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We state conditions under which a symplectic Hamiltonian system admitting a certain type of
symmetry (a scaling symmetry) may be reduced to a type of contact Hamiltonian system, on a space
of one less dimension. We observe that such contact reductions underly the well-known McGehee
blow-up process from classical mechanics. As a consequence of this broader perspective, we associate
a type of variational Herglotz principle associated to these classical blow-ups. Moreover, we consider
some more flexible situations for certain Hamiltonian systems depending on parameters, to which
the contact reduction may be applied to yield contact Hamiltonian systems along with their Herglotz
variational counterparts as the underlying systems of the associated scale-invariant dynamics. From
a philosophical perspective, one obtains an equivalent description for the same physical phenomenon,
but with fewer inputs needed, thus realizing Poincaré’s dream of a scale-invariant description of the
universe.

I. INTRODUCTION

Symmetry plays an important role in physics. When considering observations of measurable quantities, the
action of symmetry should be carefully considered in its effect not only on the quantity being measured but also
upon the apparatus through which the measurement is made. This is common when considering most physical
symmetries. On applying a Galilean transformation to a system – for example transforming reference frames – we
argue invariance of observation based on applying the transformation to both the observer and the observed quan-
tity. Absolute motion should not be observable as it is not invariant under Galilean transformations. Physically
meaningful quantities and their equations of motion are those invariant under such symmetry transformations.

It has been argued, at least since Poincaré (see e.g. [33] for a detailed discussion), that the same considerations
should be applied to the absolute scale of a system. In [44], pg. 94, Poincaré imagines that overnight all dimensions
in the universe have been scaled, and argues that there will be no detectable change upon waking due to both
the observed system (the universe) and any possible measuring apparatus (e.g. one’s height), having undergone
a scaling by the same factor. Accordingly, we refer to writing the equations of motion of a system in terms of
scale-invariant quantities as Poincaré’s dream or a scale reduction of the system.

The counter to this argument was long held to be the fact that physical constants can be used to give an overall
scale based on, for example, the Planck length. However in recent work it has been suggested that if these are
included not as given facts about the universe, but rather as physical observations of quantities which must be
measured, such a scaling symmetry can be restored [48].

It should be clear that in any scale-invariant description of the physical world one would need one less piece
of information with respect to the standard descriptions that include reference to some (unmeasurable) absolute
scale, the datum being removed being precisely the one corresponding to the scale.

There have been a large number of works based upon removing a ‘scale’ or ‘size’ variable from the equations
describing physical systems. For example McGehee’s works, eg [38], on blow-ups of classical mechanical systems
(see as well [20, 43]), essentially consider coordinates in which the equations of motion are decoupled from the
total size of the system. Such blow-ups contain, for instance, valuable properties of such systems near total
collapse singularities. The study of singularities by decoupling the equations from a total-size variable has been
exploited in various other situations as well, e.g. [35, 39, 41, 46]. Moreover, interesting dynamical properties
of these scale-reduced systems, such as a dissipative-like behavior, have been observed, which can provide a
natural origin for the observed arrow of time [4, 32, 45]. Remarkably, J. Bryant observed already in [12] and [13]
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that McGehee’s blow-ups of n-body systems can be reformulated as a contact Hamiltonian system (we thank
A. Albouy for pointing us to this reference).

Despite the large amount of works on this theme, still the treatment of scaling symmetries and of their
corresponding reductions so far has been based on a case-by-case study (with the exception of [45]), focused on
specific systems or classes of systems. Moreover, in such works, various choices are made for the overall ‘size’
of the system to determine the resulting scale reduction, and are justified according to the specific goals of the
study. While in simple systems such as the 2-body problem the choice of the distance between the two bodies as
the overall size is quite natural, when we consider the n-body problem such choice is not so apparent – one could
use the mean separation of particles, or the largest separation, or some combination of any variables that scale
in a similar way. Would the resulting scale reductions ensuing from these various choices be related somehow?
Although it is not difficult to observe in particular cases such reductions are indeed related, this highlights the
arbitrary nature of such choices, and begs the question if such reductions are based on a more general principle.

In this work we provide for the first time such a general principle underlying these scaling reductions of
Hamiltonian systems. Our main results may be loosely stated as the principle:

Theorem. A symplectic Hamiltonian system admitting a scaling symmetry (Definition 2 below), may be reduced
to a contact Hamiltonian system on a space of one less dimension.

See Theorems 1 and 2 below for more precise statements. This reduction of a symplectic manifold to a lower-
dimensional contact manifold is in a sense inverse to the symplectification – a higher-dimensional symplectic
manifold – of a contact manifold, in particular, only involving some fundamental relations between contact and
symplectic manifolds. The main thrust of this article is not merely this observation, but also to present examples
illustrating the broad scope in which such reductions may be found.

As a consequence, we obtain a great deal of structure underlying these scaling reductions, which appears to
have been largely neglected in the previous case-by-case studies. For instance, one obtains associated Herglotz
variational characterizations of these scale-reduced systems. In particular, the McGehee blow-up equations of
classical mechanics [20, 38, 43] come with a variational characterization (see Proposition 9).

Moreover, we state explicitly the resulting scale-invariant equations of motion (Corollary 2 and Remark 6)
resulting from a choice of scaling function or ‘size’ of the system. Throughout the manuscript we provide a
collection of examples to illustrate the process of such reductions.

The paper is laid out as follows: in Section II we give a precise definition of a scaling symmetry and prove that
reducing a symplectic system with a scaling symmetry in general yields a ‘piecewise’ contact system: given by
two contact systems on different regions, which coincide exactly when the degree of the scaling symmetry is one
(Theorem 1 and Corollary 1). Besides, in Corollary 2 we prove a general invariance (up to time reparametriza-
tions) of the reduced system with respect to the choice of the scaling function. Then, in Section III we show that
Hamiltonian systems which do not exhibit scaling symmetries can be lifted into a broader space of models in
which such a symmetry is present, by promoting physical constants (couplings) to observable variables within the
system. In this setting one may reduce such systems to a contact Hamiltonian (or Herglotz variational) system on
a reduced space (Theorem 2). We proceed in Section IV to present a host of applications of the contact reduction
to the case of Hamiltonian systems on cotangent bundles, which, among other things, allows us to re-state our
main results in terms of the variational approach of Herglotz to contact systems. A further crucial new result
of this section is the derivation of McGehee’s blow-up in terms of a contact reduction and, equivalently, as a
Herglotz variational system. We conclude in Section V with an outlook on future work and applications. To have
the paper as self-contained as possible and in order to further motivate our constructions, in Appendix A we
introduce the symplectic and contact Hamiltonian systems that we consider, and briefly summarize some known
relationship between them.

All the objects used in this work are assumed to be smooth. Furthermore, we will repeatedly use the following
notations: R× := R\{0} and R+ := (0,+∞).

II. SCALING SYMMETRIES, CONTACT REDUCTION AND SYMPLECTIFICATION

In this section we describe how a special type of symmetry, called ‘scaling symmetry’, provides a new link
between symplectic mechanics and contact mechanics (see Appendix A for the relevant definitions and our sign
conventions). Such symmetries have been found to be present in cosmology, the Kepler problem and a host of
other physical contexts [33, 45–48].

A. Scaling symmetries

We start with a general definition, comprising all those transformations that reparametrize the dynamics
without altering the (unparametrized) orbits.
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Definition 1. A dynamical similarity of a vector field X ∈ X(M) is a vector field Y ∈ X(M) such that
[Y,X] = fX, for some (in general non-constant) function f :M → R (Y is also called a conformal symmetry).

In other words, a dynamical similarity is a symmetry of the one-dimensional distribution, or line field, generated
by X. When Y ̸= 0, such symmetries give rise to a ‘local reduction of order’ [3], pg. 7, in describing integral
curves of X.

Among dynamical similarities, there is a special class appearing in Hamiltonian systems that is often found in
physical applications, the so-called scaling symmetries.

Definition 2. D ∈ X(M) is a scaling symmetry of degree Λ ∈ R for the Hamiltonian system (M,ω,H) if

i) LDω = ω

ii) LDH = ΛH.

Note that with this definition

[D, XH ] = (Λ− 1)XH (1)

and therefore scaling symmetries of symplectic Hamiltonian systems are a very special case of dynamical simi-
larities.

Example 1 (Kepler scalings). Our archetype motivating this definition is the map between solutions to the
(planar) Kepler problem, with

M = T ∗(C\{0}) = (C\{0})× C ∋ (q, p), ω = dp ∧ dq = d(p · dq), and HK =
|p|2

2
− 1

|q|
(2)

where we remark that, in this representation, the usual dot product is

x · y = Re(xȳ).

In this case it is well-known that the Kepler scalings Are we
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q → λ2q and p→ λ−1p ,

for λ ∈ R×, send orbits into orbits. Considering the generator of these scalings in the phase space,

DK = 2q · ∂q − p · ∂p , (3)

one has LDK
ω = ω and LDK

HK = −2HK , that is, DK is a scaling symmetry of degree −2. By equation (1), it
follows that the time parameter should be rescaled as t→ λ3t in order to match the corresponding parametrizations
(‘Kepler’s third law’).

Before exploring further the role of scaling symmetries in Hamiltonian systems, the following two related
remarks are at order:

Remark 1. The set of vector fields satisfying LDω = ω (the Liouville vector fields) form an affine space, directed
by the symplectic vector fields: Y ∈ X(M) such that LY ω = 0 (equivalently iY ω is closed).

Remark 2. A scaling symmetry need not be unique, in fact for any two scaling symmetries, D,D′, of H one
has iD′ω = iDω+α for some closed 1-form α satisfying iXH

α = (Λ′−Λ)H, where Λ′,Λ are the degrees of D′,D.
Conversely, any closed 1-form with iXH

α = (Λ′−Λ)H determines another scaling symmetry of degree Λ′ through
iD′ω = iDω + α. For example, given a first integral F of H, and scaling symmetry D, we have that D+XF is
also a scaling symmetry of the same degree as D. For example, one may always add XH to D.

Let us conclude this section by introducing a re-characterization of scaling symmetries that is equivalent to
our definition above but will at times be more useful in computations.

Proposition 1. (M,ω,H) admits a scaling symmetry of degree Λ if and only if there exists a primitive, λ, of ω
(dλ = ω), satisfying

iXH
λ = ΛH. (4)

Proof. One takes λ = iDω so that dλ = ω is equivalent to LDω = ω. Moreover, one then has the relation
iXH

λ = LDH yielding the equivalence of the condition in Eq. (4) to (ii) of Definition 1.

We can now pose our key questions:

1. Given that many symplectic Hamiltonian (resp. variational) systems admit a scaling symmetry, how may
one use it in order to reduce the system to one defined on a lower-dimensional manifold?

2. Can we do so in such a way that the reduced system has a contact Hamiltonian (resp. variational) structure?
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B. Scaling symmetries: from symplectic mechanics to contact mechanics

Once a scaling symmetry D is in hand, the idea is to quotient by its action and obtain a reduced dynamics on
a lower-dimensional manifold.

More precisely, we consider the projections of trajectories of the Hamiltonian system to the quotient of M by
D’s flow: M/D = M/ ∼ where m ∼ m′ when m and m′ lie on a common integral curve of D. In general this
quotient space need not be a manifold. Throughout, we will simply assume that all quotients, such as M/D, are
manifolds, e.g. that D’s flow acts freely (D has no zeroes) and properly, with submersion M →M/D.

The first step is to describe the additional structure on this reduced space which may be used to characterize
these projected trajectories. This is the content of the next results.

Proposition 2. Suppose the flow of D is complete, acting freely and properly on M so that C := M/D is a
smooth manifold with submersion

π :M → C.

Set λ := iDω. Then

(i) C is a contact manifold with contact distribution D := π∗(kerλ),

(ii) on D there is a conformal symplectic structure,

(iii) there is a local (exact) symplectomorphism from (M,dλ) to the symplectification (C̃, dα̃) of C.

Proof. (i): see e.g. [23], pg. 36 (or Proposition 12 below). Since there are no zeroes of D, we have local coordinates
on C by taking a local transverse slice, Σ, to D. Then with λ = iDω we have that λ ∧ (dλ)n = 1

n iDω
n, where

2n = dimM , is non-degenerate on Σ, thus determining a contact distribution kerλ|Σ on Σ, i.e. π∗ kerλ on C.
(ii): this is a familiar property of contact manifolds. Namely when a contact distribution, D , is given by the

kernel of a 1-form η then dη|D is a symplectic form on D . Changing η to fη, with f ̸= 0, modifies d(fη)|D to
fdη|D , and therefore there is a conformal symplectic structure on D . In our situation, this conformal symplectic
structure is represented by [ω(ũ1, ũ2)] for π∗ũj = uj ∈ D .

(iii): recall (see Definition 11) that C̃ = Ann(D)\C ⊂ T ∗C, the symplectification of C, is an R×-principal
bundle over C with exact symplectic structure, dα̃, given by restriction of the standard symplectic structure on
T ∗C. Consider φ :M → C̃ defined by

(φ(m), π∗v) := λm(v)

for all v ∈ TmM and with (·, ·) the natural pairing of a vector space and its dual. One computes that

((φ∗α̃)m , v)
def of φ∗

=
(
α̃φ(m), φ∗v

) def of α̃
= (φ(m), (π̃C)∗φ∗v) = (φ(m), π∗v)

def of φ
= λm(v) ∀v ∈ TmM ,

that is, φ∗α̃ = λ, and so φ is a (local) exact symplectomorphism.

