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ABSTRACT
A partial disassembly line balancing problem under uncertainty is studied in this
paper, which concerns the allocation of a sequence of tasks to workstations such
that the overall profit is maximized. We consider the processing time uncertainty
and develop robust solutions to accommodate it. The problem is formulated as
a non-linear robust integer program, which is then converted into an equivalent
linear program. Due to the intractability of such problems, the exact algorithms are
only applicable to small scale instances. We develop an improved migrating birds
optimization algorithm. Two enhancement techniques are proposed. The first one
finds the optimal number of tasks to be performed for each sequence rather than
random selection used in the literature; while the second one exploits the specific
problem structure to construct effective neighborhoods. The numerical results show
the strong performance of our proposal compared to CPLEX and the improved
gravitational search algorithm (IGSA), especially for large scale problems. Moreover,
the enhancement due to the proposed techniques is obvious across all instances
considered.

KEYWORDS
partial disassembly line balancing problem; uncertain processing time; robust
optimization; migrating birds optimization.

1. Introduction

Disassembly, remanufacturing and recycling are the critical processes of End of Life (EOL)
product recovery. With disassembly being the first key step (Gupta and Taleb 1994), it is
important to properly design disassembly lines so as to achieve efficient product recovery. The
disassembly line balancing problem (DLBP) concerns the optimal assignment of disassembly
tasks to a number of workstations under various constraints, such as those on precedence
relationships and cycle time. The objective is to utilize the disassembly resources as efficiently
as possible while satisfying demand (Güngör and Gupta 1999).

As an important problem in reverse logistics, DLBP has attracted growing attention in
recent years (Boysen et al. 2007). Even though DLBP appears to be similar to the assembly
line balancing problem (ALBP), it cannot simply be considered as the reverse of ALBP due to
the physical and operational characteristics between them (Güngör and Gupta 1999). Unlike
the convergent flow process (all parts must be assembled to become a single product) of
assembly lines, the disassembly flow process is divergent in that a single product is broken
down into multiple subassemblies/parts, and the disassembly process does not have to be
performed completely. Furthermore, the condition of the products received for disassembly
is unknown; the part qualities and quantities, and arrival times of the products cannot be
controlled, which leads to obvious variations in disassembly task times (Altekin and Akkan



2012). For a detailed comparison of assembly and disassembly lines, please refer to the book
by Lambert and Gupta (2005) and a recent review paper by Özceylan et al. (2019).

In order to design an efficient disassembly line, different and usually complex factors need
to be considered, and many factors should be incorporated into the objective functions of
DLBP (Güngör and Gupta 2002). It has been shown by (McGovern and Gupta 2007) that
DLBP problems are NP-complete, and thus most of the works in the literature concern the
heuristics or meta-heuristic methods. McGovern and Gupta (2007) proposed a formulation
with five objectives, which include minimizing the number of workstations, ensuring the bal-
ance of workstation idle times, removing hazardous parts early, removing high-demand parts
early, and minimizing the number of part removal direction changes. A genetic algorithm was
developed to solve the problem. Ding et al. (2010) designed a Pareto-based ant colony algo-
rithm for a multi-objective DLBP problem to minimize the number of workstations, ensure the
balance, and satisfy the demand. Kalayci and Gupta (2013a) first introduced the sequence-
dependent concept in DLBP, where task times may be influenced by the order in which they
are performed. For a sequence-dependent disassembly line balancing problem (SDDLBP) with
multiple objectives, ant colony optimization (Kalayci and Gupta 2013a), particle swarm op-
timization (Kalayci and Gupta 2013b), artificial bee colony optimization (Kalayci and Gupta
2013c), tabu search (Kalayci and Gupta 2014) and hybrid genetic algorithm (Kalayci and
Gupta 2016) have all been proposed to solve these problems.

The above-mentioned studies all consider complete disassembly processes. However, with
the increasing structural complexity of products, it is expensive and usually unnecessary to
completely disassemble a product into individual parts; partial disassembly is more common in
practice. The partial disassembly line balancing problem (PDLBP) has not received much at-
tention in the literature. Most of existing researches about PDLBP aim to maximize the profit.
Altekin et al. (2004) first considered a partial disassembly DLBP problem to recycle valuable
parts. They developed two mathematical models to maximize the profit in each disassembly
cycle as well as the whole planning horizon. Altekin et al. (2008) defined a profit-oriented
PDLBP which aimed at maximizing the profit while simultaneously deciding the number of
stations and the cycle time. Then they built a mixed integer programming model that was
solved by a lower and upper-bound scheme. Recently, Ren et al. (2017) first gave the cycle time
for the profit-oriented PDLBP, and solved it with an improved gravitational search algorithm.
Kalaycılar et al. (2016) studied a PDLBP problem with a fixed number of workstations. They
developed a mixed integer programming model and proposed some upper and lower bounding
procedures to assign the tasks and maximize revenue. The task failure in partial disassem-
bly lines was considered by Altekin and Akkan (2012), who proposed a predictive-reactive
approach to re-select and re-assign tasks after the failure so that the line was rebalanced.

Note that all the literature reviewed so far concerns various DLBP problems in a deter-
ministic setting. However, parameters could be well uncertain in real life. For instance, the
disassembly task time could vary due to the particularities of manual operations, the het-
erogeneity among operators may well exist, unexpected events could take place and have an
impact on the disassembly process, and etc. Recently some researchers investigated the PDLBP
problems in which the time of each disassembly task is a random variable with known prob-
ability distribution. To accommodate the uncertainty, the cycle time constraint was relaxed
but required to be satisfied above a predetermined probability level. Bentaha et al. (2013) first
constructed a chance constrained program formulation for such a problem to maximize the
profit, and solved the model with the interior-point algorithm of CPLEX. The same problem
was solved by a lower and upper-bounding scheme based on the second order cone program-
ming and convex piecewise linear approximation in Bentaha et al. (2015). Bentaha et al. (2014,
2018) considered the penalty costs incurred due to cycle time constraint violation. Bentaha
et al. (2014) formulated this problem into a stochastic program, and proposed Monte Car-
lo sampling based exact solution method to maximize the line profit. In order to maximize
the revenue under task time uncertainty, an exact solution approach combining the L-shaped
algorithm and Monte Carlo sampling techniques was developed by Bentaha et al. (2018).

Robust optimization is widely used in dealing with uncertainties when the probability dis-
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tribution of the random variables is unknown (Gorissen et al. 2015). The uncertainties are
described in the form of user-specified uncertainty sets and the aim is to find solutions that
are feasible for all realizations of the uncertain parameters within the given set (Bertsimas et
al. 2011). The solutions obtained thus have strong robustness and the sensitivity to parameter
changes is low. Robust optimization was first proposed by Soyster (1973) to solve the parame-
ter uncertainty in linear programming, but the solutions derived were too conservative for the
sake of ensuring robustness. To address the over-conservativeness, Bertsimas and Sim (2003,
2004) developed a new robust optimization method (called B&S method hereafter) using the
budget uncertainty set to describe the uncertain parameters. This uncertainty set is based on
the relative value of the uncertainty parameter deviation, which can describe the parameter
fluctuation more accurately, and it is more suitable to describe the uncertain task processing
time.

