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Abstract

In this paper we define two generalisations of Dirac operators for Drin-

feld’s Hecke algebra. One generalisation, Parthasarathy operators inherit

the notion of the Dirac inequality. The second generalisation, Vogan oper-

ators, inherit Dirac cohomology; if an operator has non-zero cohomology

then it relates the infinitesimal character with a character of the group G̃.

We prove properties about these operators and give a family of operators

in each class.

1 Introduction

Dirac operators for real Lie groups, [1, 18, 20] have been significantly utilised in
the study of (g,K) representations. These ideas have been generalised to graded
affine Hecke algebra [3] and Drinfeld’s Hecke algebras [11, 7]. There are many
other algebras which have has associated Dirac operators defined [10, 8, 15].

The main results for Dirac operators are the Dirac inequality and Dirac
cohomology. The Dirac inequality [20, 12] notes that the square of the Dirac
operator on a unitary module is non-negative. The square is equal to a sum
of two elements, both central in different algebras. In the case of Lie algebras,
these algebras are g and the diagonal embedding of k. In the case of graded
affine Hecke algebras H, the first element is central in H and the second central
in the diagonal embedding of G̃. We define a generalisation of Dirac operators
for Drinfeld’s Hecke algebras, Parthasarathy operators (Definition 3.1). These
operators are such that each Parthasarathy operator leads to an associated
inequality (Corollary 3.11). For graded affine Hecke algebras associated to the
symmetric group H(Sn) we define a family of Parthasarathy operators (Corollary
3.10) . Unfortunately, every inequality given by this family is strictly weaker
than the original Dirac inequality [2, 12] (Remark 3.12).

The second major result for Dirac operators is ‘Vogan’s conjecture’ and Dirac
cohomology. This states that if there exists non-zero Dirac cohomology [24] for
an irreducible representation (X, πX) then the Dirac operator relates the in-
finitesimal character of X with a character of a diagonal algebra. In the Lie
algebra setting this diagonal algebra is U(k) and for graded affine Hecke algebras
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the diagonal algebra is CG̃. Inspired by an infinite family of Dirac operators for
the Dunkl angular momentum algebra [8] and the total Dunkl angular momen-
tum algebra [9], we define another generalisation of the Dirac operator, Vogan
operators (Definition 4.1). We give an infinite family of Vogan operators for
Drinfeld’s Hecke algebras (Definition 4.4 and Theorem 4.15). We then prove an
equivalent Vogan conjecture for the cohomology of these operators (Theorem
5.14). If there is non-zero cohomology for a Vogan operator Dω (Definition 4.4)
then there is a relation between the infinitesimal character and a character for
G̃ (Theorem 5.17). Furthermore, we prove a simple condition for an irreducible
representation (X, πX) to have non-zero cohomology for at least one Vogan op-
erator Dω (Proposition 5.19). We show that this condition is satisfied for every
irreducible representation of H(Sn).

It would be interesting to apply these ideas to Lie algebras [16] and operators
as defined by Flake [15], Chan [10] and the local/global theory of for Cherednik
algebras introduced by Ciubotaru and De Martino [13]. Application of these
ideas to Lie algebras could lead to a generalisation of Dirac cohomology [16] and
an enlargement of the Dirac series for real Lie groups [4].

2 Preliminaries

2.1 Drinfeld’s Hecke algebra

In this section we define Drinfeld algebras as introduced by Drinfeld. Given a
finite group G, anti-symmetric bilinear forms bg for g ∈ G and a representation
(V, πV ) of G, then we construct an algebra

H = CG⋊ T (V )/R.

Here R is the two sided ideal of CG⋊ T (V ) generated by the relations,

g−1vg = πV (g)(v) for all g ∈ G and v ∈ V,

and
[u, v] =

∑

g∈G

bg(u, v)g for all v, u ∈ V.

We define a filtration on the algebra CG⋊T (V )/R, a vector v has degree 1 and
a group element g ∈ G has degree 0.

Definition 2.1. [14] An algebra of the form H = CG ⋊ T (V )/R is a Drinfeld
algebra if it satisfies a PBW criterion. That is the associated graded algebra is
naturally isomorphic to

CG⋊ S(V ).