By item (ii) in Proposition 2 there is sense in taking orthogonal complements with respect to the conformal
symplectic structure in D . We will denote these complements by ⊥. As for the projected orbits in C, we have

Proposition 3. The line field span(XH) on M determines a line field

ℓ := π∗span(XH)

on C. Integral curves of ℓ are projections of orbits of the Hamiltonian system to C. Moreover, letting Σ0 :=
π(H = 0), we have

ℓ|Σ0
= (TΣ0 ∩ D)⊥ ⊂ TΣ0 ∩ D .

Proof. ℓ is well defined from the scale invariance of span(XH): LDXH = (Λ − 1)XH . Since the conformal
symplectic structure of Proposition 2 (ii) is given by [ω(ũ1, ũ2)] with π∗ũj = uj ∈ D , we will show that ω(ũ, XH) =
0 for any π∗ũ ∈ TΣ0 ∩ D . First, note that D is tangent to H = 0 and by iXH

iDω = ΛH, that XH |H=0 ∈ kerλ.
Hence ℓ|Σ0

⊂ D . Let u ∈ TΣ0∩D . Any lift, π∗ũ = u, of u lies in T (H−1(0))∩kerλ and so ω(ũ, XH) ∼ dH(ũ) = 0,
since ũ is tangent to H = 0.

Note that for degree zero scaling symmetries, Λ = 0, then D is tangent to each energy level, and the last
proposition applies to arbitrary projections of energy levels to determine the line field ℓ on C. From here on we
will consider the case Λ ̸= 0. As for describing this line field more explicitly in the general case, we first define:
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Definition 3. A scaling function for D is a function ρ :M → R such that LDρ = ρ.

Then we have the following properties.

Proposition 4. Given D, the following are equivalent:

(i) the existence of a global scaling function, ρ :M → R+, for D

(ii) the existence of a global contact 1-form (ker η = D) on C,

(iii) an embedding ι : C →M as a slice of the D-action (π ◦ ι = id).

Proof. The equivalence of (i) and (ii) is through the relation π∗η = λ/ρ. (ii) and (iii) is through ι∗λ = η. (iii)
and (i) is through ι(x) = m s.t. ρ(m) = 1.

Example 2 (Kepler scaling functions). Consider the Kepler problem from Example 1. Here there are a number
of natural choices for scaling functions available, for example any of:

|q|1/2 , 1

|p|
, p · iq , p · q

are scaling functions of DK = 2q · ∂q − p · ∂p (a degree −2 scaling symmetry of the Kepler Hamiltonian, HK =
|p|2
2 − 1

|q|). Observe that p · iq is the angular momentum and p · q is (half) the rate of change of the moment of
inertia, q · q. The quotient, C =M/D, may be identified with S1 × C.

The choice of such a scaling function ρ leads to explicit local coordinate expressions for the scale reduced line
field over ρ ̸= 0, see Eqs. (7) below, due to the following relation to contact Hamiltonian flows, generalizing
Arnold’s description of contact Hamiltonian vector fields (see Proposition 10 in Appendix A 2 and Corollary 1
below).

Theorem 1 (Contact reduction by scaling symmetries: general case). Let D be a degree Λ scaling symmetry of
H on M , with ρ :M → R+ a global scaling function, and corresponding contact form π∗η = λ/ρ on C =M/D.
Set Σ0 := π(H = 0), and ℓ := π∗spanXH . Then:

(i) the contact Hamiltonian π∗H := H/ρΛ has contact Hamiltonian vector field spanning ℓ on Σ0,

(ii) the contact Hamiltonian |H |1/Λ has contact Hamiltonian vector field spanning ℓ on C\Σ0.

We call this reduction a contact reduction by scaling symmetries, or simply a contact reduction.

Proof. Recall from Proposition 10 that Hamiltonian flows of degree one functions F on M (LDF = F ) commute
with the scaling action of D and so induce contact Hamiltonian flows associated with η. Item (i) follows by
considering the degree one function H ′ := ρ1−ΛH and item (ii) with the degree one function |H|1/Λ. Note that
the Hamiltonian vector fields, XH and XH′ , are proportional over H = 0, while those of XH and X|H|1/Λ are
proportional over H ̸= 0.

Before proceeding, some further comments are in order:

Remark 3. In practice, the reduction may be carried out by embedding C as a hypersurface Σ := {ρ = 1}
transverse to D. Then η = λ|Σ and H = H|Σ are obtained simply by restriction. An equivalent way to state
Theorem 1 (without cases), is using Definition 13 in Appendix A 2. Then the Λ-Hamiltonian vector field of H
spans ℓ on C (see Corollary 2 below).

Remark 4. Case (i) in Theorem 1 is exactly the case considered in [45]. In many relevant physical examples
the scaling function ρ can be so chosen so that it is non-vanishing globally on M and is physically interpreted as
the overall scale of the system, thus being an irrelevant (unmeasurable) degree of freedom for intrinsic observers.
Therefore the system can be reduced by eliminating this overall scale and considering only the relational (shape)
degrees of freedom (see also [33, 48]).

Case (ii) in Theorem 1 is also somewhat familiar. Namely, there is always over C\Σ0 a contact 1-form and
an embedding into M associated to the scaling function ρ = |H|1/Λ (the associated embedding being given by
restricting to the energy surfaces H = ±1). Then η = λ|H=±1 and ℓ is defined by iℓdη = 0 (i.e. the dynamics
may be parametrized as the Reeb flow of λ|H=±1), see [10, 24].
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Remark 5. It may be the case that D does not admit a global (non-vanishing) scaling function on M . Indeed,
by Proposition 4, the existence of a global scaling function is equivalent to the symplectification of C being a
trivial R×-principal bundle, with connected components, C̃±, symplectomorphic to M , i.e. that C admits some
global contact one-form. In what follows, we will simply assume that there is a global scaling function, or if the
reader prefers that we are working locally over the set ρ > 0 of some scaling function, corresponding to a local
trivialization of R →M → C.

For comparison to standard constructions in projective geometry and the ‘s-scalars or vector fields’ used in [1],
as well as the structure used in [28] and [29], one may state all our results here in terms of appropriate associated
bundles over C, whose sections correspond to degree α functions, vector fields, one-forms, etc. on M under D. Our
scaling functions (and their resulting coordinate descriptions) correspond then to working in a local trivialization
of these bundles. In what follows however, we will simply use scaling functions on M to obtain explicit expressions.

By Theorem 1, one may treat the general reduction of the symplectic Hamiltonian system to a contact system
locally as two subcases: with the degree one |H|1/Λ over H ̸= 0, or with ρ1−ΛH over H = 0, for some scaling
function ρ. It is important to stress that for Λ ̸= 1 none of these two cases can be non-trivially extended as
contact vector fields (whose flows preserve D) to the other region. While this is obvious for |H|1/Λ over H = 0,
as it is not differentiable in general, it is not so immediate for ρ1−ΛH over H ̸= 0, and this will be explained
in more detail shortly (see Corollary 2). Clearly there is a very important special situation in which the two
subcases coincide, i.e. when Λ = 1. In this situation, the two contact Hamiltonian flows in Theorem 1 coincide
and we obtain the following reduction:

Corollary 1 (Contact reduction by scaling symmetries: degree one case). Let (M,ω,H) be a Hamiltonian
system admitting a scaling symmetry D of degree one. Then:

i) XH defines a contact vector field X = π∗XH on C,

ii) for a scaling function ρ, and π∗η = λ/ρ, X is the contact Hamiltonian vector field of π∗H = H/ρ.

By virtue of the above Corollary, in the case Λ = 1 one obtains a ‘full’ contact reduction, meaning that the
reduced contact system is completely determined by the original symplectic one (this is precisely the content of
Proposition 10 in Appendix A 2, which we have recovered as a particular case). Note also that in this case H
itself may be chosen as a scaling function giving the reduced dynamics as a Reeb flow of π∗η = λ/H on C\Σ0.

In the general case, the line field we have been considering may in fact be described more explicitly with the
use of a scaling function, as detailed in the following

Corollary 2 (Dependence on the scaling function). Let (M,ω,H) be a Hamiltonian system admitting a scaling
symmetry D of degree Λ and ρ a scaling function for D. Then the line field ℓ on M/D is spanned by

X := XH + (Λ− 1)H R , (5)

where XH is the contact Hamiltonian vector field of π∗H = H/ρΛ with respect to π∗η = λ/ρ and R is the Reeb
vector field of η on C. Moreover, for any other choice of scaling function, ρ̃, we have

X̃ =

(
ρ̃

ρ

)1−Λ

X.

Proof. Given a scaling function, ρ, then by Eq. (1), the vector field ρ1−ΛXH is scale invariant and projects to a
vector field,

X = π∗ρ
1−ΛXH ,

on C spanning ℓ. Set H ′ := ρ1−ΛH, a degree one Hamiltonian on M with π∗XH′ = XH the contact Hamiltonian
vector field of π∗H = H/ρΛ with respect to π∗η = λ/ρ. Then

dH ′ = (1− Λ)ρ−ΛH dρ+ ρ1−Λ dH

so that

XH′ = (1− Λ)ρ−ΛH Xρ + ρ1−Λ XH . (6)

Note that by Corollary 1, the Hamiltonian vector field Xρ of ρ projects to the Reeb vector field R = π∗Xρ of η
on C. Applying π∗ to the last equation we have Eq. (5).

For the last relation, note that for two scaling functions, ρ and ρ̃, we have that ρ̃/ρ is scale invariant, so there
is a function σ on C through π∗σ = ρ̃/ρ. Then

X̃ = π∗ρ̃
1−ΛXH = σ1−ΛX.
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Remark 6. In Darboux coordinates η = padq
a − dS on C, Eq. (5) reads

(qa)′ = ∂pa
H , (pa)

′ = −∂qaH −pa∂SH , S′ = pa∂pa
H − ΛH . (7)

These equations may also be derived directly from Hamilton’s equations for H by following Remark 3. Namely,
given a scaling function ρ, we take Σ = {ρ = 1}. Then a system of contact coordinates, η = padq

a − dS on C,
may be extended to symplectic coordinates P0 = S,Q0 = ρ, P = ρp,Q = q on M with λ = ρη = −Q0dP0+P ·dQ.
Then, for H (q, p, S), we have that

H(Q0, Q, P0, P ) = QΛ
0 H (Q,P/Q0, P0)

since H/ρΛ = H . By chain rule, Hamilton’s equations of motion are given as:

ρ1−ΛṠ = pa∂pa
H − ΛH , ρ1−Λρ̇ = ρ∂SH , (8)

ρ1−Λq̇a = ∂paH , ρ1−Λṗa = −∂qaH −pa∂SH , (9)

which project onto Σ = {ρ = 1} as Eqs. (7). It is also evident from Eqs. (8), (9) of this last computation
that, under the reparametrization ρ1−Λdτ = dt, the scale-reduced equations of motion (7) contain a ‘blow-up’, of
Hamilton’s equations of motion to ρ = 0, as one might expect (compare with [12, 13, 43] for n-body problems).
When Λ < 0, this blow-up is given as the (invariant) set Σ0 = {H = 0}.

Remark 7. The flow of the vector field X in Eq. (5), induced by a scaling function ρ, does not in general
preserve D . However restricted to the invariant set Σ0 = {H = 0} it does, being a contact Hamiltonian vector
field (case (i) of Theorem 1). In general, one may rescale X away from this set so that its flow does preserve D .
Namely, for the scaling function ρ̃ = |H|1/Λ, we have H̃ = 1, and X̃ = ΛR̃ is a constant multiple of the Reeb
vector field of η̃ (case (ii) of Theorem 1) so that |H |1−1/ΛX = X̃ preserves D .

Another interesting aspect about Theorem 1 is the fact that it provides a direct connection with the physics
of the problem. Indeed, the function ρ is usually connected with a global scale within the physical description
(hence the ‘scaling function’ name), and therefore by using it in order to reduce the dynamics we automatically
obtain a description of the same physical problem in terms of scale-invariant functions only.

While it may seem that the ‘ambiguity’ in Corollary 2 due to one’s choice of scaling function is a defect of the
general contact reduction, we posit instead that this reparametrization freedom to choose a scaling function to
describe the projected trajectories is in fact an asset of the theory, allowing one to highlight certain aspects of
the original systems dynamics by various choices of scaling function corresponding to various reparametrizations.
We illustrate the reduction procedure with the Kepler problem in the following example.

Example 3 (Contact-reduced Kepler). Consider the Kepler problem from Example 1. To illustrate the contact
reduction process, one may first consider polar coordinates:

q = reiθ, p =
(
pr + i

pθ
r

)
eiθ,

with scaling functions (Example 2) that we denote: I think
p is the
complex
conjugate
of this

Dave

it looks
ok to
me as
is (with
usual dot
product)

Connor

ρ := |q|1/2 = r1/2, J := p · q = rpr, G := p · iq = pθ,

In the coordinates (ρ, θ, J,G) on M = T ∗(C\{0}), we have

p · dq = 2J
dρ

ρ
+Gdθ,

so that

ω = d(p · dq) = 2dJ ∧ dρ
ρ

+ dG ∧ dθ, (10)

and

DK = ρ∂ρ + J∂J +G∂G, λ = iDK
ω = G dθ − 2J d log

J

ρ
, HK =

J2 +G2

2ρ4
− 1

ρ2
. (11)

The functions J/ρ, G/ρ and θ are DK-invariant, determining coordinates (J̃ , G̃, θ) on the quotient M/DK by:

π∗J̃ = J/ρ, π∗G̃ = G/ρ, π∗θ = θ
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where π :M →M/DK = C. According to Theorem 1, the scale-reduced orbits may be described on C using:

η = G̃ dθ − 2dJ̃, H =
J̃2 + G̃2

2
− 1 (12)

with π∗η = λ/ρ and π∗H = ρ2HK . More explicitly, by Corollary 2 or Remark 6 with Λ = −2, the scale-reduced
equations of motion may be written:

J̃ ′ =
G̃2

2
+ H , G̃′ = − G̃J̃

2
, θ′ = G̃. (13)

Remark 8. The scaling symmetry, DK , of the Kepler problem and its corresponding scale-invariant functions,
e.g. J̃ , G̃,H , have long been known and used in celestial mechanics, in particular their analogues for n-body
problems. See for example Section 2.3 of Chenciner’s [14], where relations of the scale reduction to McGehee
blow-up are explained. On the other hand, the contact structure associated to these contact reductions, although
present already in the works of Bryant [12, 13], has been emphasized only more recently [45]. Observe that the
contact reduction here is closely related to the structure of ‘b-manifolds’ in [5]. In particular compare Eq. (10)
here to the Darboux normal form (Theorem 2 of [5]) of a ‘b-symplectic form’ and Example 8.2 of [42] to our
construction here of a scale-reduced contact form.

