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Abstract                                                                                                                          

Background: Diabetes Mellitus is a chronic and complex disease, increasing in prevalence and consequent health 

expenditure. Cost-effectiveness models with long time horizons are commonly used to perform economic evaluations 

of diabetes’ treatments. As such, prediction accuracy and structural uncertainty are important features in cost-

effectiveness models of chronic conditions.   

Objectives: The aim of this systematic review is to identify and review published cost-effectiveness models of diabetes 

treatments developed between 2011 and 2022 regarding their methodological characteristics. Further, it also appraises 

the quality of the methods used, and discuss opportunities for further methodological research.  

Methods: A systematic literature review was conducted in MEDLINE and Embase to identify peer-reviewed papers 

reporting cost-effectiveness models of diabetes treatments, with time horizons of more than 5 years, published in 

English between 1st January 2011 and 31st of December 2022. Screening, full-text inclusion, data extraction, quality 

assessment and data synthesis, using narrative synthesis, were performed. The Philips checklist was used for quality 

assessment of the included studies. The study was registered in PROSPERO (CRD42021248999).                                                                                                                                                                          

Results: The literature search identified 30 studies presenting 29 unique cost-effectiveness models of type 1 and/or 

type 2 diabetes treatments.  The review identified 26 T2DM models, 3 T1DM models and one model for both types 

of diabetes. Fifteen models were patient-level models whereas 14 were at cohort level. Parameter uncertainty was 

assessed thoroughly in most of the models, whereas structural uncertainty was seldom addressed. All the models where 

validation was conducted performed well. The methodological quality of the models with respect to structure was 

high, whereas with respect to data modelling it was moderate.                                                                                                                                  

Conclusions: Models developed in the past twelve years for health economic evaluations of diabetes treatments are 

of high-quality and make use of advanced methods. However, further developments are needed to improve the 

statistical modelling component of cost-effectiveness models and to provide better assessment of structural 

uncertainty.   
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Key Points for Decision Makers 

 

i. Structural uncertainty in cost-effectiveness models is generated from all the decisions and assumptions 

being made during the development process of a model and can have a significant impact on the results.  

 

ii. This systematic review identified cost-effectiveness models of diabetes treatments and discusses their 

methodological characteristics including uncertainty analysis methods.  

 

iii. The diabetes models identified do not address structural uncertainty thoroughly and do not make use of 

the methods reported in the methodological literature to address and measure this type of uncertainty.  
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1. Introduction 

Diabetes Mellitus is a chronic and complex disease, with increasing prevalence, across all age groups, and an 

increasing economic burden, making it a major public health problem worldwide [1, 2].  The prevalence of diabetes 

in 2019 was estimated to be 463 million people, 9.3% of the global population.  More specifically, diabetes prevalence 

was 10.4% in high-income countries, 9.5% in middle-income countries and 4.0% in low-income countries; and it is 

expected to rise to 700 million people (10.9% of the global population) by 2045[3]. The global health expenditure 

associated with diabetes in 2019 was estimated to be USD 760 billion and by 2045 it is expected to reach USD 845 

billion[4].  

Pharmaceutical innovations are crucial to tackle diabetes and, in many jurisdictions, the submission of a health 

economic evaluation is required before a reimbursement decision is taken. Due to the chronic nature of the disease a 

lifetime horizon is commonly used in cost-effectiveness models. Randomised clinical trials are an important source 

of data used in models, however, as those have much shorter durations than the life of patients, extrapolation beyond 

the end of the follow-up period is unavoidable. Extrapolation adds uncertainty to the estimates obtained, which needs 

to be accounted for in model assessment. The five sources of uncertainty generated in cost-effectiveness (CE) models 

are: 1) stochastic uncertainty - the random variability in the outcomes between identical patients[5]; 2) heterogeneity 

- the variability, between patients, which can be attributed to the characteristics of the patients[5]; 3) parameter 

uncertainty - generated in the estimation of parameters of interest[5]; 4) structural uncertainty - generated from the 

assumptions inherent to the decision model[5]; 5) methodological uncertainty - generated from differences in the 

methodology that can be used in economic evaluation, such as the type of analysis, the perspective, valuation 

technique, discount rate and time horizon[6]. Structural uncertainty in a CE model can arise from various decisions 

and assumptions made during the development of the model, such as regarding comparators, relevant events, 

modelling on parameters and clinical uncertainty or lack of clinical evidence[7]. Multiple studies examining the impact 

of structural uncertainty on CE models found that choices regarding health states or specification of the transition rates 

led to significant differences in estimated outcomes[8-11]. Structural uncertainty is at least as important as parameter 

uncertainty[12] and may have a much greater impact on results than parameter uncertainty[6].  

