grounds. These scenes feature
various elements, including benches, trees, and other vegetation. The presence of
buildings and roads, along with pathways, adds to the contextual setting of the
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scenes. Fences delineate the boundaries of the sites, offering unique geometric
features for analysis. Additionally, the scenes incorporate significant cultural heritage
objects, such as headstones, tomb slabs, crosses, and sarcophagi. It is important
to note that the majority of these scenes originate from different locations scattered
across England, capturing a wide range of architectural styles and cultural artefacts,
enriching the dataset with substantial diversity and representing various cultural
heritage contexts.

Further details on the point cloud datasets can be found in Chapters 2, 3, and 4.

1.8.1 Data Resolution

A critical consideration in this research is the trade-off between data resolution
and computational complexity. The point density of the point cloud scenes varies,
contingent upon the distance of the scanner from the surface of the environment
being scanned. Higher point densities yield greater precision and richer detail,
presenting potential benefits for object detection and classification tasks. Nonetheless,
it simultaneously increases the computational demands of the algorithms, as the sheer
volume of data to be processed escalates.

In addressing this trade-off, two distinct point reduction techniques were utilised:
random sub-sampling and structured sub-sampling. Random sub-sampling involves
uniformly reducing the number of points in the dataset, thereby decreasing data
resolution. On the other hand, structured sub-sampling retains specific patterns of
points while reducing the overall count, aiming to preserve critical information while
effectively reducing computational complexity.

The choice between these point reduction techniques necessitated careful con-
sideration of the research objectives and computational constraints. The selection
of an appropriate point reduction strategy significantly influences the performance
and efficiency of the object detection and classification algorithms. Each chapter
of research within this thesis took this balance into consideration and was optimised
based on the nature of the algorithm and the computational resources available during
its undertaking.

1.8.2 Exclusion of RGB Image Data

Apart from capturing point cloud data, the Leica Pegasus capture platform also
acquires RGB image data of the scene, which it uses internally to colour the
corresponding point cloud data. However, the research in this thesis predominantly
excludes the use of this colour image data. The decision to exclude RGB image data
collected alongside the Point Cloud data was driven, in part, by the research aim,
which primarily focuses on analysing and processing Point Cloud data in isolation.
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While RGB images can offer valuable contextual information to complement the 3D
point data, their inclusion could introduce challenges in terms of practicality and
consistency.

One of the primary reasons for this exclusion was to ensure that the research
remains relevant and applicable to a wide range of Point Cloud datasets. While
some Point Cloud datasets may have accompanying RGB images, it is not a universal
standard, and not all datasets are likely to include RGB data. By focusing solely
on Point Cloud data, the research aims to address the common case scenario and
establish methodologies that are widely applicable and not dependent on additional
data modalities.

Moreover, the quality and usability of the RGB images can be variable, making
their integration challenging. Factors such as weather conditions, scanning speed, and
equipment settings may result in under or over-exposed images or images that are out
of focus. These limitations can undermine the reliability and consistency of the data
and may not provide substantial value in cases where the RGB information is not of
sufficient quality.

Additionally, it is non-trivial to combine point cloud and RGB image classifications
due to the inherent differences in data formats and processing techniques. Integrating
these modalities poses complex challenges in terms of data alignment, feature
extraction, and model integration. Successfully combining point cloud and RGB
image classifications requires careful consideration of their complementary nature and
the development of specialised methodologies to effectively leverage the strengths of
both data types.

By excluding RGB images, this research adopts a more straightforward and
consistent approach, streamlining the analysis, and enabling a robust comparison
of results across different Point Cloud datasets. This decision allows the research
to focus on the intrinsic complexity and challenges associated with processing and
analysing 3D Point Cloud data, which aligns with the primary objectives of the
study. In summary, the deliberate exclusion of RGB image data ensures the research’s
relevance, practicality, and applicability to a broad range of Point Cloud datasets,
avoiding reliance on additional data modalities that may not always be available or
may introduce complexities in processing and analysis.

1.8.3 Data Availability and Utilisation Strategies

The availability of labelled data in this research was limited, posing a significant
challenge for training and evaluating machine learning models. The process of
manually annotating cultural heritage objects in 3D point cloud scenes is a time-
consuming and labour-intensive task, which results in a scarcity of labelled data.
However, the presence of labelled data is crucial for supervised learning approaches,

15



Chapter 1. Introduction 1.9. Thesis outline

enabling the models to learn from ground truth annotations and make accurate
predictions.

Given the scarcity of labelled data, the research employed various strategies to
maximise its utility. Transfer learning was utilised to leverage pre-trained models
from related tasks or domains with abundant data. By fine-tuning these models
on the limited labelled data available, the research aimed to adapt the models to
the specific object detection and classification task in cultural heritage sites. This
approach facilitated the effective use of labelled data, reducing the demand for
extensive annotations while still achieving respectable performance.

In contrast, a relatively substantial amount of unlabelled data was available.
Unlabelled data, though not directly useful for supervised learning, plays a vital
role in unsupervised and semi-supervised learning approaches. Unsupervised learning
methods, such as clustering, were utilised to discover patterns and groupings in the
unlabelled data, assisting in understanding the underlying structure of the point cloud
scenes.

The integration of labelled and unlabelled data in this research aimed to optimise
the use of available resources, ensuring that the models benefit from the limited
annotated data to leverage the generation of labels for the unlabelled data to gain
insights into the data distribution and enhance generalisation capabilities.

1.9 Thesis outline

Chapter 2, establishes a method for automating the extraction and labelling of
memorial objects within 3D point cloud representations. This methodology involves
two distinct machine learning operations, segmentation and classification. The
segmentation process employs a conditional multi-scale partitioning approach to
extract memorial objects based on geometric shape attributes. Subsequently, a
convolutional neural network is utilised to extract latent feature descriptors, which
are then passed to a MLP classifier.

In Chapter 3, an explainable point cloud classifier (XPCC) tailored for 3D point
clouds is proposed. The XPCC directly processes unordered and unstructured point
sets. It leverages local densities and global multivariate generative distributions,
embracing an anthropomorphic machine learning approach for comprehensive, inter-
pretable object-based classification (P. P. Angelov and Gu, 2018). XPCC exhibits
continuous learning without requiring complete retraining, transferability across
domains, and adaptability for specific applications. Its computational efficiency stems
from recursive calculations. Additionally, we introduce the Compound Prototype
Cloud (CPC), a prototype-based visual representation. XPCC’s prototype objects are
combined to create prototypical class representations in the feature space, enabling
human-understandable insights into model explanation and object contributions to
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classification.
Chapter 4 introduces the GeoPart-XPCC framework, designed for the au-

tonomous extraction and labelling of memorial objects from cultural heritage scenes.
The framework involves a two-step process. Initially, a robust machine learning
algorithm is employed for segmentation, tailored to handle fine-resolution point clouds
with varying point density on a large scale. This approach builds upon the segmen-
tation method presented in Chapter 2. Subsequently, a transfer learning-supported
explainable neural network is utilised for efficient and accurate classification. This
methodology is an enhanced version of the XPCC algorithm discussed in Chapter
3. The framework’s effectiveness is evaluated through experiments conducted on 11
scenes derived from five distinct burial ground sites situated in the United Kingdom.

Chapter 5 discusses the implications of the methods proposed in previous
chapters and how this thesis fits within the fields of AI and cultural heritage
management. Possible areas for future studies are also discussed.

Chapter 6 concludes the thesis with a closing summary of the overall findings,
achievements and contributions of this research.

Appendix A provides an analytical review of the current state-of-the-art in
relation to the explainability of artificial intelligence in the context of recent advances
in ML and DL. It defines key terminology and taxonomy related to explainable
artificial intelligence.

Appendix B provides an overview of a GUI for the GeoPart-XPCC framework.
This GUI was developed as a proof-of-concept user interface (UI) for processing point
cloud scenes representing burial grounds. It enables a user-operator to perform model
training, segmentation and classification, as well as visualise and manipulate the
XPCC method’s prototype structure.

1.10 Thesis Contributions

This thesis seeks to address methodological shortcomings in ML and AI and how they
can be applied to cultural heritage management. Current methods of object extraction
from cultural heritage point cloud data rely on manual processing or limited semi-
autonomous tools such as purpose-built spatial feature descriptors and recognition
patterns. Manual processing massive point cloud data is time consuming, and it is
not trivial to find the most effective combination of features or patterns for a specific
task. It is, therefore, difficult to generalise such approaches across applications and
expert knowledge of both the domain and processes is often required. By developing
advanced methods in ML and AI, it becomes possible to improve upon this standard to
produce robust and efficient end-to-end automated solutions. Contributions detailed
within this thesis are both methodological and application focused. It is motivated
by both a desire to improve upon the current state-of-the-art in ML and AI applied
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to point clouds and to develop a proof-of-concept approach to the extraction and
classification of memorial objects from 3D cultural heritage scenes. The contributions
of the chapters are as follows.

Chapter 2: Of the few previous related studies available in the literature
surrounding object extraction applied to cultural heritage sites, none focus on object
extraction and classification directly from the 3D point cloud scenes. As such, the
research conducted in Chapter 2 is the first research of its kind on the extraction of
memorial objects directly from large scale 3D point cloud data. The contributions of
this chapter are that it:

i Presents the application of extracting and classifying memorial objects from burial
ground cultural heritage sites.

ii Designs a methodology to address the challenges associated with processing point
clouds directly, through segmentation and classification processes.

iii Proposes a conditional multi-scale partitioning scheme to improve the detection
of ground level objects.

iv Describes a transfer learning classification approach to leverage the discriminative
power of CNNs while mitigating their limitations.

Chapter 3: Few studies have investigated explainable methods for the classifica-
tion of objects from 3D point clouds. The XPCC method offers several advantages
over previous explainable and non-explainable methods. The main contributions of
this chapter are summarised as follows:

i An explainable point cloud classifier network XPCC is proposed that addresses
the lack of transparent object classification algorithms for 3D point cloud data.

ii It is specific to point cloud data and offers several layers of human-interpretable
explainability.

iii A new prototype-based visual representation is proposed that explores explana-
tions within the 3D space.

iv An evaluation of the proposed classification network that demonstrates an
improvement in classification accuracy compared to existing methods.

Chapter 4: Previous studies utilise point clouds derived from airborne LiDAR,
whereas the proposed GeoPart-XPCC framework is suitable for the fine-resolution and
variable density point clouds derived from mobile LiDAR. The main contributions of
this chapter are the following:
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i A framework for the autonomous extraction and labelling of memorial objects
from cultural heritage scenes called GeoPart-XPCC is proposed.

ii Application of the framework at scale to five cultural heritage sites, with the sites
divided into 11 separate scenes.

iii Within-sample accuracy results of the framework.

iv Out-of-sample accuracy results demonstrating the domain transferability of the
framework.

Appendix A: Appendix A presents an analytical review of the current state-
of-the-art in explainable artificial intelligence. The contributions of this Appendix
are:

i Analysis on the trend use of explainable AI.

ii Further taxonomy of explainable AI.

iii Investigation of novelties in terms of explainable AI.

iv An analysis involving the Caltech-101 benchmarking dataset.

Appendix B: An interface allows non-experts to interact with the methodology
effortlessly, without the requirement of extensive technical knowledge. The GUI
included in Appendix B serves as a user-oriented application for the GeoPart-XPCC
framework, addressing the need for increased usability in machine learning and AI
methods. With this GUI, users can efficiently segment a point cloud scene, train the
XPCC classifier, and effectively manipulate and visualise the prototypes. By providing
a proof-of-concept for the GeoPart-XPCC framework, this GUI offers a valuable
contribution towards making the methodology more accessible and practical for a
wider audience, including researchers, practitioners, and cultural heritage experts.

1.11 Background Concepts

This section is a reference to the methods and methodology mentioned or used in
this thesis that are not explicitly detailed in either the main introduction or the later
chapters. A brief description of each item is given to provide context. Methods
developed during the research are omitted, as later chapters describe these in detail.

1.11.1 Data Pre-Processing

Data pre-processing is a term that relates to the manipulation, transformation or
scaling of data to aid an algorithm’s performance.
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1.11.1.1 Min-Max Normalisation

Min-max normalisation, or min-max scaling, is an operation to rescale the range of
values to a specified range. A range of [0, 1] is used in this thesis. The formula for
this min-max transformation is given as:

x′ =
x−min(x)

max(x)−min(x)

where x is the original value and x′ is the normalised value. After the transformation,
all values will be between 0 and 1.

1.11.1.2 L2 Normalisation

The L2 norm, also known as the Euclidean norm, is a method for calculating the
magnitude of a vector. Within this thesis, the L2 norm is used as a regularisation
method to improve the convergence speed of algorithms. It is calculated as the square
root of the sum of the squared vector values and represented with the notation L2(x) =
||x||2.

1.11.2 Algorithms and Heuristic

This subsection provides brief descriptions of the algorithms and heuristics used within
this thesis.

1.11.2.1 Greedy Algorithm

A greedy algorithm follows the heuristic of making locally optimal choices at each
stage of the decision-making process. That is, the algorithm selects the best option
available at the current moment and does not consider the overall optimal solution.

1.11.2.2 Incremental Algorithm

An incremental algorithm adapts to the changes in the input by recomputing only
those outputs which depend on the changed data.

1.11.2.3 Feedforward Algorithm

A feedforward algorithm is one where the information moves in only one direction
within a directed acyclic graph. That is, the information does not travel in a cycle or
loop.
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1.11.2.4 Supervised Learning

Supervised learning builds a mathematical model using annotated (labelled) data.
That is, the data, known as training data, contain both the input and the desired
output. Using these training data, a supervised learning algorithm learns a function
that can be used to predict the output associated to new inputs.

1.11.2.5 Classification

Classification is a concept within supervised learning where the goal is to predict the
categories (class labels) for a given example of input data.

1.11.2.6 Unsupervised Learning

Unsupervised learning finds patterns in a stream of input. The input is a set of data
that contains only the sample itself with no label associated.

1.11.2.7 Clustering

Clustering, or cluster analysis, is the assignment of observations into subsets without
the use of labelled training data. These subsets are called clusters and can be seen
as the unsupervised equivalent of classification. Samples belonging to the same
cluster are similar according to some predefined metric, whereas samples belonging
to different clusters are dissimilar according to the same metric.

1.11.2.8 Point Cloud Segmentation

Segmentation, as it relates to 3D point clouds, is a process which can be supervised or
unsupervised. It is the process of clustering point clouds into multiple homogeneous
regions based on some predefined similarity metric (Guinard and Landrieu, 2017).

1.11.3 Traditional Classification Methods

In the context of this thesis “traditional classification methods” are machine learning
models that contrast with representational learning models, such as deep learning
models. The defining difference between traditional and representational learning
classification approaches is the way that features are extracted from the data.
For representational learning classification methods, both feature extraction and
classification are performed by the same model (Alpaydin, 2010). Conversely, for
traditional classification methods, feature extraction is performed as a separate
process and then passed into the classification model (Alzubaidi et al., 2021). Several
traditional classification methods are detailed briefly in the following subsections.
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1.11.3.1 Support Vector Machine

A support vector machine is a supervised machine learning algorithm. In this thesis,
SVMs are used for classification tasks. The objective of the SVM algorithm is to
construct a hyperplane or set of hyperplanes that best separate the data points into
classes (Hastie et al., 2009). The hyperplane is the decision boundary in N-dimensional
space. In the case of the linear model, N is the number of features input to the
model. The position of the hyperplane is determined by maximising the functional
margin (i.e., the distance to the nearest training data point of any class) (Fradkin and
Muchnik, 2015). The data points nearest to the hyperplane are designated the support
vectors. Therefore, maximising the margin of the classifier is the inverse of minimising
the number of support vectors. If the input data are not linearly separable within
the original dimensional space, a transformation can be applied (Hastie et al., 2009).
This transformation maps the original space into a higher-dimensional space, where
it is, presumably, then possible to linearly separate the data. Furthermore, the so-
called kernel trick can be applied to construct a non-linear classifier. In this case, the
input to the kernel function is the data in the original (lower dimensional) space and
returns the dot product of the transformed vectors in the new (higher dimensional)
space. The use of the kernel trick makes the use of higher dimensional spaces practical
in terms of computational costs (Koutroumbas and Theodoridis, 2008).

1.11.3.2 k-Nearest Neighbours

The k -nearest neighbours (k -NN) function is a non-parametric supervised learning
algorithm that works off the assumption that similar data points are found near each
other (Shakhnarovich, Darrell, and Indyk, 2008). Predictions are made by calculating
the distances between the test data and all training data points. In this thesis, k -NN
is used for classification using the standard Euclidean distance. In the simple case
of k=1, the classifier assigns a data point to the class of its closest neighbour within
the feature space. When k >= 1, the classifier assigns a data point to a class based
on a majority vote and counts how many of the k -neighbours belongs to each class.
The class with the largest number of representatives within those k -neighbours is then
assigned (Shakhnarovich, Darrell, and Indyk, 2008).

1.11.3.3 Decision Tree Classifier

A decision tree classifier is a supervised learning approach algorithm. Intuitively,
decision trees are constructed by continually dividing the features present in the
training set into a binary (yes/no) decision, resulting in a tree structure. The tree
begins with the root node and is split into subsets which represent the successor
children. This process is repeated until the subset at a node has all the same values
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as the target variable, or when a split no longer adds value to the predictions (Hastie
et al., 2009).

1.11.3.4 Random Forest Classifier

A random forest classifier is an ensemble learning method that operates by combining
the output of many decision trees. Each tree within the ensemble is comprised of
samples drawn by random sampling with replacement from the training dataset. The
output of the random forest classifier is the class selected by most trees (Hastie et al.,
2009).

1.11.4 MLP & Activation Functions

A Multilayer Perceptron is a fundamental artificial neural network architecture that
consists of multiple layers of interconnected nodes, known as neurons. Each neuron
in a layer is connected to every neuron in the subsequent layer, forming a network
structure. MLPs are extensively used for various machine learning tasks, including
classification, regression, and pattern recognition (Hornik, Stinchcombe, and White,
1990).

The core components of an MLP include an input layer, one or more hidden
layers, and an output layer. Neurons within each layer apply a weighted sum of their
inputs, followed by a nonlinear activation function, which introduces the model’s
nonlinearity and expressive power. This activation function enables the network to
capture complex relationships in the data.

The following gives the definitions of several common activation functions used in
this thesis.

Sigmoid The sigmoid activation function is defined as the following:

1

1 + e−x

Tanh The hyperbolic tangent activation function, or tanh as it is commonly referred
to, is defined as the following:

ex − e−x

ex + e−x

ReLU The Rectified linear unit, or ReLU as it is commonly referred to, is defined
as the following:

max 0, x
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During training, an optimisation algorithm adjusts the weights associated with
each connection in the network to minimise a chosen loss function. This process,
known as backpropagation, iteratively updates the weights using gradients computed
through the chain rule of calculus Werbos, 1990.

The depth and width of hidden layers, as well as the choice of activation functions
and optimisation algorithms, influence the model’s capacity and learning capabilities.
MLPs are capable of learning intricate patterns in data but may suffer from overfitting
if not properly regularized.

1.12 Literature Review

Primary literature was reviewed throughout the chapters of the completed thesis.
Chapter 2 includes a review of the literature regarding machine learning techniques,
including transfer learning, to automate the detection of archaeological and cultural
heritage objects. Chapter 3 includes a review of related research around deep learning
for point cloud object classification, explainable deep learning on point clouds and
prototype learning. Chapter 4 includes an additional review of the literature regarding
conventional and deep learning methods for object extraction from cultural heritage
point cloud data and approaches to mitigate the necessity of large-scale training sets.
Appendix A consists of a review of the literature on explainable AI; included is an
analytical comparison of the state-of-the-art and a consolidation of the taxonomy with
respect to XAI. The reviewed literature in this thesis contributes insights into the body
of knowledge surrounding machine learning and artificial intelligence methods for the
extraction and classification of objects from 3D point clouds that represent the real
world.

1.12.1 Memorial Object Extraction

Memorial object extraction from cultural heritage sites poses several challenges
that researchers need to address. One significant problem involves the diversity of
memorial objects themselves, including variations in shapes, sizes, materials, and
levels of degradation. This variability makes it challenging to develop a one-size-fits-
all approach for object extraction. Additionally, cultural heritage sites often have
complex and cluttered backgrounds, leading to difficulties in distinguishing memorial
objects from the surrounding environment. Fiorucci et al., 2020 explore the interaction
between machine learning and cultural heritage, catering to both cultural heritage
practitioners looking to leverage ML techniques and ML practitioners seeking to apply
their expertise to cultural heritage applications.

Another challenge is the availability and quality of data. Cultural heritage sites
are often unique and irreplaceable, making it difficult to obtain comprehensive and
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diverse training datasets for model development if the objects have been damaged.
(Hassan and Fritsch, 2020) explores the integration of point clouds for the preservation
of cultural heritage objects. The study by (Ren et al., 2022) investigates hole-filling
techniques for restoring missing areas in culturally significant objects.

Chapters 2 and 4 provide in-depth reviews of methodologies pertaining to cultural
heritage object detection from point clouds, as well as other significant applications
of point cloud data within the cultural heritage domain, in their respective “Related
Work” sections. These chapters offer in-depth insights into the diverse methods and
techniques employed in the context of cultural heritage preservation and analysis,
shedding light on their effectiveness, limitations, and contributions to the field.

1.12.2 Object Extraction in 3D Point Cloud Data

The extraction of objects from 3D point cloud data is a fundamental and challenging
task with broad applications in various domains, including cultural heritage preserva-
tion, urban planning, robotics, and autonomous navigation. Object extraction from
point cloud data involves identifying and segmenting individual objects or structures
of interest from the surrounding environment. The 3D nature of point cloud data
captures rich spatial information, making it an essential data source for accurately
delineating and analysing complex three-dimensional scenes. As the field of computer
vision and machine learning advances, numerous algorithms and techniques have
been proposed to tackle the intricacies of object extraction in point cloud data.
This section of the literature review critically examines the current state-of-the-art
methodologies, discussing their strengths, weaknesses, and suitability for different
applications. By exploring the existing body of research, this section aims to identify
gaps and challenges that lay the foundation for the subsequent discussion of novel
and innovative approaches to address the complexities of object extraction in 3D
point cloud data.

Object extraction from 3D point cloud data presents several challenges that
researchers and practitioners need to overcome:

Complex and Diverse Scenes: 3D point cloud data can represent complex and
diverse scenes with a wide range of object shapes, sizes, orientations, and densities.
This variability makes it challenging to design algorithms that can accurately identify
and extract different types of objects.

Noise and Artefacts: Point cloud data captured from real-world environments
can contain noise, anomalies, and missing points due to sensor limitations,
occlusions, and other environmental factors. These imperfections can negatively
impact the accuracy of object extraction algorithms.Perhaps unsurprisingly,
de-noising point clouds has been a topic of interest (Dinesh et al., 2018;
Rakotosaona et al., 2019; Luo and W. Hu, 2021; W. Hu, Q. Hu, et al.,
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2021). Furthermore, (W. Hu, Gao, et al., 2019; Pistilli et al., 2020) underscore
the efficacy of graph-based approaches in managing noisy data. De-noising
methods can be employed to pre-process point cloud objects before classification,
although this may lead to a trade-off in computational performance.

In contrast, other approaches seek to build methods that are robust to the noise
directly. In their work, (Zhu et al., 2020) introduce a 3D shape signature that
incorporates symmetry, convex hull, and Chebyshev polynomial fitting. This
approach aims to approximate angle-radius function coefficients, enabling the
construction of a 3D object detection network that is robust to noise and sparsity
in the data.

Likewise, TANet (Liu et al., 2019) introduces what the authors call a triple at-
tention module that combines channel-wise, point-wise, and voxel-wise attention
to enhance target information while suppressing unstable points. A Coarse-
to-Fine Regression module improves localisation accuracy without excessive
computation. The proposed method showcases advancements in addressing
noise and object detection challenges in point clouds.

Large-Scale Data: Efficiency concerns arise when dealing with massive point cloud
datasets in scenarios such as cultural heritage sites and urban environments,
which may involve extensive 3D scenes. Computational challenges are posed by
the need to process and analyse these datasets efficiently. To address scalability
issues, various approaches have been proposed, ensuring the effectiveness of
point cloud analysis on larger spatial scales (Gunji et al., 2016; Landrieu and
Simonovsky, 2017; Landrieu and Simonovsky, 2018; Q. Hu et al., 2019; Zeng
et al., 2022).

Occlusion and Clutter: In scenes, objects often face occlusion from other objects
or get obscured by clutter, demanding precise object identification. This
challenge involves effectively managing occlusion and discerning between object
and background points. A noteworthy solution is ImVoteNet (Qi, Chen, et al.,
2020), a multi-modal 3D detection architecture that marries 2D votes extracted
from images and 3D votes from point clouds, augmenting resilience against noise
and data gaps. Moreover, multi-view CNNs have demonstrated their ability to
handle occlusion and clutter (Pang and Neumann, 2016).

Segmentation and Grouping: Separating individual objects from a point cloud
requires effective segmentation and grouping algorithms. Objects may consist of
disconnected parts or be in close proximity to other objects, making it necessary
to accurately segment and group points belonging to the same object.

Point cloud segmentation stands as one of the most extensively explored areas
within point cloud analysis. Researchers have dedicated significant efforts to
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develop algorithms and techniques that address the challenges posed by the
inherent complexity, noise, and variability present in point cloud data (B. Wu,
Wan, et al., 2018; B. Wu, Zhou, et al., 2019; Graham, Engelcke, and Maaten,
2017; Boulch et al., 2018; Qi, Su, Mo, et al., 2016; Qi, Yi, et al., 2017a; Thomas
et al., 2019). These segmentation methods aim to enhance the usability of point
cloud data, thereby contributing to the broader field of point cloud analysis and
its applications across diverse domains. However, the majority of these methods
are primarily evaluated on benchmark datasets, posing challenges in their direct
application to real-world data.

1.12.3 Explainable AI

Explainable AI (XAI) has emerged as a crucial and evolving field in the realm
of artificial intelligence and machine learning, aiming to shed light on the opaque
decision-making processes of complex models (Bishop, 2006; Goodfellow et al., 2014).
As AI technologies permeate various industries and critical applications, the need for
transparent and interpretable AI systems becomes increasingly vital. XAI techniques
strive to provide human-understandable explanations for the predictions and outcomes
generated by AI models, fostering trust, accountability, and comprehension in AI-
enabled systems. As the thesis seeks to develop adaptable and interpretable solutions
for object extraction within diverse cultural heritage environments, XAI provides a
bridge between sophisticated AI methods and human understanding.

The early phases of AI encompassed methods such as decision trees, symbolic
AI, expert systems, and ANNs, which exhibited greater interpretability and self-
explainability than modern counterparts such as SVMs and more advanced ANNs
(Hearst et al., 1998). In recent times, the focus on explainability has intensified
due to the increasing integration of AI and ML into human-centric applications.
The transition from accuracy-centric to explainability-centric approaches has been
propelled by the realisation that complex “black box” models can lead to detrimental
outcomes (Stilgoe, 2020; Pasquale, 2016; Rudin, 2019).

In light of these challenges, the central question is not merely about the possibility
of explainable AI solutions, but rather about attaining highly accurate XAI solutions
that rival DL’s accuracy. The subsequent sections provide insights into these
dynamics, emphasising the interplay between AI’s historical roots, ML’s evolution,
and the need for interpretable and accountable AI solutions in an era dominated by
complex models and vast datasets.

This section of the literature review delves into the diverse methodologies and
advancements in the realm of Explainable AI, exploring the principles, approaches
used to achieve model interpretability. This section aims to offer an overview of XAI
to establish a contextual framework for the subsequent methods developed in this

27



Chapter 1. Introduction 1.12. Literature Review

thesis. By exploring various XAI techniques and their attributes, this overview sets
the stage for the approaches and insights presented in the following sections.

SHapley Additive exPlanation (SHAP): (Lundberg and S.-I. Lee, 2017) offers
a game-theoretic framework to explain predictions made by machine learning
models. It draws inspiration from cooperative game theory, representing the
relationship between features and model predictions as a coalition game. Each
feature acts as a player, contributing to the game’s outcome. The key concept
here is the Shapley value, which measures the average contribution of a feature
across all possible feature combinations.

This approach ensures both local and global interpretability by consistently
attributing feature importance. It allows comparisons between explanations, as
the average prediction is fairly distributed among Shapley values. This feature
enables users to contrast different explanations across instances and understand
their varying contributions.

However, SHAP’s interpretability might be compromised if the model isn’t
inherently additive. In cases where predictive models exhibit non-independent
pay-off splits, interpreting Shapley values becomes challenging. Furthermore,
while SHAP is intended to be model-agnostic, implementing it efficiently across
various model types can be intricate.

SHAP’s game-theoretic foundation and consideration of feature interactions
make it a promising technique for explaining machine learning predictions. Its
focus on ensuring coherent and consistent interpretations aligns with the growing
need for transparent AI models.

Local Interpretable Model-Agnostic Explanations (LIME): (Dieber and Kir-
rane, 2020) is a widely recognised technique for generating locally optimized ex-
planations for predictions made by complex machine learning models, regardless
of their underlying architecture.

LIME operates by creating a simplified surrogate model that approximates the
behaviour of the black-box model in the vicinity of a specific prediction. It
achieves this by perturbing the input data and observing the resulting changes
in predictions. These perturbations are usually applied to small patches of
contiguous superpixels in the case of image data. By training the surrogate
model on perturbed instances of the original input, LIME learns how changes
in these interpretable aspects of the data affect the predictions.

The rationale behind LIME is that by focusing on locally explainable behaviour,
users can gain insights into which specific features or aspects of the input are
driving the model’s decision in a given instance. While LIME can provide
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useful insights into individual predictions, its effectiveness might be influenced
by the choice of perturbation parameters. Additionally, LIME’s explanations are
limited to the specific local context and may not provide a holistic understanding
of the model’s overall behaviour or feature interactions.

LIME serves as a valuable tool for generating interpretable explanations for
individual predictions, making it suitable for cases where understanding the
decision-making process on a per-instance basis is essential. However, it
is important to consider its limitations and ensure that the perturbation
parameters are chosen thoughtfully to provide meaningful insights.

Sensitivity Analysis and Layer-wise Feature Relevance: Sensitivity analysis
(Barredo Arrieta et al., 2020b) and layer-wise feature relevance propagation
(Tritscher et al., 2020) are two approaches in the realm of explainable AI that
aim to shed light on the importance of input features and their impact on model
predictions.

Sensitivity Analysis: Sensitivity analysis focuses on understanding how
changes in input features influence model outputs. This method involves
perturbing individual or groups of features and observing the resulting effects
on predictions. By quantifying the change in output due to variations in
inputs, sensitivity analysis provides insights into feature importance and their
contributions to decision-making. However, this approach may lack granularity
in explaining complex interactions among features.

Layer-wise Feature Relevance Propagation: Layer-wise feature relevance
propagation takes advantage of the layered structure in neural networks. It
aims to uncover the contribution of each input feature to the model’s output
by tracing the flow of relevance from the output layer back to the input.
This technique assigns relevance scores to features in each layer, highlighting
their impact on the final decision. However, this method may not provide a
comprehensive understanding of feature interactions and dependencies within
the model’s architecture.

Both sensitivity analysis and layer-wise feature relevance propagation contribute
to explainability by providing insights into feature importance. However,
they may fall short in capturing the intricate relationships among features,
particularly in complex models. These methods serve as stepping stones toward
more comprehensive and holistic explanations of machine learning predictions.

Global Attribution Mappings (GAMs): (Ibrahim et al., 2019) offer a method to
explain neural network predictions on a global scale, especially across different
subpopulations. GAMs formulate attributions as weighted conjoined rankings,
enabling the representation of how various features contribute to predictions.
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By creating a rank distance matrix between features and applying a clustering
algorithm, GAMs group similar local feature importances and summarize
patterns in clusters. This approach allows for meaningful exploration of features
among different subpopulations of samples.

Gradient-based Saliency Maps and Deep Attribute Maps: Gradient-based
saliency maps (Simonyan, Vedaldi, and Zisserman, 2013b) and deep attribute
maps (Ancona et al., 2017) are techniques that aim to visualise the importance
of input features in influencing a neural network’s predictions. Saliency maps
render the absolute value of gradients with respect to input features as a
heatmap, highlighting influential areas. Deep attribute maps multiply the
gradient of the output by the input to create explanations in the form of
heatmaps, indicating contributions to the decision-making process. However,
both methods have limitations, such as sensitivity to noisy gradients and
difficulty in explaining why models produce similar or different results. Grad-
CAM (Selvaraju et al., 2016), Grad-CAM++ Chattopadhyay et al., 2017, and
Eigen-CAM (Muhammad and Yeasin, 2020) all fall under the category of this
specific type of XAI method.

Concept Activation Vectors (CAVs): (B. Kim et al., 2017) provide a means of
globally explaining the internal states of a neural network by mapping abstract
latent features extracted by the network to human-understandable concepts.
CAVs measure the degree to which these abstract features align with chosen
human-understandable concepts. For instance, given an image of one class,
ascertain the corresponding area on another image that exhibits the closest
similarity. CAVs offer insights into the reasoning behind the model’s decisions
by linking abstract features to understandable concepts, thereby allowing
identification of defects in the model’s decision-making process. However, CAVs
depend on the unique meaningfulness of chosen concepts for each class. If certain
concepts are present in multiple classes, the distinctiveness of explanations may
diminish. This limitation can affect the quality and clarity of the explanations
provided by CAVs.

Nevertheless, XAI presents several challenges and issues that researchers are
actively addressing. One primary problem lies in achieving a balance between model
accuracy and interpretability. Complex models that achieve high accuracy often
sacrifice transparency, making it challenging to understand their decision-making
processes. Additionally, the effectiveness and reliability of XAI methods across
different domains and data types remain a concern. XAI techniques developed for
one type of model or dataset might not readily generalise to other contexts. Another
challenge involves the trade-off between local and global explanations. While some
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XAI methods provide insights at a local level (explaining individual predictions),
extending these explanations to a global level (understanding model behaviour across
a dataset) can be complex. Lastly, addressing human cognitive biases and preferences
in the design of XAI methods is an ongoing concern, as interpretations should
align with human intuition and understanding. Currently, the field of explainable
methods for point cloud object extraction is in its early stages of development. For a
comprehensive overview of the progress made in this area, please refer to the “Related
Work” section in Chapter 4.
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Chapter 2

Automatic Extraction and
Labelling of Memorial Objects
from 3D Point Clouds:
GeoPart-Transfer

The introductory section of the thesis provide a foundation for the exploration
of automated object extraction and classification within the context of cultural
heritage and archaeology. Furthermore, it establishes the objectives and scope of
the research, highlighting the integration of point cloud technology, deep learning
methodologies, and explainable AI techniques. Computational challenges and
hardware considerations relevant to the study are discussed, emphasising the necessity
of efficient and scalable solutions.