An important property of the reduction by Theorem 1 is its relation to certain blow-ups as mentioned at the
end of Remark 6. We illustrate this relation with the scale-reduced Kepler problem.

Example 4 (Kepler blow-up). We continue from the previous example with the scale-reduced Kepler problem
using the global scaling function ρ = |q|1/2. According to Eqs. (8) and (9) with Λ = −2, the scale-reduced
equations of motion on π∗H = ρ2HK = 0, represent a blow-up of the dynamics at ρ = 0 (collision).

One may apply Proposition 3 to determine the scale-reduced orbits on H = 0. From Eq. (12), we have:

D = ker η = span{2∂θ + G̃∂J̃ , ∂G̃}

while Σ = {H = 0} is a torus, parametrized by the angle θ ∈ S1 and the circle J̃2 + G̃2 = 2. So:

TΣ0 = span{∂θ, G̃∂J̃ − J̃∂G̃}.

The collision orbits of the Kepler problem are the homothetic motions. They tend in forwards or backwards time
to the fixed points of Eqs. (13), J̃ = ±

√
2, G̃ = 0. Observe that D is tangent to Σ0 exactly at these fixed points.

Away from these points, by Proposition 3, the projected Kepler orbits on Σ0 are integral curves of:

ℓ|Σ0
= D ∩ TΣ0 = span{2∂θ + G̃∂J̃ − J̃∂G̃}.

Taking the (DK-invariant) angle φ by p = |p|eiφ, this is the line field:

ℓ|Σ0 = span{∂φ + 2∂θ}.

The scale-reduced dynamics on this torus, Σ0, are a blow-up at collision ρ = |q|1/2 = 0 of the equations of
motion for the Kepler problem. We recover the well-known ‘elastic bounce’ regularization and collision torus (see
§1.3 of [20]), although our path here has been rather different.

In Section IVC we consider some more cases of contact reductions by scaling symmetries in celestial mechanics.

We close this section with an interesting comment about the relationship between Corollary 1 and the contact
reduction in [49], which in turn gives yet another proof of Arnold’s Proposition 10 in terms of a contact version
of symplectic reduction.

The relevant statement from [49] concerns an R-action on a contact manifold N with choice of contact one-
form η̂ by exact contactomorphisms: LX η̂ = 0, where X ∈ X(N) generates the R-action and where Ĥ is an
R-invariant contact Hamiltonian, XĤ = 0, on N . Let J0 := (iX η̂)

−1(0) ⊂ N . Then X,XĤ are tangent to J0
and the quotient P0 := J0/X is a contact manifold with reduced contact dynamics, (H , η), defined through the
following diagram:

N

J0

P0

ι0

π0

π0∗XĤ = XH for π∗
0H = ι∗0Ĥ , π∗

0η = ι∗0η̂.
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Applying this construction, we obtain

Proposition 5. Consider a Hamiltonian system (M,ω,H) admitting D as a degree one scaling symmetry. For
λ = iDω and a global scaling function ρ : M → R+, let N := R ×M with η̂ := e−t(λ + dρ) − dt where t is the
coordinate on R. Then

(i) N is a contact manifold and D̂ = ∂t +D generates an R-action on N by exact contactomorphisms of η̂,

(ii) the contact Hamiltonian Ĥ = e−tH on N is invariant under the flow of D̂.

(iii) The contact manifolds C = M/D and P0 = J0/D̂ are contactomorphic and moreover the reduced contact
dynamics (of [49]) on P0 corresponds to the contact Hamiltonian dynamics on C (of Theorem 1).

Proof. The corresponding moment map of [49] is iD̂η = e−tρ − 1 and so J0 is the graph {et = ρ} ⊂ N ,
identified with M via ι : m 7→ (log ρ(m),m). Under this identification, we have ι∗D = ∂t + D = D̂|J0 so that
C = M/D ∼= P0 = J0/D̂|J0

. Moreover, ι∗η̂ = λ/ρ and ι∗(e
−tH) = H/ρ. Hence, the contact-reduced flow

corresponds to the contact Hamiltonian flow of π∗H = H/ρ with respect to π∗η = λ/ρ.

III. CAN ONE ALWAYS FIND A CONTACT REDUCTION?

Given the above discussion on the general existence of a contact reduction ensuing from Theorem 1 and
Corollary 1, we are now interested in the following fundamental question:

given a symplectic Hamiltonian system (M,ω,H) admitting a scaling symmetry D of degree Λ, can one
transform D to D̃ such that the new vector field is a scaling symmetry with Λ̃ = 1?

This will be the content of this section. We will first prove that D̃ always exists locally and find an explicit
algorithm to construct it, and then we will use an example in order to make clear that such a symmetry cannot
be found globally in general on M . This will lead us to consider an extension of (M,ω,H) to a ‘lifted system’,
where various parameters are considered as dynamical variables (together with their conjugate momenta). Rather
surprisingly, in this space we can prove the existence of a scaling symmetry of degree one, and therefore obtain its
corresponding contact reduction, even for cases in which the original Hamiltonian system on M had no (evident)
scaling symmetry at all.

A. Locally on M : yes

We begin with the following observation: for any Hamiltonian system in a neighborhood of m with XH(m) ̸= 0,
there exist Darboux coordinates such that H = p1 and ω = dpa ∧ dqa. Then D̃ = pa∂pa

is a degree one scaling
symmetry with λ = padq

a = iD̃ω. We conclude that locally, away from critical points of H, it is always possible
to find a scaling symmetry, D̃, of degree one.

This observation may be described in the following algorithm to find D̃ locally:

1. fix some primitive, λ, of ω and seek a closed 1-form α such that

iXH
(λ− α) = H . (14)

2. By the discussion in Section II A (see e.g. Proposition 1), the vector field D̃ corresponding to λ− α via

iD̃ω = λ− α (15)

is the generator of a degree one scaling symmetry.

We conclude that (14) is the equation to be solved (for α) in order to find D̃.
Notice that, locally at least, α = dS for some function S :M → R and then by (15) its associated Hamiltonian

vector field XS is such that D̃ = X+XS , with X the Liouville vector field satisfying iXω = λ. Locally therefore,
we can make (14) even more explicit. Indeed, we obtain

XHS = iXH
λ−H . (16)

In particular, in local Darboux coordinates with λ = padq
a, this gives

Ṡ = paq̇
a −H = L , (17)
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and therefore S is the action. Remarkably, it is always possible to solve (17) locally away from critical points
of H by the choice of a transverse slice Σ to XH identifying M ∼= Σ × (−ε, ε) ∋ (s, t) and taking S(s, t) :=∫ t

0
L(φτ (s)) dτ . However, it is clear that globally there may be obstructions to solving (16) – resp. (14) – in

general (see e.g. the Kepler case in Section III B). Therefore an alternative route should be put forward, as we
will do in Section III C.

In order to illustrate the above procedure, we consider now a very simple case in which the scaling symmetry
D̃ can be found explicitly:

Example 5 (The 2d harmonic oscillator). We have H = |p|2+k|q|2
2 , λ = p · dq and ω = dλ. Imposing iXω = λ

we get X = p · ∂p which is by definition a Liouville vector field, however not a scaling symmetry of H.
Now we seek a function S such that D̃ = X +XS is a scaling symmetry with Λ = 1. Solving (16) we get

S =
p · q
2

+ cp · iq (18)

where c is a constant of integration that we will fix to 0 (this freedom in fixing D̃ comes from the fact that p·iq, the
angular momentum, is an integral of motion, cf. the discussion in Remark 2). This degree one scaling symmetry
with c = 0 is just D̃ = X +XS =

p·∂p+q·∂q

2 .

Note that in the last example S (and thus D̃) is globally defined on M . In the next section we will see an
example in which a global solution to Eq. (14) on M cannot exist.

B. Globally on M : no

Let us consider the Kepler problem of Example 1. This admits the ‘standard scaling symmetry’ DK =
2q · ∂q − p · ∂p, which has degree −2. May we apply our algorithm to find a different ‘hidden scaling symmetry’
of degree 1?

By the discussion in the previous section, this question is equivalent to finding a primitive λ′ of ωK with
iXHK

λ′ = HK . The degree one scaling symmetry is then defined by iD̃ωK = λ′. So, let λ = padq
a be the

canonical 1-form, then all of our options for primitives are given by λ− α with α a closed 1-form.
It is instructive to consider first the case in which α = dS is exact. Then we look for a solution of (16). As an

immediate observation, we see that for the Kepler problem a solution S fails to exist globally because there are
periodic orbits with positive action. Namely, for an elliptic orbit, γ ⊂ T ∗(R2\{0}), with period T and (negative)
energy E, a solution S to (16) would satisfy:

0
!
=

∮
γ

dS = S(s, T )− S(s, 0) =

∫ T

0

L(φτ (s)) dτ = 3π

(
T

2π

)1/3

= 3π

√
−1

2E
> 0 . (19)

In general, for any closed α as above, consider two periodic elliptic trajectories γ1, γ2 ⊂ T ∗(R2\{0}) with differ-
ent values of (negative) energies, E1 ̸= E2 respectively. Such trajectories bound some surface, Σ ⊂ T ∗(R2\{0}),
in the phase space. Then, since α is closed, dα = 0, we have by Stokes theorem:∮

γ1

α =

∮
γ2

α (20)

As we have fixed λ = padq
a as the canonical 1-form, Eq. (14) reads

iXH
α = pa

∂H

∂pa
−H = L . (21)

Therefore, since γ1, γ2 are integral curves of XH , (20) now reads∫ T1

0

L(γ1(t)) dt =

∫ T2

0

L(γ2(t)) dt (22)

where T1 ̸= T2 are the periods of γ1, γ2. This is impossible, because for the Kepler problem, the total action
around an elliptic orbit is a non-constant function of its energy (and period). We conclude that such a α cannot
exist in the Kepler case.

In Example 5 for the 2d harmonic oscillator we have used precisely this route to find α = dS. Note that in
that case we have that the condition (22) is identically satisfied (both sides always being zero).
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C. Global contact reductions. The evolution of couplings

Hamiltonian systems, typically, depend on various parameters (e.g. masses, gravitational constants, etc.) whose
values are given in certain physical units. The scaling symmetries –acting on positions and momenta– we have
been considering, boil down to rescalings of these units. Thus, from a physical point of view, it is natural for
such a scaling symmetry to induce an action on these parameters.

We will consider then the following general situation. Let (M,ω,HA) be a Hamiltonian system depending on
some parameters A ∈ Rk. In place of considering only rescalings on M , we would like to admit the possibility to
act on the parameters A. We will state conditions under which such ‘extended’ scaling symmetries may be used
to produce scale-reduced contact Hamiltonian systems depending on parameters.

Remark 9. Intuitively, the objective is the following: for a symplectic Hamiltonian system, HA, depending on
k parameters on a symplectic manifold of dimension 2n, one would aim for –as its scale reduction– a contact
system on a contact manifold of dimension 2n − 1 depending on k-parameters. Alternately, we may view the
symplectic Hamiltonian system with parameters as dynamics on a space of dimension 2n + k admitting k first
integrals, whose invariant level sets are symplectic manifolds with symplectic Hamiltonian dynamics. Then we
aim for –as a scale reduction– a dynamics on a space of dimension 2n− 1 + k admitting k first integrals, whose
invariant level sets are contact manifolds with contact Hamiltonian mechanics.

In many cases, one may simply redefine the parameters so that HA is degree one in A. For this, it is convenient
to introduce the following definition.

Definition 4. A system of coupled Hamiltonians is a system (M,ω,HA), where

HA = A1H1 + ...+AkHk = A ·H (23)

with parameters Aj ∈ R called the couplings and H := (H1, ...,Hk) : M → Rk. Moreover, to avoid considering
repetitive cases, we will always assume in what follows that

1. Aj > 0 for all j = 1, . . . , k.

2. There is a Liouville vector field D on M with DHj = ΛjHj .

3. Λi ̸= Λj for all i ̸= j and Λk ̸= 1.

Indeed, if some Aj = 0, one would simply proceed with less parameters, while if some Aj < 0 it would just
amount to changing the sign in front of the corresponding term in (23). On the other hand, if all Λj were equal,
one could proceed by applying Theorem 1. Further, note that one may collect the corresponding terms of (23)
for those j’s with Λj = Λj′ to take as a new Hj′ term, so that we assume all Λj are distinct. In particular, at
least one Λj is not equal to 1, which we take without loss of generality as Λk ̸= 1.

Our main result (Theorem 2 below), extends Theorem 1 to this situation in line with Remark 9. Our starting
point is the following computation:

Proposition 6. Let (M,ω,HA) be a system of coupled Hamiltonians. Then, taking the extended space

M̂ :=M × Rk
+ × Rk ∋ (m, a, b), ω̂ := ω + da ∧ db ,

with

aj := A
1

1−Λj

j > 0, D̂ := D+ a · ∂a ,

and considering Ĥ : M̂ → R given by

Ĥ := a1−Λ1
1 H1 + ...+ a1−Λk

k Hk , (24)

we have

D̂Ĥ = Ĥ, LD̂ω̂ = ω̂ ,

that is, D̂ is a degree one scaling symmetry for the symplectic Hamiltonian system (M̂, ω̂, Ĥ).