The Mount Hood Diabetes Challenge Network (https://www.mthooddiabeteschallenge.com/registry) runs diabetes 

computer simulation modelling conferences and has a registry of T1DM and T2DM simulation models. During the 
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Fourth Mount Hood Challenge[13] and the Fifth Mount Hood Challenge[14] multiple participating diabetes modellers 

performed validation exercises and the results were discussed with respect to the challenges and future models’ 

improvements. These two challenges asked the participating modellers to perform simulations based on published 

clinical trials to compare each model against the clinical data to assess predictive accuracy regarding clinical trial data 

(i.e., external validation); and predictive performance of the models (i.e., cross-validation). In the Ninth Mount Hood 

Challenge[15] participants were tasked with assessing the magnitude of impact of structural uncertainty on life-years 

(LYs) and quality-adjusted life-years (QALYs) of 11 type 2 diabetes models. The findings pointed towards substantial 

cross-model variability in QALY predictions for a standardised set of simulation scenarios which was considerably 

larger than within-model variability to alternative health state utility values, emphasizing the need to address structural 

uncertainty in model-based analyses[15]. 

There are several relevant published systematic reviews that identified health economic models for the treatment of 

type 1 and/or type 2 diabetes mellitus and discussed their methods [16, 17] [18] [19] [20] [21] [22] [23]. The results 

of this systematic review will add to existing work by looking at uncertainty analysis methods and model validation 

applied in pharmaceutical interventions, in the past twelve years, considering only models with time horizons of more 

than 5 years.  

The aims of this systematic review are (1) to identify CE models and model-based health economic evaluations  of 

pharmaceutical treatments of T1DM and T2DM, published between 2011 and 2022 using time horizons above 5 years; 

(2) to describe structural characteristics of the decision models such as the type of the model, simulation method, 

diabetes related complications, model outcomes, discounting rate and time horizon; (3) to describe and discuss the 

methods used for addressing all five types of uncertainty and identify opportunities for future methodological research; 

(4) to summarize the methods and results of internal and external validation of the decision models; and (5) to assess 

the methodological quality of the models using best practice guidelines.  
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2. Methods 

This systematic review is based on the Preferred Reporting Items for Systematic Review and Meta-Analyses 

(PRISMA) statement[24]. The protocol was registered in the International Prospective Register of Systematic Reviews 

(PROSPERO) (registration number: CRD42021248999).  

 

2.1. Data Sources and Searches 

Literature searches were conducted, on 11 March 2023 in two biomedical databases, Ovid MEDLINE (Table S2) and 

Ovid Embase (Table S3), to identify relevant studies published between 1 January 2011 and 31 December 2022.  The 

search terms for diabetes are given in the Supplementary Material and were based on a published systematic literature 

review[18] and the search terms for economic modelling were based on a published systematic review protocol[25]. 

Hand-searching the reference lists of the included studies to identify additional literature was used to supplement the 

electronic database searches. The search was limited to papers published in English.  

 

2.2. Study Selection Criteria and Study Selection  

The review included studies performing a model-based economic evaluation with a description of the model 

development; and modelling studies describing a health economic model for a time horizon above 5 years, for cost-

effectiveness or cost-utility analysis, and including validation of the model. Only pharmacological interventions for 

the treatment of diabetes were considered to allow for comparison of the same type of intervention. As 

pharmacological interventions are commonly evaluated using RCTs, it allows for a discussion of statistical modelling 

along with the associated uncertainty of extrapolating clinical outcomes. A table with the detailed inclusion and 

exclusion criteria can be found in Table S4.  