Furthermore, the significance of cultural heritage sites as an application domain
is outlined, underscoring the value of innovative technologies in preserving and
interpreting historical artefacts. The introduction highlights the aims of the thesis,
including the development of adaptable and interpretable solutions that cater to the
unique challenges posed by diverse cultural heritage environments.

Overall, the initial sections of the thesis lay a strong foundation by elucidating the
context, challenges, and goals of the study. This foundation serves as a springboard for
the subsequent chapters, including the focus of the paper presented in this chapter,
which introduces the GeoPart-Transfer framework for automated object extraction
and classification from 3D point cloud scenes of cultural heritage sites.

This chapter presents a comprehensive methodology for the automatic extraction
and labelling of memorial objects from cultural heritage sites, represented as
3D point cloud scenes. The research addresses the challenges of utilising point
clouds directly in real-world applications, especially in contexts where extensive
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training data and computational resources are limited. The proposed methodology
leverages transfer learning and CNNs to achieve accurate segmentation and semantic
labelling of memorial objects. The process begins with a conditional multi-scale
partitioning scheme to segment objects based on their geometric shape characteristics.
Subsequently, high-level latent feature descriptors are extracted using a CNN
pretrained on diverse 3D object models from a standard dataset (e.g., ModelNet).
These descriptors enable the training of a multilayer perceptron for semantic labelling.
The chapter highlights three key contributions: the direct operation on point clouds
for cultural heritage and archaeology applications, the effective use of CNNs while
mitigating their limitations, and addressing the unique challenges posed by point
cloud data while capitalising on their 3D nature. Experimental results demonstrate
the efficacy of the proposed methodology in accurately extracting and labelling grave
marker objects from cultural heritage sites.

The significance of this chapter within the overarching context of the thesis is its
role in addressing the challenges associated with automated object extraction and
classification in the domain of cultural heritage and archaeology. As an integral part
of the research journey, this chapter takes a decisive step toward fulfilling the thesis’s
objectives of developing innovative solutions that harmonise point cloud technology,
deep learning techniques, and explainable AI principles for the benefit of cultural
heritage preservation and management.

The GeoPart-Transfer framework serves as a critical milestone by introducing a
methodological approach to autonomously extracting and labelling memorial objects
from 3D point cloud scenes. Building upon the groundwork established in the
preceding sections of the thesis, this chapter dives into the intricate details of the
GeoPart-Transfer methodology. By incorporating a two-part process involving robust
machine learning algorithms for segmentation and the application of an explainable
neural network for classification, the chapter addresses the challenges posed by
variable point density and intricate object attributes inherent to cultural heritage
sites.

This chapter’s contributions are highly aligned with the thesis’s overarching goals
of enabling efficient and interpretable solutions for object extraction in complex
environments. It is a vital bridge that connects theoretical foundations with practical
implementation, demonstrating the feasibility and efficacy of the proposed approach
through experimentation on a diverse set of cultural heritage scenes. The GeoPart-
Transfer framework, with its adaptable and accurate nature, manifests the thesis’s
commitment to developing solutions that empower practitioners and researchers in
the field of cultural heritage.

In essence, GeoPart-Transfer substantiates the thesis’s trajectory by presenting a
concrete methodological solution that not only addresses the challenges of automated
object extraction and classification but also reinforces the thesis’s mission to leverage
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fine spatial resolution and accurate proxy of the real world. However, how to use them 
directly is not always obvious. This is especially true for applications where extensive 
training data or computational resources are not available. In this paper, we present 
a methodology for automatic segmentation and labelling of cultural heritage objects 
from 3D point cloud scenes. The proposed methodology is based on machine learning 
techniques and, in particular, makes use of the concept of transfer learning. Memorial 
objects are segmented from the scene based on their geometric shape characteristic 
through a conditional multi-scale partitioning scheme. Then, high-level latent feature 
descriptors are extracted by a convolutional neural network pre-trained on different 3D 
object models from a standard dataset (e.g., ModelNet). Based on these descriptors, a 
classification model (multilayer perceptron) is trained and applied to obtain semantic 
labels. Experiments demonstrated that the proposed methodology is effective for the 
extraction and labelling of grave marker objects from cultural heritage sites.
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1 INTRODUCTION

Historic, cultural heritage and archaeological sites can be 
interpreted as hierarchical organisations of objects. The 
process of mapping and keeping an inventory of physical 
objects is fundamental to site conservation, management 
and analysis. Traditionally, objects are observed physically 
and recorded manually by an operator. Recent advances 
in remote sensing technologies, such as light detection 
and ranging (LiDAR) and digital photogrammetry, make 
it possible to instead create digital representations in the 
form of 3D point clouds. Indeed, 3D scanning technologies 
are becoming both more affordable and more versatile 
(Chase, Chase and Chase 2017; Favorskaya and Jain 
2017; Royo and Ballesta-Garcia 2019). LiDAR based 
sensor hardware is appearing in both wearable systems 
and handheld devices. Additionally, photogrammetry 
software allows 2D images to be stitched together into 
a 3D point cloud scene; with this there is the potential to 
turn any camera into a proxy 3D sensor. These offer non-
invasive, fine resolution alternatives to manual recording. 
As a result, 3D point cloud data are becoming a valuable 
resource for the fields of archaeological and cultural 
heritage. However, the question is then how to design 
an automated methodology for extracting, labelling and 
organising objects from these point clouds; especially 
one that is suitable for the real-world context.

Despite the adoption of digital technology, it remains 
a time-consuming task for an operator to find and 
label each object. Machine learning techniques that 
seek to automate object detection in point cloud data 
have been recently proposed; the most notable of 
which are built around convolutional neural networks 
(CNN) (Bello, Yu and Wang 2020). These supervised 
networks are composed of sequential layers wherein 
increasingly complex features are extracted. Specifically, 
the convolutional layers slide systematically a learnable 
convolution matrix, or kernel, across an input. This 
aggregates information from adjacent entities into 
features that are then passed to the next layer. Provided 
with a large training set of labelled data, CNNs are capable 
of generating discriminative high-level features (Bello, Yu 
and Wang 2020). The problem is that point clouds are an 
unusual data type. They are an unordered set of points in 
space and represent the external surface of the sampled 
object or scene. Each point is a vector denoting its x, y, z 
coordinates, and, depending on the specific acquisition 
technology, the points may contain additional observed 
information such as colour or intensity. Moreover, CNNs 
cannot easily take unstructured point clouds as input.

Many practical problems, and, in particular, cultural 
heritage and archaeological applications, often have 
limited access to labelled data, and in some cases the 
required data may be entirely non-existent, a necessary 
component for training CNNs. Training of CNNs is also 
computationally demanding. Moreover, the addition of 

new validation data requires a complete retrain of the 
network. Therefore, it is not immediately clear how to 
take advantage of point clouds in real world applications 
such as these. To this end, we present a methodology 
suitable for the automatic extraction and identification 
of objects from cultural heritage sites. We highlight 
how point cloud data can be used directly to map and 
extract objects from archaeological and cultural heritage 
contexts without the need to first rasterise or convert to 
another representation (e.g., digital elevation, surface 
or terrain models). We apply and validate the proposed 
methodology for the task of locating, extracting and 
labelling grave markers from cultural heritage sites.

Grave marker detection is a relatively unexplored 
area. Notably, to the best of our knowledge, this is the 
first research of its kind on the extraction of grave marker 
objects directly from 3D point cloud data. Grave markers 
can be made from many different material components 
and take on a multitude of different sizes and shapes 
depending on their location, environment, age, condition 
and cultural background. Therefore, a highly generalisable 
methodology is necessary for their detection. While not 
related directly to the proposed methodology, LiDAR data 
have been used previously to aid in cemetery surveys 
(Weitman 2012). Additionally, point clouds have been 
used to represent memorial object models; for example 
Jaklič et al. 2015 reconstructed sarcophagi from a point 
cloud data representation of a sunken Roman shipwreck. 
Zacharek et al. 2017 presented a low-cost approach to 
the collection of 3D grave marker models. To look below 
ground, Cannell et al. 2018 used ground penetrating 
radar and geochemical analysis to explore an unmarked 
graveyard at a medieval church site in Norway.

A recent focus in the literature has been on applying 
machine learning techniques to automate the detection 
of archaeological and cultural heritage objects. Initial 
methods were concerned mainly with 2D representations 
(Chase, Chase and Chase 2017). However, the growing 
presence of LiDAR as a digital surveying tool, as well 
as its integration into platforms such as geographic 
information system (GIS) software, has made point cloud 
analysis an important subject of research (Chase, Chase 
and Chase 2017). A natural step has been to ask how 
point cloud data can be paired with machine learning to 
benefit the archaeological and cultural heritage fields. 
Point cloud derived representations, such as surface 
and terrain models, have been used in conjunction 
with machine learning algorithms to automate the 
detection of barrows (Kramer 2015; Sevara et al. 2016) 
and Neolithic burial mounds (Guyot, Hubert-Moy and 
Lorho 2018), as well as in the detection of sub-surface 
archaeological structures (Fryskowska et al. 2017). While 
more traditional machine learning techniques are often 
employed, neural networks have been considered as 
well. Kazimi et al. 2018 demonstrated a CNN using LiDAR 
derived digital terrain maps to examine historic mining 
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regions in Germany. However, by not using point clouds 
directly, these approaches fail to take advantage of the 
innate dimensional information inherent to 3D.

A limitation of traditional supervised machine learning 
processes is that they are domain-specific; that is, they 
make predictions through learned properties determined 
by the data with which they are trained. In contrast, 
transfer learning allows a machine learning model 
trained in one domain to be reapplied to another domain 
of similar data. Transfer learning is one possible solution 
for areas where limited training data are available. Within 
the context of machine learning applied to cultural 
heritage and archaeology, the transfer learning concept 
has been applied to images from remote sensing surveys 
(Trier et al. 2016; Trier, Cowley and Waldeland 2019; 
Zingman et al. 2016). More recently, Verschoof-van der 
Vaart and Lambers 2019 explored transfer learning with 
region-based CNNs to detect barrows, Celtic fields and 
charcoal kilns from LiDAR-derived 2D images.

This paper presents a novel methodology to address 
the automatic extraction and identification of object 
instances within cultural heritage sites represented as 
3D point clouds. The contributions of this methodology 
are: (i) how to operate directly on point clouds in a way 
suitable for real world application to cultural heritage and 
archaeology contexts, (ii) how to use the discriminative 
power of CNNs while mitigating their limitations and 
(iii) how to address the inherent challenges associated 
with point cloud data while benefiting from their 3D 
nature. Additionally, we propose a conditional multi-
scale partitioning scheme within the methodology to 
ensure ground level objects are detected. In contrast to 
previous methodologies applied in a cultural heritage 
and archaeology context, the methodology presented 
in this paper involves methods applied directly to the 3D 
point cloud data rather than first transforming them to 
another structure.

The remainder of this paper is organised as follows. The 
methods and structure of the proposed methodology are 
detailed in Section 2; Section 2.1 details the segmentation 
process and extraction of geometric features and 
Section 2.2 describes the approach used for classification. 
Section 3 details the experimental results and Section 4 
discusses the findings along with suggestions for future 
research. Finally, Section 5 concludes the paper.

2 METHODOLOGY

In the proposed methodology we consider the input 
point cloud P as a set of 3D points {p_i| i = 1, …, n} such 
that pi ∈ P where n is the total number of points in P. 
The points Pi are a vector of coordinates (x, y, z). The 
input P represents scenes of cultural heritage sites and 
is assumed to have been registered and pre-processed 
to remove outlier and duplicate points. The goal of the 

methodology is to partition the scene into segments 
S = {S1, …, Sh} and provide a label L for each from a set of 
semantic classes C. To do so, it is comprised of two steps: 
segmentation and classification.

1. Segmentation is an unsupervised process that seeks 
to partition the point cloud scene into regions based 
on the continuity and homogeneity of the properties. 
We define the regions as local neighbourhoods and 
compute features that describe their similarities. We 
further, embed this information into an attributed 
graph structure and approximate the segments with 
smooth pre-defined shapes by a generalised minimal 
partition model, a type of loss function (Landrieu 
and Simonovsky 2017). This serves two purposes. 
First, the resulting segments effectively represent the 
objects contained within the scene, either in parts or 
as a whole. Second, by considering segments rather 
than individual points, the classification task is made 
easier as there is guaranteed to be fewer segments 
than points. See Figure 1 for an illustration of the 
segmentation method.

2. For classification, we explore the idea of transfer 
learning and pre-train the ConvPoint network (Boulch 
2019) on generic object models from the ModelNet40 
(Wu et al. 2015) dataset. Transfer learning allows 
us to take advantage of the discriminative power of 
the CNN and couple it with the flexibility from more 
classic models for per-class training. We apply each 
partitioned segment to the pre-trained network 
to generate a set of high-level abstract features. 
These features represent a global descriptor for the 
segments and are input into a multilayer perception 
(MLP) network classifier to predict the class labels. 
See Figure 4 for illustration of the classification 
method.

2.1 POINT CLOUD SEGMENTATION
In general, point cloud data are unstructured. That is, 
there is no defined neighbourhood to connect each 
point in space. This is in contrast to 2D images, where 
each pixel sits on a grid and has explicit neighbouring 
pixels. To extract meaningful features then, some form 
of structure must be imposed and designed specific to 
point cloud data. The common approach is to avoid 
processing the 3D data directly, instead rasterising the 
point cloud into multiple 2D representations (Su et al. 
2015). An alternative is for the points to be placed 
within volumetric containers such as voxels (Qi et al. 
2016b).

Methods such as Spin Images (Johnson and Hebert 
1999), kernel signatures (Aubry, Schlickewei and Cremers 
2011; Bronstein and Kokkinos 2010), and inner-distance 
descriptors (Ling and Jacobs 2007) use a local estimate 
of the underlying surface around the point. Recent kernel 
methods build on this.
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Sparse kernels (Graham 2015, 2015), deformable 
kernels (Dai et al. 2017; Su et al. 2018), and continuous 
kernels (Boulch 2019) have been used to achieve leading 
accuracy scores for object recognition and semantic 
segmentation against benchmarks.

Recently, many researchers have begun to explore 
structure applied more directly to 3D point clouds, such 
as tree-based (Klokov and Lempitsky 2017; Riegler, 
Ulusoy and Geiger 2017), graph-based (Simonovsky and 
Komodakis 2017) and set-based approaches (Qi et al. 
2016a, 2017). A more traditional, but equally direct 
solution, is to perform a point-wise search and define a 
structure based on the points’ local neighbourhoods.

The term ‘segmentation’ in the context of point cloud 
data means the partitioning of spatial regions within 
the scene, based on some criteria. We can distinguish 
between two classes of point cloud segmentation 
problems commonly found in the literature. The first 
class of problems is to segment the scene based on 
some geometric similarity or characteristic and can be 
seen as the inference of object detection or localisation. 
The second class of problem is semantic segmentation, a 
fine-grained instance of classification. This segmentation 
performs point-wise classification, where individual 
points are provided with a label. Thereby, the scene is 
partitioned based on semantic similarity.

A simple form of the first class of segmentation 
problem is to partition the foreground and background 
of a scene (Dohan, Matejek and Funkhouser 2015; 
Golovinskiy, Kim and Funkhouser 2009). Because this 
type of segmentation represents regions of similarity, 
it is used regularly as precursor to object classification 
(Golovinskiy, Kim and Funkhouser 2009; Shapovalov, 
Velizhev and Barinova 2010). Spina et al. 2011 demon-
strated this type of point cloud segmentation in a 
cultural heritage context. Similar to Hackel, Wegner 

and Schindler 2016 and Guinard and Landrieu 2017 our 
method concerns the use of local point neighbourhoods 
by which we extract features to represent local regions 
of the scene. This method was chosen in contrast to 
semantic segmentation, which would require a network 
to be trained for specific terrain types as well as objects.

We consider a point-wise search to define local 
neighbourhoods. One such strategy is to search using a 
fixed-radius r, whereby a spherical (Lee and Schenk 2002) 
or cylindrical (Filin and Pfeifer 2005) representation is 
used to define the neighbourhood. Another is to consider 
the k-nearest neighbours around each point, based on 
some form of distance metric. This typically involves 
2D (Niemeyer, Rottensteiner and Soergel 2014) or 3D 
(Jonathan et al. 2001) distances. As noted by Weinmann 
et al. 2015, for this solution to remain practical across 
varying scene types, search-based solutions require 
some form of optimization. This is either in terms of r or k, 
respectively. We define the points’ local neighbourhoods 
through a k-nearest neighbour search in Euclidean space 
and optimise k based on eigenentropy, as advocated by 
Guinard and Landrieu 2017. This approach is suited to 
different point densities and gives more precise control 
over neighbourhood size (Weinmann et al. 2015).

2.1.1 Feature extraction
In this section, we present the features and algorithms 
used for the segmentation process.

The first stage of the proposed methodology is the 
segmentation process. Here, features that characterise 
the local dimensionality of the scene are extracted. For 
each point pi, the k-nearest neighbouring points in the 
point cloud P are selected and the covariance matrix of 
their positions is calculated. From this we obtain the set of 
eigenvalues λ1 ≥ λ2 ≥ λ3 and corresponding eigenvectors 
u1, u2, u3. To determine the optimal size for k, a specific 

Figure 1 Concept of the proposed segmentation methodology. Solid arrows represent the flow of processes; dashed arrows represent 
conditional processes. A complex 3D point cloud scene is taken as input and divided into multiple segments based on the set of 
features extracted in relation to the points’ local neighbourhood. These segments are subsets of the original scene, themselves being 
point clouds, and are assumed to represent the objects contained in the scene.

Output 

D point cloud  3 
“Scene” 

Input 

D point cloud  D3 
“Scene” 

Segments 

Segmentation 

Neighbourhood Selection 

Feature Extraction 
Verticality  

Planarity  
Linearity  

Scattering  

Adjacency  
Graph 

Generalized  
minimal  

partition model 

Conditional  
partition 

Largest 10% of  
segments 



83Arnold et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.66

energy function, the same as in (Weinmann et al. 2015), 
is used to minimise the eigenentropy E of the vector 
(λ1/∧, λ2/∧, λ3/∧):
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Using the eigenvalues, we construct a set of features 
fi ∈ R4, which characterise the neighbourhood’s local 
dimensionality and geometry. We use linearity, planarity, 
scattering (Demantké et al. 2012) and verticality (Guinard 
and Landrieu 2017):
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The first three features are often referred to as dimen-
sionality. Linearity describes how well the neighbourhood 
represents a 1-dimensional straight line, while planarity 
describes how well it fits to a 2-dimensional plane. Similarly, 
sphericity (also referred to as scattering in the literature) 
measures how well the neighbourhood resembles a 

sphere. Verticality indicates the geometric orientation 
of the neighbourhood; for example, Verticalitymin = 0 
represents a horizontal orientation whereas Verticalitymax 
= 1 represents a vertical orientation (Guinard and Landrieu 
2017). Examples of these features can be seen in Figure 2.

2.1.2 Adjacency graph structure
A graph structure can be used to capture how different 
entities are related to one another. The graph nodes 
(or vertices as they are sometimes called) represent a 
singular entity, while edges connecting nodes represent 
the relationship between entities. The edges may be 
either directed, such that they can be traversed only in 
a single direction, or undirected, such that they can be 
traversed in either direction. Graphs are commonly used 
in machine learning to represent probabilistic models. 
For example, Bayesian networks, Markov random fields 
(MRF), and conditional random fields (CRF), are all 
graphical models. Additionally, graphical models may 
also be used as the basis of a graph CNN, a generalisation 
of convolution operations to arbitrarily structured graphs 
(Landrieu and Simonovsky 2017).

Applied to point clouds, graphical models can be used 
as both a structure and for data analysis (Bronstein et al. 
2017). Niemeyer et al. 2011 proposed graphical models 
to encode the spatial relationship between points into a 
graph structure called an adjacency graph. Furthermore, 
they showed how point cloud density and number of 
adjacent points affect this construction. Regarding 
this, they concluded that a larger neighbourhood has 

Figure 2 Geometric features shown for an example image containing grave markers: (a) linearity, (b) planarity, (c) scattering and 
(d) verticality. Point cloud data provided by Atlantic Geomatics (UK) Limited.

 
(a) Linearity. (b) Planarity. 

 
(c) Sca�ering. (d) Ver�cality. 



84Arnold et al. Journal of Computer Applications in Archaeology DOI: 10.5334/jcaa.66

the potential to better represent adjacency, albeit at 
a significant computational trade-off. Refining this 
conclusion, Guinard and Landrieu 2017 advocated a graph 
that represents the adjacency of the 10 nearest points. 
Note that the neighbourhood of points represented in 
the adjacency graph is different to the neighbourhood 
used for feature extraction.

To encode the spatial relationship between points, 
the point cloud is represented using an undirected 
adjacency graph Gnn = (V, Enn). The set of nodes V = 
{V1, …, Vn} is constructed from each point in the point 
cloud, whereby each point pi is represented by its 
associated features vector fi, and the edges Enn encode 
the adjacency relationship of the 10 nearest neighbour 
points (Niemeyer et al. 2011). Segmentation is then a 
process in which the graph is split optimally into non-
overlapping connected components. These splits are 
computed using the l0-cut pursuit algorithm (Landrieu 
and Obozinski 2017) and defined as the vector g* ∈ R𝟜×n 
which minimises the following generalised minimum 
partition model:

2
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with g as the variable value used to determine the 
optimal minimisation. The Iverson bracket [⋅] yields 
0 if the internal expression is true, and 1 everywhere 
else. The edge weight Ew R+Î  is chosen to be linearly 
decreasing with respect to the edge length and factor 
ρ is the regularisation strength, which determines the 
coarseness of the resulting partition (Landrieu and 
Simonovsky 2017). This formulation ensures that the 

resulting point cloud segments correspond to similar 
values of f without the need to define a maximum 
size for the segments. The point cloud segments are 
represented as the set S = {S1, …, Sh}, where h is the 
number of segments returned by the cut adjacency 
graph. For clarity, the segments are the non-overlapping 
connected components. The segments are subsets of 
the original point cloud and the number of points vary 
per segment, see Figure 3.

To increase the chances of finding smaller objects 
that may have been missed in the initial segmentation, a 
conditional multi-scale partitioning scheme is proposed. 
This secondary conditional partition considers only 
the largest 10% of planar segments. These are passed 
through the segmentation process again, with the 
neighbourhood for feature extraction adjusted to within 
a radius defined by the point density. If new components 
are found, then they are added to the set of segments. 
Otherwise, the segment is assumed to have continuous 
local shape and considered to be a single segment. This 
process ensures ground level objects are detected in 
large segments of ground level points.

2.2 CLASSIFICATION
Using the 3D point clouds directly (instead of converted 
2D representations) in the classification method is 
essential to the real-world applicability, efficiency and 
generalisability of the overall methodology. Conversions 
to other representations would not only result in 
information loss but would require an in-between 
representation, such as mesh models (Su et al. 2015). 
This conversation alone remains a difficult task when 
applied to fine resolution real-world 3D point cloud 

Figure 3 An example of a partitioned scene. The segments are assigned a colour randomly for demonstration purposes. Point cloud 
data provided by Atlantic Geomatics (UK) Limited.
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data. Additionally, 2D multi-view methods are sensitive 
to viewpoint selection and occlusions within query 
instances. The real-world extracted objects are likely to 
contain noise from background objects (i.e., vegetation) 
and registration artefacts. While more recent multi-
view 2D methods achieve leading accuracy scores on 
benchmarks, they rely on observational colour (RGB) 
information (Yu, Meng and Yuan 2018). Many fine-
resolution point cloud datasets (especially those from 
LiDAR sensors) do not include this information as it 
requires specialised equipment and processing to collect 
and register the colour dimensions to the spatial points. 
Even if they are included, several factors present during 
the scanning process (e.g., glare, moisture, motion blur, 
camera focus, etc.) can contribute to inconsistent RGB 

values. This is not to say that RGB or other multispectral 
data should not be used when available, but that to 
remain generally applicable, the classification method 
should ingest directly the point cloud data and not be 
dependent on any additional observed features.

For the classification sequence the transfer learning 
paradigm is followed. The ConvPoint network is pre-
trained using generic object models from the ModelNet40 
benchmark. An example of the adapted ConvPoint 
network is provided in Figure 5. The ConvPoint CNN was 
chosen because of its flexibility. It does not require a set 
input size and is robust to the permutation, scale and 
translation of the input 3D point cloud (Boulch 2019). 
As the name suggests, the Modelnet40 dataset is a 
collection of 3D models from across 40 different object 

Figure 4 Illustration of the proposed classification methodology. The segments produced by the segmentation methodology are 
used as input; each is a 3D point cloud. Solid arrows represent the flow of processes. The dotted arrow indicates that the descriptors 
in the training set are created using the same pre-trained CNN model. The output to this process is a set of labels that relate the input 
point cloud segments to their predicted class.
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Figure 5 The ConvPoint CNN adapted as classification feature extractor. The CNN is composed of five convolutional layers. Each 
consists of a convolution operation, one-dimensional batch normalisation and uses the rectified linear unit for the activation function. 
At each layer, the number of points per object is reduced, which inversely increases the number of descriptive features. The features 
from the last layer are used for classification, rather than continue to the fully connected output layer of the original CNN.
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classes. It is important to note that the classes available 
in ModelNet40 do not include directly any of the target 
labels for classification (e.g., cultural heritage objects). 
ConvPoint directly ingests the spatial coordinate points 
through an adaptation of discrete kernel convolutions to 
be continuous. A simple MLP learns a dense geometrical 
weighting function that independently distributes the 
input points onto a kernel. At each layer, the convolution 
operation effectively mixes the estimation in the feature 
space and geometrical space. The derived kernel is 
then an explicit set of points associated with weights. 
Normalisation is added according to the input set size 
(Boulch 2019). The final fully connected layer of the pre-
trained network is used to leverage the weighted layers 
as a fixed feature extractor.

Using the last convolutional layer, we compute a 1 by 
512 feature vector xh, where {x_h | 1, …, h} is a global 
descriptor for each segment Sh. This vector is used to 
define an abstract feature space which is optimised for 
the separation of the training objects. Transfer learning, 
as a concept, assumes that this feature space can also 
be used to separate the new test objects.

A simple MLP was trained to learn the difference in 
the feature space, therefore, leverage the knowledge 
learned to classify new data and apply semantic labels 
L. The MLP itself is formulated as one hidden layer with 
100 units, one output layer and uses the logistic sigmoid 
activation function,

( ) ( )( )1/ 1 .f x exp x= + -

The features in x are assumed to be normally distributed 
and as such each is standardised by setting the features’ 
mean at 0 and scaling to unit variance of 1; e.g., compute 
the standard score z = (x – mean(x))/std(x) per feature. In 
doing so, we found this to increase classification accuracy 
results by at least 5%. See Figure 5 for an illustration of 
the transfer learning procedure. We test and compare a 
variety of supervised classifiers for the classification task, 
which can be found in Section 3.

3 EXPERIMENTAL RESULTS AND 
ANALYSIS
3.1 DATASETS AND EVALUATION
3.1.1 ModelNet10
The Princeton ModelNet project provides a collection of 3D 
CAD object models split into two benchmarks: a 40-class 
subset and 10-class subset known as ModelNet40 
and ModelNet10, respectively. The ModelNet10 data 
set was used to analyse the performance of the 
proposed transferred ConvPoint global descriptor in 
the classification process. The dataset was divided 
into training and validation sets. The CAD models were 
converted into 3D point clouds by randomly sampling 
points along the model surfaces. Table 1 shows summary 

statistics for all 10 classes and their corresponding 
training and test samples.

3.1.2 Cultural Heritage Scenes
Two separate cultural heritage sites represented as 3D 
point cloud scenes were chosen for the evaluation of the 
proposed methodology applied to real-world data. The 
digitised cultural heritage sites were provided by the burial 
ground management system team at Atlantic Geomatics 
(UK) Limited. Scene 1 is a burial ground from Adlington 
civil parish in North West England. The scene is a subset 
of a much larger scene; the same large scene from which 
the classification training data were acquired. Scene 2 is 
a separate dataset: a burial ground located in Staines-
upon-Thames in South East England. It is not taken from 
a larger scene. The scenes were collected by a terrestrial 
LiDAR sensor platform with a relative accuracy of 2 to 3 
cm. In the analysis, four separate semantic classes of 
objects were targeted; memorial objects (grave markers 
such as headstones, stone crosses, sarcophagus, etc.), 
infrastructure (buildings, walls, gates, street poles, etc.), 
vegetation (tall grasses, shrubs, trees, canopy leaves, 
etc.) and ground (grass terrain, roads, paths, etc.).

3.1.3 Evaluation metrics
Following the standard convention from the field of 
machine learning, Precision, Recall and F1-score, along 
with their the macro- and weighted-average variations, 
were used as evaluation metrics. In a classification 
context, these metrics are ratios defined with respect 
to the number of true positives TP, false positives FP and 
false negatives FN returned per class. The recall, defined 
as TP/(TP + FN), indicates the classifier’s ability to find all 
positive samples. Likewise, precision is the fraction TP/
(TP + FP) that reflects the ability to return more relevant 
results then irrelevant ones. The F1 is a measure of the 
classifier’s accuracy. Formulated as F1 = 2(Precision 
Recall/(Precision + Recall)), it considers both precision 

Table 1 Classification index for the ModelNet10 dataset; 
including number of training and test samples.

CLASS NUMBER CLASS NAME TRAINING TEST TOTAL

1 bathtub 106 50 156

2 bed 515 100 615

3 chair 889 100 989

4 desk 200 86 286

5 dresser 200 86 286

6 monitor 465 100 565

7 nightstand 200 86 286

8 sofa 680 100 780

9 table 392 100 492

10 toilet 344 100 444
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and recall. All three metrics produce a score in the range 
[0, 1], reaching their worst value at 0 and best value at 
1. The macro-average variation is then the mean of all 
scores divided by the number of classes. Similarly, the 
weighted-average is the score of each class weighted by 
the number of samples from that class.

3.1.4 Processing Platform
Experiments were run on a Unix machine with 2.7 GHz 
Intel Core i5, 16GB RAM and SSD. The combined process 
of segmentation and classification had an average run-
time of 25 minutes for a point cloud of roughly 7 million 
points.

Several factors present during the scanning process can 
contribute to inconsistent observational colour (R, G, B) 
values. Furthermore, while some processes of point cloud 
acquisition, such as photogrammetry, inherently provide 
data as R, G, B, specialised equipment and processing is 
needed to register the colour dimensions to the point 
clouds generated by LiDAR sensors. As a result, many fine 
spatial resolution point cloud data sets do not include this 
information. In the proposed methodology we restrict the 
points to contain only the x, y, z coordinate information.

3.2 ANALYSIS OF TRANSFERRED DESCRIPTOR
3.2.1 Comparison of Classification Algorithms 
within the Proposed Methodology
Baselines are used generally to determine how well an 
algorithm performs. Thus, it can be a problem when a 
baseline for the specific domain does not exist. Applying 
the intuition behind transfer learning we conducted 
an initial experiment to gauge the effectiveness of our 
approach. We chose to assess a variety of supervised 
classification algorithms from the Scikit-learn Python 
package (Pedregosa et al. 2011) and test each against the 
ModelNet10 benchmark. A ‘best case’ for the baseline can 
be provided with the test data matching the data used 
to train the CNN feature extractor. To better reflect the 
objects recovered from the segmentation process, we 
chose to vary the number of points sampled, per model, 
to between 32 and 2048 points. The ModelNet10 point 
clouds were then given a global descriptor set using the 
adapted ConvPoint network. This allowed us to explore how 

different classifiers interact with the data and determine 
the most appropriate approach for classification.

We interpret from the results in Table 2 that the multi-
layer perceptron (MLP) network implementations are the 
most promising among the tested methods, although 
the linear support vector machine (SVM) achieves similar 
scores, placing it behind the MLP by as little as 1% in the 
majority of metric categories. Within this experiment we 
investigated and compared the behaviours of different 
MLP activation functions. In particular, the weighted-
average F1-score for the MLP with sigmoid activation 
performed particularly well, with an increase of at least 
1–2% over the other MLP formulations. Consequently, 
this translates to a 7% and 5% F1-score increase over the 
next most accurate methods behind the SVM; random 
forest and k-nearest neighbours classifiers, respectively. 
The Gaussian Naive Bayes and decision tree classifiers 
performed the least accurate, where the MLP(sigmoid) 
had an increase of 21% and 19%, respectively.

3.2.2 Handcrafted global descriptors versus the 
transfer learning approach
The comparison of the proposed transfer learning 
global descriptor and commonly applied global features 
available in the open source Point Cloud Library (Rusu 
and Cousins 2011) are shown in Table 3. These global 

CLASSIFIER PRECISION RECALL F1-SCORE

k-Nearest Neighbours 0.82/0.82 0.80/0.82 0.80/0.81

Gaussian Naive Bayes 0.71/0.74 0.68/0.70 0.68/0.70

Linear SVM 0.87/0.86 0.85/0.86 0.86/0.86

Random Forest 0.85/0.84 0.81/0.83 0.82/0.83

Decision Tree 0.67/0.68 0.66/0.68 0.66/0.67

MLP (sigmoid) 0.87/0.87 0.86/0.87 0.87/0.87

MLP (tanh) 0.87/0.87 0.86/0.87 0.86/0.87

MLP (relu) 0.86/0.86 0.85/0.86 0.85/0.86

Table 2 Results of the experiment to determine a baseline for 
classification. The values before the slash represent the macro-
average score and after the slash the weighted-average score. 
The largest value for each metric is shown in bold.

DESCRIPTOR PRECISION RECALL F1-SCORE

VFH(Rusu et al. 2010) 0.71/0.71 0.69/0.70 0.70/0.70

CVFH(Aldoma et al. 2011) 0.67/0.67 0.65/0.65 0.64/0.64

ESF(Wohlkinger and Vincze 2011) 0.05/0.05 0.17/0.19 0.07/0.08

GASD(Silva do Monte Lima and Teichrieb 2016) 0.81/0.80 0.79/0.80 0.79/0.80

Proposed transferred descriptor 0.87/0.87 0.86/0.87 0.87/0.87

Table 3 Classification results comparing global descriptors from the Point Cloud Library to the proposed transferred global descriptor 
on the ModelNet10 dataset. The values before the slash represent the macro-average score and after the slash the weighted-average 
score. The largest value for each metric is shown in bold.
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descriptors are so called “handcrafted” and as such, 
have been designed specifically to encode certain 
aspects of a point cloud. This is in contrast to the 
transferred ConvPoint feature descriptor, which instead 
learned what features to encode from training data. The 
handcrafted descriptors were applied to classification 
of the ModelNet10 dataset. This experiment used the 
same methodology as described in Section 2.2, with their 
substitution as the global descriptor. The MLP(sigmoid) 
classifier was used as the classification model. It can be 
seen that the transferred descriptor from the ConvPoint 
network outperformed all handcrafted global descriptors 
across all three evaluation metrics, achieving a 7% 
increase in the weighted-average F1-score over the next 
best global descriptor implementation.