The B&S method has clear advantages over the alternative approaches that are based on
other uncertainty sets (e.g., ellipsoid uncertainty set (El Ghaoui et al. 1998)). Firstly its robust
counterpart model takes a linear form, and it can be directly applied to discrete optimization
problems. Secondly, this method offers full control on the degree of conservatism. A param-
eter Γ that limits the number of uncertain data being considered is specified by the decision
maker, which in turn adjusts the level of conservativeness of the solutions. In other words, this
approach aims to find the optimal solutions when at most Γ uncertain parameters are allowed
to simultaneously change. Hazır and Dolgui (2013) and Pereira and Álvarez-Miranda (2018)
have applied this approach to assembly line balancing problems. To the best of our knowledge,
the B&S approach has not yet been applied to any DLBP problems.

Before proceeding we would like to highlight that robust optimization is in clear contrast to
stochastic programming that seeks optimal solutions in some probabilistic sense, which requires
the knowledge of the distributions. This requirement can be relaxed and many authors have
considered distribution free stochastic programming approaches, which leads to a related but
different research area, the distributionally robust optimization problems (see for example
Bertsimas and Popescu (2005); Delage and Ye (2010); Adulyasak and Jaillet (2015); Zhang et
al. (2018)). In these problems the distribution of the random parameters is unknown. Instead,
they introduce a family of distributions that are assumed to include the true (but unknown)
distribution. All the distributions in this set satisfy some given constraints, such as linear
constraints on moments (Bertsimas and Popescu 2005). The objective is to optimize the worst
case performance of the selected cost function over the distribution set. The distributionally
robust optimization problems are different from the robust optimization problems in that the
former only require the constraints are satisfied by a pre-defined probability (though for all
distributions in the given set).

In this paper, we consider a partial disassembly line balancing problem under uncertainty
(PDLBP-U), where the operational time for each disassembly task is uncertain but takes
values from a known interval. Our aim is to find the minimum number of workstations for the
given cycle time requirement, and in the meantime to maximize the profit of the disassembly
line. We formulate the problem into a non-linear robust integer program. Following the B&S
approach, the non-linear program is converted into a corresponding linear robust model which
can be solved directly by the CPLEX solver. However, an optimal solution from CPLEX can be
hardly found in polynomial time especially for larger scale problems. To this end, we develop
a heuristic method based on migrating birds optimization(MBO), which is a novel nature-
inspired metaheuristic algorithm proposed by Duman et al. (2012). It is suitable for discrete
combinatorial optimization problems, and has been applied to various problems including the
closed loop layout(Niroomand et al. 2015), the task allocation problems (Dindar 2017) and
the flow shop problems (Sioud and Gagné 2018; Meng et al. 2018).

To summarize, our contributions are two-fold. Firstly, the probability distribution of the
uncertain task time is often difficult to obtain in practice. Instead, the possible deviation from
the standard operation time is much easier to estimate. In light of this we propose to use the
budget uncertainty set to describe the uncertainty and develop a robust model following the
B&S method. This approach is flexible in that the level of robustness can be adjusted by the
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decision-maker as required. Secondly, we propose an improved MBO algorithm to solve the
PDLBP-U problem. Unlike the random selection of tasks to be performed for each sequence
in the literature, we propose to find the optimal number of tasks for partial disassembly. We
also propose effective neighborhoods to enhance the performance of the basic MBO algorithm.
Our computational experiments over a wide range of instances show the clear and significant
improvement due to these techniques.

The remaining of the paper is organized as follows. The problem description and the robust
optimization models are presented in Section 2. Section 3 describes in detail the proposed
heuristic method for the problem concerned. The computational experiments are reported in
Section 4. Finally, conclusions and future research directions are provided in Section 5.

2. Problem description and robust optimization models

2.1. The problem

A single type of products are partially disassembled via a straight disassembly line. We aim
to assign a set of disassembly tasks i ∈ {1, 2, ..., I} to an ordered sequence of workstations
k ∈ {1, 2, ...,K}, while satisfying cycle time and precedence relationships constraints. A single
task cannot be divided between two workstations, and it may result in removal of one or more
parts. It is also possible that no parts are released after a task. Denote by ci and ri the cost
and revenue associated to task i. If a task does not release any parts, the revenue is zero.
Cost is also incurred for opening and operating a workstation. In this study, the uncertainty
of disassembly task times is taken into account. The processing time t̃i of task i is unknown
but takes its value from a bounded interval [ti,t̄i], where the lower bound ti is assumed as the
nominal time of task i, which is the standard processing time of task i. t̃i is allowed to deviate
the nominal time due to the particularities of manual operations and random event, and the
maximum deviation value is di, so the upper bound t̄i=ti+di. Let di = p · ti, where p is the
deviation coefficient from the nominal time that determines the size of the interval. PDLBP-U
looks for sequences that are feasible in all possible realizations at a predetermined uncertainty
level, and in the mean time maximize the overall profit. We assume that the supply of products
to be disassembled is infinite, and every product contains all their parts with no addition or
removing of components.

The precedence relationships among tasks are depicted by the task-based AND/OR prece-
dence diagram, which contains AND precedence relation and OR precedence relation. The
AND precedence relation is the common precedence relation. For a task i, all of its predeces-
sors must have been completed before it can start itself. As shown in Figure 1(a), tasks 1,2
and 3 are AND predecessors of task 4. The OR precedence relation is expressed by an arc. For
task i, at least one of its predecessors must have been finished before it may start. In Figure
1(b), task 5, 6 and 7 are OR predecessors of task 8.

 

1

2

3

4

Figure 1(a). AND precedence relation.
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Figure 1(b). OR precedence relation.

2.2. The models

The notation to be used in the mathematical models is given in Table 1.
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Table 1. The Notation.

Notation Definition

I number of disassembly tasks that is indexed by i

K upper limit on the number of workstation that is indexed by k

C operating cost per unit time for a workstation
F fixed cost of opening a workstation

CT cycle time

PAND(i) the set of AND predecessors of task i
POR(i) the set of OR predecessors of task i

ri the revenue of parts released by task i

ci the cost of task i
t̃i uncertain processing time of task i

xik =1, if task i is assigned to workstation k;

=0, otherwise
zk =1, if workstation k is open;

=0, otherwise

The problem alluded to in the previous section can be formulated into an integer program
as below.

max
∑I

i=1

∑K

k=1
(ri − ci)xik − (F + C · CT )

∑K

k=1
zk (1a)

s.t.
∑K

k=1
xik ≤ 1,∀i ∈ I (1b)∑I

i=1
t̃ixik ≤ zk · CT,∀k ∈ K (1c)

xik ≤
∑k

h=1
xlh,∀i ∈ I, k ∈ K, l ∈ PAND(i) (1d)

xik ≤
∑k

h=1

∑
l∈POR(i)

xlh,∀i ∈ I, k ∈ K (1e)

xik, zk ∈ {0, 1},∀i ∈ I, k ∈ K (1f)

The objective function (1a) maximizes the total profit of disassembling one product. The
first term is the profit due to the disassembly of the product, while the second term represents
the total cost of opening and operating workstations. Each task can be assigned to at most one
workstation by constraint (1b). Constraint (1c) ensures that the total (uncertain) processing
time of all the tasks assigned to a workstation must stay within the cycle time. The precedence
constraint (1d) ensures that task i is assigned only when all its AND predecessors are already
assigned. Similarly, constraint (1e) ensures that task i is assigned only if at least one of its
OR predecessor has been assigned. Constraint (1f) indicates that decision variables are 0-1
variables.