For models associated with more than a single publication, the publication included here was the one that described 

the model in the most detail and any subsequent publications were included only if they reported updates to the 

methods used to devise the model.    
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All the references produced from the searches were downloaded and managed in EndNote and duplicates were 

removed. All the titles and abstracts were screened against the eligibility criteria by a single reviewer and a second 

reviewer assessed 20% of the references. The titles/abstracts that did not satisfy the eligibility criteria were excluded 

whereas those that fully or partially satisfied the criteria proceeded to full-text screening. After reviewing the full-text 

references, only the studies that satisfied the inclusion criteria were considered.    

 

2.3. Data Extraction   

Data were extracted from the included studies using a data extraction form in Microsoft Excel (Table S5) developed 

based on the data extraction form of a published systematic review[19]. Data extraction was performed by a single 

reviewer while a second reviewer also assessed 20% of the included studies. 

 

2.4. Quality Assessment 

The Phillips checklist[26] was used to assess the methodological quality of the studies included in the systematic 

review. Furthermore, the recommendations and description for best practices provided in the International Society for 

Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making (ISPOR-SMDM) 

Modelling Good Research Practices[27] were considered for the general critical appraisal of the identified decision 

models throughout this systematic review. It is also worth mentioning the checklist that Palmer et al. developed for 

transparency of input data specific for diabetes models that can be used alongside general health economic modelling 

guidelines[28]. A single reviewer assessed the quality of the included studies with a second reviewer assessing 20% 

of the included studies.  

 

2.5. Data Synthesis 

The extracted data were synthesised following the narrative synthesis framework developed by Popay and 

colleagues[29]. This framework involves (1) developing a theoretical model of how the interventions work, why and 

for whom; (2) developing a preliminary synthesis; (3) exploring the relationships in the data; and (4) assessing the 
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robustness of the synthesis output. T1DM and T2DM models are discussed and summarised together as the differences 

in the disease do not impact on uncertainty assessment or on the methods of model validation. 

 

3. Results 

3.1. Systematic Review 

The systematic literature search identified 30 peer-reviewed studies published between 2011 and 2022 that developed 

29 cost-effectiveness (CE) models for pharmacologic treatment of T1DM and/or T2DM with a time horizon above 5 

years. The selection process and results of the systematic review are presented on Figure 1. Briefly, the initial database 

searching in MEDLINE and Embase identified 1795 studies. After removing 498 duplicates, the titles and abstracts 

of the remaining 1297 studies were screened. At this stage, 1251 studies were excluded as it was clear from the title 

or abstract that the inclusion criteria were not met. In total, 46 studies were eligible for full text screening out of which 

28 satisfied the eligibility criteria and were included in the systematic review. From searching the reference lists of 

the included studies, 2 additional studies were identified and included in the systematic review. From the 30 identified 

studies, 17 studies are model-based economic evaluations developing a model to perform a cost-effectiveness or cost-

utility analysis and 13 studies are modelling studies that developed and validated a decision model.  
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Table 1. Main characteristics of the 29 cost-effectiveness models included in the systematic review. 

 

Author/Year 
Diabetes 

Type 
Type of Model Simulation method 

Time Horizon 

(years)  
Model Outcomes Diabetes related complication Software 

Hayes et al. 2013 (UKPDS-OM2) 

[30]  
Type 2 Microsimulation Patient-level Lifetime 

Life expectancy; 

QALYs; annual 

incidence of death 
or complications 

first MI; second MI; first stroke; second stroke; CHF; 
IHD; first amputation; second amputation; blindness; 

renal failure; ulcer 

Stata (for the 
statistical 

analysis) 

Lundqvist et al. 2014 (IHE) [31] Type 2 Markov Cohort 40 
Survival; LYs; 

QALYs; costs 

BDR; PR; ME; ME and PDR; SVL; symptomatic 

neuropathy; PVD; LEA; Post LEA; microalbuminuria; 
macroalbuminuria; ESRD; IHD; MI; stroke; CHF 

Microsoft Excel 

Viriato et al. 2014 [32] Type 2 Microsimulation Patient-level 40 

Costs; QALYs; 