3.3 EVALUATION ON CULTURAL HERITAGE SITES
3.3.1 Comparison of Classifier Models with Real 
World Data
Real world data are often of varying quality and 
measured point clouds of real-world surfaces are no 
exception. They are commonly affected by variations 
in point density and objects of interest can occasionally 
become occluded during the scanning process. Therefore, 
we compare and investigate the behaviours of different 
classification models when applied to real world data 
of cultural heritage sites (Figure 6), although this should 
apply generally to any real-world dataset.

The classification results obtained for real world 
data from a pre-segmented cultural heritage scene are 
presented in Table 4. Analysis of these scores indicates 
that the MLP classifier outperformed the other tested 
methods; thus, the MLP demonstrated an ability to 
handle the real-world data. This is in support of the 
earlier assessments of the MLP classifiers. It is interesting 
to note that, given real world data, the random forest 

model performed closely with the linear SVM, and in 
fact achieved the largest macro-average precision score; 
this is in contrast to the earlier experiment. Based on 
these results, we concluded that an MLP with sigmoid 
activation function is the most suitable, of the tested 
classifiers, for use within the proposed methodology.

3.3.2 Evaluation of Methodology on Cultural 
Heritage Scenes
We applied the methodology to two separate cultural 
heritage scenes, the results of which are shown in 
Tables 5 and 6. The same training data were used in 
both scenes to train the MLP classifier. For both scenes, 
the proposed approach achieved a weighted average of 
at least 91% across all metrics. In general, classification 
of memorial objects was highly accurate, with an F1-
score of 92% and 95% for scenes 1 and 2, respectively. 
The results from scene 2 illustrates how the proposed 
methodology generalises to a different dataset without 
retraining, even across two different and spatially 
distant regions. Classification accuracies for memorial, 
vegetation and infrastructure objects were similar to 
the scores in scene 1. However, there is a decrease 
when correctly determining segments that contain 
ground points. This is likely explained by the difference 
in terrains (e.g., slopes, flats, hills, etc.) between scenes; 
without the addition of these landscape characteristics 
the classification model can struggle to accommodate 
these changes.

CLASSIFIER PRECISION RECALL F1-SCORE

k-Nearest Neighbours 0.89/0.89 0.76/0.89 0.79/0.88

Gaussian Naive Bayes 0.64/0.78 0.65/0.75 0.62/0.75

Linear SVM 0.86/0.90 0.82/0.90 0.84/0.89

Random Forest 0.91/0.89 0.76/0.89 0.80/0.88

Decision Tree 0.72/0.82 0.72/0.81 0.71/0.81

MLP (sigmoid) 0.88/0.91 0.83/0.91 0.85/0.91

MLP (tanh) 0.87/0.91 0.83/0.91 0.84/0.91

MLP (relu) 0.87/0.91 0.83/0.90 0.85/0.90

Table 4 Comparison of different classification methods 
applied to memorial objects from a pre-segmented scene. 
Performance is evaluated using precision, recall and F1-score; 
the values before the slash represents the macro-average 
score and after the slash the weighted-average score. The 
largest score for each metric is shown in bold.

PRECISION RECALL F1-SCORE

Memorial 0.95 0.88 0.92

Infrastructure 0.56 0.83 0.67

Vegetation 0.94 0.94 0.94

Ground 0.85 0.94 0.89

macro avg. 0.83 0.90 0.90

weighted avg. 0.92 0.91 0.91

Table 5 Precision, recall and F1-score of MLP classification 
applied to Scene 1. Scores are an average result after 100 runs.

PRECISION RECALL F1-SCORE

Memorial 0.94 0.95 0.95

Infrastructure 0.73 0.63 0.68

Vegetation 0.91 0.91 0.91

Ground 0.82 0.83 0.83

macro avg. 0.85 0.83 0.84

weighted avg. 0.91 0.91 0.91

Table 6 Precision, recall and F1-score of MLP classification 
applied to Scene 2. Scores are an average result after 100 runs.
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4 DISCUSSION

Misclassification of the cultural heritage data lies in the 
infrastructure objects class. This is, in part, to be expected 
as memorial objects are often subjective. Cultural 
heritage sites normally contain various items of street 
furniture, and those in and of themselves might be a type 
of monument, e.g., a bench object may be classified into 
either the memorial or infrastructure class depending on 
semantics alone, with no visually distinct reasoning. The 
same can be true for trees and shrubs. The experiment 
classification index adheres strictly to memorial and 
non-memorial objects based on the manually labelled 
scene, which does not take this into account. This raises 
questions of how to impose semantic meaning to objects 
with little or no visually discerning attributes.

Pre-segmentation can also influence the classification 
results. It is possible for buildings and walls to be 
partitioned into smaller parts which share characteristics 
with headstone monuments or even vegetation, thus, 
potentially resulting in misclassification. In this sense, 
classification results are contingent on the quality of the 
segmentation process. An alternative to an object-wise 
segmentation would be to use a region-growing or point-
wise algorithm. However, point density and noise have a 
direct impact on the time complexity of such methods. 
As a result, they have a limited ability to segment large-
scale point clouds (Landrieu and Simonovsky 2017). 
Experiments showed that the proposed methodology 

is capable of running on a personal computer. However, 
we note that RAM capacity was a limiting factor. 
Considerably large point clouds may need to be divided 
manually into smaller regions beforehand or else down 
sampled, provided that there is no great loss in visual 
representation. The objects in question should be easily 
identified by an operator.

In the future, we are interested in exploring how a 
more fine-grained classification could be achieved within 
the object classes. For example, many different burial 
ground monument types are found in a single cemetery. 
Additionally, grave markers from different geographical 
areas, different time periods and coming from different 
cultures, likely appear distinct and different from one 
another. With the general public becoming more 
interested in family ancestry and genealogy, there is a 
real need for this information to be available and to be 
provided at scale. Similarly, we are interested in ways 
to incorporate new object variations, unknown objects 
and additional classes to the methodology. The grounds, 
building infrastructure and serviceable equipment, 
etc., are all objects of importance for the maintenance 
of cultural heritage sites. It is, therefore, of value if the 
classification model does not have to be completely 
retrained each time a new variation is seen. Furthermore, 
based on the results of the transfer learning approach 
within this research, we are motivated to explore the use 
of various point cloud specific neural networks as feature 
extractors and evaluate their relative performances.

Figure 6 Examples of a classified region from different classifier methods. Ground points are represented in yellow; vegetation is in 
blue; infrastructure is in orange and memorial objects are marked in green and red showing two sub-class identifications (headstone 
and cross). Point cloud data was provided by Atlantic Geomatics (UK) Limited.

 
(a) Decision Tree. 

 
(b) K-Nearest Neighbours. 

 
(c) Random Forest. 

 
(d) Linear SVM. 

 
(e) MLP.
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5 CONCLUSIONS

We presented a new methodology for the automatic 
identification and extraction of objects from 3D point 
cloud representations of cultural heritage sites. This 
methodology addressed how point cloud data can 
be used directly to map and extract objects from 
archaeological and cultural heritage contexts, without 
the need to rasterise or transform the data into another 
representation beforehand. Benchmarking exercises 
established that, compared to several classification 
methods, the proposed methodology achieves a 
statistically higher accuracy for both artificial and real-
world datasets. We applied the methodology to the 
task of locating, extracting and labelling grave marker 
objects from two cultural heritage sites. The results 
demonstrated that the proposed approach can leverage 
transfer learning to separate objects from the scene and 
distinguish between multiple classes. We believe that 
this is the first time that such a methodology has been 
developed for the automatic and direct extraction and 
labelling of memorial objects from cultural heritage sites 
using 3D point cloud data.
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Chapter 3

An Improved eXplainable Point
Cloud Classifier (XPCC)

The preceding chapters of this thesis have illuminated the challenges and innovative
methodologies involved in automated object extraction and classification from 3D
point cloud scenes within the domain of cultural heritage and archaeology. Chapter
2 introduced the GeoPart-Transfer framework, which addressed the complexities of
utilising point clouds in real-world applications and demonstrated the potential of
convolutional neural networks (CNNs) in object segmentation and labelling.

In the pursuit of advancing the state-of-the-art in this field, Chapter 3 introduces
the eXplainable Point Cloud Classifier (XPCC) method. This chapter underscores the
critical need for explainability in AI models applied to cultural heritage management
and preservation. XPCC not only inherits the robustness of CNNs but also introduces
interpretability to the decision-making process.

The relevance of Chapter 3 lies in its crucial role as a bridge between the
GeoPart-Transfer framework and the overarching objectives of the thesis. While
GeoPart-Transfer laid the groundwork for object extraction and classification, XPCC
extends this foundation by introducing an explainable methodology that empowers
practitioners to comprehend and learn from the classification outcomes.

This chapter delves into the core of XPCC, presenting its design principles,
features, and experimental validation. The chapter begins by introducing the
concept of explainability and its importance within the context of cultural heritage
and archaeology. It elaborates on how XPCC integrates interpretability with high
classification accuracy, filling a critical gap in the current landscape of object
extraction methods. The XPCC melds local densities and global multivariate
generative distributions, ensuring both comprehensive and interpretable object-based
categorisation. The intrinsic recursion of XPCC contributes to computational
efficiency, enabling continuous learning. Uniquely tailored for 3D data, the method

50



Chapter 3. An Improved eXplainable Point Cloud Classifier (XPCC)

introduces three novel layers within the architecture, augmenting feature extraction,
global compound prototype weighting, and SoftMax functionality.

The experimentation phase is showcased through benchmarking XPCC on the
ModelNet40 dataset, demonstrating its effectiveness in classification accuracy and
explainability over existing approaches. These results validate XPCC’s contribution
to the domain of cultural heritage and underline its alignment with the thesis’s mission
to empower cultural heritage management through advanced technological solutions.

In summary, this chapter outlines the XPCC classifier’s inception, detailing its
design principles, benefits, and performance. This work not only enriches the toolbox
of 3D object classification but also aligns seamlessly with the thesis’s mission to
empower cultural heritage management through advanced technological solutions.
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Abstract—Classification of objects from 3-D point clouds has4
become an increasingly relevant task across many computer-vision5
applications. However, few studies have investigated explainable6
methods. In this article, a new prototype-based and explain-7
able classification method called eXplainable point cloud classifier8
(XPCC) is proposed. The XPCC method offers several advantages9
over previous explainable and nonexplainable methods. First, the10
XPCC method uses local densities and global multivariate gen-11
erative distributions. Therefore, the XPCC provides comprehen-12
sive and interpretable object-based classification. Furthermore,13
the proposed method is built on recursive calculations, thus, is14
computationally very efficient. Second, the model learns contin-15
uously without the need for complete retraining and is domain16
transferable. Third, the proposed XPCC expands on the underlying17
learning method explainable deep neural networks (xDNN), and18
is specific to 3-D. As such, the following three new layers are19
added to the original xDNN architecture: 1) the 3-D point cloud20
feature extraction, 2) the global compound prototype weighting,21
and 3) the SoftMax function. Experiments were performed with22
the ModelNet40 benchmark, which demonstrated that XPCC is23
the only one to increase classification accuracy relative to the base24
algorithm when applied to the same problem. In addition, this25
article proposes a novel prototype-based visual representation that26
provides model- and object-based explanations. The prototype ob-27
jects are superimposed to create a prototypical class representation28
of their data density within the feature space, called the compound29
prototype cloud. They allow a user to visualize the explainable30
aspects of the model and identify object regions that contribute31
to the classification in a human-understandable way.32

Impact Statement—The classification of 3D point cloud data33
has become a significant topic in recent years, in part because34
of the popularisation of various unmanned robotics, augmented35
reality, and 3D mapping software. Such applications often involve36
decisions direct consequences to individuals and society, yet very37
little research has been done towards explainable 3D classifica-38
tion algorithms. This article proposes an inherently explainable39
prototype-based classification and visualisation method for 3D40
point cloud objects. Experiments demonstrate that the proposed41
method is not only competitive with the state-of-the-art, but that it42
is also transferable and improves accuracy over the base algorithm.43
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I. INTRODUCTION 46

C LASSIFICATION of 3-D point cloud data has become 47

an important research goal in response to the widespread 48

adoption of 3-D sensor technologies, such as LiDAR and RGB- 49

depth cameras. The 3-D point cloud data are a sparse collection 50

of unordered coordinates in 3-D space. They offer a fine-grained 51

representation of real-world objects and accurately preserve 52

intrinsic geometric 3-D shape, surface, and depth information. 53

Point clouds have become an increasingly relevant data structure 54

across a range of computer-vision applications, including remote 55

sensing, autonomous driving, and robotics. In many cases such 56

applications may have important real-world consequences (e.g., 57

misperception of the environment may lead to the collision of an 58

autonomous vehicle). Therefore, it is critical that a 3-D object 59

classification model is not only efficient in terms of accuracy 60

and speed, but that the model’s decisions can be understood 61

intuitively and interpreted correctly by a human. In this arti- 62

cle, we propose a new prototype-based classification method 63

called eXplainable point cloud classifier (XPCC) for object 64

classification of 3-D point cloud objects. For clarity, this article 65

adopts the terminology supported by [1] to describe explainable 66

machine-learning models. 67

Early methods for 3-D point cloud object classification rely on 68

handcrafted features extracted directly from local neighborhood 69

regions or through estimation of the surface around each point. 70

For example, the fast point feature histogram (FPFH) [2] algo- 71

rithm encodes the local geometric shape based on the normal 72

angle between points and their neighbors, Rusu et al. [3] used 73

binning to extend the FPFH into a global object descriptor and 74

Johnson and Hebert [4] built a histogram of point locations 75

summed along the bins of an accumulator constructed around 76

each point to create an image. These features are designed to 77

be invariant to shape transformations. Classification based on 78

these handcrafted features can then be achieved through classi- 79

cal supervised machine-learning algorithms. These handcrafted 80

features are explainable at a human level precisely because 81

they were handcrafted to describe specific (local or global) 82

properties of the shape. However, it is not trivial to find the most 83

effective feature combination for a specific task. In this regard, 84

the move to features learned through artificial neural network 85

(NN) algorithms, such as convolutional neural networks (CNN) 86

and other deep neural networks (DNN), was a breakthrough. The 87

XPCC method benefits from the transfer learning paradigm [5] 88

to incorporate learned features while retaining human 89

interpretability. 90

2691-4581 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Deep learning applied to 3-D point clouds is far from being91

straightforward, as point cloud data are unordered and nonstruc-92

tured [6]. That is, there are no defined neighborhoods to connect93

each point in space. This contrasts with 2-D images, where each94

pixel sits on a grid and has explicitly defined neighboring pixels.95

Recently, however, deep learning classifiers, such as PointNet [7]96

and its derivatives [8], have been proposed and adapted to the97

specific properties of 3-D point cloud data. These classifiers98

learn an embedding for each point and aggregate this information99

into a global shape descriptor. Classification is then achieved by100

feeding the global descriptor into several fully connected layers.101

By removing these last fully connected layers, the XPCC method102

uses a fixed pretrained CNN to act directly on the point cloud103

data by extracting a global feature vector from the 3-D point104

cloud objects. The choice of fixed feature extractor is not linked105

to any method in particular, it is, therefore, modular and can106

updated as research into DNN on point clouds progress.107

Several characteristics of deep learning algorithms limit their108

wider real-world application. First, DNNs are domain-specific;109

that is, they make classifications through learned properties110

as determined by the data on which they were trained. The111

addition of new classes or even additional data that do not112

follow the same statistical characteristics as the training data113

requires a complete retrain of the network. Second, training of114

DNNs is computationally demanding and requires substantial115

numbers of training data, computational resources, and time.116

While several 3-D point cloud benchmark datasets have been117

published, the classes available are far from exhaustive. There-118

fore, training on atypical and uncommon classes is problematic.119

XPCC overcomes these limitations through both task domain120

transfer and learning domain transfer. Adding a new class re-121

quires only training the model on the new data samples, rather122

than a complete retrain, and the new classes are not required123

to be known to the feature-extraction method. Furthermore,124

classification can be achieved with only a few training samples125

per class.126

Deep learning methods, such as CNNs, involve and require a127

large number (millions or more) of model parameters (network128

weights), which have no direct link to the physicality of the129

problem. In addition, the architectures of DNNs, such as CNNs130

involve several ad hoc decisions about the number and type of131

layers, stride, and kernel size. Due to this complexity, and the132

opacity of the link between the inputs (point cloud coordinates)133

and the output (class label), such solutions are considered as134

“black-box” [9]. The output is a multilevel embedded function135

(i.e., a function of a function of a function) of inputs. This136

makes it difficult to explain the cause—effect relationship and137

the intuition of how the final decision is arrived at to a human138

user. A lack of transparency is a particular drawback in the case139

of 3-D point cloud-object classification. 3-D point clouds are140

often used for real-world applications and the actions informed141

by the point-cloud data have the potential to adversely affect142

results or endanger human life, if an incorrect decision is made143

(e.g., in selfdriving cars). As algorithmic decisions become more144

consequential to individuals it becomes crucial that the algo-145

rithms are explainable in human terms. Efforts in explainable146

AI have focused on explaining deep learning methods [10], [11], 147

but very little has been done to introduce explainability specifi- 148

cally to point-set learning on 3-D point clouds. 149

This research builds on the image-based xDNN frame- 150

work [12] by extending it to object classification on 3-D point 151

sets. It is specific to point cloud data and offers several layers 152

of human-interpretable explainability. By design, the XPCC 153

internal architecture is algorithmically transparent, simple, and, 154

thus, easy to explain to a human user; the prototypes are the 155

highly representative data samples and are learned incrementally 156

after the first encounter of a specific class. The proposed method 157

is noniterative; instead, XPCC is an incremental, greedy learning 158

algorithm that selfdevelops autonomously. It evolves the internal 159

structure with the addition of new prototypes that reflect the 160

changes of the data pattern represented by the local data density. 161

In this study, we use a fixed KP-CNN, pretrained on the Mod- 162

elNet40 benchmark without limitation to the generality of the 163

proposed concept. Experiments show that the proposed XPCC is 164

not only explainable and computationally more efficient than the 165

state of the art in explainable point-set deep-learning classifiers, 166

but also superior in terms of classification accuracy. To the 167

best of our knowledge, XPCC is the only explainable point-set 168

classifier that achieves a higher overall accuracy compared to 169

the benchmark deep networks used. 170

The main contributions of this article are summarized as 171

follows. 172

1) A novel XPCC network is proposed that addresses the 173

lack of transparent object-classification algorithms for 3-D 174

point cloud data. 175

2) A new prototype-based visual representation is proposed 176

that explores explanations within the 3-D space. 177

3) An evaluation of the proposed classification network to 178

improve classification accuracy over existing methods. 179

The rest of this article is organized as follows. In Section II, a 180

brief overview of relevant related work is provided. Section III 181

details the proposed XPCC classifier and compound prototype 182

clouds (CPC) method. Then, in Section IV, we describe the ex- 183

periments conducted and analyze the results. Finally, Section V 184

concludes this article. 185

II. RELATED WORK 186

A. Deep Learning for Point Cloud Object Classification 187

Recently, deep learning classifiers were proposed that adapt 188

to the properties of 3-D point cloud data. These classifiers 189

use error-correction to learn an embedding for each point and 190

aggregate this information into a global shape descriptor. Hard 191

classification is performed by feeding the global descriptor 192

into several fully connected layers. Deep learning classifiers 193

on point set data can be divided broadly into three types. The 194

first of these is multiview approaches, a technique pioneered 195

by MVCNN [13], whereby the 3-D object is projected into 196

multiple 2-D representations. However, it is difficult to design 197

an efficient and robust strategy for choosing viewpoints. Re- 198

cently, Wei et al. [14] utilized a graph convolutional network to 199
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optimize viewpoint sampling. The second type is volumetric-200

based methods. These methods divide the point cloud into201

voxels; for example, VoxNet [15] structures point-cloud data into202

a volumetric occupancy grid as input to a 3-D CNN. Originally,203

volumetric methods were limited to point clouds with a relatively204

small number of points. However, octree structures have been205

used to reduce memory usage and increase the computational206

speed [16]. Nevertheless, volumetric approaches suffer from207

undesirable bias due to grid axis alignment and it is not clear208

if the advantages to processing 3-D data directly in this manner209

are worth the additional overhead accrued [17]. The third type of210

classifiers is point-based methods. These methods are capable of211

learning directly on the point-cloud structure without intermedi-212

ate representations. This contrasts with the previous two types,213

where the point cloud data are converted and structured to apply214

mature 2-D or 3-D CNNs: a process that inherently results in215

information loss. Prominent network architectures for the point-216

based methods include graph convolution networks [18], [19],217

pointwise multilayer perceptron (MLP)-type NN [7], [8], and218

kernel point CNN (KP-CNN) [20], [21].219

A main goal of the method proposed in this article was to220

explore explanations uniquely possible within the 3-D space.221

Therefore, the multiview and volumetric approaches were not222

used for feature extraction. Instead, a pretrained kernel point223

convolutional (KPConv) network, KP-CNN was used in the 3-D224

feature-extraction layer. Unlike grid convolution, the KPConvs225

define continuous convolution kernels composed of a series of226

kernel points with weights. Specifically, the weights for neigh-227

boring points are related to the spatial distribution with respect228

to the center point; formulated as an optimization problem [20].229

B. Explainable Deep Learning on Point Clouds230

Previous literature on explainable deep learning on point-231

cloud data focuses on techniques to better understand the repre-232

sentations learned by the network. Charles et al. [7], [20], [22]233

demonstrated how to visualize information learned by the point-234

cloud-based NN through projecting back a coloring based on235

the level of activation of the point functions onto the input236

point cloud. In addition, Charles et al. [7] used t-SNE to embed237

point-cloud global features into a 2-D space and visualize the238

correlation between the point clouds. Zhang et al. [22] modified239

the PointNet network to create class-attentive mappings and240

specified in [23] the model agnostic 3-DCAM; however, these241

representations are not always intuitive to nonexperts. Zhang242

et al. [24] proposed a two-stage method of local-to-global at-243

tributes for explainable point-cloud classification. Specific to244

kernel point-based methods, in [20] the effective receptive field245

is computed as the gradient of kernel point responses to measure246

the influence of each input point in relation to the result at a247

particular location. PointMask [25] introduces a differentiable248

layer before the encoder that learns to mask out points by249

maximizing mutual information between masked points and250

the class labels. Shen et al. [26] demonstrated visualizations251

using kernel correlation as an affinity measure between two252

different point sets: the neighboring points and kernel points.253

These explanation techniques are limited primarily to posthoc 254

interpretations and, in comparison to their base architecture, the 255

explainability negatively impacts classification accuracy. 256

In contrast to the abovementioned, the proposed method 257

is explainable by design, and an overall increase in accuracy 258

over deep-learning methods. Furthermore, previous explainable 259

point-set classification methods do not use the 3-D medium 260

itself, beyond color visualization, for explanations. The pro- 261

posed CPC is a novel approach to using the inherent nature of 262

3-D to offer explication not possible in 2-D. 263

C. Prototype Learning 264

Prototype-based methods learn a set of highly representative 265

samples (i.e., the prototypes), which themselves represent the 266

probability distribution in the feature space [27]. One or more 267

prototypes represent each class in the dataset, with new samples 268

assigned to a class based on a similarity metric. Prototype- 269

based models have long demonstrated their high efficiency 270

and versatility in classification problems and have an obvious 271

interpretation. These models can be manipulated through the 272

addition, removal, or adaptation of prototypes. This makes them 273

well suited for incremental learning. Examples of well-known 274

prototype-based approaches are the learning vector quantization 275

model [28], the radial basis function (g) network [29], Gaussian 276

mixtures, and the selforganizing map (SOM) [30] model. In 277

addition, k-means, support vector machine (SVM), and particle 278

filtering (sequential Monte-Carlo methods), may be considered 279

as kinds of prototype-based methods. The k-nearest neighbors 280

(kNN) algorithm is related to many prototype-learning methods. 281

However, because the classic technique for kNN stores all data 282

rather than selective exemplars, it is only loosely considered a 283

prototype-based method and is, strictly speaking, not a learning 284

method. The XPCC can, like other prototype-learning methods, 285

be viewed as a type of feedforward NN. In particular, it is 286

similar to SOM in that the proposed method does not use 287

error-correction learning. Instead, a type of greedy competi- 288

tive learning is applied. XPCC is based on local densities and 289

empirically-derived global multivariate generative distributions. 290

III. PROPOSED METHOD 291

In the following sections, we consider the input to the XPCC 292

classification method as a set of N point cloud objects, O = 293

{Oi | i = 1, . . . ,N}, and the output is the set of predicted labels. 294

Each object is a separate point cloud, and these, in turn, represent 295

the shape of each object as a set of 3-D (x, y, z) coordinates. 296

Depending on the specific acquisition technology, the points 297

may contain additionally observed information, such as color 298

and intensity. The proposed method classifies based only on the 299

objects’ shape and, thus, only the coordinates are taken as the 300

input. This means that the classification will not be affected by 301

inconsistent color values between different objects. As such, 302

object point-cloud models are considered to contain only one 303

entity. Functionally, point-cloud objects do not need to have 304

the same number of points. The architecture of the XPCC is 305
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Fig. 1. XPCC classification architecture represented as network layers. First, the point-cloud object is input to the feature-extraction layer and the pretrained
CNN is used to generate a global descriptor that encodes the global shape of the object into a feature vector. Second, the local-similarity layer compares the
object’s global descriptor against the prototypes of each class. This is called the prototype layer in this figure and is represented by the colored rectangles within the
local-similarity layer. Third, the similarity score for each class is extracted by the global-similarity layer as the classes’ most similar prototype. Fourth, the classes’
similarity score is weighted by the object’s similarity to the respective classes’ compound prototype. Last, the SoftMax layer normalizes the output of the previous
layer to a probability distribution over the predicted output classes. Hard classification is then performed on the output to produce the predicted class label.

structured as a series of layers within a neural network, as306

illustrated in Fig. 1.307

A. Feature Extraction308

Feature extraction encodes the global shape of each point-309

cloud object into a global descriptor. To do this, the layers of310

a pretrained CNN are used as a fixed feature extractor, and the311

global descriptor obtained as the feature vector computed from312

the final fully connected layer. The set of feature vectors define a313

feature space that is optimized for the separation of the training314

objects. From the transfer learning concept, it is assumed that315

this feature space can also effectively separate objects from a316

different domain. The features extracted by the DNN are denoted317

as X = DNN(O) ∈ RN×df , where DNN(·) is the fixed DNN318

and df is the dimension of the extracted features. In the case319

of the KP-CNN, df = 1024. We use xi to refer to an object320

represented as its feature vector extracted by the fixed DNN.321

The point-based KP-CNN with rigid KPConv blocks [20]322

pretrained on the ModelNet40 [31] dataset is used as the feature323

extractor to produce a 1-by-1024-dimensional global feature324

vector per object. It incorporates a method to perform down-325

scaling or upscaling to the input point clouds, as required, so326

that they do not need to have the same number of points. This327

also means that the network remains robust to varying point328

densities, particularly across objects from different scenes or329

scanning technologies. Furthermore, it has been shown that the330

KP-CNN identifies simple geometric structures (lines, planes,331

and spherical regions) at lower layers of the network, and more332

complex characteristics at further layers [20]. Not only does this333

provide some transparency to the CNN, but is also an important334

indication of generalizing to object types that are not in the CNN335

training data.336

The feature vectors are individually scaled to their unit norm 337

(i.e., L2 normalization is performed on each element) 338

xi =
xi

max(‖xi‖ , ε)
(1)

where ε is a small constant. 339

B. Training 340

Training the XPCC starts by performing a filtering operation 341

where the prototypes are identified from the training data. This is 342

done directly through a noniterative “one pass” process; the pro- 343

totypes themselves are the most representative training samples 344

belonging to a particular class. Thus, metaparameters for the 345

XPCC are trained per-class; all the calculations are performed 346

separately for each class and can be performed simultaneously 347

(in parallel). Each class’s parameters are initialized with the first 348

observation sample of that class 349

k ← 1,M ← 1, μ← x1, p1 ← x1, N1 ← 1, rj ← r∗ (2)

where k is the current instance (number of training samples 350

seen), M is the number of prototypes identified for a class, μ is 351

the recursive global mean of all data samples as yet observed, 352

p1 is the first prototype {pj | j = 1, . . . ,M}, Nj is the number 353

of member points around each prototype, and rj is the radius of 354

the area of influence of the corresponding prototype. r∗ is the 355

initial degree of similarity of the prototype member space and 356

is defined as 357

r∗ =
√

2 (1− cos (30◦)) =

∥∥∥∥
xi

‖xi‖
− pi
‖pi‖

∥∥∥∥ . (3)

After initialization, the parameters of each class are updated 358

recursively, absorbing only the samples that belong to them. 359

The following pseudocode demonstrates the process for each 360



IE
EE P

ro
of

ARNOLD et al.: IMPROVED EXPLAINABLE POINT CLOUD CLASSIFIER (XPCC) 5

new training sample of the class type. First, the instance count361

is updated through362

k ← k + 1 (4)

then μ is updated as follows:363

μ← μ (k − 1) + xi

k
. (5)

Data samples (i.e., the objects) that are closer to the global364

mean have higher density values. Therefore, the data density365

indicates how strongly data samples influence one another in366

the data space. The density function is defined as a Cauchy367

function [32]368

D (xi) =
1

1+‖xi−μ‖2
σ

(6)

where μ is the global mean and σ = 1− ‖μ‖2.369

The prototypes are determined by partitioning the labeled370

training-data based on the data density and area of influence371

within the latent feature space. The prototypes are the local peaks372

of the data density in the feature space for their corresponding373

class. It is important to note that the prototypes are independent374

from each other, such that the addition of a new prototype does375

not influence the already existing prototypes.376

α = maxD(pj)
β = minD(pj)
j∗ = argmin(xi − pj)

(7)

IF D(xi) > α OR D(xi) < β OR (‖xi − pj∗‖ ≤ rj∗)
THEN add a new prototype

(8)

The prototypes with maximum and minimum density, α and377

β, respectively, and the index j∗, which denotes the prototype378

closest to the current sample, are used to control the addition379

of new prototypes [32]. If either of the first two conditions in380

(8) is met, or if the sample lies outside the area of influence of381

the closest prototype [the third condition in (8)], then the new382

data sample is added as a new prototype to its respective class.383

If the conditions are not met, then new samples are assigned as384

a support member of the prototype nearest in the feature space.385

The prototype is then updated recursively as follows [32]386

pj∗ ←
pj∗ (Nj − 1) + xi

Nj
. (9)

The support, or the number of data samples associated with387

a certain prototype, is updated S ← S + 1 and the radius is388

updated recursively using the following [32]:389

rj∗ ←
rj∗ + (1− pj∗)

2
. (10)

After the initial training process, the model can learn contin-390

uously by absorbing new training samples of previously seen391

classes or of new unseen classes. Alternatively, a user can ma-392

nipulate and fine-tune the model through the addition, removal,393

or adaption of prototypes manually.394

Explanation of prototypes can be represented in the form of395

linguistic logical IF...THEN rules where the density D can be396

Fig. 2. Visual illustration of linguistic IF...THEN rules, where ∼ stands for
similarity and x is the queried sample. If the sample is within the degree of
similarity for the set of prototypes belonging to a class, then the class label is
applied.

seen as a fuzzy degree of membership [12]. All rules, per class, 397

can be combined using the logical OR operator (see Fig. 2). 398

C. Compound Prototype Cloud 399

After training, the XPCC model contains several class con- 400

tainers, one per class (n.b. that the containers are referred to as 401

“data clouds” in [12]. However, we call them class containers to 402

avoid confusion with ‘point clouds’). Each container consists of 403

the per-class metaparameters, including the prototypes identified 404

for that class. The number of prototypes is much less than the 405

number of training samples of that type that were seen (i.e., 406

P 	 N ). The prototypes themselves represent the 3-D point- 407

cloud object. The CPCs are composed of all point cloud-based 408

prototypes superimposed and, as a result, one such aggregated 409

prototype per class. The CPC creation process is as follows. 410

Starting with the first identified prototype as the reference object, 411

perform principal component analysis to obtain the three main 412

directions of the point cloud and deduce the main axis. Second, 413

take the extent along the main axis to scale the clouds to the 414

reference (reference objects are chosen as the initial prototype). 415

Then, perform a fine registration using a point-to-point iterative 416

closest point algorithm [33]. 417

D. Classification Algorithm 418

In this section, we describe the classification procedure for 419

the XPCC method. The principle of the XPCC-classification 420

approach is based on the intuition that people learn by comparing 421

similarity between objects, but only remember a few distinct 422

objects during decision making (i.e., the prototypes)—the so- 423

called anthropomorphic approach to machine learning [34]. If a 424

new object is encountered, a person is likely to assume that it 425

belongs to the class which it most closely resembles. Following 426

this logic, the learning of the proposed method revolves around 427

the position and properties of the prototypes in the feature space. 428

Given a new test sample xt, the proposed XPCC method first 429

finds the local similarity to each class’s prototypes 430

Sj = Similarity(xt, pj) =
1

(1 + ‖xt − pj‖2)
(11)

and then determines the global similarity to each class as S∗j = 431

maxSj . With these, the proposed method then performs a global 432

weighting (13), where 
 is the Hadamard product, based on 433

similarity between the new sample and the CPC feature vector. 434

The CPC feature vector is estimated as the recursively updated 435
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global mean of the class, that is436

SCPC = Similarity(xi,CPCj) (12)

γi = SCPC 
 S∗j . (13)

In the proposed method, the following SoftMax function is437

used to normalize the output of the previous layer to a probability438

distribution over the predicted output classes:439

γ∗i =
exp(γi)∑
k exp(γk)

. (14)

Finally, the hard classification is conducted through the440

argmax(γ∗i ) function, thus providing the label of the most likely441

class.442

IV. EXPERIMENTS443

We compared the proposed XPCC classifier against both clas-444

sical machine-learning classifiers and state-of-the-art point-set445

learning classifiers. Unless and otherwise stated, the term XPCC446

refers specifically to the use of the proposed method with the447

KP-CNN feature-extractor network. In the experiment com-448

paring the proposed method against classical machine-learning449

algorithms, the450

Precision = TP/ (TP + FP)

451

Recall = TP/ (TP + FN)

452

and F1-score = 2
(Precision ∗Recall)