The problem cannot be readily solved due to the random variables involved in constraint
(1c). We now follow the B&S robust approach to re-formulate it as a non linear robust model.
By constraint (1c) the total processing time allocated to any workstation k can not go beyond
the cycle time. The most stringent condition occurs when all the tasks’ processing times take
their upper bound values. (Therefore di can be deemed as the protective buffer to prevent
workstation overload against a particular task uncertainty.)

We first introduce a parameter Γ that determines the number of tasks whose processing
times are considered uncertain and take their upper bound values in the robust model, while
the rest of tasks are deemed as deterministic and take their lower bound values. Therefore, by
varying the value of Γ between 0 and I we can adjust the robustness of the solutions against
their conservativeness. When Γ = 0, the uncertainty of all processing times are ignored and the
PDLBP-U reduces to the deterministic PDLBP with nominal times. When Γ increases, more
tasks are considered as uncertain and the level of conservativeness of the solution increases.
When Γ = I, all processing times take upper bound values and the solution is the most
conservative. In this case the PDLBP-U can be converted into the deterministic PDLBP in
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the worst case. In order to derive a solution that is feasible for up to Γ uncertain tasks, a
non-linear robust integer programming model is formulated as follows.

max
∑I

i=1

∑K

k=1
(ri − ci)xik − (F + C · CT )

∑K

k=1
zk (2a)

s.t.
∑I

i=1
tixik + hk(x) ≤ zk · CT,∀k ∈ K (2b)

hk(x) = max

{∑I

i=1
dixikqik :

∑I

i=1
qik ≤ Γ

}
,∀k ∈ K (2c)

0 ≤ qik ≤ 1,∀i ∈ I, k ∈ K (2d)

(1b), (1d), (1e), (1f)

where the constraint (2c) ensures that at most Γ operation times deviate from their nominal
values, and qik is an auxiliary continuous variable measuring the deviation of the processing
time of task i when allocated to workstation k.

The non-linear constraint (2c) for workstation k is equivalent to the following problem for
given x.

hk(x) = max
∑I

i=1
dixikqik (3a)

s.t.
∑I

i=1
qik ≤ Γ, (3b)

0 ≤ qik ≤ 1,∀i ∈ I, (3c)

Following the B&S approach, the dual of problem (3) can be solved to linearize the constraint
(2c) . By associating dual variables θk and wik to constraints (3b) and (3c) respectively, the
following dual of problem (3) is obtained.

hk(x) = min
∑I

i=1
wik + Γ · θk (4a)

s.t. θk + wik ≥ dixik,∀i ∈ I, (4b)

wik ≥ 0,∀i ∈ I, (4c)

θk ≥ 0. (4d)

By strong duality hk(x) is equal to the objective function value of Problem (4) , so the
non-linear robust model (2) can be transformed into linear model (5) as follows(Bertsimas and
Sim 2003).

max
∑I

i=1

∑K

k=1
(ri − ci)xik − (F + C · CT )

∑K

k=1
zk (5a)

s.t.
∑I

i=1
tixik +

∑I

i=1
wik + Γ · θk ≤ zk · CT,∀k ∈ K (5b)

θk + wik ≥ dixik,∀i ∈ I, k ∈ K (5c)

wik ≥ 0,∀i ∈ I, k ∈ K (5d)

θk ≥ 0,∀k ∈ K (5e)

(1b), (1d), (1e), (1f)

In theory the linear model (5) can be solved exactly by branch-and-cut algorithms. Howev-
er, for practical PDLBP-U problems, the exact optimal solutions cannot be obtained within
reasonable time, as we know DLBP problems have been proven to be NP-complete (McGovern
and Gupta 2007). To this end, we propose an MBO based meta-heuristic approach to solve
the non-linear robust model (2) of PDLBP-U. As we shall see in the numerical experiments,
the proposed approach can find good feasible solutions in reasonable time.
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3. The improved migrating bird optimization

In this section we propose an improved MBO (IMBO) method with a tailored decoding strategy
and effective neighbourhoods. The standard MBO algorithm is briefly introduced, followed by
the detailed description of IMBO.

3.1. A brief introduction to the MBO algorithm

MBO is a recent meta-heuristic approach developed for combinatorial optimization problems.
It is motivated by the V formation during the long distance journey in birds’ migratory process,
which can save about 70% of energy consumption. In this formation, birds fly at an angle and
at a specific distance from each other. The leader bird uses the most energy, while the followers
on both the left and right line save energy from the air agitation created by the companions
in front of them. When the leader is tired, it goes to the end of the line and a bird following
it takes its place as the next leader.

In the MBO algorithm, each bird in the flock represents a solution. A number of parallel
solutions are evolved to enlarge the solution space during the solution process. Moreover, MBO
distinguishes from the other swarm intelligence algorithms in its different individual evolution-
ary mechanism. Individuals (birds) in MBO not only can generate better neighboring solutions
by themselves, but also may obtain better solutions from the neighborhood solutions of the
previous individual. Therefore, the algorithm has faster convergence and more diversification
that contribute to its efficiency.

MBO mainly contains four basic steps: initialization, leader improvement, follower improve-
ment and new leader selection, which are introduced as below.

(1) initialization : The MBO parameters are initialized, which include the number of so-
lutions in the group (N), the number of neighboring solutions to be explored (ne),
the number of neighboring solutions to be shared with the following solution (ns), the
number of tours (m) and the termination limit (T ). The initial population is randomly
generated. The first solution is called the leader in the flock, and the others are regarded
as the followers on the left and right line.

(2) leader improvement : At first, the leader explores ne number of its neighboring solu-
tions. Then, the best neighboring solution is selected to compare against the leader. If
the leader is improved, it is replaced by the best neighboring solution; otherwise, the
leader stays the same and the unused best ns neighboring solutions are kept as the
neighboring solutions of the followers.

(3) follower improvement : The current follower remains ns neighboring solutions from
the previous, and regenerates ne-ns solutions by searching its neighborhood. If the best
neighboring solution improves the current follower, the current follower must be replaced.
Subsequently, the unused ns best neighboring solutions are moved to the next follower.

(4) new leader selection : Leader improvement and followers improvement are one tour,
and after m tours are finished, the leader will be updated. The leader moves to the end
of the flock as a new follower, and the first follower becomes a new leader.

(5) termination criterion : If the number of objective function evaluations exceeds T , the
algorithm terminates; otherwise, go to Step 2 and repeat.

3.2. The decoding process

In this paper, a solution is encoded as a task assignment string. Each element of the string
corresponds to one disassembly task of the product. Denote by {O1, O2, ..., OM} the task
assignment string that meets the precedence relation of the tasks, where Oi(i ∈ {1, ...,M})
indicates the task in the ith position of the string. M is the total number of tasks required to
completely disassemble the product. This encoding method is the same for both DLBP and
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PDLBP.
The decoding process is to assign the tasks of the string to workstations while satisfying the

cycle time constraint. Unlike the CT constraint of PDLBP, the total uncertain tasks’ time in
each workstation should satisfy the most stringent CT constraint in PDLBP-U. Assume the
number of the tasks assigned to workstation k is nk, we have

∑I
i=1 xik = nk. For workstation

k, if Γ is not more than nk, then
∑I

i=1 qik = Γ, and hk(x) = max
∑I

i=1 dixikqik is equivalent
to the sum of the Γ largest di values assigned to workstation k. If Γ is more than n, we have∑I

i=1 qik = nk < Γ, and hk(x) =
∑I

i=1 dixik. For example, if task 1,2 and 3 are assigned to
the same workstation, the constraint (2b) takes the following forms for different Γ.