Cumulative 

incidence; LYs  

IHD; MI; CHF; renal failure; stroke; lower limp 
amputation; blindness in one eye; symptomatic 

hypoglycemia; severe hypoglycemia; weight gain; death 

following an event in the first year; diabetes-related death 
following a diabetes-related event; death due to other 

causes 

Microsoft Excel 

and Visual Basic 

Van der Heijden et al. 2015 

(MICADO) [33] 

Type 1 

and 
Type 2 

Markov Cohort   

Incidence and 
prevalence of 

complications; 

costs; utilities 

CHD; stroke; chronic heart failure; MI; diabetic foot; foot 
ulcer; foot abscess; amputation; microalbuminuria; 

macroalbuminuria; ESRD; background retinopathy; 

macular oedemia; proliferative retinopathy; blindness 

Mathematica  

Wolowacz et al. 2015 [34] Type 1 Microsimulation Patient-level Lifetime Costs; LYs; QALYs 

angina; MI; revascularization; stroke; cataract surgery; 

peripheral neuropathy; foot ulcer; amputation; 

microalbuminuria; ESRD; PDR; blind; hypoglycemia; 
diabetic ketoacidosis 

Microsoft Excel 

Ye et al. 2015 (Michigan) [35] Type 2 Microsimulation Patient-level Lifetime Costs; utilities 
CAD; CHD; MI; CHF; repeat MI; short term survival 
following MI; CHD death 

Python 
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Author/Year 
Diabetes 

Type 
Type of Model Simulation method 

Time Horizon 

(years)  
Model Outcomes Diabetes related complication Software 

Valentine et al. 2016 (PRIME) [36] Type 1 Microsimulation Patient-level Lifetime 

Life expectancy; 
QALE; cumulative 

incidence of all 

modelled diabetes 
complications; 

mean hypoglycemia 

and ketoacidosis 
rate; costs 

MI; angina; stroke; HF; microalbuminuria; overt 
nephropathy; ESRD; neuropathy onset; amputation; mild 

NPDR; moderate NPDR; severe NPDR; proliferative 

diabetic retinopathy, blindness, macular edema; 

hypoglycemia; ketoacidosis 

Java 

Willis et al. 2013 & 2017 (ECHO-

T2DM) [37, 38]  
Type 2 Microsimulation Patient-level User definable 

Mean survival; 

LYs; QALYs; costs; 

IHD; MI; CHF; stroke; BDR; PDR; PDR&Blind; ME; 

ME&PDR; ME&Blind; ME&PDR&Blindness in 1 eye; 
blindness in both eyes; MA; GPR; ESRD; symptomatic 

neuropathy; PVD; Symptomatic/PVD; foot ulcer; LEA; 

subsequent LEA 

R with Excel 

Interface 

Kwon et al. 2018 [39] Type 2 Markov Cohort 25 LYs; costs Hypoglycemia; MI; HF; stroke; weight gain; death Microsoft Excel 

Laiteerapong et al. 2018 [40]  Type 2 Microsimulation Patient-level Lifetime 
Life expectancy; 
QALYs; costs 

Amputation; second amputation; blindness; CHF; ESRD; 

IHD; MI, second MI; stroke; second stroke; foot ulcer; 

second foot ulcer; hypoglycemia 

Excel and SAS 

Nguyen et al. 2018 [41] Type 2 Markov Cohort 38 Costs; QALYs 

NYHA I/II HF; NYHA III/IV HF; HF; MI; unstable 

angina; TIA; vascular disease; stroke; ESRD; severe 

hypoglycemia; fatal stroke; fatal MI; death from ESRD; 
CV death; NYHA I/II HF death; NYHA III/IV HF death; 

all-cause mortality 

TreeAge Pro 

2009 

Shao et al. 2018 (BRAVO) [42] Type 2 Microsimulation Patient-level Lifetime 

Life expectancy; 

risks of different 

events; costs; 
QALYs 

MI; CHF; stroke; angina; revascularization; blindness; 

