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Abstract
In the past decade, Deep Neural Networks (DNNs) have demonstrated outstanding
performance in various domains. However, recently, some researchers have shown that
DNNs are surprisingly vulnerable to adversarial attacks. For instance, adding a small,
human-imperceptible perturbation to an input image can fool DNNs, enabling the model
to make an arbitrarily wrong prediction with high confidence. This raises serious concerns
about the readiness of deep learning models, particularly in safety-critical applications, such
as surveillance systems, autonomous vehicles, and medical applications. Hence, it is vital to
investigate the performance of DNNs in an adversarial environment.

In this thesis, we study the robustness of DNNs in three aspects: adversarial attacks,
adversarial defence, and robustness verification. First, we address the robustness problems
on video models and propose DeepSAVA, a sparse adversarial attack on video models. It
aims to add human-imperceptible perturbations on the crucial frame of the input video to
fool classifiers. Additionally, we construct a novel adversarial training framework based on
the perturbations generated by DeepSAVA to increase the robustness of video classification
models. The results show that DeepSAVA runs a relatively sparse attack on video models,
yet achieves state-of-the-art performance in terms of attack success rate and adversarial
transferability.

Next, we address the challenges of robustness verification in two deep learning models:
3D point cloud models and cooperative multi-agent reinforcement learning models (c-
MARLs). Robustness verification aims to provide solid proof of robustness within an input
space to any adversarial attacks. To verify the robustness of 3D point cloud models, we
propose an efficient verification framework, 3DVerifier, which tackles the challenges of
cross-non-linearity operations in multiplication layers and the high computational complexity
of high-dimensional point cloud inputs. We use a linear relaxation function to bound the
multiplication layer and combine forward and backward propagation to compute the certified
bounds of the outputs of the point cloud models.

For certifying the c-MARLs, we propose a novel certification method, which is the first
work to leverage a scalable approach for c-MARLs to determine actions with guaranteed
certified bounds. The challenges of c-MARL certification are accumulated uncertainty
as the number of agents increases and the potential lack of impact when changing the
action of a single agent into a global team reward. These challenges prevent me from
using existing algorithms directly. We employ the false discovery rate (FDR) controlling
procedure, considering the importance of each agent to certify per-state robustness and
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propose a tree-search-based algorithm to find a lower bound of the global reward under the
minimal certified perturbation. The experimental results show that the obtained certification
bounds are much tighter than those of state-of-the-art RL certification solutions.

In summary, this thesis focuses on assessing the robustness of deep learning models that
are widely applied in safety-critical systems but rarely studied by the community. This thesis
not only investigates the motivation and challenges of assessing the robustness of these deep
learning models but also proposes novel and effective approaches to tackle these challenges.
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Chapter 1

Introduction

“Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.”
(Dylan Thomas)
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Chapter 1. Introduction

The remarkable success of Deep Neural Networks (DNNs) in various fields has led to
their widespread adoption and application in numerous industries. The deep learning system
is based on the deep neural network (DNN), which is a complex and powerful network that
enables machines to learn from data in a way that is similar to the human brain. The ability
of DNNs to learn from vast amounts of data and extract complex patterns and representations
has made them a powerful tool for solving a wide range of problems. In recent years,
DNNs have achieved impressive performance in tasks such as image classification [121],
text analysis [92], speech recognition [37] and action recognition [60], surpassing the
performance of traditional machine learning models.

Despite their enormous success, extensive research has shown that Deep Neural Networks
(DNNs) are vulnerable to adversarial attacks [13], [136], appearing as adding small
and imperceptible nonrandom perturbations to inputs that cause DNNs to give incorrect
predictions. These perturbed inputs that mislead the DNN are defined as adversarial examples.
As in the example shown in Figure 1.1, by adding small noise to the original image, the
classifier will give a different prediction for the generated image. Although the DNN
obtains high accuracy on the test datasets, it is still susceptible to adversarial examples. As
a result, it is critical to investigate adversarial examples in safety-critical scenarios, such
as autonomous driving [25] and object detection [175], which can benefit the community
to increase awareness of the safety risks in the system and also provide support for the
construction of more robust DNNs. There are some notable works to generate adversarial
examples including Fast Gradient Sign Methods (FGSM) [172], C&W attack [13], DeepFool
[94], and JMSA [155].

Figure 1.1: The adversarial examples in the image of a pig [66]

To improve the robustness of the model in the adversary environment, various adversarial
defence methods have been proposed recently. The primary objective of these defence
techniques is to improve the accuracy of neural networks when faced with data perturbed by
adversarial attacks. Existing approaches mainly focus on adversarial training. Adversarial
training involves incorporating adversarial perturbations during the training process in order
to enhance the model’s robustness. Empirical results indicate that adversarial training with
projected gradient descent (PGD) adversary is currently the most effective method [157].
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Chapter 1. Introduction

Studying adversarial defences can help us to defend better against different adversarial
threats [46].

However, as Tramer, Carlini, Brendel, et al. [139] and Athalye, Carlini, and Wagner [2]
indicated,

Even though these defences are effective for some attacks, they still can be
broken by other stronger attacks.

Thereby, a more solid solution is needed, ideally with provable guarantees, to verify whether
the model is robust to any adversarial attacks within an allowed perturbation budget, which
is also referred to as robustness verification for the DNNs. In the community, a small
predefined lp-norm ball is normally used to quantify such perturbations, namely, within this
small perturbing space, the decision should remain the same from the perspective of a human
observer.

This thesis delves into an initial exploration of adversarial attacks and defences applied
to deep neural networks (DNNs) utilised for video recognition, which are widely used in real
systems such as video surveillance [103], self-driving cars [3] and action recognition [60].
These applications are directly related to decisions concerning property security and human
health and safety. Although extensive research has been conducted on adversarial attacks
targeting images, there remains a significant gap in the examination of video robustness.
Therefore, investigating adversarial samples in videos is of both theoretical and practical
value. Attacking video models is a more challenging work, as videos have a sequential data
structure and change dynamically over time, setting them apart from static images. Although
the most straightforward approach to attacking videos might be to treat each frame as an
image and attack all frames to increase the fooling rate, this method has its drawbacks. It is
time consuming and may compromise human imperceptibility. As a result, attack strategies
designed for images cannot be applied directly to videos. In this work, we propose a sparse
attack approach for video models by selecting the most critical frame(s) in a video to perturb.

Secondly, we study the robustness verification of DNNs on the 3D object detection
task, which takes 3D point cloud data as input. 3D object detection is also widely used in
safety-critical systems, such as self-driving cars and autonomous robotics, where point cloud
data obtained from LIDARs and depth cameras are used to represent 3D objects [20]. Deep
Neural Networks (DNNs) have shown remarkable performance in detecting these 3D objects
[109], [110]. However, extensive research has revealed the vulnerability of 3D deep learning
models to adversarial attacks. These attacks involve the addition or shifting of points in
point cloud data and have raised concerns about the safety of such systems [85], [150],
[170], [182]. In this work, we proposed a novel and efficient verification framework for the
complete PointNet model with a joint alignment network (JANet) containing a multiplication
layer.

Lastly, we focus on studying the robustness verification in a challenging setting known
as Cooperative Multi-Agent Reinforcement Learning (c-MARLs), which also shows its
effective impact in many safety-critical situations like autonomous cars [120]. Robustness
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analysis for c-MARL models is of great importance. RL has also been shown to be
susceptible to disturbance in observations of an RL agent [4], [50] or in environments
[40]. Some adversarial defence works for RL are proposed [27], [30], [122], [132] and then
towards these defences, stronger attacks are proposed [116], [117]. To end this repeated
game, Wu, Li, Huang, et al. [159] and Kumar, Levine, and Feizi [73] proposed to use
probabilistic approaches to provide robustness certification for RLs. Concerning c-MARL,
Lin, Dzeparoska, Zhang, et al. [83] addressed the challenges of attacking such systems and
proposed adding perturbations to the state space. To date, the robustness certification on
c-MARL has not been touched upon by the community, which motivates me to take a deep
exploration in this field. In light of this gap, we propose a novel framework based on the
randomised smoothing algorithm, which represents the first attempt to certify the robustness
of c-MARLs.

In summary, this thesis focuses on evaluating the robustness of deep neural networks in
various safety-critical scenarios that have received relatively little attention in the research
community.

1.1 Contributions

1.1.1 Video Attacks and Defenses
To address the challenges in assessing the robustness of videos, we propose a Sparse
Adversarial Video Attack for Deep neural networks, called DeepSAVA, which can i) capture
a wide range of adversarial instances, including both noise contamination and various spatial
transformations; ii) achieve sparse attack, that is, only perturbing very few frames of a video
while still achieving a state-of-the-art attack success rate; and iii) obtain strong adversarial
transferability across various recurrent models compared with baseline methods. In summary,
it has three key technical contributions.

- DeepSAVA is the first work to combine additive and spatial-transformed perturbation
for video attacks. According to image attacks with spatial transformation perturbation
[165], [180], perturbing the positions of pixels can improve perceptual realism and
make it locally smooth. In DeepSAVA, we introduce a new term in the loss function to
optimise both additive and spatial transformation perturbation. With a proper SSIM-
based constraint, we can produce strong perturbations combined with additive and
spatial transformation. Such a combined perturbation enables DeepSAVA to achieve
successful attacks by just perturbing one frame and be effective across various types
of DNNs.

- We are also the first work that uses Bayesian optimisation (BO) to identify the most
critical frames of the video in attacks. To achieve a video attack that can perturb as few
frames as possible, we design an alternating optimisation strategy that can effectively
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identify the key frames via BO and then initiate additive and spatial-transformed
perturbations on the selected keyframes by stochastic gradient descent (SGD) based
optimiser. Such an alternating process happens in each iteration of the optimisation
until keyframes are found. Combining the above two ingredients, the proposed novel
optimisation strategy can achieve a better fooling rate than baselines.

- Based on our novel perturbation generator, we propose a new adversarial training
method to improve the robustness of video classification models. We perform extensive
experiments on different models to evaluate the effectiveness of our PGD with a
combined perturbation adversarial training algorithm, which combines additive and
spatial perturbations in adversarial training. The results confirm that the new design
adversarial training could improve the robustness against both DeepSAVA and Sparse
[148] attacks.

1.1.2 Robustness Verification for 3D Point Cloud Models

Motivated by the aforementioned challenges yet to be resolved, we aim to design an efficient
and scalable robustness verification tool that can handle a wide range of 3D models, including
those with JANet structures under multiple lp-norm metrics including l∞, l1, and l2-norm.
We achieve the verification efficiently by adapting the efficient layer-by-layer certification
framework used in [7], [151]. Considering that these verifiers are designed for images
and cannot be applied in larger-scale 3D point cloud models, we employ a novel relaxation
function of global max pooling to make it applicable and efficient on PointNet. Moreover,
the multiplication layers in the JANet structure involve two variables under perturbations,
which bring the cross-nonlinearity. Due to the high dimensionality in 3D point clouds,
such cross-non-linearity results in significant computational overhead for computing a tight
bound. To solve the non-linearity of the cross, Shi, Zhang, Chang, et al. [123] proposed
using a closed-form linear function to bound the multiplication layer in the attention layers
of the Transformer. As the JANet includes multiplication between two variables, where one
variable is the output of the previous layer, which makes it different from that in Transformer,
we propose to use the closed-form linear functions to bound the multiplication layer and
combine forward and backward propagation, which can also benefit the computation cost by
calculating the bound in only O(1) complexity.

In summary, the proposed method can achieve efficient verification.

- We design a relaxation algorithm to resolve the cross-non-linearity challenge by
combining forward and backward propagation, enabling an efficient yet tight
verification of matrix multiplications.

- We design an efficient and scalable verification tool, 3DVerifier, with provable
guarantees. It is a general framework that can verify the robustness of a wide range of
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3D model architectures, especially it can work on complete and large-scale 3D models
under l∞, l1, and l2-norm perturbations.

- 3DVerifier, as far as we know, is one of the very few works on 3D model verification,
which is more advanced than the existing work, 3DCertify, in terms of efficiency,
scalability, and tightness of the certified bounds.

1.1.3 Certified Cooperative Multi-Agent Reinforcement Learning
We first propose a smoothed policy where each agent chooses the most frequent action
when its observation is perturbed, and then we derive the certified bound of perturbation for
each agent per step, within which the chosen action of the agent will not be altered. When
evaluating the robustness of all agents per time step, to tackle the challenge of accumulating
uncertainty, we identify the multiple test problem and propose to correct the p-value by
multiplying the importance factor of each agent. We then employ the Benjamini-Hochberg
(BH) procedure with a corrected p-value to control the selective false discovery rate (FDR).

For the certification of the robustness of the global reward, we propose a tree-search-
based algorithm to find the certified lower bound of the perturbation and the lower bound of
the global reward of the team under this perturbation. In this work, we focus on certifying the
robustness of value-based c-MARLs under a l2 norm bounded attack. The proposed method
can be easily extended to evaluate lp norm-based robustness by using different sampling
distributions, such as the generalised Gaussian distribution as indicated in Hayes [45].

Overall, the contributions can be summarised as:

- For the first time, we propose a solution to certify the robustness of c-MARLs, which
is a general framework that can verify the robustness of per-state action and the global
reward for c-MARLs as well as in a single-agent system.

- We propose a new criterion to enable the scalable robustness certification per state for
c-MARLs by considering the importance of each agent to reduce the error of selective
multiple tests.

- We propose a tree-search-based method to obtain the certified lower bound of the
global team reward, which allows a tighter certification bound than the state-of-the-art
certification methods.

1.2 Thesis Outline
The structure of the thesis and its related publications are depicted in Figure 1.2. There are a
total of six chapters in this thesis.

Chapter 2 compromises the background and related work for the research in this thesis,
such as the background of various deep neural networks and robustness.

6



Chapter 1. Introduction 1.2. Thesis Outline

Figure 1.2: Outline of the thesis. The left-hand chapter concentrates on adversarial attacks
and adversarial training, while the right-hand chapters focus on robustness verification.
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Chapter 3 shows our first work that performed adversarial attack and adversarial defence
on video models. The proposed approach, called DeepSAVA, employs a unified optimisation
framework that incorporates both additive perturbation and spatial transformation. The
adversarial distance is measured using the structural similarity index measure (SSIM). An
efficient alternative optimisation scheme is developed that combines Bayesian optimisation
to identify the most influential frames in a video and SGD-based optimisation to produce
perturbations on those frames. DeepSAVA achieves a highly effective attack on videos
while maintaining human imperceptibility and achieving state-of-the-art performance in
terms of both attack success rate and adversarial transferability. Toward the sparse attack
approach, we then propose an effective adversarial defence method based on an adversarial
training algorithm. Extensive experiments conducted on various deep neural networks and
video datasets confirm the superior performance of DeepSAVA and the effectiveness of the
proposed adversarial training approach compared to the state-of-the-art adversarial training
with projected gradient descent (PGD) adversaries.

In Chapter 4, we focused on the robustness verification of 3D point cloud models. A
more comprehensive and effective framework has been proposed to verify large-scale point
cloud models with JANet, which includes multiplication layers. This framework addresses
key challenges such as the handling of cross-non-linearity operations in the multiplication
layers and the high computational complexity of high-dimensional point cloud inputs and
added layers. Our solution, named 3DVerifier, tackles both issues by employing a linear
relaxation function to bound the multiplication layer and combining forward and backward
propagation processes to compute global bounds for the point cloud models. Our extensive
experimental results confirm the effectiveness of our method and show that the certified
bounds obtained by our framework are significantly tighter than the current state-of-the-art
method.

Chapter 5 presents the certification of the robustness of Cooperative Multi-Agent
Reinforcement Learning (c-MARL). Since this is the first work to certify MARL, the
chapter begins by addressing the challenges associated with certification, including the
accumulation of uncertainty as the number of agents increases and the potential lack of
impact when changing the action of a single agent into a global team reward. To overcome
these challenges, the chapter proposes using the false discovery rate (FDR) controlling
procedure and considering the importance of each agent to achieve per-state robustness
certification. Additionally, a tree-search-based algorithm is proposed to find a lower bound
of the global reward under the minimal certified perturbation.

Finally, in Chapter 6, we provide a summary of the thesis and discuss future research
directions that stem from our findings.
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Chapter 2

Background and related works

A man provided with paper, pencil, and rubber, and subject to strict discipline,
is in effect a universal Turing Machine.
(Alan Turing)
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2.1 Deep Neural Network
The deep learning system can be viewed as a software system based on the deep neural
network (DNN) with representation learning [119]. It has revolutionised many areas of
artificial intelligence, including computer vision [121], speech recognition [37], action
recognition [60] and natural language processing [92].

In classic DNN, neurons in one layer are fully connected with all neurons in the next
layer, and the weights assigned to each edge could reveal the strength of the connection. It is
designed to learn the underlying structure of the data by iteratively adjusting the weights of
the neurons in the network. The structure of DNN is illustrated in Figure 2.1.

Figure 2.1: Left: DNN architecture for a 3-layer function model f(x) with input x and
weight W k for each layer k; σ denotes the active function. Right: individual neuron in layer
k with input x = [I1, I2, I3, I4]

T and its corresponding weights W k [107].

2.1.1 Convolutional Neural Network

CNNs are widely used in computer vision tasks such as object detection, image classification,
and segmentation. The hierarchical representations learned by CNNs enable them to identify
features at different levels of abstraction, making them highly effective for these tasks.

The filters used in convolutional layers are designed to capture specific features, such
as edges or corners, and as they slide over the input data, they create a feature map that
highlights where these features are located. By stacking multiple convolutional layers,
CNNs can learn increasingly complex features, such as shapes or textures, that are useful for
recognising objects in images. Pooling layers are typically used after convolutional layers to
reduce the spatial dimensionality of the feature map. This helps to reduce the number of
parameters in the network and prevent over-fitting. Pooling can be done in various ways,
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such as max pooling or average pooling, which select the maximum or average value in
each pool respectively. Finally, the fully connected layers process the flattened output of the
convolutional and grouping layers to produce the final output of the network. These layers
are similar to those found in traditional neural networks and are responsible for making
predictions based on the learned features.

CNNs accept different types of input data based on their dimensions. For instance, they
can process one-dimensional sequences like audio signals [47] and text sequences [78];
two-dimensional data such as images [107]; and three-dimensional data like volumetric
information or sequences with both spatial and temporal aspects, such as video [173]. The
distinguishing factor in the CNN architecture across these dimensions lies in the size of
the convolutional filter. For one-dimensional data, the filter takes the form of a single row,
moving along the sequence. In the case of two-dimensional data, it adopts a 2D matrix
structure, sliding over the height and width of images. As for three-dimensional data, the
filter becomes a 3D tensor, traversing the dimensions of height, width, and depth or time.

2.1.2 Recurrent Neural Networks

RNNs are particularly well suited for processing sequential data because of their ability
to maintain a state or memory over time steps. This enables them to capture long-term
dependencies in the data, making them highly effective for tasks like speech recognition,
language modeling, and sentiment analysis.

One of the key features of an RNN is its ability to use the output from the previous time
step as input to the current time step. This feedback loop allows the network to capture
dependencies between sequential data points and generate predictions based on this context.
However, in situations where the previous state affecting a current prediction occurred several
sentences ago, the RNN may find it challenging or impossible to establish the connection
and make accurate predictions. The RNN cannot store the information in long-sentence
because the vanishing gradient problem, that the gradient vanishes quickly in earlier layers.
To solve this problem, more advanced variants are proposed.

Long Short-Term Memory (LSTM)

[49] proposed the Long Short-Term Memory (LSTM), which is a popular RNN architecture,
to address the problem of vanishing gradients and long-term dependencies in traditional
RNNs. At the core of the LSTM architecture are memory cells that are able to maintain
information over long periods of time. These cells are controlled by three gates: the input
gate, the output gate, and the forget gate. The input gate controls how much new information
should be added to the memory cell, while the forget gate controls how much old information
should be discarded. The output gate controls how much of the memory cell’s current state
should be used to produce the network’s output.
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Figure 2.2: The abstract framework of the PonitNet with joint alignment network (JANet),
where MLP stands for multi-layer perceptron. The network takes N points as input. It
applies input and feature transformation and use max pooling to aggregate point features.
The output is classification scores for k classes.

The gates are controlled by sigmoid activation functions that output values between 0
and 1, indicating the amount of information that should be allowed through. The input gate
and forget gate are multiplied element-wise with the current memory cell state, while the
output gate is multiplied with the cell’s output. This enables the network to selectively store
or discard information from previous time steps based on the current input. In addition
to the memory cells and gates, LSTMs also have a peephole connection that allows the
gates to peek into the current state of the memory cell. This additional information helps
the network to better regulate the flow of information through the gates and produce more
accurate output.

Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs) proposed by [22] were introduced as an alternative to Long
Short-Term Memory (LSTM) networks. Like LSTMs, GRUs aim to address the problem of
vanishing gradients and the inability of RNNs to capture long-term dependencies. GRUs use
a gating mechanism to regulate the flow of information within the network. However, unlike
LSTMs, GRUs use only two gates, an update gate and a reset gate, to control the flow of
information.

The update gate determines how much of the previous hidden state should be retained
and how much of the new input should be added to it. The reset gate determines how much
of the previous hidden state should be forgotten and how much of the new input should be
used to create a new hidden state. The update and reset gates in GRUs allow the network
to selectively remember or forget information, making it possible to capture long-term
dependencies in the data.
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Video Action Recognition Models

The video classification task primarily focuses on action recognition [67]. The works
on video classification using DNNs are developed in two ways: using 2D or 3D-based
convolution neural networks (CNN). Since the CNNs have obtained state-of-the-art
performance in image classification, Karpathy et al. [62] first proposed to use 2D CNN to
classify each frame of the video. Szegedy et al. then developed the Inception-v3 [134], [135],
which is commonly used as a baseline classification model. As 2D-CNNs use incomplete
video information, some works added layers containing temporal information, such as
LSTM, to combine CNN features extracted over time, which is referred to as CNN+LSTM
model [26], [100]. As for the 3D CNNs [141], it can learn temporal features from videos by
inputting all frames in three dimensions directly. [16] proposed a two-stream inflated 3D
CNN (I3D) to build the 2D kernel first and then merge the pooling layer and kernel into
a 3D network. By pre-training the I3D on Kinetics Dataset, it could reach state-of-the-art
performance on recognising UCF101 and HMDB51 action video datasets.

2.1.3 PointNet
Point cloud models are digital representations of physical objects or environments,
comprising numerous discrete data points in three-dimensional space. These data points
are typically obtained using 3D scanning technologies such as LiDAR (Light Detection and
Ranging) or structured light scan and are widely used to represent 3D objects for the deep
learning classification task.

Introduced by [110], PointNet is a method for processing point clouds, which are sets
of points in 3D space. A key challenge of classifying 3D point clouds is that the input to
the neural network consists of a subset of points with three crucial properties: They are
unordered, have interactions between points, and are invariant under transformation. To
address these properties, PointNet includes three features: a max-pooling layer to collect
information from all points, a combination module for local and global information, and two
joint alignment networks that align both input points and feature of the points. This design
enables PointNet to process unordered point cloud data directly, a significant challenge in
3D deep learning.

PointNet transforms each point into a higher-dimensional feature space and aggregates
information from all points using a symmetric function like max pooling or mean pooling.
The resulting global feature vector can be utilised for various tasks such as classification or
segmentation. Figure 2.2 illustrates the abstract architecture of a complete PointNet. JANet,
which employs T-Net and matrix multiplications, allows PointNet to achieve geometric
invariant functionality, as the learned representations are expected to be invariant to spatial
transformations. Recent studies also show that JANet is critical to improve PointNet
performance [1], [18], [102], making it widely applicable in safety-critical tasks.

PointNet is renowned for its simplicity and efficiency, as it can be trained end-to-end
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Figure 2.3: The abstract diagram to illustrate the relationship between agent and environment
in reinforcement learning

on raw point cloud data without the need for additional preprocessing or feature extraction
steps. This makes it a powerful tool for various applications in 3D computer vision.

2.1.4 Reinforcement Learning

Reinforcement learning is a type of machine learning that involves training an artificial
intelligence (AI) agent to make decisions in an environment by providing feedback in the
form of rewards or punishments. In reinforcement learning, the AI agent learns through trial
and error, receiving positive or negative feedback depending on whether its actions achieve a
desired outcome or not. Reinforcement learning (RL) aims to find the best actions for agents
that can optimise long-term reward by interacting with the surrounding environments [11],
[113]. When there is a team of agents, the system needs to jointly optimise each agent’s
actions to maximise the reward of the team. This type of learning is often used in scenarios
where there is no clearly defined ”correct” answer, and the AI agent must learn through
exploration and experimentation.