(i) when Γ=1, t1 + t2 + t3 + max{d1, d2, d3} ≤ CT ,
(ii) when Γ=2, t1 + t2 + t3 + max{d1 + d2, d1 + d3, d2 + d3} ≤ CT ,
(iii) when Γ ≥ 3, t1 + t2 + t3 + d1 + d2 + d3 ≤ CT ,

In the decoding process, rather than all M tasks must be undertaken in DLBP, only S tasks
need to be done in PDLBP/PDLBP-U, where S ∈ {1, ...,M} represents the disassembly length.
For example, an AND/OR precedence diagram of a product with 12 tasks is shown in Figure
2. One task assignment string is {0, 2, 11, 1, 9, 8, 7, 3, 5, 4, 10, 6}. In DLBP, task 0 is performed
first, followed by the others in turn, and finally task 6 is disassembled. In PDLBP /PDLBP-U,
if S=5, only the first five elements of the string need to be performed, i.e., {0, 2, 11, 1, 9}.

0

2

3

11

1

9

8

10

7

4

5

6

 
Figure 2. AND/OR precedence diagram.

In the PDLBP literature the value of S for each assignment string is usually randomly
generated (Ren et al. 2017), so that the objective function value can be evaluated. The main
advantage of this approach is fast, but it cannot guarantee the obtained partial sequence
is optimal. In this study we propose to find the optimal S∗, which can be obtained by a
slight modification of model (5). However, our numerical experiments suggest that this integer
program is rather slow to solve. Therefore, we propose an exhaustive search algorithm to find
S∗ and the objective function value fbest of the solution, as shown in Algorithm 1.

Algorithm 1 The improved decoding process of solution

1: Given the value of Γ, open the first workstation(k=1), set the best objective value fbest=0

2: for S=1 to M do

3: for i=1 to S do

4: if the CT constraint is not violated when the ith task is assigned to workstation k

then

5: assign task i to workstation k;

6: i=i+1;

7: else

8: k=k+1

9: assign task i to workstation k

10: i=i+1

11: end if

12: end for
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13: calculate the objective value f

14: if f has an improvement than fbest then

15: fbest is updated, S is recorded S∗

16: end if

17: end for

18: return fbest and S∗

3.3. Neighboring structures

IMBO is a nature-inspired algorithm based on neighborhood search techniques. The new so-
lutions are mainly determined by neighborhood structures, which make a solution move to
its neighborhood one. In order to avoid invalid search and infeasible solutions, neighborhood
structures must satisfy the precedence relation among tasks. Based on the basic insert and
swap techniques in DLBP, four specific neighborhood structures with PDLBP-U features are
defined as follow:

• Insert1 : a position i is randomly selected from the task assignment string, and a po-
sition interval [h, j] within which task Oi can be inserted is found as follows. All tasks
Ol(h ≤ l < i) are not AND predecessors of task Oi, if task Ol is OR predecessor of task
Oi, then there must be task Ok(k < h) is also OR predecessor of task Ol. In addition,
task Oi is not the AND predecessor of tasks Ol(i < l ≤ j), if task Oi is OR predecessor
of any task Ol, then there must be task Ok(k < i) is OR predecessor of task Ol. Finally
a position l is stochastically chosen in[h, j], the task Oi is inserted into the position l.

• Insert2 : a position i(ri-ci > 0) is randomly selected from an assignment string, and
the position interval [h, j] within which task Oi can be inserted is found in the same
way as Insert1. Based on the principle that the task with high income is performed as
early as possible, set Ω1 = {v|v ∈ [h, i) and rv-cv < ri-ci} and Ω2 = {v|v ∈ (i, j] and
rv-cv > ri-ci} are constructed. Task Oi is inserted into the position v, which is selected
randomly from set Ω1 and Ω2.

• Swap1 : a position i is randomly selected from the task assignment string, and the set
Ω = {j|j > i, tasks Oj and Oi can be exchanged} is decided as follows. Oi is not AND
predecessor of tasks Oh(i < h ≤ j), as long as task Oi is OR predecessor of any task
Oh that task Ok(k < i) is also OR predecessor of any task Oh. Meanwhile, all tasks
Ol(i ≤ l < j) are not AND predecessors of task Oj , and if task Ol is OR predecessor of
task Oj , then there must be task Ok is OR predecessor of task Oj . Finally a position j
is stochastically chosen in set Ω, and the task Oi is exchanged with Oj .

• Swap2 : Starting from the first position(i = 1), for any two adjacent position i and
j(j = i+1) from a task assignment string, if task Oi and task Oj met with the precedence
relations, as long as the net income rj-cj of task Oj is more than that of task Oi, then
task Oi and task Oj are swapped.

In general, Insert1 and Swap1 can exploit new solutions more effectively, while Insert2 and
Swap2 are beneficial to the exploration of the current solution. The detailed process to generate
neighboring solutions is shown in Algorithm 2.

Algorithm 2 Generate ne neighbor solutions for solution x

1: set p=1, k=1

2: while k ≤ ne do

3: generate random number θ ∈ [0, 1]

4: if θ <0.5

5: if p=1, execute Insert1 for x, generate neighbor solution xk

9



6: if x is improved by xk, then p = p

7: else p=p+1

8: end if

9: else Swap1 is done to x, neighbor solution xk is obtained

10: if xk is better than x, then p = p

11: else p=p-1

12: end if

13: end if

14: else

15: if p=1, execute Insert2 for x, generate neighbor solution xk

16: if x is improved by xk, then p = p

17: else p=p+1

18: end if

19: else Swap2 is done to x, neighbor solution xk is obtained

20: if xk is better than x, then p = p

21: else p=p-1

22: end if

23: end if

24: end if

25: k = k+1

26: end while

27: return ne neighbor solutions

3.4. Leader update

In general, a better solution can lead to better neighboring solutions, so an elite strategy is
used to update the leader. In this paper, the global best solution is defined as the elite bird
which may change by leader improvement and followers improvement of every tour. If the
leader is not the elite bird after m tours, it is replaced by the elite bird. Otherwise the leader
moves to the end and the solution behind the leader becomes a new leader.

3.5. Follower reset

In order to prevent premature convergence of the algorithm, a follower reset mechanism is
designed. For each individual in the population, the age of solution is used to describe the
evolutionary effect. For a newly generated follower the age of solution is set to one. After a
tour is finished, the age is increased by one if the follower is not updated; otherwise the age
is reset to one. When the age reaches the pre-set upper limit Age, it means that the follower
has not been evolved yet. In such a situation the follower is regenerated. The follower reset
mechanism can effectively expand the search space and increase the diversification of solutions.

3.6. The IMBO algorithm

The complete IMBO algorithm is presented in Algorithm 3.

Algorithm 3 The IMBO algorithm

10



1: Generate N solutions, calculate the objective value of each solution via Algorithm 1, and

select the best solution as the elite bird.