We state the conditions on the bilinear forms bg such that H is a Drinfeld algebra.
Define G(b) = {g ∈ G : bg 6= 0}.
Theorem 2.2. [14][21, Theorem 1.9] The algebra H is a Drinfeld algebra if and
only if for every g, h ∈ G and u, v ∈ V , h′ ∈ ZG(g), g

′ ∈ G(b) \ kerπV ,
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• bg−1hg(u, v) = bh(πV (g)(u), πV (g)(v))

• Ker bg′ = V πV (g′) and dim(V πV (g′)) = dimV − 2,

• det(h′|
V πV (g′)⊥ ) = 1,

where V πV (g)⊥ = {v − πV (g)(v) : v ∈ V }.

Example 2.3. Let G be the symmetric group Sn, acting by on the n− 1 dimen-
sional root space V . The root space V has a Sn invariant form 〈 , 〉. Consider
roots Φ ⊂ V for Sn and let c be a parameter in C. Define bg for g ∈ Sn

bg(u, v) =

{
0 if g is not a three cycle,

c (〈α, u〉〈β, v〉 − 〈α, v〉〈β, u〉) for g = sαsβ and αβ ∈ Φ+ such that 〈α, β〉V ∗ 6= 0.

This defines the graded affine Hecke algebra associated to Sn with representation
Cn−1.

2.2 Clifford Algebra

We define some basics on Clifford algebras, for more details see [19]. We assume
that V has a G-invariant non-degenerate bilinear form 〈 , 〉V : V × V → C. We
consider the Clifford algebra C := C(V, 〈 , 〉V ) with canonical map γ : V → C.
Let {ui} be a 〈 , 〉V -orthonormal basis of V , then C is generated by {ei = γ(ui)}
satisfying

{ej, ek} = ejek + ekej = 2〈ej , ek〉V = 2δjk .

The Clifford algebra is naturally Z2-graded with γ(V ) having degree 1̄. We
extend this Z2 grading to H ⊗ C by giving every element in H degree 0̄.

Definition 2.4. For a homogeneous element a in H⊗C with Z2-degree |a| ∈ Z2,
we define ǫ(a) = (−1)|a|.

In the Clifford algebra, there is a realisation of the group Pin := Pin(V,B), which
is a double covering of the orthogonal group p : Pin → O. We define a double

cover π̃V G = p−1(πV G). Note that π̃V (G) is not a double cover of G but it is a

double cover of πV (G). We construct a cover of G. We define G̃ to be the semi

direct product KerπV ⋊ π̃V (G). Given G̃ we can embed the group in H⊗ C via

ρ : G̃ → H ⊗ C,

ρ(g̃, h) = hp(g̃)⊗ g̃, g̃ ∈ π̃V (G), h ∈ KerπV .

For a reflection s ∈ G let s̃ denote a preimage in G̃, so p(s̃) = πV s. Let θ be

the nontrivial preimage of 1 in G̃. The element θ is central in G̃ and has order
two: θ2 = 1.

Definition 2.5. We define a character sgn : CG̃ → C, such that sgn(g̃) =
detπV

(p(g̃)).
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Example 2.6. A Weyl group W (with simple roots ∆ and positive roots Φ+)
has presentations

W = 〈sα, α ∈ Φ+ | s2α = 1, sαsβsα = sγ , γ = sα(β)〉,

W = 〈sα, α ∈ ∆ | (sαsβ)mα,β = 1〉
while the double-cover has presentations

W̃ = 〈θ, s̃α, α ∈ Φ+ | s̃2α = 1 = θ2, s̃αs̃β s̃α = θs̃γ , γ = sα(β), θ central〉,

W̃ = 〈θ, s̃α, α ∈ ∆ | (s̃αs̃β)mα,β = (θ)mα,β−1, θ central〉.

The group algebra CG̃ splits into two subalgebras

CG̃ =
1

2
(1 + θ)CG̃ ⊕ 1

2
(1− θ)CG̃.

The algebra 1
2 (1 + θ)CG̃ is isomorphic to CG. We shall denote the algebra

1
2 (1± z)CG̃ by, respectively CG̃±. The algebra CG+ is isomorphic to CG. Fur-

thermore, ρ is an embedding of CG̃− into H ⊗ C.

2.3 Hermitian forms

Let ∗ denote the anti-automorphism η∗ = ε(ηt), for all η ∈ CR. Let also • be
anti-linear form on H by v• = −v for v ∈ V , and w• = w−1, for all w ∈ G.
We then define an anti-linear anti-involution ⋆ on H ⊗ C by taking the tensor
product of these two anti-involutions.