Reinforcement learning (RL) comprises five key components: environment, state, reward,
policy, and value. As illustrated in Figure 2.3, the environment refers to the physical world
in which the agent operates. The agent takes action, and the environment provides feedback
in the form of reward and observation. The state represents the current situation of the agent,
and the policy maps the agent’s actions to the state. Lastly, the value corresponds to the
future expected reward an agent would receive by taking an action in a specific state. When
building an optimal policy, the agent must navigate the trade-off between exploring new
states and maximise overall reward, known as the exploration and exploitation dilemma.
Achieving the best overall strategy may require making short-term sacrifices, balancing the
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(a) Q-Learning

(b) DQNs

Figure 2.4: Comparison between Q-Learning and DQNs

need for immediate reward against the potential for long-term gains.

The RL problems can be modelled as a Markov decision process (MDP), which consists
of a set of states S and sections A. In MDP, the transition model P (st+1 = s′|st = s, at = a)
represents the probability from state s to state s′ under action a and the immediate reward
after transition from s to s′ with action a can be formulated as Ra(s, s

′). The state-action
value of Q = E

[∑T
t=0 γ

trt

]
represents the expected future reward rt, discounted by γt,

from taking an action in a given state/observation. At the time step t, the agent obtains the
current state st and reward rt, and then it can choose an action at. After receiving the action,
the environment will move to new state st+1 and reward rt+1, which determines the new
transition (st, at, st+1). Therefore, the reinforcement learning agent aims to learn the policy
π : A× S → [0, 1], π(a, s) = Pr (at = a | st = s) to maximise the expected accumulated
reward.
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Q-Learning

Real-world environments are more likely to lack any prior knowledge of environment
dynamics. Model-free RL methods come in handy in such cases, which do not require
prior knowledge of the environment’s transition probabilities. Q-learning is a value-based
model-free RL algorithm, that given the state s, it aims to find the best action a to maximise
the expected cumulative reward. The core feature is that it involves maintaining a table,
known as the Q-table, that maps states and actions to expected rewards. The Q-table is
initialised with arbitrary values, and the agent interacts with the environment by taking
actions and observing rewards. With each action, the Q-table is updated using the observed
reward and the maximum expected future reward for the next state. The updated value is a
function of the current value and the learning rate, which determines the degree to which
new information overrides old information. The update function is shown in Equation 2.1,
which is also referred to as the Bellman equation, where the α is the learning rate, γ is the
discount factor, and maxaQ (st+1, a) represents the estimate of optimal future value. In
summary, the equation indicates that the agent updates its perceived reward by adding the
estimated optimal future reward, assuming it takes the best-known action at present. When
implemented, the agent will explore all possible actions for a given state and select the
state-action pair with the highest corresponding Q-value.

Q (st, at)← (1− α) ·Q (st, at) + α · (rt + γ ·maxa Q (st+1, a)) (2.1)

Over time, the Q-table is updated through a process of trial and error, gradually
converging on the optimal policy for the MDP. Q-learning has been used in a variety
of applications, such as game-playing and robotics. It is easy to implement but hard to
handle the situation where the states are unseen, which causes a lack of generality.

Deep Q-Networks(DQNs)

Deep Q-Networks(DQNs) are introduced by [93], which uses a neural network to
approximate the Q-function. The Q-function represents the expected future rewards of
taking a certain action in a given state. It has been used to achieve impressive results in a
wide range of applications, including playing Atari games [93], navigating robots [106], and
even playing the game of Go [124].

The basic idea behind DQN is to train a deep neural network to predict the Q-values
of all possible actions given a particular state. The network is trained using a combination
of supervised and reinforcement learning, where the target Q-values are updated using a
Bellman equation, which is a recursive equation that calculates the expected reward of each
action. One of the key advantages of DQN is that it can learn directly from raw sensory input,
such as pixels from a camera, without the need for hand-crafted features or domain-specific
knowledge. In Figure 2.4, we compare the structure of Q-learning and DQNs. As DQNs
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use a neural network to approximate Q-values instead of a table, it is able to handle large,
complex problems with continuous states and actions.

2.1.5 Cooperative Multi-agent Reinforcement Learning
Cooperative Multi-agent Reinforcement Learning (c-MARL) deals with the study of multiple
agents learning to interact and cooperate with each other in an environment to achieve a
common goal. The goal of MARL is to develop algorithms that enable agents to learn from
their interactions with each other and with their environment to maximise their collective
rewards.

The main challenge in multi-agent systems is to model the interactions between agents
and their environment, where the reward function of each agent may depend not only on its
own actions but also on the actions of other agents. One approach to address this challenge
is to use decentralised learning algorithms that allow each agent to learn its own policy or
value function. However, it does not guarantee that the agents will coordinate effectively.
Another approach is employing centralised learning algorithms to learn a joint policy or
value function for all agents, which can achieve better coordination but may suffer from
scalability issues. In the c-MARL, as the number of agents increases, the joint action
space of the agents can grow exponentially. As a result, centralised training is proposed to
decentralise policy learning [101], where each agent learns its own policy based on its local
action-observation history first and then forms the centralised action value conditioned on
the global state and joint action. Most c-MARL methods use this scheme, such as value
decomposition networks (VDN) [133] and QMIX [113]. The key challenges of c-MARL
are that the environment is non-stationary as each agent can change its action and once the
model is trained, the information shared in the team is limited [179], which make it harder
for the c-MARL to choose the optimal actions.

In this thesis, we consider a fully cooperative multi-agent game G as a Dec-POMDP
[71], which is defined by the tuple G = ⟨S,A, P, r, Z,O, N, γ⟩, in which each agent
n ∈ {1, 2, ..., N} chooses an action an ∈ A in each state s ∈ S to form the joint action
a = {a1, a2, ..., aN}. The same reward function is shared by all agents r(s, a). γ is a discount
factor. We suppose that each agent draws an observation zn ∈ Z given the observation
function O(s, a).

Each agent has a stochastic policy πn(an|hn) where hn is the action-observation history
hn ∈ H. The joint policy π has a joint discount return Rt =

∑∞
i=0(γ

irt+i) and an action-
value function: Qπ(st, at) = Est+1:∞,at+1:∞[Rt|st, at]. Given an action-value function Qπ,
we define a greedy policy as π(st) : argmaxat∈AQπ(st, at) that returns the optimal action.

VDN

Value-Decomposition Networks (VDN) [133] was proposed as a solution that combines the
benefits of both decentralised and centralised learning. It decomposes the Q-value function
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Figure 2.5: a. Structure of mixing network. b. Overall architecture of QMIX. c. Structure of
agent network, where the best viewed in colour.[113]

of a team into a sum of individual Q-value functions for each agent, allowing each agent to
learn its own Q-value function while still coordinating effectively with other agents.

In VDN, each agent maintains its own Q-value function, which is a function of the local
observation and the joint action of all agents. The Q-value function for the team is then
obtained by summing up the Q-values of all agents. This decomposition of the Q-value
function allows the agents to learn how to coordinate with each other while still maximising
their own individual rewards. The training process of VDN involves using experience replay,
in which the agent stores and randomly samples past experiences to update its Q-value
function. VDN also uses target networks to stabilise the learning process and prevent the
Q-value function from oscillating during training. However, since the individual Q-values are
only combined through simple summation to derive the global Q-value, and the decentralized
policy is updated independently for each agent, this approach can restrict the complexity of
the centralized action-value representation and disregard additional state information during
the training process.

QMIX

To improve the VDN, instead of using a separate network for each agent, [113] proposed the
QMIX to use a mixing network that takes as input the individual Q-values and outputs the
global Q-value. The key insight of QMIX is to ensure that a global argmax operation on the
total Q-value function produces the same result as a series of individual argmax operations
on each individual Q-value function, which constrain the reward in a more general form,
which is defined as:

∂Qtot

∂Qa

≥ 0,∀a ∈ A,
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where Qtot denotes the joint value function computed by the mixing network and Qa

represents each agent’s value function from agent networks.
The QMIX architecture is shown in Figure 2.5. For each agent a at time t, the agent

network takes the observation o and last action u as input to output the individual value
function Qa (τ

a, ua
t ). The mixing network operates as a neural network that propagates

forward. By ingesting Qa (τ
a, ua

t ) and a collection of weights as input, it merges the
distinctive value function of each agent and produces the output values for Qtot. The weights
dictate the relative influence of each agent’s Q-value on the overall Q-value.

Through a back-propagation process, the mixing weights are iteratively refined. This
process aims to train the mixing weights in a way that optimises the global Q-value function,
ultimately enhancing the collaboration among agents.

2.2 Robustness

Despite deep neural networks (DNNs) achieves excellent performance in pattern recognition
tasks, they also exhibit significant robustness issues. Even minor, imperceptible non-random
adversarial perturbations added to natural input can easily fool DNNs, which can result in
blind confidence in incorrect predictions. The adversarial examples are first proposed in
[136], in which the small perturbations were injected into the inputs to fool the DNNs in
high probability. The robust classification error can be defined as

Erob(fθ(x)) = Ex max
x′∈Bp(x,ϵ)

1⃗{fθ(x′) ̸= y}, (2.2)

where Bp(x, ϵ) = {x′ ∈ S : ||x′ − x||p ≤ ϵ}, S is the input space, y represent the true label,
and 1⃗{fθ(x′) ̸= y} serves as a discriminative function that assesses whether the prediction
differs from the true label. These examples that are misclassified are referred to as the
adversarial examples and the technology to generate the adversarial examples according
to the DNN is called adversarial attacks. To train a more robust DL system, the goal of
adversarial training is to minimise the training loss of the samples with perturbations which
is generated by maximising the classification error. This goal can be interpreted as a min-max
optimisation [66].

2.2.1 Adversarial Attack

There are several methods for generating adversarial examples. In this section, we will
introduce five common algorithms in detail.
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Fast Gradient Sign Method (FGSM)

[41] proposed the FGSM technology which generates the adversarial examples by updating
the sample along with the sign direction of each pixel via one-step gradient:

xnew = x+ αsign (∇xJ(θ, x, y)) , (2.3)

where J represents the cost function of the DNN, the θ denotes parameters of the model,
x is the input vector, α represents the step size to ensure the perturbations are small, and
y is the predicted result of x. When training a model, the goal is to minimise the loss and
optimise the network parameters to achieve higher accuracy. However, when generating
adversarial examples using FGSM, the goal is to maximise the loss. This is achieved by
using the update function in Equation 2.3.

Basic Iterative Method (BIM)

[75] extended the FGSM algorithm to generate adversarial perturbation iteratively for a
small parameter ϵ. The generation formula can be represented below:

x0 = x and xn+1 = Clipx,ξ {xn + ϵ sign (∇xJ (θ, xn, y))} . (2.4)

The Clipx,ξ(·) could ensure the generated adversarial samples within the range of ϵ-district
of the original input x.

The Projected Gradient Descent (PGD)

The PGD [90] is proposed to improve the FGSM. It works by first setting the input data to a
random point and then using the basic iterative process to create adversarial data.

Jacobian-based Saliency Map Attack (JSMA)

Papernot et al. [104] introduce the JSMA for the target classification, which applies the
Jacobian matrix firstly for the input x. This algorithm follows a greedy approach, wherein
it conducts numerous iterations, with each iteration modifying a single pixel at a time to
amplify the desired misclassification target.

JF (x) =
∂F (x)

∂x
=

[
∂Fj(x)

∂xi

]
i×j

(2.5)

where Fj is the output logit score for the target label j and xi represents the i-th pixel. To
classify the sample to the target class j, the probability of the output of class j should be
increased and for other classes should be decreased until the class j engages the highest
probability.
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Carlini and Wagner (CW)

Calini and Waner [14] designed the adversarial attack technique to solve the optimisation
problem to update the perturbation η :

minη ∥η∥p + λ · J(θ, x+ η, y)
s.t. x+ η ∈ [0, 1]n

(2.6)

where p ∈ {0, 2,∞}. The term ∥η∥p restricts the η within lp norms and the parameter λ is
introduced to balance the two loss functions. They proposed seven versions of objective
functions J . Other gradient-based optimisation algorithms to generate perturbation were
also proposed [13], [86], [137], [164].

These works mentioned above only apply additive perturbation to pixels. Some works
[58], [76], [77], [158], [165] use a functional perturbation which is non-additive-only
perturbation like spatial transformation. These perturbations slightly modify the location
of pixels. Some work such as [43], [58], [183] also utilise other types of metrics such as
SSIM to quantify human perception, but none of them explored the SSIM-guided spatial
transformation. For more details on adversarial attacks, please refer to our recent survey [51]
and tutorial [6], [114].

2.2.2 Adversarial Defence
The adversarial defence is proposed to improve the robustness of the model, which aims
to reduce the power of adversarial examples. [41] first proposed to inject the adversarial
examples into the training dataset to retrain the model. However, this method is time-
consuming, and the achieved robustness of the retrained model relies on the power of the
injected adversarial examples. Then, [90] first build the structure of adversarial training by
adding multi-step projected gradient descent (PGD) in the training stage, which is considered
the most effective way for adversarial defences [2], [55]. [176] then proposed the method to
establish a trade-off between model accuracy and robustness by adding an extra loss term
of adversarial examples in the training stage. There is a rising number of works achieved
adversarial defences based on adversarial training [61], [105], [140], [163].

In addition to adversarial training, some works attempt to adopt other methods, such
as detection techniques [13], [15], [33], [91], provable defences [54], [56], [57], [63],
[112], [127], [156], and preprocessing algorithms [9], [44], [128]. From the empirical
perspective, adversarial training with PGD [90] adversary still appears to engage the most
robust performance against a wide range of adversarial attacks [80], [90].

Given the input x and output y in the set S, the min-max function is shown in Equation
2.7

min
θ

1

|S|
∑
x,y∈S

max
||δ||≤ϵ

J(θ, x, y). (2.7)

The most intuitive way to train a robust model is to generate the adversarial examples first
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Algorithm 1 PGD adversarial training [90]
Input: XT×W×H×C ; y; M ; training epochs T ; dataset batch size N ; PGD steps K; step

size α

1: for t← 1, T do
2: for i← 1, N do
3: σ = 0
4: for k ← 1, K do

//Perform PGD Adversarial Attack
5: σ = σ + α·

(∇σℓadv (1yi , J(Xi + σ;θ)))

//Update the model weights
6: θ = θ −∇θℓ (J(θ;Xi + σ),1yi)

and then feed them into the training process. Usually, the parameter θ can be optimised by
the stochastic gradient descent and the inner maximisation problem can be solved by the
adversarial attacks mentioned previously, such as PGD and FGSM. As the FGSM can be
viewed as one step on PGD, in practice, it works worse than PGD. The overall adversarial
training process with PGD attack is shown in Figure 3.5 (b), and its algorithm is sketched in
Algorithm 1. As we can see from Algorithm 1, the key improvement of PGD adversarial
training is to perform multiple small steps α to estimate the inner maximisation problem
(lines 4-5).

2.2.3 Robustness Verification
As generating adversarial attack examples can be one strategy to solve the inner optimisation
problem:

max
||δ||≤ϵ

J(θ, x, y),

it can be referred to as finding a lower bound to achieve the optimisation goal, which is
also can be viewed as a method to empirically solve the optimisation problem. On the other
hand, we can consider how to exactly solve it or to upper bound the optimisation. Instead of
exactly finding the solution for the inner maximisation, we can determine whether adversarial
examples exist within a specific region. This concept is also referred as verification. A neural
network verification algorithm aims to guarantee a safe region, where any perturbed input
cannot defer the prediction of the model. Given the input x and a region

Bp(x
′, ϵ) := {x′|∥x′ − x∥p ≤ ϵ},

which is defined as a lp norm ball around the input sample, suppose argmax f(x) = c,
the robust verification aims to verify argmax f(x′) = c for all x′ ∈ Bp(x

′, ϵ). For the
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classification model, the objective can be formulated as the following equation:

min
x′∈Bp(x′,ϵ)

fc(x
′)− ft(x

′),∀t ̸= c, (2.8)

By ensuring that the optimisation function’s minimisation is greater than zero,we can
guarantee that the logit output of class c for any input x′ within the region B is always greater
than any other class. As this is a nonconvex optimisation problem, exactly solving the
problem is a challenging task. To compute the robustness guarantees, two types of verifiers
are proposed: incomplete and complete verifiers.

Complete Verifiers

The complete verifier aims to ensure there are no adversarial examples in a certain region
or find an adversarial example within the region to mislead the verifier. Some works have
explored in this direction, such as the algorithm based on satisfiability modulo theories
(SMT) [63], and mixed integer programming (MIP) [10], [138]. The Reluplex algorithm
proposed by [63] encodes the single ReLU function into a pair of variables to split the
non-linear function into two linear programming functions and then formulate a set of
constraints to justify whether the assumption is satisfied. The maximisation problem can be
formulated as a combinatorial optimisation problem. As for the methods based on MIP, it
can be solved by converting the problem into a mixed integer linear program (MILP), which
compromises a linear objective, linear inequality, and equality constraint for each neuron
using binary variables. However, these methods are shown NP-hard [175], thus they can
only be employed for the small model to find the exact solution.

Incomplete Verifiers

Figure 2.6: Demonstration of the process to compute the bounds for the output of neural
network with ReLU active function [175].

The incomplete verifier aims to approximate the bounds of the model’s output, and
there are various methods to certify the robustness of neural networks by bounding the
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output. As the main challenge to compute the output of the neural network is the non-linear
activation function [175] proposed the algorithm, Fast-Lin to use a linear approximation for
the non-linear activation function to derive the certified lower bound of minimum adversarial
perturbation.

Given the perturbed input x within lp norm ball Bp(x
′, ϵ), suppose the lower bound and

upper bound of the neuron pre-ReLU layer is l and u, following linear function can be used
to bound the output of ReLU activation Γ(y) :

u

u− l
y ≤ Γ(y) ≤ u

u− l
(y − l),

In Figure 2.6, we illustrate the utilisation of a linear function for constraining the output of the
ReLU activation. Therefore, to find the maximum possible lower bound of the perturbation
ϵ, as Equation 2.8 suggested, the output of lower bound of logit output of original class
fL
c (x+ ϵ) and upper bound for any other class fU

t (x+ ϵ) should be minimised by adjusting
the value of ϵ, under the condition fL

c (x+ ϵ) > fU
t (x+ ϵ).

As Fast-Lin can only be used to verify the basic neural networks with ReLU activation
function, [178] then proposed a more general framework, CROWN, to improve it by allowing
it to handle various active functions. In CROWN, instead of using two parallel linear bounds
to estimate the output of ReLU, it applies two linear bounds with different slopes which
makes it more precise and efficient. However, both these frameworks can only be used to
verify the fully connected layers, [7] then proposed a more general framework, CNN-Cert to
handle more complex convolutional neural networks. On the other hand, [118] proposed
to use the convex relaxation to approximate the bounds for the non-linearity operations.
Following this direction, [156] and [28] introduced a dual approach to form the relaxation.
Additionally, several studies computed the bounds via abstract domain interpretation [39],
[126], symbolic interval analysis [145], and semi-definite approximation [29], [112]. Above
mentioned verification algorithms are based on the image domain, and they have been
extended to various scenes like energy conversation [111], shape variants [126], Transformer
[123], and 3D point clouds [87].

Randomized smoothing is also an incomplete verifier, which is a probabilistic method
based on Monte Carlo sampling. Below we give a more detailed knowledge of it.

Randomized Smoothing

Randomized smoothing [24] was developed to evaluate probabilistic certified robustness
for classification tasks. It aims to construct a smoothed model g(x), which can produce the
most probable prediction of the base classifier f(x) over perturbed inputs from Gaussian
noise in a test instance. The smoothed classifier g(x) is supposed to be provably robust to
l2-norm bounded perturbations within a certain radius:
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Figure 2.7: Demonstration of the proof of Theorem 1. The set in green represents class A
and orange represents class B. The circle is the distribution sampled from N (x, σ2I) and
N (x′, σ2I). As the perturbation increases in the direction perpendicular to the boundary
plane, the centre of distribution moves from x to x′, resulting in the maximum distortion.

Theorem 1. [24] For a classifier f : R → Y , suppose c ∈ Y , let δ ∼ N (0, σ2I), the
smoothed classifier be g(x) := argmax

c
P(f(x+ δ) = c), suppose pA, pB ∈ [0, 1], if

P(f(x+ δ) = cA) ≥ pA ≥ pB ≥ max
c ̸=cA

P(f(x+ δ) = c), (2.9)

then g(x+ ϵ) = cA for all ||ϵ||2 ≤ R, where

R =
σ

2
(Φ−1(pA)− Φ−1(pB)). (2.10)

Here Φ−1 is the inverse cumulative distribution function (CDF) of the normal distribution.
To be noticed, it cannot guarantee that a given model is robust against all possible adversarial
attacks but rather provides a probabilistic guarantee that the model is robust with high
probability. The level of confidence in the guarantee depends on the number of times the
smoothing procedure is repeated and the variance of the noise distribution. The Theorem 1
is derived based on Neyman-Pearson [99] lemma, and also can be proved by the modified
version.

Lemma 1. [99] Let X and Y be random variables in Rd with densities µX and µY . Suppose
h Rd → 0, 1 is a random or deterministic function. Then: If S:{z ∈ Rd : µY (z)

µX(z)
≤ t} for

some t > 0 and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) = 1) ≥ P(Y ∈ S). On the
other hand, if {z ∈ Rd : µY (z)

µX(z)
≥ t} for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then

P(h(Y ) = 1) ≤ P(Y ∈ S).

Lemma 2. (Neyman-Pearson for Gaussians with different means)[24] Let X and Y be
random variables from Gaussian distributions, X ∼ N (x, σ2I) and Y ∼ N (x+ δ, σ2I).
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Algorithm 2 Randomized Sampling [24]
Input: Pre-trained classifier f ; input sample x;
Parameter: sampling size M ; Gaussian distribution parameter σ; confidence parameter α

1: function PREDICTION(f, x,M, σ, α)
2: Cnts← SAMPLE(f, x,M, σ)
3: c∗A, c

∗
B ← Top two indices in cnts

4: nA, nB ← cnts[c∗A], cnts[c
∗
B]

5: if BINPVALUE(nA, nA + nB,=, 0.5) ≤ α then
6: return c∗A
7: else
8: return None
9: function CERTIFY(f, x, σ,M0,M, 1− α)

10: cnts0 ← SAMPLE(f, x,M0, σ)
11: c∗A ← top index in cnts0

12: cnts← SAMPLE(f, x,M, σ)
13: pA ← LOWERCONFBOND(cnts[c∗A], n, 1− α)

14: if pA > 1
2

then
15: return prediction c∗A and radius σΦ−1(pA)
16: else
17: return None

Suppose h Rd → 0, 1 is a random or deterministic function. Then we can have:
a. If S =

{
z ∈ Rd : δT z ≤ β

}
for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) =

1) ≥ P(Y ∈ S).
b. if S =

{
z ∈ Rd : δT z ≥ β

}
for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then

P(h(Y ) = 1) ≤ P(Y ∈ S).

Proof. Proofs are provided in Appendix A in [24]. I suggest you read more details in [24]
about randomized smoothing to gain a better understanding.

As a result, the region of each class can be defined as a hyperplane that is orthogonal
to the direction of the distortion, as illustrated in Figure 2.7. To demonstrate the algorithm,
we briefly present the algorithm for certification in a binary case in the Algorithm 2. The
SAMPLE in the algorithm used the Monte-Carlo sampling to sample M noises ϵ from
Gaussian distributionN (0, σ2I) and obtains f(x+ϵ). The procedure, PREDICTION, involves
gathering the counts of each class and utilising the top two classes in a two-sided binomial
p-value test to assess whether the most frequently selected class should be returned. In the
function CERTIFY, the Clopper-Pearson confidence interval [23] is applied to compute the
lower bound of the probability pA. As indicated in Theorem 1, by replacing the pB with
1− pA, the certified radius R can be calculated. If the function CERTIFY returns a class and
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radius R instead of None, we can guarantee that the Theorem 1 holds with confidence 1−α
on the radius R.

2.2.4 Structural Similarity Index Measure (SSIM)
The SSIM was first proposed by Wang and Bovik [146] and is detailed in Wang, Bovik,
Sheikh, et al. [147]. Given x and x̂ as the local pixels taken from the same location of
the same frame in the clean video and adversarial video, respectively, the local similarity
between them can be computed on three aspects: structures (s(x, x̂)), contrasts (c(x, x̂)),
and brightness values (b(x, x̂)). The local SSIM is formed by these terms [147]:

S(x, x̂) = s(x, x̂)α · c(x, x̂)β · b(x, x̂)γ =(
σxx̂ +D1

σxσx̂ +D1

)α

·
(

2σxσx̂ +D2

σ2
x + σ2

x̂ +D2

)β

·
(

2µxµx̂ +D3

µ2
x + µ2

x̂ +D3

)γ

,
(2.11)

where the parameters α, β, and γ are positive values that govern the relative significance
of the three components; µx and µx̂ denote means, σx and σx̂ are standard deviations of x
and x̂, respectively; σxx̂ represents the cross-correlation of x and x̂ after deleting means; D1,
D2, and D3 are weight parameters. Following Wang, Bovik, Sheikh, et al. [147], we set
D1 = 0.01, D2 = 0.03, D3 = 0.015 and α = β = γ = 1. For the SSIM metric, a value of 1
means that the two images compared are the same.