2: Initialize T,m, ne, ns, Age, Fbest(the objective function of the elite bird); set u=0, the elite

bird to be the leader

3: while u ≤ T do

4: for j=1 to m do

5: Generate and evaluate ne neighboring solutions for the leader via Algorithm 2

6: if the best neighboring solution improves the leader then

7: the leader is replaced by the best neighboring solution

8: end if

9: move the unused best ns neighboring solutions to the follower solution as their

neighbors

10: if the leader improves the elite bird, then the elite bird is replaced by the leader, and

Fbest is updated

11: end if

12: u = u+ ne

13: for each follower solution do

14: Generate ne − ns neighbor solutions of the solution via Algorithm 2. Evaluate

ne − ns neighbors generated by the solution and ns neighbors are kept from the

solution in the front

15: if the best neighbor has an improvement then

16: the current follower is updated, set age = 1

17: else

18: update the solution age, age = age+ 1

19: if (age > Age), then regenerate the current follower

20: end if

21: if the current follower improves the elite bird, then the elite bird is replaced by

the current follower, and Fbest is updated

22: end if

23: u = u+ ne − ns
24: end for

25: end for

26: if the leader is worse than the elite bird, then

27: the leader is replace by the elite bird

28: else move the leader to the end and the solution behind the leader becomes a new leader

29: end if

30: end while

31: return the elite bird and Fbest

11



4. Numerical studies

In this section, a case study with a real-life product is presented to validate the proposed
model and illustrate key properties of PDLBP-U. The optimal solution of the case problem was
obtained by solving the linear robust model (5) with the standard branch-and-cut algorithm.
Further, to demonstrate its applicability and performance the proposed IMBO approach was
tested on a number of instances and compared against the exact solutions, another heuristic,
and multiple variants of the standard MBO. The non-linear robust models of these instances
were solved by the heuristics while the corresponding linear robust models were solved by the
branch-and-cut method in IBM-ILOG CPLEX 12.8. All experiments were run on a desktop
with Intel(R) Core(TM) i7 CPU(1.80 GHz/8.00 G RAM).

4.1. Case study

In this case study a dishwasher with 44 disassembly tasks is considered. The precedence dia-
gram is given in Figure 3 and the key parameters are adopted from Cevikcan et al. (2019), as
shown in Table 2. We have let p = 0.1 and di = d0.1 · tie for the purpose of this experiment. In
Figure 3, task 1, 4, 6, 8 and 21 have no predecessor tasks. Tasks 1 and 4 are AND predecessors
of a dummy task A0. The dummy tasks (A0, A1 and A2) are introduced to avoid crossing lines
for clearer presentation. Additionally, F , C and CT are set to be 1, 0.05, and 60, respectively.
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Figure 3. Precedence diagram of a dishwasher.

Table 2. The data of disassembly tasks for the dishwasher.

No Disassembly task ti di ri ci No Disassembly task ti di ri ci

1 Detaching top cover and its

insulation from main body

12 2 7.40 2.25 23 Disassembling control panel 9 1 1.31 2.54

2 Disassembly right panel and
its insulation

19 2 3.28 0.34 24 Disassembling control unit 12 2 1.59 3.89

3 Disassembling left panel and
its insulation

19 2 1.88 3.02 25 Detaching detergent and
rinse aid dispenser

22 3 1.70 3.24
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No Disassembly task ti di ri ci No Disassembly task ti di ri ci

4 Removing front-lower access

panel

23 3 1.75 5.43 26 Removing door spring and

rope-pulley mechanism be-

tween the springs and hinge
arms

22 3 9.12 1.86

5 Removing rear-lower panel 11 2 3.53 2.21 27 Detaching inner door panel

from chassis

22 3 0.58 3.45

6 Removing silverware baskets 5 1 2.16 4.16 28 Disassembling tub 39 4 1.94 2.02

7 Removing bottom rack and

bottom slide arm cover

9 1 4.15 3.36 29 Removing wire harnesses 33 4 2.37 3.43

8 Removing upper rack and

upper slide arm cover

8 1 4.41 4.24 30 Disassembling blower 27 3 4.83 2.08

9 Disassembling upper rack s-

lide

7 1 8.21 2.90 31 Removing heating element 29 3 5.24 1.77

10 Disassembling bottom rack
slide

7 1 1.88 2.17 32 Disjointing drain hose 6 1 9.85 2.30

11 Disassembling slide support

wheels

18 2 4.16 1.62 33 Detaching drain pump from

sump

18 2 1.90 3.50

12 Detaching middle

spray arm from upper rack

6 1 8.97 3.06 34 Detaching motor and circu-

lation pump from heating el-

ement

16 2 5.10 1.60

13 Removing upper spray arm

and water gateway

16 2 8.66 2.49 35 Disassembling turbidity sen-

sor

14 2 7.48 1.23

14 Detaching lower spray arm 7 1 6.45 1.54 36 Detaching sump seal 6 1 0.80 4.52
15 Detaching filters 14 2 8.10 0.36 37 Removing sump 34 4 2.48 1.67

16 Removing salt box cover 6 1 7.83 1.38 38 Detaching intake line from
inlet valve

7 1 8.29 2.19

17 Detaching regeneration

reservoir cover from tub

7 1 1.61 3.38 39 Detaching inlet valve 10 2 3.21 3.33

18 Disassembling float valve 8 1 5.78 1.85 40 Detaching water flow meter 8 1 4.89 2.13

19 Disassembling float switch 14 2 2.11 2.57 41 Detaching regeneration

reservoir (water pocket and
air pocket)

12 2 5.77 1.56

20 Removing door gasket 13 2 2.00 3.43 42 Detaching salt box 14 2 4.78 4.76

21 Disassembling exterior door 30 3 7.04 1.75 43 Disassembling base plastic
panel

11 2 4.18 4.39

22 Disjointing door latch 12 2 5.67 1.43 44 Removing levelling legs 12 2 5.45 2.45

For different Γ the optimal objective function values fopt and the corresponding disassembly
solutions are listed in Table 3. Wk represents the assigned task sequence for workstation k.
When Γ=0, the processing time of each task takes their nominal values, and the optimal
objective function value is 70.17. On the contrary, when Γ takes the maximum value of 44 the
processing time of each task takes their upper bound values and the corresponding optimal
objective value reduces to 67.60. Clearly, when Γ increases from 0 to 3, the optimal objective
function value has dropped gradually from 70.17 to 67.60. After that the objective value does
not change any more for larger Γ, and the results for the cases with 5 ≤ Γ ≤ 43 are not
included in Table 3. Moreover, the results show that once Γ is 3 or higher the profit remains
the same, but the optimal disassembly sequences are different.

Table 3. The solutions for the real-life product.

Γ The disassembly solution fopt

0 W1 = {1 3 4 6}, W2 = {2 7 16 32 40 41}, W3 = {8 21 26},
W4 = {9 12 15 22 35 38},W5 = {5 11 13 14 18}

70.17

1 W1 = {1 4 6 7 18},W2 = {8 15 21},W3 = {3 13 40 41},
W4 = {2 11 14 22},W5 = {16 26 32 35 38},W6 = {5 9 12 30}

68.92

2 W1 = {1 3 4},W2 = {2 8 26 32},W3 = {6 7 12 16 18 40 41},
W4 = {9 11 30},W5 = {5 15 21},W6 = {13 14 22 35 38}

68.92
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Γ The disassembly solution fopt

3 W1 = {1 4 6 8 12},W2 = {2 3 9 40},W3 = {21 26},
W4 = {7 11 18 22 32},W5 = {14 16 30 41},W6 = {13 15 35 38}

67.60

4 W1 = {6 7 18 21},W2 = {4 8 9 15},W3 = {1 3 13 32},
W4 = {2 35 40 41},W5 = {12 16 22 26 38},W6 = {11 14 30}

67.60

44 W1 = {4 6 8 9 12},W2 = {1 3 35 40},W3 = {2 26 41},
W4 = {7 13 15 16 18},W5 = {11 21 32},W6 = {14 22 30 38 }

67.60

The results above show the cost of robust solutions, but not their benefit. To this end, we
calculated the probability of constraint violation via Monte Carlo simulation. Specifically, we
sampled H = 100, 000 realisations of the task processing times. Given the optimal solution
under a specific Γ, the number of violated constraints (1c) under each realisation was recorded.
Denote by v the total number of constraint violations over all the H realisations. The probabil-
ity of constraint violation can be approximated by v/(zH), where z =

∑K
k=1 zk is the number

of opening workstations in the optimal solution. As we did not require the distribution to be
known, to facilitate this calculation, we considered four different distributions as follows.