(Precision+Recall)

were used as evaluation metrics, where TP , FP , and FN are453

the number of true positives, false positives, and number of454

false negatives, respectively. For all experiments we also give455

the overall accuracy456

OA =
TN + TP

TP + FP + TN + FN

where TN is true negative. For our experiments comparing the457

proposed method against point-set deep-learning algorithms, we458

also use mean accuracy (mAcc),459

mAcc =
1

M

M∑

i=1

acci

where acci is the accuracy for the samples class i and M is the460

total number of samples.461

The Princeton ModelNet project provides a collection of462

synthetic 3-D CAD-object models split into two benchmarks:463

a 40-class subset and 10-class subset known as ModelNet40464

and ModelNet10, respectively. We believe ModelNet is the only465

publicly available 3-D object benchmark specific to object clas-466

sification. Other 3-D model and point-cloud datasets exist, but467

they are either a collection of objects without a defined test/train468

split [35], have very few models per class [36], or are intended469

for different tasks like semantic segmentation [37]–[39], or 3-D470

object detection [40]. The ScanObjectNN [41] benchmark is an 471

interesting dataset made up of real-world object models; but at 472

the time of writing, it is not available for public access. It will be a 473

topic of future consideration. To evaluate the XPCC we used the 474

ModelNet40 shape-classification benchmark. There are 12,311 475

CAD models from 40 categories of human-made objects, split 476

into 9843 for the training set and 2468 for the testing set. The 477

CAD models were converted into 3-D point clouds by sampling 478

points randomly along the model surfaces. 479

Experiments with the XPCC were run on a Unix machine 480

with 3.6 GHz AMD Ryzen 5 3600 6-Core CPU, 16 GB RAM, 481

and SSD. The KP-CNN feature-extractor network was trained 482

using an NVIDIA 2070S GPU. Training the KP-CNN took five 483

hours. Once trained, the fixed network acts as a generalized 484

point-cloud feature extractor. In our comparison studies, we also 485

evaluated the PointNet++ network as a feature extractor; this was 486

trained under the same conditions. The points are restricted to 487

contain only the (x , y , z ) coordinate information. Training of 488

and inference with the XPCC is highly parallelizable and can be 489

conducted on either CPU or GPU hardware. 490

A. CPC-Demonstration 491

The motivation for the CPC is to represent what the model 492

has learned by visualizing the per-class parameters as a system 493

of superimposed prototypes in 3-D space. This is comparable to 494

the idea of an object that a human might imagine when thinking 495

of a particular object class. For example, if asked to think of 496

an “airplane”, a cylindrical capsule shape with wings and tail 497

rudder is likely to come to mind. Although this is the general 498

shape, there are other aspects that might be different depending 499

on the person’s experiences with the object. For the airplane 500

example, attributes, such as the wing positions, angle, or number, 501

might vary and additionally the plane might have propellers or 502

jet engines. Much like the human idea of an object, the CPC 503

contains these aspects as physical options. We illustrate the CPC 504

representation in Fig. 3. By encoding the object’s similarity (the 505

normalized data density) in the feature space as a color, the CPC 506

indicates the areas that contribute to the classifier’s decisions 507

when examining new objects. As can be seen in Fig. 3, green 508

and red regions are areas with greater density within the model’s 509

decision space and correspond to the areas of an object that 510

contribute to the model’s knowledge of that class and, ultimately, 511

the decision-making process. 512

B. Comparative Results With Classical Methods 513

In this section, we compared the proposed XPCC method 514

against classical machine-learning approaches to classification 515

including kNN, SVM, decision trees, random forest, MLP, 516

and Gaussian Naive Bayes. All methods were implemented 517

using the scikit-learn Python library [42]; however, we cite 518

the underlying algorithm or library if applicable. The kNN 519

method is formulated as a brute force problem. Five variations 520

of SVM classifier are reported. L-SVM is underpinned 521

by [43] and utilizes squared-hinge loss to train one-versus-rest 522

classifiers. Conversely, C-SVM is underpinned by [44] and 523
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Fig. 3. Visual depiction of the compound prototype clouds for selected Mod-
elNet40 classes. A and B are the CPC for class airplane. C and D are the CPC
for the class guitar. The color represents the distribution of confidence per data
point extracted from the data alone. Blue areas are those with low confidence,
green areas are those with medium confidence, and red areas are those with high
confidence.

trains one-versus-one classifiers; results are reported using524

the linear, polynomial (poly), RBF, and sigmoid kernels. Two525

variations of the decision-tree and random-forest algorithms are526

recorded, the first using the gini-impurity and the second using527

entropy-impurity. In addition, results are compared against three528

variations of MLP. Each consist of the standard three-layer529

configuration and use the ReLU, TanH, sigmoid activation530

functions, respectively. Optimization of the MLP is performed531

using [46]. Lastly, we compare against a Gaussian Naive Bayes532

classifier. Further specifications of the comparative classifier533

implementations can be found in [42].534

From Table I, it is clear that the XPCC method achieved higher535

scores across all metrics in comparison to these classical ap-536

proaches. The proposed method increased the overall accuracy537

by 0.65 percentage points (p.p.), increased F1-score by 3.16 p.p.,538

and increased recall by 3.30 p.p., compared to the subsequently539

leading C-SVM with linear-kernel method. Similarly, precision540

was increased by 3.06 p.p. over the subsequently leading C-541

SVM with RBF kernel. The proposed method shares the ability542

to perform online machine learning with the Gaussian Naive543

Bayes method. A comparison of these two methods shows that544

the XPCC method increases accuracy by 4.06 p.p., precision545

by 7.32 p.p., recall by 6.91 p.p., and F1-score by 7.39 p.p.546

Furthermore, the XPCC method does not incur performance or547

stability overhead when performing online learning because it548

is built on recursive calculations.549

C. Comparative Results With State of the Art550

We performed a classification test on the ModelNet40 bench-551

mark and compared the XPCC classifier against the state of552

the art in explainable point-set learning algorithms, including553

TABLE I
PERFORMANCE COMPARISON WITH CLASSICAL CLASSIFIERS ON THE

MODELNET40 BENCHMARK

Note: All classical methods were implemented with the scikit-learn [42] Python library.
The classical explainable classifiers are trained with the same feature vectors as XPCC,
generated by the fixed-CNN feature extractor. Normalization was performed as described
in (1) for all experiments.

PointHop, CLAIM, and PointMask. In addition, we compared 554

the proposed method against baseline deep-learning algorithms 555

including PointNet, PointNet++, and the base KP-CNN. The 556

results from this experiment can be found in Table II. 557

Prior XPCCs use either PointNet or PointNet++ as their base 558

method. These have an overall accuracy score of 89.2 p.p. 559

and 90.7 p.p., respectively, (as presented on the ModelNet40 560

benchmark rankings). However, compared to the base methods 561

the mechanisms by which the explainable methods provide 562

explanation result in a decrease in overall accuracy: PointHop 563

incurs a 0.6 p.p. decrease from PointNet and 2 p.p. decrease 564

from PointNet++, CLAIM sustains a 2.1 p.p. decrease from 565

PointNet and 3.6 p.p. decrease from PointNet++, and PointMask 566

experiences a 7 p.p. decrease from PointNet and 8.5 p.p. decrease 567

from PointNet++. With our implementation of the KP-CNN, 568

the base network alone achieved baseline accuracies of 91.80% 569

(overall accuracy) and 88.75% (mean accuracy). In comparison 570

with this baseline the XPCC produced on average a 0.02% 571

increase to overall accuracy and a 0.12 p.p. increase to mean 572

accuracy. Therefore, we believe XPCC to be the only explainable 573

point-set classifier that leads to an increase in accuracy relative to 574

the base algorithm. In comparison with the previous explainable 575

approaches, the proposed method increased classification accu- 576

racy by 2.7 p.p. (versus PointHop), 4.6 p.p. (versus CLAIM), 577

and 9.64 p.p. (versus PointMask). 578

As a further experiment for accuracy, we reversed the test/train 579

split (i.e., train on 2468 samples and test on 9843). The XPCC 580

achieved an overall accuracy of 96.97% and mean accuracy of 581

95.46%. This would be far too few training samples to produce 582

accurate results with the deep learning point-set learning meth- 583

ods. This demonstrates that the proposed method can achieve 584

high accuracy with significantly less training data, although we 585

do note that this particular experiment negates any difficulties 586

purposefully encoded within the test set of the benchmark. 587
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TABLE II
PERFORMANCE COMPARISON AGAINST STATE OF THE ART AND EXPLAINABLE POINT-SET DEEP LEARNING METHODS ON THE MODELNET40 BENCHMARK

Note: The highest result for each accuracy metric listed is in bold, where OA is the overall accuracy and mAcc is the mean accuracy. Training time is the approximate time needed
to train a method. The device column reports the device typically required by the algorithm. In the number of parameters column, P is the number of prototypes; M is million. For
both XPCC and xDNN there are two parameters (μ and σ) per prototype. The transparent metric is conditional on the network’s ability to be interpreted or if it is a “black box”
method. The reproducibility metric is conditional on, if given the same training data, the network will always conclude the same predictions. The retraining is conditional on if
the network must be completely retrained in order to add a new training sample. Metrics that are not reported by or cannot be understood from the source literature are marked
using the “–” notation.
* The authors of KPConv record an accuracy score of 92.9 in their publication, however, we were unable to reproduce this score; this is not unique to our experience [41]. Our
retrained KP-CNN achieves an average accuracy score of 91.8.

D. Analysis588

Improvements to benchmark results are often marginal and589

relying on these scores alone can sometimes ignore other aspects590

of an algorithm, which may be equally beneficial. As such, we591

stress that accuracy is only one aspect of explainable classifiers.592

Specifically, it has been shown that scores over 91% on the593

ModelNet40 benchmark are sensitive to optimizations that do594

not necessarily transfer to real world experiments [17], [41]. To595

highlight this effect, we also pretrained a PointNet++ network596

as feature extractor using the optimized data augmentation de-597

scribed in [17]. In terms of overall accuracy, this formulation of598

the XPCC does perform better than the KPConv feature extractor599

on the benchmark’s defined test/train split. However, the XPCC600

& PointNet++ configuration was less accurate under the mean601

accuracy metric, which takes class balance into consideration.602

As shown in the “Domain Transfer” section, the features ex-603

tracted by the KP-CONN are demonstrated to be discriminative604

when applied generally. For this reason, we opted for the more605

sophisticated KP-CNN as feature extractor.606

We list the number of parameters for all methods (if avail-607

able) in Table II. The deep learning methods that rely on608

error-correction learning (e.g., backpropagation with gradient609

descent) have millions of parameters, a characteristic that ex-610

tends to their derivative explainable methods. In comparison,611

the xDNN and XPCC methods have two parameters for each612

prototype, where the number of prototypes for our proposed613

method is around 10% of the number of training samples seen614

for a class.615

The XPCC is significantly faster than all other methods.616

Training took on average six seconds on a CPU and two seconds617

on a GPU. This is thanks to the highly parallelizable structure618

of the model: all the calculations are performed separately for619

each class and, thus, can run simultaneously. In relation to the620

other methods this translates into the XPCC being at least 9000621

times faster to train than methods that took five hours, and 600622

times faster than methods that took 20 minutes to train. This,623

compounded with the fact that the XPCC does not need to624

be completely retrained to add new classification types (i.e., it625

learns continuously), demonstrates the efficiency and practical 626

applicability. 627

E. Domain Transfer 628

The XPCC method incorporates two varieties of domain 629

transfer: task-wise domain transfer and learning domain transfer. 630

Task-wise domain transfer is intrinsic to the method. The 631

prototype-based internal structure of XPCC allows for a trained 632

model to be transferred to a new domain without a complete 633

retrain. Specifically, adding a new class requires training the 634

model on only the new data samples, rather than a complete 635

retrain. For example, if an XPCC model has been trained to clas- 636

sify chairs and tables, the model only needs to be updated with 637

training samples of a new class, such as televisions. Similarly, 638

the model does not need to forget previously learned classes 639

when transferred. 640

To investigate the effectiveness of the learning domain transfer 641

and the approach to transfer learning, we assessed the transfer- 642

ability of the fixed-CNN feature extractor in the XPCC method. 643

This experiment was conducted using the ModelNet10 bench- 644

mark, by examining accuracy results when applied on classes of 645

objects not seen by the feature-extraction network. The fixed- 646

CNN feature-extractor network was trained without access to 647

one of the object classes. Then, the XPCC model was trained on 648

the full dataset (including that object class) and validated using 649

the ModelNet10 train-test data split. In this way, only the XPCC 650

model had any knowledge of the hidden class and, therefore, 651

not reliant on the fixed-CNN having knowledge of that class of 652

object. This process was systematically repeated for each class 653

within the ModelNet10 benchmark, and the average accuracy 654

score recorded. In this experiment, the XPCC and KP-CNN 655

feature extractors achieved an overall accuracy score of 91.38% 656

for the hidden classes. We performed the same experiment with 657

the XPCC & PointNet++ feature extractor. This configuration 658

achieved only an overall accuracy score of 89.96% for the 659

hidden class, giving a 1.42 p.p. decrease in accuracy; these 660

results suggest that the PointNet++ feature extraction method 661

is not as discriminative when applied generally. For this reason, 662
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we selected the more sophisticated KP-CNN feature extractor,663

which makes the XPCC method more viable for training and664

classifying atypical 3-D point cloud object model classes.665

F. Error Analysis666

From examining the similarity scores between negatively667

predicted samples and prototypes, it is clear there were some668

limitations to the proposed method. A primary bottleneck of the669

method is discerning between objects that share many similar670

characteristics. As such, errors in the classification are predom-671

inately from objects with subjective classification labels, such672

as the distinction between a glass and vase, or table and desk.673

Other errors were from samples whose shapes are similar, such674

as bench and sofa. This appears as a trend across explainable 3-D675

methods on the ModelNet benchmarks and suggests that more676

contextual information is needed beyond geometric shape. In677

addition, semantic limitations present within the ModelNet40678

benchmark are arguably hard for a human to discern between.679

For example, shapes that have different semantic labels but are680

geometrically very similar, such as the difference between a681

“flower pot” (with a plant in it) and a “plant” (in a pot).682

V. CONCLUSION683

We proposed a new classification method, the XPCC, for684

object classification within 3-D point clouds. The proposed685

method was algorithmically and structurally transparent, learns686

continuously, without the need to be completely retrained at the687

addition of new classes, and offers several layers of human-688

interpretable explainability. This article also presented a novel689

technique to visualize the explainable aspects of the model,690

called CPC. The technique was unique to 3-D point clouds691

and prototype-based learning and represented what the model692

has learned. Specifically, it identified object regions, which693

contribute to the classification. Experiments showed that the pro-694

posed classifier method was computationally efficient, trainable695

on thousands of samples in seconds, and is competitive with696

the state of the art in point-set deep-learning classifiers in terms697

of classification accuracy. Furthermore, the proposed method698

was the only explainable point set classifier that achieved higher699

accuracy compared to the base network used. A limitation of the700

proposed method was that classification relies on point clouds701

containing only one object. In our future work, we will focus702

on applying the method to real-world data and extending the703

method to other point-cloud specific objectives, such as object704

detection within a scene.705
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Chapter 4

An Explainable and Transferable
AI Framework for the Extraction
of Burial Ground Objects:
GeoPart-XPCC

This chapter introduces the GeoPart-XPCC framework, a two-part process comprising
segmentation and classification. The segmentation phase employs a robust machine
learning algorithm tailored for large-scale, fine-resolution point clouds, addressing
variable point density. This is followed by the application of an explainable neural
network, facilitated by transfer learning, for efficient and accurate classification. The
experimentation phase is substantiated through the analysis of 11 scenes from five
diverse burial ground sites in the United Kingdom. Results showcase GeoPart-
XPCC’s efficiency, adaptability, and remarkable accuracy.

The GeoPart-XPCC framework stands as a significant advancement within the
broader context of the thesis, building upon the foundation laid by two pivotal
predecessors: GeoPart-Transfer and XPCC. Each of these components has contributed
distinct dimensions to the overarching exploration of automated object extraction and
classification from cultural heritage point clouds.

The GeoPart-Transfer, discussed in previous sections of the thesis, set the stage
by introducing a method for the autonomous extraction and labelling of objects from
cultural heritage scenes. This approach, founded on segmentation and classification
tasks, aimed to transcend the limitations of existing methodologies by utilising an
MLP (Multi-Layer Perceptron) classifier. This innovation marked a departure from
earlier techniques that relied on spatial descriptors or predefined patterns, offering a
more adaptable approach. However, GeoPart-Transfer retained certain limitations,
including its choice of classifier and potential improvements in adaptability.
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In parallel, the XPCC (eXplainable Point Cloud Classifier) component emerged
as an innovative solution to classification challenges in 3D point cloud data. This
neural network-based classifier, distinguished by its explainable nature, exhibited
remarkable proficiency in classification accuracy while offering insights into decision-
making processes. The XPCC thus aligned closely with the overarching thesis goal of
combining the power of deep learning with human-understandable explanations.

In this context, the GeoPart-XPCC framework effectively bridges the contributions
of GeoPart-Transfer and XPCC. GeoPart-XPCC, by replacing the MLP classifier
of GeoPart-Transfer with the XPCC classifier, amalgamates the strengths of both
predecessors. This union results in a comprehensive framework that not only
autonomously extracts and labels memorial objects from cultural heritage scenes
but does so with an explainable, interpretable classification methodology. This
distinctive blend signifies an important step forward in cultural heritage preservation
and management, as it combines accuracy and efficiency with transparency in decision-
making.

Furthermore, the introduction of GeoPart-XPCC does not only serve as an
upgrade to GeoPart-Transfer but also signifies a strategic incorporation of XPCC’s
explainability and adaptability into the methodology. The adaptive capabilities of
XPCC complement the adaptable nature that GeoPart-Transfer was already designed
to possess. This integration underscores the framework’s ability to excel across diverse
cultural heritage sites, accommodating variations in object styles, materials, and
surroundings.

In essence, the GeoPart-XPCC framework emerges as a synthesis of two critical
facets of the thesis: the adaptive and object extraction methodology from GeoPart-
Transfer and the explainable, accurate classification prowess of XPCC. This amal-
gamation propels the thesis’s overarching mission of revolutionising cultural heritage
preservation through the fusion of cutting-edge technology and human-understandable
decision-making processes.
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GeoPart–XPCC: An Explainable and Transferable
AI Framework for the Extraction of

Burial Ground Objects
Nicholas I. Arnold, Plamen P. Angelov, Fellow, IEEE, and Peter M. Atkinson

Abstract—Recent advances in LiDAR technology have made
the creation of fine-resolution 3D point cloud scenes of cultural
heritage and archaeology sites possible. However, the challenge
of how to automatically extract and label objects of interest
from these point clouds remains. This paper introduces a novel
framework for the autonomous extraction and labelling of
memorial objects from cultural heritage scenes; called GeoPart-
XPCC. In this framework, extraction is performed in two
parts. First, segmentation is performed using a robust machine
learning algorithm that is suitable for large-scale fine-resolution
point clouds with varying point density. Second, an explainable
neural network supported by a transfer learning process is
used to perform classification quickly and accurately. Exper-
iments were performed on 11 scenes from five different burial
ground sites located in the United Kingdom. These experiments
demonstrate that the GeoPart-XPCC framework is quick to train
and apply, easily adaptable and accurate. It is shown that the
framework could be trained on part of a scene and perform
prediction on the remainder, as well as be trained on one scene
and predict on a different scene. Previous studies utilise point
clouds derived from airborne LiDAR, whereas this framework is
suitable for the fine-resolution and variable density point clouds
derived from mobile LiDAR. Compared with other methods,
the experiments show that the GeoPart-XPCC is more accurate
and robust to changes in domain. The proposed framework is,
therefore, widely applicable.

Index Terms—XAI, ML, Classification, Segmentation, 3D, Point
Cloud, Cultural Heritage, Transfer Learning

I. INTRODUCTION

BURIAL grounds in the United Kingdom, such as ceme-
teries and graveyards, are cultural heritage sites and

provide an interesting application case for automated ap-
proaches to extract and classify objects from 3D point cloud
scenes. Recent advances in point cloud sensor technolo-
gies, for example, light detection and ranging (LiDAR) and
photogrammetry, have led to the development of versa-
tile mobile LiDAR sensors capable of creating 3D point
clouds of heritage sites. Point clouds representing real
world environments provide fine-resolution digital proxies
for the multitude of landscape objects covered within each
scene, and offer a valuable data source for cultural heritage
management [1]–[4]. However, the extraction and classifi-
cation of the objects of interest is a necessary step for the
operational use of these data, for example, for curation,
interpretation and assessment purposes. In this paper, the
landscape objects of interest are memorial objects. Perform-
ing manual extraction and labelling of memorial objects is
labour-intensive and automation of these tasks is, therefore,
desirable

Several characteristics of burial grounds make the design
of a process suitable for automated extraction and labelling
not immediately obvious. The burial grounds’ age, location,
and cultural setting affect the physical environment of
sites and the appearance of objects contained within them.
Memorial objects might appear as having different styles
and designs and may be made from different materials
depending on these factors. For example, many burial
grounds, especially those in the UK, can date back hundreds
of years and are often planted with gardens, trees and other
forms of vegetation. Over time, the condition of memorial
objects may degrade, and the vegetation can become more
prominent. Furthermore, many of these older sites are still
in use today. The effects of this are that a burial ground
might contain examples of both traditional memorials and
more modern ones, such as headstones and memorial
benches, respectively. Additionally, burial grounds located
in different geographical regions might have unique traits or
variation in the typical memorial objects found locally. In-
versely, sites from the same region might exhibit differences
based on cultural aspects such as religion and economics.
In the context of developing an automated solution for the
extraction and classification of memorial objects from these
sites, the above characteristics pose significant challenges.

Conventional methods of object extraction from cultural
heritage point cloud data, such as object-based image anal-
ysis [5] and template matching [6], rely on purpose-built
spatial descriptors or recognition patterns, both of which
must be pre-defined. These approaches are, therefore, only
semi-autonomous, and difficult to generalise across ap-
plications [7]. To address these limitations, a variety of
methods based on machine learning were developed for
object extraction and the mapping of archaeological sites
[8]–[11], and cultural heritage sites by extension [12]–[15].
The most prolific approach amongst these methods is the
application of deep neural networks (DNN), specifically,
convolutional neural networks (CNN) [16]–[19]. DNNs are
supervised computational models that are composed of
several processing layers that learn increasingly complex
latent features [20]. Most archaeological and cultural her-
itage studies do not use 3D point clouds directly and,
instead, derive visualisations that are more immediately
interpretable to the human eye [21]. These representations,
such as 2D digital elevation maps, are then used as the
input to the DNN models. However, by not using point
clouds directly, these approaches fail to take advantage of
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the innate spatial information present in true 3-dimensional
data and, potentially, introduce viewpoint bias.

Recently, point-based deep learning methods, such as
PointNet [22] and PointNet++ [23], were introduced that are
adapted to the properties of 3D point cloud data [24]. These
neural networks are capable of learning directly on the
point cloud structure without intermediate representations.
As classifiers, these models use error-correction to learn
an embedding for each point and aggregate this infor-
mation into a global shape descriptor. Hard classification
is performed by feeding the global descriptor into several
fully connected layers. Prominent network architectures for
point-based deep learning methods include graph convo-
lution networks [25], [26], pointwise multi-layer perceptron
(MLP) neural networks [22], [23] and kernel point CNNs
[27], [28]. A point-based method is used in this paper for the
extraction of latent features directly from 3D point clouds,
similar to [12].

The number of data required for training traditional deep
learning models is variable. In most cases, training these
models requires many thousands of data per classification
[29]. In applications where extensive datasets of annotated
training data do not exist, as is the case for memorial
objects. This need for training data, thus, can create an
obstacle to implementation. The common approach to
overcoming this obstacle is data synthesis or augmentation
[30]. However, the design and execution of synthesising
training data is itself time-consuming and often requires
expert knowledge of both the application domain and the
model itself. Even with an adequate pool of training data,
if an object is significantly different from those seen during
training the model may fail to label it correctly. Adding
a new class to the model would, therefore, require many
examples of the new class and the model to be completely
retrained. For this reason, we argue that methods which are
inherently adaptable are more suitable.

Transfer learning is another strategy for overcoming the
restrictions imposed by training a DNN. This strategy ap-
plies a pretrained model from a source domain to initialise
a targeted domain model [31]. Transfer learning has gained
attraction in recent years, in part because of its flexibility
and wide adaptability. It has found various uses within the
context of machine learning approaches applied to cultural
heritage and archaeology [12], [32]–[35]. In this paper, we
take 3D point cloud data directly as input and train an
explainable classifier as the transfer learning model. The
use of interpretable and explainable models is valuable
beyond high stake decisions [36]. The ability to discern why
a decision or prediction was made, wrong or right, is highly
useful. With this knowledge it becomes possible to perform
diagnostics of the model and make corrections.

This paper presents a framework for the automatic ex-
traction and labelling of memorial objects from 3D point
cloud scenes that is adaptable, explainable and efficient.
It can, therefore, be applied at scale. This paper serves
as an improvement to the system of methods developed
in our earlier research, GeoPart-Transfer [12]. This updates
the methodology, wherein segmentation and classification

are performed in two separate tasks, allowing adoption
of the eXplainable Point Cloud Classifier (XPCC) [37] in
place of the MLP classifier as used in the original paper.
As such, the proposed framework is named GeoPart-XPCC.
The adoption of XPCC enables a user to quickly add new
objects for classification. Through a set of experiments, we
demonstrate that the GeoPart-XPCC framework is efficient
in terms of accuracy and is adaptable. The experiments
illustrate that the proposed method can be applied to both
within-sample and out-of-sample predictions, meaning that
it can train one part of a scene and perform prediction on
the remainder, as well as train on one scene and predict
on an entirely difference scene with no significant change
in accuracy. Comparative results between GeoPart-Transfer
and the proposed GeoPart-XPCC are also presented.

Previous studies in the literature, utilised point clouds
derived from airborne LiDAR systems (ALS), but very few
studies focused on those created by mobile LiDAR. This is
unsurprising, as ALS data representing large portions of the
Globe are readily available from sources such as the USA
National Science Foundation (NSF)-funded OpenTopogra-
phy project [38]. However, ALS is limited in its ability to
scan vertical surfaces and robustly capture small objects;
qualities that are necessary for creating highly detailed
representations of complex environments with many small
vertical objects, such as burial grounds. In contrast, mobile
LiDAR systems have a direct view of vertical faces and can
provide a much finer, although more varied, spatial resolu-
tion with respect to the ground and objects. Mobile LiDAR
was deployed typically in automotive scenarios. However,
the introduction of handheld and wearable systems has
made it possible to apply this technology to locations such
as cultural heritage sites. The experiments presented in
this paper were performed on point cloud data produced
from mobile LiDAR scanners. Furthermore, many of the
ALS techniques are not suitable for the fine-resolution point
clouds produced by mobile LiDAR. The GeoPart-XPCC was
designed specifically for dense mobile LiDAR point clouds.

Contributions of this paper include the following:

1) A novel GeoPart-XPCC framework for the autonomous
extraction and labelling of memorial objects from
cultural heritage scenes.

2) Application of the framework to five cultural heritage
sites, with the sites divided into 11 separate scenes.

3) Within-sample accuracy results of the framework.
4) Out-of-sample accuracy results demonstrating do-

main transferability of the framework.

The remainder of this paper is organised as follows.
Section 2 details the methods used in the proposed frame-
work. Section 2.1 covers segmentation and Section 2.2 the
classification method. Section 3 presents the experimental
results. Section 3.1 includes descriptions of the cultural
heritage site datasets used and the experimental design.
Sections 3.2 and 3.3 report the results of the within-sample
and out-of-sample experiments, respectively. We provide a
discussion of these results in Section 4, including examina-
tion of comparative results between GeoPart-Transfer and
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GeoPart-XPCC. Finally, in section 5 a conclusion is given.

II. METHODS

We consider a 3D point cloud P as a set of 3D points
pn | n = 1, . . . , N corresponding to a scanned scene of a
burial ground. The number of points in the cloud is denoted
as N. The objective is to obtain a classification of the points
in P as either belonging, or not belonging, to a memorial
object and to assign each point to a homogeneous cluster
of points that represent the object to which they belong.
It is assumed that the point cloud scenes are scaled to a
known unit size and have been pre-processed to remove
statistical outliers and duplicate points.

III. SEGMENTATION

Segmentation is implemented to divide the scene into
geometrically simple regions. In this section, we describe
the segmentation process of the GeoPart-XPCC framework.
We expand on the segmentation methodology as described
in [12]. A radius k-neighbourhood search is applied instead
of the traditional k-nearest neighbour algorithm. As shown
by [39], radius neighbourhood search is more robust when
applied in a non-uniform sampling setting. A global energy
model [40] is used to divide the scene based on the geomet-
ric complexity of local areas. Starting with the entire scene,
areas that are more complex are divided progressively
into less complex regions. By using geometric complexity
rather than physical size, large shapes that are geometrically
simple, such as walls and roads, can be obtained as a
single continuous segment. Accordingly, the segments are
not defined or limited by the number of points contained
within them.

A set of features that characterise the local dimensionality
of the scene is first computed, see Table I. For each point
pn , the nearest neighbouring points in the point cloud P
are selected as the 45 closest neighbouring points within a
set ball-radius of 1 m. If there are not enough points within
this radius, then the next closest points are used. Second,
the covariance matrix of their positions is calculated. From
this, the set of eigenvalues λ1 ≥λ2 ≥λ3 and corresponding
eigenvectors u1,u2,u3 are obtained. The neighbourhood
size is chosen such that it minimises the eigentropy E
of the vector (λ1,λ2,λ3) where Λ = ∑3

i=1λi [41]. The set
of features fn ∈ R4 is constructed from the eigenvalues.
This feature vector characterises the local dimensionality
and geometry of the point and its neighbours. The type
of dimensionality features used includes linearity, planarity,
and scattering [42]. Linearity describes how well the neigh-
bourhood represents a straight line; planarity describes
how well the neighbourhood represents a plane; sphericity
measures the scattering of points in relation to a spherical
shape. Additionally, the verticality feature is used, which
indicates the geometric orientation of the neighbourhood
[40]. A verticality value of 0 represents a horizontal orien-
tation, whereas a verticality value of 1 represents a vertical
orientation.

The spatial relationship between points is represented
as a nearest neighbour adjacency graph Gnn = (V ,Enn) of

TABLE I
LOCAL DIMENSIONAL GEOMETRIC FEATURES.

Property Formula

Linearity λ1−λ2
λ1

Planarity λ2−λ3
λ1

Sphericity λ3
λ1

Verticality
∑3

j=1

∥∥∥〈[0,0,1],u j 〉
∥∥∥

the point cloud, where V = {V1, . . . ,VN } is the set of feature
vectors fn representing its associated point pn , and Enn

is the corresponding edges to the nearest 14 neighbouring
points (i.e., nn = 14). The adjacency relationship between a
node and its neighbours is encoded as the weight of the
edges. The relation between point density and the number
of edges is chosen to be computationally efficient and
accuracy as advocated by [43]. Segmentation is performed
by splitting the graph into non-overlapping connected
components defined as the solution of the following Potts
energy model:

argmin
∑

n∈V

∥∥gn − fn
∥∥2 +ρ

∑
(i , j )∈Enn

wi , j [gi − g j ̸= 0]. (1)

The variable g is used to determine the optimal value;
that is, the minimisation of the problem. The Iverson
bracket [·] yields 0 if the internal expression is true and 1
everywhere else. The edge weight w ∈R|E |

+ is chosen to de-
crease linearly with respect to the edge length, and factor ρ
is the regularisation strength, which determines the coarse-
ness of the resulting partition [26]. The minimised high-
order function is nonconvex and noncontinuous, meaning
that the problem cannot be solved easily for large point
clouds. However, the l0 "cut pursuit" algorithm [44] is used
to find an approximate solution quickly, regardless of the
number of points. The conditional multi-scale partitioning
filter from GeoPart-Transfer is then applied to increase the
chances of finding smaller objects that have been missed in
the initial segmentation [12]. The point cloud segments are
represented as the set S = {Si | i = 1, . . . ,h}, where h is the
number of segments returned by the cut adjacency graph
and partitioning filter.

IV. CLASSIFICATION

In this paper, the XPCC method is applied within the
proposed framework to perform classification. The input to
the GeoPart-XPCC classification method is taken as the set
of point cloud segments, S, from the segmentation process.
Functionally, the point cloud segments do not need to have
the same number of points. The output of the classification
step is a set of predicted labels L = {Ln | n = 1, . . . , N } where
each point in the point cloud is assigned a class label.
The classification considers only each segment’s geometric
shape. That is, the x, y, z coordinate points are taken as
the only input. Colour and other observational features are
not used. Therefore, the classification is not affected by
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inconsistencies caused by external factors present during
data collection, such as different lighting or times of day.
The GeoPart-XPCC classification model is a non-iterative
prototype-based feedforward neural network which directly
takes the point coordinates as input. An illustration of the
GeoPart-XPCC classifier can be seen in Figure 1. Algorithms
for training the model and performing predictions are
detailed in the following sections.

A. Latent Feature Extraction

The first layer of the GeoPart-XPCC model is the feature
extraction layer. This layer encodes the shape of each
segment of the point cloud scene into a global descriptor.
To do this, a transfer learning concept is applied, and the
layers of a pre-trained DNN are used as a fixed feature
extractor. The global descriptor is obtained as the vector
of latent features computed from the final, fully connected
layer of this DNN. The latent feature space is optimised
for the separation of the training data, and it has been
shown that this feature space can also effectively separate
objects from a different domain [37]. In contrast to [12],
the DNN chosen is the point-based KP-CNN with rigid
Kernel Point Convolution (KPConv) blocks [27] pre-trained
on the ModelNet40 [45] dataset. Crucially, the KP-CNN
network is rotation-invariant, accepts variable cloud sizes as
input and remains robust to varying point densities. These
characteristics are important to remain generalisable to
objects from different scenes or scanning technologies. The
latent feature extractor produces a 1-by-1024 dimensional
global feature vector; one per segment.

The set of latent feature vectors extracted by the DNN are
denoted as X = DNN(S) ∈RN×d f , where DNN(·) is the fixed
DNN and d f is the dimension of the extracted features. In
the case of the KP-CNN, d f = 1024. The latent feature vector
representing a given segment is denoted as xi , where i is
the index of the corresponding segment. L2 normalisation is
computed for each individual feature vector, xi = xi

max(∥xi ∥,ϵ) ,
where ϵ is a small constant value, as is standard.

B. Training

The principle behind the GeoPart-XPCC classifier is the
so-called anthropomorphic approach to machine learning
[46]; that is, the intuition that people learn by comparing
similarity between objects, but only remember a few dis-
tinct objects during decision-making (i.e., the prototypes).
If a new object is encountered, a person is likely to assume
that it belongs to the class which it most closely resembles.
Following this logic, the learning of the proposed method
revolves around the position and properties of the proto-
types in the feature space.