As we mentioned before, the SSIM is less sensitive to the combination of additive and
spatial perturbations 1 and more similar to human perception than lp-norms [185]. Because
the SSIM is differentiable with respect to the input variable, in this chapter we apply SSIM
to calculate the similarity loss to constrain the perturbation during the optimisation process.
The overall score of SSIM of the video is calculated by summing up SSIM loss over all
frames of the video.

1For convenience, we use combined perturbation for short in this chapter.
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Chapter 3

Sparse Adversarial Video Attacks and
Defences

“A single idea from the human mind can build cities. An idea can transform the
world and rewrite all the rules.”
(“Inception”)
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3.1 Introduction
As Deep Neural Networks (DNNs) are shown to be vulnerable to adversarial attacks, to
improve the robustness of the model in the adversary environment, various adversarial
defensive methods have been proposed recently. These attack strategies primarily concentrate
on image-related tasks, yet the adversarial robustness of deep learning models in videos
has not been thoroughly explored. Recently, a number of works [53], [98], [148], [167] are
aware of the values of the adversarial attacks on videos. In practice, DNNs that process
videos are widely applied in real systems such as video surveillance [103], action recognition
[60], and autonomous driving [160]. In particular, most of these applications directly relate
to decisions about property security or human health and safety. As a result, investigating
adversarial samples on videos is urgently needed.

Theoretically, attacking videos is more challenging compared with images because
videos contain temporal information. So video attack not only requires achieving minimal
adversarial distance but also needs to perturb as few frames as possible, which is referred to
as sparse attacks on videos. As such, identifying the most effective frame(s) and generating
competitive perturbation upon those frame(s) are of huge importance to the success rate
of the attack. Another important consideration is efficiency. As perturbing each frame of
the video is time-consuming, we expect to perform the influential frame identification and
adversarial perturbation simultaneously so that we can maintain human imperceptibility and
achieve a high attacking success rate. In Table 3.1, we compare our method with existing
related work on video attacks in six aspects in Table 3.1.

To achieve such sparse adversarial attack, one important criterion is that the perturbed
example should resemble a real-world instance as close as possible. Current video attack
strategies all adopt the lp-norm metric to measure the fidelity of the perturbed examples.
Although the lp norm is effective in capturing noise contamination, it is sensitive to natural-
occurring transformations such as rotation, spatial shift, and scaling [185]. Taking Figure 3.1
as an example, where the original video frame is modified by different types of perturbation:
additive Gaussian noise, spatial scaling, and slight rotation, and both l1,2 and structural
similarity (SSIM) are given. In Figure 3.1(b) and (d), one frame has only noise added,
while the other has a small rotation and noise added. The results demonstrate that the
SSIM values of the two frames are identical, whereas the l1,2 norm varies. This indicates
that SSIM exhibits lower sensitivity towards small modifications, such as slight rotation or
scaling of pixels, while the lp-norm distance shows a noticeable difference. The use of the
l1,2-norm exacerbates this limitation, as even a negligible spatial transformation perturbation
can significantly amplify the adversarial distance. Consequently, attacks constrained by
the lp-norm are unable to capture certain spatial transformations that naturally occur in
real-world scenarios, such as camera shaking, vibration, or rotation, thereby limiting the
effectiveness of the attack. Furthermore, the Image Quality Assessment community has
demonstrated that SSIM is a superior alternative signal fidelity measure compared to the
lp-norm in applications where human perceptual criteria matter [185]. Overall, SSIM is
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(a) Original; SSIM=1.00,
l1,2=0.00

(b) Noise; SSIM=0.93,
l1,2=3.23

(c) Zoom Out+ Noise;
SSIM=0.92, l1,2=3.39

(d) Rotate+Noise;SSIM=0.93,
l1,2=3.29

(e) Rotate+Noise; SSIM=0.92,
l1,2=3.40

Figure 3.1: Comparison of SSIM and l1,2 norm distance for: (a) Original image. [(b)-(e)]
Perturbed images: (b) Noise. (c) Zooming-out spatial scaling + noise. (d) Counterclockwise
rotation 5 ◦ + noise. (e) Counter-clockwise rotation 5 ◦ + spatial scaling with zooming +
noise. SSIM values for (b) and (d) are identical, whereas l1,2 increases when an imperceptible
rotation is introduced. This indicates that SSIM is less sensitive to rotation and can potentially
result in a stronger adversarial attack with spatial transformation perturbation.
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less sensitive to both noise and spatial transformations, such as rotation and scaling, thus
better aligning with human perception. In this chapter, we employ spatial transformation
perturbations, making the SSIM-based loss function more suitable for constraining the
distance between adversarial and clean videos, enhancing the effectiveness and efficiency of
DeepSAVA.

Moreover, in a real-world scenario, we may not be able to access the parameters,
structures, or even datasets of a pre-trained DNN. Thus, similar to adversarial attacks
on images, a strong adversarial transferability that can work across diverse unseen models
is desirable. However, unlike DNNs for images that are without temporal structure, video
models are more complicated and include diverse neural units for recurrent operations.
Hence, achieving satisfying adversarial transferability on adversarial video attacks is also
very challenging.

In this chapter, we demonstrate our methodology from two aspects: sparse adversarial
attacks and adversarial training. The flow chart of our sparse attack method, DeepSAVA,
is illustrated in Figure 3.2. In order to demonstrate the effectiveness of DeepSAVA, we
compare its performance with the baseline [148] and [98] on three different models. To
ensure a fair comparison, we first evaluate their performance under the constraint of limited
iterations and then compare them by fixing the lp-norm and SSIM of the added perturbation.
Additionally, an ablation study is conducted to demonstrate the effectiveness of spatial
transformation and Bayesian optimisation. Then we show the model accuracy and fooling
rate of the model trained by different numbers of adversarial examples. Finally, we perform
the transferability experiments on the UCF101 dataset for different recurrent models to
demonstrate the transferability of our method across different models.

As for existing works of Adversarial attack on videos, [148] claimed that they are the first
to attack videos. Instead of attacking each frame of a video, they apply additive perturbations
on randomly selected frames and use l2,1 norm to guide the gradient-based optimisation and
evaluated the performance on the CNN+LSTM model. [81] used a GAN network to generate
offline universal perturbations for each frame. [19] proposed to append a noise frame to
the end of videos, which is obtained based on all videos. [98] applied flickering temporal
perturbations on each frame to generate universal perturbations for the I3D model. [53] first
proposed a black-box approach to attack videos. [149] proposed to use a heuristic method
and [167] used a reinforcement learning algorithm to select the keyframes to perform a
black-box attack. However, these works only applied additive perturbation based on lp-norm
distance. Our work applies the SSIM-guided non-additive perturbation on selected frames
to generate adversarial videos efficiently. We also propose a novel alternating optimisation
strategy to select the keyframes.

In Table 3.1, we compare our method with existing related works on video attacks in six
aspects. Our work applies the SSIM-guided non-additive perturbation on selected frames
to generate adversarial videos efficiently. In this chapter, we propose a novel alternating
optimisation strategy to select the keyframes. Additionally, as existing adversarial defences
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Table 3.1: Comparison with related works (Flickering [98], RL [167], Heuristic [149],
Append [19], BlackBox [53], GAN-based [81], and Sparse Attack [148]) in different aspects.

Flicker RL Heuristic Append BlackBox
GAN-
based Sparse

Deep-
SAVA

Similarity
metric lp lp l1 l∞ l∞ lp l2,1 SSIM

Spatial-
transformed
perturbation

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Additive
Perturbation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Identify
Key Frames ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Transferability
Study ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Sparse
Attack ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Adversarial
Training ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

mainly focused on images, and there is no work to improve the robustness of the video
classification model against spatial-transformed perturbations, thus, we adapt the existing
adversarial training methods on images to videos to improve its robustness on both spatial
transformation and additive perturbation.

3.2 Methodology

3.2.1 Attack Problem Definition
The video classifier is defined as J(·;θ) with pretrained weights θ. The input clean video is
defined as X = (x1, x2, ..., xT ) ∈ RT×W×H×C , where T is the length of the video (number
of frames), and W,H,C represents the width, height, and the number of channels of each
frame; its adversarial video generated is represented as X̂. In order to obtain the adversarial
example, the original video is perturbed by a spatial transformer S, and additive noise D.
Given that the ground truth label of input video X is y, the objective function is:

argminλℓsimilar(X̂,X)− ℓadv

(
1y, J(X̂;θ)

)
, (3.1)

where 1y is the one-hot encoding of y; ℓsimilar is the similarity loss function to measure
the distance between generated adversarial and original video; ℓadv is the loss function to
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Figure 3.2: Overview of DeepSAVA. Step I is to select the most critical frame: the
key frame mask indicator M is alternately identified using Bayesian Optimization (BO),
which takes the initial mask indicator M0 as input and iteratively updates Mi by interacting
with the adversarial generator to obtain the prediction loss (L). Step II is to generate the
adversarial example using the adversarial generator which incorporates additive and spatial
transformation perturbations to generate adversarial examples for the selected frame.
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measure the difference between ground truth and prediction label. The parameter λ is set to
balance these two loss terms. Additionally, the cross-entropy is used to calculate the ℓadv,
which is proved to be effective in [148].

3.2.2 Sparse Spatial Transform Adversarial Attack

We will now introduce our algorithm for performing attacks with a combined perturbation.
The main idea of the algorithm is to apply the combined perturbation on selected frames to
achieve a high fooling rate.

Sparse Attack

Formally, the mask indicator M = (m1,m2, ..,mT ) ∈ RT is used to choose the keyframes
in the video, where mt ∈ {0,1} indicates whether the t-th frame is masked to be perturbed.
The masked video Xm is formed through the map functionM(M,X), and then fed into the
spatial transformer S.

Spatial Transformed Perturbation

In this chapter, we consider the spacial transformation as a learnable component. Given the
t-th frame xt ∈ RW×H×C of input video X, xt

n denotes the n-th pixel of xt and its location
in the frame can be represented by a 2D coordinate (ht

n, v
t
n). The spatial transformer [52], S ,

is a differentiable model composed flow displacement vectors

U = ((∆H1,∆V1), (∆H2,∆V2), ..., (∆HT ,∆VT )) ∈ RT×2×H×W

where Ht = (ht
0, h

t
1, ..., h

t
n), V

t = (vt0, v
t
1, ..., v

t
n) ∈ RH×W , which is used to synthesise the

2D coordinate of adversarial videos. Suppose x̂t
n with location (ĥt

n, v̂
t
n) is the adversarial

example transformed from xt
n, given its corresponding spatial displacement flow vector

(∆ht
n,∆vtn). As the flow vector moves from the pixel x̂t

n in the adversarial frame to its
corresponding pixel xt

n in the input frame, therefore, the location of the original pixel xt
n can

be drawn from x̂t
n by

(ht
n, v

t
n) = (ĥt

n +∆ht
n, v̂

t
n +∆vtn).

Considering the sparse attack mask indicator M , we can represent the transformed adversarial
video as

X̂S = S(U,X,M).
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Figure 3.3: The procedure for perturbing a single frame within a video. Initially, the
mask indicator M is used to pinpoint the target frame for manipulation. Subsequently, a
spatial transformation perturbation is applied, followed by the addition of noise. Finally, the
resulting adversarial example X̂ is generated.

Additive Perturbation

The additive perturbation is the most common way to generate adversarial examples [13],
[41]. We define the additive model as D with parameter N ∈ RT×W×H×C . We combine
spatial transformation and additive perturbation to generate adversarial videos as (illustrated
in Figure 3.3):

X̂ = D(N, X̂S,M) = N ·M + X̂S (3.2)

3.2.3 Novel Alternating Optimisation Strategy

In this work, we utilise Bayesian Optimisation (BO) to select the most critical frame(s). Here,
the term ”critical frame(s)” refers to the frame for which applying the specified combination
results in the greatest reduction in prediction loss compared to other frames. It’s important
to note that the user can define the number of critical frames to be targeted, and this number
may vary for different models in order to achieve optimal attack performance. As the frame
selection is a discrete variable optimisation problem, we also tried other discrete optimisation
techniques such as simulated annealing (SA) [38] and genetic algorithms (GA) [153], but
both spent about 200s to find one critical frame which is much longer than about 16s taken
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Figure 3.4: The systematic optimisation process by using Bayesian optimisation and Adam
Optimiser.

by BO.
The generated adversarial video is formed as

X̂ = N ·M + S(U,X,M).

In this chapter, the similarity loss ℓsimilar and adversarial loss ℓadv in Equation 3.1 can be
expressed as

ℓsimilar(X̂,X) = 1− SSIM(X̂,X) = Ls(N,U,X,M)

and
ℓadv

(
1y, J(X̂;θ)

)
= La(N,U,X,M).

Therefore, Equation 3.1 can be simplified as:

arg min
M,N,U

λLs(N,U,X,M)− La(N,U,X,M). (3.3)

As M is a discrete binary vector, which makes problem (4) non-differentiable, the
Bayesian optimization (BO) is then utilised to optimise the binary vector M by identifying the
critical frame that should be perturbed. It can be solved systematically by a novel alternating
optimisation strategy. We initially provide M as input to the Bayesian optimization
process. During the search process, BO generates different configurations of M to explore.
Importantly, at each iteration, the BO finds a configuration of M and then queries the model
output to obtain an evaluation score, which is used to guide the BO search for the next optimal
M . Hence, when interacting with the model, the value of M remains fixed, transforming
the problem into a differentiable one that can be solved using Stochastic Gradient Descent
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(SGD)-based optimisation. In this work, we choose the Adam optimiser [65] because of
its robust and fast convergence performance. This process repeats for a fixed number of
iterations, continuously improving the solution via both techniques alternatively.

BO proposes sampling points from the search space through acquisition functions to
obtain the reward of previous points. We apply expected improvement (EI) as our acquisition
function F , which is a widely used function:

F = EI(M) = E[max
(
L(M)− L

(
M+

)
, 0
)
], (3.4)

where L(M) is the loss feedback from Adam optimiser by fixing M ; L (M+) is the best
value obtained so far, and M+ is its location.

During the BO process, we will find the best mask indicator through several iterations.
In the k-th iteration of BO, we will first sample a candidate Mk according to the acquisition
function F . Then, the corresponding loss Lk will be computed by the Adam, which will
then affect the next sampled point Mk+1 for the next iteration. When the BO reaches
the maximum exploration number, the M with minimum loss will be fed into the Adam
optimiser to generate the final adversarial video. The process is illustrated in Figure 3.4.

Algorithm 3 Bayesian Optimisation for video frame selection
Input: XT×W×H×C ; y; G; λ; F ; Number of steps to explore K; Number of critical frames

to be chosen n.
Output: The frame selection mask indicator is represented by a one-hot matrix M with n

’1’ entries.

1: Initialise flow network parameter U0 and additive noise N0 as random variable from
stand norm distribution;

2: for k ← 1, K do
3: Find M=argmaxM F (M | D1:k−1)
4: Train G(X, y,M, λ) using Adam to obtain L
5: Add M,L to the dataset D1:k−1

6: Return the best M with lowest L.

Algorithm 3 and Algorithm 4 detail the BO selection and adversarial video generation
algorithms, respectively. In Algorithm 3, the next sampling point M is obtained by
maximising the acquisition function F based on the previous sampling data set D1:k−1

(Line 3). After the Adversarial Generator (G) is optimised, the loss L for M is calculated.
Then the M with its corresponding L are appended to the sampling pool D to propose the
next sampling point. In Algorithm 4, according to the optimised mask indicator M , the final
flow vector U and additive noise N are optimised via Adam.
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Algorithm 4 DeepSAVA adversarial generator (G)
Input: XT×W×H×C ; M ; y; λ

1: Initialise flow vector U0, and additive noise N0;
2: for step← 1,maxStep do
3: X̂ = N ·M + S(U,X,M)

4: L = λ(1− SSIM(X̂,X))− ℓadv

(
1y, J(X̂;θ)

)
5: Apply Adam to optimise U and N to minimise L

(a) Adversarial training via injecting adversarial examples

(b) Adversarial training with PGD attack

Figure 3.5: Adversarial Training Overview.
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3.2.4 Adversarial Training

Adversarial training is designed as the most intuitive defence mechanism against various
adversarial attacks, which incorporates adversarial examples during the training process
to improve the robustness of the model. Formally, this goal can be constructed as a min-
max optimisation problem. Given the video classifier J(·;θ) parameterised by θ and the
adversarial video input (X̂i, yi) with ground truth label yi, the objective function can be
formulated as follows:

min
θ

∑
i

max ℓadv(J(θ, X̂i),1yi), (3.5)

where ℓadv is the adversarial loss. The inner maximisation term aims to find the optimal
adversarial examples and it can be approximated by some well-developed adversarial attack
algorithms such as PGD [90] and FGSM [172]. The following outer minimisation term
represents the traditional training process which aims to minimise the training loss by
applying a gradient descent algorithm to optimise the model parameters θ. The generated
re-trained model is expected to be more robust against the adversarial attack that is employed
in the training process for generating adversarial examples.

The most intuitive way is to inject adversarial examples generated by the adversarial
attack to re-train the model, as represented in Figure 3.5 (a). However, this method is time
expensive, as we need to spend much more time obtaining thousands of adversarial examples
from the training dataset. Goodfellow, Shlens, and Szegedy [41] first proposed to use the
Fast Gradient Sign Method (FGSM) to solve the inner maximisation problem. The objective
function to approximate the inner maximisation for the FGSM adversarial training can be
formed as follows:

X̂i = Xi + α · sign (∇Xi
ℓadv (1yi , J(Xi;θ))) .

However, the model trained by the FGSM adversarial training algorithm is still vulnerable to
stronger adversarial attacks, such as the PGD attack, which is based on iterative adversarial
attacks. Thus, in this chapter, we adapted the PGD optimisation method to solve the inner
maximisation problem, which is proved to be effective [90]. As our DeepSAVA framework
is a stronger and more effective adversarial attack method on videos, we design a novel
adversarial training approach based on traditional PGD adversarial training to defend our
adversarial attack with a combined perturbation, as shown in Algorithm 5.

Compared with the PGD adversarial training [90], we identify the main difference
between the two methods is that our approach takes the spatial transformation perturbation
combined with additive noise into account, which is achieved via the operation presented in
Lines 5-6 of Algorithm 5. Despite the adversarial training procedures of the two algorithms
being similar, our defence method is more empirically robust against Sparse attack [148] and
DeepSAVA attack. We conjecture that the advantage mainly comes from the added combined
perturbation term that can perform a more effective attack than additive perturbation only.
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Algorithm 5 PGD adversarial training with a combined perturbation
Input: XT×W×H×C ; y; M ; training epochs T ; dataset batch size N ; PGD steps K; step

size α

1: Randomly initialise flow network parameter U and additive noise N;
2: for t← 1, T do
3: for i← 1, N do
4: for k ← 1, K do

//Perform Adversarial Attack
5: X̂i = N ·M + S(U, X̂i,M)
6: X̂i = X̂i + α·

sign
(
∇X̂i

(
ℓadv

(
1yi , J(X̂i;θ)

)))
//Update the model weights

7: θ = θ −∇θℓ
(
J(θ; X̂),1yi

)

3.3 Experiments

3.3.1 Experimental Setup

Dataset

As action recognition video datasets are widely used in adversarial video attack studies,
we choose two popular benchmark action recognition datasets to evaluate the performance
of our method: UCF101 [129] and HMDB51 [72]. Both datasets are realistic action
recognition datasets. The UCF101 contains 13,320 videos with 101 categories such
as playing instruments, body movements, and human-object interaction. Similarly, the
HMDB51 has around 7,000 videos within 51 categories related to body motion and facial
actions.

Action Recognition Models

We evaluate DeepSAVA on three classifiers: Inception-v3, a 2D-CNN based model [135],
which is widely used in the image recognition task with high accuracy; I3D, a 3D-CNN
based model, pre-trained on Kinetics [16]; CNN + LSTM, which is pre-trained on ImageNet
to extract features from videos and then input these features to train the LSTM network. The
training accuracy of all classifiers is shown in Table 3.2.
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Baseline methods

Two baseline methods are used for comparison, the Sparse [148] and Sparse Flickering [98].
For the works shown in Table 3.1, only [148] is the white-box sparse attack; [149][167]
are black-box sparse attack methods. As our work is a white-box sparse attack, we choose
the most related one, Sparse [148], as the main baseline. We perform perturbation directly
on the frame, while [19] appended an additional frame at the end of the video, which is
more visible to humans. So we did not include it as a baseline due to its compromise on the
similarity of human perception. In [81], GANs are used to attack real-time video, which
is not comparable to our method. We modified Flickering [98], which perturbs all frames,
into a sparse one as the Sparse Flickering baseline, but we still show the performance of
perturbing all frames.

Experiments Setting

The length of all input videos is crafted to be the same (40 frames). We randomly selected
200 videos from different categories in the test dataset. For those experiments without saying
the specific constraint, the maximum allowed search iteration (100 iterations) is applied; all
experiments use Adam optimiser with a 0.01 learning rate. The parameter λ is set to 1.5 for
the CNN+LSTM model, and 1.0 for the I3D and Inception-v3 models. For λ, values that
can balance the fooling rate and perturbation strength are used. As for the step size of the
adversarial attack used in the adversarial training, we use the alpha as 1

255
, where 255 is the

re-scale image size, which is a commonly used method to determine the step size. It is a
heuristic and the optimal value that is a small fraction of the range of pixel values in the
image

Metrics

• Fooling Rate (FR): the percentage of generated adversarial videos that are misclassified
successfully.

• Average Number of Iterations (ANI): the average number of iterations taken to generate
adversarial examples successfully based on the same original videos, which is used to
measure the efficiency when we set a constraint on the maximum allowed iteration.

3.3.2 DeepSAVA Attack: Comparison with Baseline Methods

In this section, we will show the comparison results between DeepSAVA and baselines.
Since running BO will add extra time to choose the frame, to make the comparison more
complete, we also take the DeepSAVA without BO selection into account.
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Table 3.2: Training accuracy of the classifiers to be attacked.

Models UCF101 HMDB51
CNN+LSTM 74% 43%
I3D 94.9% 80%
Inception-v3 71.2% 47%

Limited Iterations:

Since each method uses a different metric, in order to control the maximum allowed
perturbation, we limit the number of search iterations for all methods. Each iteration only
allows a small amount of perturbation (controlled by the learning rate of Adam optimiser),
following the same setup used by the baselines. The results in Table 3.3 show that the
ANIs are much below the maximum allowed iteration (100). In Table 3.4, we show the
relationship between the iteration and the strength of perturbation. It can be seen that even
when it reaches the maximum iteration, the lp-norm and SSIM distances are still acceptable.
Given that, setting a constraint on the maximum search number to 100 will not lead to large
distortion. We run the experiments 10 times and show the average results with a 99%
confidence interval. For the methods without frame selection, the first frame is perturbed. As
shown in Table 3.3, BO selection is more efficient than the one without BO. This happens
because it is able to select the most critical frame, which can improve efficiency in most
cases. For the CNN+LSTM model, DeepSAVA increases the FR slightly compared with
the baselines; while for the I3D model, we can see that the FR grows significantly. The BO
selection process is also essential for I3D. Without BO, only about half of the test videos
can be attacked successfully; after applying BO, the FR increases to nearly 100%. As for
the Inception-v3 model, the FR increases when applying DeepSAVA. It can be concluded
that the CNN+LSTM is the most robust classification model among the three classifiers.
Although the I3D has the highest classification accuracy, it is more vulnerable to attacks,
even when only one frame is modified. That might happen because the I3D model relies
heavily on the integral structure of the video itself and some frames may be more important.

We find that the position of keyframes is related to the classifiers evaluated: for
CNN+LSTM, the frames in the front are more often selected, and for other CNN networks,
the position is variant. Thus, it is reasonable that the BO cannot improve the FR for the
CNN+LSTM model as much as the I3D, as we attacked the first frame when not selecting it.
We also show the results in Figure 3.6 for attacking a different number of frames across I3D,
CNN+LSTM, and inception-v3 models. It can be seen that the more frames attacked, the
higher the fooling rate obtained.
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Table 3.3: Comparison with baselines, DeepSAVA without BO and with BO on different
models by only perturbing one frame. ’-’ means that there is no successful attack. Gray cell
shows the best results.