ESRD; SPLS 

Visual Basic and 

C++ 
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Author/Year 
Diabetes 

Type 
Type of Model Simulation method 

Time Horizon 

(years)  
Model Outcomes Diabetes related complication Software 

Wu et al. 2018 (COMIT) [43] Type 2 Microsimulation Patient-level Lifetime 

LYs; QALYs; 

DALYs; 
Cumulative 

incidences of 

complications; 
Costs 

Stroke; MI; CHF; CVD; CVD death; Blindness; ESRD; 
Clinical Neuropathy; Uncomplicated Diabetic Foot; 

Complicated Diabetic Foot; Minor Amputation; Major 

Amputation, ASCVD 

R 

Abramson et al. 2019 [44] Type 2 Microsimulation Patient-level Lifetime Costs; QALE Background mortality; diabetes-related mortality   

Chin et al. 2019 [45] Type 2 Markov Cohort 20 Costs; LYs; QALYs MI non fatal; stroke; HF; CVD death; non-CVD death; 
Microsoft Excel 

and @Risk 

Kansal et al. 2019 [46] Type 2 Discrete Event Patient-level Lifetime 

Cumulative events 

per 100 patient-

years; Life 
expectancy QALYs; 

costs 

MI; stroke; angina; HF; TIA; revascularization; 

macroalbuminuria; renal injury; renal failure 
R 

Kazemian et al. 2019 (PREDICT-

DM) [47] 
Type 2 Microsimulation Patient-level 10 

5/10 year survival; 

Cardiovascular 

outcomes; Renal 
outcomes 

MI; stroke; CHF; mortality from CVD; nephropathy Python 

Pollock et al. 2019 [48] Type 2 Microsimulation Patient-level 40 QALE; costs 
CHF; IHD; renal failure; ulcer; blindness; MI; stroke; 

amputation  
Java 8 

Su et al. 2020 (Cornerstone) [49] Type 2 Microsimulation Patient-level 

User specified 

(up to 100 
years) 

LYs; QALYs; ICER 
CHF; IHD; MI; stroke; blindness; ulcer; amputation; renal 

failure; mortality 
Microsoft Excel 

Tran-Duy et al. 2020 [50] Type 1 Microsimulation Patient-level Lifetime 

Annual incidence of 

complications and 

death; time to 

events; changes in 

risk factors over the 
simulation time 

Fatal MI; nonfatal MI; fatal stroke; nonfatal stroke; HF; 

PVD; severe hypoglycemia; severe hyperglycemia; 
amputation; ESRD; PCI; CABG 

Stata  
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Author/Year 
Diabetes 

Type 
Type of Model Simulation method 

Time Horizon 

(years)  
Model Outcomes Diabetes related complication Software 

Wu et al. 2020 [51] Type 2 Markov Cohort Lifetime 

Costs; probability of 

MI; probability of 
IS; probability of 

TIMI major 

bleeding; LYs; 
QALYs 

MI; IS; ICH; TIMI major; ECH; death   

Bagepally et al. 2021 [52] Type 2 Markov Cohort Lifetime LYs; QALYs; Costs Hypoglycemia; MI; HF; Stroke; Genital Infection Excel 

Bekele et al. 2021 [53] Type 2 Markov Cohort 40 DALYs; Costs 
Uncontrolled T2DM; Complicated T2DM; Death form 

T2DM 

TreeAge Pro 

2020 

Deerochanawong et al. 2021 [54] Type 2 Markov Cohort Lifetime QALYs; Costs 

HF; Death from HF; Normoalbuminuria; 

Microalbuminuria; Macroalbuminuria; Elevated Serum 
Creatinine; ESRD; Death from CKD; Death 

Excel 

Tanaka et al. 2021 (JJCEM) [55] Type 2 Markov Cohort Lifetime QALYs; costs 
Retinopathy; Retinopathy progression; Coronary heart 
disease; Stroke; Overt nephropathy; Non-CVD mortality; 

Amputation; Event-related mortality; ESRD 

  

Abushanab et al. 2022 [56] Type 2 Markov Cohort Lifetime 
QALYs; YoLS; 

Costs 

Non-fatal MI; Non-fatal stroke; HF; Unstable angina; 