• Uniform distribution U [ti, ti].
• Normal distribution N(ui, σi). We have let ui = (ti + ti)/2 and σi = (ti − ti)/6 such

that the interval [ti, ti] covers nearly all the values based on the three-sigma rule.
• Positive Skewed Triangular distribution in [ti, ti] with mode ti.
• Negative Skewed Triangular distribution in [ti, ti] with mode ti.

The first two distributions are symmetric, while the other two are skewed to the left and right,
respectively. For each distribution the corresponding violation probability was calculated and
the results are reported in Table 4, where we also included the profit fopt. The percentage
in the parentheses represents the relative increase of profit from that of Γ = 44. Moreover,
we tested multiple levels of uncertainty by varying the p value in {0.1, 0.3, 0.5}. Now that
four different distributions were considered, we included into the comparison an alternative
approach that replaces the uncertain processing times by their mean values. The resulting
deterministic PDLBP problems were solved and the constraint violation probabilities were
evaluated in the same way.

Table 4. The benefits and price of robustness.

fopt
Constraint violation probability(%)

Uniform Normal Triangular+(skewed) Triangular-(skewed)

p=0.1

Γ=0 70.17(3.80%) 81.09 83.79 51.53 96.46

Γ=1 68.92(1.95%) 0.00 0.01 0.00 0.01
Γ=2 68.92(1.95%) 0.00 0.01 0.00 0.00

Γ=3 67.60(0.00%) 0.00 0.00 0.00 0.00
Γ=4 67.60(0.00%) 0.00 0.00 0.00 0.00

Γ=44 67.60 0.00 0.00 0.00 0.00

PDLBP (Uniform) 68.92(1.95%) 0.00 - - -
PDLBP (Normal) 68.92(1.95%) - 0.01 - -

PDLBP (Triangular+) 68.92(1.95%) - - 0.01 -

PDLBP (Triangular-) 68.92(1.95%) - - - 0.00

p=0.3

Γ=0 70.17(12.49%) 99.55 99.99 96.44 99.99
Γ=1 67.60(8.37%) 40.47 39.69 9.42 70.5

Γ=2 64.92(4.07%) 0.20 0.00 0.00 1.49

Γ=3 63.60(1.96%) 0.00 0.00 0.00 0.00
Γ=4 63.60(1.96%) 0.00 0.00 0.00 0.00
Γ=44 62.38 0.00 0.00 0.00 0.00

PDLBP (Uniform) 66.17(6.08%) 8.00 - - -
PDLBP (Normal) 66.17(6.08%) - 1.76 - -

PDLBP (Triangular+) 67.60(8.37%) - - 2.78 -
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fopt
Constraint violation probability(%)

uniform normal Triangular+(skewed) Triangular-(skewed)

PDLBP (Triangular-) 64.92(4.07%) - - - 0.96

p=0.5

Γ=0 70.17(20.34%) 99.92 100.00 99.21 100.00

Γ=1 66.17(13.48%) 55.44 56.76 20.79 79.97
Γ=2 62.17(6.62%) 4.15 1.50 0.16 15.43

Γ=3 59.63(2.26%) 0.39 0.01 0.00 4.05

Γ=4 58.31(0.00%) 0.00 0.00 0.00 0.00
Γ=44 58.31 0.00 0.00 0.00 0.00

PDLBP (Uniform) 64.92(11.34%) 20.40 - - -

PDLBP (Normal) 64.92(11.34%) - 9.58 - -
PDLBP (Triangular+) 66.17(13.48%) - - 6.15 -

PDLBP (Triangular-) 62.38(6.52%) - - - 17.76

The results confirm that when Γ=44, the solution is feasible in all possible realizations,
and thus the constraint violation probability is always zero regardless of the distributions.
With the decrease of Γ, both the profit and the violation probability increase, showing clear
trade-off between the benefits and price of robustness. For the same Γ, the probability is
always the lowest for positive skewed Triangular distribution and the highest for the negative
skewed Triangular distribution, which is not surprising given their definitions. The results also
show that the larger the degree of uncertainty, the larger Γ should be selected to achieve the
required violation probabilities. The performance of the PDLBP solutions using the mean task
times is very interesting. They perform strongly when p = 0.1. In fact, the performance of all
the solutions is similar apart from Γ = 0. In such situations one can use Γ = 1 or simply
the deterministic PDLBP with the mean processing times, if available. In sharp contrast,
when p = 0.5, the PDLBP solutions are rather poor. They may lead up to 20.40% constraint
violations. The robust solutions could produce much lower constraint violations at the expense
of some profit loss. For example, when Γ = 3 the violation probability is at most 4.05%. More
importantly, the proposed approach provides multiple candidate solutions with a range of
robustness and profit performance, which allows informed decision making based on specific
needs.
CT is a key parameter in PDLBP-U, because it directly restrains the assignment of tasks

and thus affects the profit. The other two key parameters that affect the solutions are Γ and the
deviation coefficient p. Therefore, in order to analyze the sensitivity of the proposed approach,
we generated five scenarios based on different values of CT (60,65,70,75,80) and p (0.1 ∼ 0.5).
The profits under different Γ values are displayed in the Figure 4.
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Figure 4. Sensitivity analysis under different CT , Γ and p.

Since in all scenarios the profit converges to the value in the worst case after Γ = 5, only
the results of Γ ≤ 5 are displayed in Figure 4. For each scenario the profit value is the same for
different p as long as Γ = 0, because in this situation all the task times are at their nominal
values. The profit then decreases as Γ increases, no matter how p changes. The downwards
trend is much more obvious for larger p values, i.e., the profit value shows faster reduction.
Therefore, the tighter the interval of the uncertain processing time, the smaller impact of
uncertainty on the profit.

For the same value of p and Γ, the profit can increase with CT , because longer cycle time
allows more flexibility for task allocation and requires less stations to be opened. However, the
profit does not always increase with CT due to the uncertain task times and the dynamic num-
ber of tasks to be completed. In order to find the a reasonable CT value to allow more profit,
the decision makers are suggested to experiment multiple values for the product structure and
data concerned.

4.2. Tuning of algorithm parameters

There are five control parameters (N,m, ne, ns, Age) to be predetermined for IMBO. In this
section a design-of-experiments (DOE) was implemented to find the best combination of these
parameters. Since a full factorial method (Tian and Zhang 2019) for five parameters needs too
many experiments, a representative combination, i.e. Taguchi method (Zhang et al. 2017) is
more suitable. Since ne and ns are correlated (ne ≥ 2ns) to guarantee enough neighbours of
the leader to share with followers (Meng et al. 2018), a four factor and three level Orthogonal
experiment array with 9 combinations is required, as shown in Table 5.

Table 5. Parameter values of IMBO.