Definition 2.7. A Hermitian form 〈 , 〉X : X ×X → C is H invariant if

〈hx1, x2〉X = 〈x1, h
•x2〉X for all x1, x2 ∈ X and h ∈ H.

Definition 2.8. A H-module X is unitary if there exists a positive definition
H-invariant Hermitian form on X.

Now fix, once and for all, (σ, S) an irreducible module (spinor module) for C.

Definition 2.9. There exists a positive definite form 〈 , 〉S on S. such that
〈γ(v)s1, s2〉 = 〈s1, v∗s2〉 for all v ∈ V and s1, s2 ∈ S. This endows S with a
∗-unitary C-structure.

For any •-Hermitian module (π,X) of H we endow X ⊗ S with a ⋆-Hermitian
structure 〈x⊗ s, x′ ⊗ s′〉X⊗S = 〈x, x′〉X〈s, s′〉S for all x, x′ ∈ X and s, s′ ∈ S. If
X is •-unitary then the ⋆-Hermitian form on X ⊗S is also positive definite and
hence ⋆-unitary.
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2.4 The original Dirac element

If V has a G-invariant symmetric bilinear form then one can define a Dirac
operator D. In [11] (resp. [7]) Dirac cohomology is defined for faithful (resp.
non-faithful Drinfeld algebra). In this section we recall definitions and a formula
for D2 from [7]. Given any basis {vi} of V and dual basis {vi} with respect to
〈 , 〉V we define the Dirac element

D =
∑

i

vi ⊗ vi ∈ H ⊗ C.

For every g ∈ G(b) set,

kg =
∑

i,j

bg(vi, v
j)vivj ∈ C,

and
h =

∑

i

viv
i ∈ H.

Define the set G(b) = {g ∈ G : bg 6= 0}, write G̃(b) for the cover of this
subset. For every coset representative g ∈ G(b)/Ker(πV ) define

g̃ = αβ ∈ C, cg̃ =
bg(α, β)

1− 〈α, β〉2 ∈ C, eg =
bg(α, β)〈αβ〉
1− 〈α, β〉2 ∈ C.

Every w ∈ g̃(b) can be written as h−1gh where g is a coset representative of

G̃(b)/KerπV and h ∈ KerπV . Lemma [7, Lemma prod of alpha] gives g = sαsβ
and g̃ = αβ ∈ C. We define, for w = h−1gh ∈ G̃, define

g̃ = αβ ∈ C, cg̃ = cg̃, ew = hegh
−1.

Let us define the Casimir elements, ΩH in H and ΩG̃ in G̃.

ΩH = h−
∑

g∈G(b)/KerπV

egg ∈ H
G,

ΩG̃ =
∑

h∈KerπV

g∈G(b)/KerπV

h−1g̃hcg̃ ∈ C[G̃]G̃.

We give a formula for D2. This is equivalent to [11, Theorem 2.7],. The only
variation being that kerπV replaces 1.

Theorem 2.10. [7, Theorem 2.4][11, c.f. Theorem 2.7] The square of the Dirac
element can be expressed as a sum of the two Casimir elements plus even terms
from the Clifford algebra:

D2 = −ΩH ⊗ 1 + πV (ΩG̃) +
1

2
⊗

∑

w∈kerπV

kw.
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Lemma 2.11. [11, Lemma 2.4]The operator D sgn-commutes with G̃,

ρ(g̃)Dρ(g̃)−1 = sgn(g̃)D

for every g̃ ∈ G̃.

3 Parthasarathy Operators

Definition 3.1. Let H be a Drinfeld algebra with group algebra CG. We say
an operator P ∈ H ⊗ C is a Parthasarathy operator if the following holds:

1. P∗ = P

2. P2 = z1 + z2, where z1 ∈ Z(H)⊗ 1 and z2 ∈ (Z(ρ(CG̃)).

3.1 A family of Parthasarathy operators for H

Let H be a Drinfeld algebra, with a Dirac operator D ∈ H ⊗ C.

Definition 3.2. For Ξ ∈ CG̃−, we say that Ξ =
∑

λg̃ g̃ is P -admissible if

1. Ξ• = Ξ,

2. sgn(g̃) = −1 for all λg̃ 6= 0,

3. Ξ2 ∈ Z(CG̃−).

Remark 3.3. The original Dirac operator (Section 2.4) is a Parthasarathy
Dirac operator if and only if κg = 0 for every g ∈ KerπV .

For the remainder of this section let us assume that κg = 0 for all g ∈ kerπV .