Models Attack Method
UCF101 HMDB51

FR ANI FR ANI

CNN+LSTM

Sparse 52.77%± 2.44% 16.45 95.2%± 1.8% 16.4
Sparse Flickering 48.48%± 1.67% 23.55 91.94%± 2.93% 8.4

DeepSAVA
(without BO) 56.22%± 1.65% 8.32 99.27%± 0.34% 8.42

DeepSAVA(BO) 57.22%± 1.36% 8.77 100% 6.6

I3D

Sparse 10.12%± 1.19% 44 5.74%± 1.25% 25.1
Sparse Flickering 1.15%± 0.68% 13 0% -

DeepSAVA
(without BO) 47.57%± 2.64% 12.15 46.39%± 3.86% 12.2

DeepSAVA(BO) 99.89%± 0.11% 6.47 99.92%± 0.08% 5.35

Inception-v3

Sparse 42.25%± 4.30% 33.70 45.82%± 1.56% 22.06
Sparse Flickering 21.73%± 1.39% 35.4 27.55%± 0.98% 27.25

DeepSAVA
(without BO) 68.86%± 1.83% 13.29 68.98%± 3.19% 11.84

DeepSAVA(BO) 70.39%± 2.78% 10.52 74.74%± 0.82% 9.07

Table 3.4: The relationship between the iteration, l1,2, SSIM, and Fooling Rate for the I3D
model with combined perturbation on UCF101.

max iter FR max(lp) max(ssim) ave(lp) ave(ssim)
30 0.5 0.11 0.094 0.052 0.069
50 0.5 0.135 0.094 0.059 0.099
80 0.529 0.131 0.0959 0.0595 0.081

100 0.529 0.131 0.095 0.052 0.067
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(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 3.6: Fooling Rate of attacking the different number of frames across three classifiers.
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l2,1-norm
Constraint l2,1 budget = 0.08 l2,1 budget = 0.09

Method Sparse
DeepSAVA

(no BO) DeepSAVA Sparse
DeepSAVA

(no BO) DeepSAVA

FR 40.51% 48.1% 88.61% 41.77% 54.43% 93.67%
Time (s) 8018.9 2629 1535.8 14001 3729 1573.82

SSIM
Constraint SSIM budget = 0.98 SSIM budget = 0.96

Method Sparse
DeepSAVA

(no BO) DeepSAVA Sparse
DeepSAVA

(no BO) DeepSAVA

FR 8.06% 16.56% 35.44% 10.1% 51.9% 96.20%
Time (s) 5842.32 1285.1 1424.4 13789.23 5633.28 1545.5

Table 3.5: Attack I3D model on UCF101 dataset under l2,1 and SSIM constraint separately.

Fixed l2,1 Norm and SSIM:

For the purpose of a fair comparison, we also present the results under fixed l2,1 and SSIM
budgets for perturbing only one frame. The maximum allowed iteration is set to 500 to limit
the time. As the baseline methods are based on lp-norm and our method is on SSIM, we take
experiments under the same lp-norm constraint and SSIM constraint, respectively. Based on
the results of fixed iterations, we randomly select 200 videos from different categories to
attack the I3D model on the UCF101 dataset. During the experiments, the Sparse Flickering
spent days to achieve the constraint, thus we will only compare it with the Sparse [148]
attack. In [34], the SSIM budget for attacking image is set to 0.95, thus we choose the
SSIM constraints above 0.95. In [169], it states that the difference between the images is
imperceptible when the l2,1 score is 4, given that, we also set the l2,1-norm budget to below
0.1 (since 0.1 ∗ 40 = 4, as we have 40 frames). As we can see in Table 3.5, under small
fixed budgets, DeepSAVA outperforms the Sparse [148] in both cases in terms of FR and
total time.

3.3.3 DeepSAVA Attack: Effects of λ

To decide the value of λ, we applied the DeepSAVA without BO selection on 200 randomly
selected videos of the UCF101 dataset to evaluate the effect of λ. The average success
perturbation (ASP) is the average of the SSIM score of perturbation for the adversarial
examples that could mislead the model successfully:

ASP (SSIM)) = avg(SSIM(Vadv, Voriginal)),
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Table 3.6: Comparison with Sparse baseline, DeepSAVA without BO and with BO on
different models by only perturbing one frame. Gray cell shows the best results.

Models Attack Method
UCF101

FR ANI AAP (l1,2) AAP (SSIM)

CNN+LSTM
Sparse 54.31% 15.31 0.054 0.043

DeepSAVA (without BO) 56.94% 7.87 0.077 0.060
DeepSAVA(BO) 57.11% 8.01 0.071 0.058

I3D
Sparse 11.22% 49 0.092 0.079

DeepSAVA (without BO) 48.78% 11.34 0.0857 0.054
DeepSAVA(BO) 99.89% 5.74 0.055 0.0233

Inception-v3
Sparse 41.84% 38.21 0.062 0.0512

DeepSAVA (without BO) 65.14% 14.88 0.072 0.052
DeepSAVA(BO) 77.49% 11.43 0.071 0.0508

where Vadv denotes the generated adversarial video that could successfully mislead the
classifier and Voriginal is the original video. The results of applying λ = 0.8, 1.0, 1.5 on three
models are presented in Table 3.7. We can see that the bigger the λ, the lower the FR while
the lower the perturbation. While, for the CNN+LSTM model, the fooling rate remains the
same across all tested λ values, but the perturbation level is the lowest at λ = 1.5. Thus, we
choose λ = 1.5 for the CNN+LSTM model and λ = 1.0 for I3D and Inception-v3 models to
trade off the performance in terms of the fooling rate and average success perturbation.

3.3.4 DeepSAVA Attack: Average Absolute Perturbation

Average Absolute Perturbation (AAP) is introduced to measure the perturbation level for
each method. As mentioned previously, the sparse Flickering adds a small perturbation per
frame, but cannot obtain comparable results to ours. Thus, we choose the pure sparse attack
(Sparse) as the main baseline to show the average absolute perturbation. As the baseline is
guided by l1,2 norm and ours is based on SSIM loss, we will record the average perturbation
of l1,2 and SSIM separately. To achieve a fair comparison, we set the maximum l1,2 norm
ball constraint as 0.1 and the maximum SSIM constraint as 0.92. Suppose the fooling rate
is f , and distant matrix is D, which can be set to (1-SSIM) or l1,2 norm, thus the average
absolute perturbation (AAP) can be represented as:

AAP (D) =

∑
N D(Vadv, Voriginal)

N
∗ f +Dmax ∗ (1− f),
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(a) CNN+LSTM

(b) I3D

(c) Inception-v3

Figure 3.7: Minimum loss selected by BO and brute force search along videos

where Vadv denotes the generated adversarial video that could successfully mislead the
classifier and Dmax is the maximum constraint; N is the number of adversarial samples
achieving a successful attack. We run experiments on 200 randomly selected videos of the
UCF101 dataset and record the results of FR, ANI, AAP (l1,2), and AAP (SSIM) in Table
3.6. From the results, we can see that for the model I3D and Inception-v3, our method could
achieve better performance in terms of efficiency, fooling rate, and AAP (SSIM). For the
CNN+LSTM model, our method engages a higher fooling rate and spends less time, and the
AAP (l1,2) and AAP (SSIM) are also acceptable compared with the baseline model.

3.3.5 DeepSAVA Attack: Visualisation of Results

The generated adversarial frames by DeepSAVA are presented in Figure 3.8. Because of the
spatial transformation, the frame looks a little bit shaky but not obvious to human eyes. In
fact, in the real world, it is normal to see that there are a few frames with instabilities during
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Table 3.7: The results of DeepSAVA (without BO) on UCF101 dataset for different λ values.

Models λ value FR ASP(SSIM)

CNN+LSTM
0.8 57.4% 0.043
1.0 57.4% 0.0418
1.5 57.4% 0.0403

I3D
0.8 50.11% 0.0322
1.0 47.33% 0.0274
1.5 46.88% 0.0205

Inception-v3
0.8 66.57% 0.0545
1.0 65.23% 0.0522
1.5 64.42% 0.0441

video shooting and transmitting. That’s why we apply spatial transformation in video attacks
to improve the efficiency and fooling rate. In practice, a distortion in one frame of a video is
less noticeable than a static image since this specific frame only appears for 0.047 seconds
in human eyes [164]. We could also see that it does not lead to a noticeable perturbation
as shown by our video demos. We also can find that different attack approaches lead to the
same wrong class. This occurs because the second most likely classification is the wrong
class, closely following the true class.

When transmitting the videos in the real world, the generated frames need to be
compressed into videos first and then decompressed into frames. We found that the additive-
only perturbed frames, may not remain adversarial examples after such transmission. Our
experiments demonstrate that DeepSAVA can be immune to short video compression due
to the fact that perturbation based on spatial transformation can be well preserved during
compression while additive perturbation may disappear.

3.3.6 DeepSAVA Attack: Ablation study

We perform ablation experiments to study the effects of combined perturbation for a different
number of attacked frames by comparing with additive noise-only and spatial transform-only
perturbations, and the effects of BO selection. Table 3.8 shows the FR for three classifiers
on the UCF101 dataset. Four approaches are taken to attack the model: 1) only noise (D),
2) only spatial transformation (S), 3) a combination of additive perturbation and spatial
transformation (D + S), and 4) combined perturbation with BO selection. To make more
comprehensive evaluations on the superiority of combination, we attack a different number
of frames for the CNN+LSTM model as it has the lowest FR when only perturbing one frame.
All experiments showed the combination power to increase the FR; using BO selection is
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(a) BandMarching (b) Mixing (DeepSAVA) (c) Mixing (Sparse)

(d) BasketballDunk (e) BreastStroke (Deep-
SAVA)

(f) BreastStroke (Sparse)

(g) BasketballDunk (h) Haircut (DeepSAVA) (i) Haircut (Sparse)

Figure 3.8: Original, and adversarial examples generated by DeepSAVA and Sparse [148]
when only one frame in the video is perturbed. The red labels are the wrong predictions.
The target model for (a)-(b) is CNN+LSTM; for (d)-(f) is Inception-v3; for (g)-(i) is I3D.
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Table 3.8: Effects of combining noise (D) and spatial transformation (S) by modifying a
different number of frames on UCF101; Fixed the frame(first n-th) , Using BO choose frame,
Mask N means that N frames are modified.

Approach
CNN+LSTM Inception-v3 I3D

Mask1 Mask2 Mask4 Mask1 Mask1
Fix
D 52.77%± 2.24% 71.51%± 1.5% 91.28%± 1.95% 42.45%± 4.30% 10.12%± 1.19%
S 55.27%± 1.82% 74.33%± 1.36% 91.89%± 1.45% 63.91%± 5.61% 29.99%± 2.36%
D + S 56.22%± 1.65% 77.36%± 1.86% 92.99%± 1.85% 68.86%± 1.83% 47.57%± 2.64%

BO
D + S 57.22%± 1.36% 78.95%± 1.93% 93.51%± 1.33% 70.39%± 2.78% 99.89%± 0.11%

Table 3.9: Fooling Rate, average selected maximum loss and average time spent for one
video of BO Selection and Brute Force Search.

Approach
CNN+LSTM Inception-v3 I3D

time (s)
FR average loss FR average loss FR average loss

BO Selection 55.81% 0.21 72.22% 3.39 100% 1.35 16.1
brute force search 55.81% 0.27 72.22% 3.39 100% 1.35 70.4

also useful, especially for the I3D model.

As shown in Table 3.8, using only spatial transformation perturbations results in a
higher fooling rate compared to using only additive noise perturbations, highlighting the
effectiveness of spatial transformations. The experimental results demonstrate a significant
increase in the fooling rate of both the Inception-v3 and I3D models. Furthermore, combining
spatial transformation and additive noise perturbations leads to an even higher fooling rate,
indicating a stronger attack strategy. Notably, when attacking the I3D model, the combination
perturbation increases the fooling rate by approximately four times compared to using only
additive perturbation, revealing the significant impact of combination perturbations on I3D
models. These findings collectively highlight the ability of combined perturbations to
increase the fooling rate, with the additional effectiveness of using BO selection, particularly
for the I3D model.
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3.3.7 DeepSAVA Attack: The Accuracy of Bayesian Optimisation
Selection

To justify whether the Bayesian Optimisation could select the most critical frames, we take
the brute force search experiments to obtain the upper bound of the performance: when
the selection frame is 1, we select the keyframe manually one by one of the video, and
then record the maximum loss found by the search. We randomly select 100 videos from
UCF101 in different categories. The fooling rates, average maximum loss, and average time
spent for one video on three models are shown in Table 3.9. We also compare the selected
maximum loss by BO and brute force search along the video samples in Figure 3.7. The
results demonstrate that we can obtain the same results as the brute force search, but spend
much less time, which confirms the effectiveness of BO optimisation.

3.3.8 Adversarial Training
In this section, we show the results of two adversarial training methods. The first method
is the most intuitive one, as demonstrated in Figure 3.5 (a), which first obtains adversarial
examples by performing DeepSAVA and then feeds these adversarial examples into the
training stage. Another method is the algorithm demonstrated in Section 2.2.2, which
modifies the training loop by injecting PGD adversarial attacks. To evaluate the power of
adversarial defences, we randomly picked 200 video samples covering 101 classes from the
test dataset of UCF101 and then perform the DeepSAVA or Sparse [148] attack on the first
frame of the video to compare the fooling rate. The model recognition accuracy on clean
data is also recorded.

For the first method, we present the adversarial training results for the CNN+LSTM
model in Table 3.10. We randomly choose 8000 videos from the training dataset. To
perform the adversarial training, we randomly generate 1000, 1500, and 3000 adversarial
examples by applying the DeepSAVA attack, and feed these adversarial videos with the 8000
unmodified videos as input to the training stage. For the model without defence, we change
the adversarial examples to unmodified videos as the input to train the model. As we can see
from the results, comparing the defended model with the undefended model, we obtained
comparable model recognition accuracy, and a lower fooling rate, which demonstrates that
adversarial training can improve the robustness of the model. Additionally, as expected,
the results also indicate that the more adversarial examples injected, the lower the fooling
rate obtained by the defended model and the larger gap of reduced fooling rate compared
with the undefended model. Thus, the more adversarial examples injected into the training
stage, the more robust the model is against the DeepSAVA attack. However, generating loads
of adversarial examples to train on is extremely expensive in terms of time and resources.
Therefore, this encourages us to use a more effective adversarial training algorithm, as
demonstrated earlier, to modify the training process by incorporating adversarial attacks.

For the PGD adversarial training, the model recognition accuracy and fooling rate results
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are presented in Table 3.11. As the CNN+LSTM model implements the pre-trained CNN
model to extract features first and then feeds these features to train the LSTM model, in
order to perform defence, we perform adversarial training to train the CNN model first, and
then implement the re-trained CNN to extract features. As we can see from the table, after
applying the combined perturbation adversarial training, we can obtain lower fooling rates on
both DeepSAVA and Sparse attacks. Looking at the results, we find that the more powerful
perturbation added in the adversarial training process can lead to a more robust model against
both the additive perturbation-only attack and combined perturbation attack, which confirms
the effectiveness for a broader range of perturbation when performing adversarial training.

Table 3.10: Model Accuracy and fooling rate on different sizes of training datasets for the
CNN +LSTM model.

Models
8000

+1000
8000

+1500
8000

+3000
Acc. FR Acc. FR Acc. FR

CNN+LSTM With Defense 59.77% 64.42% 62.06% 59.26% 63.42% 58.92%
CNN+LSTM without Defense 59.19% 66.99% 63.79% 63.06% 64.36% 63.06%

defended vs. undefended +0.98% -3.8% -2.7% -6.0% -1.46% -6.6%

Table 3.11: Model Accuracy and fooling rate on different models with defence and without
defence.

Defence Model Accuracy DeepSAVA Sparse
Combined Defence inception-v3 63.96% 37.62% 25.29%
PGD Defence [90] inception-v3 64.52% 38.53% 27.21%
Without Defence inception-v3 65.12% 40.59% 29.6%

Combined Defence CNN+LSTM 68.02% 47.86% 46.15%
PGD Defence [90] CNN+LSTM 69.00% 52.89% 52.06%
Without Defence CNN+LSTM 70.22% 55.93% 55.26%

Combined Defence I3D 87.5% 77.3% 42.3%
PGD Defence [90] I3D 88.2% 78.5% 46.2%
Without Defence I3D 89.1% 80.2% 47.2%
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Table 3.12: Fooling Rate across recurrent models on UCF101 dataset.

Models Approach LSTM Vanilla RNN GRU Inception-v3 I3D

LSTM
Baseline 100% 34.42% 64.35% 50.0% 53.48 %

DeepSAVA 100% 41.38% 85.34% 52.17% 54.62%

Vanilla RNN
Baseline 100% 100% 100% 71.74% 60.50 %

DeepSAVA 100% 100% 100% 82.40% 64.02%

GRU
Baseline 79.34 % 40.70% 100% 50.0% 42.68%

DeepSAVA 84.75% 56.03% 100% 51.08% 49.58%

Inception-v3
Baseline 22.95 % 22.80% 22.90% 100% 33.61%

DeepSAVA 24.36% 26.72% 31.03% 100% 37.8%

I3D
Baseline 6.56 % 7.01% 7.64% 13.04% 100%

DeepSAVA 10.08% 9.48% 8.62% 14.13% 100%

3.3.9 Transferability Across Models

The transferability across models is an important evaluation of adversarial attacks, which can
be treated as a black-box problem without accessing the parameters of the target model. In
our work, the I3D and Inception-v3 only contain CNN, while the recurrent neural networks
(RNN) such as CNN+LSTM contain the time-related network. Due to the unique time-related
structure of videos, I conduct extensive experiments to evaluate the transferability across
various time-related networks. I perform the transferability experiments on the UCF101
dataset for different RNNs, Inception-v3, and I3D models. For the recurrent models, the
features of original videos are extracted firstly by CNN (Inception-v3) model and then are
fed into vanilla RNN [115], LSTM [48], and GRU [21] networks respectively. The training
accuracy for vanilla RNN and GRU are 65.16% and 73.05% respectively.

As Figure 3.6 shows that the Sparse [148] performs better than the Sparse Flickering
in terms of FR, I choose the Sparse [148] as the baseline method. The fooling rates (FR)
of the generated videos across models are presented in Table 3.12. The models in rows
are used to generate adversarial videos, and the models in columns are the target attack
classifiers. Here we disturb seven frames of a video to enlarge the attacking success rate.
I use the adversarial examples generated from the white-box attack for the transferability,
which leads to the FR in the diagonal being 100%. These adversarial examples are then used
to attack other models (like a black-box attack) as detailed in Table 3.12. Compared with
the baseline, our approach has a higher FR which indicates better performance in terms of
transferability. The difference between vanilla RNN and the other models is that vanilla
RNN has no memory component, so it shows a weak performance on the video classification
task. As we observed, adversarial videos generated from LSTM and GRU models can fool
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the vanilla RNN successfully. Additionally, the FR across GRU and LSTM are around 85%,
which shows good transferability between the recurrent models with memory. However,
from the fooling rates shown in Table 3.12, we could see that the transferability from RNNs
to CNNs is not as good as that from CNNs to RNNs. The fooling rates to attack RNN models
are higher than those to attack the I3D and Inception-v3 models. While that happens maybe
because the I3D model has the highest training accuracy, it engages the lowest fooling rate
when performing the black-box attack on it. As we can also conclude that due to the lowest
training accuracy the Vanilla RNN model obtains, it achieves the highest fooling rate on
attacking the unseen Vanilla RNN model. Overall, compared with the Sparse baseline, our
method could achieve better transferability.

3.4 Case Study I

Next-Frame Video Prediction
In this section, we explore our framework in the application of next-frame video prediction.
Next-frame video prediction aims to predict the next frame based on a sequence of previous
videos. Various models have been applied for the video prediction tasks, i.e., CNN and
LSTM [59], PredNet [88], and Transformer [74]. As a case study, we will apply our
DeepSAVA framework to the video prediction model based on CNN and LSTM models to
see whether the sparse attack can also be effective on the frame prediction task.

In the CNN and LSTM architecture, the CNN acts as an encoder that extracts spatial
features from the input video sequences, while the LSTM decodes the temporal connections
between the frame and video sequence to forecast the next frame. Next-frame video
prediction based on combining CNN and LSTM networks offers a wide range of applications
in computer vision, including video reduction, editing, and creation, and also demonstrated
significant potential to predict the next-frame of videos. In this chapter, we examined this
model using the moving-MNIST dataset, which is a common benchmark dataset for videos.

In next-frame prediction, the model inputs a sequence of the previous frame, fn, to
predict a new frame, f(n+1). Therefore, it takes a sequence of input frames (xn) as input, to
output the prediction frame y(n+1). To be noticed, in the video prediction task, the accuracy
is measured by the Mean Square Error or SSIM similarity metric.

3.4.1 Problem Definition:
The video prediction model is defined as J(·;θ) with pre-trained weights θ. The input
clean video is defined as X = (x1, x2, ..., xT ) and the perturbed example is denoted as
X̂ = (x̂1, x̂2, ..., x̂T ). The video sequence containing the next frame of the input video is y =
(x2, x3, ..., xT+1) ∈ RT×W×H×C , which is used as the ground truth label for the prediction
output. Therefore, the objective function for perturbing the task of frame prediction can be
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Figure 3.9: Per-step Mean Square Error (MSE) between the predicted frame and ground
truth frame, while introducing perturbations to the input frames. The amount of perturbation
added to the input frames is constrained to a budget within the l2=0.03 norm ball.

defined as:
argmin

(
λℓsimilar(X̂,X)− ℓadv

(
y, J(X̂;θ)

))
. (3.6)

Here the loss function ladv we used is the mean square error. As a result, the attack goal is to
enlarge the distance between prediction frames and the ground truth video, while maintaining
the perturbation human imperceptible.

3.4.2 Experiments
We perform the DeepSAVA on the next-frame video prediction model. We randomly picked
100 samples of the moving-MNIST dataset and plotted the MeanSquareError (MSE) values
against the steps under DeepSAVA in Figure 3.9. In Figure 3.9 (a), we conducted attacks
on the first frame of the input video, measuring their respective MSEs. Subsequently, we
apply the BO selection to identify the most crucial frame, and the results are illustrated in
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Figure 3.9 (b). Notably, the BO selection consistently designated the last frame as the most
critical. Furthermore, the results indicate that attacking the last frame chosen by BO resulted
in significantly higher MSE values. Consequently, it can be inferred that the next-frame
video prediction model relies heavily on the information contained in the last frame of the
input video.

3.5 Case Study II

Evaluate the robust model using an explainable AI method

To evaluate the regular model and robust mode, we use the salience map to show what
features are learned by each model. The salience map can effectively highlight the pixels
within each frame that have the greatest impact on the model’s predictions. It serves as a
valuable tool in the field of explainable AI, commonly used to evaluate input images or
videos in a neural network, revealing which region of the image or frame contributes the
most to the model’s decision-making process.

A gradient-based salience map is designed to visualize the gradients of the predicted
outcome from the model with respect to the input pixel values [125], [130], [174]. The
relative contribution of each pixel to the final prediction of the model can be calculated
by applying tiny tweaks to pixel values across the image and catching the change in the
predicted class.

In this section, we perform experiments to evaluate the performance of the Inception-V3
model with defence and without defence. In Figure 3.10, we display the salience map
superimposed on the input frame. The background image represents the original video of a
girl playing the flute, and the yellow pixels indicate areas with high gradients. We compare
the salience maps learned by the regular model and the robust model, which was trained
using the combination.

From the results, we observe that both models heavily rely on the central portion of the
frame, particularly focusing on the flute, when making predictions. Additionally, numerous
frames do not exhibit a salience map, suggesting that they do not contribute significantly to
the model’s final decision. However, when conducting an attack on a single frame of the
video, it is observed that perturbing a frame without a salience map is more effective to result
in a change in the model’s predicted label compared to perturbing a frame highlighted by the
salience map (highlighted in yellow). This finding raises important considerations, which
we will discuss later. Furthermore, based on the experimental results, a notable difference
between the regular model and the robust model is that there are more frames highlighted by
the salience map. This observation suggests that the model with the defence method may be
more robust due to its ability to learn more distinctive features at the individual frame level.
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3.5.1 Discussion and Limitations

The experiment was taken by a Python package ‘Kera-vis’, which primarily focuses on
generating salience maps for individual images [69]. While this approach may not capture
the full temporal dynamics and interactions between frames, it can provide some useful
information if we set the input to each individual frame of video. Visualizing the salience
map for each frame allows us to analyze the frame-level attention and identify the regions
that the model focuses on for making predictions.

However, this approach is still limited for video model analysis. Since each frame is
considered independently, the salience maps cannot find the temporal relationships present
in the video. Some frames may not have prominent salience maps if they are less informative
or contribute less to the model’s predictions. Additionally, the salience maps might not
provide a holistic view of the salient regions in the entire video.

Hence, to gain a more comprehensive understanding of the salience map and its temporal
dependencies in the video, considering video-specific salience map generation techniques
[31], [32], [168] would be more appropriate, which can be considered a future work. These
techniques are designed to capture the dynamics and interactions across frames, providing a
more accurate representation of the salient regions in the video.