The GeoPart-XPCC classification model consists of inde-
pendently trained structures called class containers. Meta-
parameters for the GeoPart-XPCC classifier are trained per-
class and calculations are performed separately for each
one. For efficiency, each class container can be trained
simultaneously in parallel. The class containers are trained
using a filtering algorithm to identify the prototypes from

within the training data; the prototypes being the most rep-
resentative training samples for that class. This algorithm is
non-iterative and can be performed in one-pass. The meta-
parameters for any given class container are initialised
starting with the first training observation belonging to it,

k ← 1, M ← 1,µ← x1,ϕ1 ← x1, N1 ← 1,r j ← r∗, (2)

where k is the current instance (number of training
data seen), M is the number of prototypes identified for
a class (M ≪ N ), µ is the recursive global mean of all
training data as yet observed, ϕ1 is the first prototype
{ϕ j | j = 1, . . . , M }, N j is the number of member points
around each prototype, and r j is the radius of the area of
influence of the corresponding prototype. The element r∗

is the initial degree of similarity of the prototype member
space and is computed as:

r∗ = xi

∥xi∥− ϕi

∥ϕi∥
. (3)

As new training data are seen, the meta-parameters for
any given class container are updated. The instance count is
first updated, k ← k +1. Then, the global mean is updated,

µ← (µ(k−1)+xi )
k . With the updated global mean, it is then

possible to calculate the data density. Density indicates how
strongly data samples influence one another within the data
space [46]. Thus, samples with a higher density value are
closer to the global mean. The density function is defined
as the following Cauchy function [46]:

D (xi ) = 1(
1+

∥∥xi −µ
∥∥2

)
/σ

(4)

where σ= 1−
∥∥µ2

∥∥.
The prototypes are the local peaks of the data density

within the feature space [46]. Accordingly, the prototypes
are determined by filtering the training data according to
their density and area of influence. The prototypes are
independent from each other, such that the addition of
a new prototype does not influence existing ones. The
prototypes with the maximum and minimum density, α=
D(p j )max and β = D(p j )min, respectively, and the index
j∗ = argmin

(
xi −p j

)
, which denotes the prototype closest

to the current observation, are used to control the addition
of new prototypes [47]. If the density of the current ob-
servation is greater than α or less than β, the observation
is added as a new prototype to its respective class. The
observation may also be added as a prototype if it lies
outside the area of influence of the closest already existing
prototype. When none of these conditions is met, the
new training observation is assigned as a member of the
nearest prototype in the feature space; the prototype is then
updated recursively as follows [47]:

φ j∗ ←
ϕ j∗

(
N j −1

)+xi

N j
. (5)

The number of data associated with a certain prototype
is increased accordingly, S ← S +1.
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Fig. 1. Illustration of the GeoPart-XPCC classifier.

After the initial training process, the model can continue
to learn by absorbing new training data. As the updates are
performed recursively, the model retains information about
previously seen data samples with no retraining required.
Similarly, entirely new classes can be added with the ad-
dition of a new class container. Alternatively, it is possible
for a user to manipulate and fine-tune the model through
the manual addition, removal or adaption of prototypes.
Pseudo-code of the training algorithm is given in Figure 2.

C. Prediction

The GeoPart-XPCC prediction architecture is represented
as a series of feedforward network layers. For any given
input data not seen during training, St , a classification label
can be predicted. In the first layer, the feature extraction
layer, the point cloud segments are input as described in
Section 1.2. The output of this layer is the corresponding
latent feature vector xt that encodes the global shape of
the object. The second layer is the prototype layer, wherein
the local similarity between the previous layer’s output and
each class’s prototypes is calculated. Similarity is a metric
defined as:

Similarity
(
xt , p j

)= 1

1+
∥∥xt −p j

∥∥2 . (6)

The output of the prototype layer is the tensor S j which
contains the similarity of the input data observation with
respect to the prototypes of all classes. In the third layer,
denoted the Global Similarity layer, the similarity score for
each class is extracted as the most similar prototype from
each class. That is, the output of this layer is the tensor
S∗

j = maxS j . In the fourth layer, the global similarity score
of each class is weighted by the input sample’s similarity to
the respective class’s compound prototype. The compound
prototype (CPC) is estimated as the recursively updated
global mean of the class, SC PC = Similarity(xt ,C PC j ). The
output of this layer is S∗

j = S∗
j ⊙SC PC , where ⊙ is the

Hadamard product. In the last layer, the Softmax function
is used.

γ∗i = exp
(
γi

)
∑

k exp
(
γk

) . (7)

This normalizes the output of the previous layer to a
probability distribution over the predicted output classes.
Hard classification is performed using the argmaxγ∗i func-
tion applied on the output to produce the predicted class
label for each segment. This label is then assigned to each
point within the segment and, thus, achieves the goal of
each point being assigned a label. That is, the network
output is L = {Ln | n = 1, . . . , N }. The classifier labels the
scene as multiple subclasses of memorial objects, and these
labels are then aggregated into a binary classification of
memorial object and non-memorial object.

V. EXPERIMENTAL RESULTS

VI. DATA SCENES AND EXPERIMENTAL DESIGN

The GeoPart-XPCC framework was validated on five dif-
ferent cultural heritage sites of burial grounds found across
England. These sites are represented as 3D point clouds
and were divided to create Scenes 1 to 11. The digitised
cultural heritage sites and operator-labelled mappings were
provided by the burial ground management system team at
Atlantic Geomatics (UK) Limited. The point clouds were col-
lected using the Leica Pegasus capture platform [48], with
the exception of Scene 11. Scene 11 was collected using UAV
mounted sensors and photogrammetry. The point density
of the point cloud scenes varies, with respect to the distance
of the scanner and the surface of the environment being
scanned. Figure VI-A-VI-E show the scenes in RGB values
for visualisation purposes only, and these properties are not
used as input to either the segmentation or classification
algorithms within the proposed framework.

For all experiments, the precision, recall, accuracy and
F1-score were used as evaluation metrics for point-wise



GEOPART–XPCC 6

Fig. 2. XPCC Training Process

for Each Class do
Initialise using the first feature vector sample xi

k ← 1, ▷ current instance (number of training samples seen)
M ← 1, ▷ number of prototypes identified
µ← x1, ▷ recursive global mean of all data samples observed
p1 ← x1, ▷ the first prototype

{
p j

∣∣ j = 1, . . . , M
}

N1 ← 1, ▷ number of member points around each prototype
r j ← r∗ ▷ radius of the area of influence of the corresponding prototype
for i = 2, ... do ▷ Read xi

D (xi ) ▷ Calculate Similarity of xi

{D
(
p j

) | j = 1, ..., M } ▷ Calculate Similarity of Prototypes
α← maxD(p j )
β← minD(p j )
if D(xi ) >α OR D(xi ) <β OR (∥xi −p j∗∥ ≤ r j∗ ) then

Add xi as new prototype
else

j∗ ← argmin(xi −p j ) ▷ Search for the closest prototype

p j∗ ←
p j∗

(
N j −1

)+xi

N j
▷ Update the prototype

S ← S +1 ▷ Update count of support members

r j∗ ←
r j∗+

(
1−p j∗

)

2 ▷ Update the radius of influence
end if

end for
end for

qualitative results. Intuitively, accuracy is the fraction of
predictions that were correct out of all observations. Sim-
ilarly, the precision reports what proportion of positive
identifications were correct. Recall reports the proportion of
real positives that were identified correctly. The F1-score is
the harmonic mean of precision and recall and is calculated
as

F1 = 2× recall×precision

recall+precision
. (8)

A perfect F1-score of 1 indicates a perfect precision and
recall and implies that the framework performed identically
to the user operator, regarding the task of extracting and
labelling memorial objects. Both the macro average and
weighted average of the accuracy, precision, recall and F1-
score are reported. The macro average does not consider
label imbalances, whereas the weighted average accounts
for the number of true instances for each label. As such, the
weighted average for F-score can result in a value that is not
between precision and recall. All metrics used reach their
minimum and maximum values at 0 and 1, respectively.
Satisfactory results are those which are visually comparable
to the operator-labelled point clouds.

Experiments were run on a Unix machine with 3.4 GHz
AMD Ryzen 9 5950X 16-Core CPU, NVIDIA 2070 SUPER
GPU, 32GB RAM and SSD. The fixed KP-CNN feature ex-
tractor network was trained using the NVIDIA 2070 SUPER
GPU. Training the KP-CNN on the ModelNet40 dataset took
around 5 hours. This only needs to be performed once.
After training, the fixed network acts as a generalised point
cloud feature extractor. The times elapsed to perform the

segmentation and classification tasks are presented in Table
VI-E, along with the number of points in each scene.

A. Adlington Cemetery, Adlington, Lancashire

Scenes 1 and 2 are taken from the point cloud of Adling-
ton Cemetery. The cemetery is located in the North West
region of England, in the Borough of Chorley in Lancashire.
Scene 1 consists mainly of lawn areas and roads. There
are several instances of medium and large trees, and thick
vegetation is found in proximity to the perimeter wall.
Scene 2 is similar in composition, although many more
instances of medium trees exist. A chapel and gate building,
along with cars parked on the road can be found in Scene
1. Both scenes contain instances of headstones, crosses,
obelisks, ledger slabs and kerbs. Training data are taken
from the Adlington Scene for the model results in the out-
of-sample experiments section.

B. Church of St. Nicholas graveyard, High Bradfield, York-
shire

The graveyard of the Church of St. Nicholas is in the town
of High Bradfield in the county of South Yorkshire, England.
The original scene is split to form Scene 3 and Scene 4.
Both scenes are composed of the traditional monumental
style of cemetery, where monuments are in tight proximity
and contain many instances of headstones and ledger slabs.
Dense vegetation and large trees are present around the
edges of both scenes. The church building is a Grade
One listed building and is found within Scene 3. Several
instances of stone chests and grave kerbs are found in
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Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1Scene 1 Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2Scene 2

Fig. 3. Illustration of Scenes 1 and 2 from the Adlington Cemetery cultural heritage site.

the area immediately surrounding the church building. In
contrast to the other cultural heritage sites used in this
paper, this graveyard is situated on a hill rather than in a
flat area.

C. Staines Cemetery, Staines-upon-Thames, Surrey

Staines Cemetery is in the market town of Staines-upon-
Thames, Surrey in the South East region of England. The
cemetery contains multiple sections of lawn, a dedicated
garden as well as roads and a chapel building. Several types
of monuments are located within the cemetery, including
headstones, ledger slabs, grave kerbs, obelisks and stone
chests. The original scene is split into three sub-scenes:
Scenes 5 - 7. The chapel building is located within Scene
6. All scenes contain instances of vegetation and trees.

D. Peter’s Church Churchyard, Heversham, Cumbria

The churchyard of St. Peter’s Church is located in the
village of Heversham, Cumbria in the North West Region
of England. The original scene is split into three sub-
scenes: Scenes 8 – 10. The Church building is a Grade II*
listed building which dates to the 12th century. The church
building is present in Scene 9. Scene 10 contains part of an
outbuilding and Scene 8 contains a prominent perimeter
wall. Given its age, the churchyard contains many different
styles of memorial objects. The churchyard is laid similarly
to the Church of St. Nicholas graveyard, in the traditional
monumental style, although the monuments have not been
placed as close together. Most of the monuments are either
headstones or stone ledgers.

E. Churchyard of the Church of All Saints, Lullington, Som-
erset

Scene 11 is a scan of the churchyard belonging to the
Church of All Saints, in the village of Lullington, Somerset
in the South West region of England. The church building
dates to the 12th century and is a Grade I listed building.
The churchyard is similar in layout and monument types
to the other scenes of contemporary churchyards (Scenes
3 and 9). The scene was collected from a UAV, rather than
from the mobile terrestrial LiDAR platform. Notably, the
aerial platform meant that the upper regions of the church
building could be scanned, in contrast to examples such
as Scenes 3 and 9. However, an artefact of the aerial view
is that the areas under dense vegetation are occluded and
this results in missing data. This can be seen in the lower
portion of the scene in Figure VI-E.

TABLE II
ELAPSED TIME TAKEN TO PERFORM THE SEGMENTATION AND CLASSIFICATION

METHODS FOR EACH SCENE ROUNDED TO MINUTES (M), SECONDS (S), AND

SUB-SECONDS. THE NUMBER OF POINTS IN EACH SCENE IS ALSO INCLUDED.
CLASSIFICATION WAS PERFORMED ON A NVIDIA 2070 SUPER GPU.

Scene
Number

Segmentation
Time

Classification
Time

Size of
Point Cloud

1 7 m 46 s 1.3 s 2,653,259
2 17 m 41 s 2.4 s 5,350,073
3 10 m 43 s 1.5 s 3,571,623
4 19 m 14 s 2.7 s 6,771,377
5 12 m 24 s 1.5 s 3,806,240
6 18 m 28 s 2.6 s 5,841,840
7 16 m 18 s 2.5 s 5,350,073
8 3 m 14 s 1.1 s 1,229,821
9 6 m 59 s 1.3 s 2,221,683
10 6 m 39 s 1.3 s 2,065,839
11 3 m 9 s 1.2 s 2,342,077

VII. WITHIN-SAMPLE ACCURACY

The following section details the experiments for within-
sample accuracy. These experiments demonstrate the ability
of the framework to learn from the memorial objects
present in part of a scene and then autonomously find those
remaining. In this experiment, both the training and testing
data come from the same cultural heritage site. As such,
results are reported using the cultural heritage site name
in addition to the specific scenes. Quantitative results for
all experiments are given in Table V and visual results are
presented in Figure 7. Training the GeoPart-XPCC classifier
took around 3 seconds on average for each experiment
using the GPU.

TABLE III
QUANTITATIVE RESULTS FOR THE WITHIN-SAMPLE EXPERIMENTS

Scene Name Precision Recall F1-score
1

Scene 1
Accuracy 0.95

2 Macro Avg. 0.86 0.83 0.85
3 Weighted Avg. 0.95 0.95 0.95
4

Scene 4
Accuracy 0.93

5 Macro Avg. 0.88 0.81 0.84
6 Weighted Avg. 0.93 0.93 0.93
7

Scene 7
Accuracy 0.97

8 Macro Avg. 0.86 0.90 0.88
9 Weighted Avg. 0.97 0.97 0.97

10
Scene 8

Accuracy 0.90
11 Macro Avg. 0.75 0.86 0.79
12 Weighted Avg. 0.93 0.90 0.91

The within-sample accuracy experiment results for the
point cloud of Adlington Cemetery are shown in Table III
rows 1-3. Visual results are shown in Figure 7 (a & b). In
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Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5Scene 5 Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6Scene 6

Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7Scene 7

Fig. 4. Illustration of Scenes 5, 6, and 7 from the Staines Cemetery cultural heritage site.

Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8Scene 8 Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9Scene 9

Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10Scene 10

Fig. 5. Illustration of Scenes 8, 9 and 10 from the St. Peter’s Church churchyard cultural heritage site.
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Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11Scene 11

Fig. 6. Illustration of Scene 11 of the Church of All Saints churchyard.

this experiment, the Scene 2 operator-labelled points were
used as training data and the GeoPart-XPCC framework was
applied to Scene 1. The framework achieved a weighted av-
erage F1-score of 0.95. Similarly, the scores for the weighted
average precision and recall were both 0.95. The macro
average for precision, recall and F1-score were 0.86, 0.83
and 0.85, respectively. Overall accuracy was 0.95.

Experimental results for the Church of St. Nicholas grave-
yard are given here. For this experiment, the operator-
labelled point cloud for Scene 3 was used as training
data, and the proposed framework was applied to Scene
4. The quantitative results can be seen in Table III rows
4-6, and visual results can be seen in Figure 7 (c & d).
The accuracy score was 0.93, and the reported weighted
F1-score achieved was 0.93. For the precision metrics,
macro and weighted average, the scores were 0.88 and
0.93, respectively. The scores for the recall metrics achieved
were 0.81 for the macro average and 0.93 for the weighted
average. The macro average F1-score was 0.84.

The within-sample experiment for Staines Cemetery used
the operator-labelled memorial objects from Scenes 5 and
6 to train the classifier. Prediction was performed on Scene
7. Results can be seen in Table III (rows 7-9) and Figure
7 (e & f). The metric scores achieved by the proposed
framework for this experiment are as follows. The macro
average scores for precision, recall and F1-score were 0.86,
0.90 and 0.88, respectively. The weighted precision, recall
and F1-score were 0.97 for all. An overall accuracy of 0.97
was achieved.

For the experiment on St. Peter’s Church churchyard cul-
tural heritage site, operator-labelled point clouds of Scenes
9 and 10 were used as training data and the GeoPart-XPCC
framework was then applied to Scene 8. Results can be seen
in Table III rows 10-12. A visual comparison against the
operator-labelled points for Scene 8 can be seen in Figure
7 (g & h). The framework achieved an overall accuracy of
0.90, a weighted F1-score of 0.91, a weighted precision score
of 0.93, and a weighted recall score of 0.90. Similarly, the
framework achieved a macro average F1-score of 0.91, a
macro average precision score of 0.75, and a macro average
recall score of 0.86.

VIII. OUT-OF-SAMPLE ACCURACY

The experiments for out-of-sample accuracy indicate do-
main transferability. That is, they demonstrate the ability of
the framework to learn from the memorial objects present
in one scene and then autonomously extract and label

TABLE IV
COMPARISON OF WEIGHTED AVERAGE F1-SCORES FOR THE PROPOSED

GEOPART-XPCC AND THE GEOPART-TRANSFER MLP-SIGMOID METHOD.
BOTH TESTS USE THE SAME SEGMENTATION PROPOSED GEOPART-XPCC

SEGMENTATION METHOD FOR FAIRNESS.

Scene Name GeoPart-Transfer (MLP-σ) GeoPart-XPCC
Scene 1 0.91 0.95
Scene 4 0.86 0.93
Scene 7 0.91 0.97
Scene 8 0.72 0.91

TABLE V
QUANTITATIVE RESULTS FOR THE OUT-OF-SAMPLE EXPERIMENTS

Scene Name Precision Recall F1-score
1

Scene 3
Accuracy 0.95

2 Macro Avg. 0.93 0.76 0.82
3 Weighted Avg. 0.95 0.95 0.94
4

Scene 4
Accuracy 0.91

5 Macro Avg. 0.9 0.68 0.74
6 Weighted Avg. 0.91 0.91 0.89
7

Scene 5
Accuracy 0.93

8 Macro Avg. 0.78 0.85 0.81
9 Weighted Avg. 0.94 0.93 0.94

10
Scene 6

Accuracy 0.92
11 Macro Avg. 0.8 0.8 0.8
12 Weighted Avg. 0.92 0.92 0.92
13

Scene 7
Accuracy 0.93

14 Macro Avg. 0.76 0.84 0.79
15 Weighted Avg. 0.94 0.93 0.94
16

Scene 8
Accuracy 0.94

17 Macro Avg. 0.86 0.79 0.82
18 Weighted Avg. 0.93 0.94 0.93
19

Scene 9
Accuracy 0.78

20 Macro Avg. 0.66 0.82 0.68
21 Weighted Avg. 0.9 0.78 0.82
22

Scene 10
Accuracy 0.91

23 Macro Avg. 0.85 0.85 0.85
24 Weighted Avg. 0.91 0.91 0.91
25

Scene 11
Accuracy 0.96

26 Macro Avg. 0.63 0.86 0.68
27 Weighted Avg. 0.98 0.96 0.97

memorial objects in completely different scenes. Training
data are from a different point cloud scene than the test
data. The GeoPart-XPCC’s classifier was trained on the
operator-labelled data from Scenes 1 and 2 from the Adling-
ton Cemetery cultural heritage site. The same classifier was
used for all out-of-sample experiments; training took 2.6
seconds on a GPU. Quantitative results for all experiments
are presented in Table V and visual results are shown in
Figures 8 and 9.

In terms of accuracy, the GeoPart-XPCC framework
achieved a score above 0.90 in all, but one of the out-
of-sample experiments. Scenes 11 and 3 had the highest
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(a) Scene 1 operator-Labelled point cloud (b) Scene 1 GeoPart-XPCC predicted objects

(c) Scene 4 operator-Labelled point cloud (d) Scene 4 GeoPart-XPCC predicted objects

(e) Scene 7 operator-Labelled point cloud (f) Scene 7 GeoPart-XPCC predicted objects

(g) Scene 8 operator-Labelled point cloud (h) Scene 8 GeoPart-XPCC predicted objects

Fig. 7. Visual illustrations of point cloud Scenes 1, 4, 7, and 8, from the within-sample experiments. Points belonging to the memorial objects are
coloured in red; the non-memorial points are colored in blue. The sub-figures to the left of the centre line (a, c, e, and g) are the operator-labelled point
cloud scenes. The sub-figures to the right of the centre line (b, d, f, and h) are the GeoPart-XPCC predicted point cloud scenes. The operator-labelled
and predicted illustrations of each scene are paired per row.
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accuracy, with scores of 0.96 and 0.95, respectively. The
score for Scene 8 was the next highest, at 0.94. An accuracy
score of 0.93 was achieved by the framework for Scenes 5
and 7, a score of 0.92 for Scene 6, and scenes 4 and 10 had
scores of 0.91. Lastly, the experiment on Scene 9 resulted
in an accuracy score of 0.78.

The precision score identifies the frequency with which
the proposed framework was correct when predicting a
positive class. From the out-of-sample experiments, the
highest macro average precision achieved by the GeoPart-
XPCC was 0.93 on Scene 3. Scores of 0.90, 0.86, 0.85, and
0.8 were the results for this metric on Scenes 4, 8, 10 and
6, respectively. When applied to Scenes 5 (0.78), 7 (0.76),
and 9 (0.66), all had macro average precision scores under
0.8, and the lowest was 0.63 on Scene 11. The weighted
average precision takes class imbalances into consideration.
The lowest weighted precision score from the out-of-sample
experiments was 0.90 on Scene 9. Applying GeoPart-XPCC
on Scenes 4 and 10 resulted in a weighted precision score
of 0.91, and Scenes 6 and 8 had scores of 0.92 and 0.93,
respectively. The next highest weighted scores were 0.95
on Scene 3 and 0.94. The highest weighted precision score
achieved for this set of experiments was 0.98 for Scene 11.

Recall is an indication of how many predictions the
GeoPart-XPCC framework was able to correctly identify, out
of all possible positive labels. The lowest macro recall score
for the out-of-sample experiments was 0.68 on Scene 4,
followed by 0.76 on Scene 3 and 0.79 on Scene 8. The
framework achieved a score above 0.8 for the following
scenes: Scene 6 (0.80), Scene 9 (0.82), Scene 7 (0.84), Scene
10 (0.85), Scene 5 (0.85), and Scene 11 (0.86). From the
out-of-sample experiments, the lowest weighted average
recall was on Scene 9, with a score of 0.78. On all other
experiments, from this section, the framework achieved
weighted precision scores higher than 0.90. For this metric,
the results show that for Scenes 4 and 10, the framework
achieved a score of 0.91 for both. In ascending order, the
framework achieved the following: a score of 0.92 on Scene
6, a score 0.93 for both Scenes 7 and 5, a score of 0.94 on
Scene 8, and a score of 0.95 for Scene 3. Finally, the out-of-
sample experiment with the highest weighted average recall
score was 0.96 and was achieved on Scene 11.

The F1-score is a combination of the information pro-
vided by precision and recall; thus, it is a measurement
of the accuracy of the proposed framework with respect
to the balance of these metrics. For the out-of-sample
experiments, the following F1-scores were the result of
applying the GeoPart-XPCC framework to the memorial site
scenes. For the macro average: a score of 0.68 was achieved
on both Scenes 11 and 9, followed by a score of 0.74 on
Scene 4, then 0.79 on Scene 7, 0.8 on Scene 6, 0.81 on
Scene 5, 0.82 on Scenes 3 and 8, and finally, a score of 0.85
on scene 10. For the weighted average: a score of 0.82 was
achieved on Scene 9, then 0.89 on Scene 4, 0.91 on Scene
10, 0.92 on Scene 6, 0.93 on Scene 8, followed by a score of
0.94 on Scenes 7, 8, and 9. Lastly, a score of 0.97 was the
result on Scene 11, and was the highest F1-score achieved
by the framework for the out-of-sample experiments.

TABLE VI
COMPARISON OF WEIGHTED AVERAGE F1-SCORES RESULTS FROM THE

PROPOSED GEOPART-XPCC AND THE GEOPART-TRANSFER MLP-SIGMOID

METHOD. BOTH TESTS USE THE SAME SEGMENTATION PROPOSED

GEOPART-XPCC SEGMENTATION METHOD FOR FAIRNESS.

Scene Name GeoPart-Transfer (MLP-σ) GeoPart-XPCC
Scene 3 0.90 0.94
Scene 4 0.71 0.89
Scene 5 0.91 0.94
Scene 6 0.89 0.92
Scene 7 0.89 0.94
Scene 8 0.86 0.93
Scene 9 0.57 0.82

Scene 10 0.87 0.91
Scene 11 0.66 0.97

The last out-of-sample experiment provides a demon-
stration of the adaptability of the proposed framework.
New data samples, and even classes, can be added to
the GeoPart-XPCC classification algorithm after the initial
training process has been completed. A new class-container
was added to the classifier for the purpose of extracting and
labelling the church and chapel buildings found throughout
the cultural heritage sites. Visual results can be seen in
Figure 10. The new class-container was trained using the
chapel and gatehouse building from the Adlington Ceme-
tery memorial site, Figure 10 (a). Both buildings are found
in Scene 1. The classifier was then applied to Scenes 3,
6, 9 and 11, all of which contain a building of interest.
There was no significant difference to the metrics reported
between this experiment and the previous out-of-sample
experiments.

IX. DISCUSSION

In the within-sample experiments, the visual and quan-
titative results demonstrate that the GeoPart-XPCC frame-
work was satisfactory in the task of learning from the
memorial objects present in one part of a scene, and then
autonomously extracting and correctly labelling memorial
objects from the remainder. A clear example of this can
be seen in Figure 8 (e & f), for Scene 7 from the Staines
Cemetery cultural heritage site. A visual comparison be-
tween the operator-labelled point cloud and the GeoPart-
XPCC predicted point cloud shows only minor differences
between them. This assertion is further supported by the
quantitative results, as the proposed framework achieved
a score of 0.97 across all weighted average metrics for
this scene. A further testament to the framework’s ability
to perform this task is from the within-sample results for
Scene 1. The visual result for this scene shows that most of
the memorial objects were found; even those nested deeply
within vegetation.

The task of performing out-of-sample prediction is, ad-
mittedly, a more challenging one than within-sample pre-
diction. Nevertheless, the results from the out-of-sample
experiments illustrate GeoPart-XPCC’s ability to accomplish
this task without a significant reduction in accuracy. The
average accuracy from the within-sample experiments was
0.93, whereas the average accuracy from the out-of-sample
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(a) Scene 5 operator-Labelled point cloud (b) Scene 5 GeoPart-XPCC predicted objects

(c) Scene 6 operator-Labelled point cloud (d) Scene 6 GeoPart-XPCC predicted objects

(e) Scene 7 operator-Labelled point cloud (f) Scene 7 GeoPart-XPCC predicted objects

(g) Scene 3 operator-Labelled point cloud (h) Scene 3 GeoPart-XPCC predicted objects

(i) Scene 4 operator-Labelled point cloud (j) Scene 4 GeoPart-XPCC predicted objects

Fig. 8. Visual illustrations of point cloud Scenes 3, 4, 5, 6, and 7, from the out-of-sample experiments. Points belonging to the memorial objects are
coloured in red; the non-memorial points are colored in blue. The sub-figures to the left of the centre line (a, c, e, g, and i) are the operator-labelled
point cloud scenes. The sub-figures to the right of the centre line (b, d, f, h, and j) are the GeoPart-XPCC predicted point cloud scenes. The operator
labelled and predicted illustrations of each scene are paired per row.
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(a) Scene 8 operator-Labelled point cloud (b) Scene 8 GeoPart-XPCC predicted objects

(c) Scene 9 operator-Labelled point cloud (d) Scene 9 GeoPart-XPCC predicted objects

(e) Scene 10 operator-Labelled point cloud (f) Scene 10 GeoPart-XPCC predicted objects

(g) Scene 11 operator-Labelled point cloud (h) Scene 11 GeoPart-XPCC predicted objects

Fig. 9. Visual illustrations of point cloud Scenes 8, 9, 10, and 11 from the out-of-sample experiments. Points belonging to the memorial objects are
coloured in red; the non-memorial points are colored in blue. The sub-figures to the left of the centre line (a, c, e, and g) are the operator-labelled
point cloud scenes. The sub-figures to the right of the centre line (b, d, f, and h) are the GeoPart-XPCC predicted point cloud scenes. The operator
labelled and predicted illustrations of each scene are paired per row.
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Fig. 10. Visual illustrations of the classification results after the GeoPart-XPCC framework was trained to identify Church and chapel buildings.

experiments was 0.92. Similarly, the average of the weighted
F1-scores from the within-sample experiment was 0.94 as
compared to 0.92 for the out-of-sample experiments.

The GeoPart-XPCC framework was also shown to be ro-
bust to unknown objects. In the within-sample experiment
on the Church of St. Nicholas graveyard, the training scene,
Scene 3, contains many examples of large trees, whereas
the test scene has more examples of dense vegetation and
medium-sized trees. Additionally, the training scene has a
steeper sloped hill and contains fewer memorial objects.
Regardless of this, the proposed framework achieved a
weighted average F1-score of 0.93 for Scene 4, and the
visual results, Figure 8 (c & d), show that the classifications
were not adversely affected in most instances. The within-
sample results for Scene 1 also highlight the robustness of
the GeoPart-XPCC framework. Importantly, non-memorial
objects such as cars, trees and much of the building
infrastructure were not mistakenly classified as memorial
objects. In terms of further applications of within-sample
tasks, a human operator would need to label manually only
a portion of a scene to apply the framework. This portion
can contain fewer memorial objects and be spatially smaller
than the remainder. As shown in the above, the framework
would then be capable of classifying the rest of the scene,
even if a difference in terrain or unknown objects is present.

From Table VI-E, it can be seen that the longest time
period taken to perform the segmentation task was 19
minutes and 14 seconds. The time needed to train the
classifier and perform the classification tasks was negligible.
As such, the entire framework can be applied for under 20
minutes for a point cloud containing up to approximately
6 million points. Given these results, it is evident that
the GeoPart-XPCC can reduce the human-hours needed to
extract and label memorial objects. Multiple instances of
GeoPart-XPCC could be run on a distributed architecture
to process multiple point cloud scenes at once. Therefore,
GeoPart-XPCC has the potential to be a valuable tool to

increase productivity.

From the within-sample experiment on Adlington Ceme-
tery, a visual examination of Scene 1 results, Figure 8 (a &
b), illustrates some limitations of the proposed framework.
The front door of the chapel building was miss-identified as
a memorial object and, indeed, it is similar in appearance
to the larger headstones. This type of miss-identification is
difficult to deal with, as the definition of what is and what
is not a memorial is subjective. The algorithm has, in fact,
been taught that many objects that look like the door are
memorial objects, and therefore the assumption that the
door would be another object as well is understandable.
Additionally, there are a few cases where the headstone
of a memorial object was found correctly, but the plinth
on which it sits was missed, or else, only part of it was
identified. In this case, it can be said that the location
and presence of the memorial object was correctly found,
albeit only part of it. The ability to encode knowledge of
spatial relationships between objects is a possible solution
to address these limitations and is a topic of consideration
for future research.

The ability to understand why a model arrived at a
certain classification decision, and then correct the error,
is invaluable for diagnostic purposes. It is clear from the
visual results for Scene 8, from the St. Peter’s Church
Churchyard memorial site, that the framework wrongly
classified several areas within the scene during the within-
sample experiment. While most memorial objects were
found, notably, parts of the perimeter wall and a small tree
were also identified as false positives. A major benefit of
the GeoPart-XPCC framework is the ability to examine the
reasoning behind classification decisions. Doing so revealed
that the prototypes most like those wrongly identified were
examples of memorial objects very near to a wall or were
surrounded by vegetation. By removing these prototypes,
the GeoPart-XPCC framework was able to correctly identify
the objects. The initial weighted F1-score of the within-
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sample results on Scene 8 was a result of 0.91. After
correction, the experimental weighted F1-score increased
to 0.93, comparable with the results for Scene 4.

Spatially, the Adlington Cemetery cultural heritage site
is located around 80 km away from both the Church of
St. Nicholas graveyard and the St. Peter’s Church Church-
yard sites. It is around 290 km from the Churchyard
of the Church of All Saints site, and 322 km from the
Staines Cemetery site. In terms of composition, design and
age, however, the Adlington Cemetery site is most like
the Staines Cemetery site. The out-of-sample experiments,
therefore, validate the proposed framework’s ability to learn
from one scene, and then be applied to scenes from differ-
ent areas to that on which it has been trained. Furthermore,
experimental results on Scene 11 indicate the ability of
the framework to be applied to a scene acquired with
a different scanning technology. Remarkably, for weighted
scores, the framework achieved a 0.97 for F1-score, 0.96
for recall, 0.98 for precision. These high values may be
attributed to the relative simplicity of the scene compared
to the other cultural heritage sites. The above benefits of the
GeoPart-XPCC framework are important in terms of further
applications. More specifically, it shows that the method is
transferable and the training scene does not need to be
from the same area.

Of the cultural heritage sites used in this study, both
Adlington Cemetery (Scenes 1 and 2, used for training in
the out-of-sample experiments) and the St. Peter’s Church
churchyard (Scenes 8, 9, and 10) are located in the North
West region of England. A comparison between the visual
results from both the within-sample and out-of-sample
experiments for Scene 8, seen in Figure 8 (h) and Fig-
ure 10 (f), reveals that several areas that were identified
as false positives in the within-sample experiment were
instead predicted as true negatives in the out-of-sample
experiment. Quantitatively, the weighted average F1-score
for the out-of-sample experiment was higher than in the
within-sample experiment (0.93 and 0.91, respectively). The
framework performs better for Scene 8 when trained on
nearby Adlington Cemetery than when trained on a portion
of St Peter’s Church churchyard, highlighting similarities
that must exist between the two cultural heritage sites.
It may, therefore, be possible to use the GeoPart-XPCC
framework to conduct analysis regarding the differences
and similarities found amongst memorial objects between
different regions. However, such a study is out of the scope
of the current paper.

A significant advantage of the GeoPart-XPC framework is
its adaptability. A demonstration of this is seen in Figure
11, illustrating the results of the experiment to extract and
label the church and chapel buildings. Visual results show
clearly that the buildings were labelled correctly. Training
the updated model is a sequential (online) operation, where
only the new samples are processed. With respect to further
applications, this means that a user can add in new classes
and class samples easily, without the model needing to be
completely retrained.