Theorem 3.4. For all P -admissible elements Ξ ∈ CG̃−, the operator

DΞ = D + ρΞ,

is a Parthasarathy operator.

Proof. Clearly, D∗
Ξ = DΞ. Furthermore, D2

Ξ = (D + ρΞ)2 = D2 + ρΞ2 + DρΞ +

ρΞD. Note that ρΞ ∈ ρCG̃, hence ρΞD =
∑

λg̃ g̃D = sgn(g̃)D
∑

λg̃ g̃ = −DρΞ.
We conclude that,

D2
Ξ = D2 + ρΞ2 = z1 + z2

where z1 ∈ Z(H) and z2 = ΩG̃ + Ξ2 ∈ Zρ(G̃).
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3.2 P -admissible elements

Throughout this section we only consider the symmetric group Sn. Recall Sn

and S̃n have presentations:

Sn = 〈sij , 1 ≤ i < j ≤ n | (sijskl)mijkl = 1〉
where

mijkl =





2 |{i, j, k, l}| = 4,

3 |{i, j, k, l}| = 3,

1 |{i, j, k, l}| = 2.

Similary for S̃n

S̃n = 〈θ, s̃ij , 1 ≤ i < j ≤ n | (s̃ij s̃kl)mijkl = (θ)mijkl−1, θ central〉.

Definition 3.5. [5, 3.1] The Jucys-Murphy elements in CS−
n for i = 1, . . . , n

are,

Mj =

j−1∑

i=1

s̃ij .

Remark 3.6. [5, 3.1] The Jucys-Murphy elements anti-commute , that is

MiMj = −MjMi if i 6= j.

Lemma 3.7. [5, 3.2] The even centre Z(S̃n−)0 is spanned by the set of sym-
metric polynomials of the Jucys-Murphy elements.

Proposition 3.8. Every odd symmetric power-polynomial in the squares of
the Jucys-Murphy elements is a square of an odd symmetric polynomial in the
Jucys-Murphy elements.

Proof. Suppose that k is odd. Let Pk =
∑n

i=1(M
2
i )

k and let Qk =
∑n

i=1(Mi)
k.

We claim that Pk = Q2
k.

Q2
k = (

n∑

i=1

(Mi)
k)2 =

n∑

i=1

(Mi)
k

n∑

j=1

(Mj)
k =

n∑

i=1

(Mi)
2k+

∑

i6=j

(Mi)
k(Mj)

k+(Mj)
k(Mi)

k

Now since k is odd and if i 6= j then (Mi)
k(Mj)

k = −(Mj)
k(Mi)

k. Hence we
have shown that Q2

k = Pk.

Theorem 3.9. Let G = Sn, let Qj be an odd power polynomial in the Jucys-
Murphy elements Qj. Then

√
−1Qj is P -admissible.

Proof. The element, Qj, consists of sums of odd polynomials in s̃kl, all of which
have odd sgn group elements. Each pseudo reflection s̃kl is such that ρs̃•kl =
−ρs̃kl, hence Qj is skew-adjoint and

√
−1Qj is self-adjoint. To complete the

proof we note that Q2
j is central in CG̃−.
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Corollary 3.10. Let H(Sn) be a graded affine Hecke algebra with the symmetric
group. For every odd j, then the operator

D +
√
−1Qj

is a Parthasarathy operator.

3.3 A family of Dirac inequalities

Suppose that X is unitary (Definition 2.7), then any Parthasarathy operator P
is self-adjoint. Furthermore, X ⊗ S has a H⊗C-invariant positive definite form.
Hence, P2 is a positive operator.

Corollary 3.11 (Generalised Parthasarathy inequality). For every Parthasarathy
operator P and unitary module (X, πX), then P2 is positive operator on X ⊗ S
and

πX(z1) + πX(z2) ≥ 0.

Here, using Definition 3.1, P2 = z1 + z2, with z1 ∈ Z(H), z2 ∈ Z(ρ(CG̃)).

Remark 3.12. Unfortunately, every Parthasarathy operator defined in Defini-
tion 3.2 gives an inequality weaker than the original Dirac inequality. Let DΞ

be defined as in Definition 3.2, then Ξ is self-adjoint. Therefore, πX(Ξ)2 is a
positive operator. The inequality associated to DΞ is

−πX(ΩH) + πX(ΩG̃) + πX(Ξ)2 ≥ 0.

Since πX(Ξ)2 is positive this is less restrictive than the original Dirac inequality,

−πX(ΩH) + πX(ΩG̃) ≥ 0.