3.6 Discussion and Conclusion

In this chapter, we apply spatial transformed perturbation and additive noise to attack as few
frames as possible to obtain sparse adversarial videos. The most influential frames to be
attacked are selected by a joint optimisation strategy with Bayesian optimisation (BO) and
SGD-based optimisation. We take sufficient experiments to examine the power of BO and
show the effectiveness of BO selection in this task. Additionally, the quality of generated
adversarial examples is measured by SSIM instead of lp-norm, which can capture both
additive noise and spatial transformation effectively. We propose the novel and effective
video attack mechanism, DeepSAVA, and perform extensive experiments to evaluate its
performance on the UCF101 and HMDB51 action dataset and three different classification
models: Inception-3v, CNN+LSTM, and I3D. We obtain better results than state-of-the-art
sparse baselines in terms of both fooling rate and transferability, which confirms the success
of DeepSAVA. Our most significant results are for the I3D model, by only attacking one
frame of the video to obtain a 99.5% to 100% attack success rate.

Additionally, in this chapter, we add adversarial training experiments to improve the
robustness of video classification models. By now, adversarial training research focused
on image classification models, thus, in this chapter, we choose to adopt the most effective
defence method, PGD adversarial training, to retrain the video classifiers. We modify
the adversarial training algorithm by adding a combination of spatial transformation and
additive perturbation in light of our DeepSAVA framework. We also show the experimental
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(a) Regular Model

(b) Robust Model

Figure 3.10: Saliency map overlaid on each frame. The regular model is the model that is not
trained with adversarial examples, and the robust model is trained by combined perturbation.
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results of the most intuitive adversarial training approach, which takes the clean training
dataset and the generated adversarial examples as input to re-train the model. As a result,
after applying our adversarial training with combined perturbation, we can obtain a more
robust model compared to the PGD adversarial training, and more effective than injecting
adversarial examples. Nonetheless, the use of BO for selecting critical frames is still a
time-intensive process. In the future, we will explore the possibility of implementing the
Gumbel-softmax technique, an enhanced and differentiable version of SemHash, to pinpoint
significant features within input videos.
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Chapter 4

Verification for 3D Point Cloud Models

“Large-scale pre-trained language models are a revolutionary development
that has had a huge impact in many areas. They have made significant
strides in machine translation, question-answering systems, natural language
understanding, text-to-speech synthesis, and more, which will fundamentally
change the way people interact with computers in the near future.”
(Yann LeCun)
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4.1 Introduction

Recent years have witnessed increasing interest in 3D object detection, and Deep Neural
Networks (DNNs) have also demonstrated their remarkable performance in this area [109],
[110]. For 3D object detectors, point clouds are used to represent 3D objects, which are
usually the raw data obtained from LIDARs and depth cameras. Such 3D deep learning
models have been widely used in multiple safety-critical applications such as motion planning
[143], virtual reality [131], and autonomous driving [17], [82]. However, extensive research
has shown that DNNs are vulnerable to adversarial attacks, appearing as adding a small
amount of non-random, ideally human-invisible, perturbations on the input will cause DNNs
to make abominable predictions [13], [57], [97], [136], [144], [166]. Therefore, there is
an urgent need to address such safety concerns in DNNs caused by adversarial examples,
especially in safety-critical 3D object detection scenarios.

Recently, most works on analysing the robustness of 3D models mainly focus on
adversarial attacks with an aim to reveal the model’s vulnerabilities under different types of
perturbations. Xiang, Qi, and Li [162] claimed that they are the first to perform extensive
adversarial attacks on 3D point cloud models by perturbing the positions of points or
generating new points. Recent work extended adversarial attacks for images to 3D point
clouds by perturbing points and generating new points [41], [79], [170]. Additionally,
Cao, Xiao, Yang, et al. [12] proposed adversarial attacks on LiDAR systems.Wicker and
Kwiatkowska [154] used occlusion attack and Zhao, Wu, Chen, et al. [182] proposed
isometric transformations attack. Towards these adversarial attacks, corresponding defence
techniques are developed [170], [184], which are more effective than adversarial training
such as [85], [181].

However, as Tramer, Carlini, Brendel, et al. [139] and Athalye, Carlini, and Wagner [2]
indicated, even though these defenses are effective for some attacks, they can still be broken
by other stronger attacks. Thereby, we need a more solid solution, ideally with provable
guarantees, to verify whether the model is robust to any adversarial attacks within an allowed
perturbation budget1. This technique is also generally regarded as verification on (local)
adversarial robustness2 in the community. So far, various solutions have been proposed to
tackle robustness verification, but they mostly focus on the image domain [7], [54], [126],
[138]. In contrast, verification of the adversarial robustness of 3D point cloud models is
barely explored by the community. As far as we know, 3DCertify, proposed by Lorenz,
Ruoss, Balunović, et al. [87] is the first, and also the only work to verify the robustness of
3D models. Although 3DCertify is very inspiring, it has not yet completely resolved some
critical challenges in robustness verification for 3D models, according to our empirical study.

Below we address three main challenges to be tackled in this chapter:

1In the community, we normally use a small predefined lp-norm ball to quantify such perturbations, namely,
within this small perturbing space the decision should remain the same from a perspective of a human observer.

2For convenience, we use robustness verification or verification for short in this chapter.
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• Existing 3D point clouds are time-consuming and need large memory. So far 3DCertify
[87] is the first and only verification tool for 3D models, the empirical experiments
indicate that it is time-consuming and thus not computationally attainable on large
neural networks. As 3DCertify is built on DeepPoly [126] when directly applying
the relaxation algorithm that is specifically designed for images on high-dimensional
point clouds, it will result in out-of-memory issues and cause the termination of the
verification.

• There is no tool to verify the JANet in the PointNet. 3DCertify can only verify a
simplified PointNet model without the Joint Alignment Network (JANet) consisting
of matrix multiplication operations. Since the learned representations are expected to
be invariant to spatial transformations, JANet is the key enabler in PointNet to achieve
this geometric invariant functionality by adopting the T-Net and matrix multiplications.
Recent research also shows that JANet is essential to improve PointNet performance
[110] and therefore widely applied in some safety-critical tasks [1], [18], [102].

• A 3D point clouds verifier for different lp-norm metrics needs. Existing verifier can
only work on l∞-norm metric, however, arguably, some researchers in the community
regard other lp-norm metrics such as l1, l2-norm metrics are equally (if not more)
important in the study of adversarial robustness [7], [151]. Thus, a robustness
verification tool that can work on a wide range of lp-norm metrics is also worthy of a
comprehensive exploration.

This motivates us to design a more efficient and general framework to verify various
architectures of point cloud models. The key challenges in verifying the large-scale complete
PointNet models are addressed as dealing with the cross-non-linearity operations in the
multiplication layers and the high computational complexity of high-dimensional point cloud
inputs and added layers. Thus, we propose an efficient verification framework, 3DVerifier, to
tackle both challenges by adopting a linear relaxation function to bound the multiplication
layer and combining forward and backward propagation to compute the certified bounds of
the outputs of the point cloud models.

In this chapter, we begin by presenting a detailed overview of the general framework for
the proposed method, and then provide a comprehensive and informative running example
to help the reader understand the approach, which aims to provide a clear and concise
explanation of the computation involved in the certification process. Furthermore, we present
extensive experimental results in the experiments section to demonstrate the effectiveness
and robustness of our certification method and provide a thorough analysis of the data
obtained.
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4.2 Methodology: 3DVerifier

4.2.1 Overview
The clean input point cloud P0 with n points can be defined as

P0 = {p0
(i) | p0

(i) ∈ R3, i = 1, ..., n},

where each point p0
(i) is represented in a 3D space coordinate (x, y, z). To verify the

robustness of C, our objective is to confirm that the predicted label remains unchanged
within a defined perturbation budget. Consequently, we select the point clouds that are
correctly recognised by C as input of the verifier.

Throughout this chapter, we will perturb the points by shifting their positions in the 3D
space within a distance bounded by the lp-norm ball. Given the perturbed input,

P = {p(i) | p(i) ∈ R3, i = 1, ..., n},

that is in the lp-norm ball

Sp

(
p
(i)
0 , ϵ

)
:=

{
p(i) |

∥∥∥p(i) − p
(i)
0

∥∥∥
p
≤ ϵ, i = 1, ..., n

}
.

we aim to verify whether the predicted label of the model is stable within the region Sp. This
can be solved by finding the minimum adversarial perturbation ϵmin via binary search, such
that

∃P ∈ Sp (P0, ϵmin) , argmaxC(P) ̸= c,

where c = argmaxC(P0). Such ϵmin is also referred to as the untargeted robustness. As
for the targeted robustness, it can be interpreted as the prediction output score for the true
class being always higher than that for the target class.

Assuming that the target class is t, the objective function is:

min {yc(P)− yt(P)} := σϵ,
s.t ∥pk − pk

0∥p ≤ ϵ, (k = 1, 2, ..., n),
(4.1)

where yc represents the logit output for class c and yt is for the target class t. P is the set
of points that is centred around the original set of points P0 within the ball of the norm lp
with radius ϵ. Thus, if σϵ > 0, the logit output of the true class c is always greater than the
target class, which means that the predicted label cannot be t. Due to the fact that finding
the exact output of σϵ is an NP-hard problem [63], the objective function of our work can
be alternatively altered as computing the lower bound of σϵ. By applying binary search to
update the perturbation ϵ, we can find the minimum adversarial perturbation. Equivalently,
the maximum ϵcert that does not alter the predicted label can be attained. Thus, in this chapter,
we aim to compute the certified lower bound of σϵcert .
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4.2.2 Generic Framework
To obtain the lower bound of σϵ for the lp-norm ball bounded model, we propagate the
bound of each neuron layer by layer. As mentioned previously, most of the structures
employed by the 3D point cloud models are similar to the traditional image classifiers, such
as the convolution layer, batch normalisation layer, and pooling layer. The most distinctive
structure of the point clouds classifier, like the PointNet [110], is the JANet structure. Thus,
to compute the logit outputs of the neural network, our verification algorithm adopt three
types of formulas to handle different operations: 1) linear operations (e.g., convolution,
batch normalization, and average pooling), 2) non-linear operation (e.g., ReLU activation
function and max pooling), 3) multiplication operation.

Let Φl(P) be the output of neurons in the layer l with point clouds input P. The input
layer can be represented as Φ0(P) = P. Suppose that the total number of layers in the
classifier is m, Φm(P) is defined as the output of the neural network. In order to verify the
classifier, we aim to derive a linear function to obtain the global upper bound u and lower
bound l for each layer output Φl(P) for P ∈ Sp (P0, ϵ).

The network takes input in the form of (x, y), where “x” represents the number of points,
and “y” signifies the dimensionality of each point, which is set at 3. The bounds are derived
layer by layer from the first layer to the final layer. We have full access to all parameters
of the classifier, such as weights W and bias b. To calculate the output for each neuron,
we show below the linear functions to obtain the bounds of the l-th layer for the neuron in
position (x, y) based on the previous l′-th layer:

∑
i,j

A
(l,l′),L
(x,y,i,j)Φ

l′

(x+i,j)(P)+B
(l,l′),L
(x,y) ≤ Φl

(x,y)(P) ≤
∑
i,j

A
(l,l′),U
(x,y,i,j)Φ

l′

(x+i,j)(P)+B
(l,l′),U
(x,y) , (4.2)

where AL,BL,AU ,BU are weight and bias matrix parameters of the linear function for
lower and upper bound calculations respectively. A and B are initially assigned as identity
matrix (I) and zeros matrix (0), respectively, to keep the same output of Φl

(x,y) when l = l′.
To calculate the bounds of the current layer, we take backward propagation to previous
layers. The Φl′

(x+i,j) is substituted by the linear function of the previous layer recursively
until it reaches the first layer (l′ = 0). After that, the output of each layer can be formed by a
linear function of the first layer (Φ0(P) = P), as:

A(l,0),L ∗P+B(l,0),L ≤ Φl(P) ≤ A(l,0),U ∗P+B(l,0),U . (4.3)

Since the perturbation added to the point clouds input is bounded by the lp-norm ball,
p ∈ Sp (p0, ϵ), to compute the global bounds we need to minimise the lower bound and
maximise the upper bound in Equation 4.3 over the input region. Thereby, the linear function
to compute the global bounds for the l-th layer can be represented as:

Φl,U/L
x,y = ±ϵ∥A(l,0),U/L

(x,y,:,:) ∥q +
∑
i,j

A
(l,0),U/L
(x,y,i,j) p

(x+i,j)
0 +B

(l,0),U/L
(x,y) , (4.4)
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where ∥A∥q is the lq-norm of A and 1/p + 1/q = 1 with p, q > 1, “U/L” denotes that
the equations are formulated for the upper bounds and lower bounds, respectively and “+”
for “U”, “-” for “L”. This generic framework resembles CROWN [178], which is widely
utilised in the verification works to verify feed-forward neural networks (e.g. CNN-Cert [7],
Transformer Verification [123]). Unlike existing frameworks based on CROWN, we further
extend the algorithm to verify point cloud classifiers.

4.2.3 Functions for linear and non-linear operation

As the linear and nonlinear functions are basic operations in the neural network, we first
adapt the framework given in [7] to 3D point cloud models. In Section 4.2.4, we will present
our novel technique for JANet.

Functions for linear operation

Suppose that the output of the l′-th layer, Φl′(P), can be computed by the output of the
(l′-1)-th layer, Φl′−1(P), by the linear function

Φl′(P) = Wl′ ∗ Φl′−1(P) + bl′ ,

where Wl′ and bl′ are parameters of the function in the layer l′. Thus the Equation 4.2 can
be propagated from the layer l to the layer l′ − 1 by substituting Φl′(P).

Φ
l,U/L
(x,y) (P) =

∑
i,j

A
(l,l′),U/L
(x,y,i,j) Φl′

(x+i,j)(P) +B
(l,l′),U/L
(x,y)

=
∑
i,j

A
(l,l′),U/L
(x,y,i,j) (

∑
k

Wl′

(k,j)Φ
l′−1
(x+i,k)(P) + bl′

x+i,j) +B
(l,l′),U/L
(x,y)

=
∑
i,k

A
(l,l′−1),U/L
(x,y,i,k) Φl′−1

(x+i,k)(P) +B
(l,l′−1),U/L
(x,y)

(4.5)

Functions for basic non-linear operation

For the l′-th layer with non-linear operations, we apply two linear functions to bound
Φ(l′)(P):

αl′,LΦl′−1(P) + βl′,L ≤ Φ(l′)(P) ≤ αl′,UΦl′−1(P) + βl′,U .

Given the bounds of Φ(l′−1)(P), the corresponding parameter αL, αU , βL, βU can be chosen
appropriately. Suppose that the non-linear function is f(y), where y is the output from
previous layer Φ(P)l

′−1. The bound obtained from the previous layer is [l, u]. Therefore,
our goal is to bound f(y) by the following constraints:

αl′,Ly + βl′,L ≤ f(y) ≤ αl′,Uy + βl′,U ,
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where parameters αl′,L, βl′,L, αl′,U , and βl′,U are chosen depending on the lower and upper
bound, l and u, of the previous layer, which follows different rules for different functions.

The way to bound the non-linear functions has been thoroughly discussed in previous
works on images (e.g., [7], [126], [178]). Thus, by reviewing their methods, we synthesise
our relaxations for the nonlinear functions to determine the parameters according to l and u.

The most common activation function is the ReLU function, which is represented as
f(y) = max(0, y). Thus, if u ≤ 0, the output of f(y) is 0; if l ≥ 0, the output will be
exactly y. As for the situation that l < 0 and u > 0, we set the upper bound u to be the
line cross two endpoints: (l, 0) and (u, f(y)), which can be represented as fU(y) = u(y−l)

(u−l)
.

As for the expression for the lower bound, to make the bounds tighter, we consider two
cases: if u > |l|, fL(y) = y and otherwise fL(y) = y. Therefore, we can choose the
αU = u

(u−l)
, βU = −ul

(u−l)
, βL = 0; αL = 0 when u < |l|, and otherwise αL = 1.

After computing the corresponding αL, αU , βL, βU , we back propagate the Equation 4.2
to the (l′-1)-th layer:

Φ
l,U/L
(x,y) (P) =

∑
i,j

A
(l,l′),U/L
(x,y,i,j) Φl′

(x+i,j)(P) +B
(l,l′),U/L
(x,y)

=
∑
i,j

A
(l,l′),U/L,+
(x,y,i,j) ∗ (αl′,U/L

(x+i,j)Φ
l′−1(P)(x+i,j) + β

l′,U/L
(x+i,j))

+
∑
i,j

A
(l,l′),U/L,−
(x,y,i,j) ∗ (αl′,L/U

(x+i,j)Φ
l′−1(P)(x+i,j) + β

l′,L/U
(x+i,j))

=
∑
i,j

A
(l,l′−1),U/L
(x,y,i,j) Φl′

(x+i,j)(P) +B
(l,l′−1),U/L
(x,y) ,

where if A(l,l′),U/L
(x,y,i,j) is a positive element of A(l,l′),U/L

(:,:,:,j) , then A
(l,l′),U/L,+
(x,y,i,j) = A

(l,l′),U/L
(x,y,i,j) and

A
(l,l′),U/L,−
(x,y,i,j) = 0; otherwise, A(l,l′),U/L,−

(x,y,i,j) = A
(l,l′),U/L
(x,y,i,j) and A

(l,l′),U/L,+
(x,y,i,j) = 0.

4.2.4 Functions for Multiplication Layer

The most critical structure in the PointNet model is the JANet, which contains the
multiplication layers. For the multiplication, assume that it takes the output of the previous
layer (Φl′−1(P)) and (l′-r)-th layer (Φl′−r(P), r ∈ [1, l′]) as inputs, the output of Φl′(P) can
be calculated by:

Φl′

(x,y)(P) =

dk∑
k=1

Φl′−r
(x,k)(P) ∗ Φl′−1

(k,y)(P),

where dk is the dimension of Φl′−r
(x,:)(P) and Φl′−1

(:,y)(P). To get the linear relaxation for the
multiplication operation, we will adapt the McCormick envelope [64].

In the JANet, before the multiplication layer, there is one reshape layer and one pooling
layer. To simplify the calculation, we choose Φl′−1 as the output of the pooling layer, using
h = dk ∗ (k − 1) + y to represent the transformation in the reshape layer. The equation to
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compute Φl′−1(P) can be rewritten as:

Φl′

(x,y)(P) =

dk∑
k=1

Φl′−r
(x,k)(P) ∗ Φl′−1

(0,h)(P),

where h = dk ∗ (k − 1) + y.
To obtain the bounds of the multiplication layer, we utilise two linear functions of the

input P to bound Φl′(P):

Λ
(l′,0),L
(x,y,i,:)p

(x+i) +Θ
(l′,0),L
(x,y) ≤ Φl′

(x,y)(P) ≤ Λ
(l′,0),U
(x,y,i,:)p

(x+i) +Θ
(l′,0),U
(x,y) , (4.6)

where λ and Θ are new parameters of linear functions to bound the multiplication.

Theorem 2. ( McCormick envelope [64])Let lr and ur be the lower and upper bounds of the
(l′-r)-th layer output (Φl′−r(P), r ∈ [1, l′]); l1 and u1 be the lower and upper bounds of the
(l′-1)-th layer output (Φl′−1(P)). Suppose aL = l1, a

U = u1, b
L = bU = lr, c

L = −lr ∗ l1,
and cU = −lr ∗ u1, Then, for any point clouds input P ∈ Sp (P0, ϵ) :

aL∗Φl′−r
(x,k)(P)+bL∗Φl′−1(P)+cL ≤ Φl′−r

(x,k)(P)∗Φl′−1
(k,y)(P) ≤ aU∗Φl′−r

(x,k)(P)+bU∗Φl′−1
(0,h)(P)+cU ,

The bounds and corresponding bounds matrix of Φl′−r(P) and Φl′−1(P) can be calculated
via back propagation. Given Theorem 2, the functions can be formed to compute the
Λ(l′,0),U/L and Θ(l′,0),U/L for Φl′

(x,y)(P) in Equation 4.6 as:

Λ
(l′,0),U/L
(x,y,i,:) =

∑
k

(a
U/L,+
(0,h) A

(l′−r,0),U/L
(x,k,i,:) + a

U/L,−
(0,h) A

(l′−r,0),L/U
(x,k,i,:) )+

∑
k

(b
U/L,+
(x,k) A

(l′−1,0),U/L
(0,h,i,:) + b

U/L,−
(x,k) A

(l′−1,0),L/U
(0,h,i,:) ),

Θ
(l′,0),U/L
(x,y) =

∑
k

(a
U/L,+
(0,h) B

(l′−r,0),U/L
(x,k) + a

U/L,−
(0,h) B

(l′−r,0),L/U
(x,k) )+

∑
k

(b
U/L,+
(x,k) B

(l′−1,0),U/L
(k,y) + b

U/L,−
(x,k) B

(l′−1,0),U/L
(0,h) ) + c

U/L
(x,y).

Thereby, it is a forward propagation process by employing the computed bounds metrics of
Φ(l′−r)(P) and Φ(l′−1)(P) to obtain the bounds of Φ(l′)(P). When it comes to the later layer,
the l-th layer, we use the backward process to propagate the bounds to the multiplication layer,
which can be referred to as the l′-th layer. Next, at the multiplication layer, we propagate the
bounds to the input layer directly by skipping previous layers. The bounds propagating to
the multiplication layer (l′-th layer) can be represented by Equation 4.2. Therefore, Φl′(P)
can be substituted by the linear functions in Equation 4.6 to obtain A(l,0),U/L and B(l,0),U/L:

A
(l,0),U/L
(x,y,i,:) =

∑(
A

(l,l′),U/L,+
(x,y,i,:) Λ

(l′,0),U/L
(x+i,y,:,:) +A

(l,l′),U/L,−
(x,y,i,:) Λ

(l′,0),L/U
(x+i,y,:,:)

)
,
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Figure 4.1: Illustration of the combining forward and backward propagation process. The
architecture in the MLP block contains convolution with ReLU activation function, batch
normalisation, and pooling. Inside the MLP block, the bounds are computed by backward
propagation.

B
(l,0),U/L
(x,y) = B

(l,l′),U/L
(x,y) +

∑
(A

(l,l′),U/L,+
(x,y,i,:) Θ

(l′,0),U/L
(x+i,y) +A

(l,l′),U/L,−
(x,y,i,:) Θ

(l′,0),L/U
(x+i,y) ).

Lastly, the global bounds of the l-th layer can be computed using the linear functions in
Equation 4.4. The combining forward and backward propagation process is demonstrated in
Figure 4.1.

4.3 Running Numerical Example
To demonstrate the verification algorithm, we present a simple example network in Figure
4.2 with two input points, p1 and p2. Suppose that the input points are bounded by a l∞-norm
ball with radius ϵ, our goal is to compute the lower and upper bounds of the output (p11, p12)
based on the input intervals. As Figure 4.2 shows, the neural network contains 12 nodes,
and each node is assigned a weight variable. There are three types of operations in the
example network: linear operation, non-linear operation (ReLU activation function), and
multiplication.

Given the input points P = [p1 = 1, p2 = 0], to obtain the bounds for p3 and p4,
according to the Equation 4.2, A(1,0) can be assigned as

A
(1,0)
(0,0,:,:) =

[
1 1

]
and A

(1,0)
(0,1,:,:) =

[
−1 1

]
to compute the output for the 1-st layer [p3, p4]:

p3 = p1 ·A(1,0)
(0,0,0,0) + p2 ·A(1,0)

(0,0,0,1) = 1,

p4 = p1 ·A(1,0)
(0,1,0,0) + p2 ·A(1,0)

(0,1,0,1) = −1.
(4.7)

Based on Equation 4.4, we can obtain the lower bound and upper bound for the perturbed
input (p =∞):

l3 = 1− 2ϵ = −1, u3 = 1 + 2ϵ = 3, l4 = −1− 2ϵ = −3, u4 = −1 + 2ϵ = 1.
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Figure 4.2: A running example for a simple neural network with multiplication. The inputs
(p1, p2) are bounded by a l∞-norm ball with radius ϵ.

For the non-linear ReLU activation layer, to compute the bounds of p5, if l3 ≥ 0, p5 will
exactly be the input, p3; if u3 ≤ 0, the p5 will hold as 0. When l3 ≤ 0 and u3 ≥ 0, we set the
bounds for p5 as

p5 =


[
p3,

u3(p3−l3)
u3−l3

]
, if u3 > |l3|[

0, u3(p3−l3)
u3−l3

]
, otherwise

(4.8)

according to the relaxation rule, in our example, for p5, we obtain αL = 1, βL = 0,
αU = 0.75, and βU = 0.75; for p6, we choose αL = βL = 0, αU = 0.25, and βU = 0.75.
Then we can obtain the bounds for p5 and p6 as shown in Figure 4.2.