Comparative results between the GeoPart-XPCC and the

GeoPart-Transfer classification methods are shown in Table
IV and Table VI for both the within-sample and out-of-
sample experiments, respectively. Results for the GeoPart-
Transfer were achieved using the MLP with sigmoid ac-
tivation function method advocated by [12]. Preliminary
experiments showed that the MLP-sigmoid method per-
formed the best in terms of weighted average F1-score in
comparison to the other methods discussed in that paper.
Traditional DNN, such as the raw KP-CNN, cannot be
sufficiently trained using the training data available within
the experiments. As such, comparative results could not be
achieved using these methods. In both experiments and
across all scenes, the proposed GeoPart-XPCC achieved
a higher weighted average F1-score and demonstrates its
comparatively high accuracy relative to the MLP-sigmoid
method. Notably, the latter method achieved a weighted
average F1-score of 0.66 on the out-of-sample experiment
for scene 11, compared to the score of 0.97 achieved by
the proposed GeoPart-XPCC method. The MLP-sigmoid
method results were likely affected by anomalies caused
by the change in sensor technology between the training
and testing data, whereas GeoPart-XPCC was better able
to adapt. However, the exact reason for the MLP-sigmoid
method having a decreased accuracy cannot be easily
explained because of its nature as a black-box classifier.
The same would be true for any traditional black-box DNN.
In contrast, the similarity between the test objects and the
prototypes within the GeoPart-XPCC classification model
can be directly examined; thus, providing explanation.

X. CONCLUSION

Point clouds representing real world environments of
cultural heritage sites provide a valuable data source for
cultural heritage management. However, the manual extrac-
tion and labelling of memorial objects from these point
clouds is a labour-intensive process. Therefore, it is of
great significance to automate these tasks. To this end, this
paper proposed a novel GeoPart-XPCC framework for the
automatic extraction and labelling of memorial objects from
3D point cloud scenes. Experiments for both within-sample
and out-of-sample tasks were performed on 11 point cloud
scenes. The scenes were derived from mobile 3D LiDAR
scans of five cultural heritage sites across the UK. The
GeoPart-XPCC framework achieved high accuracy scores
across these experiments. These results demonstrated that
the framework could be trained on part of a scene and
perform prediction on the remainder, as well as be trained
on one scene and predict on a different scene. Comparative
results show that GeoPart-XPCC is not only more accurate,
but that it is more robust to changes in domains between
training and testing data and provides diagnostic benefits
by way of being explainable. This paper shows that the
proposed framework is quick to train and apply, easily
adaptable and widely applicable.
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Chapter 5

Discussion

Historic, cultural heritage and archaeological sites stand as a reminder of those who
came before us. In many ways, these sites represent the collective story of humanity,
and the very concept of memorialising our loved ones is something fundamentally
human. Burial grounds are a unique combination of culture, architecture, sculpture,
art, landscape and wildlife. These sites are a finite resource and the loss of one,
in whole or in part, risks permanent erasure from our understanding of the past,
both as individuals and as a society. Thus, cultural heritage is evolving with the
advent of new digitising technologies that enrich our ability to preserve these valuable
resources. However, prior to this thesis, the cultural heritage community had limited
understanding of how to apply modern techniques in ML and AI. As such, this thesis
tackled head-on the methodological shortcomings in ML and AI applied to 3D point
cloud data and provided solutions to overcome existing barriers to their application
to cultural heritage management.

As interdisciplinary research, this thesis is a contribution to the application of ML
and AI to digital cultural heritage and archaeology, as well as a contribution to ML and
AI methods on 3D point clouds. As a complete body of work, it seeks to amplify the
useability of point cloud data. This chapter discusses the implications and limitations
of this research and how this thesis fits into the bigger picture. Additionally, this
chapter also discusses potential directions for future studies and exploration.

5.1 Implications and Versatility

This thesis presents a methodology for the automatic extraction and classification of
memorial objects from burial ground sites. It also presents the automatic classification
of memorial objects, in general, directly in the 3D data space. Neither of these tasks
have been achieved before. By extracting and labelling the objects within a site
completely in 3D space, a unique catalogue and map of the objects is effectively
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created. This has immediate benefits towards the preservation and documentation
of cultural heritage sites. Firstly, there is the speed of processing. The GeoPart-
XPCC framework can be applied in under 20 minutes to a point cloud containing
approximately 6 million points. Furthermore, it could be possible to run multiple
instances of GeoPart-XPCC on a distributed architecture; allowing multiple point
cloud scenes to be processed at once. Given these results, it is evident that the
research presented in this thesis can reduce the human-hours needed to extract and
label memorial objects. Therefore, GeoPart-XPCC has the potential to be a valuable
tool to increase productivity with respect to extracting and labelling memorial objects
from point cloud data. Secondly, having a digital 3D map of a space allows for
information to be linked with an object in a tangible way. This Information could be
to do with maintenance schedules or locations of utilities, important persons or future
planning. Moreover, it creates a digital record of the objects’ physical appearance and
location, which can be used for restoration purposes if an object becomes damaged
or lost.

Machine learning classification of 3D point clouds is still in its infancy, and as
such, there are many areas yet unexplored. Explainable models typically classify
less accurately than their black box alternatives (see Appendix A). The ModelNet40
benchmark dataset was used to compare the XPCC method proposed in Chapter 3
with the state-of-the-art methods for both black box point set learning and explainable
point set learning. The XPCC method is an explainable method that increases the
classification accuracy over existing explainable methods, while still being comparable
to the state-of-the-art black box methods by within 1-2 pp. This implies no
considerable loss in classification accuracy by using the XPCC method, while still
gaining the benefit of an explainable model, namely the improved interpretability
of model classification decisions. The benefits of an explainable method pertaining
to cultural heritage applications was discussed in Chapter 4: namely, the injection
of diagnostic abilities and intuition into the model’s performance. However, these
properties also make the XPCC and GeoPart-XPCC methods suitable for applications
where classification accuracy and explainablity are critical, such as self-driving vehicles
and medical image analysis.

Benchmarking on performance metrics provides only half of the picture. Accord-
ingly, the research and developments in this thesis provide benefits above performance.
The discussion in Chapter 3 highlights the ability of the XPCC method to be
transferable amongst applications that use 3D point cloud data. For example, the
XPCC could be trained to classify street furniture, such as tables and chairs, in one
setting, and then additively trained to classify headstones and crosses for another
setting. There is no inherent reason within the model to remove the original two
classes. Moreover, the entire process of adding or removing classes, or even individual
objects, can be achieved without retraining the entire model. For example, if the
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model was initially trained to extract headstones and stone grave slabs, but then
became desirable to also extract crosses. To do so using traditional DNN architecture
would require the entire network to be retrained. Whereas the XPCC method allows
for the model to learn incrementally and requires only to see the new samples. The
same is true if the model was trained to recognise one subset of crosses and it became
desirable to recognise another (e.g., Celtic crosses). This means that the model can
adapt to new tasks and applications; even as new developments or goals are set out.
Thus, within the field of 3D point cloud data, the XPCC and its derivative GeoPart-
XPCC, are impactful in their ability to be explainable, accurate and adaptable.

5.1.1 Applicability to Cultural Heritage Projects

The Church of England’s National Burial Ground Survey project is a nationwide
endeavour to digitally map all 19,000 Anglican burial grounds located in England
over a seven-year period. Looking back at the out-of-sample and within-sample
experiments from Chapter 4, the results presented there demonstrate that the
GeoPart-XPCC framework is robust and flexible. Specifically, it can be trained on
part of one scene and perform predictions on the remainder. Similarly, it can also be
trained on one scene and perform predictions on a different scene. Furthermore, it is
explainable, accurate in terms of classification predictions and robust to changes in
domains between training and testing data. These characteristics make it quick to
train and apply, easily adaptable and, therefore, widely applicable. This has important
implications, as the point cloud burial ground datasets used in this thesis are only
a small subset of burial grounds in the UK alone. The characteristics listed above,
enable GeoPart-XPCC to be adaptable to new object classes and variations in objects
so that it may be adaptable to any burial ground site regardless of where it is located.
As such, this thesis is directly applicable to the Church of England’s National Burial
Ground Survey project.

5.2 Importance of Real-world Benchmarking

Chapter 3 mentions the lack of real-world benchmark datasets of 3D point cloud
objects for classification purposes. Most of the datasets publicly available are
generated synthetically (A. X. Chang et al., 2015). While these are useful for a proof-
of-concept approach, they are not comparable regarding the level of challenge that is
inherent to real-world data (Uy et al., 2019). There does exist some real-world 3D
point cloud datasets, but very few of these are designed specifically for benchmarking
classification methods (see Chapter 3, IV). As such, many of the related literature
reviewed coming directly from the fields of AI and DL had a clear weakness: they
were not vetted on a real-world classification benchmark. Therefore, it would be
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highly beneficial to publish annotated real-world benchmarks. It would be of interest
to produce a formal version of the graveyard object dataset that was produced as
part of this thesis. This would require the datasets to be made public, however. As
discussed in Chapters 2 and 5, the segmentation method can support the unsupervised
generation of annotated training data. This could be used to enable the building of
robust real-world datasets from other data sources.

5.3 Overcoming Vegetation

The presence of substantial vegetation in cultural heritage sites presented a significant
challenge during the course of this thesis. To address this issue, various methods
were investigated to filter out the vegetation from the point cloud scenes before
the segmentation process. However, removing vegetation while preserving memorial
objects proved to be a complex task and incurred substantial computational costs,
making these methods impractical for the objectives of this research. As a result,
the focus of the study shifted towards minimising the impact of vegetation noise on
the classification process and developing a classification method that could handle
the presence of vegetation within objects effectively. Chapters 4 and 5 detail the
methodologies specifically devised to tackle the challenges introduced by vegetation
in burial ground scenes. The developed approaches aimed to provide robust and
accurate classification results even in the presence of dense vegetation, ensuring the
reliable extraction and preservation of memorial objects from the point cloud data.

Comparative results between the GeoPart-XPCC and the GeoPart-Transfer
methods are shown in Chapter 4 Tables 3 and 5 for both the within- and out-of-
sample experiments, respectively. These results highlight the improvements made in
Chapter 4 over those presented in Chapter 2. Specific to the challenge of minimising
the noise introduced by vegetation, Chapter 2 used a k-nearest (k being an integer)
neighbourhood search in its segmentation method. In comparison, a significant change
to the Chapter 4 segmentation method was the adoption of a k-radius (k being a
distance). The radius neighbourhood search is more robust when applied in a non-
uniform sampling setting (Hermosilla et al., 2018), as is typical of mobile LiDAR
datasets. This makes sense, as the nearest points may be any distance from a query
point, and it is only guaranteed that those neighbours are the closest according to
the metric. By introducing the requirement of points falling within a certain radius,
the points that are closer to the query point are effectively given a larger weight. The
result is that the neighbourhood around the query point is better represented. This
means that segments are more tightly packed and, therefore, include less points taken
from nearby objects, such as vegetation.
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5.3.1 Impact of Segmentation Neighbourhoods on GeoPart-
Transfer and GeoPart-XPCC

In addressing the potential concerns about the comparability of the two methods due
to the introduction of a different segmentation approach, it is crucial to recognise
that the overall goal was to enhance the effectiveness of the segmentation process and
subsequently improve the accuracy of the classification results. The implementation
of the k-radius approach, which offered improved robustness to the presence of
vegetation, allowed both GeoPart-Transfer and GeoPart-XPCC to be more adaptive
and successful in handling complex and diverse cultural heritage scenes.

It is important to note that the GeoPart-Transfer segmentation was performed
using the updated segmentation method utilised by GeoPart-XPCC, which employed a
k-radius neighbourhood search, instead of the k-nearest neighbourhood search used in
the earlier GeoPart-Transfer method. This change was made to address the challenges
posed by the presence of large amounts of vegetation within the cultural heritage
scenes, as discussed in Chapter 4. As such, the GeoPart-Transfer and GeoPart-
XPCC classification methods were compared fairly, and both were assessed using
the same benchmark datasets. While the changes in the segmentation approach may
have introduced some variability in the results, they were essential to address the
challenges posed by vegetation in the scenes, which are common in cultural heritage
environments.

Table 5.1: Comparative benchmark for within-sample accuracy evaluating k -NN in
segmentation.

Scene Name GeoPart-Transfer (k -NN) GeoPart-XPCC
Scene 1 0.82 0.88
Scene 4 0.74 0.91
Scene 7 0.80 0.91
Scene 8 0.66 0.87

The comparison of GeoPart-Transfer and GeoPart-XPCC using the k-nearest
neighbors (k-NN) and k-radius search, respectively, is presented through two bench-
mark results tables: Table 5.1 for within-sample metrics and Table 5.2 for out-
of-sample metrics. These tables provide valuable insights into the impact of the
segmentation neighbourhood approach on the performance of the classifiers.

In Table 5.1, the weighted average F1-scores for both GeoPart-Transfer and
GeoPart-XPCC are displayed for several scenes. Notably, the scores for GeoPart-
XPCC are consistently higher across all scenes compared to GeoPart-Transfer.
This difference in performance can be attributed to the adoption of the k-radius
approach, which offers improved robustness to the presence of vegetation and other
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Table 5.2: Comparative benchmark for out-of-sample accuracy evaluating k -NN in
segmentation.

Scene Name GeoPart-Transfer (k -NN) GeoPart-XPCC
Scene 3 0.78 0.90
Scene 4 0.61 0.84
Scene 5 0.80 0.91
Scene 6 0.75 0.89
Scene 7 0.72 0.90
Scene 8 0.69 0.88
Scene 9 0.51 0.78
Scene 10 0.71 0.85
Scene 11 0.60 0.93

complex objects within the cultural heritage scenes. As a result, GeoPart-XPCC
demonstrates superior adaptability and success in handling diverse and challenging
scene characteristics.

Similarly, Table 5.2 further underscores the advantages of the k-radius search used
by GeoPart-XPCC. The F1-scores for both methods are again shown for different
scenes, and once more, GeoPart-XPCC outperforms GeoPart-Transfer in all cases.
This consistent trend demonstrates the effectiveness of the k-radius approach in the
GeoPart-XPCC classifier.

Overall, the comparison presented in these two tables emphasizes the significance
of employing the k-radius search in GeoPart-XPCC, which has led to notable
improvements in the accuracy and robustness of the classifier when dealing with real-
world cultural heritage data. The choice of segmentation neighbourhood has played
a crucial role in enhancing the effectiveness of the classifiers, making the GeoPart-
XPCC method a preferred choice for accurate and reliable classification tasks in 3D
point cloud data.

5.4 Limitations and Future Directions

Despite the significant advancements and contributions made in this thesis, it is
essential to acknowledge the limitations inherent in the proposed methods. While the
GeoPart-XPCC framework demonstrates remarkable accuracy and interpretability
in the classification of 3D point cloud data, there are specific challenges that
warrant consideration. The primary limitation lies in the ability of the XPCC
method to distinguish between physically similar objects with different semantic
meanings, a scenario that is not uncommon in real-world applications. Additionally,
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the classification of classes with overlapping characteristics, such as distinguishing
between benches and sofas, remains a challenge. Moreover, the effectiveness of the
methods may be influenced by variations in point cloud data quality, particularly in
scenes with large amounts of vegetation, where noise introduced by the vegetation can
impact classification results. These limitations, while addressed to the best extent
possible within the scope of this thesis, provide valuable opportunities for further
research and improvement to ensure the applicability and robustness of the methods
in a wider range of real-world scenarios.

The project also assumes that high-quality and accurately annotated ground
truth data are available for training and evaluation purposes. Gathering such data
for cultural heritage sites can be challenging, and the accuracy of the classification
results heavily depends on the quality and representativeness of the training datasets.
Moreover, the point cloud data should be of sufficient quality and resolution to capture
the intricate details of memorial objects and the surrounding environment. Low-
quality or sparse data may lead to reduced classification performance.

5.4.1 Contextual Linking of Prototypes

One possible route for exploration is to link prototypes together by learning meta-
characteristics that encode information about relationships between objects in the
scene. For instance, the model could learn that headstones are typically located on a
segment belonging to the ‘ground’ class type and that they may or may not appear
near trees or flowers. By utilising contextual information, the model could improve
classification accuracy. An approach for this could be based on graphical learning,
leveraging techniques from (Bronstein, Bruna, et al., 2017). Such an adaptation aligns
with the anthropomorphic approach to machine learning, where context clues aid in
predictions (P. P. Angelov and Gu, 2018). Moreover, contextual linking of prototypes
opens the possibility of achieving panoptic segmentation, which combines instance
segmentation (detecting and masking each distinct object of interest) with semantic
segmentation (providing a label for each point in the scene). Panoptic segmentation
offers a more comprehensive understanding of the scene (Kirillov et al., 2019).

5.4.2 Hierarchical Classifications and X-Class Discovery

Future research should explore hierarchical classifications, particularly object part
segmentation, to produce point-level semantic annotations indicating micro-level parts
of an object, complementing macro-level class annotations. Embedding XPCC’s
’class-containers’ within each other would enable micro-level object part classifications
as sub-classes of the macro-level classification, offering a more detailed representation.
The embeddings could be extended to the CPCs, allowing variable-grain visualisation
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of regions contributing to the classification decision. Additionally, enabling X-class
discovery (P. Angelov and E. Soares, 2021) would permit the XPCC classifier to learn
entirely new classes or subclasses of objects during the prediction phase, reducing
errors arising from unknown objects in the domain.

5.4.3 Cross-Site Comparisons and Multi-Modal Inputs

Another intriguing application involves comparing differences and similarities between
cultural heritage and archaeological sites from different locations based on prototypical
representations. Discovering similarities between sites could aid in cases where no
training data is available, using previously discovered object classes as proxies to
train the feature extraction model. Exploring methods for enabling XPCC to perform
classification from multi-modal inputs (e.g., 2D images and 3D point clouds) would
allow for inspections on sites not scanned in 3D, broadening the range of potential
applications.

5.4.4 Linking Metadata to Memorials

As mentioned in earlier discussions, the linkage of memorials to the information they
record is of significant importance in the context of cultural heritage preservation and
management. While the focus of this thesis has primarily been on the automatic
extraction and classification of memorial objects from 3D point cloud data, the
potential for linking external information to the models is an intriguing area for future
investigation.

One potential approach to achieve this linkage is through the integration of
metadata within the training and classification process. Metadata could include
information such as historical context, inscription details, and other relevant attributes
associated with the memorial objects. By incorporating this external information as
additional input features during the training phase, the models can learn to associate
the geometric characteristics of the memorial objects with the corresponding meta-
data, thus enabling the linkage between the objects and their recorded information.

Moreover, as advancements in natural language processing (NLP) and knowledge
graph technologies continue to progress, there could be an opportunity to leverage
these methods to link external information to the models post-hoc. For instance,
by using NLP techniques, textual information from inscriptions or historical records
could be extracted and semantically analysed. The resulting knowledge graphs could
then be integrated into the models, enabling the models to retrieve relevant contextual
information for each detected memorial object during the classification process

Another potential avenue for achieving linkage is through the adoption of multi-
modal learning techniques. By incorporating multiple data modalities, such as images,
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textual information, or contextual data, into the classification process, the models can
be enriched with a more comprehensive understanding of the memorial objects and
their associated information.

However, it is essential to acknowledge that integrating external information
into the models also presents challenges. Ensuring data consistency, accuracy,
and availability of external information is crucial to prevent any potential biases
or misinterpretations. Moreover, privacy and data ethics considerations should be
addressed when dealing with sensitive historical information.

While the current research has primarily focused on the automatic extraction and
classification of memorial objects from 3D point cloud data, the potential for linking
external information to the models offers an exciting direction for future research.
By incorporating metadata, leveraging NLP and knowledge graph technologies, and
exploring multi-modal learning approaches, the models can become more than just
classifiers; they can serve as intelligent tools to preserve, enrich, and link cultural
heritage information to memorial objects, contributing to a more comprehensive
understanding and appreciation of our shared past.

5.4.5 Expanding to Aerial LiDAR Datasets

This thesis presents the use of fine-resolution mobile LiDAR for cultural heritage
management, as was discussed in detail in Chapter 4. An appealing application for
future research would be to apply the GeoPart-XPCC method to discovering objects
of interest from aerial LiDAR datasets, as such data are readily available from sources
such as the USA National Science Foundation (NSF) funded OpenTopography project.
Doing so would allow for many more applications to be explored that otherwise do not
have the same fine-resolution mobile LiDAR datasets. An obvious extension of this
research would be to look for prehistoric burial mounds or tumuli within landscapes.
However, the range of applications would not need to be limited to only cultural
heritage and archaeology. It could also be possible to map geographic features, crops
or industrial building surveys, for example.

5.4.6 Future Research Outside of Cultural Heritage

This research has primarily focused on the analysis of memorial objects in cul-
tural heritage scenes, but its implications extend far beyond this domain. The
methodological advancements made in this thesis are applicable to a wide range of
applications, some of which have been previously discussed. One such application
lies in autonomous robotic systems that utilise LiDAR for positional awareness and
environment interaction, exemplified by Boston Dynamics’ Spot and Atlas platforms
(Bouman et al., 2020).
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The methods developed and presented in this thesis offer more than just a means
of classifying burial ground objects in 3D point cloud data. The XPCC approach,
in particular, holds the potential for broader applicability in various non-cultural
heritage contexts. Although the primary focus of this research is on cultural heritage
site mapping, the underlying principles and advantages of the XPCC classifier can be
extrapolated to other domains where object detection and classification from point
cloud data are essential.

One potential application lies in urban planning and infrastructure management.
Point cloud data obtained from LiDAR scans or photogrammetry can be leveraged
to identify and classify various urban elements, such as buildings, roads, sidewalks,
street furniture, and vegetation. The XPCC classifier’s ability to capture and
represent object prototypes can enable efficient and interpretable classification of these
elements, facilitating the development of accurate 3D models for urban planning and
infrastructure analysis. Furthermore, the ability to quickly add and subtract classes
means that the model can be better adapted to suit new applications.

Another area where the XPCC approach could prove valuable is in environmental
monitoring and natural resource management. Remote sensing techniques, including
airborne and satellite-based LiDAR, are increasingly used to study forests, wetlands,
and other natural landscapes. By applying the XPCC classifier to point cloud data
derived from these environments, it may be possible to detect and classify various
vegetation types, track changes in vegetation density, and assess ecosystem health
and biodiversity.

Additionally, the XPCC classifier’s interpretable nature can be advantageous in
safety-critical applications, such as autonomous vehicles and robotics. Point cloud
data obtained from sensors on these platforms can be analysed using the XPCC
approach to identify and classify obstacles, road markings, and traffic signs, enabling
safe and reliable navigation in complex environments.

It is essential to acknowledge that these potential applications are speculative
at this stage and require real-world investigation and validation. Conducting
experiments in diverse environments and datasets beyond cultural heritage sites would
be necessary to assess the generalisation and performance of the XPCC classifier in
non-cultural heritage contexts.

Despite this speculative nature, the advantages offered by the XPCC approach in
terms of interpretability, efficiency, and performance make it a promising candidate
for various object detection and classification tasks in point cloud data. As the field
of 3D point cloud analysis continues to advance, exploring and adapting the XPCC
approach to other domains could lead to significant advancements in a wide range
of applications, beyond cultural heritage mapping, further expanding the impact and
relevance of this research.
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5.5 Bridging the Gap for Non-Expert Users

The development of a GUI for partitioning and classifying objects in a point cloud
is essential to facilitate the accessibility and usability of the proposed methods
within this research thesis (Opitz and Herrmann, 2018). Point cloud analysis,
particularly object segmentation and classification, poses unique challenges that
demand specialised expertise and technical knowledge, making it challenging for
non-technical end users to adopt and apply the developed methodologies effectively.
By incorporating a user-friendly GUI, the complex processes involved in object
partitioning and prototype-based classifier interpretation can be streamlined and
made accessible to a broader audience. Appendix B contains an example of one
such GUI, called the GP-XPCC app. The GUI can empower non-technical users,
such as archaeologists, heritage site managers, and researchers, to leverage the full
potential of the methods developed herein, enabling them to make informed decisions
based on the results obtained.

Outlined here is the design considerations and features of the GP-XPCC app,
emphasising its role in bridging the gap between technical expertise and practical
applicability, ultimately broadening the reach and impact of this research.

1. Enhanced Usability for Non-Technical Users: The primary motivation
behind incorporating a GUI is to democratise the use of object partitioning and
classification methods for non-technical end users. The GP-XPCC app abstracts
complex technicalities, allowing users to execute partitioning and classification
tasks efficiently without the need for specialised training or extensive domain
knowledge. This includes: performing unsupervised object extraction and
segmentation via GeoPart-Transfer, train the XPCC classifier, perform object
classification and inspection of the trained XPCC classifier.

2. Iterative Refinement and Feedback: With the GUI’s aid, non-technical
end users can engage in an iterative process of refinement, evaluating and
validating the partitioning and classification results. The GUI allows users to
provide feedback, correct misclassifications, and refine the training data, thereby
improving the overall accuracy and adaptability of the methods over time.

3. Interactive Visualisation and Manipulation: Through the GP-XPCC app,
users can manipulate the partitioned object prototypes, visualise their latent
spatial relationships, and adjust classification labels, providing a sense of control
and confidence in the outcomes. The ability to manually edit and manipulate
prototypes within the classifier enhances the user’s interpretability and trust in
the system’s decisions as well as error correction.
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4. Program Efficiency: The GUI application was developed using C++ as its
foundation, supplemented with an embedded Python3 interpreter, prioritising
efficiency at its core. To optimise Python code execution, a significant
emphasis was placed on incorporating just-in-time compilation and parallel
processing. By leveraging Python’s multiprocessing module and the Numba
Python package, computationally expensive Python-based operations, such as
for-loops, were accelerated to enhance overall performance. This optimisation
was particularly crucial, give the computationally demanding nature of point
cloud data processing tasks, which could be time-consuming with conventional
serial processing in Python. When possible, operations were deferred C++
source code. To further boost efficiency and enable support for both CPU
and GPU acceleration, the PyTorch library was integrated into the application.
These considerations make it possible to perform tasks efficiently even on
machines that do not have GPU accelerated hardware.

5. Improved Interpretability of Prototype-based Classification: The
inclusion of the XPCC in the GUI facilitates the interpretation of object
classifications. Users can inspect the prototype samples representing different
object categories, gaining insights into the classifier’s decision-making process.
Such interpretability is crucial, especially when dealing with sensitive or critical
applications where the understanding of classifier outcomes is essential for
informed decision-making.

6. Integration with Standard Point Cloud Viewers: The GUI omits direct
visualisation of point clouds, segmentation masks, and classification results. In
a previous version, these features were present, but they were later excluded
to leverage the use of more robust and widely supported point cloud viewer
applications, such as CloudCompare, for this purpose. As a result, the
XPCC-GUI app exports its results into formats compatible with these external
visualisation tools. One exception to this approach is the basic visualisation
window within the GP-XPCC app, which allows users to view prototype objects
directly within the application. This feature was kept as to minimise the need
to switch applications when interacting with the XPCC classifier.

The inclusion of a well-designed GUI for the proposed methods not only simplifies
the usage for non-technical users but also empowers them to actively participate in
the classification process, making it more intuitive, interpretable, and versatile. This
integrated approach contributes to the effectiveness and widespread adoption of the
developed techniques for object partitioning, classification, and interpretability in
point cloud data analysis. Future research or work could be done to further develop
this application in a robust UI computer application; this would allow for the research
to be adopted by a wider audience.
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5.6 Synthesis of Framework Benefits

Throughout the thesis, various alternative frameworks, including the GeoPart-
Transfer and GeoPart-XPCCmethodologies, have been discussed in detail, showcasing
their relative advantages and limitations. However, it is important to provide a
concise and coherent synthesis of this information to help readers better understand
the unique contributions and benefits of the XPCC-based frameworks.

The XPCC based frameworks stand out for the innovative use of class-containers,
which are prototypical representations capturing essential characteristics of object
classes. This approach offers several key benefits. Firstly, the use of class-containers
enables a compact and interpretable representation of object classes, making the
XPCC classifier highly transparent and explainable. Secondly, the XPCC framework
demonstrates remarkable adaptability, allowing for incremental learning and the
addition of new classes without retraining the entire model. This flexibility is
advantageous in real-world scenarios where datasets are subject to change and
expansion.

Another notable strength of the XPCC frame lies in its ability to handle complex
and diverse point cloud scenes with large amounts of vegetation, common in cultural
heritage sites. The introduction of the k-radius segmentation approach ensures
robustness to the presence of vegetation, enhancing the classifier’s accuracy in such
challenging environments.

5.7 Reflective Assessment of Framework Adoption

While the benefits of the XPCC-based frameworks have been demonstrated through
rigorous experimentation, a more reflective assessment of its adoption by other users
is essential to foster wider acceptance and utilisation. The potential user base for
the XPCC framework extends beyond the academic and research community to
various stakeholders, including cultural heritage experts, practitioners, hobbyists, and
industries involved in 3D point cloud analysis.

To facilitate the adoption of the XPCC framework, it is important to address
potential barriers and challenges. Firstly, the implementation and integration of
the XPCC classifier and the GeoPart-XPCC framework into existing workflows and
software environments may require technical expertise and effort. Thus, providing
user-friendly documentation, tutorials, and software libraries and tools could assist
potential users in adopting the framework more effectively. For example, releasing
the XPCC classifier as a Python package compatible with industry standard packages
such as Scikit-Learn, PyTorch, and Keras would enhance its accessibility and ease of
integration.

Selecting an appropriate classification framework for 3D point cloud data analysis
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involves considering various factors, including dataset characteristics, classification
requirements, and interpretability needs. The XPCC classifier offers unique features
that can be advantageous in specific scenarios. To aid users in identifying when
and how to apply the XPCC classifier effectively, the following general guidelines are
proposed:

• Dataset Characteristics The first step in deciding whether the XPCC
classifier is suitable for a given application is to assess the dataset characteristics.
Consider the complexity and diversity of objects present in the point cloud data.
The XPCC classifier is particularly beneficial in handling scenes with objects
of varying shapes, sizes, and orientations. Additionally, if the dataset contains
scenes with significant vegetation or clutter, the XPCC’s robustness to noise
introduced by vegetation makes it a strong candidate for classification in such
environments.

• Classification Requirements The second aspect to consider is the specific
classification requirements of the application. If interpretability and explain-
ability are essential, the XPCC classifier’s interpretable nature provides valuable
insights into the reasoning behind classification decisions. This feature is
particularly useful in applications where human-readable explanations of model
predictions are vital for decision-making and analysis.

Moreover, the XPCC classifier’s adaptability allows for easy incorporation of
new object classes. If the dataset requires continuous updates or expansion to
accommodate new object categories, the XPCC classifier’s ability to quickly
adapt to changes offers a significant advantage.

• Interpretability Needs In cases where interpretability is crucial for user trust
and acceptance, the XPCC classifier’s prototype-based approach can be highly
beneficial. Prototypes provide visual representations of object classes, enhancing
the model’s transparency and enabling users to understand the reasoning behind
classification results. Additionally, the use of the CPC can be used to highlight
commonalities amongst the classified objects. If the application domain requires
clear and interpretable classification outcomes, the XPCC classifier should be
considered.

• Performance and Efficiency Efficiency is an important consideration, partic-
ularly for large-scale or real-time applications. The XPCC classifier’s efficiency
in terms of training and prediction time allows for rapid analysis of point
cloud scenes. For applications requiring timely and accurate results, the XPCC
classifier’s performance can be advantageous.
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In conclusion, the decision to apply the XPCC classifier should be based on
a thorough assessment of dataset characteristics, classification requirements, and
interpretability needs. Its adaptability, interpretability, and robustness to noisy
environments make it well-suited for diverse applications. By carefully considering
these guidelines, users can leverage the strengths of the XPCC classifier to achieve
efficient and accurate 3D point cloud data analysis in their specific domains.

5.8 Additional Discussion by Chapter

This section provides an opportunity to delve into aspects specific to each chapter
that could not be fully explored within the scope of the original papers. These
discussions encompass valuable insights, supplementary analyses, and further context
that enhance the comprehensiveness of the research presented in this thesis. Due
to word limits in the original papers or considerations of maintaining a focused
narrative, certain aspects had to be omitted from the main discussions. By offering a
more comprehensive examination of aspects from each chapter, this section enriches
the understanding of the methodologies and their applications, providing readers
with a deeper insight into the research findings and discoveries. The chapter-
specific discussions aim to highlight noteworthy points that contribute to the overall
significance and impact of the presented work, enhancing the value and relevance of
this research thesis.

5.8.1 Chapter 2 Discussion

5.8.1.1 Detection of Prone Gravestones

The automatic detection and classification of ground-level objects, specifically prone
gravestones, present both successes and challenges in this research. Prone gravestones,
due to their similar appearance to grave slabs, are detected fairly well since
both objects largely exhibit planar regions. The detection process can accurately
identify planar surfaces, leading to satisfactory recognition of these ground-level
objects. However, a notable limitation arises from the lack of distinction between
prone gravestones and grave slabs within the training data. Consequently, the
current classification model does not differentiate between the two, resulting in
the misclassification of prone gravestones as grave slabs. This indicates that while
the detection of planar regions is effective, further improvements are necessary to
distinguish between these specific types of ground-level objects. Addressing this issue
is crucial to enhance the accuracy and specificity of the classification model, allowing
for more precise identification and labelling of prone gravestones in cultural heritage
sites represented as 3D point cloud scenes.
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5.8.1.2 Inclusion of Text or Carvings

Incorporating text or other carvings into the object classification process presents
an intriguing avenue for further enhancing the XPCC classifier’s capabilities. The
current methodology focuses on the extraction and labelling of memorial objects based
on geometric shape characteristics, which has proven effective for various cultural
heritage objects, including headstones and grave markers. However, text and carvings
on these objects hold valuable contextual and historical information that can enrich
the classification results and contribute to a more comprehensive understanding of
the site.

To integrate text and carvings into the XPCC classifier, one approach could involve
manually adding prototypes representing different types of inscriptions or carvings.
These prototypes would act as representative points for the corresponding classes,
capturing the visual features and characteristics associated with different types of
text or carvings. By incorporating such prototypes, the XPCC classifier could learn
to recognise and distinguish various inscriptions and carvings present on memorial
objects, further refining its object classification abilities.

Manually adding prototypes would enable the classifier to learn from a limited
number of annotated examples, significantly reducing the need for extensive training
data. Moreover, it would facilitate interpretability, as the prototypes can be visually
inspected and modified by domain experts to ensure accuracy and alignment with the
site’s historical and cultural context.

However, it is essential to consider the challenges that come with integrating
text and carvings into the classification process. The diverse and intricate nature
of inscriptions and carvings on memorial objects may require specialised techniques
for feature extraction and representation. Additionally, the integration process should
be approached with caution, as it may introduce complexities in the decision-making
process and potential biases if not handled appropriately.

Nonetheless, the inclusion of text and carvings holds significant promise in
providing a more comprehensive analysis of cultural heritage sites. By enriching
the XPCC classifier with this additional information, the research can contribute
to a more detailed and nuanced understanding of memorial objects’ significance
and historical context, further advancing the preservation and documentation of
cultural heritage for future generations. Further investigations and experiments in
this direction could unlock valuable insights and expand the classifier’s applicability
in broader archaeological and heritage management contexts.