CVD death; Non-CVD death 
Excel 

Huang et al. 2022 [57] Type 2 Markov Cohort 30 QALYs; Costs 
MI; IS; Unstable Angina; HF; CVD death; Non-CVD 

death 
TreeAge 2019 

Peng et al. 2022 [58] Type 2 Markov Cohort 10 QALYs; Costs HF; MI; Stroke; all-cause mortality   

Steg et al. 2022 [59] Type 2 Markov Cohort Lifetime QALYs; Costs 

Non-fatal MI; Non-fatal Stroke; TIMI major bleeding; 

TIMI minor bleeding; Bleeding requiring medical 

attention; Dyspnea; All-cause mortality; Amputation  
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ASCVD indicates Arteriosclerotic Cardiovascular Disease; BDR Background Diabetic Retinopathy; CABG Coronary Artery Bypass Graft; CAD Coronary Artery Disease; CHD Coronary Heart Disease; 

CHF Congestive Heart Failure; CKD Chronic Kidney Disease; CVD Cardiovascular Disease; DALYs Disability-Adjusted Life Years; ECH Extracranial Haemorrhage; ESRD End-stage Renal Disease; 

GPR Gross Preoteinuria; HF Heart Failure; ICH Intracranial Haemorrhage; IHD Ischemic Heart Disease; IS Ischemic Stroke; LEA Lower Extremity Amputation; MA Microalbuminuria; ME Macular 

Edema; MI indicates Myocardial Infarction; NPDR Non-proliferative Diabetic Retinopathy; NYHA I/II or NYHA III/IV New York Heart Association; PCI Percutaneous Coronary Intervention; PDR 

Proliferative Diabetic Retinopathy; PR Proliferative Retinopathy; PVD Peripheral Vascular Disease; QALYs Quality-Adjusted Life Years; SPLS Severe Pressure Sensation Loss; SVL Severe Vision Loss; 

TIA Transient Ischemic Attach; TIMI Thrombolysis In Myocardial Infarction; YoLS Years of Life Saved  
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1.1. Model Structure  

The main characteristics of the 29 identified decision models are summarised in Table 1. All three T1DM models 

identified in the systematic review are microsimulation models [34, 36, 50]. From the 26 T2DM models, 14 are cohort 

Markov models [31, 33, 39, 41, 45, 51-59], 11 are patient-level microsimulation models [30, 32, 35, 37, 38, 40, 42-

44, 47-49], and 1 is a patient-level discrete-event models [46]. One model developed for T1DM and T2DM is a 

Markov model [33]. Microsimulation models and discrete-event simulations are more flexible modelling methods that 

incorporate individual patients’ disease histories and characteristics. Even though patient-level simulation is more 

computationally demanding than cohort Markov models, they are widely used in diabetes modelling because they 

have the capability of generating more accurate results for a wider range of patient subgroups and hence provide a 

more robust evaluation of overall uncertainty.  

The diabetes complications included in each model are presented on Table 1. One model[44] included only 

background mortality and diabetes related mortality as events and another model consisted uncontrolled T2DM, 

complicated T2DM and death from T2DM as states with diabetes-related complications[53]. All the other models 

included macrovascular complications and 19 models [30-34, 36-38, 40-43, 46-50, 54, 55, 59] also included a 

combination of microvascular complications (i.e., nephropathy and/or neuropathy and/or retinopathy). The most 

frequently included retinopathy complication was blindness; for neuropathy complications the most frequently 

included was amputation; while end-stage renal disease (ESRD) and microalbuminuria were the most frequently 

included nephropathy complications. The models included various macrovascular complications and it is also worth 

noting that myocardial infarction (MI) was included in all the models apart from Deerochanawong et al. 2021[54] and 

Tanaka et al. 2021[55].  

Apart from QALYs/LYs there is a variety of other clinical model outcomes considered in the studies reviewed, such 

as the cumulative incidence of events including MI, IS, TIMI major bleeding, or other complications such as 

hypoglycaemia or ketoacidosis. Therefore, many CE models allow for the computation of various clinical outcomes. 