Remark 10. The symmetry of D̂ may be understood as follows. If ψs is the flow of D on M (and ψ̃s the induced
flow of D̂ on M ×Rk ∋ (m, a)) then for γa(t) ∈M a trajectory of XHa , we have that ψs(γa(t)) is a trajectory of
XHa′ where a′j = esaj = ψ̃s(aj).
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From the last proposition, we may apply a degree one contact reduction (cf. Corollary 1) on M̂ to obtain:

Corollary 3. The quotient:

π̂ : M̂ → Ĉ = M̂/D̂

is a contact manifold, with contact distribution

D̂ := π̂∗ ker λ̂

where λ̂ = iD̂ω̂ = λ+ a · db for λ = iDω. The symplectic Hamiltonian vector field, XĤ of Ĥ on M̂ projects to a
contact vector field, X̂, on Ĉ, given by

X̂ := π̂∗XĤ .

We are however not yet done since Ĉ is too large to qualify as a reduced space. Nevertheless, we may still use
the following:

Proposition 7. On Ĉ there is a contact action of Rk+1, generated by the commuting vector fields

X̂ = π̂∗XĤ , X1 = π̂∗Xa1 , . . . , Xk = π̂∗Xak
.

As well, we have k independent first integrals on Ĉ of these vector fields, α̂1, ..., α̂k, given by

π̂∗α̂j = aj/ak > 0, j = 1, . . . , k − 1, and π̂∗α̂k = Ĥ/ak .

Proof. Consider the Hamiltonian vector field Xaj
= ∂bj of aj on (M̂, ω̂). Since D̂aj = aj we have an induced

contact vector field Xj = π̂∗Xaj on Ĉ. These vector fields and X̂ mutually commute since their lifts, XĤ , Xaj

commute. The functions α̂1, ..., α̂k are first integrals since their lifts, aj/ak and Ĥ/ak, are first integrals of
XĤ , Xaj

.

Remark 11. Given a choice of a contact 1-form π̂∗η̂ = λ̂/ρ̂ on Ĉ, with say ρ̂ > 0 some scaling function of D̂,
the contact vector fields X1, ..., Xk correspond to k dissipated quantities of X̂, given by (see [7, 19])

π̂∗âj := π̂∗ (iXj
η̂
)
=
aj
ρ̂
> 0 .

Dissipated quantities of a contact Hamiltonian system determine first integrals by considering their ratios. Here,
for Ĥ := iX̂ η̂ the contact Hamiltonian of X̂, these corresponding first integrals may be given as those of the
previous proposition:

α̂j =
âj
âk

, j = 1, . . . , k − 1 , and α̂k =
Ĥ

âk
.

From the last proposition, one sees how to produce a full reduction of a system of coupled Hamiltonians
(M,ω,HA). Namely, one restricts to a level set of the first integrals α̂1 . . . , α̂k and passes to its quotient under
the Rk-action generated by X1, ..., Xk, obtaining an induced dynamics of X̂ on a (dimM −1)-dimensional space.
More precisely, we have the following main result:

Theorem 2 (Contact reduction of systems of coupled Hamiltonians). Let (M,ω,HA) be a system of coupled
Hamiltonians. Consider the resulting contact system Ĉ, X̂, as described in Proposition 6, Corollary 3 and Propo-
sition 7 above, with first integrals α̂j and contact symmetries Xj generating an Rk-action on Ĉ (cf. Remark 11).
Then, for a regular level set {α̂j = const.} of these first integrals, its quotient:

Co :=
(
{α̂j = const.}\Σ̂

)
/Rk

is a contact manifold, where

Σ̂ := π̂({DĤ = 0}) .

Moreover, the vector field Xo induced on Co by X̂ is spanned by a contact vector field.
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Proof. To describe this reduced space, Co, let us first consider the quotients under the Rk-action generated by
Xj = π̂∗∂bj . First, note that the ‘upstairs’ quotient:

πM : M̂ → M̂/Rk =: M̃ =M × Rk ∋ (m, a)

is just the standard projection (m, a, b) 7→ (m, a). As well, the scaling vector field D̂ on M̂ projects to a scaling
vector field, D̃ = D+ a · ∂a on M̃ . These spaces are related in the diagram:

M̂ M̃

Ĉ C̃

πM

π̂ π̃

πC

πM∗D̂ = D̃ , Ĉ = M̂/D̂ , C̃ = M̃/D̃ = Ĉ/Rk .

We may project the Rk-invariant structures on M̂ and Ĉ to their analogues on M̃ and C̃. Thus we have a D̃-
invariant vector field, πM∗XĤ , and D̃-invariant function, π∗

M H̃ = Ĥ on M̃ . The induced scale-reduced dynamics
on this quotient, C̃ = Ĉ/Rk, being given via:

X̃ := πC∗X̂ = π̃∗πM∗XĤ ,

and also admitting k independent first integrals α̃1, ..., α̃k, defined by

π∗
C α̃j := α̂j .

Finally, the contact distribution, D̂ is Rk-invariant, projecting to a hyperplane distribution on C̃:

D̃ := πC∗D̂ = π̃∗ kerλ, λ = iDω.

Now, we may form the following explicit description of the quotient Co = {α̂j = const.}/Rk = {α̃j = const.} ⊂
C̃ by first lifting upstairs to C̃o ⊂ M̃=M × Rk, given by

C̃o :=

{
aj
ak

= cj ,
H̃

ak
= ck

}
=
{
aj = cjak, (c1ak)

1−Λ1H1 + ...+ (ck−1ak)
1−Λk−1Hk−1 + a1−Λk

k Hk = ckak

}
,

where cj > 0, j = 1, ..., k − 1 and ck ∈ R are constants. Then Co = C̃o/D̃ is identified with:

Co
∼= C̃o

∣∣∣
{ak=1}

= {C1H1 + ...+ Ck−1Hk−1 +Hk = ck} ⊂M

for constants Cj = c
1−Λj

j > 0 and ck ∈ R.
The induced distribution is determined by the restriction of λ = iDω to Co. This distribution is contact on

Co\{DH̃ = 0}, where DH̃|Co
= (C1Λ1H1 + ... + Ck−1Λk−1Hk−1 + ΛkHk)|Co

, since here the Liouville vector
field D on M is transverse to Co, that is, Co\{DH̃ = 0} is of contact type (see Definition 15). Moreover, the
induced vector field, Xo = X̃|Co on Co is given by the restriction of the Hamiltonian vector field of C1H1 + ...+

Ck−1Hk−1 +Hk to Co. Finally, note that Xo/(DH̃)|Co is in fact the Reeb field of λ|Co .

Remark 12. Note that we find that the D̂-invariant region {DĤ = 0} ⊂ M̂ plays an obstructing role to this
fully reduced space being a contact manifold with an induced contact dynamics. However, in many examples
(see Section IIID below), this ‘singular’ region is in fact empty, and typically it is (at least) codimension one
in Co, since the component functions Hj of the system of coupled Hamiltonians have some independence and,
e.g. Λk ̸= 1.

Remark 13. The space C̃ has dimension dimM − 1 + k with induced scale-reduced dynamics of X̃ ∈ X(C̃)

admitting k first integrals. The level sets of these first integrals are –away from the ‘singular’ set Σ̃ = π̃({DH̃ =

0})– contact manifolds on which the restriction of X̃ is proportional to a contact vector field. Thus we realize
our initial description outlined in Remark 9.
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Remark 14. The action of Rk on (M̂, ω̂) is symplectic, and M̃ = M̂/Rk is its Poisson reduction (ω being a
‘pre-symplectic’ form on M̃ =M×Rk). The symplectic reductions of M̂ by this Rk-action are just (M,ω) realized
as the symplectic leafs M × {a} ⊂ M̃ . One can thus view C̃ = Ĉ/Rk as an analogous pre-contact (see e.g. [29])
manifold: having a hyperplane distribution and foliation –away from Σ̃– into ‘contact leaves’ corresponding to
contact reductions of Ĉ. In general, relations between symplectic reductions and scaling reductions will be an
interesting theme for future work to explore and apply in determining ‘full reductions’ of explicit examples.

This type of contact reduction is a slight variation of that from [17]. Namely we do not require the contact
action to leave invariant any specific contact 1-form, and as well admit the possibility to obtain ‘singular’ contact
reductions. More precisely, consider a contact action of Rk+1 generated by vector fields X0, ..., Xk, on a contact
manifold N , with X1, ..., Xk transverse to the contact distribution, and admitting first integrals:

J : N → RPk

such that for each choice of 1-form η on N one has

J(x) := [iX0
η(x) : · · · : iXk

η(x)] .

Then the space N̄ := {J = Jo}/Rk –reduced by the Rk-action generated by X1, ..., Xk– inherits a hyperplane
distribution, locally given by the kernel of a 1-form η̄ which is contact away from iX0

η̄ = 0.

Using this structure, it is not hard to derive some explicit coordinate descriptions for the scale-reduced equations
of motion, upon choice of a scaling function. We start with the following explicit expressions.

Corollary 4 (Contact reduction of systems of coupled Hamiltonians with a scaling function). Let ρ̃ : M̃ → R+

be a scaling function of D̃ = D+ a · ∂a on M̃ =M × Rk. Then we have the following functions on C̃ = M̃/D̃:

π̃∗H̃ = H̃/ρ̃, π̃∗ãj = aj/ρ̃, π̃∗σ̃ = DH̃/ρ̃

as well as the vector field and 1-form:

X̃ = π̃∗XH , and π̃∗η̃ = λ/ρ̃, where λ = iDω.

Then X̃ admits the first integrals:

α̃1 =
ã1
ãk
, · · · α̃k−1 =

ãk−1

ãk
, α̃k =

H̃

ãk
.

Let Σ̃ = {σ̃ = 0} ⊂ C̃. Then a regular level set:

Co := {α̃j = const.}\Σ̃

of these first integrals is a contact manifold, with contact 1-form:

ηo = η̃|Co
.

The restriction of X̃ to Co is not in general a contact vector field, however it is proportional to a contact vector
field. Explicitly, for Xãk

the contact Hamiltonian vector field of ãk|Co
with respect to ηo:

X̃|Co
=

σ̃

ãk
Xãk

. (25)

Equivalently, since ãk ̸= 0, we have:

X̃|Co
=

σ̃

ãk
R

where R is the Reeb vector field of η̃
ãk
|Co

.

There are a few natural choices of coordinate systems on C̃: one corresponding to a choice of one of the
parameters as a scaling function, and the other to a choice of a scaling function of D on M .
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Remark 15 (Contact reduction with scaling function ak). For ak : M̃ → R+ as a scaling function of D̃, we
have:

C̃ ∼=M × Rk−1 ∋ (m, a′)

where a′ = (a1, ..., ak−1, 1). Let us set as well:

Aj = a
1−Λj

j , A′ = (A1, ..., Ak−1, 1)

The distribution on C̃ is given by the kernel of the 1-form λ = iDω, whereas the vector field X̃ is just the
Hamiltonian vector field of:

HA′ = A′ ·H, H = (H1, ...,Hk)

determined by iX̃dλ = −d(HA′ |A′=cst.) and X̃A′ = 0. Note that X̃ also satisfies iX̃λ = DHA′ = ΛA′ ·H, where
Λ = diag(Λ1, ...,Λk). The first integrals, α̃j, are then given by A′ and HA′ .

In the coordinates of Remark 15, it is easy to see Theorem 2 (indeed, the proof of Theorem 2 boiled down to
using these coordinates). Namely, the contact reduction of the system is given by fixing the parameters A and an
energy level HA = c in M , which is transverse to the Liouville vector field D on M away from where DHA = 0.
The Hamiltonian vector field on this level set is then proportional to the Reeb field of λ = iDω restricted to the
energy level.

Nonetheless, the additional ‘lifted’ contact structure is still quite useful, not just conceptually, but as well for
deriving coordinate expressions more simply (à la Corollary 4).

Remark 16 (Contact reduction with scaling function on M). For a global scaling function, ρ :M → R+, on M
of D, we have:

C̃ ∼= C × Rk

where C =M/D and π̃∗ãj := aj/ρ are the coordinates on Rk. We set Ãj := ã
1−Λj

j . Moreover, for π∗η = iDω/ρ,
a contact 1-form on C, with Reeb field R, the vector field X̃ on C̃ is determined through:

iX̃η = ΛÃ · H , iX̃dη = −dH̃ + RH̃ η , X̃ã = ã RH̃ (26)

where Λ = diag(Λ1, ...,Λk) and π∗H̃ := H̃/ρ is:

H̃ = ã1−Λ1
1 H1 + ...+ ã1−Λk

k Hk = Ã · H

for π̃∗Hj := Hj/ρ
Λj , and H := (H1, ...,Hk). The first integrals are then given by: α̃1 = ã1

ãk
, ..., α̃k−1 =

ãk−1

ãk
, α̃k = H̃

ãk
. Then we have that, away from Σ̃ = {ΛÃ · H = 0}, a level set of these first integrals is a contact

manifold with contact 1-form given by restriction of η, and moreover that the vector field X̃ restricted to this
level set is proportional to a contact vector field (the contact Hamiltonian vector field of ãk’s restriction to the
level set). In local contact coordinates, η = p · dq − dS, on C, the equations of motion (26) take the form:

q̇ = ∂pH̃ , ṗ = −∂qH̃ − p ∂SH̃ , Ṡ = p · ∂pH̃ −ΛÃ · H , ˙̃a = −ã ∂SH̃ . (27)

Remark 17. Some important comments here are in order:
The first point is the fact that the assumption on HA in Eq. (23) is in practice hardly restrictive at all. Indeed,

by introducing such parameters, basically any physical Hamiltonian can be written as a sum of pieces that scale
differently. This allows one to apply contact reductions to a much more general class of Hamiltonian systems
than those which admit a scaling symmetry of some degree Λ, as the examples below shall show.