Combination Number N m ne ns Age

1 25 1 7 3 5

2 25 10 10 5 10
3 25 20 20 10 20

4 50 20 7 3 10

5 50 1 10 5 20
6 50 10 20 10 5

7 100 10 7 3 20
8 100 20 10 5 5

9 100 1 20 10 10

Each combination was tested on six cases (Γ = 0,1,2,3,4,44) of the real-life product in Table
2, and five parallel scenarios (CT=60,65,70,75,80) were considered for each case. Each test was
solved 20 times independently, and 500,000 evaluations of the objective function was adopted
as the stopping criterion. The difference between the average value obtained in 20 trials and the
optimal solution from CPLEX was considered as the response factor. We report the average
response values of five scenarios for the six cases in Table 6. It is shown that the performance
of the fourth combination outperforms the others. Therefore the combination of N=50, m=20,
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ne=7, ns=3, Age=10 were used in the following experiments.

Table 6. The Experimental Results.

Combination Number Γ=0 Γ=1 Γ=2 Γ=3 Γ=4 Γ=44

1 0.76% 1.23% 2.96% 1.18% 0.68% 0.52%
2 1.72% 1.73% 2.33% 1.25% 0.46% 0.57%

3 0.87% 1.60% 2.56% 1.50% 0.59% 0.39%

4 0.22% 0.13% 0.63% 0.54% 0.03% 0.00%
5 0.72% 1.22% 1.48% 0.95% 0.35% 0.03%

6 0.47% 0.50% 0.73% 1.30% 1.74% 0.11%

7 0.48% 0.63% 1.32% 0.98% 0.15% 0.21%
8 0.28% 0.23% 0.68% 0.73% 1.60% 0.17%

9 0.00% 0.95% 1.10% 0.62% 0.13% 0.45%

4.3. Performance comparison against the exact solution method

In order to test the performance of IMBO, the solutions of the proposed algorithm in six
problem instances were compared against the optimal/near optimal solutions from CPLEX.
The first instance is an example with 12 tasks provided by Ren et al. (2017), and the precedence
diagram is shown in Figure 2. The second and third one are the ball-point pen with 22 tasks
and a network with 60 tasks, both from Kalaycılar et al. (2016). The other three larger-scale
instances were generated according to the network rule introduced by Kalaycılar et al. (2016).
These instances contain 120, 180 and 240 tasks, respectively, with CT set as 60, 80 and 100
accordingly. The cost, revenue and processing time of each task were generated from discrete
uniform distributions DU[5,20], DU[10,50], and DU[1,20], respectively. For all instances F , C
and p are set to be 10, 0.5, and 0.1.

The results are summarised in Table 7. The first column is the number of disassembly tasks
in each instance and the second column the value of Γ. The next seven columns are the results
from CPLEX and IMBO, with fopt the best objective value obtained by CPLEX, f∗ and fa

the best and the average solution of 20 executions of IMBO, β the percentage of solutions
achieving the best, and Gap = (f∗ − fa)/f∗ the relative gap between the best and average
IMBO solutions. The CPU(s) is the run time in second. CPLEX stops whenever an optimal
solution is found or the time limit of 3600/7200s is reached, while IMBO is terminated after
500,000 evaluations of the objective function. The last column ∆(f∗, fopt) is the sub-optimality
of f∗ from the solution fopt, as written below.

∆(f∗, fopt) = (f∗ − fopt)/f∗ (6)

Table 7. Comparison of the performance of the exact method and IMBO.

N Γ
CPLEX IMBO

∆(f∗, fopt)(%)

fopt CPU(s) f∗ fa β(%) Gap(%) CPU(s)

12

0 55∗ 1.25 55 55 100 0.00 0.45 0.00
1 55∗ 3.70 55 55 100 0.00 0.53 0.00

2 55∗ 5.22 55 55 100 0.00 0.60 0.00
3 55∗ 5.27 55 55 100 0.00 0.64 0.00

4 55∗ 6.73 55 55 100 0.00 0.72 0.00

12 55∗ 4.03 55 55 100 0.00 0.48 0.00

22

0 157∗ 51.08 157 156.60 90 0.25 1.19 0.00

1 153∗ 122.36 153 149.45 65 2.32 1.70 0.00
2 141∗ 2899.32 141 139.85 75 0.82 2.00 0.00

3 136∗ 4783.38 136 135.2 75 0.59 2.66 0.00
4 136∗ 3286.42 136 135.1 70 0.66 2.90 0.00

22 136∗ 359.69 136 135.55 90 0.33 1.56 0.00
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N Γ
CPLEX IMBO

∆(f∗, fopt)(%)

fopt CPU(s) f∗ fa β(%) Gap(%) CPU(s)

60

0 568 3600 550 539.84 40 1.85 10.74 -3.27

1 520 3600 530 519.17 30 2.04 12.11 1.89
2 514 3600 520 515.42 25 0.88 15.54 1.15

3 491 3600 493 487.10 35 1.20 18.43 0.41

4 479 3600 491 480.63 30 2.11 20.82 2.44
60 514 3600 486 474.20 50 2.43 10.83 -5.76

0 568 7200 550 539.84 40 1.85 10.74 -3.27

1 535 7200 530 519.17 30 2.04 12.11 -0.94
2 530 7200 520 515.42 25 0.88 15.54 -1.92

3 524 7200 493 487.10 35 1.20 18.43 -6.29

4 514 7200 491 480.63 30 2.11 20.82 -4.68
60 514 7200 486 474.20 50 2.43 10.83 -5.76

120

0 1344 7200 1305 1251.10 15 4.13 32.81 -2.99

1 1224 7200 1251 1219.75 10 2.50 38.9 2.16

2 1205 7200 1225 1190.85 5 2.79 47.67 1.63
3 1158 7200 1205 1154.95 5 4.15 62.19 3.90

4 1132 7200 1190 1150.60 5 3.31 74.08 4.87
120 1238 7200 1170 1117.40 15 4.50 33.23 -5.81

180

0 1789 7200 1681 1609.10 10 4.28 74.76 -6.42
1 1561 7200 1629 1583.7 5 2.78 77.15 4.17

2 1489 7200 1605 1551.20 5 3.35 83.62 7.23
3 1396 7200 1550 1486.00 5 4.13 104.93 9.94

4 1302 7200 1542 1478.25 5 4.13 123.71 15.56

180 1651 7200 1493 1428.70 5 4.31 75.35 -10.58

240

0 2523 7200 2467 2354.86 5 4.55 103.72 -2.27

1 - 7200 2439 2299.10 5 5.74 121.32 -
2 - 7200 2386 2188.70 5 8.27 154.99 -

3 - 7200 2366 2248.66 5 4.96 172.59 -
4 - 7200 2346 2230.61 5 4.92 208.06 -

240 2334 7200 2261 2108.64 5 6.74 105.68 -3.23

The numbers with ∗ represent the exact optimal solutions.