Next, for the 3-rd layer output

[p7, p8] : p7 = p5 + p6, p8 = p6,

we assign
A

(3,2),L
(0,0,:,:) = A

(3,2),U
(0,0,:,:) = [1, 1],A

(3,2),L
(0,1,:,:) = A

(3,2),U
(0,1,:,:) = [0, 1]

to form:

p5 ·A(3,2),L
(0,0,0,0) + p6 ·A(3,2),L

(0,0,0,1) ≤ p7 ≤ p5 ·A(3,2),U
(0,0,0,0) + p6 ·A(3,2),U

(0,0,0,1)

p5 ·A(3,2),L
(0,1,0,0) + p6 ·A(3,2),L

(0,1,0,1) ≤ p8 ≤ p5 ·A(3,2),U
(0,1,0,0) + p6 ·A(3,2),U

(0,1,0,1).

We can backpropagate constraints to the first layer to gain final global bounds of p7 and p8:

p1 + p2 ≤ p7 ≤ 0.5 · p1 + p2 + 1.5
0 ≤ p8 ≤ −0.25 · p1 + 0.25 · p2 + 0.75.

(4.9)
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Similarly, we compute the global bounds for p7 and p8.
For the multiplication layer, according to the formulations presented in section 3.4,

to compute the bounds of p9 in our example, we set aL = l1, aU = u1, bL = bU = l7,
cL = −l7 · l1, and cU = −l7 · u1. Similarly, for p9, we choose aL = l2, aU = u2,
bL = bU = l8, cL = −l8 · l2, and cU = −l8 · u2. Thus, we get

−p1 ≤ p9 ≤ 2 · p7 − p1 + 2,
−p8 ≤ p10 ≤ p8.

(4.10)

Instead of performing back-propagation to the input layer, we calculate the bounds for p9
and p10 by directly replacing p7 and p8 with Equation 4.9:

−p1 ≤ p9 ≤ 2 · p2 + 5,
0.25 · p1 − 0.25 · p2 − 0.75 ≤ p10 ≤ −0.25 · p1 + 0.25 · p2 + 0.75.

(4.11)

Again, according to Equation 4.4, we obtain

l9 = −2, u9 = 7, l10 = −1, u10 = 1.

Finally, in our example, p11 = p9 and p12 = p10 − p9. After propagating the linear
bounds to the previous layer by replacing the p9 and p10 with p7 and p8 in Equation 4.10, we
construct the constraints of the last layer as:

−p1 ≤ p11 ≤ 2 · p7 − p1 + 2,
−p8 − 2 · p7 + p1 − 2 ≤ p12 ≤ p8 + p1.

(4.12)

By substituting p7 and p8 with p1 and p2 directly, the global bounds for p11 and p12 are:

−p1 ≤ p11 ≤ 2 · p2 + 5,
0.25 · p1 − 2.25 · p2 − 5.75 ≤ p12 ≤ 0.75 · p1 + 0.25 · p2 + 0.75.

(4.13)

Thereby, as described so far, the back-substitution yields

l11 = −1, u11 = 7, l12 = −8, u12 = 2.5,

which are the final output bounds of our example network.

Robustness Analysis:

The inputs p1 = 1 and p2 = 0 lead to output p11 = 1 and p12 = −1 in our example. Thus, to
verify the robustness of our example network, we aim to find the maximum ϵ that guarantees
p11 ≥ p12 always holds true for any perturbed inputs within the l∞-norm ball with a radius ϵ.
In our example, the results of l11, u11, l12, and u12 conclude that p11− p12 ∈ [−3.5, 3] which
results in p11 ≥ p12 failing to hold. Thus, we apply binary search to reduce the value of ϵ
and recalculate the output bounds for the network based on the new ϵ. When the maximum
iteration is reached, we stop the binary search and choose the maximum ϵ that results in the
lower bound of p11 − p12 ≥ 0 as the final certified distortion.

71



Chapter 4. Verification for 3D Point Cloud Models 4.4. Experiments

4.4 Experiments

4.4.1 Experiments setting
Dataset

We evaluate 3DVerifier on ModelNet40 [161] dataset, which contains 9,843 training and
2,468 testings 3D CAD models. Each CAD model is used to sample a point cloud that
comprises 2,048 points in three dimensions [110]. There are 40 categories of CAD models.
We run verification experiments on point clouds with 1024, 512, and 64 points, and randomly
selected 100 samples from all the 40 categories of the test set as the dataset to perform the
experiments. All experiments are carried out on the same randomly selected dataset.

Models

We utilise PointNet [110] models as the 3D point cloud classifiers. Since the baseline
verification method, 3DCertify [87], cannot handle the full PointNet with JANet, to make a
comprehensive comparison, we first perform experiments on the PointNet without JANet.
We then examine the performance of our 3DVerifier on full PointNet models. All models
use the ReLU activation function.

Baseline

(1) We choose the existing 3D robustness certifier, 3DCertify [87], as the main baseline for
the PointNet models without JANet, which can be viewed as a general CNN. Additionally,
we also show the average distortions obtained by adversarial attacks on 3D point cloud
models that extended from the CW attack [13], [162] and PGD attack [75]. (2) As for the
complete PointNet proposed by [110], we provide the average and minimum distortions
obtained by the CW attack for robustness estimation. The PGD attack takes a long time
to seek the adversarial examples, and the attack success rate is below 10%, thus, it is not
included as the comparative method.

Implementation

The 3DVerifier is implemented via NumPy with Numba in Python. All experiments are run
on a 2.10GHz Intel Xeon Platinum 8160 CPU with 512 GB memory.

4.4.2 Results for PointNet models without JANet
In Table 4.1, we present the clean test accuracy (Acc.) and average certified bounds (ave)
for PointNet models without JANet. We also record the time to run one iteration of the
binary search. We demonstrate that our 3DVerifier can improve upon 3DCertify in terms of
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Table 4.1: Average certified bounds (ave) and run-time on PointNet without JANet. For
the certified bounds, the higher the better. The bounds obtained by attacks are referred to
as upper bounds. ‘*’ means that computing the bounds by 3DCertify is computationally
unattainable, which automatically terminates after verifying several samples.

no. Pool.Acc. N lp Certified Bounds Our vs. Attack
Our 3DCertify 3DCertify (%) CW PGD

min ave time min ave time ave time ave ave
64 Ave 70.1 5 l∞ 0.0007 0.0122 0.5 0.0006 0.0080 1.6 +52.5 -67.9 0.03 0.02

l2 0.0014 0.0433 0.5 - - - - - 0.42 0.53
l1 0.0024 0.0553 0.4 - - - - - 2.50 3.21

79.3 9 l∞ 16e-5 0.0044 8.9 12e-5 0.0034 92.1 +29.4 -90.4 0.02 0.02
l2 0.0014 0.0146 6.8 - - - - - 0.39 0.46
l1 0.0028 0.0188 6.7 - - - - - 2.97 2.55

Max 73.6 5 l∞ 1e-4 0.0137 0.4 8e-5 0.0079 0.54 +73.4 -26.5 0.03 0.02
l2 0.0008 0.0481 1.5 - - - - - 0.16 0.28
l1 0.0021 0.0649 0.9 - - - - - 3.11 3.21

81.2 9 l∞ 0.0007 0.0051 8.3 0.0004 0.0036 51.4 +41.7 -83.8 0.02 0.03
l2 0.0045 0.0209 10.5 - - - - - 0.24 0.16
l1 0.0102 0.0288 9.5 - - - 2.81 3.09

512 Ave 73.0 5 l∞ 0.0007 0.0104 15.3 0.0006 0.0063 100.4 +15.5 -84.8 0.07 0.02
l2 0.0079 0.0427 13.2 - - - - - 0.41 0.47
l1 0.0109 0.0648 12.3 - - - - - 4.54 4.41

Max 78.3 5 l∞ 0.0007 0.0108 7.7 0.0006 0.0070 18.5 +54.3 -58.7 0.06 0.02
l2 0.0048 0.0313 5.2 - - - - - 0.26 0.19
l1 0.0116 0.0407 3.8 - - - - - 2.90 3.10

82.1 9 l∞ 0.006 0.0048 60.2 * * * - - 0.03 0.02
l2 0.0180 0.0159 58.8 - - - - - 0.26 0.36
l1 0.0632 0.0196 54.3 - - - - - 4.49 5.08

1024Ave 72.6 5 l∞ 0.0010 0.0145 43.1 * * * - - 0.05 0.04
l2 0.0125 0.0471 21.9 - - - - - 0.46 0.39
l1 0.0354 0.0544 10.1 - - - - - 2.38 3.02

Max 77.8 5 l∞ 0.0006 0.0135 14.4 0.0002 0.0085 21.0 +58.8 -31.6 0.06 0.04
l2 0.0205 0.0393 19.0 - - - - - 0.36 0.27
l1 0.0493 0.0500 18.1 - - - - - 3.47 2.45
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Table 4.2: Average certified bounds (ave) and times on PointNet models with T-Net
no.points Pooling Acc. N lp Our CW

ave min time ave min
64 Average 70.71 8 l∞ 0.341 0.011 0.12 0.727 0.021

l2 0.862 0.077 0.19 1.700 0.162
l1 1.479 0.136 0.18 2.049 0.317

80.22 12 l∞ 0.316 0.016 2.98 0.832 0.053
l2 0.588 0.032 2.86 2.164 0.276
l1 1.115 0.113 2.73 2.949 0.510

84.11 15 l∞ 0.248 0.012 23.98 0.792 0.077
l2 0.466 0.026 23.25 3.310 0.313
l1 0.857 0.088 22.79 4.857 0.875

Max 74.63 8 l∞ 0.554 0.029 0.43 0.791 0.093
l2 1.118 0.039 0.41 2.133 0.137
l1 1.650 0.041 0.397 3.078 0.322

81.91 12 l∞ 0.541 0.007 4.26 0.846 0.078
l2 0.897 0.010 4.11 2.554 0.102
l1 1.326 0.010 3.18 3.772 0.167

86.77 15 l∞ 0.122 0.027 24.42 0.218 0.044
l2 0.494 0.030 24.13 1.285 0.076
l1 0.615 0.035 23.29 1.721 0.103

512 Average 73.53 12 l∞ 0.231 0.005 71.26 0.395 0.035
l2 1.196 0.027 68.73 3.106 0.637
l1 1.622 0.107 66.91 4.852 0.833

Max 84.61 12 l∞ 0.109 0.000355.78 0.693 0.033
l2 0.272 0.000553.64 0.882 0.085
l1 0.345 0.043 50.22 1.175 0.448

1024 Average 71.47 12 l∞ 0.406 0.017 129.410.721 0.041
l2 1.142 0.181 127.881.459 0.342
l1 1.574 0.233 126.241.926 0.596

Max 80.22 12 l∞ 0.374 0.001 128.220.758 0.005
l2 0.959 0.006 127.511.591 0.009
l1 1.253 0.009 120.752.163 0.018
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run-time and tightness of bounds. To make the comparison more extensive, we train a 5-layer
(N=5) and a 9-layer (N=9) model. The specific configurations of the model structure are
presented in Appendix A. We also show the performance of models with different types of
pooling layers: global average pooling and global maximum pooling. For experiments, we
set the initial ϵ as 0.05 and the maximum iteration of binary search as 10. The experiments
are taken on three point-cloud datasets with 64, 512, and 1024 points. We can see from the
results of average bounds that our 3DVerifier can obtain tighter lower bounds than 3DCertify
and engages a significant gap in the distortion bounds found by CW and PGD attacks. Table
4.1 shows that our method is much faster than the 3DCertify. Notably, 3DVerifier enables an
orders-of-magnitude improvement in efficiency for large networks. Additionally, our method
can compute certified bounds of distortion constrained by l1, l2, and l∞-norms, which is
more scalable than 3DCertify in terms of norm distance.

4.4.3 Results for PointNet models with JANet

As the 3DCertify does not include the bounds computation algorithm for multiplication
operation, it can not be applied to verify the complete PointNet with JANet architecture.
Thus, as the first work to verify the point cloud models with JANet, we show the average and
minimum distortion bounds of the C&W attack-based method to make comparisons. We
examine N -layer models (N=8,12,15) with two types of global pooling: average pooling and
maximum pooling on datasets with 64, 512, and 1024 points. The obtained certified average
bounds of full PointNet models are shown in Table 4.2. According to previous verification
works on images (e.g. [7]) and results in Table 4.1, the gap between certified bounds and
attack-based average distortion is reasonable, where the average minimum distortion is ten
times greater than the bounds. Thus, it reveals that our method efficiently certifies the point
cloud models with JANet in a comparable quality with models without JANet.

4.4.4 Increasing number of test samples

In table 4.3 we present the results for verifying 1000 samples on 64 points. The results show
that the obtained average certified bounds and run time for one epoch are similar to those
under 100 samples. As the average certified bound is more related to the threat model, 100
samples are enough to evaluate the average certified bound, as they are randomly selected
from different categories.

4.4.5 Experiments on extra datasets

Our certification method has shown to be versatile and applicable to a wide range of point
cloud datasets. In addition to the ModelNet40 dataset, we have also tested our method
on other 3D point cloud datasets. Our results have shown that our certification method
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Table 4.3: Average certified bounds (ave) and run-time on PointNet without JANet on 1000
samples. For the certified bounds, the higher, the better. The bounds obtained by attacks are
referred to as upper bounds.

Pooling Acc. N lp Certified Bounds Our vs.
Our 3DCertify 3DCertify (%)

min ave time min ave time ave time
Ave 70.1 5 l∞ 0.00001 0.0122 0.77 0.000006 0.0077 1.34 +58.44 -42.5

l2 0.00007 0.0437 0.67 - - - - -
l1 0.00025 0.0562 0.81 - - - - -

79.25 9 l∞ 0.00002 0.0045 10.87 0.00001 0.0033 80.5 +36.36 -86.50
l2 0.0001 0.0146 9.85 - - - - -
l1 0.00022 1.0187 9.43 - - - - -

Max 73.55 5 l∞ 0.00001 0.0142 0.44 0.000007 0.0078 0.552 +82.05 -20.3
l2 0.00009 0.0494 1.03 - - - - -
l1 0.00021 0.0666 0.84 - - - - -

81.22 9 l∞ 0.00001 0.0050 12.73 0.00001 0.0036 50.22 +38.89 -74.65
l2 0.00009 0.0210 11.77 - - - - -
l1 0.0002 0.0289 10.43 - - - - -

generalizes well to these datasets, indicating its effectiveness and potential for broader
application.

The ModelNet10 dataset is particularly noteworthy, which is also collected from 3D
CAD models, and is a very clean dataset, where the 10 most popular object categories are
manually selected and are then manually aligned with the orientation of the CAD models
for this 10-class subset. This dataset provides an excellent benchmark for evaluating the
robustness and accuracy of certification methods such as ours. Furthermore, we also present
the experiments in full PointNet using our method on the SydneyUrban dataset, which
contains various common road objects scanned with a Velodyne HDL-64E LIDAR. There
are 631 scans of objects in total that contains categories of signs, vehicles, pedestrians,
signs, and trees, which can be visualised in Figure 4.3. This dataset presents a unique
set of challenges due to the complexity and variability of the objects, as well as the noise
and occlusions present in the scans. Despite these challenges, our certification method has
demonstrated its ability to accurately certify point cloud models of objects in this dataset.

Overall, our experiments on different 3D point cloud datasets demonstrate the
effectiveness and robustness of our certification method and its potential for use in a wide
range of applications. We use ModelNet10 on 64 points to compare our work and baseline
work on 64 points. The results shown in Table 4.4 confirm that our work still engages tighter
bound and less run-time. We perform our method on ModelNet10 and SydneyUrban dataset
on 64 points with an 8-layer full PointNet model, and the results are demonstrated in Table
4.5.
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Table 4.4: Average certified bounds (ave) and run-time on PointNet without JANet. For the
certified bounds, the higher, the better. The bounds obtained by attacks are referred to as
upper bounds for ModelNet10 with 64 points.

Pooling Acc. lp Certified Bounds Our vs.
Our 3DCertify 3DCertify (%)

min ave time min ave time ave time
Ave 75.1 l∞ 0.00176 0.0139 0.93 0.00113 0.0084 1.51 +55.75 -38.41

l2 0.0132 0.0611 1.01 - - - - -
l1 0.0233 0.0788 1.22 - - - - -

Max 78.2 l∞ 0.00083 0.0215 0.66 0.00077 0.0177 0.71 +21.5 -7.04
l2 0.0044 0.0680 0.95 - - - - -
l1 0.0061 0.0903 1.22 - - - - -

Table 4.5: Average certified bounds (ave) and times on PointNet models with T-Net for
ModelNet10 and Sydney Urban dataset with 64 points

Dataset Pooling Acc. N lp Our CW
ave min time ave min

ModelNet10 Average 72.1 8 l∞ 0.451 0.01 0.14 0.931 0.022
l2 1.29 0.07 0.27 1.992 0.141
l1 2.05 0.13 0.18 2.591 0.422

Max 78.2 8 l∞ 0.535 0.01 0.31 0.621 0.067
l2 1.534 0.04 0.34 2.773 0.152
l1 1.821 0.07 0.31 3.266 0.411

Sydney Average 62.1 8 l∞ 0.668 0.010 0.18 1.225 0.018
l2 1.66 0.020 0.16 2.830 0.132
l1 1.993 0.020 0.10 3.744 0.210

Max 67.4 8 l∞ 0.497 0.0002 0.11 0.843 0.072
l2 0.685 0.0003 0.08 2.771 0.152
l1 0.968 0.0004 0.10 1.439 0.334
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(a) Car

(b) Pedestrian

(c) Tree

Figure 4.3: Visualization of Sydney Urban dataset

4.4.6 Importance of JANet

To demonstrate the significance of JANet in point cloud classification tasks, we conducted
an ablation study by training three different models and recording the number of trainable
parameters for each one. The results of the training accuracy are presented in Table 4.6, and
the specific layer configurations for these models are outlined in Appendix A.

Since the PointNet without JANet can be viewed as a general convolutional neural
network (CNN) model, while JANet is a more intricate architecture that includes a T-Net
and multiplication layer, we examined two models for the PointNet without JANet to better
understand the effect of JANet. The first model was a 7-layer model that omitted JANet
from the 12-layer full PointNet, and the second model was a 12-layer model that added
convolution and dense layers in T-Net to the 7-layer model.

The results indicated that the PointNet with JANet improved the training accuracy
significantly compared to the PointNet without JANet when using the same number of layers.
As a result, JANet played a crucial role in enhancing the performance of point cloud models.

78



Chapter 4. Verification for 3D Point Cloud Models 4.5. Discussions

Table 4.6: Training accuracy of different structures of point cloud models.
Models N no. trainable parameters accuracy
PointNet without JANet 7 443656 72.94%
PointNet without JANet 12 822472 74.07%
Full PointNet with JANet 12 645425 81.31%

4.5 Discussions
3DVerifier is efficient for large-scale 3D point cloud models

There are two key features that enable 3DVerifier’s efficiency for large 3D networks.

• Improved global max pooling relaxation: the relaxation algorithm for the global max
pooling layer of CNN-Cert [7] framework cannot be adapted directly to 3D point
cloud models, which is computationally unattainable. Thus, we proposed a linear
relaxation for the global max pooling layer based on [126]. For example, to find the
maximum value pr = maxm∈M(pm), if exists pj such that its lower bound lj ≥ uk for
all k ∈M\j, the lower bound for the max pooling layer is lr = lj and upper bound is
ur = uj . Otherwise, we set the output of the layer ϕr ≥ pj , where j = argmax

m∈M
(lm),

and similarly ϕr ≤ pk, where k = argmax
m∈M

(um). The comparison results in Table 4.1

indicate that implementing the improved relaxation for the max pooling layer enables
3DVerifier to compute the certified bounds much faster than the existing method,
3DCertify.

• Combing forward and backward propagation: The verification algorithm proposed
in [123] evaluated the effectiveness of combining forward and backward propagation
to compute the bounds for Transformer with self-attention layers. Thus, in our tool
3DVerifier, we adapted the combining forward and backward propagation to compute
the bounds for the multiplication layer. As Table 4.2 shows, the time spent for full
PointNet models with JANet is nearly the same as the time for models without JANet.

CNN-Cert can be viewed as a special case of 3DVerifier

CNN-Cert [7] is a general efficient framework for verifying the neural networks for image
classification, employing 2D convolution layers. Although our verification method shares
a similar design mechanism as CNN-Cert, our framework is superior to CNN-Cert. One
key difference is the dimension of input data, PointNet 3D models adopt 1D convolution
layers, which 3DVerifier can efficiently handle. Additionally, besides the general operations
such as pooling, batch normalization, and convolution with ReLU activation, we can also
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handle models with JANet that contain multiplication layers. Thus, 3DVerifier can tackle
more complex and larger neural networks than CNN-Cert. To adapt the framework for 3D
point clouds, we introduced a novel relaxation method for max-pooling layers to obtain its
certified bounds, which significantly improves the verification efficiency.

4.6 Conclusion
In this article, we introduced a comprehensive and efficient framework for verifying the
robustness of 3D point cloud models. Our approach utilises linear relaxation for the
multiplication layer and integrates forward and backward propagation, enabling us to swiftly
compute certified bounds for different model architectures, including convolution, global
pooling, batch normalisation, and multiplication. Our experiments on diverse models and
point clouds, featuring varying numbers of points, demonstrate that 3DVerifier outperforms
other methods regarding both computational efficiency and tightness of the certified bounds.
One potential application of our proposed framework is in autonomous driving, where the
robustness of 3D point cloud models is crucial for ensuring the safety of passengers and
pedestrians. We can provide guarantees on the correctness of these models, making them
more reliable and trustworthy.
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Chapter 5

Certified Policy Smoothing for
Cooperative Multi-Agent Reinforcement
Learning

“Artificial intelligence is the new electricity. Just as electricity transformed
almost everything 100 years ago, today I have a hard time thinking of an industry
that I don’t think AI will transform in the next several years.”
(Andrew Ng.)
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5.1 Introduction
The cooperative multi-agent reinforcement learning (c-MARL) has devoted a great deal of
attention to a wide range of applications in the real world, such as autonomous cars [120],
traffic lights controlling [142], and packet delivery [171]. The target of RL for single agents
is to learn the action that can optimise the long-time reward, but when the environment is
interacted with by a team of agents, the system needs to jointly optimise the action of each
agent to maximise the accumulated team reward.

In recent years, there has been increasing interest in developing adversarial attacks on
deep reinforcement learning (DRL) systems. Most of the existing attack solutions have
focused on attacking single-agent RL systems. Huang, Papernot, Goodfellow, et al. [50]
proposed an attack method called FGSM-RL, which uses the Fast Gradient Sign Method
to generate adversarial examples for deep reinforcement learning agents. The method is
effective in deceiving the agents into taking incorrect actions. Then, Lin, Hong, Liao, et
al. [84] introduced an attack method called Adversarial Attack on Deep Reinforcement
Learning using Policy Gradient Descent (PGD-RL), which uses policy gradient descent
to optimise the adversarial perturbations. This approach is effective in generating more
powerful and targeted attacks against DRL agents. To generate the attacks that are hard to
detect, Kos and Song [68] proposed a reinforcement learning-based attack method called
Adversarial Reinforcement Learning (ARL), which learns to generate adversarial examples
that can deceive the DRL agents. Weng, Dvijotham, Uesato, et al. [152] proposed a method
to attack bandit algorithms, which is based on adversarial multi-armed bandit algorithms.
The RL has also been shown to be vulnerable to the perturbation on the environments [40].

There have been some recent efforts to extend adversarial attacks to cooperative multi-
agent RL systems (c-MARLs). Two notable works in this area are [83] and [108]. Lin,
Dzeparoska, Zhang, et al. [83] proposed a policy network that is trained to find a wrong
action that the victim agent is expected to take and set as the targeted adversarial example.
This approach is designed to deceive the victim agent into taking the wrong action, which
can have negative consequences on the overall performance of the c-MARL system. Pham,
Nguyen, Chen, et al. [108] then proposed to craft a stronger adversary by using a model-
based approach.

Some adversarial defence works for RL are proposed [27], [30], [122], [132] and then
towards these defences, stronger attacks are proposed [116], [117]. To end this repeated
game, Lütjens, Everett, and How [89] first proposed a certified defence on the observations
of DRLs. Zhang, Chen, Xiao, et al. [177] then provided empirically provable certificates
to ensure that the action does not change at each state. However, this method cannot
provide robustness certification for the reward if the action is changed under attacks. To
tackle this problem, Kumar, Levine, and Feizi [73] proposed to directly certify the total
reward via randomised smoothing-based defence, but this method cannot achieve robustness
certification at the action level. Wu, Li, Huang, et al. [159] then proposed a policy smoothing
method based on the randomised smoothing of the action-value function, which is chosen as
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the baseline in this chapter for certifying the robustness of global reward under a single-agent
scenario. However, all existing methods can only work on single-agent systems. To the
best of our knowledge, this paper is the first work to certify the robustness of cooperative
multi-agent RL systems.