The second crucial point (which might have interesting consequences on the way we formulate physical theories)
is the fact that while on the lifted symplectic system Ĥ the dynamical variables aj are constant, on the corre-
sponding reduced contact system their counterparts, given by π̂∗âj = aj/ρ̂, correspond to dissipated quantities:
XĤ â = R(Ĥ )â (see Remark 11 and [7, 19, 22] to see that this is the equivalent of conserved quantities for
the contact case). However, the global equivalence of the two dynamics is well established by the discussion in I think

this is
what the
referee
wanted
here

Dave

I agree,
but I
changed
a bit the
notation
to make
it con-
sistent
with Re-
mark 11.

Ale

Section II. Therefore, we are ready to remark the significance of Theorem 2: as anticipated in the discussion on
Poincaré’s dream in the Introduction, since the parameters in a Hamiltonian description of the physical reality
are inferred from measurements based on the observed trajectories and on the specified model, there is no reason
a priori to think of them as fixed numbers. Indeed we see from Theorem 2 that if we allow the ‘space of physical
Hamiltonian (variational) theories’ describing a given phenomenon to vary, meaning that the coupling constants
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of each theory are different, then what we have just proved means that there always exists in this space a way to
reduce the description to an equivalent theory based on a contact Hamiltonian (or Herglotz variational) theory on
a reduced space. Despite the dynamical equivalence among all such theories, the contact Hamiltonian one involves
fewer elements for its complete description. Following arguments in [34], the extra elements can be considered
superfluous structure which should be ‘pared down, being careful not to jeopardize their capacity to embed the
phenomena’. The embedding of equivalent phenomena is guaranteed by the equivalence of the dynamics, to leave
a theory with more ‘descriptive power’. See for example [33, 48] and references therein. We call this a reduction
to a more descriptive theory. We note that the universal dissipative nature of the reduced system provides support
for the position that open systems are fundamental to physics [16].

D. Further examples

We consider some simple examples that illustrate the flexibility of Theorem 2. In particular, such reductions
may be applied even when the original system –without any parameters introduced– does not possess any evident
type of scaling symmetry of the type in Theorem 1.

Example 6 (Kepler revisited). Let us revisit the Kepler problem (see Examples 1-3). Now, we would like to use
Theorem 2 to reduce by some more general sorts of scaling symmetries of this system. Consider then:

HA =
|p|2

2︸︷︷︸
H1

−A 1

|q|︸︷︷︸
H2

.

with a parameter A > 0. Then, for D =
p·∂p+q·∂q

2 , we have:

DH1 = H1 , DH2 = −1

2
H2.

In particular, here, DHA = 1
2

(
|p|2 + A

|q|

)
> 0, so that the singular region, Σ̂, of Theorem 2, is empty.

We thus, according to Proposition 6, consider the scaling by:

D̃ = D+ a · ∂a , a = A2/3

on M̃ =M × R+ ∋ (m, a), where M = T ∗(C\{0}) ∋ (q, p).
Now Theorem 2 boils down to the observation that for a fixed value of A, an energy level, HA = cst., of the

Kepler problem is a contact manifold with contact 1-form given by the restriction of

λ = iDω =
p · dq − q · dp

2

to this energy level. Moreover, the Reeb field of this contact 1-form on the energy level is proportional to the
restriction of the Hamiltonian vector field of the Kepler problem.

On the other hand, the overlying structure exposed in the proof of Theorem 2 allows one to determine this
contact structure in various coordinates in a systematic way (see Corollary 4). Consider for example the scaling
function ρ = r2 = |q|2. Then we obtain the contact system on Ĉ given by restriction of λ̂ = λ + adb and Ĥ to
{ρ = 1} ⊂ M̂ , namely, the contact Hamiltonian system:

η̂ = λ̂|ρ=1 = G̃dθ − dJ̃

2
+ ãdb , Ĥ = Ĥ|ρ=1 =

J̃2 + G̃2

2
− Ã

where q = reiθ, J̃ = p · q/ρ, G̃ = p · iq/ρ, ã = a/ρ, and Ã = ã3/2. The equations of motion on the quotient
C̃ = Ĉ/∂b, Eqs. (27), then read

θ′ = G̃ , G̃′ = −2J̃G̃ , J̃ ′ = G̃2 − J̃2 − Ã , ã′ = −2J̃ ã ,

with the first integral α̃ given by:

α̃ = H̃ /ã = Ĥ /ã

Note that in this case, due to the rotational symmetry, we have a remnant of the angular momentum, correspond-
ing to the additional first integral: G̃/ã of the scale-reduced system.
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Moreover, each level set of α̃ is a contact manifold, and on this manifold the restriction of the equations
of motion is proportional to a contact vector field. This observation of Theorem 2 is –in these coordinates at
least– quite non-trivial to see. For example, thanks to the recipe in Corollary 4 –cf. Eq. (25)– on the level set
Co = {α̃ = 0}, one has that ηo = G̃dθ − dJ̃

2 and that the fully-reduced dynamics X̃|Co
is proportional to the

contact Hamiltonian vector field, XF , with

F (θ, G̃, J̃) := ã|C0
=

(
J̃2 + G̃2

2

)2/3

.

Contrary to the Kepler example, in the next case we present a system that does not possess any evident scaling
symmetry of degree Λ, but to which we can still apply Theorem 2.

Example 7 (Coupled Kepler-Hooke System). With M and ω as before, consider now a Hamiltonian which
combines the Kepler (1/r) and the Hooke (r2) potential:

HKH :=
|p|2

2
+
c|q|2

2︸ ︷︷ ︸
H1

−A 1

|q|︸︷︷︸
H2

.

with parameter A > 0. Then, for D =
p·∂p+q·∂q

2 , we have:

DH1 = H1 , DH2 = −1

2
H2 .

Thus we consider the scaling:

D̃ = D+ a · ∂a , a = A2/3

on M ×R+ ∋ (q, p, a). Again, we have here that DHKH = 1
2

(
|p|2 + c|q|2 + A

|q|

)
> 0 so that (when c ≥ 0, i.e. the

two central forces are attractive) the singular region, Σ̂, is empty. The reduced equations may be obtained in the
same way as the previous example, using the scaling function ρ = |q|2. One obtains the scale-reduced equations:

θ′ = G̃ , G̃′ = −2J̃G̃ , J̃ ′ = G̃2 − J̃2 − Ã− c , ã′ = −2J̃ ã ,

having the first integrals: G̃/ã, α̃ = H̃ /ã, where H̃ = J̃2+G̃2

2 + c− Ã.

We can generalize the last example at once to the case of any potential that can be written as a Laurent series
of r as follows.

Example 8 (General Laurent series potentials). Consider now a Laurent series Hamiltonian:

HL :=
|p|2

2︸︷︷︸
Hkin

+

n2∑
j=−n1

Aj |q|j︸ ︷︷ ︸∑n2
j=−n1

AjHj

.

In this case one does not have an (evident) scaling symmetry of degree Λ. However, for D =
p·∂p+q·∂q

2 , we have:

LDHkin = Hkin and LDHj =
j

2
Hj

leading, in the same way as the previous two examples, to the scale-reduced equations of motion:

θ′ = G̃ , G̃′ = −2J̃G̃ , J̃ ′ = G̃2 − J̃2 −
∑

jÃj , Ã′
j = (j − 2)Ãj J̃ .

Note that, in case each potential term is attractive (meaning sgn(Aj) = sgn(j)), the singular region Σ̂ = {DHL =
0}, is empty here as well.

The next example is somewhat simpler, but it has important physical ramifications in cosmology, and therefore
it is worth presenting it at this point.
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Example 9 (FLRW Cosmology). In the field of cosmology, homogeneous, isotropic solutions to Einstein’s equa-
tions are given by the Friedmann-Lemaître-Robertson-Walker metrics. The symmetries of such space-times allow
us to reduce a full field theory to a finite-dimensional ‘particle’ representation. In these solutions, the space-time
manifold is R × Σk, in which Σk is the three-dimensional spatial slice, consisting of a three sphere (S3, k > 0),
Euclidean space (R3, k = 0) or hyperbolic space (H, k < 0). The metric is determined by the topology of the
spatial section:

ds2 = −dt2 + v
2
3 (t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
.

In the case of a non-compact topology, the volume, v is measured with respect to some fixed, fiducial cell. For
minimally coupled matter, the dynamics of which are given in flat space by a Hamiltonian Hm(p, q), we find the
equations of motion for the gravitational sector, v,Π, from the Hamiltonian:

H = v

(
−3Π2

8π
+Hm

(p
v
, q
)
− k

v
2
3

)
, ω = dΠ ∧ dv + dp ∧ dq.

For flat (k = 0) spatial slices the Hamiltonian admits a degree one scaling symmetry D = v∂v + p∂p (summed
over all matter momenta p if multiple are present), with iDω = −vdΠ+pdq. Therefore in this case the reduction
to the contact dynamics on C = M/D is immediate, and following Corollary 1 with the scaling function ρ = v,
we have the contact system:

H0 = −3Π2

8π
+Hm(p, q) and η = pdq − dΠ.

To extend our results to the case in which k ̸= 0, we follow the process of Theorem 2. Indeed, the Hamiltonian
in this case can be split as

H = v

(
−3Π2

8π
+Hm

(p
v
, q
))

︸ ︷︷ ︸
H1

−k v1/3︸︷︷︸
H2

,

and for D = v∂v + p∂p as before we obtain

LDH1 = H1 and LDH2 =
1

3
H2 ,

which, by Proposition 6, leads to the degree one scaling symmetry

D̂ = D+
2

3
k∂k

on the extended space and, by Corollary 1, to a scale-reduced contact Hamiltonian dynamics on Ĉ = M̂/D̂. The
scaling function v represents this contact system as:

Ĥ = −3Π2

8π
+Hm(p, q)− k , η̂ = |k|3/2db+ pdq − dΠ

with equations of motion on the quotient, C̃ = Ĉ/∂b, being given by

q̇ = ∂pHm , ṗ = −∂qHm +
3Π

4π
p , Π̇ = p ∂pHm −Hm +

3Π2

8π
+
k

3
, k̇ =

Π

2π
k , (28)

and admitting the first integral α̃ = Ĥ /|k|3/2. By Theorem 2, on each level set Co = {α̃ = α̃o} we have the
contact one form ηo = pdq− dΠ and the scale-reduced dynamics X̃|Co

is proportional to the contact Hamiltonian
vector field XF , with

F (q, p,Π) := |k|3/2|Co ,

given implicitly through:

α̃0F = −3Π2

8π
+Hm(p, q)− sgn(k)F 2/3 .

For instance, when α̃0 = 0, we have the contact system given by:

F (q, p,Π) =

[
sgn(k)

(
Hm(p, q)− 3Π2

8π

)]3/2
, ηo = pdq − dΠ.
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Remark 18. There are two interesting facets of cosmological dynamics that are highlighted by this construction.
The first is that the apparent ‘Hubble friction’ arising due to the expansion of the universe can be directly observed
since the equations of motion (28) of these systems, with the effect of coupling Hm to gravity in the second term
acting as apparent friction when compared to the behaviour of matter in a non-expanding background. The
second is that both the dynamics of matter in an expanding space, and the expansion of space that results from
the presence of matter are described by taking a symplectic matter system (M,ω = dθ,Hm) and considering,
for k = 0, on its contactification (M̃, θ̃) = (M × R, θ − dΠ) the matter-gravity Hamiltonian H̃ = Hm − 3Π2

8π .
When k ̸= 0, one may work on the same contactification but using instead, for total energy zero, the contact
Hamiltonian: H̃k = (sgn(k)(Hm − 3Π2

8π ))3/2. In this case, the contact Hamiltonian is equivalent to that obtained
from dividing our original Hamiltonian by v1/3 and treating the curvature as the new ‘total energy’ of this system.

IV. APPLICATIONS

A. Contact reductions of cotangent Hamiltonian systems

The most standard case of Hamiltonian system is dynamics on a cotangent bundle by H : T ∗Q → R, where
T ∗Q is equipped with its standard (exact) symplectic structure, ω = dλo. In this case one has more explicit
expressions of the contact reduction when the scaling symmetries are lifts of scaling symmetries on the configu-
ration manifold Q. Moreover, this case is of particular interest because in this setting we can develop also the
variational counterpart, cf. Section IV B. Therefore we devote this section to consider scaling reductions especially
suited to these particular types of systems.

We start by singling out those scaling symmetries characterized by compatibility with the canonical projection

T ∗Q→ Q.

That is, we are interested in scaling symmetries related to actions on the configuration space.

Definition 5. We call a vector field D on T ∗Q a basic scaling, when:

1. LDλo = λo, for λo = p · dq the canonical 1-form on T ∗Q,

2. the projection, D̄ ∈ X(Q), of D to the base acts freely and properly on Q.

As well, we call a function ρ : Q → R+ a basic scaling function when D̄ρ = ρ, and we say D is a basic scaling
symmetry of H : T ∗Q→ R (of degree Λ ∈ R) when D is a basic scaling and DH = ΛH.

Remark 19. Note that the first condition, LDλo = λo, of the previous definition implies that D ∈ X(T ∗Q)
projects to a vector field D̄ ∈ X(Q) on the base under the canonical projection T ∗Q → Q. Equivalently, D is a
basic scaling, when it is of the form:

D = D̄∗ +Do

where D̄∗ is the cotangent lift of a vector field D̄ on Q and Do = p · ∂p is the standard Liouville vector field on
T ∗Q.