An interesting question, which the author intends to study, is whether there are
any Parthasarathy operators in H ⊗ C which lead to new relations between the
centre of H and the centre of Z(G̃).

4 Vogan operators

Definition 4.1. Let H be a Drinfeld algebra, we say an operator V ∈ H ⊗ C is
a Vogan operator if the following holds:

1. V∗ = V

2. The operator V is sgn-invariant under the action of ρG̃.

Definition 4.2. Let X be a H-module and S a spinor for C, the operator V acts
on X ⊗ S as VX . Define H(X,V) as

KerVX⊗S/KerVX⊗S ∩ imVX⊗S .

Proposition 4.3. The cohomology of V is a G̃ module.

Proof. This follows from the fact that V is sgn−G̃ invariant.

8



4.1 A family of Vogan operators for H

Definition 4.4. We define the sgn-centre of CG̃− to be:

Zsgn(G̃−) = {g ∈ CG̃− : gh = sgn(h)hg for all h ∈ CG̃}.
Furthermore, we say an element is sgn-central if it is contained in the sgn-centre.

The ungraded centre of ZugCG̃− is equal to HomG̃(triv,CG̃−) and the sgn-centre

of CG̃− is equal to HomG̃(sgn,CG̃−).

Definition 4.5. A homogeneous element ω ∈ CG̃− is called V -admissible if

ω is sgn-central and ω• = ω. For any V -admissible ω ∈ ZsgnG̃−, define

Dω := D + ρω ∈ H ⊗ C.

Theorem 4.6. The elements Dω are all Vogan operators. Furthermore, they are
precisely the modification of D by elements in ρCG̃ which are Vogan operators.

4.2 A formula for D2

ω

Lemma 4.7. The square of Dω is equal to a central element in H plus a central
element in G̃, a linear term in Dω and a correction quadratic term in C;

(Dω)
2 = −ΩH ⊗ 1 + ρ(ΩG̃ + ω2) + +(1 + sgn(ρ(ω)))ρ(ω)D +

1

2
⊗

∑

w∈kerπV

kw.

Proof. The following calculation is simple algebra,

(Dω)
2 = (D + ρ(ω))2

= (D)2 + ρ(ω)2 +Dρ(ω) + ρ(ω)D
= (D)2 + ρ(ω)2 + sgn(ρ(ω))ρ(ω)D + ρ(ω)D.

Finishing the proof with application of Theorem 2.10.

Lemma 4.8 (sgn invariance of Dω). For every g̃ ∈ G̃, we have the invariance
property:

ρ(g̃)Dωρ(g̃)
−1 = sgn(p(g̃))Dω.

Proof. Both D and ω are sgn invariant, hence so it their sum Dω = D+ρ(ω)

4.3 V -Admissible elements

Definition 4.9. [9, Definition 6.3] Let us the define the θ-centre of CG̃,

Zθ(CG̃) = {a ∈ CG̃|ag̃ = θsgn(p(g̃))g̃a for all g̃ ∈ G̃}.

9



Proposition 4.10. [9, Proposition 6.4] The θ-centre of CG̃ is spanned by ele-
ments of the form

Cθ
g̃ =

∑

h̃∈G̃

θ|l(h̃)|h̃−1g̃h̃ =
∑

h̃∈G̃0

h̃−1g̃h̃+ θ
∑

h̃∈G̃1

h̃−1g̃h̃

for any choice of g̃ ∈ G̃.

Proof. Given any g̃, then Cθ
g̃ is in ZθCG̃. Furthermore, any a ∈ ZθCG̃ that

has a non-zero coefficient of g̃, then there exists a non-zero scalar t such that
a− tCθ

g̃ is θ-central with no coefficient of g̃. Continuing the process shows that

a is in the space spanned by Cθ
g̃ .

Theorem 4.11. [9, Theorem 6.5]

The sgn-centre of CG̃− is the projection of the θ-centre of CG̃

Zsgn(CG̃−) =
1− θ

2
Zθ

CG̃.

In particular, the sgn-centre of CG̃− is spanned by elements of the form

Csgn
g̃ =

∑

h̃∈G̃

(−1)|l(h̃)|h̃−1g̃h̃ ∈ CG̃−.

Denote by G̃0̄ the even subgroup of G̃.