Compared with the RL system with a single agent, certifying the c-MARL is more
challenging work. which are addressed as below:

• Action space grows exponentially in c-MARLs. Certifying cooperative multi-agent
reinforcement learning (c-MARL) is a more demanding task compared to RL systems
with a single agent. This is because the number of feasible actions increases
exponentially with the number of agents, and at each time step, all agents must
be certified simultaneously, leading to a rise in uncertainty in determining the final
decision bound.

• Different agents have different contributions to the team reward. In c-MARLs,
modifying the action of a single agent may not impact the overall team reward,
as it is a collective effort. As a result, existing certification works for single-agent
systems are not sufficient in evaluating the robustness of the c-MARL system. To
address this issue, new criteria must be developed to assess the robustness of the
multi-agent system, which needs to consider the interdependence of the agents and
the impact of their actions on the team’s performance.

To cope with such challenges, we proposed two novel frameworks to certify the robustness
of each state and the whole trajectory. We first propose a smoothed policy that each agent
will choose the most provable action given the observation N (o, σ2I) and then we derive
the certified radius for each agent per step, within which the chosen action of the agent will
not be changed. We identify the multiple testing problem when evaluating the robustness for
all agents per step, and propose to assert each agent’s importance per step via the importance
factor adapting from [36]. Multiplying each agent’s importance factor with its p-value, we
can use the Benjamini-Hochberg (BH) to control the false discovery rate (FDR) for each step.
As for certifying the whole trajectory, we propose to apply the tree-based search algorithm
to find the certified radius as well as the lower bound of the team reward with in this radius.

In this chapter, we focused on certifying the robustness of value-based c-MARL models
under l2-norm bounded attack. Our work can be easily extended to evaluate lp robustness by
using different sampling distributions like generalised Gaussian distribution as indicated in
[45].

5.2 Methodology
In this section, we first outline an intuitive approach to certifying RL based on current
classifier certification. Then, we sketch the challenges preventing the direct use of the
intuitive approach and present how to address these challenges.
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Figure 5.1: Abstract workflow for the intuitive approach for single-agent reinforcement
learning. In the figure, δ is the noise sampled from Monte Carlo Random Sampling, where
(δ1, ..., δn) i.i.d. N (0, σ2I)

5.2.1 Problem Formulation
We aim to design a robust policy for multi-agent reinforcement learning algorithms.
Following the standard set of existing adversarial attacks on c-MARLs, e.g. [83], where
the adversarial perturbation is added to each step’s observation of each agent, our proposed
policy is expected to be provably robust against the perturbation bounded by the l2-norm
around the observation of each agent.

Definition 1. (Smoothed policy) Given a trained multi-agent reinforcement learning network
Qπ with policy π, suppose that there are N agents, at the time step t, let ∀st ∈ S, given
that the noise vector ∆t = (δ1t , ..., δ

N
t ) is i.i.d N (0, σ2I), the joint smoothed policy can

be represented as
π̃ (st) = argmax

at∈A
Q̃π (st +∆t, at) . (5.1)

To certify the robustness of the smoothed policy, we define the certification robustness
for a per-step action as

π̃t(st) = π̃t(st + ϵt) s.t.∀ϵt, ||ϵt||2 ≤ D, (5.2)

where ϵt ∈ RN represents the maximum perturbation applied to the observations of each
agent at the t-th time step. In other words, for each agent, in the presence of the l2-norm
bounded perturbation in each state, the smoothed policy is expected to return the same action
that is most likely to be selected in the unperturbed state st.
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Algorithm 6 Intuitive Policy Smoothing for Certifying Per-state Action
Input: Trained Qπ with N agents
Parameter: sampling times M ; Gaussian distribution parameter σ; confidence parameter α
Function: BioPVALUE: two-sided hypothesis test; MultiConBnd: function to calculate the
probability bounds with confidence 1− α.

1: function SMOOTHING(M,Q, α, σ)
2: for m← 1,M do ▷ Get smoothed policy π̃
3: generate ∆m = (δ1m, ..., δ

N
m) i.i.d N (0, σ2I)

4: s′ ← s+∆m

5: a← π(s′)
6: Add a→ Actlist
7: return Actlist
8: Actlist← SMOOTHING(M,Qπ, α, σ)
9: am, ar, ct1, ct2 ← Top two action sets with their counts

10: if BioPV ALUE(ct1, ct1 + ct2, 0.5) ≤ α then
11: Cert← True ▷ Get certified radius for π̃
12: pam , par ←MultiConBnd(Counts(Actlist), α)

13: D ← σ
2

(
Φ−1

(
pam

)
− Φ−1 (par)

)
14: else
15: Cert← False, D ← 0

16: return a, d, Cert

5.2.2 Intuitive Approach
Intuitively, the randomised smoothing can be adapted to certify the robustness of the per-state
action in RLs by replacing the classifier with policy π(st). For the certification of each step,
Monte Carlo randomised sampling is used to estimate the smoothed policy π̃. As shown
in Algorithm 6, we record the action vector a, which is a combination of actions taken by
all agents at each sampling step. The most likely selected action set is chosen as the action
was taken by π̃. A larger number of samples can be used to estimate the lower bound on
the probability (pam) of the most frequently selected action set, am, and the upper bound on
the probability (par) of the second most frequently selected (“runner-up”) action, ar. The
function MULTICONBND in Algorithm 6 is based on a Chi-Square approximation [42],
which takes the number of observations for each category as input and returns the (1− α)
confidence levels.

Lemma 3. Let X and Y be random variables from Gaussian distributions, X ∼ N (x, σ2I)
and Y ∼ N (x+ δ, σ2I). Suppose h (Rd → 0, 1) is a random or deterministic function.
Then we can have:
a. If S =

{
z ∈ Rd : δT z ≤ β

}
for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) =
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1) ≥ P(Y ∈ S).
b. if S =

{
z ∈ Rd : δT z ≥ β

}
for some t > 0 and P(h(X) = 1) ≤ P(X ∈ S), then

P(h(Y ) = 1) ≤ P(Y ∈ S).

Proposition 1. If the certification in Algorithm 6 returns the action set am : (am,1, am,2, ..., am,N)
in the time step t with a certified radius

D =
σ

2

(
Φ−1

(
pam

)
− Φ−1 (par)

)
then with probability at least (1− α), the smoothed policy π̃(st + ϵt) chooses the action am,
∀||ϵt||2 ≤ D.

Proof. To prove that the smoothed policy π̃(st + ϵt) returns the action am, the following
constraint should be certified:

P (π̃(st + ϵt) := am) > max
am ̸=ar

P (π̃(st + ϵt) := ar)

Therefore, we need to guarantee P (π̃(st + ϵt) := am) > P (π̃(st + ϵt) := ar) to make sure
the action set am ̸= ar. Suppose we have two random variables X and Y:

X := st +∆ = N
(
st, σ

2IN
)

Y := st + εt +∆ = N
(
st + ϵ, σ2IN

)
As we have obtained the lower bound on the probability (pam) of the most frequently selected
action set, am, and the upper bound on probability (par) of the second most frequently
selected (“runner-up”) action, ar, with confidence (1-α) calculated by the MULTICONBND

function based on a chi-squared approximation [42], which takes the number of observations
for each category as input and output the confidence levels.

In this domain, we get
P (π̃(X) := am) ≥ pam

P (π̃(X) := ar) ≤ par ,

As we are going to show:

P (π̃(Y) := am) > P (π̃(Y) := ar) (5.3)

the half-spaces can be defined as:

A :=
{
y : ϵTt (y − st) ≤ σ∥ϵt∥Φ−1

(
pam

)}
B :=

{
y : ϵTt (y − st) ≥ σ∥ϵt∥Φ−1 (1− par)

} (5.4)

Noticing that P(X ∈ A) = pam , we can conclude P (π(X) := am) ≥ P(X ∈ A). Hence, in
Lemma 3, let h(y) := 1 [π(y) := am], we can have

P(π(X) = ar) ≥ P(Y ∈ A) (5.5)
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Similarly, given P(X ∈ B) = par , and P (π(X) = ar) ≤ P(X ∈ B), we can define
h(y) := 1 [π(y) := ar]and conclude that

P (π(Y) := ar) ≤ P(Y ∈ B) (5.6)

To ensure Equation 5.3, based on the Equation 5.5 and 5.6, it suffices to show that

P(Y ∈ A) > P(Y ∈ B),

which completes the chain of inequalities:

P (π(Y) := am) ≥ P(Y ∈ A) > P(Y ∈ B) ≥ P (π(Y) := ar) (5.7)

Finally, we can calculate the following equations:

P(Y ∈ A) = Φ
(
Φ−1

(
pam

)
− ∥ϵt∥

σ

)
P(Y ∈ B) = Φ

(
Φ−1 (par) + ∥ϵt∥

σ

) (5.8)

Based on above analysis, P(Y ∈ A) > P(Y ∈ B) is true if and only if :

∥ϵt∥ <
σ

2

(
Φ−1

(
pam

)
− Φ−1 (par)

)
. (5.9)

The intuition behind the method shown in Algorithm 6 is similar to the certification
procedure for classification through randomised smoothing [24]. The BIOPVALUE is applied
to calculate the p-value of the two-sided hypothesis test to choose the action am. However,
rather than abstaining from the action when the p-value does not meet the confidence level,
we set the certified radius of this step as D = 0 to indicate that the certification failed, since
the RL relies on decisions of multiple steps. When n = 1, the algorithm can be used to
certify RLs with a single agent as Wu, Li, Huang, et al. [159], but instead of using the
smoothed action value function Qπ, we utilise the frequency of occurrence of each action
to determine which action to be selected. Since c-MARLs are trained under the premise
that each agent would always select the best action, they do not reliably anticipate the team
reward when some agents behave badly.

In the c-MARLs, there are some additional challenges that preclude us from using this
intuitive certification criterion.

Challenge 1. The perturbation D added to the observation of each agent can be
different.

For c-MARLs, each agent develops its own policy to choose its action. If the certified
bound is calculated using Algorithm 6, all agents will engage with the same perturbation
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bound, making the results less accurate for each agent. As one agent can be more robust
than the other, the same perturbation added to the agents will lead to different performances,
which provides the need to certify the robustness of each agent. Thus, we will first consider
certifying the robustness for every agent and then estimating the robustness in each state
for all agents. To reduce the computation cost, we can sample from the joint policy π(s′)
instead of each agent’s policy separately. To this end, we can change am, ar in Algorithm
6 (Line 9) to the two most likely actions (am,n, ar,n) for each agent and then calculate the
corresponding lower bound pam,n on probability P(π̃n(zn) := am,n) and upper bound par,n
for choosing the “runner up” action, ar,n. The certified bound for each agent per state can be
computed as:

Corollary 1. (Certification for the actions of each agent in each state) In state s, given the
joint smoothed policy π̃(s) = {π̃1(z1), ..., π̃N(zN)}, we can obtain the certified bound in
state s for each agent to guarantee π̃n(zn + ϵ) := am,n,∀||ϵ||2 ≤ dn:

dn =
σ

2
(Φ−1(pam,n)− Φ−1(par,n)) (5.10)

Proof. Similar as the proof for Proposition 1, we modified the certification goal as:

P (π̃(zn + ϵ) := am,n) > max
am,n ̸=ar,n

P (π̃(zn + ϵ) := ar,n)

Thus, we need to show

P (π̃(zn + ϵ) := am,n) > P (π̃(zn + ϵ) := ar,n)

Now the two random variables X and Y are defined as :

X := zn + δn = N
(
zn, σ2I

)
Y := zn + ε+ δn = N

(
zn + ϵ, σ2I

)
Following the above proof, we can calculate the lower bound pam,n on probability
P(π̃n(zn) := am,n) and upper bound par,n for the probability of choosing the “runner
up” action, ar,n, we get

P (π̃(X) := am,n) ≥ pam,n

P (π̃(X) := am,r) ≤ pam,n ,

We are going to show:

P (π̃(Y) := am,n) > P (π̃(Y) := am,r) (5.11)

The half-spaces for each agent can be defined as:

A :=
{
y : ϵT (y − zn) ≤ σ∥ϵ∥Φ−1

(
pam,n

)}
B :=

{
y : ϵT (y − zn) ≥ σ∥ϵ∥Φ−1 (1− pam,r)

} (5.12)
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Hence, following the proof of proposition 1, in Equation 5.5 and Equation 5.6, we can
replace the am and ar with am,n and am,r to show

P (π(Y) := am,n) ≥ P(Y ∈ A) > P(Y ∈ B) ≥ P (π(Y) := am,r) (5.13)

Then, we can conclude that, P(Y ∈ A) > P(Y ∈ B) is true if and only if :

∥ϵ∥ < σ

2

(
Φ−1

(
pam,n

)
− Φ−1 (pam,n)

)
. (5.14)

Finally, the most likely chosen action for each agent can be combined as the final action
set {am,1, am,2, ..., am,N} and the certified bound at each step can be defined as:

Definition 2. Given the certified bound obtained for each agent in state s, {d1, d2, ..., dN},
the certified bound in this state for all agents is determined by the least robust agent:
D = min{d1, d2, ..., dN}.

Challenge 2. If we choose the bound of the least robust agent as the bound for all agents
per state, the confidence level decays.

As Proposition 1 indicates, on each call of certification, the certified robustness bound
obtained only holds with confidence level (1− α). As we sample noise from the Gaussian
distribution independently, the hypothesis tests are independent. Based on Definition 2,
to calculate the certified bound for each state, we have the following constraint for the
probability of making an error:

P(
∨

n∈N , n-th agent’s cert failed ) ≤
min (

∑
n P(n-th agent’s cert failed ), 1) = min(Nα, 1).

Therefore, for multiple tests, without any control over the error, the probability of making
an error will increase with the number of tests. Suppose that there are T steps in the entire
trajectory, we will have N ∗ T tests in total, which can be a great challenge. To address
this problem, for certifying per-state actions, the confidence level can be reduced to α/N .
Additionally, we can first perform agent selection to control the selective error by considering
the importance of each agent, since sometimes an agent changing its action will not diminish
the team reward. Moreover, to evaluate the global certification bound, we propose a tree-
search-based method to find the lower bound of the team reward. In Section 5.3 and 5.4, we
will detail our proposal to certify the robustness of per-state actions and global reward.
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5.3 Robustness Certification for Per-State Action with
Correction

5.3.1 Multiple Hypothesis Testing
Corollary 2. (Certified bound per state) In state s, given N agents with action a, the
joint policy is π(s) = {π1(z1), ..., πN(zN)}. Suppose that the observation of each agent
is perturbed by random noise δn, where δn ∼ N (0, σ2I). ∀n ∈ N , if P(πn(zn + δn) :=
am,n) ≥ 0.5, we can compute the certified bound by Definition 2.

Proof. For every agent n ∈ N , with confidence 1− α, the

pam,n = P(πn(zn + δn) := am,n) ≥ 0.5

is satisfied. Then we invoke Corollary 1 to compute the certified bound dn and guarantee
that

π̃n(zn + ϵ) := am,n,∀||ϵ||2 ≤ dn.

therefore, with D = min{d1, d2, ..., dN}, we can show that

∀n ∈ N, π̃n(zn + ϵ) := am,n,∀||ϵ||2 ≤ D ≤ dn.

D is determined as the certified bound per state that holds for and agents satisfy pam,n ≥
0.5.

In order to obtain the certified bound for all agents per state, we can employ Corollary 2,
and, as suggested, for each agent, we need to ensure that condition

P(π̃n(zn) := am,n) ≥ 0.5

is satisfied. Hence, after sampling, with the count (ctn1 ) for the most frequent action taken by
agent n, we can implement the one-sided binomial test to obtain its p-value pvn. These p-
values can be processed to indicate which tests should be accepted under (1−α) confidence.

Definition 3. (Hypothesis Test) The hypothesis test with null hypothesis for each agent is

H0 : P(π̃n(zn) := am,n) < 0.5,

and the alternative is
H1 : P(π̃n(zn) := am,n) ≥ 0.5.

In the hypothesis test, if the null hypothesis H0 is true, we can determine the p-value,
which is the probability of finding a statistic that is equally extreme as the observed one
or more extremes. Given the statistical test in Definition 3, if the p-value is below the
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Algorithm 7 Certified Robustness Bound of the Perturbation for Actions of Each State with
Correction (CRSC)
Input: Trained Qπ; N agents;
Parameter: sampling size M ; Gaussian distribution parameter σ; confidence parameter α

1: Actlists← SMOOTHING(M,Qπ, α, σ)
2: am,n, ar,n, ctn1 , ct

n
2 ← Counts(Actlists[n]) for n ∈ N

3: IF ← IF function(Qπ, Actlists)
▷ Obtain importance factor for agent

4: pvn ← BioPV ALUE(ctn1 ,M, 0.5) for n ∈ N
5: cn ← BHproc((pvn ∗ IF [n]), α) for n ∈ N
6: If ¬cn : dn ← 0 ▷ Remove failed agent
7: Icert := {n | dn ̸= 0} ▷ Obtain certified agent set
8: Compute dn for each agent in Icert
9: D = min(dn|n ∈ Icert)

10: return D, Icert

confidence level, we can reject the null hypothesis, which means that the bound is certified;
otherwise, we accept it.

In multiple hypothesis tests, the probability of the occurrence of false positives (FP)
will increase, where the FP denotes that we reject the null hypothesis when it is true, which
is also called type I error. Suppose that the confidence level is α, and the probability of
FP is expected to be less than α. To control type I error for multiple tests with H tests,
the family-wise error rate (FWER) is introduced, which changes α for each test to α/H .
However, it is still conservative, which can increase the true negative rate (i.e., type II error).

To solve this problem, Benjamini and Hochberg [5] proposed the false discovery rate
(FDR) to find the expected false positive portion. The FDR method applies a corrected
p-value for each test case, achieving a better result: testing for as many positive results as
possible while keeping the false discovery rate within an acceptable range. The Benjamini-
Hochberg (BH) procedure first sorts the p-values of tests in ascending order and then finds
the largest k such that pk ≤ kα/H , rejecting null if the p-value is below pk. Fithian, Sun,
and Taylor [35] then proposed selective hypothesis tests by applying inference to the selected
model to control the selective type I error, which controls the global error as

E[#FalseRejections]

E[#H0Selected]
≤ α.

Inspired by the selective hypothesis tests, we propose to multiply every agent’s importance
factor with its p-value to control the selective FDR via executing the BH procedure on the
corrected p-values.
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5.3.2 Measuring the Importance of Agents
To obtain each agent’s important factor, we can measure each agent’s contribution to the
team reward at each state. We adapt the advantage function proposed in COMA [36], which
is used to decentralise agents by estimating the individual reward during training. As the
importance factor defined in Definition 4, it is applied to examine the behaviour of the
current action of the agent.

Definition 4. For each agent, n, the importance factor IF n of each agent is computed by
comparing the Q value of the current action an with the counterfactual reward baseline,
which is obtained by altering the action of agent n, an

′
, and keeping the other agents’ actions

a−n unchanged:

IFn(s,a) = Q(s,a)−
∑

an′∈A

P(π̃n(s) := an
′
) ·Q

(
s,
(
a−n, an

′
))

.

Algorithm 7 shows the process for certifying the robustness of the actions of each state
while controlling the error. To correct the p-value in the multiple tests, we adapt the p-value
for each test by multiplying it with the agent’s importance factor (Line 4). Then we can
perform the BH procedure (Line 5) to determine which tests should be rejected. Lastly, we
obtain the set of certified agents Icert with certified bounds.

Theorem 3. For each agent in Icert := {n | dn ̸= 0}, the action can be certified as

π̃n(zn + ϵn) = π̃n(zn),

where ∥ϵn∥2 ≤ D := min(dn),∀n ∈ Icert.

Proof. Considering each agent independently, given that agent n updates its policy π̃n(zn)
in each state, under the condition

P(π̃n(zn) := am,n) > 0.5,

we can obtain the lower bound probability of selecting the am,n and the upper-bound
probability for the “runner-up” action, ar,n, for each agent and then compute the certified
bound dn. The minimum certified bound holds for any agent that satisfies the condition,
denoted by the set Icert.

5.4 Robustness Guarantee on Global Reward
To certify the bound of global reward under the certified perturbation bound for each step, the
CRSC is no longer applicable, as it cannot find the lower bound of global reward. Therefore,
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Algorithm 8 Tree-Search-based certified robustness bound and global reward (T-CRGR)
Input: Trained Qπ; N agents; confidence parameter α
Parameter: sampling times M ; Gaussian distribution parameter σ

1: function GETNODE(s)
2: Actlists← SMOOTHING(M,Qπ, α, σ)
3: IF ← IF function(Q,Actlists)
4: A dic, d list← ∅
5: for n ∈ Iagent do
6: am,n, ar,n, ctn1 , ct

n
2 ← Counts(Actlists)

7: pvn ← BioPV ALUE(ctn1 ,M, 0.5)
8: if pvn ∗ IF [n] > α then
9: A dic[n]← A dic[n] ∪ {am,n, ar,n}

10: p1 ← BioConBnd(ctn1 + ctn2 ,M, 1− α)
11: else
12: A dic[n]← A dic[n] ∪ {am,n}
13: p1 ← BioConBnd(ctn1 ,M, 1− α)

14: d list← d list ∪ (σΦ−1
(
p1
)
)

15: d← min(d list)
16: return A dic, d

17: function SEARCH(d, s, a, R, done):
18: if R ≥ Rmin then ▷ Prune the tree
19: return 0
20: if done then
21: Rmin ← min(R,Rmin)
22: return 0
23: A dic, dnew ← GETNODE(s)
24: d← min(dnew, d), Action list← A dic
25: for a in Action list do
26: snew, done← env.step(a, s)
27: SEARCH(d, snew, a, R +Q(s, a), done)
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we propose a tree-search-based method to find the global lower bound of the team reward
under the certified bound of perturbation.

The insight of implementing the search tree is that, if we cannot certify the bound of
perturbation at some time steps for some agent, we can take the second most frequent action,
which will result in a new trajectory. Then we can explore the new trajectory by developing
it as an expanded branch of the search tree, which may result in a lower global reward.
Thus, the minimum reward can be determined as the certified lower bound of the global
reward after exploring all trajectories. The main function for the tree-search-based method is
presented in Algorithm 8. As it shows, at first, we figure out all possible actions to formulate
the action list to be explored using the function GETNODE. Then we perform the SEARCH

function to expand the tree based on each action node. Once all new trajectories have been
explored, we obtain the certified bound of perturbation and the minimum reward among all
leaf nodes. We also apply to prune to control the size of the search tree, which requires the
reward in the environments to be non-negative. When the cumulative reward of the current
node has already reached the lower bound, it can be pruned, as the subsequent tree will not
lead to a lower bound.

5.5 Experiments
We first present the certified lower bound of the global reward under the certified perturbation,
then we show the certified robustness for actions per state. Moreover, since our method is
general and can be applied in single-agent systems, we will show the comparison experiments
with the state-of-the-art baseline on certifying the global reward for RL with a single agent.

5.5.1 Experimental Setup

Baseline

In single-agent environments, we compare our method with the state-of-the-art RL
certification algorithm, CROP-LORE [159]. CROP-LORE is based on local policy
smoothing that has a similar goal to our work – obtaining a lower bound of the global
reward under the certified bound for the actions of each state. Since CROP-LORE also
employs the tree-search-based algorithm, we follow the same setting for a fair comparison.
For certifying the c-MARLs, since there is no existing solution, we apply the PGD attack
[PGD] to demonstrate the validity of the certified bounds.

RL Algorithms

We apply our method to certify the DQN trained by SA-MDP (PGD) and SA-MDP (CVX)
[177] in the single-agent setting since they have been empirically shown to achieve the
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highest certified robustness among all the baselines examined. For c-MARLs, we use VDN
[133] and QMIX [113], which are well-established value-based algorithms.

Experiments setup

For all experiments, we sample noise 10,000 times for smoothing and set the discount factor
γ to 1.0. In the single-agent environment, we follow the same setting as the baseline, where
the time step is 200 and the confidence level is α = 0.05. For c-MARLs, α = 0.01.

5.5.2 Environments settings

For the single agent environment, we use the “Freeway” in OpenAI Gym [8], which is the
most stable game reported in the baseline. To demonstrate the performance of our method
on c-MARLs, we choose two environments “Checkers” with two agents, “Switches” with
four agents and “Traffic Junction” with four and ten agents from ma-gym [70].

In the single-agent environment, we follow the settings in the baseline. The Freeway is
an Atari-2600 environment that can be implemented by OpenAI Gym [8] on the top of the
Arcade Learning Environments. The input states are high-dimensional images with shape
210× 160× 3 and the actions are discrete actions. The experiments use the NoFrameSkip-
v4 version, where the randomness of the environments is fully controlled by setting the
environments’ random seed at the beginning.