Proposition 8. Suppose (T ∗Q,ω) admits a basic scaling D, with basic scaling function ρ : Q→ R+. Then, for

Q̄ := Q/D̄,

one may identify the contact-reduced space

C = (T ∗Q)/D ∼= T ∗Q̄× R

as the contactification of T ∗Q̄, that is, having contact 1-form:

η = λ̄o − dS,

where λ̄o is the canonical 1-form on T ∗Q̄, and S given by π∗S = iDλo

ρ the coordinate on R.
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Proof. First, we will describe the form of the flow, ψs : T
∗Q→ T ∗Q, of D more explicitly. Let Do be the Liouville

vector field on T ∗Q, iDo
ω = λo, whose flow ψo

s acts by scaling the fibers. Then, since ψ∗
sλo = esλo = (ψo

s)
∗λo,

we have:

(ψsψ
o
−s)

∗λo = λo

Consequently, ψsψ
o
−s is given by the cotangent lift of some diffeomorphism, ψ̄s : Q→ Q (the flow of D̄), ie:

ψs(q, p) = (ψ̄s(q), e
sψ̄∗

−sp).

Alternately, we have D−Do = D̄∗ is the cotangent lift of D̄ ∈ X(Q) (the Hamiltonian vector field of iDλo).
Given our basic scaling function ρ : Q→ R+, let:

π̄ : Q→ Q̄ = Q/D̄.

Then we identify, π : T ∗Q→ (T ∗Q)/D = C, by sending the D orbit, [q, p] through (q, p) ∈ T ∗Q to:

C ∋ [q, p] 7→ (q̄, p̄, S) ∈ T ∗Q̄× R

where q̄ = π̄(q), π∗S = iDλo

ρ , i.e. S = p(D̄)/ρ(q), and π̄∗p̄ = p−Sdρ
ρ , which gives a well defined covector p̄ ∈ T ∗

q̄ Q̄,
(essentially, p−Sdρ vanishes on D̄). Moreover, one computes, the canonical 1-form, λ̄o, on T ∗Q̄ pulls back under
π : T ∗Q→ C ∼= T ∗Q̄× R to:

π∗λ̄o =
λo − π∗Sdρ

ρ
. (29)

Now we describe the contact 1-form under this identification. Let λ = iDω, and π∗η = λ/ρ define the contact
1-form, η, on C ∼= T ∗Q̄× R. Then:

λo = LDλo = λ+ d(ρπ∗S) = λ+ ρπ∗dS + π∗Sdρ

so that: π∗λ̄o = π∗(η + dS), ie, η = λ̄o − dS where λ̄o is the canonical 1-form on T ∗Q̄.

According to Theorem 1 above (see also Remark 3), the projections of trajectories of such Hamiltonian systems
admitting a basic scaling symmetry may be described as follows.

Corollary 5. Suppose the Hamiltonian system (T ∗Q,ω,H) admits a basic scaling symmetry, D, of degree Λ
with basic scaling function ρ : Q → R+. Let Q̄ = Q/D̄ ∼= {ρ = 1}. Then its scale-reduced orbits are trajectories
of the vector field:

X̄ ∈ X(T ∗Q̄× R)

determined through:

iX̄η = ΛH , iX̄dη = −dH + (RH )η

where η = λ̄o − dS, π∗S = iDλo

ρ and π∗H = H/ρΛ.

Remark 20. Let Σ := {ρ = 1} ⊂ Q, with inclusion ι : Σ → Q. Then we have (T ∗Q)/D ∼= ι∗(T ∗Q). This
contact manifold is then identified with the contactification of T ∗Σ:

T ∗Σ× R, η = λΣ − dS.

where λΣ is the canonical 1-form on T ∗Σ and S = iDλo|ι∗(T∗Q) the coordinate on R. A degree Λ Hamiltonian
then passes to the quotient via restriction: H = H|ι∗(T∗Q).

B. Contact reductions of Lagrangian systems

One may obtain ‘Lagrangian analogues’ of our results above by applying the Legendre transform to Hamiltonian
systems and their contact reductions (cf. Appendix A 3). Here we only consider regular systems, that is, systems
for which Legendre transforms are diffeomorphisms. It is instructive to first consider a local coordinate analogue
of Proposition 10, or Corollary 1 (the degree one case).



21

Example 10. Consider a Herglotz-Lagrangian system L (q, q̇, S) corresponding under Legendre transform to the
contact Hamiltonian system H (q, p, S), η = p ·dq−dS. This contact Hamiltonian system (see, Remark 6 above)
is the scale reduction of the Hamiltonian system:

H(ρ, q, S, P ) = ρH (q, P/ρ, S)

on the symplectification, ω = dα̃ = d(P · dq − ρ dS), by the degree one scaling symmetry D = ρ∂ρ + P · ∂P . We
identify this symplectification with the cotangent bundle of Q ∋ (ρ, q) by taking S = pρ, with canonical 1-form:

λo = pρ dρ+ P · dq = α̃+ d(ρpρ),

for which S = iDλo

ρ . Now, the Legendre transform of H is the Lagrangian system L = ρ̇S + ρL , where

L =
L− ρ̇S

ρ

is our original Herglotz-Lagrangian system on q ∈ Q̄ = Q/ρ∂ρ, which we consider as the scale reduction of the
Lagrangian system L by the scaling symmetry DL = ρ∂ρ + ρ̇∂ρ̇ (corresponding to D under Legendre transform).
We note that we have as well the equivalent coordinate expressions:

L = ∂ρL , S = ∂ρ̇L .

The description of a scale reduction of a Lagrangian system may be obtained by applying the Legendre
transform to a Hamiltonian system and its contact reduction of the form in Proposition 8. The relationship is
laid out in the following commutative diagram:

TQ,L T ∗Q,H

TQ̄× R,L T ∗Q̄× R,H

Legendre

Quotient Quotient

Legendre

Thus, on the Lagrangian side, we define:

Definition 6. A basic scaling symmetry of degree Λ for a Lagrangian system (Q,L) is a vector field D on TQ
such that D(L) = ΛL, LDλL = λL, where λL = ∂q̇L · dq is the Lagrangian 1-form (the pullback of the canonical
1-form by the Legendre transform), and, moreover, its projection D̄ ∈ X(Q) under TQ → Q induces a free and
proper action on Q.

With this definition, we have:

Theorem 3 (Counterpart to Theorem 1). Let (Q,L) be a regular Lagrangian system, admitting a basic scaling
symmetry, D, of degree Λ and a basic scaling function ρ : Q→ R+. Then one may identify

π : TQ→ (TQ)/D ∼= TQ̄× R ∋ (q̄, q̄′, S)

where π∗S = iDλL/ρ. Let δ : TQ → TQ be the reparametrizing dilation: v 7→ ρ(q)Λ−1v for v ∈ TqQ. Then,
extremals of the Lagrangian system project to extremals of the Λ-Herglotz system:

π∗L =

(
L− ρ̇S

ρΛ

)
◦ δ.

Proof. We sketch the proof, leaving the details to the reader. We consider the same setting of Proposition 8
above, and note that a regular Hamiltonian system, H, on T ∗Q, induces a regular contact Hamiltonian H
on T ∗Q̄ × R, as can be seen from Remark 20. This establishes the commutative diagram above relating the
quotients and appropriate Legendre transforms. Then the result follows by applying the correspondence between
the (reduced) Λ-Hamiltonian and Λ-Herglotz systems via the Legendre transform detailed in Remarks 31 and 32.
The relation between the Lagrangian L and its scale-reduced Λ-Herglotz Lagrangian L is obtained upon using
the relation (29) between the canonical one-forms, that π∗H = H/ρΛ, as well as the relations:

L dt = λo −H dt, L dτ = λ̄o − H dτ ,

where the reparametrizing factor is by ρ1−Λdτ = dt. We are
iden-
tifying
S with
π∗S here,
right?

Ale
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writing
pullbacks
by Legen-
dre trans-
forms on
extended
phase
spaces

Connor
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Remark 21. As in the Hamiltonian case (see Remark 6 above), the scale-reduced trajectories are reparametrized
according to

ρ1−Λdτ = dt,

and we write ′ = d
dτ . Note for Λ = 1, the Lagrangian system scale-reduces to a Herglotz-Lagrangian system,

cf. Example 10.

Example 11 (The 2d harmonic oscillator). Let us consider the two dimensional harmonic oscillator of Exam-
ple 5, with Lagrangian

L =
ṙ2 + r2θ̇2 − kr2

2
, (30)

in polar coordinates. We have the basic scaling symmetry: D = 1
2 (r∂r + ṙ∂ṙ), of degree one, and scaling function

ρ = r2. Following Theorem 3, we write

S =
iDλL
ρ

=
ρ̇

4ρ
, L =

ρ̇S + ρθ̇2 − kρ

2
, (31)

to obtain the scale-reduced Herglotz Lagrangian system:

L =
L− ρ̇S

ρ
=
θ̇2 − k

2
− 2S2 (32)

on TS1 × R ∋ (θ, θ̇, S). Note that L is the (contact) Legendre transform of H =
p2
θ+k
2 + 2S2 on T ∗S1 × R

obtained by contact reduction of H = |p|2+k|q|2
2 by the scaling symmetry q·∂q+p·∂p

2 and ρ = |q|2.

Example 12 (Herglotz-reduced Kepler). We consider the Kepler system of Example 2, with Lagrangian:

L =
|q̇|2

2
+

1

|q|

and basic scaling symmetry DK = 2q · ∂q − q̇ · ∂q̇, of degree Λ = −2, and scaling function ρ = |q|1/2. Following
Theorem 3, we take polar coordinates and write:

S =
iDλL
ρ

= 4ρ2ρ̇, L =
ρ̇S + ρ4θ̇2

2
+

1

ρ2

to obtain the scale-reduced −2-Herglotz system:

L = ρ2(L− ρ̇S) ◦ δ = (θ′)2

2
+ 1− S2

8

on TS1 ×R ∋ (θ, θ′, S) (using ′ to denote d
dτ where ρ3dτ = dt). Again, note that L is related by Legendre trans-

form to the −2-Hamiltonian system, H , obtained by an analogous contact reduction of the Legendre transform
of L. Observe that the reparametrization ρ3dτ = dt has:

L dt = ρ

(
2ρ′2

ρ2
+
θ′2

2
+ 1

)
dτ = L̃ dτ

where L = L̃−ρ′S
ρ gives the scale-reduced −2-Herglotz system (S = 4ρ′

ρ ).

Finally, we consider a counterpart to Theorem 2 for certain Lagrangian systems depending on parameters, Aj ,
of the form:

LA = T (q, q̇) +

k∑
j=1

AjLj(q) (33)

and for which we have a vector field D on TQ with

D(T ) = T, D(Lj) = ΛjLj , LDλL = λL . (34)

Note that the third condition in (34) fixes the parametrization of D, being the precise analogue of the first
condition in Definition 2.
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Theorem 4 (Counterpart to Theorem 2). Consider a regular Lagrangian system depending on parameters as
in Eq. (33), and admitting a vector field D as in Eq. (34). Then the Lagrangian system

L̂ := T +

k∑
j=1

Ẋj

(
Lj

Ẋj

) 1
Λj

on Q̂ := Q×Rk ∋ (q,X) admits D as a basic degree one scaling symmetry. Moreover, the projection to Q of an
extremal of L̂ is an extremal of LA, with parameter values

ΛjAj =

(
Ẋj

Lj

)1− 1
Λj

constant over the extremals of L̂.

Remark 22. More generally, for L =
∑
AjLj, one may consider L̂ =

∑
Ẋj

(
Lj

Ẋj

)1/Λj

. Under Legendre

transform, this lifted system, L̂, corresponds to the Hamiltonian system Ĥ =
∑
AjHj, where ΛjAj =

(
Ẋj

Lj

)1− 1
Λj

and Hj = ∂q̇Lj · q̇ − Lj is the Legendre tranform of Lj. A Legendre transform of D̂ from Proposition 6 yields a
degree one scaling symmetry for this Lagrangian system, L̂ (which in general is not D).

An alternate possibility –to avoid exponents involving the Λj’s– would be to consider:

L̂ :=
∑

eẊj+Lj

as the lift of the Lagrangian system, LA =
∑
AjLj, where eẊj+Lj = Aj is constant over extremals of L̂, with the

degree one scaling symmetry D̂ =
∑
∂Ẋj

.

Example 13 (The Kepler-Hooke potential). Let us consider the system described in Example 11 and extend the
system to include a Kepler potential:

L =
ρ̇2

8ρ
+
ρθ̇2

2
− kHρ

2︸ ︷︷ ︸
L1

+
kK√
ρ︸︷︷︸

L2

D = ρ∂ρ + ρ̇∂ρ̇ (35)

For this system, D is not a scaling symmetry, as D(L1) = L1 but D(L2) = − 1
2L2. However, following Theorem 4

we can consider

L̂ =
ρ̇2

8ρ
+
ρθ̇2

2
− kHρ

2
+
Ẋ3ρ

k2K
(36)

for which D is a scaling symmetry. We then impose the initial condition Ẋ0 = kK

(−2)
1
3 r0

, where r0 is the initial value

of r. This gives rise to the same equations of motion as the original system. Since this is a Lagrangian system
with a scaling symmetry of degree one, we can follow Example 11 and find the equivalent Herglotz Lagrangian
system:

L = −2S2 +
θ̇2

2
− kH

2
+
Ẋ3

k2K
. (37)

Remark 23. Note that we could have dropped kK entirely from the description of the system in equations (36)
and (37) by appropriately choosing a boundary condition for Ẋ, and hence we have in essence exchanged specifying
a coupling constant, kK , for an initial condition.