Lemma 4.12. [9, Lemma 6.7] Suppose that g̃ ∈ G̃ is even, define the g̃ conju-

gacy class, C(g̃) = {w̃ ∈ G̃ : g̃ = h̃−1g̃h̃, h̃ ∈ G̃}, then the element Zǫ
g̃ is non

zero if and only if the conjugacy class C(g̃) splits into two conjugacy classes in

G̃0.

Theorem 4.13. [22] [23, Theorem 2.7] Let λ be an even partition of n. The
S̃n conjugacy classes Cλ (or C±

λ ) if already split) split into two Ãn conjugacy
classes if and only if λ ∈ DP+

n . Here DP+
n is the set of distinct partitions of n

which are even.

Corollary 4.14. The sgn-centre of CG̃− has basis

{Csgn
g̃ : C(g̃) splits into two conjugacy classes in G̃0}.

Due to Corollary 4.14 we may assume that any V -admissible element in CG̃−

is even.

Theorem 4.15. The V -admissible elements in CG̃− are equal to the real-span
of the set

{Csgn
g̃ +Csgn

g̃−1 ,
√
−1(Csgn

g̃ −Csgn
g̃−1) : C(g̃) splits into two conjugacy classes in G̃0}.

10



Proof. The V -admissible elements are elements in the sgn-centre which are self
adjoint. Since ρg̃• = ρg̃−1, then taking a basis for the sgn-centre from Corollary
4.14 and adding or subtracting Csgn

g̃−1 ) enforces this set to be self adjoint (or

skew adjoint respectively). Multiplying by
√
( − 1) forces the skew adjoint

operators to be self adjoint. This then spans all self-adjoint operators in the
sgn-centre.

Corollary 4.16. Let G = Sn and let {g} be the set of elements in Sn associated
to an even partition λ which has distinct cycles. Then C(g̃) splits in Ãn = (S̃n)0.

Then from Lemma 4.12, Csgn
g̃ 6= 0. The group S̃n is ambivalent, that is, g̃−1 is

always conjugate to g̃. Therefore every nonzero element Csgn
g̃ = 1

2 (C
sgn
g̃ +Csgn

g̃−1)

is an admissible element and Csgn
g̃ − Csgn

g̃−1 = 0 for every Csgn
g̃ .

5 Vogan’s Dirac morphism

In this section we prove that there exits a Vogan morphism for each Vogan
operator we defined in Definition 4.4 and that Vogan’s conjecture holds for each
of these operators. Furthermore, we show that each operator Dω defines a map
between Irr G̃ and SpecB for a suitably chosen abelian algebra B. We finish
by showing that the defined family of Vogan operators gives rise to non-zero
cohomology of (X, πX) whenever there is an admissible element that is not in
the kernel of πX .

5.1 The linear map dω

Definition 5.1. Let Dω be a Vogan operator as defined in Definition 4.4. We
define a map from H ⊗ C to H ⊗ C.

dω : H ⊗ C → H ⊗ C,
where dω(a) = Dωa− ǫ(a)Dω, for a ∈ H ⊗ C.
Remark 5.2. The map dω is an odd derivation, i.e.,

dω(ab) = dω(a)b+ ǫ(a)dω(b)

for all a, b ∈ H ⊗ C.
Lemma 5.3. The image under ρ of CG̃ is in the kernel of dω

ρ(CG̃) ⊂ kerdω .

Proof. This follows from the fact that Dω is sgn−G̃ invariant.

The operator Dω intertwines the sgn and triv G̃ isotypic components H ⊗ Ctriv

and H ⊗ Csgn. We define dtrivω and dsgnω to be dω restricted to the triv and sgn

isotypic components respectively. Since the kernel of dω, contains ρ(CG̃), then

the kernel of dtrivω , contains the triv-isotypic component ρ(CG̃G̃).

11



Theorem 5.4. The kernel of dtrivω equals:

ker dtrivω = im dsgnω ⊕ ρ(CG̃G̃).

We prove this theorem in the following section.

5.2 The map d̄ω

In this section we proof Theorem 5.4 by reducing to the associated graded
algebra. This method is identical method to [3, 11]. The algebra H is filtered
with g ∈ CG degree zero and v ∈ V degree one. Similarly C is filtered with
γ(V ) ∈ C of degree one. Hence H⊗C is a filtered algebra and has an associated
graded algebra grH ⊗ grC.

Definition 5.5. The map dω defines a map on the associated graded algebra

d̄ω : grH ⊗ grC → grH ⊗ grC.