As for the c-MARL environments, we choose two maps shown in Figure 5.2 from the
ma-gym [70]: Checkers with two agents and switch with four agents, which are used in
[133]. The observations are byte values of size 3× 5× 5 RGB images. The action spaces
are: 0 (Down), 1 (Left), 2 (Up), 3 (Right), and 4 (Noop). The version used is Checkers-v0
and Switch4-v0, where each agent observes only its local position.

Checkers

The map of checkers contains apples and lemons. The red agent will give a higher score
for the team: +10 for the apple (green) and -10 for the lemon (yellow). The blue agent will
give +1 for the apple (green) and -1 for the lemon. In this game, the red agent is expected to
consume all apples and the blue agent needs to leave them to its mate and eat the obstructing
lemons.

Switch

This game is a grid-world environment with four agents. Each agent expects to move to
their home which is marked in the box with the same outlined colour. The challenge is how
to pass through the narrow corridor, since at each time, only one agent can pass through.
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(a) Checkers (b) Switch

(c) TrafficJunction with four agents (d) TrafficJunction with ten agents

Figure 5.2: c-MARLs environments

Whenever the agent reaches their home block, a +5 score will be awarded, until all agents
arrive at their home or reach the maximum of 100 steps.

Traffic Junction

On a grid of 14 by 14, there is a 4-way intersection. New cars (agents) join the grid with a
probability from each of the four directions at each time step. However, there can never be
more than Nmax cars on the road at once. At each time, the car occupies a single block and
is allotted one of three potential paths at random. Each agent has two options at a time step:
gas, which moves it forward one cell on its path, or stops, which keeps it in place. Once a
car arrives at its destination at the grid’s edge, it will be eliminated.

The overlap of two cars’ locations denotes the collision, which incurs a reward of -10.
To prevent a traffic jam, each car receives the reward of τ ∗ rtime = −0.01τ at every time
step, where τ is the number of time steps passed.
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(a) SA-MDP(CVX)

(b) SA-MDP(PGD)

Figure 5.3: Comparing the robustness certification of the total reward for SA-MDP in
Freeway with Wu, Li, Huang, et al. [159]. Solid lines are the certified lower bounds of
reward, and dashed lines indicate the empirical results under the PGD attack.

97



Chapter 5. Certified Policy Smoothing for Cooperative Multi-Agent Reinforcement
Learning 5.5. Experiments

Table 5.1: Lower bound of global reward under the minimum certified bound of perturbation
ϵ, where the line with ‘*’ denotes that we run the trajectory to the end without pruning to
obtain the certified reward.

Game
No.

agent Models σ ϵcert Reward

Our PGD
Checkers 2 VDN 0.03 0.0117 79.84 79.84

0.06 0.0221 79.84 79.84
0.1 0.0309 79.84 79.84

QMIX 0.03 0.0144 19.96 19.96
0.06 0.0369 19.96 19.96
0.1 0.0384 19.96 19.96

Switch 4 VDN 0.03 0.0147 19.4 19.4
0.06 0.284 14.4 19.4
0.1 0.036 14 14.4

QMIX * 0.03 0.0173 -20 -20
0.06 0.0233 -20 -20
0.1 0.038 -20 -20

TrafficJunction 4 VDN 0.03 0.0171 -103.1 -102.83
0.06 0.0310 -103.25 -103.25
0.1 0.0536 -105.36 -105.36

QMIX 0.03 0.0150 -146.24 -134.5
0.06 0.0315 -109.94 -109.19
0.1 0.0501 -189.4 -172.7

TrafficJunction 10 VDN 0.03 0.0164 -202.0 -202.0
0.06 0.0347 -202.0 -202.0
0.1 0.0618 -202.0 -202.0

QMIX 0.03 0.0165 -175.23 -137.74
0.06 0.0398 -175.23 -139.6
0.1 0.0556 -175.45 -79
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5.5.3 Evaluate the Robustness of the Global Reward on Single Agent
The baseline develops the smoothed policy based on the action-value function bounded by
Lipschitz continuous, while our method is based on the probability of selecting the most
frequent action. To make a fair comparison, we employ the same search tree structure as the
baseline, which organises all possible trajectories and grows them by increasing the certified
bound to choose an alternative action. we adapted our method to the similar structure of the
tree used in the baseline.

As Algorithm 9 shows, our adapted tree AT-CRGR aims to explore all possible
trajectories by progressively growing it as CROP-LoRE that is used in the baseline. First, the
root node, which is at depth 0 of the tree, represents the initial state s0. As each node of the
tree denotes the state, for each node, we can calculate a sequence of non-decreasing bound
of perturbation dk(s), where k is the number of all possible actions at state s. If current dlim
is between the di(s) and di+1(s), we can grow (i+1) branches for state s. We repeat the same
procedure for the newly expanded branch to expand the tree, until achieving the terminate
state or the number of node depths to H. We keep track of the cumulative reward for each
trajectory as we grow the tree and update the lower bound of the reward at the end of the
trajectory.

Following the setting in the baseline, we apply the perturbation magnitude growth to
find the certification under a larger perturbation. The priority queue is employed to choose
the next critical dlim effectively. When exploring the trajectory, we will store the possible
action with their certified bound dk(s) into the priority queue. As the perturbation grows,
these actions whose certified bound below the perturbation are going to be explored. Thus,
after all, trajectories for dlim are explored, we will grow the dlim to the next perturbation
magnitude by popping out the element in the priority queue.

As shown in Figure 5.3, our method obtains a tighter bound than the baseline. Since we
measure the probability of selecting actions instead of the action value function to calculate
the bound and choose an action, we do not include the actions that have never been chosen in
the possible action list, leading to a more reasonable action selection mechanism, resulting
in a tighter calculated bound. Moreover, the Lipschitz continuity is used to compute the
upper bound of the smoothed value function in the baseline, which is less tight than our
bound based on high-probability guarantees.

Comparison on time complexity

The time cost is related to the number of agents and complexity of the network, ranging
from 30 mins to 2 days. For CROP-LoRE, the complexity is

O(H|Sexplored × (log|Sexplored + |A|T )),

where |Sexplored| is the number of states that have been explored in the search procedure. H
represents the horizon length, A denotes the size of the action set and T is the time spent
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sampling the noise.
Compared with the complexity of CROP-LoRE, our method can reduce the size of action

space |A| to limit it by the number of actions that have been explored, which decreases the
total complexity to

O(H|Sexplored × (log|Sexplored + |Apossible|T )).

Algorithm 9 Adapted Search-Tree based Certified robustness bound and global reward
(AT-CRGR)

Input: Trained Qπ; N agents; confidence parameter α
Parameter: sampling times M ; Gaussian distribution parameter σ

1: function GETNODE(s, dlim, R)
2: Que← ∅ ▷ Initialise the empty Que containing the tuple (s, a,d, R)
3: A dic← ∅
4: Actlists← SMOOTHING(M,Qπ, α, σ)
5: for n ∈ N do
6: poss action← Sort(Counts(Actlist[n])) ▷ Get possibles actions for agent n
7: a∗ ← argmax(Counts(Actlist[n]))
8: A dic[n]← A dic[n] ∪ {a∗}
9: ctn1 , ct

n
2 ← Top two in Counts(Actlist[n])

10: for a in poss action do
11: if a == a∗ then
12: pv ← BioPV ALUE(ctn1 , ct

n
1 + ctn2 , α)

13: if pv > α then
14: d=0
15: else
16: p← BioConBnd(ctn1 ,M, 1− α)

17: d = σΦ−1
(
p
)

18: else
19: ctna ← Counts(Actlist[n])[a]
20: pv ← BioPV ALUE(ctn1 , ct

n
1 + ctna , α)

21: if pv > α then
22: d=0
23: else
24: pa∗ , pa ←

MultiConBnd(Counts(Actlist[n]), α)
25: d = σ

2
Φ−1

(
pa∗

)
− Φ−1 (pa)

26: if d ≤ dlimand a not in A dic[n] then
27: A dic[n]← A dic[n] ∪ {a}
28: else
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29: Que.push(s, a, d, R)

30: Return A dic
31: function SEARCH(s, dlim, R, done):
32: if R ≥ Rtot then ▷ Prune the tree
33: return 0
34: if done then
35: Rtot ← min(R,Rtot)
36: return 0
37: A dic← GETNODE(s, dlim, R)
38: for a in A dic do
39: snew, done← env.step(s, a)
40: SEARCH(snew, dlim, R +Q(s, a), done)

41: SEARCH(s0, dlim = 0, R = 0) ▷ Construct initial trajectory
42: while True do
43: if Que = ∅ then
44: break
45: (s, a, d, R)← Que.pop() ▷ Pop out the first element in the Que
46: ( , , d′, )← Que.top() ▷ Check the next element
47: Map[d]← Rtot

48: SEARCH(env.step(s, a), d′, R +Q(s, a))

5.5.4 Evaluate the Robustness of the Global Reward on C-MARLs
In Table 5.1, we show the results of the lower bound of global reward under the minimum
certified bound of perturbation ϵcert. To perform pruning, the per-step reward in each
environment is set to be non-negative. However, as the global reward obtained for QMIX
on Switch are below zero, for this case, we run each trajectory to the end without pruning
to calculate the global reward. We can see that VDN obtains a higher reward compared to
QMIX but is less robust (has lower ϵcert). This is because, during the training process, VDN
simply adds rewards obtained by the two agents to achieve a centralisation, leading one
agent to choose a simpler strategy once another agent has learned a useful strategy. On the
other hand, QMIX employs a more complex network to centralise the agents instead of only
adding their rewards, which helps the network to capture more complex interrelationships
between different agents and encourage each one to learn. This leads to VDN achieving
higher rewards faster than QMIX but being more vulnerable to perturbations.

5.5.5 Evaluate the Robustness for Each State
In Figure 5.4, 5.5,5.6 and 5.7, we present the certified perturbation bounded by l2 norm for
each agent and for all agents at each state separately. We see that in Checkers with two
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(a) Certified bound of perturbation for per-state action of each agent

(b) Certified bound of perturbation for actions of each state

Figure 5.4: Certified robustness bound of perturbation in Checkers.
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(a) Per-state certified bound of perturbation for per-state action of each agent

(b) Certified bound of perturbation for actions of each state

Figure 5.5: Per-state certified robustness bound of perturbation in Switch.
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Learning 5.5. Experiments

(a) Per-state certified bound of perturbation for per-state action of each agent

(b) Certified bound of perturbation for actions of each state

Figure 5.6: Per-state Certified bound of perturbation in TrafficJunction with four agents.
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(a) Per-state certified bound of perturbation for per-state action of each agent

(b) Certified bound of perturbation for actions of each state

Figure 5.7: Per-state certified bound of perturbation in TrafficJunction with ten agents.

105



Chapter 5. Certified Policy Smoothing for Cooperative Multi-Agent Reinforcement
Learning 5.6. Conclusion

agents, the certified bound for each agent (trained by QMIX) is close to each other when
the smoothing variance σ is 0.03. When we increase the variance to 0.1, Agent2 engages a
slightly higher bound than Agent1, which means that Agent2 is more robust. For the agents
trained by VDN, Agent2 always has a much higher robustness bound than Agent1. It may be
because when training QMIX, all agents are expected to learn useful strategies, while VDN
only needs some agents to learn well, and others may use lazier strategies, which results
in a big divergence in the robustness between agents of VDN. In Switch with four agents,
we observe that, by applying our p-value corrected method, the locally certified bound at
each step will not always take the minimum bound among all agents and ignore the bound
of agents with low impact.

5.6 Conclusion
We propose the first robustness certification solution for c-MARLs. By combining the
FDR-controlling strategy with the importance factor of each agent, we certify the actions
for each state while mitigating the multiple testing problem. In addition, a tree-search-
based algorithm is applied to obtain a lower bound of the global reward. Our method is
also applicable to single-agent RL systems, where it can obtain tighter bounds than the
state-of-the-art certification methods. Furthermore, experiments were conducted on various
multi-agent reinforcement environments, ranging from 2 to 10 agents, to demonstrate the
performance of the proposed verification algorithms. These experiments provide evidence
that the proposed method can effectively handle the challenges presented in verifying the
robustness of multi-agent reinforcement learning and can achieve superior performance.
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Conclusions and Future Work

“AI is a rare case where I think we need to be proactive in regulation instead
of reactive because I think by the time we are reactive in AI regulation, it’s too
late.”
(Elon Musk)
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In conclusion, this thesis makes a significant contribution to addressing the critical issue
of the vulnerability of deep neural networks (DNNs) to adversarial attacks, which has raised
serious concerns about their suitability in safety-critical applications. Through our research,
we propose novel and effective approaches to assess the robustness of DNNs in three critical
aspects: adversarial attacks, adversarial training, and robustness verification.

In Chapter 3, we introduce DeepSAVA, a sparse adversarial attack approach for videos,
and a novel adversarial training framework based on the perturbations generated by
DeepSAVA. Our proposed approach demonstrates superior performance in terms of attack
success rate and adversarial transferability. In Chapter 4, we propose an efficient verification
framework, 3DVerifier, to address the challenges of robustness verification in 3D point cloud
models. Our approach provides tighter certification bounds than existing state-of-the-art
solutions. In Chapter 5, we propose a novel certification method for cooperative multi-
agent reinforcement learning models (c-MARLs) to tackle the challenges of robustness
verification in this domain. Overall, our research contributes to the development of robust
and trustworthy DNNs, which are essential for the successful deployment of DNNs in safety-
critical applications. Our proposed approaches provide an effective means of assessing and
enhancing the robustness of DNNs against adversarial attacks, which is a critical requirement
for ensuring the safety and reliability of DNNs in real-world applications.

6.1 Thesis Summary
This thesis aims to assess the robustness of different DNNs, such as video recognition
models, 3D point clouds classifiers, and multi-agent reinforcement learning algorithms.
Each chapter is summarised as follows:

• (Chapter 3) Sparse Adversarial Video Attacks and Defences [97] In this chapter,
we focus on performing an effective sparse attack, DeepSAVA, on videos and also
proposed an adversarial training method to improve the robustness of the model against
various perturbations. As the sequential structure of videos, to achieve a very sparse,
we propose to use the Bayesian Optimisation (BO) algorithm to determine the most
critical frame and then attack it, which could improve the efficiency of the sparse
attack. Additionally, considering in the real world, the perturbation is more complex,
we combine the additive perturbation with spacial transformation perturbation to
perturb the chosen frame, which makes DeepSAVA a stronger and more general attack
framework. we also find that the most commonly used lp-norm metric in previous
work is not the most effective measurement metric for the spacial transformation
perturbation, which can be replaced by the structural similarity index measure (SSIM).
Overall, DeepSAVA outperforms the state-of-the-art baselines in terms of both fooling
rate and transferability. Significantly improvements are achieved for the I3D model, by
only attacking one frame of the video to obtain a high attack success rate. What’s more,
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we also perform an effective adversarial training method, which is more effective than
the state-of-the-art adversarial training algorithm based on PGD.

• (Chapter 4) Efficient Robustness Verification for 3D Point Cloud Models[95] we
study the robustness verification on 3D point cloud models. As no existing work can
handle verifying the complete 3D point clouds models, PointNet, in this chapter, we
propose a more effective and general verification framework, which is also the first
work to handle the complete PointNet. The main challenge of verifying the 3D point
cloud models is the multiplication layers in the JANet block, which contains cross-
non-linearity operation. To deal tackle this problem, we proposed to use of a linear
relaxation function to bound the multiplication layer. Also, the point cloud models
engage a high-dimensional input, which leads to a high computational complexity
problem. our solution is to combine the forward and backward propagation process
to compute the bound and improved global max pooling relaxation to reduce the
computational complexity. We take extensive experiments on various models and
point-cloud datasets to demonstrate the computational efficiency and tightness of the
certified bounds.

• (Chapter 5)Certified Policy Smoothing for Cooperative Multi-Agent Reinforce-
ment Learning [96] Verification methods for reinforcement learning have primarily
focused on single agent systems, leaving the verification of cooperative multi-agent
reinforcement learning (c-MARL) largely unexplored. This chapter presents a novel
framework for verifying the robustness of multi-agent learning in terms of each-
state actions and global reward. The proposed framework addresses two significant
challenges in verifying the robustness of multi-agent reinforcement learning. The
first challenge arises from the fact that the team reward is determined by a group of
agents, which may lead to different agents contributing differently to the team reward.
The second challenge stems from the increasing uncertainty of certified robustness
bounds as the number of agents increases. To address these challenges, the proposed
framework first verifies each agent at each step and estimates the bound for all agents
per step. We propose to consider the importance of each agent when estimating the
per-state bound for all agents. An important factor is assigned to each agent, which can
be applied to determine the bound for all agents. This solution helps overcome the first
challenge by accounting for the contribution of each agent to the team reward. For the
second challenge, we adapted the false discovery rate (FDR) to control the selective
type I error. It should be noted that the proposed method is not limited to multi-agent
systems and can also be applied to single-agent systems. In order to showcase the
effectiveness of the proposed approach, experiments were conducted to compare it
with state-of-the-art verification frameworks on single-agent reinforcement learning.
The experimental results confirm that our method can provide tighter bounds and is
more efficient than the baseline. Also, we take experiments on various multi-agent
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reinforcement environments with 2,4, and 10 agents to show the performance of the
proposed verification algorithms.

6.2 Unsolved Challenges and Future Work
Although we have solved many challenges in the previous study, there are still unsolved
and unexplored challenges for future explorations. Below we introduce some unsolved
challenges in our previous study and we also present more fields we can explore in the
future.

• Adversarial Training In Chapter 3, we present the adversarial defence based on
adversarial training to improve the robustness of video models. We reduce the
fooling rate by 24.7% for the CNN+LSTM model at the most, and there is still
room for improvement. As we can see from Table 3.11, although our combined
perturbation adversarial training can obtain a much lower fooling rate than traditional
PGD adversary training, a subtle alteration in clean model accuracy is introduced
by our algorithm. When conducting the experiments, we also tried the Trades [176],
which can achieve a trade-off between model accuracy and robustness, but it shows
worse performance on video classification models. Thus, in the future, how to design
an effective trade-off algorithm for video classification models can be explored.

• Black box In Chapter 3, we adopt the Bayesian Optimisation algorithm to select the
most critical frame, but it still requires the output score to estimate the performance
of the selected frame. Therefore, how to make it a black-box attack is still an open
problem.

• Computation Cost In Chapter 4, we already proposed some algorithms to solve the
high computation cost problem in verifying the 3D point cloud model, but because of
the high dimensional input data and complex structure of the model, for some large
neural networks, as we can see from Table 4.2, it still cost a long time to run one
epoch. There is still room to explore that how to reduce the time cost when verifying
large neural networks.

• Other Perturbation In Chapter 5, we mainly studied the perturbation on the
observation of each agent. How the proposed verification framework can be applied to
other perturbations, like reward perturbation, action perturbation, and state perturbation
can also be considered in the future.

• Verify Poisoning Attack on Multi-Agent Reinforcement Learning To execute
a poisoning attack, one would alter the inputs to include perturbed samples in the
training dataset. In the case of c-MARLs, the attack could target observation, action,
or reward. The objective of verification would be to ensure that the reward or action
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remains unchanged under the perturbation added to the observation within a specific
region.

• Real-world Scenes Applications As we suggested in this thesis, assessing the
robustness of deep neural networks is urgent in safety-critical scenes like autonomous
driving systems. Therefore, in the future, we will apply proposed approaches to
some real-world safety-critical applications, like passenger detecting and monitoring
self-driving cars. We start with applying it to some robotics systems or simulation
software.

• Out-of-Distribution (OOD) Problems The out-of-distribution sample is the sample
that is significantly different from the samples in the training dataset. Therefore, the
model could give the wrong prediction for these ”unseen” data, which can cause
serious consequences, especially in safety-critical scenes. Some works have developed
the technology to detect the OOD samples or mitigate the impact of these OOD
samples to improve the robustness of DNNs. This can be a future direction to be
explored.
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Appendix A

Configuration of PointNet models

Below are the specific layer configurations for 13-layer full PointNet with JANet and
PointNets without JANet.

No Type no. features normalization activation function
1 Conv1D 32 BatchNormalization ReLU
2 Conv1D 64 BatchNormalization ReLU
3 Conv1D 512 BatchNormalization ReLU
4 GlobalMaxpooling
5 Dense 256 BatchNormalization ReLU
6 Dense 512 BatchNormalization ReLU

Reshape
Multiplication

Table A.1: Configuration for T-Net.

No Type no. features normalization activation function
T-Net

7 Conv1D 32 BatchNormalization ReLU
8 Conv1D 64 BatchNormalization ReLU
9 Conv1D 512 BatchNormalization ReLU

10 GlobalMaxpooling
11 Dense 512 BatchNormalization ReLU
12 Dense 256 BatchNormalization ReLU

Dropout

Table A.2: Configuration for full PointNet with JANet.
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Appendix A. Configuration of PointNet models

No Type no. features normalization activation function
1 Conv1D 32 BatchNormalization ReLU
2 Conv1D 32 BatchNormalization ReLU
3 Conv1D 64 BatchNormalization ReLU
4 Conv1D 512 BatchNormalization ReLU
5 GlobalMaxpooling
6 Dense 512 BatchNormalization ReLU
7 Dense 256 BatchNormalization ReLU

Dropout

Table A.3: Configuration for 7-layer PointNet without JANet.

No Type no. features normalization activation function
1 Conv1D 32 BatchNormalization ReLU
2 Conv1D 32 BatchNormalization ReLU
3 Conv1D 64 BatchNormalization ReLU
4 Conv1D 64 BatchNormalization ReLU
5 Conv1D 512 BatchNormalization ReLU
6 Conv1D 512 BatchNormalization ReLU
7 GlobalMaxpooling
8 Dense 512 BatchNormalization ReLU
9 Dense 256 BatchNormalization ReLU

10 Dense 256 BatchNormalization ReLU
11 Dense 128 BatchNormalization ReLU
12 Dense 128 BatchNormalization ReLU

Dropout

Table A.4: Configuration for 12-layer PointNet without JANet.
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[21] K. Cho, B. van Merriënboer, C. Gulcehre, et al., “Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1724–1734. DOI: 10.3115/v1/D14-1179. [Online]. Available: https:
//www.aclweb.org/anthology/D14-1179.

116

https://doi.org/10.1109/SP.2017.49
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/arXiv: 1912.04538
https://arxiv.org/abs/arXiv: 1912.04538
https://doi.org/10.1109/MSP.2020.2984780
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179


References References
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F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019,
pp. 10 408–10 418. [Online]. Available: https://proceedings.neurips.
cc / paper / 2019 / file / 6e923226e43cd6fac7cfe1e13ad000ac -
Paper.pdf.

[77] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual adversarial robustness: Defense
against unseen threat models,” in International Conference on Learning Representa-
tions, 2020.

[78] J. Y. Lee and F. Dernoncourt, “Sequential short-text classification with recurrent and
convolutional neural networks,” arXiv preprint arXiv:1603.03827, 2016.

[79] K. Lee, Z. Chen, X. Yan, R. Urtasun, and E. Yumer, “Shapeadv: Generating shape-
aware adversarial 3d point clouds,” arXiv preprint arXiv:2005.11626, 2020.

[80] B. Li, S. Wang, S. Jana, and L. Carin, “Towards understanding fast adversarial
training,” arXiv preprint arXiv:2006.03089, 2020.

[81] S. Li, A. Neupane, S. Paul, et al., “Stealthy Adversarial Perturbations Against
Real-Time Video Classification Systems,” In Proceedings of 2019 Network and
Distributed System Security Symposium, 2019. DOI: 10.14722/ndss.2019.
23202. [Online]. Available: http://dx.doi.org/10.14722/ndss.
2019.23202.

[82] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion for multi-
sensor 3d object detection,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 641–656.

[83] J. Lin, K. Dzeparoska, S. Q. Zhang, A. Leon-Garcia, and N. Papernot, “On the
robustness of cooperative multi-agent reinforcement learning,” in 2020 IEEE Security
and Privacy Workshops (SPW), IEEE, 2020, pp. 62–68.

[84] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun, “Tactics
of adversarial attack on deep reinforcement learning agents,” arXiv preprint
arXiv:1703.06748, 2017.

[85] D. Liu, R. Yu, and H. Su, “Extending adversarial attacks and defenses to deep 3d
point cloud classifiers,” in 2019 IEEE International Conference on Image Processing
(ICIP), IEEE, 2019, pp. 2279–2283.

[86] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transferable Adversarial
Examples and Black-box Attacks,” In proceedings of ICLR, 2017.

[87] T. Lorenz, A. Ruoss, M. Balunović, G. Singh, and M. Vechev, “Robustness
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