For the first two instances, CPLEX obtained the optimal solutions under all Γ values,
whereas IMBO found the same optimal solutions in most cases and with less time, as indicated
by the large β values. For the second instance, it is obvious that the two extreme cases (Γ=0
and Γ = I) can be quickly solved by CPLEX, because the problems are equivalent to the
deterministic PDLBP. Longer computational times are observed for the other cases (0 < Γ <
I). The similar pattern of computing time is also observed in assembly line balancing problem
(Hazır and Dolgui 2013). For the other four and larger instances, the optimal solutions cannot
be found within the 2h time limit by CPLEX, even though the solutions of the two extreme
cases are still better than those of the other cases. Therefore, for these two cases the solution
obtained by IMBO is slightly worse than CPLEX, and thus the negative gaps. The inferiority
increases with the problem size and the biggest is -10.58%. Despite this result the running time
of IMBO is no more than 110s in both extreme cases and across all scenarios. For the other
cases where Γ varying from 1 to 4, when N=60, the solutions obtained by IMBO outperform
CPLEX for the time limit of 3600s, but they become worse than CPLEX when the time limit
is increased to 7200s. As the problem size further increases IMBO’s performance becomes
stronger than CPLEX. For N=120 and 180, IMBO obtained better solutions than CPLEX in
shorter CPU time. When N = 240, IMBO obtained feasible solutions in about 200s, whereas
CPLEX was unable to find any solution within 2h. The results also indicate that the number
of IMBO solutions achieving the best decreases with N , and β reduces from 100% sharply to
5%. This is not surprising given the exponential increase of the solution space. Nevertheless,
the IMBO solution gap is always within 8.27% in all the experiments.
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4.4. Performance comparison against other heuristic algorithms

The robust models of PDLBP-U have not been considered in the literature and the existing
heuristics are not readily applicable to the problem. One potential method is the improved grav-
itational search algorithm (IGSA)(Ren et al. 2017) that has been developed to solve PDLBP.
We extend IGSA as follows: add the objective function evaluation based on different Γ as the
same as IMBO, and choose IGSA as one comparable algorithm. To understand the impact on
the performance of IMBO due to the improved decoding strategy and effective neighborhood-
s, three variants of IMBO are chosen as the other comparable algorithms. The first variant
N-MBO is derived from IMBO by disabling the improved decoding strategy; the second one
H-MBO is obtained by replacing effective neighborhoods of IMBO with the swap and insert
operations suggested in Ren et al. (2017); the third one is the standard MBO approach without
either of these two enhancement techniques.

The number of agents for IGSA is set at 100, which is the best value suggested by Ren
et al. (2017). Except the termination condition all the others parameters of IGSA take the
same values as given in Ren et al. (2017). The parameter settings of all the IMBO variants are
the same. All these five algorithms use the same termination criteria(CPU computing time)
as shown in Table 7. Each algorithm was applied to the 6 problem instances 20 times and
the best solutions were used to calculate the relative percentage deviations (RPD): RPD =
(f∗− fi)/f∗, where fi(i=1,2,3,4) represents the best solutions of H-MBO, N-MBO, MBO and
ISGA, respectively. The results are presented in Table 8.

Table 8. RPD(%) values of alternative algorithms compared to IMBO.

N Γ H-MBO N-MBO MBO IGSA

12

0 0.00 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00

22

0 0.00 2.55 2.55 5.73

1 0.00 0.00 0.00 5.88

2 3.55 3.55 3.55 8.51
3 0.00 0.00 0.00 6.62

4 0.00 0.00 0.00 9.56

22 0.00 0.00 0.00 12.50

60

0 7.09 7.64 7.64 10.73
1 8.49 8.67 9.62 13.40

2 10.38 10.38 12.12 17.31

3 6.90 9.13 10.75 13.39
4 8.76 11.00 12.02 13.85

60 9.05 11.93 12.76 20.58

120

0 3.37 3.91 4.98 7.05

1 2.00 3.04 5.52 6.31
2 3.10 3.67 5.06 6.94
3 4.48 3.65 6.47 8.88

4 4.96 3.53 5.29 9.33
120 3.68 4.70 6.32 9.74

180

0 5.35 6.25 8.21 8.15

1 4.73 2.21 8.35 7.61

2 5.92 3.36 8.54 9.03
3 6.32 3.87 8.52 6.77
4 5.84 6.03 11.22 10.89

180 6.43 5.89 9.11 11.25
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N Γ H-MBO N-MBO MBO IGSA

240

0 3.00 2.80 8.15 4.78

1 3.81 3.32 9.18 5.99

2 2.77 1.63 7.92 4.82
3 2.92 3.00 8.37 5.37

4 3.92 4.05 9.29 6.44

240 4.07 4.60 8.27 6.99

It can be concluded from Table 8 that, for the smallest instance, all heuristics can obtain the
optimal solutions. In all the other instances, IMBO obtains the best solutions, and comfortably
outperforms the other four. In addition, when N=60 and 120, H-MBO and N-MBO are the
second and third best, while IGSA is notably the worst. When N=180 and 240, N-MBO
generates better solutions than H-MBO, and MBO is beaten by IGSA.

These results clearly demonstrate the effectiveness of the proposed enhancement techniques.
Both the improved decoding strategy and the effective neighborhoods contribute to the much
improved performance over the standard MBO. In particular, the effectiveness of the improved
decoding strategy is more distinct for smaller problems, while that of the effective neighbor-
hoods more distinct for larger problems. In all cases IMBO delivers much better performance
than MBO, which is also beaten by IGSA in multiple scenarios, especially when the problem
is large.

5. Conclusions

In this paper, a partial disassembly line balancing problem under uncertainty is studied, which
aims to allocate a partial sequence of tasks to a number of workstations such that the overall
profit is maximized. The processing time of the tasks is assumed to be uncertain and takes
values from known intervals. To address the uncertainty, we follow the B&S robust optimization
approach and formulate the problem as a non-linear robust model, which is then converted into
an equivalent linear robust model. Even though in theory the resulting model can be solved
by exact algorithms, the computational complexity means that the optimal solutions cannot
be obtained within reasonable time for practical problems. To this end we have developed
an improved migrating birds optimization algorithm with two enhancements. The first finds
the optimal number of tasks to be performed for each sequence rather than random selection
that is used in the literature. The second exploits the specific problem structure to construct
effective neighborhoods. The performance of the proposed IMBO approach is firstly compared
against the exact method across multiple test instances. The results show that IMBO can find
the optimal solutions for small-scale instances, and can find better solutions in shorter time
for large-scale instances. The proposed approach is then compared against another heuristic
method IGSA; even though both find the optimal solutions for the smallest instances, the
former is able to find better solutions than the latter in all the other instances considered. The
results also clearly demonstrate the effectiveness of the proposed enhancement techniques. In
particular, the effectiveness of the improved decoding strategy is more distinct for smaller
problems, while that of the effective neighborhoods more distinct for larger problems. In all
cases IMBO delivers much better performance than the basic MBO approach.

The future research may consider more practical problems such as the mix model disassem-
bly line balancing problem under uncertainty, or the profit-oriented U-shape disassembly line
balancing problem under uncertainty. The innovative solution approaches for these problems
are also worth being investigated.
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Altekin F.T., L. Kandiller, and N.E. Özdemirel. 2004. “Disassembly Line Balancing with Lim-
ited Supply and Subassembly Availability.” Proceedings of SPIE - The International Society
for Optical Engineering 5262: 59-70.
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Bentaha M.L., O. Battäıa, and A. Dolgui. 2013. “Chance Constrained Programming Model

for Stochastic Profit-Oriented Disassembly Line Balancing in the Presence of Hazardous
Parts.” Advances in Production Management Systems. Sustainable Production and Service
Supply Chains: 103-110.

Bentaha M.L., O. Battäıa, A. Dolgui and S.J. Hu. 2014. “Dealing with Uncertainty in Disas-
sembly Line Design.” CIRP Annals-Manufacturing Technology 63: 21-24.
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özceylan E., C.B. Kalayci, A. Güngör and M.G. Surendra. 2019. “Disassembly line balancing
problem: a review of the state of the art and future directions.” International Journal of
Production Research 57: 15-16.
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