Lemma 5.6. The map d̄ω is equal to d̄0 for any choice of ω ∈ ρCG̃. Hence,
the proof in [11] holds for the following statements.

Proof. Because Dω = D0 + l.o.t. then grDω = grD0 and d̄ω = d̄0 for any
ω ∈ CG̃−.

Proposition 5.7. (cf. [3, Proposition 4.14]). The space ker d̄0
triv

decomposes
as

ker d̄0
triv

= im d̄0
sgn ⊕ ρ(

¯
CG̃

G̃
).

Corollary 5.8. We have the following decomposition of ker d̄ω
triv

ker d̄ω
triv

= im d̄ω
sgn ⊕ ρ(

¯
CG̃G̃).

5.2.1 Induction

We have proved that ker d̄ω = im d̄ω⊕ρ(
¯

CG̃G̃). To prove the equivalent statement
for dω (Theorem 5.4) an induction on the filtration of H ⊗ C. The proof is
verbatim to [11, 3.3] and we omit it here.

5.3 Vogan’s Dirac homomorphism

Theorem 5.9. The projection ζω : ker dtrivω → CG̃G̃ defined by Theorem 3.5 is
an algebra homomorphism.

Proof. Let z1, z2 ∈ ker dtrivω , then zi = ζ(zi) + dsgnω (ai). Multiplying z1, with z2,
we find

z1z2 = ζ(z1)ζ(z2) + dsgnω (a1)ζ(z2) + ζ(z1)d
sgn
ω (a2) + dsgnω (a1)d

sgn
ω (a2).
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However, dsgnω is a derivation and dsgnω (ρCG̃) = 0, hence

z1z2 = ζ(z1)ζ(z2) + dsgnω (a1ζ(z2)ζ(z1)a2) + dsgnω (a1)d
sgn
ω (a2).

To finish the proof, we remark that (dsgnω )2 = 0. Therefore dsgnω (a1)d
sgn
ω (a2) =

dsgnω (a1d
sgn
ω (a2)). We can conclude that z1z2 is equal to ζ(z1)ζ(z2) plus an

element in the image of dsgnω .

Definition 5.10. Let B be an abelian subalgebra of H ⊗ CG̃ containing Ω
H̃
.

Proposition 5.11. The dual of ζω is a map between Irr G̃ and SpecB,

ζ∗ω : Irr G̃ → SpecB.

Remark 5.12. If κ1 = 0, then we can take B = Z(H) ⊗ 1. Then ζω is a map

between the characters of G̃ and infinitesimal characters for H.

5.4 Vogan’s conjecture

Definition 5.13. Let V be an operator in H⊗C. We say that Vogan’s conjecture
for V holds if, for all z ∈ Z(H), there exists a unique ζ(z) ∈ Z(ρCG̃) and
a, b ∈ H ⊗ C such that

z ⊗ 1 = ζ(z) + Va+ aV .
Theorem 5.14. Vogan’s conjecture holds for the family of Vogan operators
defined in Definition 4.4.

Proof. By Theorem 5.4, for every z ∈ ker dtrivω , there exists an a ∈ H ⊗ C such
that z = dsgnω (a) + ζω(z). The claim follows by observing that Z(H) is in the
kernel of dtrivω and dsgnω (a) = Dωa+ aDω.

5.5 Dirac cohomology

Let (X, πX) be a representation of H, We say that X is an admissible module
if the decomposition of X into ΩH-generalized eigenspaces

X =
⊕

λ∈C

Xλ

is such that every Xλ is finite dimensional.

Definition 5.15. For an irreducible H-representation (X, πX), let χ : Z(H) →
C be the infinitesimal character πX |Z(H).

Definition 5.16. Let X be an admissible H-module and let S be a spinor for
C, then X ⊗ S is a H ⊗ C module and Dω ∈ H ⊗ C acts

(Dω)X : X ⊗ S → X ⊗ S,

The Dirac ω-cohomology of X (and S) is defined as

H(X,ω) = ker(Dω)X/ ker(Dω)X ∩ im(Dω)X .
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Since Dω sgn-commutes with G̃ the Dirac ω-cohomology of an admissible X is
a finite dimension G̃ module, or zero.

Theorem 5.17. Let X be an admissible irreducible H-module. Let B be an
algebra as in Definition 5.10 Suppose H(X,ω) 6= 0. If there is a nonzero σ ⊗χ-

isotypic CG̃⊗B component in H(X,ω) for σ ∈ Irr(G̃) and χ ∈ SpecB, then

χX = ζ∗ω(σ).