C. Blow-ups in celestial mechanics

In this section we remark on the contact reduction by scaling symmetries presented here in relation to some
well-known constructions in celestial mechanics (see for example [12–14, 42, 43]). The main observation here is
to see how from the results in this work it follows that McGehee’s blow-up equations have a variational structure
(see Proposition 9 below).



24

Let us first recall the scale-reduced Kepler problem (Examples 1–4). We denote the scaling functions of
Example 2 by

ρ := |q|1/2 , κ :=
1

|p|
, G := p · iq , J := p · q .

where ρ4 = q · q is the moment of inertia, and 1
κ2 = p · p is (twice) the kinetic energy.

Of course, the contact reductions corresponding to each choice of scaling function represent the same curves
in C = M/D obtained by projections of Kepler orbits. They are merely different choices of coordinates for C.
However, each choice of coordinates highlights certain properties of these scale-reduced curves. For instance,
the scaling function ρ is naturally associated to a blow-up of the collision orbits (Example 4), while the scaling
function κ to a blow-up of orbits with |p| → ∞ (as well the collision orbits in the Kepler problem).

To determine some contact reductions (Table I below) for various choices of scaling function, we first note that
the scaling functions above are not independent, satisfying the relation κ2(J2 + G2) = ρ4. One may use any
three of these scaling functions, along with a scale-invariant angle, as coordinates on the phase space. There are
essentially three (dependent) natural angles, θ, φ, δ = φ− θ, present, where

q = ρ2eiθ , p =
1

κ
eiφ , ρ2eiδ = κ(J + iG) (38)

for δ the angle between position and momentum.
To see the equations of motion obtained by these various choices of scaling functions, we will consider (ρ, θ, J,G)

for coordinates on the phase space. Then we have (Eq. (11) above):

λ = G dθ + 2J d log
( ρ
J

)
, HK =

1

2κ2
− 1

ρ2
, κ2(J2 +G2) = ρ4 .

One may describe the contact reduction for various choices of scaling functions according to Remark 3 by
restriction of λ and HK to a level set of the scaling function, obtaining the following representations of the
scale-reduced Kepler problem presented in Table I.

Scaling function Contact system Scale invariant equations of motion

1. ρ η = G̃ dθ − 2 dJ̃, H = J̃2+G̃2

2
− 1 J̃ ′ = G̃2

2
+ H , G̃′ = − J̃G̃

2
, θ′ = G̃

2. κ ηκ = Gκ dφ− dJκ, Hκ = 1
2
− 1

R
J ′
κ = 2Hκ +

G2
κ

R3 , G′
κ = −GκJκ

R3 , φ′ = Gκ
R3

3. G ηG = dθ − JG d log
(

JG
ρG

)2

, HG =
J2
G+1−2ρ2G

2ρ4
G

J ′
G = 1

ρ2
G

+ 2HG, ρ′G = JG

2ρ3
G
, θ′ = 1

ρ4
G

4. J ηJ = GJ dθ + d log ρ2J , HJ =
G2

J+1−2ρ2J
2ρ4

J
G′

J = −GJ(2HJ + 1
ρ2
J
), ρ′J = −ρJHJ − G2

J

2ρ3
J
, θ′ = GJ

ρ4
J

TABLE I: Contact reductions of the Kepler problem with various scaling functions. In row 2 we set R :=
√
J2
κ +G2

κ.

The contact reduction with ρ (row 1 of Table I) is Example 3 above. In this table we used, for example, in the
κ case, the notation:

π∗Jκ = J/κ, π∗Gκ = G/κ, π∗φ = φ, π∗Hκ = κ2HK , π∗ηκ = λ/κ ,

the subscript notation in the other cases taking the analogous meaning. Moreover, in row 2 we defined the
quantity R :=

√
J2
κ +G2

κ.

Remark 24. We have already seen (Example 4), the relation of row 1 in Table I to the blow-up of the collision
orbits. Likewise, row 2 yields a blow-up of |p| → ∞ orbits. Here, for the Kepler problem, these are as well the
collision orbits. In general n-body problems, choices of various mutual distances as scaling functions or analogues
of κ will be interesting to examine.

We also remark that the use of a first integral as a scaling function, as in row 3, corresponds to a first integral for
the scale-invariant curves. Here, this first integral, π∗HG = G2HK , is a well-known scale invariant (sometimes
referred to as the Dziobek constant). Also observe that the equations of motion for the scaling function J are
forms of the well-known Lagrange-Jacobi identity.

The reduction based on the scaling function J of row 4, is used in Barbour et. al’s [4] (with n-body problems),
where it is referred to as the dilational momentum and used, for instance, to describe long-term ‘clustering’
behavior of solutions.

Remark 25. One has an analogous contact reduction for certain inverse power force laws:

Hα =
|p|2

2
− 1

α|q|α
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with Dα :=
2q·∂q−αp·∂p

2−α a scaling symmetry of degree Λ = − 2α
2−α (when α ̸= 2). Note that J,G above are still

scaling functions, as is ρα := |q|1−α/2. Carrying out the analogue of Example 4 here gives exactly the blown-up
collision tori (see §1.3 of [20]) of these central force problems.

The contact reduction may be carried out similarly for n-body problems. Indeed, collecting the above structure,
we obtain the following result.

Proposition 9 (McGehee’s blow-up as a −2-Herglotz system). McGehee’s blow-up equations (see, eg, [43])

s′ = y − J̃s, y′ =
1

2
J̃y +∇U(s) , (39)

where: (s, y) ∈ Snd−1×Rnd, J̃ = s ·y =: S/2, for the Newtonian n-body problem, may be described variationally
as a −2-Herglotz system (see Def. 19), on TSnd−1 × R, with Herglotz Lagrangian:

L =
∥s′∥2

2
+ U(s)− S2

8
. (40)

Proof. Consider the n-body Hamiltonian system

ω = dp ∧ dq = d(p · dq), H =
∥p∥2

2
− U(q)

with

q = (q1, ..., qn) ∈ Rnd, p = (p1, ..., pn) ∈ Rnd

for qj , pj ∈ Rd, and where U(λq) = λ−1U(q) is homogeneous of degree −1. For simplicity set the masses to
unit (otherwise, one may take, ∥ ∥, and its associated inner product with suitable mass coefficients). The system
admits the degree −2 scaling symmetry:

D = 2q · ∂q − p · ∂p.

Taking ρ := ∥q∥1/2 as a scaling function, the quotient R2nd/D ∼= Snd−1 ×Rnd, has scale-invariant coordinates:

s := q/ρ2 ∈ Snd−1, y := ρp ∈ Rnd.

Carrying out the cotangent scaling reduction of Proposition 8, we have:

S =
iD(p · dq)

ρ
= 2J̃ , J̃ = s · y

with associated contact 1-form, ρη = iDω = −2q · dp− p · dq = −ρ(dJ̃ + s · dy), given as:

η = σ · ds− dS , σ := y − J̃s ∈ T ∗
s S

nd−1.

That is, the contactification of T ∗Snd−1. The associated scale-reduced Hamiltonian, H = ρ2H, is then:

H =
∥y∥2

2
− U(s) =

∥σ∥2

2
− U(s) +

S2

8
.

The corresponding scale-invariant equations of motion (Eqs. (7), with Λ = −2) are exactly the usual McGehee
blow-up equations (39) (e.g. §4.2 of [43]), the collision manifold being given by the invariant level H = 0 (see
as well [40]). Recalling the discussion in Section IV B, we conclude that these McGehee blow-up equations are a
−2-Herglotz system with Lagrangian function given by (40) via Legendre transform of H .

Remark 26. In the coordinates TSnd−1 × R ∋ (s, s′, S) corresponding to the scale reduction’s structure as a
contactification, these scale-reduced equations of motion (39), read:

∇̄s′s
′ = ∇̄U − S

4
s′ , S′ = 2(∥s′∥2 − U) +

S2

4

where ∇̄ is the Levi-Cevita connection on the sphere Snd−1. Note the Herglotz constraint for the curves reads as
the equation for S′.
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Remark 27. One may of course apply Proposition 9 to the translation reduction of the n-body system. For
example, applied to the planar 3-body problem, one obtains a degree −2 contact system on the contactification:

T ∗S3 × R.

To fully reduce the problem, one may exploit as well the rotational, S1, symmetry which descends as contact
symmetries of this scale-reduced system. More explicitly, the angular momentum, G = p · iq, corresponds to the
scale invariant: G = G/ρ = σ · is. This G is no longer a conserved quantity, rather a dissipated one:

G ′ = −S
4

G , H ′ =
S

2
H

and associated to the integral (‘Dziobek constant’): G 2H , of the scale-reduced system. Upon fixing this integral
and quotienting by the (contact) rotation action, one may obtain –analogously to the coupling constants reduction–
a 5-dimensional ‘fully reduced’ contact system. This full reduction corresponds to that obtained by first performing
a symplectic reduction by rotations at a fixed angular momentum value and considering there an energy level of
the rotation-reduced (symplectic) Hamiltonian. Describing this structure on the fully reduced n-body systems more
explicitly will be developed in future work.

V. CONCLUSIONS

Let us recapitulate the main points of our work. We have shown that a general class of scaling symmetries
exist within symplectic systems, and how this symmetry can be used to reduce the system onto its invariants. In
Theorem 1 and its Corollary 1 we have shown that the reduction by identifying orbits of the scaling vector field on
the symplectic manifold yields a contact manifold, that the Hamiltonian vector field on the symplectic manifold
projects onto a (contact) Hamiltonian vector field on the contact manifold, and that the contact Hamiltonian
and contact form that generate this vector field are obtained by a simple and explicit procedure. We refer
to this procedure as a contact reduction by scaling symmetries, or simply contact reduction. This process has
been further generalized beyond simple systems admitting a scaling symmetry. Indeed, by lifting systems with
multiple couplings we find that there is a general process under which these also admit a contact reduction to an
equivalent scale-invariant description (Theorem 2), thus realizing Poincaré’s dream. The resultant scale-reduced
systems, being contact systems, have interesting features not apparent in the unreduced symplectic manifolds,
such as measure focusing and dissipation of previously conserved quantities. Such features have important roles
in describing physical phenomena such as the arrow of time [33]. Finally, we have presented several examples,
especially related to blow-ups in celestial mechanics. Among these, the most striking result is having re-obtained
McGehee’s blow-up for collisions in n-body systems in terms of a contact reduction and, therefore, as a Λ-Herglotz
system (Proposition 9).

For future work, a neat and general framework for the realization of our contact reduction is the one put
forward in [28, 29]. Thus we expect to analyze some of the results presented here within this context. Moreover,
a most interesting application of the contact reduction is to examine the nature of ‘blow-ups’ (see Section IV C).
For example, when the scale variable in the symplectic system approaches zero, such as at the total collisions of
the three-body problem. Many of the problems regarding the continuation of solutions beyond such points arise
due to the ill-defined evolution of the scale variable. Such a situation can be avoided in the reduced system as
the evolution of the scale is immaterial to the behaviour of the contact system. One can envision situations in
which the contact Hamiltonian vector field will remain well-defined on the contact manifold when the symplectic
Hamiltonian vector field becomes ill defined, and thus a ‘natural’ continuation of the symplectic system may be
considered as passing to the contact manifold for evolution beyond this point, and symplectifying the resultant
evolution. In cosmological systems [35, 39, 46] this has been shown to allow continuation beyond the initial
singularity, and in black holes beyond the central singularity [41].
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Appendix A: Symplectic and contact Hamiltonian mechanics

In this appendix we review briefly some of the main definitions and properties of Hamiltonian mechanics on
symplectic and contact manifolds, paying special attention to the relationships between the two that will be used
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in this work in order to have it self-contained. Most of the definitions and results presented here can be found
in [2] and [24], to which we refer for more detailed discussions.

1. Symplectic and contact: definitions

We begin with some general definitions that establish the notation and sign conventions.

Definition 7. A symplectic manifold is a pair (M,ω), where M is a 2n-dimensional manifold and ω is a 2-form
on M which is closed (dω = 0) and non-degenerate (ωn ̸= 0). A symplectic vector field on M is one whose flow
preserves ω : LXω = 0.

Dynamics on a symplectic manifold is usually given by Hamiltonian systems, which are defined as follows.

Definition 8. A (symplectic) Hamiltonian system is a triple (M,ω,H), where (M,ω) is a symplectic manifold
and H : M → R is a differentiable function called the (symplectic) Hamiltonian. Given this structure, a unique
symplectic vector field XH , the (symplectic) Hamiltonian vector field, is defined on M by the condition

iXH
ω = −dH . (A1)

By a theorem of Darboux, locally we can always find coordinates (qa, pa), a = 1, . . . , n, on a symplectic
manifold such that

ω = dpa ∧ dqa . (A2)

These coordinates are called canonical or Darboux coordinates. It follows directly from (A1) and (A2) that the
trajectories of XH – i.e. parametrized curves γ : I ⊂ R → M satisfying γ̇(t) = XH(γ(t)) – are solutions to the
symplectic Hamiltonian equations

q̇a =
∂H

∂pa
and ṗa = −∂H

∂qa
. (A3)

On the contact side, we have the corresponding definitions

Definition 9. A contact manifold is a pair (C,D), where C is a (2n + 1)-dimensional manifold and D is a
maximally non-integrable distribution of hyperplanes on C. Locally at least, there always exists a 1-form η on C
such that D = ker η and the maximal non-integrability condition is expressed as η ∧ (dη)n ̸= 0. Such η is called
a contact 1-form. A contact vector field on C is one whose flow preserves D : LXη ∼ η.

Note that a contact 1-form η exists globally if and only if D is co-orientable, meaning that the quotient line
bundle TC/D is trivial (see [24] or Remark 28 below). Furthermore, once we fix a contact 1-form η for D , then
any other 1-form of the type η′ = fη with f : C → R× yields a different contact form for the same D . That is,
there is a freedom in choosing contact forms for the same D , up to re-scaling by a nowhere-vanishing function.
However, to define certain dynamics, the choice of η is relevant, as the next definition will show.