5.8.1.3 Rationale for Selecting a Graph-Cut Method

The choice of graph-cut as the approach for object extraction and segmentation in this
task is well-justified due to its effectiveness in handling complex and interconnected
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structures within 3D point cloud scenes. Graph-cut techniques have been extensively
applied in computer vision and image processing, and their adaptability to point cloud
data has shown promising results in various applications (Landrieu and Obozinski,
2017; Landrieu and Simonovsky, 2017; Simonovsky and Komodakis, 2017).

One key advantage of graph-cut is its ability to leverage both local and global
information in the data, enabling the incorporation of contextual cues and spatial
relationships among neighbouring points. In the context of cultural heritage site
mapping, this is particularly relevant as the point cloud scenes often contain a
multitude of interconnected objects, such as headstones, grave markers, and other
structural elements. Graph-cut’s capability to model the relationships between
neighbouring points allows for more accurate and coherent segmentation of individual
objects, ensuring that each object is delineated precisely (Landrieu and Simonovsky,
2018).

Furthermore, graph-based approach is well-suited for handling the inherent noise
and irregularities often present in point cloud data (W. Hu, Gao, et al., 2019; Pistilli
et al., 2020). As 3D scanning processes can introduce imperfections and outliers,
robustness to noise is critical for achieving reliable object extraction results. Graph-
cut’s formulation as an energy minimisation problem enables it to effectively handle
noise and uncertainties, leading to more robust and stable object segmentation.

The interpretability of graph-cut results is another compelling aspect of this
approach. Graph-cut algorithms provide clear and intuitive outputs, with explicit
delineation of object boundaries and segmentation masks. This interpretability
is crucial in cultural heritage applications, where the extracted objects’ accuracy
and visual representation are of great importance for archaeological analysis and
documentation.

While graph-cut demonstrates several advantages for object extraction in point
cloud data, it is essential to acknowledge its limitations. In some cases, graph-cut
may struggle with handling more complex scenes, where object shapes are intricate,
or object boundaries are not well-defined. Additionally, graph-cut’s computational
complexity can be significant, which may become a challenge when dealing with large-
scale point cloud scenes or resource-constrained environments.

Notwithstanding these limitations, the suitability of graph-based methods for the
task of segmentation is evident, given its robustness, interpretability, and ability to
capture both local and global contextual information. By effectively segmenting and
extracting cultural heritage objects from 3D point cloud scenes, graph-cut contributes
significantly to the broader objectives of this research, enabling precise and reliable
preservation and documentation of cultural heritage sites. The successful application
of graph-cut further validates its viability as an appropriate approach for object
extraction in the context of archaeological studies and cultural heritage management.
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5.8.1.4 Clarification on Training Data

In the Evaluation of Methodology on Cultural Heritage Scenes in Chapter 2, it is
important to clarify that both the training set and Scene 1 are derived from a larger
point cloud of the same cultural heritage site. The training set comprised labelled
data representing various objects of interest within the site. However, these subsets
are carefully selected from distinct spatial regions, ensuring that there is no overlap
in data points between the two scenes. The training set was specifically used to
perform a within-sample test on Scene 1, assess the methodology’s performance on
familiar ground, where the algorithm had access to labelled examples similar to those
encountered during training. Subsequently, an out-of-sample test was conducted on
scene 2, which represents a completely different cultural heritage site. Scene 2 was not
part of the training set and presented unseen objects and environmental conditions.
This out-of-sample evaluation provided a robust assessment of the methodology’s
generalisation capability and its ability to adapt to novel contexts, demonstrating its
potential applicability beyond the training data and the specific cultural heritage site
used for training.

5.8.1.5 SVM Kernel Choice

The decision to not use the kernel trick in the Support Vector Machine for the
experiments performed in Chapter 2 is grounded in empirical results and the
objective of feature descriptor discrimination. A comprehensive set of experiments
was conducted, comparing the performance of different kernel functions, including
linear, polynomial, radial basis function, and sigmoid kernels. Notably, the linear
kernel exhibited superior accuracy compared to the other tested kernels. While these
results were not explicitly reported in the paper, they played a pivotal role in shaping
the SVM approach. The choice of the linear SVM was thus deemed appropriate,
as it demonstrated the capability to effectively differentiate the global feature
descriptors without the need for non-linear transformations. Utilising the linear SVM
avoids the computational overhead associated with the kernel trick and emphasises
the practicality of the linear kernel’s ability to discern and discriminate feature
representations accurately, contributing to the overall efficiency and effectiveness of
the methodology.

5.8.2 Chapter 3 Discussion

5.8.2.1 Distinctiveness of the XPCC method

The XPCC method introduced in Chapter 3 is a novel approach to object classification
in 3D point cloud data, setting it apart from other explainable methods explored in
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Chapter 3. Unlike alternative techniques, XPCC acts as an object classification head
for a pre-trained neural network, effectively replacing the final classification layer used
during training. This unique design enables the seamless integration of interpretable
prototype-based classification within the existing network architecture, distinguishing
it from methods that function as explainable feature extraction networks. In contrast,
PointHop adopts a local-to-global attribute building process, creating new attributes
that consider the relationships between multiple points, and leverages the Saab
transform for dimension reduction to control attribute growth.

Both XPCC and PointHop demonstrate interpretability, but their scopes and levels
of explainability vary. XPCC’s interpretability primarily lies in the visual inspection
of prototypes, facilitating users’ comprehension of the learned representations and
decision boundaries. However, it may not offer a complete explanation of the feature
extraction process, as it operates on top of the extracted features from the pre-trained
network. Similarly, PointHop provides interpretability as a feature extractor, allowing
insights into feature visualisation on the original input point cloud. Nonetheless,
it does not entirely explain the classification decisions made by the subsequent
classification process.

Despite this distinction, the significance of explainable feature extractors such as
PointHop should not be underestimated. Their ability to extract and represent local-
to-global attributes in an interpretable manner enhances understanding of feature
extraction from 3D point cloud data. Combining the capabilities of explainable
feature extractors with the XPCC classifier represents a promising avenue for future
research. For instance, applying XPCC on top of the PointHop architecture could
potentially provide more comprehensive insights into object classification decisions,
further enhancing the overall interpretability and performance of the classification
system. This avenue of exploration holds promise in leveraging the strengths of both
XPCC and explainable feature extractors, ultimately contributing to the advancement
of explainable and effective object classification in 3D point cloud data.

5.8.2.2 Data Selection

Chapter 3 of this thesis deviates from using cultural heritage data and instead
focuses on benchmarking datasets to emphasise the methodological aspects of the
proposed approach. The rationale behind this decision is to provide a comprehensive
evaluation and validation of the method in controlled and well-established settings,
ensuring its robustness and applicability across various scenarios beyond cultural
heritage contexts. By concentrating solely on benchmarking datasets, Chapter 3
aims to showcase the XPCC method’s generalisation capability and its effectiveness
in handling diverse point cloud scenes, devoid of any specific domain bias.

The decision to focus on benchmarking datasets aligns with the aim of establishing
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the proposed method as a versatile and widely applicable solution for object detection
and classification in 3D point cloud data. Utilising benchmarking datasets allows
for direct comparisons with state-of-the-art methods, objectively evaluating the
performance of the proposed approach against well-known and established baselines.
This facilitates a fair assessment of the method’s strengths and weaknesses, showcasing
its competitive edge and potential advantages in a broader context.

Moreover, benchmarking datasets serve as a common ground for researchers and
practitioners in the field of 3D point cloud analysis. By demonstrating the effectiveness
of the proposed method on benchmarking datasets, the research contributes to the
collective knowledge and understanding of the state-of-the-art in object detection and
classification, fostering advancements in the field at large.

Despite not using cultural heritage data in Chapter 3, its relevance to the thesis as
a whole remains crucial. The chapter serves as a solid foundation for the subsequent
research in chapter 4 that focus on the application of the proposed method to cultural
heritage sites. By establishing the method’s effectiveness and generalisability on
benchmarking datasets, Chapter 2 builds confidence in the method’s capabilities,
setting the stage for its successful adaptation and implementation in the unique and
complex environments of cultural heritage sites.

The decision to focus on benchmarking datasets in Chapter 3 was a strategic choice
to emphasise the methodological aspects of the proposed approach and demonstrate
its versatility beyond cultural heritage contexts. By providing a comprehensive
evaluation and validation, the chapter establishes the method’s robustness and
applicability, contributing to the advancement of 3D point cloud analysis as a whole.
Ultimately, this approach ensures that the XPCC method is well-equipped to address
the specific challenges and requirements of cultural heritage site mapping discussed
in subsequent chapters, further solidifying the thesis’s overall contribution to the field
of 3D point cloud analysis and cultural heritage preservation.

5.8.2.3 Ablation Study

The ablation study results presented in Table 5.3 showcase the incremental con-
tributions of different elements to the performance of the XPCC method in the
context of two baseline models: KPConv and PointNet++. For the KPConv
baseline, incorporating 3D feature extraction with the XPCC-base (comprising
only the local and global similarity layers followed by argmax ) yielded a marginal
accuracy decrease of 0.84 percentage points, revealing the nuances of prototype-based
representation adaptation. Notably, the incorporation of the Compound Prototype
Cloud resulted in a substantial accuracy enhancement of 0.61 percentage points,
signifying its role in capturing object data density nuances for refined classification.
The subsequent inclusion of the SoftMax layer contributed an additional accuracy
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Table 5.3: Ablation Study of XPCC Method.

Experiment Accuracy (%)
Baseline (KPConv) 91.8
– 3D Feature Extraction + XPCC-base 90.96 (-0.84)
– Compound Prototype Cloud 91.57 (+0.61)
– SoftMax Layer 91.82 (+0.25)

Baseline (PointNet++) 90.7
– 3D Feature Extraction + XPCC-base 89.62 (-0.93)
– Compound Prototype Cloud 92.05 (+1.04)
– SoftMax Layer 92.18 (+0.13)

boost of 0.25 percentage points suggesting improved class separation for enhanced
object classification within 3D point clouds.

Similarly, within the PointNet++ baseline, the integration of XPCC-base with
3D feature extraction led to a slight accuracy decrease of 0.93 percentage points,
reiterating the importance of feature representation. The assimilation of the
Compound Prototype Cloud showcased a notable accuracy improvement of 1.04
percentage points, highlighting its ability to enable the model to grasp class-
specific attributes, enhancing classification accuracy. Additionally, the introduction
of the SoftMax layer generated a modest accuracy increase of 0.13 percentage
points, reaffirming the influence of activation mechanism adjustments on classification
performance.

In conclusion, the ablation study outcomes accentuate the incremental roles of
individual components in shaping the XPCC method’s classification accuracy. The
Compound Prototype Cloud emerges as an especially impactful addition, spotlighting
the model’s capacity to leverage object- and class-oriented explanations for augmented
performance. This study imparts valuable insights into the significance of different
components and their collective impact on the XPCC method’s resilience and
interpretability.

5.8.2.4 XPCC as a Classification Head Layer for Neural Networks

The XPCC classifier has demonstrated its effectiveness in classifying point cloud
objects in various applications, as seen in the XPCC paper and the GeoPart-XPCC
framework. Building upon this success, the XPCC classifier can also serve as an
effective classification head layer for neural networks in the domain of deep learning.
In this context, a classification head layer refers to the final layer of a neural network
responsible for making the class predictions based on the features extracted by the
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preceding layers. By incorporating the XPCC classifier as a classification head layer,
neural networks can benefit from its interpretability, transfer learning capabilities,
and robustness to domain shifts, holds promise for extending its capabilities to diverse
domains.

When used as a classification head layer, the XPCC classifier can be employed
in transfer learning scenarios, where it is fine-tuned on specific datasets to adapt to
new object classes or domains. This transfer learning approach allows the XPCC
classifier to leverage its prototypical representations learned from one dataset and
efficiently classify objects in new datasets without starting the training process from
scratch. This adaptability is especially valuable in scenarios with limited annotated
data, enabling the model to generalise effectively to new object classes or scenes.

The XPCC classifier’s interpretable nature is a key advantage when used as a
classification head layer in deep learning and explainable deep learning frameworks.
The feature extraction process based on prototypical representations provides a
transparent and intuitive understanding of how the model makes decisions. This
interpretability is crucial for applications where model decisions must be explained and
justified, such as in critical systems, healthcare, and autonomous vehicles. By using
the XPCC classifier as the classification head layer, deep learning models can inherit
this explainable characteristic, enhancing the transparency and trustworthiness of the
entire pipeline.

Moreover, the XPCC classifier’s efficient and lightweight design makes it suitable
for real-time applications, even in resource-constrained environments. In deep
learning frameworks, the XPCC classification head layer can be combined with
other layers to build end-to-end pipelines for point cloud analysis. The ability to
perform classification directly from point cloud data within the deep learning model
streamlines the workflow and avoids the need for additional complex preprocessing
steps, enhancing the overall efficiency and performance of the system. By extending
the use of the XPCC classifier as a classification head layer in deep learning,
researchers can explore its capabilities across various domains beyond cultural heritage
sites.

5.8.3 Chapter 4 Discussion

5.8.3.1 Impact of Scene Features on Classification Scores

The variations in scores across different scenes in our study are attributed to
the distinct characteristics of each scene, as well as the specific strengths and
limitations of the classification methods employed. While it may be challenging to
explain all differences between scenes and classification methods, several generalisable
observations can be made.

Firstly, the scene-specific features play a crucial role in influencing the classification
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scores. Each scene contains unique variations in object density, point cloud resolution,
object size, and spatial distribution, among others. These variations can impact the
performance of the classification methods differently. For instance, scenes with dense
and cluttered point clouds may pose challenges for some methods that rely heavily
on local point features, resulting in lower classification accuracy compared to scenes
with sparse and well-separated objects.

Secondly, the complexity and diversity of object classes present in each scene can
influence the classification performance. Scenes with a wide range of object categories
and variations may require classifiers with stronger generalisation capabilities and
the ability to handle intra-class variances effectively. The GeoPart-XPCC method’s
prototype-based classification has demonstrated advantages in handling such com-
plexities, as it can better capture the essence of object classes and handle variations
within categories.

While it is challenging to provide a complete explanation for all differences between
scenes and classification methods, the observations made above provide insights
into the factors contributing to variations in classification scores. These findings
underscore the importance of carefully considering scene-specific features and selecting
appropriate classification methods based on the characteristics and requirements of the
3D point cloud data. By understanding these nuances, researchers and practitioners
can make informed decisions in choosing the most suitable approach for object
classification in different real-world scenarios.

5.8.3.2 Unidentified Memorial Objects

The results of the object extraction process in Chapter 2 demonstrated a high success
rate in detecting and locating memorial objects within the 3D point cloud scenes.
The method performed well in identifying objects even when they were deeply nested
within vegetation, indicating its effectiveness in handling challenging scenes with
occlusions and clutter.

However, a few instances of objects were not detected, and this can be attributed
to certain limitations of the segmentation process. In some cases, the segmentation
algorithm was overly aggressive, resulting in the partitioning of objects into smaller
fragments, which were then not recognised as complete memorial objects. This issue
highlights the importance of striking a balance between accurate segmentation and
preserving the contextual information necessary for proper classification.

Furthermore, in areas with significantly lower point density, some memorial objects
were missed during the detection process. The lower density may have resulted in
incomplete or sparse representations of objects, making them difficult to distinguish
from the background noise. This emphasises the significance of data quality and
completeness in achieving accurate and comprehensive object extraction results.
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Therefore, while the object extraction method demonstrated high accuracy in
detecting memorial objects within the 3D point cloud scenes, certain challenges
remain, such as aggressive segmentation leading to fragmented object representations
and lower point density affecting object detection. These limitations suggest
opportunities for future research and development of more advanced and context-
aware segmentation techniques, as well as the consideration of data quality and density
in improving object detection performance.

5.8.3.3 Ablation Study

In this ablation study, we assess the contributions of key elements to the performance
of the GeoPart-XPCC method using the baseline classification GeoPart-Transfer (k -
NN + ConvPoint + MLP-σ). We investigate the impact of incorporating two distinct
components: KPCONV and XPCC. The table below presents the accuracy values
achieved by the GeoPart-XPCC method and its ablated versions. The conducted
ablation study was based on the accuracy averaged over a 10-fold cross-validation
using all point cloud scenes as provided in Chapter 4.

Table 5.4: Ablation Study of GeoPart-XPCC Method.

Experiment Accuracy (%)
Baseline (GeoPart-Transfer) 80.50
– k -NN + KPConv + MLP-σ 82.48 (+1.98)
– k -NN + ConvPoint + XPCC 82.60 (+2.10)
– k -NN + KPConv + XPCC 84.05 (+3.55)
– Radius-NN + ConvPoint + MLP-σ 86.95 (+6.45)
– Radius-NN + KPConv + MLP-σ 87.11 (+6.61)
– Radius-NN + ConvPoint + XPCC 87.80 (+7.30)
– Radius-NN + KPConv + XPCC 88.61 (+8.11)

In the ablation study presented in Table 5.4, the contributions of different elements
to the performance of the GeoPart-XPCC method were systematically evaluated.
The baseline accuracy achieved using the GeoPart-Transfer method is 80.50%. By
gradually introducing enhancements, consistent improvements in accuracy can be
observed across the experiments.

Starting with k -NN + KPConv + MLP-σ, there is an observed performance
improvement of 1.98 percentage points. . This result suggests that the utilization of
KPConv, a robust kernel point convolution operation, aids in better feature extraction
and representation, enhancing the classification performance.

Moving on to k -NN + ConvPoint + XPCC, results in an accuracy increase of 2.10
percentage points. This demonstrates that the incorporation of the XPCC method
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enhances object classification through explainable neural networks. This improvement
reinforces the importance of leveraging the XPCC model to achieve accurate and
interpretable results.

By introducing k -NN + KPConv + XPCC, a boost of 3.55 percentage points over
the baseline is observed. This emphasises the combined strength of KPConv and
XPCC, which together provide an effective means of handling complex point cloud
data and extracting meaningful features for improved classification accuracy.

The transition to the use of the Radius-NN, as found in Radius-NN + ConvPoint +
MLP-σ leads to a remarkable increase of 6.45 percentage points in accuracy. It should
be noted that the GeoPart-Transfer baseline is analogous to a combination of k -NN
+ ConvPoint + MLP-σ. This observation underlines the significance of integrating
and transition from k -NN to Radius-NN in the segmentation process.

Continuing with the Radius-NN + KPConv + MLP-σ configuration, we observe a
notable accuracy improvement of 6.61 percentage points. Notably, by introducing the
Radius-NN method alongside KPConv, this combination yields an additional increase
of 4.63 percentage points compared to the same configuration without Radius-NN.
This emphasises the pivotal role of KPConv in facilitating precise feature extraction,
thereby significantly enhancing the overall performance of the model.

Moving to Radius-NN + ConvPoint + XPCC, we see a substantial accuracy
increase of 7.30 percentage points. This emphasises the successful integration
of XPCC with the ConvPoint module, which improves classification accuracy by
effectively capturing spatial relationships within the point cloud.

Finally, the combination of Radius-NN + KPConv + XPCC yields the highest
accuracy of 88.61%, representing an 8.11 percentage point increase over the baseline,
a more than 10% increase to performance. Moreover, this configuration showcases
a 0.81 percentage point augmentation compared to the ConvPoint feature extractor.
This result validates the effect of incorporating KPConv and XPCC in the method,
demonstrating their collective capability in achieving superior object classification
performance.

The results underscore the substantial impact of individual components on the
overall performance of the GeoPart-XPCC method. The addition of KPConv and
Radius-NN, along with the choice of classification models, contributes significantly to
the accuracy gains observed in each configuration. These findings provide valuable
insights for designing and optimising the GeoPart-XPCC method for the extraction
of cultural heritage objects from point cloud data.
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Conclusion

This thesis makes distinct contributions in two main aspects: the application of the
developed methodologies to cultural heritage sites and the technical contributions in
the form of novel methodologies. In terms of the application, the thesis showcases
the practical application of point clouds to burial ground sites, demonstrating the
extraction of memorial objects from these 3D point cloud scenes. Additionally,
it presents the successful implementation and evaluation of the GeoPart-Transfer
methodology, which allows for the accurate and efficient classification of memorial
objects in point cloud data. Furthermore, the thesis introduces and evaluates the
GeoPart-XPCC framework, which builds upon the GeoPart-Transfer method and
incorporates the XPCC classifier to provide an explainable classification approach
for cultural heritage sites.

On the other hand, the technical contributions of the thesis lie in the formulation
and development of the novel methodologies. Specifically, the thesis introduces
the GeoPart-Transfer methodology, a point cloud segmentation and classification
approach that leverages the concept of transfer-learning for improved object represen-
tation and classification without the reliance on 2D imagery. Additionally, the thesis
presents the XPCC classifier, which extends the traditional point cloud classification
by incorporating the concept of prototype-based class-containers, enabling enhanced
interpretability and explainability of the classification decisions. Finally, the GeoPart-
XPCC framework represents a significant technical contribution, as it combines the
strengths of the GeoPart-Transfer and XPCC methods, offering an integrated and
robust solution for accurate and interpretable classification in cultural heritage scenes.

It is essential to recognise that while the technical contributions lay the foundation
for broader applications beyond cultural heritage sites, the application-specific
contributions demonstrate the practicality and significance of the methodologies in
a real-world context. By focusing on cultural heritage, the thesis showcases the
potential of the methods and algorithms introduced in it to contribute meaningfully
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to the preservation, documentation, and analysis of historical sites, contributing to
the broader field of cultural heritage management and archaeology.

By delineating the contributions in terms of the application and technical
methodologies, the thesis effectively separates the achievements related to the
cultural heritage domain from the novel technical advancements, providing a clear
and comprehensive understanding of the contributions made to both the specific
application and the broader field of point cloud analysis.

This thesis provides solutions to several research questions towards the develop-
ment of methods for the extraction and classification of objects from 3D point clouds.

1. How to create an automated solution for the extraction
and classification of memorial objects from 3D Point cloud
representations of cultural heritage sites?

This thesis addresses this question with the introduction of the GeoPart-Transfer
methodology. GeoPart-Transfer is an approach wherein ML and AI techniques
are used to automate the processes of segmentation and classification of objects
from 3D point clouds. Using the XPCC, a prototype-based explainable deep
neural network for performing classifications on 3D point cloud data, the
GeoPart-XPCC was also developed as a framework tailored to the extraction of
memorial objects from scenes of 3D point cloud scenes of burial grounds that
is adaptable, explainable and efficient. Thus, the methods developed in this
thesis provide fast and scalable automated solutions that are applicable to the
extraction of memorial objects from 3D scans of cultural heritage sites.

2. How to manage object occlusions?

The methods developed in this thesis address this question by operating directly
on the 3D point clouds. In doing so, all decision-making takes place within the
3D data space or in higher latent feature spaces. In these data spaces, the
concept of a directional view of an object is non-existent. Thus, the occlusions
appearing in lower dimensional representations, such as 2D views of the data,
are eliminated.

3. How to apply ML directly to the 3D point cloud data?

The GeoPart-Transfer, XPCC and GeoPart-XPCC methods introduced in this
thesis solve this problem with the use of a transfer learning approach. Point-
based ANNs that are capable of learning directly on the point cloud structure
without intermediate representations are pre-trained and used as fixed global
feature extractors. Benchmarking exercises in Chapter 2 established that this
approach of using transfer learning global descriptor achieved a statistically
higher accuracy, with a 22.5% average percentage difference in F1-scores,
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compared to hand-crafted feature descriptors. Similarly, the proposed approach
to classification achieved increases of roughly 9% and 6% compared with
seven traditional classification methods applied to both artificial and real-world
datasets, respectively.

4. Related to both the second and third research questions,
how to apply ML in a context (i.e., cultural heritage
management) with little training data?

To this end, the transfer learning approach introduced in this thesis serves
two purposes. The point based ANNs used as fixed global feature extractors
were first pre-trained on a large dataset of generic objects. Once trained, these
feature extractors produce vectors that define a feature space optimised for the
separation of the training objects. Results in Chapters 2, 3, and 4 demonstrated
that this feature space enables the GeoPart-Transfer, XPCC, and GeoPart-
XPCC methods to use the pre-trained feature space to separate new objects
(i.e., memorial objects) without the need for an extensive amount of domain
specific training data. It was shown in Chapter 2 experiments that classification
can be performed effectively with only tens of objects per class. Moreover, the
unsupervised segmentation process can be used to accelerate the generation of
annotated ground reference data from the cultural heritage sites.

5. How to perform these tasks on sloping and hilly burial
ground scenes?
How to discover ground-level objects (i.e., grave kerbs)?
The fifth and sixth research questions are application-led, and both answered
using the same solution. A multi-scale partitioning scheme was introduced in
this thesis. This method checks if the large partitions, seen as one homogeneous
object at the global level, are also homogeneous at various local scales. The
strength of the segmentation algorithm is inverse to the scale, that is, the smaller
the sale, the more aggressive the segmentation is. This method ensures that even
flat low-lying objects obscured in earthen surfaces are found. The approach was
introduced in the GeoPart-Transfer segmentation process and later expanded
on in the GeoPart-XPCC segmentation process, with the adoption of a hybrid
radius neighbourhood search. The combination of the multi-scale partitioning
and the new neighbourhood definition ensures that burial grounds located on
hills can be processed. Both Scenes 3 and 4 are from a memorial site located on
the side of a hill. The GeoPart-XPCC method achieved a classification accuracy
of 93% on the within-sample experiment for Scene 4 and accuracies of 91% and
95% for Scenes 3 and 4, respectively, for the out-of-sample experiment. This,
provides a solution to the sixth research question.
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6. How to correctly extract and classify memorial objects
above the state-of-the-art?

This is one of the central aims of this thesis, namely, in comparison with the
leading non-explainable point-set deep learning classifier, XPCC was found to
be within a 0.4% percentage difference in terms of accuracy. Furthermore, the
XPCC & PointNet++ classifier achieved a 3.3% increase in accuracy over the
base PointNet++ network. Comparative results show that GeoPart-XPCC
is, on average, 14% more accurate and more robust to changes in domains
between training and testing data compared to GeoPart-Transfer. Experiments
in Chapter 4 were performed at scale, on 11 point cloud scenes derived from
mobile LiDAR scans of five cultural heritage sites across England. The algorithm
achieved accuracy scores above 90% on all scenes tested for the within-sample
experiment results. Similarly, the algorithm achieved accuracy scores above 90%
in all, but one of the out-of-sample experiments. These experimental results
demonstrated that the methods developed in this thesis are computationally
efficient, trainable on thousands of samples in seconds, and explainable, thus,
capable of supporting accurate and informed decision-making.

7. How to adapt to different objects, classes and domains of
data?

The XPCC is algorithmically and structurally transparent and offers several lay-
ers of human-interpretable explainability. Moreover, it can learn continuously,
without the need to be completely retrained at the addition of new classes or
class samples. Experiments in Chapter 4 demonstrated that the GeoPart-XPCC
framework can be trained efficiently on one scene and perform prediction on a
different one, and can also be trained on part of a scene and perform prediction
on the remainder. Experiments showed that the algorithm is flexible to process
data from different scanning technologies in addition to scenes and objects with
varying point densities. This thesis also presents a technique to visualise the
explainable aspects of the XPCC model called CPC. The technique is unique to
3D point clouds and prototype-based learning. The CPC represents what the
model has learnt, and specifically identifies the object regions which influence
classification decisions. The GeoPart-XPCC introduces the ability to perform
diagnostics and allows users to make informed decisions to update the model
manually to suit changes in the application.

In summary, this completed thesis presents the design and implementation of
a solution for the automatic extraction of 3D objects from cultural heritage sites.
The methods presented within this thesis increase performance above the state-of-
the-art in respect to classification accuracy, explainablity, adaptability and speed of
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implementation. The methods have the potential to significantly decrease the hours
needed for an operator to perform the tasks of mapping and labelling cultural heritage
objects. Furthermore, they do so in a transparent and human understandable way
that is robust to changes in the data sources and input domain. This enables the
models to be meaningfully updated to better fit the application. Thus, this thesis
contributes to the knowledge of object extraction from 3D point clouds, as well as
contributes to the field of cultural heritage management. As evident by the further
research proposed, this thesis has very wide applicability and many avenues for further
progression in knowledge.
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Abstract

This paper provides a brief analytical review of the current state-of-the-art in

relation to the explainability of artificial intelligence in the context of recent

advances in machine learning and deep learning. The paper starts with a brief

historical introduction and a taxonomy, and formulates the main challenges in

terms of explainability building on the recently formulated National Institute

of Standards four principles of explainability. Recently published methods

related to the topic are then critically reviewed and analyzed. Finally, future

directions for research are suggested.
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1 | INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have demonstrated their potential to revolutionize industries,
public services, and society, achieving or even surpassing human levels of performance in terms of accuracy for a range
of problems, such as image and speech recognition (Mnih et al., 2015) and language translation (Young et al., 2018).
However, their most successful offering in terms of accuracy—deep learning (DL) (LeCun et al., 2015)—is often charac-
terized as being “black box” and opaque (Pasquale, 2015; Rudin, 2019). Indeed, such models have a huge number
(many millions or even a billion) of weights (parameters) which are supposed to contain the information learned from
training data. Not only is the number of these weights very large, but their link to the physical environment of the prob-
lem is extremely hard to isolate. This makes explaining such forms of AI to users highly problematic. Using opaque,
“black box” models is especially problematic in highly sensitive areas such as healthcare and other applications related
to human life, rights, finances, and privacy. Since, the applications of advanced AI and ML, including DL, are now
growing rapidly, encompassing the digital health, legal, transport, finance, and defense sectors, the issues of transpar-
ency and explainability are being recognized increasingly as critically important. For example, a search in Google
Trends (https://trends.google.com/trends/) reveals that in the last decade publications using the terms “DL” and
“explainable AI” (XAI) both grew significantly, but while the curve for DL is now in a saturation stage over the last
3 years or so, the curve for XAI is growing exponentially starting precisely 3 years ago when the saturation in regards to
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DL started to be observed as illustrated by Figure 1. This is not coincidental and demonstrates that as the huge increase
in interest towards DL starts to saturate, interest towards XAI is gearing up trying to address open research and accept-
ability questions (Arrieta et al., 2020). In this paper, this trend is analyzed and, further, a taxonomy of XAI is provided.
Moreover, we also investigate novelties in terms of XAI and include an analysis involving the Caltech-101
benchmarking dataset. Following a brief historical and critical state-of-the-art review we also consider some applica-
tions for which explainability is critically important. The paper concludes with a discussion.

2 | BRIEF HISTORICAL PERSPECTIVE

AI was closely linked to both ML and to logic and symbolic forms of reasoning from its inception in the middle of the
20th century (Samuel, 1959; Smolensky, 1987). ML and data-driven statistical techniques gained momentum in recent
years due to an unprecedented increase in the number and complexity of data available (now the majority of data are
unstructured, with many more images/videos as well as text/speech in comparison to the 20th century) (Bishop, 2006;
Goodfellow et al., 2014).

Historically, the first methods of AI, such as decision trees (Quinlan, 1990), symbolic AI (Smolensky, 1987), expert
systems, fuzzy logic, and automated reasoning (Robinson & Voronkov, 2001), as well as some forms of artificial neural
networks (ANNs), for example, radial-basis function (RBF) architectures and linguistic, prototype-based, representa-
tions were significantly more interpretable and self-explainable than the more recent and more efficient forms such as
support vector machines (SVMs) (Hearst et al., 1998) and most other forms of ANNs.

In the last few years, explainability has become an important issue not only for scientists, but also for the wider pub-
lic including, regulators, and politicians. As AI and ML (and, especially, DL) become more wide spread and intertwined
with human-centric applications, and algorithmic decisions become more consequential to individuals and society,
attention has shifted back from accuracy to explainability (Angelov & Soares, 2020; Core et al., 2006; Pedreschi
et al., 2019). Complex and “black box” (Pasquale, 2015; Rudin, 2019) types of models can easily fool users (Nguyen
et al., 2015) and, in turn, this can lead to dangerous or even fatal consequences (Stilgoe, 2020). Opening the “black box”
is critically important not only for acceptability within society, but also for regulatory purposes. (In 2019 the US Con-
gress passed the Algorithmic Accountability Act (MacCarthy, 2019) and the EU enshrined the right for an explanation
to the consumer (Core et al., 2006; Goodman & Flaxman, 2017; Pedreschi et al., 2019).) The current data-rich environ-
ment brought the temptation to take shortcuts from raw data to solutions using a very large number of abstract, purely
numerical parameters (Angelov & Soares, 2020; Rudin, 2019; Stock & Cisse, 2018), without providing a deep insight
into, and understanding of, the underlying dependencies, causalities, and internal model structures. The issue of
explainability is an open research question for some of the most successful (in terms of accuracy) forms of ML such as
SVMs, DL, and many of the ANNs (Bishop, 2006), as Figure 2 illustrates.

In the above context, the main question is not so much: Can we get an XAI solution?, but Can we get a highly accu-
rate XAI solution comparable to the accuracy that DL would provide? Table 1 illustrates some results for the Caltech-101

FIGURE 1 Illustrates the interest evolution towards two terms according to Google Trends: (a) deep learning (DL), (b) explainable

artificial intelligence (XAI)
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benchmarking dataset considering different methods and evaluation metrics (best results are highlighted with bold
fonts).

AI has been closely related to automated reasoning and mimicking human intelligence from its inception
(Angelov & Gu, 2018). ANNs, as a branch of AI that is closely related to ML, went through a roller coaster cycle of
development starting in the middle of the past century while the Second World War was still raging with the introduc-
tion of the computational perceptron—the model of a single neural cell (neuron) by Warren McCulloch and Walter
Pitts in 1943 (Bien & Tibshirani, 2011). At the time that this theory was introduced it was very close to the biological
original that inspired it—the human brain. With the power that comes from networking multiple (i.e., millions or even
billions of) neurons comes predictive power, but also a complexity that tends to opaqueness. Historically, ANNs went
through their first boom during the 1980s–1990s when one of the main achievements was the introduction of popular
efficient supervised learning methods, such as the back-propagation algorithm by Werbos (1990), and architectures
such as multi-layer perceptrons (MLPs), RBF, and so on. The power of ANNs is in the layered architecture which, in
effect, performs a series of embedded mathematical transformations—somewhat analogous to the Russian dolls called
“matryoshka”:

yp ¼ f n
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wpqf n�1 …f 2
X
i

wrif 1
X
j

wijxj
� � ! ! ! ! !

,

 
ð1Þ

where yp denotes the pth output; w represents the weights; j is the number of inputs/features and i is the number of
neurons at a hidden layer; f1 denotes the activation function of the input layer; f2 denotes the activation function of a
hidden layer; fn denotes the activation function of the output layer.