Proof. Once one has proved a Vogan conjecture for Dω (that is Theorem 5.14)
then the proof is identical to [11, Theorem 3.14] given [11, Theorem 3.8].

Recall Theorem 4.15 states that all V -admissible elements for CG̃− are even.
Suppose that ω is V -admissible, because every group element occurring in ω is
even then ω and D commute.

Proposition 5.18. If X is a •-unitary H-module, then H(X,ω) = ker(Dω).

Proof. If X is •-Hermitian then the image and kernel of Dω are orthogonal with
respect to 〈 , 〉X⊗S and hence ker(πDω) ∩ im(πDω) = 0

Proposition 5.19. Let (πX , X) be a •-unitary module for H. Suppose that

there exists an admissible element ω ∈ CG̃− such that πX(ω) 6= 0. Then, there

exists an admissible λω ∈ CG̃− such that H(X,λω) 6= 0.

Proof. Since X is Hermitian then H(X,ω) = ker(DC) = ker(D2
C). We study

the kernel of the operator (Dω − 2ρ(ω))Dω = D2 − ρ(ω)2. The elements D2

and ρ(ω) commute, hence have simultaneous eigenvalues. Given π(ρ(ω))2 6=
0 it has positive real eigenvalues. Let πX⊗SD2 and πX⊗S(C)2 have positive
simultaneous eigenvalues d ≥ 0 and c > 0 respectively. One can modify Dω to
Dλω, with λ =

√
c
d . This ensures that

D2
0 − λ2ρ(ω)2

has a non-zero kernel on X⊗S. Thus proving that there exists a non-zero kernel
for the operator (Dω − 2ρ(ω))Dω. Since the composition of injective functions
is injective, we find that one of (Dω − 2ρ(ω)) or Dω has a non-zero kernel.

Remark 5.20. When G = Sn, we have shown that the set of V -admissible ele-
ments in RW̃− is equal to conjugacy classes associated to even partitions. From
[17], Z0(RW̃−) is equal to {σ(M2

1 , . . . ,M
2
n) | σ real symmetric polynomial}.

The element σ(M2
1 , . . . ,M

2
n) acts on an irreducible representation by evaluat-

ing σ at specific real values [6, Corollary 6.3]. In particular, we can conclude
that for every CW̃ -module there is an admissible element that does not act by
zero.

Theorem 5.21. Let H be a degenerate affine Hecke algebra associated to the
symmetric group Sn. Then for any unitary H-module X, there exists a Vogan
operator Dω such that

H(X,ω) 6= 0.
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5.6 Vogan inequalities

Throughout this section we assume that κg = 0 for all g ∈ kerπV .

Recall Theorem 4.15 states that all V -admissible elements for CG̃− are even.
Let ω =

∑
cg̃ g̃, this then implies sgn(g̃) = 1 for every cg̃ 6= 0. Suppose that ω

is V -admissible, because every group element occurring in ω is even then ω and
D commute. On a ⋆-unitary module X ⊗ S, the operator, D2

ω is positive.

Proposition 5.22. Let (X, πX) be a •-unitary module, then (X ⊗ S, πX⊗S) is
⋆-unitary and D2

ω = D2 + 2Dρ(ω) + ρ(ω)2 ≥ 0. Hence for every V -admissible ω
the following inequality holds ,

πX(ΩH) ≤ πX⊗SΩG̃ + πX⊗S((ω + 2D)ω).

Specialising the above inequality to ω = 0 gives the Dirac inequality. Proposi-
tion 5.19 states that if there exists an ω such that πX⊗S(ω) 6= 0 then there exists
a V -admissible element such that the above inequality becomes an equality. For
the Hecke algebra associated to the symmetric group there is always non-zero
ω-cohomology, this implies that for a particular choice of ω it is always possible
to make the inequality above strict.

6 Parthasarathy and Vogan operators

Proposition 6.1. Consider elements of the form D + ρAG̃, where AG̃ ∈ CG̃−.
The only operator of this form that is both a Vogan and Parthasarathy operator
is

D + 0 = D.

Proof. Suppose that D+ ρAG̃ is a Parthasarathy operator, by construction sgn
of every group element in Ag̃ is −1. Now suppose that D + ρAG̃ is a Vogan
operator, then by Theorem 4.15, sgn of every group element is 1. Therefore AG̃
has no nonzero coefficient of group elements and hence must be zero.
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