We recall that on a contact manifold to a choice of η there is associated a special contact vector field, its Reeb
vector field R, defined by

iRdη = 0 and iRη = 1 . (A4)

Now we are ready to introduce the Hamiltonian dynamics on contact manifolds (see as well Proposition 10 and
Remark 29 below for some context).

Definition 10. A (contact) Hamiltonian system is a triple (C, η,H ), where (C, η) is a contact manifold with
a given choice of contact 1-form and H : C → R is a differentiable function called the (contact) Hamiltonian.
Given this structure, a unique contact vector field XH , the contact Hamiltonian vector field, is defined on C, by
the conditions

iXH dη = −dH + R(H )η and iXH η = H . (A5)

By a theorem of Darboux, locally we can always find coordinates (qa, pa, S) on a contact manifold such that

η = padq
a − dS , and R = − ∂

∂S
. (A6)
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These coordinates are called contact or Darboux coordinates. It follows directly from (A5) and (A6) that the
trajectories of XH are solutions to the contact Hamiltonian equations

q̇a =
∂H

∂pa
ṗa = −∂H

∂qa
− pa

∂H

∂S
Ṡ = pa

∂H

∂pa
− H . (A7)

It should be stressed at this point that the dynamical vector fieldsXH andXH can be given variational definitions,
provided the corresponding Lagrangians are (hyper-)regular, both in the symplectic and in the contact case.
While in the symplectic case Hamilton’s variational principle and the corresponding Lagrangian mechanics is
well-known, its contact counterpart, known as Herglotz’ variational principle, has been far less studied until
recently (see [18, 25, 52]). In Appendix A 3 we detail this correspondence, and we re-state the main results of
this work from the variational perspective in section IVB.

2. Symplectic and contact: known relationships and new definitions

Now we review some known relationships between symplectic and contact manifolds, together with the respec-
tive Hamiltonian dynamics.

We start with a procedure by which there always exists a natural extension of a contact manifold to a symplectic
one (see [2], Appendix 4).

Definition 11. Given a contact manifold, (C,D), the symplectification, C̃, of C is:

C̃ := {βx ∈ T ∗
xC : kerβx = Dx} ⊂ T ∗C. (A8)

Note that C̃ is an R×-principal bundle over C with (exact) symplectic structure dα̃ defined by restriction of
the canonical symplectic form on T ∗C:

α̃x̃(ξ) := x̃((πC)∗ξ) , (A9)

where πC : C̃ → C is the projection (see also [11]).

Remark 28. The symplectification of C consists of the non-zero elements, Ann(D)\C, of the annihilator of D :
Ann(D) := {β : β|D ≡ 0} and so is naturally identified with the non-zero elements of (TC/D)∗.

When the contact distribution is co-orientable (TC/D is a trivial line bundle), then so too is the symplectifi-
cation a trivial principal bundle: C̃ ∼= C × R×, trivialized by a global choice of contact 1-form η. In this case C̃
has two connected components, C̃± and, when a contact 1-form η has been chosen, it is convenient to refer to
the component C̃+ := {esη} consisting of positive multiples of η as the symplectification.

To understand further the relationship between C̃ and C, we introduce the following definition.

Definition 12. Let (M,ω = dλ) be an exact symplectic manifold, where a choice for the symplectic potential λ
has been made. The vector field D ∈ X(M) such that

iDω = λ (A10)

is called the Liouville vector field of λ.

Then, for (C̃, α̃) the symplectification of C, the generator, D, of the R×-action on C̃’s fibers is the Liouville
vector field of α̃. It turns out that there is a very special correspondence between contact vector fields on C and
certain Hamiltonian vector fields on C̃. To see this, observe first that symplectic flows of X̃ ∈ X(C̃) commuting
with the flow of D are in fact Hamiltonian, and induce flows of X = (πC)∗X̃ ∈ X(C) preserving D (contact
flows). This leads to the following result (see [2], Appendix 4):

Proposition 10. Every contact vector field on C can be lifted to a symplectic Hamiltonian vector field on C̃ (the
symplectification of C) whose Hamiltonian is homogeneous of degree 1 with respect to D, that is, LDH̃ = H̃.
Conversely, every Hamiltonian vector field on C̃ such that H̃ is homogeneous of degree 1 projects onto C as a
contact vector field.

Remark 29. When a contact 1-form, η, of C has been chosen, any contact vector field X on C may be associated
with a function H = iXη. The vector field is recovered from the function (and contact 1-form), by the conditions
iXη = H , LXη ∼ η, which define a contact Hamiltonian vector field, cf. Eq. (A5). According to Proposition 10,
there is a Hamiltonian, H̃, on C̃ determined by X, which we refer to as the symplectic lift of H , related to H
by ι∗H̃ = H , for ι : C → C̃ the section associated to η.
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See e.g. [2] and [50, 51] for applications of this correspondence to thermodynamics. Above (Theorem 1 and
Corollary 2) we extend this relationship for Hamiltonians, LDH̃ = ΛH̃ of degree Λ, on C̃.

Definition 13. The Λ-Hamiltonian vector field, XΛ
H , of a function H on the contact manifold C with respect

to the contact 1-form η, is determined by the conditions:

iXΛ
H
η = ΛH , iXΛ

H
dη = −dH + (RH ) η .

Using this definition, the results of Section II B above may be stated in a more analogous manner to their
degree one counterparts, as detailed in the following observation.

Remark 30. For Λ = 1, Definition 13 is exactly the definition of a contact Hamiltonian vector field. In general,
the trajectories of a symplectic Hamiltonian system of degree Λ on C̃ project to (reparametrized) trajectories of
the Λ-Hamiltonian vector field on C determined by H = ι∗H̃, where ι : C → C̃ is the section associated to η.

As a completely analogous construction to the symplectification, if (M,ω) is exact symplectic, there is also a
natural procedure to extend it to a contact manifold (see [2], Appendix 4).

Definition 14. Given an exact symplectic manifold (M,ω = dλ), the contactification of M is

M̃ :=M × R, λ̃ := π∗
Mλ− dS , (A11)

where πM : M̃ →M is the standard projection.

Again, there is an explicit relationship between Hamiltonian vector fields M and certain contact vector fields
on M̃ , given by

Proposition 11. Every symplectic Hamiltonian vector field on M can be lifted to a contact Hamiltonian vector
field on M̃ (the contactification of M) whose Hamiltonian is

H̃ = π∗
MH . (A12)

Conversely, every contact Hamiltonian vector field on M̃ such that R̃H̃ = 0 projects onto M as a symplectic
Hamiltonian vector field XH . In this case we call H̃ the contact lift of H.

In Darboux coordinates (qa, pa) for M , one has λ̃ = padq
a − dS and the integral curves of XH̃ are given

by (A7) by setting H̃ (qa, pa, S) := H(qa, pa) (note that in particular ∂H̃ /∂S = 0).
Note that, by definition, the flow of XH is just the projection of that of XH̃ . However, on M̃ there can be

defined contact Hamiltonians that are not lifts of any symplectic Hamiltonian on M. This has been exploited
largely in recent years to describe mechanical systems with dissipation (classical and quantum), thermostatted
systems and thermomechanical phenomena in a Hamiltonian framework (see e.g. [6–9, 15, 21, 26, 27, 30, 31]).

Dual to the above constructions, in which we extended either a contact or a symplectic manifold, under the
appropriate hypotheses one can also reduce one of these structures to the other. In particular, we have

Definition 15. Let (M,ω = dλ) be an exact symplectic manifold and D ∈ X(M) its Liouville vector field. Any
hypersurface C transverse to D is called of contact type.

Hypersurfaces of contact type on an exact symplectic manifold are naturally endowed with a contact structure
as follows.

Proposition 12. Let (M,ω = dλ) be an exact symplectic manifold, D the Liouville vector field and ιC : C →M
a hypersurface of contact type. Then the 1-form ηD := ι∗CiDω = ι∗Cλ is a contact form on C.

Example 14 (Transverse H levels). A typical example of a hypersurface of contact type is given by any reg-
ular energy level CE := H−1(E) of a Hamiltonian system on the cotangent bundle (T ∗Q, dα), where α is the
canonical 1-form, which is transverse to the Liouville vector field. Interestingly, in this case the restriction of the
Hamiltonian vector field XH to CE is just a reparametrization of the Reeb vector field of ηX. Indeed, one has
R =

XH|CE

X(H)|CE

, and therefore the orbits – the unparametrized trajectories – of the two vector fields are the same.

Analougously, one can reduce a contact manifold to an exact symplectic one on a proper ‘energy hypersurface’
of the contact Hamiltonian and find an equivalence between the orbits of the contact Hamiltonian vector field
and the Liouville one as follows (see [10]).

Definition 16. Let (C, η) be a contact manifold and R ∈ X(C) its Reeb vector field. Any hypersurface S
transverse to R is called of symplectic type.
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Hypersurfaces of symplectic type on a contact manifold are naturally endowed with a symplectic structure as
follows.

Proposition 13. Let (C, η) be a contact manifold, R the Reeb vector field and ιS : S → C a hypersurface of
symplectic type. Then the 2-form Ω = dθ, with θ = ι∗Sη is an exact symplectic form on S.

Example 15 (Transverse H 0-level). Let H : C → R be a Hamiltonian function on a contact manifold (C, η)
with Reeb vector field R and assume that S = H −1(0) ̸= ∅ is transverse to R. Then (S,Ω) is an exact symplectic
manifold as above. Moreover, if ∆ is the Liouville vector field of the exact symplectic manifold (S,Ω), then XH |S
is the reparametrization of ∆ given by XH |S = −(R(H ) ◦ ιS)∆.

Finally, let us also note that all the above relationships have motivated the definition of a symplectic sandwich
with contact bread, see [10], where it was proved that the existence of an invariant measure for XH |S is equivalent
to the existence of a symplectic sandwich with contact bread.

3. Symplectic and contact: variational principles

We conclude this appendix on the known relationships between symplectic and contact systems by recalling
some known facts about their variational descriptions. We refer to e.g. [18, 25, 52] for the variational formulation
of contact systems and to [36, 37, 53, 54] for the use of variational techniques in order to study dynamical
properties and solutions of the related Hamilton-Jacobi equations.

Let us recall that certain Hamiltonian systems admit Lagrangian variational descriptions.

Definition 17. A Lagrangian system is a pair (Q,L), where L : TQ → R. The action of a curve q(t) ∈ Q is
S :=

∫
L(q, q̇) dt.

The extremals of the action, with say fixed endpoints, satisfy the well-known Euler-Lagrange equations:

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
(A13)

The contact analogue of a Lagrangian system is

Definition 18. A Herglotz Lagrangian system (also known as a contact Lagrangian system) is a pair (Q̄,L ),
where L : TQ̄×R → R. The action of a curve q(t) ∈ Q̄ is ∆S :=

∫
L (q, q̇, S)dt, where S(t) solves Ṡ = L (q, q̇, S).

This definition extends the scope of Lagrangian systems to allow for dependence on the action. The extremals
of this action, with say fixed endpoints and initial condition S(0) = S0, satisfy the Herglotz-Lagrange equations:

d

dt

(
∂L

∂q̇

)
=
∂L

∂S

∂L

∂q̇
+
∂L

∂q
, Ṡ = L . (A14)

The connection between Herglotz Lagrangian systems and contact Hamiltonian systems runs in parallel to the
usual connection between Lagrangian and Hamiltonian systems. Under the Legendre transform,

Leg : TQ̄× R → T ∗Q̄× R, p =
∂L

∂q̇
,

the Herglotz-Lagrangian extremals correspond to trajectories of the contact Hamiltonian system

C = T ∗Q̄× R, H = p · q̇ − L , η = p · dq − dS. (A15)

Remark 31. Here we consider regular systems, whose Legendre transform is a diffeomorphism. One way to
see the connection of a contact Hamiltonian system to its Herglotz variational principle is via the Poincaré-
Cartan form: α := p · dq − H dt and η̂ := α − dS = η − H dt on the extended space, C × R ∋ (c, t). The
world lines of trajectories of the contact Hamiltonian system are characterized by lying tangent to the line field
ker η̂ ∩ {X : iXdα ∼ η̂}, or equivalently as extremals of γ 7→

∫
γ
α among curves satisfying the constraint η̂|γ ≡ 0.

As we have observed in Remark 30, the trajectories of a symplectic Hamiltonian system admitting a scaling
symmetry of degree Λ scale reduce to trajectories of a Λ-Hamiltonian vector field on C. Such trajectories may
also be described variationally.

Definition 19. A Λ-Herglotz system is a pair, (Q̄,L ), where L : TQ̄×R → R. The action of a curve q(t) ∈ Q̄
is SΛ :=

∫
L (q, q′, S) dt, where S solves S′ = L + (1− Λ)E , for E := Leg∗H = ∂q′L · q′ − L .
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Remark 32. Under Legendre transform, H = p · q̇ − L , extremals of the Λ-Herglotz system L correspond
to trajectories of the Λ-Hamiltonian vector field of H (Definition 13). One way to see this connection is via
the Poincaré-Cartan form: α := p · dq − H dt and η̂Λ := η − ΛH dt on the extended space, C × R ∋ (c, t).
The world lines of trajectories of the Λ-Hamiltonian vector field are characterized by lying tangent to the line
field ker η̂Λ ∩ {X : iXdα ∼ η̂Λ}, or equivalently as extremals of γ 7→

∫
γ
α among curves satisfying the constraint

η̂Λ|γ ≡ 0. Alternately, one may verify the correspondence directly via the equations of motion (Eqs. (7) above).
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