FIGURE 2 Accuracy vs. interpretability for different machine learning models

TABLE 1 Performance comparison for the Caltech-101 dataset

Method Accuracy Time (s) #Parameters Interpretability

xDNN (Angelov & Soares, 2020) 94.31% 362 4 per class High

VGG-16 (Simonyan & Zisserman, 2014) 90.32% 18,332 138.000.000 Very low

ResNet-50 (He et al., 2016) 90.39% 12,540 23.000.000 Very low

Random forest (Breiman, 2001) 87.12% 412 �20,000 Medium

SVM (Hearst et al., 1998) 86.64% 783 �15,000 Low

kNN (Peterson, 2009) 85.65% 221 �300 and all data Low

Decision tree (Quinlan, 1996) 86.42% 236 �5 rules per class High

Naive Bayes (Rish, 2001) 54.84% 323 409,700 Medium
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MLPs have one or more hidden layers. ANNs with multiple hidden layers are now called “deep.” ML occurs by
modifying the weights of the links between the nodes of neighboring layers. The good news is that the huge number of
weights allows one to model highly complex functions that map the inputs (in the case of classification—features) to
the output(s)—(in classification—class labels). It has been proven theoretically that an MLP can approximate arbitrarily
well any nonlinear function (Hornik et al., 1990). Indeed, ANNs are highly parametric models. In addition, the layered
structure allows the learning to be performed using error back-propagation with the relatively simple and reliable gradi-
ent family of methods combined with conveniently described single neuron activation functions, such as Gaussian or
linear. The bad news is that the potentially huge number of weights (unknown parameters) requires a lot of training
data, time, computational resources, and makes the overall model hard to explain because the link between the weights
and the physicality of the original problem is broken. In comparison, humans can learn from very few examples, or
even a single example, and understand the concept behind the classification decision as well as explain and articulate it
to others. The AI systems of the future will have to emulate such capabilities (Angelov & Gu, 2018).

Historically, interest towards ANNs dipped around the mid-90s leading to the so-called AI winter and attention
moved away. Even the success of IBMs Deep Blue chess playing computer program that was able to beat the world's
best chess player Gary Kasparov was not able to revitalize AI (Campbell et al., 2002). However, when in 2015 the UK
company DeepMind that defeated the world champion of the game Go with its AlphaGo (Chang et al., 2016) using a
deep form of ANN, interest in ANNs and AI, as well as ML, returned with full force. It does have to be acknowledged
that problems such as (so-called fair) games are well-structured logical problems and, therefore, easier to learn in com-
parison to the much more open-ended real-life problems that are of interest to various industrial and defense applica-
tions. For example, autonomous driving or aerial systems, financial, health, legal, and other real-life problems are more
complex, unpredictable, and uncertain (Nilsson, 2014).

3 | XAI TAXONOMY

In the literature, a variety of terms exist to indicate the opposite of the “black box” nature of some of the AI and ML,
and especially DL, models. We distinguish the following terms:

• Transparency: a model is considered to be transparent if, by itself, it has the potential to be understandable. In other
words, transparency is the opposite of “black-box” (Adadi & Berrada, 2018).

• Interpretability: is defined as the capacity to provide interpretations in terms that are understandable to a human
(Gilpin et al., 2018).

• Explainability: is related with the notion of explanation as an interface between humans and an AI system. It com-
prises AI systems that are accurate and comprehensible to humans (Gilpin et al., 2018).

Although these terms are similar in their semantic meanings, they confer different levels of AI to be accepted by
humans. For more details, the ontology and taxonomy of XAI at a high level can be detailed as below:

• Transparent model: Typical transparent models (Adadi & Berrada, 2018) include k-nearest neighbors (kNN), decision
trees, rule-based learning, Bayesian network, and so on. The decisions from these models are often transparent,
although transparency, as a property, is not sufficient to guarantee that a model will be readily explainable.

• Opaque model: Typical opaque models (Pasquale, 2015; Rudin, 2019) include random forest, neural networks, SVMs,
and so on. Although these models often achieve high accuracy, they are not transparent.

• Model agnostic: Model-agnostic XAI approaches (Dieber & Kirrane, 2020) are designed with the purpose of being
generally applicable. As a result, they have to be flexible enough, so that they do not depend on the intrinsic architec-
ture of the model, thus, operating solely on the basis of relating the input of a model to its outputs.

• Model-specific: Model-specific XAI approaches often take advantage of knowing a specific model and aim to bring
transparency to a particular type of one or several models (Bach et al., 2015).

• Explanation by simplification: By simplifying a model via approximation (Tritscher et al., 2020), we can find alterna-
tives to the original models to explain the prediction we are interested in. For example, we can build a linear model
or a decision tree around the predictions of a model, using the resulting model as a surrogate to explain the more
complex one.
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• Explanation by feature relevance: This idea is similar to simplification. Roughly, this type of XAI approaches attempts
to evaluate a feature based on its average expected marginal contribution to the model's decision, after all possible
combinations have been considered (Chen et al., 2019; Pedreschi et al., 2019).

• Visual explanation: This type of XAI approach is based on visualization (Chattopadhay et al., 2018). As such, the fam-
ily of data visualization approaches can be exploited to interpret the prediction or decision over the input data.

• Local explanation: Local explanations (Selvaraju et al., 2017) approximate the model in a narrow area, around a spe-
cific instance of interest, and offer information about how the model operates when encountering inputs that are
similar to the one we are interested in explaining.

The ML literature predominantly uses the term “interpretability” as opposed to “explainability,” but according to
Burkart and Huber (2020), interpretability itself is insufficient as it does not cover all possible problems associated with
understanding “black-box” models. To gain the trust of users, and acquire meaningful insights about the causes, rea-
sons, and decisions of “black-box” approaches, explainability is required rather than simple interpretability. Although,
explainable models are interpretable by default, the opposite is not always true. The existing literature (Adadi &
Berrada, 2018) divides XAI taxonomy by:

• Scope (local (Bach et al., 2015; Selvaraju et al., 2017) and global (Chen et al., 2019; Pedreschi et al., 2019)).
• Usage (post hoc, e.g., surrogate models (Dieber & Kirrane, 2020; Pedreschi et al., 2019; Tritscher et al., 2020) and

intrinsic to the model architecture, e.g., explainable-by-design (Soares, Angelov, Biaso, et al., 2020; Soares, Angelov,
Costa, et al., 2020)).

• Methodology (focused on the features (Chen et al., 2019; Selvaraju et al., 2017) or on the model parameters (Dieber &
Kirrane, 2020)).

In recognition of the growing importance of this topic, NIST published in August 2020 Four principles of XAI
(Phillips et al., 2020), which define the following fundamental principles which an AI must honor to be considered an
XAI as follows:

• Explanation: this principle states that an AI system must supply evidence, support; or reasoning for each decision
made by the system.

• Meaningful: this principle states that the explanation provided by the AI system must be understandable by, and meaningful
to, its users. As different groups of users may have different necessities and experiences, the explanation provided by the AI
system must be fine-tuned to meet the various characteristics and needs of each group.

• Accuracy: this principle states that the explanation provided by the AI system must reflect accurately the system's processes.
• Knowledge limits: this principle states that AI systems must identify cases that they were not designed to operate in

and, therefore, their answers may not be reliable.

Figure 3 depicts the ontology of the XAI taxonomy. Transparent models can easily achieve explainability, while
opaque models require post hoc approaches to make them explainable. The categories of post hoc approaches are illus-
trated accordingly.

4 | REVIEW OF THE STATE-OF-THE-ART

Current research on XAI is still mostly limited to sensitivity analysis (Arrieta et al., 2020), layer-wise feature relevance
propagation and attribution (Tritscher et al., 2020), local pseudo explanations by LIME (Dieber & Kirrane, 2020), game-
theoretic Shapley additive explanations (Chen et al., 2019), gradient-based localization, and Grad-CAM (Selvaraju
et al., 2017) or surrogate models. In this section, some of the more widely used methods are outlined.

4.1 | Features-oriented methods

SHapley Additive exPlanation (SHAP) (Lundberg & Lee, 2017) is a game-theoretic approach to explain ML predictions.
SHAP seeks to deduce the amount each feature contributed to a decision by representing the features as players in a
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coalition game. The payoff of the game is an additive measure of importance, the so called Shapley value, which repre-
sents the weighted average contribution of a particular feature within every possible combination of features. As such,
local and global interpretations of a model are consistent and the average prediction is fairly distributed across all
Shapley values, meaning that contrasting comparisons between explanations are possible. However, if the model is not
additive then interpretation of the Shapley values is not always transparent, as predictive models may have non inde-
pendent pay-off splits. Furthermore, while SHAP can be considered model agnostic, optimized implementations of the
SHAP algorithm to all model types is not immediately straight forward or efficient.

Class activation maps (CAMs) are specific to CNNs. CAMs represent the per-class weighted linear sum of visual pat-
terns present at various spatial locations in an image (Zhou et al., 2016). More formally, global average pooling is
applied to the final convolutional feature map in a network, before the output layer. These pooled feature maps are
then used as the input features to a fully connected layer and output through a loss function. By projecting the weights
of the output back to the previous convolutional layer, the areas in the input image with greater influence over the
CNNs' decision are highlighted per-class and visible through a heatmap representation. CAMs cannot be applied to
pre-trained networks and networks that do not adhere to the specified fully convolutional network architecture. Addi-
tionally, spatial information can be lost by the fully connected layer and map scaling. Two generalizations of the base
CAM model, Grad-CAM (Selvaraju et al., 2017) and Grad-CAM++ (Chattopadhay et al., 2018), try to further increase
the explainability of CNNs.

Gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017) generalizes CAM to any arbitrary
CNN architecture and without retraining. The gradients for any target class are fed into the final convolutional layer
and an importance score computed in respect to the gradients. As with other methods, a heatmap representation of the
Grad-CAM indicates which regions of the input image were most important in the CNN's decisions. However, Grad-
CAM produces only coarse-grained visualizations and cannot explain multiple instances of the same object in an image.
Grad-Cam++ (Chattopadhay et al.) considers the weighted average of the gradients to overcome these drawbacks.

Feature oriented methods provide insights into where a decision is taking place in terms of the input, but fall short
of a human level explanation of how and why the model came to those decisions. Consequently, a human could not
exactly reproduce the explanations rendered by the model.

4.2 | Global methods

For features with precise semantic definitions, global attribution mappings (GAMs) (Ibrahim et al., 2019) can explain a
neural network's predictions on a global level, across subpopulations, by formulating attributions as weighted conjoined
rankings. The advantages are that different subpopulations can be captured through a tuneable granularity parameter.

FIGURE 3 The high-level ontology of explainable artificial intelligence approaches
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GAMs find a pair-wise rank distance matrix between features and a K-medoids clustering algorithm used to group simi-
lar local feature importances into clusters. The medoid of each cluster then summarizes the pattern detected in each
cluster as a global attribution. This approach is therefore relevant to feature exploration among different sub-
populations of samples.

Gradient-based saliency maps (Simonyan et al., 2013) are a visualization technique which render the absolute value
of the gradient (in respect to the input features) of the majority predicted class as a normalized heatmap. The pixels
with a high activation are highlighted and correspond to areas that are most influential (i.e., salient). The method's
explanation lies in the ability for a user to look at what features in the image are being used in the classification deci-
sion. However, the absolute value means that gradients of neurons with negative input are suppressed when propagat-
ing nonlinear layers. As with feature-oriented methods, gradient-based saliency maps do little to communicate
decisions beyond model diagnostics.

In Ancona et al. (2018), deep attribute maps are presented as a technique for rendering the explainability of
gradient-based methods. Importantly, the proposed framework illustrates evaluations between different saliencey-based
explanation models. Simply, the gradient of the output is multiplied by the respective input to generate an explanation
of a model's prediction in the form of a heatmap. Red and blue colors indicate positive and negative contributions,
respectively, to the output decision. Explanations are sensitive to noisy gradients and variations in the input. Deep attri-
bute maps alone cannot explain why two models produce similar or different results.

4.3 | Concept models

Concept activation vectors (CAVs) were introduced by Kim et al. (2021), a technique to explain globally the internal
states of a neural network by mapping human understandable features to the high-level latent features extracted by the
neural network. As such, CAVs represent the degree to which these abstract features point towards a set of human
understandable concepts chosen by a user. Of course, a certain amount of human bias is imposed, but by explaining the
associated concept it becomes possible to determine any defects in the decision-making process the model has learned;
for instance, if certain characteristics are mistakenly seen as important. Subsequently, automatic concept based expla-
nations (Ghorbani et al., 2019) extract CAVs automatically without human supervision, thereby removing human bias.
Instead of being chosen, the human understandable concepts are segmented at various spatial resolutions from in-class
images. Nevertheless, concept-based methods are reliant on the concepts being uniquely meaningful to the class, and
the effectiveness of explanation is adversely affected if a chosen concept is commonly present in multiple classes.

4.4 | Surrogate models

Local interpretable model-agnostic explanations (LIME) (Dieber & Kirrane, 2020) is a model-agnostic technique to cre-
ate locally optimized explanations of ML models. LIME trains an interpretable surrogate model to learn the local behav-
ior of a global “black box” model's predictions. For image classification, an input image is divided into patches of
contiguous superpixels (i.e., an image object) and a weighted local model is then trained on a new set of permuted
instances of the original image (i.e., some superpixels are turned to gray). The intuition is then that by changing aspects
of the input data that are human understandable (spatial objects) and learning the differences between those perturba-
tions and the original observations, one can learn what about the input contributed to each class score. However, these
explanations are not always informative or reliable at a human level if the parameters that control the perturbations
are chosen based solely on heuristics.

4.5 | Local, pixel-based methods

Layer-wise relevance propagation (LRP) (Bach et al., 2015) uses predefined propagation rules to provide an explanation
of a multilayered neural network's output in respect to the input. The method renders a heatmap, thereby providing
insight into which pixels contributed to the model's prediction and the extent to which they did. Accordingly, LRP high-
lights positive contributions to a network's decision. While LRP can be applied to an already trained network, this pro-
cess is post hoc and therefore provides only a simplified distillation of the features' role in the decision and is only
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applicable if the network implements backpropagation. DeconvNet (Noh et al., 2015) uses a semantic segmentation
algorithm which learns a deconvolution network and, therefore, provides insights about pixel contribution during the
classification process. Similarly, a deep belief network (Hinton et al., 2006) was proposed to improve the interpretability
of traditional neural networks.

4.6 | Human-centric methods

The above methods, despite their advantages, do not provide clear explanations understandable to humans. They rather
“barely scratch the surface” of the “black box” aiming for “damage limitation” with post hoc hints about the features
(attribute allocation) or localities within an image. This is radically different from the way people reason and make
decisions, make associations, evaluate similarities, and draw an analogy that can be articulated in court or to another
expert (e.g., in medicine, finance, law or other area). The aforementioned methods do not answer the fundamental
questions of model structure and parameters relating to the nature of the problem and completely ignore reasoning.

Recently, in Angelov and Soares (2020) a cardinally different approach to explainability was proposed which treats
it as a human-centric (anthropomorphic) phenomena rather than reducing it to statistics. Indeed, humans compare
items (e.g., images, songs, and movies) in their entirety and not per feature or pixel. People use similarity to associate
new data with previously learned and aggregated prototypes (Bien & Tibshirani, 2011) while statistics is based on aver-
ages (Bishop, 2006).

5 | EXPLAINABILITY-CRITICAL APPLICATIONS

The frequency and importance of algorithms in applications have lead regulators and official bodies to develop policies
that provide clearer accountability for algorithmic decision-making. One such example is the European Union's
General Data Protection Right, which some have interpreted as a “Right to Explanation” (Goodman & Flaxman, 2017).
Although the extent of this right is in dispute, the discourse around such topics has reinforced that automated systems
must avoid inequality and bias in decisions. Furthermore, they must fulfill the requirements for safety and security in
safety-critical tasks. Consequently, there has been a recent explosion of interest in XAI models in different areas.
Recently, it has been reported that XAI has been applied in several critical domain applications such as medicine
(Holzinger et al., 2017), the criminal justice system (Dressel & Farid, 2018), and autonomous driving (Cysneiros
et al., 2018).

In the medical domain there is a growing demand for AI approaches, most notably during the COVID-19 pandemic.
However, AI applications must not only perform well in terms of classification metrics, but need also to be trustworthy,
transparent, interpretable, and explainable, especially for clinical decision-making (Holzinger et al., 2017). Soares,
Angelov, Biaso, et al. (2020), for example, offered an explainable DL approach for COVID-19 identification via com-
puted tomography (CT) scans. The proposed approach was reported to surpass mainstream DL approaches such as
ResNet (He et al., 2016), GoogleNet (Szegedy et al., 2015), and VGG-16 (Simonyan & Zisserman, 2014) in terms of accu-
racy, F1 score and other statistical metrics of performance, but critically, this approach is based on prototypes which, in
this case, represent a CT scan that a radiologist can clearly understand. The prototypes are examples of CT scans of
patients with or without COVID. This approach can be expanded readily to include more classes, such as “mild” or
“severe” COVID, and so on, or go to the level of superpixels as in Tetila et al. (2020). Furthermore, the proposed deep
neural network has a clear and explainable architecture (with each layer having a very clear meaning and using visual
images of CT scans so the decision can easily be visualized).

Couteaux et al. (2019) proposed an explainable DeepDream approach where the activation of a neuron is maximized
by performing gradient ascent of a given image. The method has output curves that show the evolution of the features
during the maximization. This favors the visualization and interpretability of the neural network and was applied for
tumor segmentation from liver CT scans (Couteaux et al., 2019).

Another example application of XAI is the criminal justice system. In some countries such as the United States auto-
mated algorithms are being used to predict where crimes will most likely occur, who is most likely to commit a violent
crime, who is likely to fail to appear at their court hearing, and who is likely to re-offend at some point in the future
(Dressel & Farid, 2018). One such widely used criminal risk assessment tool is the Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS). Although the data used by COMPAS do not include an individual's race,
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other aspects of the data may be correlated to race that can lead to racial biases in the predictions. Therefore, explana-
tions of such critical decisions are necessary to favor fairness and reduce racism during the decisions (Dressel &
Farid, 2018). As discussed by Soares and Angelov (2019), prototype-based algorithms can be a solution to reduce bias
and favor fairness as one can check and balance the prototypes generated to guarantee a fairer decision. Moreover, the
approach proposed in Soares and Angelov (2019) also provides human explainable rules to assist specialists during
decision-making.

Applications based on NLP also benefit from XAI. Mathews (2019) presented an explainable approach for tweet data
classification based on LIME. XAI techniques for anomaly and fraud detection are also explored by different authors as
a means of enhancing users' trust (Smith-Renner et al., 2019; Xie & Philip, 2018).

Another application domain in which there is a growing number of applications and interest towards XAI is defined
as autonomous systems (these may be airborne, maritime or land-based individual vehicles with a control system or
swarms). Self-driving vehicles, for example, are automated systems that are expected to be used in possibly an unknown
environment (Das & Rad, 2020). In this context, the trust and acceptance of such systems require transparency, in con-
trast to “black-box” solutions. For example, a recent crash (on 18 March 2018) by an autonomous car owned by Uber
led to the operator being charged with negligent homicide (Stilgoe, 2020) two and a half years later. It is, therefore, criti-
cally important (not only from the point of view of public perception and trust which can make or break market per-
spectives, but also from a purely regulatory and legal perspective) to have transparent, interpretable, and explainable,
non-”black-box” models in use. This can lead to more reliable systems which are necessary to guarantee safety and
meet regulations (Das & Rad, 2020). Recently, examples of prototype-based approaches were published in which XAI
was used for understanding the visual scene (Soares et al., 2019) and the situation awareness of a self-driving car on a
highway/motorway/autobahn through the so-called vector of affordance indicators (relative velocities and distances to
the neighboring vehicles) (Soares, Angelov, Costa, et al., 2020). Not only were the accuracy, F1 score and other statisti-
cal measures reported to be comparable with, or surpass conventional DL methods, but the model was clearly explain-
able to a human in the form of linguistic rules and visual means. Moreover, for cases when the situation on the road is
deemed to be generated from a class that was never used in training (a completely new type of scene) it was reported
that conventional DL methods can make an incorrect prediction with a high confidence, which may have very damag-
ing consequences for autonomous vehicles, passengers, legal outcomes, and trust. Instead, Soares et al. (2019) proposed
a self-evolving approach, which can pro-actively learn from new situations due to its prototype nature, and also provide
explainable rules. These safety mechanisms are very important for critical applications such as autonomous driving.
Table 2 summarizes the applications mentioned in this section:

6 | FURTHER DISCUSSION

XAI aims to help humans to understand why a machine decision has been reached and whether or not it is trustworthy.
Consequently, XAI is inevitably a paradigm on how to bridge machine intelligence and human intelligence, with the
goal being to enable and widen the acceptance of AI systems by human subjects. In this sense, XAI can be interpreted
as “AI for people.”

TABLE 2 XAI critical applications—summary

Method Application

Holzinger et al. (2017) Medicine

Dressel and Farid (2018), Soares and Angelov (2019) Criminal justice system

Soares, Angelov, Biaso, et al. (2020) COVID-19 identification

Couteaux et al. (2019) Tumor segmentation

Mathews (2019) NLP

Smith-Renner et al. (2019), Xie and Philip (2018) Anomaly and fraud detection

Soares et al. (2019) Novelty detection

Soares, Angelov, Costa, et al. (2020) Autonomous vehicles
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6.1 | Critical importance of XAI

Even though intelligent systems offer great possibilities, the research initiative of XAI raises concerns of giving such
intelligent systems too much power without the ability to explain the decision-making process lying underneath
such complex systems to domain experts (e.g., medics, lawyers, financial experts, etc.) in terms, and in a form, under-
standable to them. This not only helps understand specific decisions made by such systems, but also encourages
researchers to create more human-like (anthropomorphic) solutions as well as inspiring the study and increased under-
standing of the brain as a natural information processing phenomenon. Moreover, since machines are taking over the
decision process in many daily situations, user rights have to be protected. Intelligent machines still mostly cannot
process abstract information or real-world knowledge unless it is converted to a form understandable by the algorithm
(features, outputs, and labels).

The above critical issue has become extremely important in many AI application areas. For example, the decision
from an automated diagnosis system may influence the treatment plan of a patient, and doctors need to understand
why such a decision was made and evaluate the underlying risks. If we consider farming-assisting autonomous drones,
the farmers need to know why, when, and where drones decide to perform automated spraying of water or pesticides.
Thus, a trustworthy XAI system becomes a critical prerequisite for AI to be applied to practically any real-world prob-
lem. Much research is now being focused on how to handle such kinds of problems.

6.2 | Bridge the gap between DL and neuroscience via XAI

DL as the state-of-the-art AI technique has its roots in the emulation of the human brain. To make deep neural net-
works explainable, an ultimate goal is to find a way to match human intelligence and find a way to build a human-
made “brain” that can interpret the neuronal activities in the human brain or at least, at a functionally higher level,
map the deep architectures to the layered information processing units in the brain.

There are two important differences between the features of current mainstream DL and the human brain. First,
the human brain is more like an analogue circuit without the ability to store high precision parameters. Second, neu-
rons in the human brain are highly interconnected instead of the carefully “handcrafted” architectures of the current
mainstream DL. It is curious, therefore, that the mainstream DL literature is very critical of so-called “handcrafted” fea-
tures (Goodfellow et al., 2014), but is slow to accept that the architectures it is pushing forward are “handcrafted”,
highly problem-specific and with multiple meta-parameters such as stride, kernel sizes, number of layers, and so on.

With the above concerns, XAI can help bridge the gap between DL and neuroscience in a mutually beneficial way.
On one side, neuroscience and psychology can help build rationalized XAI models that are more easily understood by
humankind (Byrne, 2019; Taylor & Taylor, 2020). On the other side, XAI models derived from deep neural networks
can also help in understanding the mechanisms of intelligence in the human brain (Fellous et al., 2020; VU
et al., 2018). The ultimate goal of XAI could be redefined as the pursuit of fully understanding how human intelligence
originates from neurons.

6.3 | Future directions

One promising direction for future research is to focus on prototype-based models (Angelov & Gu, 2018; Angelov &
Soares, 2020) rather than on abstract and highly embedded architectures. Prototype-based models are not new as such
(Bien & Tibshirani, 2011)—starting with the simplest (and highly efficient example of kNN), through RBF types of
ANNs and IF…THEN rules. The power of prototype-based models was noted by Tibshirani in (Bien & Tibshirani, 2011),
but so far these were not developed in the context of DL where they can combine a deeper architecture with a clearly
explainable form of representation. Despite its efficiency, the kNN method is, strictly speaking, not a learning method,
because it requires all the data to be available and stored. Some sparsity is needed which can result from simple
unsupervised forms of learning such as clustering or more complex end-to-end auto-encoders. There is an established
misconception that the only form of learning is parametric learning through optimization (minimization) of a cost
(or loss) function. In fact, people learn by acquiring prototypes from data samples using similarity. Following this logic,
the learning in prototype-based models revolves around the position and properties of the prototypes in the feature/data
space as opposed to the parameters/weights-centered approach that dominates the mainstream. In addition, there is a
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principle difference between similarity and statistical learning (i.e., the two alternative approaches to evaluate the dif-
ference and divergence between two data items). Similarity can be defined over a pair of data items/samples while sta-
tistical measures require a large (theoretically infinite) number of independent data observations.

Another promising direction is to build Turing's type-B random machines (or unorganized machines) (Jiang &
Crookes, 2019; Webster, 2012), also random Boltzmann machines, which can possibly lead to a generalized AI. The
inclusion of new neuro-scientific findings into XAI models will make research on XAI more rationalized, and vice
versa: such a cross-disciplinary exploitation will make XAI not only meaningful for AI researchers but also help solve
century-old challenges on how to understand human intelligence, ultimately. Open research questions in this area
include: (i) how best to determine the network/model architecture?; (ii) how best to extract and represent features?;
(iii) what are the best distance metrics and what are the implications?; (iv) which is the best optimization method?; and
(v) how to determine the best set of prototypes that represent the data best (if a prototype-based method is being used)?
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Appendix B

GeoPart-XPCC GUI
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Main Window

Console Window
A textual GUI console window is provided and prints the 
standard output and standard error messages from the 
underlying processes. 

NB: closing the console window will also close the main window. 

UI Overview



Main Window

1
2

4

5 6

1. Processing tab
2. Classifier Settings tab

• Ensure that the Model Path is correct before processing a scene.

3. Scene drop area
• Can load pointcloud files or filestore directory
• Supported pointcloud file formats:

o .las, .laz, .ply, Ascii (.xyz, .xyzrgb)

4. Toggle Segmentation Process
• Enabled by default. Required if the scene is a pointcloud file. If 

the scene type is a filestore directory that has already been 
segmented, the segmentation is optional.

5. Toggle Classification Process
• Enabled by default.

6. Process Scene
• Enabled after scene has been placed in drag area.

7. Close Scene
• Enabled after scene has been placed in drag area.
• Closes the current scene loaded into the drag area.

8. Open Project Directory
• Enabled after scene has been placed in drag area.
• Opens the directory that contains the currently loaded 

pointcloud file and filestore. 

7

8

9



Classifier Settings

1

2

3

4

5

6

1. Classification Model Path
i. Specifies the path of the classification model stored on disk.
ii. Can either specify a trained model or the path to where a new model 

should be saved. 

2. Classifier Type
i. Options are: XPCC and MLP.
ii. Can either be selected manually or inferred from the file name.
iii. If training a new model, the classifier type will be appended to the 

name if it is not specified: e.g., classifier_convpoint will be 
saved as classifier_convpoint_xpcc if the XPCC classifier type 
is selected.

iv. If inferred, the field cannot be changed unless the model type is
removed from the model path name: e.g., by removing ‘xpcc’ from 
classifier_convpoint_xpcc.pth -> classifier_convpoint.pth

3. Classification Feature Type
i. Options are: ConvPoint
ii. Can either be selected manually or inferred from the file name.
iii. If training a new model, the classifier feature type will be appended to 

the name if it is not specified: e.g., ‘classifier’ will be saved as
classifier_convpoint if the ConvPoint classification feature type 
is selected.

iv. If inferred, the field cannot be changed unless the classification feature 
type is removed from the model path name: e.g., by removing 
‘convpoint’ from 
classifier_convpoint_xpcc.pth ->  classifier_xpcc.pth

4. Training Files Directory.
i. Specify the directory that contains the training files.

5. Train a classifier model.
i. It is necessary to set the model path and training files directory prior to

training.

6. View XPCC the XPCC model.



Click and drag the scene file into the drag scene region of the 
main window. 

The UI will change and display the 
process settings. Click the ‘Close 
Scene’ button to unload the scene.

Scene Processing



1
2

3

4

5

6

1. Scene file name
2. Scene Filestore name (location is relative to the scene file)
3. Hardware settings: CPU / GPU

i. CPU is enabled by default. Most processes are multi-threaded or 
run in parallel.

ii. If a GPU supported by PyTorch is installed (e.g., NVIDIA) the GPU 
option is enabled.

4. Select the number of neighbouring points to use for the segmentation 
process. Default is 45. Increasing the number of neighbours can result in
more precise scene segmentations but increases computational load.

5. The number of scene segments to classify in each batch. Default is 100. 
Batch size is limited by RAM and CPU/GPU resources.  

6. Click the ‘Process Scene’ button to begin the specified processes to run.

The console window will update with information about processes. 



Scene File Store

• The topmost directory in the _filestore will be named:

<pointcloud filename>_filestore and is located in the same directory as the 

original pointcloud file.

• The file <pointcloud filename>_objects will contain the scene segments

• The file classified_scene.ply contains the classified scene and can be viewed in

a point cloud viewing software such as CloudCompare. To support the majority of 

viewing software, the classification indices are stored in the ‘red’ vertex of the .ply file. 

For CloudCompare, this can be specified as a scalar field upon loading the file. 

• The file <model classifier name>_prediction.txt contains the classifier 

predictions used for calculating classification accuracies. 

• The file <pointcloud filename>_features.h5 contains the point cloud features 

saved in the Hierarchical Data Format.

• The file scene_features.ply contains the point cloud features stored as scalar 

values for the original point cloud scene and can be viewed in a point cloud viewing 

software such as CloudCompare. 

The ply vertex to feature mappings are:

o Vertex – red -> Linearity

o Vertex – green -> Planarity

o Vertex – blue -> Sphericity

o Vertex – nz -> Planarity



Training directory layout

- [Folder] TrainingSet
-- [Folder] Class1

--- [File] Object1.xyz
--- [File] Object2.xyz
--- [File] Object3.xyz
--- [File] …

-- [Folder] Class2
-- [Folder] Class3
-- [Folder] …

Train a new classifier
1. Set the model path to a new file name.
2. Select or specify classifier type.
3. Select or specify feature type.
4. Open the Training files directory.
5. Click ‘Train’ button.

Classifier Training



XPCC Viewer

1

2
3 4

7

8

9

5 6

10

11

12

1. Open a different model path
2. The number of classes the model has

been trained with.
3. Total number of prototypes created by 

the model.
4. The shape of the classification feature.
5. List view of class types.
6. List view of prototypes for the selected

class.
7. Path of the prototype object. (These 

values are stored in the model at training 
time)

8. Number of training objects similar to the
prototype.

9. Radius of influence within the feature 
space for the prototype.

10. View the prototype (as specified by the 
Prototype Path)

11. The currently selected class.
12. Number of objects seen during training 

for that class.
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Sutivan on Island Brač, Croatia”. In: Journal of Archaeological Science 62,
pp. 143–152. issn: 0305-4403. doi: 10.1016/j.jas.2015.08.007. url: http:
//www.sciencedirect.com/science/article/pii/S0305440315002447.

141

https://doi.org/10.1109/5254.708428
https://doi.org/10.1145/3272127.3275110
https://doi.org/10.1145/3272127.3275110
https://doi.org/10.1145/3272127.3275110
https://doi.org/https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/https://doi.org/10.1016/0893-6080(90)90005-6
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://arxiv.org/abs/1911.11236
http://arxiv.org/abs/1911.11236
http://arxiv.org/abs/1911.11236
https://arxiv.org/abs/1907.09138
http://arxiv.org/abs/1907.09138
http://arxiv.org/abs/1907.09138
https://doi.org/10.1109/tip.2021.3092826
https://doi.org/10.1109%2Ftip.2021.3092826
https://doi.org/10.1109%2Ftip.2021.3092826
https://doi.org/10.1145/3377713.3377740
https://doi.org/10.1145/3377713.3377740
https://doi.org/10.1145/3377713.3377740
https://arxiv.org/abs/1902.02384
http://arxiv.org/abs/1902.02384
https://doi.org/10.1038/s41586-020-2343-4
https://doi.org/10.1038/s41586-020-2343-4
https://www.nature.com/articles/s41586-020-2343-4
https://doi.org/10.1016/j.jas.2015.08.007
http://www.sciencedirect.com/science/article/pii/S0305440315002447
http://www.sciencedirect.com/science/article/pii/S0305440315002447


References References

Johnson, A. E. and M. Hebert (July 1998). “Surface matching for object recognition
in complex three-dimensional scenes”. en. In: Image and Vision Computing 16.9,
pp. 635–651. issn: 0262-8856. doi: 10.1016/S0262- 8856(98)00074- 2. url:
https://www.sciencedirect.com/science/article/pii/S0262885698000742.

— (May 1999). “Using spin images for efficient object recognition in cluttered 3D
scenes”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 21.5,
pp. 433–449. issn: 0162-8828. doi: 10.1109/34.765655.

Jonathan, E. et al. (Aug. 2001). “Local Versus Global Triangulations”. In.
Kazimi, B. et al. (Sept. 2018). “Deep Learning for Archaeological Object Detection

in Airborne Laser Scanning Data”. In.
Kim, B. et al. (2017). “Interpretability Beyond Feature Attribution: Quantitative

Testing with Concept Activation Vectors (TCAV)”. In: International Conference
on Machine Learning. url: https://api.semanticscholar.org/CorpusID:
51737170.

Kingma, D. P. and J. Ba (2017). Adam: A Method for Stochastic Optimization. arXiv:
1412.6980 [cs.LG].

Kirillov, A. et al. (2019). “Panoptic segmentation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9404–9413.

Klokov, R. and V. Lempitsky (Oct. 2017). “Escape from Cells: Deep Kd-Networks
for the Recognition of 3D Point Cloud Models”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). event-place: Venice. IEEE, pp. 863–872.
isbn: 978-1-5386-1032-9. doi: 10 . 1109 / ICCV . 2017 . 99. url: http : / /

ieeexplore.ieee.org/document/8237361/.
Kohonen, T. (Sept. 1990). “The self-organizing map”. In: Proceedings of the IEEE

78.9. Conference Name: Proceedings of the IEEE, pp. 1464–1480. issn: 1558-2256.
doi: 10.1109/5.58325.

Kohonen, T. et al. (1992). “LVQPAK: A software package for the correct application
of Learning Vector Quantization algorithms”. In: [Proceedings 1992] IJCNN
International Joint Conference on Neural Networks. Vol. 1, 725–730 vol.1. doi:
10.1109/IJCNN.1992.287101.
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