Two studies ([33, 35]) report utilities that can be used to compute QALYs by their multiplication by the years spent 

in certain health states[60].  
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A given discount rate is specified in a number of CE models [32, 34, 39-41, 43-46, 48, 51-54, 56-59, 61], but not in 

the remaining models, allowing the users to set it up to meet existing guidance.  

 

1.2. Uncertainty Analysis 

Information related to uncertainty analysis is summarised in Table 2a and Table 2b [30-59]. Stochastic uncertainty is 

addressed in seven (out of the 15) patient-level CE models[30, 37, 38, 42, 46-48, 50]. The approach for minimising 

this type of uncertainty was by using large numbers of Monte Carlo replications until the mean value of the outcomes 

of interest changes less than a pre-specified threshold. Heterogeneity is addressed by measuring the impact that 

different patient characteristics can have on model outcomes; and it is examined with sensitivity analyses by running 

the CE model for different subgroups of patients with certain common characteristics. From the 14 cohort Markov 

models, three CE models[51, 56, 59] performed subgroup analysis to assess the impact of specific patient 

characteristics on model results. From the 15 patient-level models, two models[34, 40] conducted subgroup analysis 

to deal with heterogeneity. However, it is worth mentioning that the UKPDS-OM2 model reports that the detailed 

modelling at a patient level has the capacity to inform individualised medicine and analyses for patient subgroups[30]; 

and the BRAVO model mentions that heterogeneity in the model was dealt with by using patient-level 

microsimulation, in which each patient has different characteristics and simulation was carried out one person at a 

time[42].  

All the CE models assessed parameter uncertainty, except the Cornerstone model[49] and the COMIT model[43]. 

Twenty-three CE models performed Probabilistic Sensitivity Analysis (PSA) [31-39, 41, 44-48, 51-59], whereas five 

CE models used a bootstrapping technique instead [30, 36, 42, 48, 50]. The non-parametric bootstrapping approach 

involved repeatedly resampling the patients and re-estimating all the risk equations in order to derive sets of fully 

correlated regression coefficients for each risk equation, and hence generating a distribution for the CE model 

outcome(s) which is used to capture parameter uncertainty [30, 42, 50]. Furthermore, eighteen CE models performed 

Deterministic Sensitivity Analysis (DSA)[30, 32-34, 39-41, 44, 45, 50-54, 56-59], i.e., one-way sensitivity analyses 

and/or two-way sensitivity analyses to examine the effect of varying the values of selected parameters one by one on 

CE model results.  

Structural uncertainty is examined in five CE models by using scenario analyses. For example, one of the scenarios 

that Pollock et al. 2019 [48] and Kansal et al. 2019 [46] tested setting the treatment effect to zero for several diabetes-

related events to examine the impact on the results. Furthermore, Kwon et al. 2018 examined the impact of no 

difference in cardiovascular event rates after 2 years from initiations of the two interventions[39]. Nguyen  et al. 2018 

tested a scenario in which the overall 3-month stroke rate in the trial was set as the rate of stroke for both groups in 
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the model[41]. Lastly, Peng et al. 2022[58] tested several different scenarios by varying assumptions based on patient 

cohorts risk score for mortality, range of CVD risks and adopting the hazard ratios from a network meta-analysis of 

clinical trials[58].  Structural uncertainty associated with statistical modelling is discussed in Section 3.4.  

Methodological uncertainty was examined in nine CE models [32, 39-41, 46, 48, 53, 56, 58] by performing one-way 

sensitivity analyses of varying methodological assumptions, such as running different scenarios of alternative discount 

rates and/or time horizons than the ones used in the CE model.   

In summary, Table 2a shows that (1) almost all the CE models addressed parameter uncertainty, and specifically from 

Table 2b, PSA is the most widely used method among the CE models; and (2) the impact of structural uncertainties is 

not thoroughly examined in most of the CE models. 

 

1.3. Statistical Modelling and Structural Uncertainty  

In this section the methods used in the patient-level decision models for predicting the risk of each event are described 

and a summary can be found in Table 4.  

Five out of twelve T2DM patient-level decision models used the UKPDS-OM risk equations [30, 32, 40, 48, 49]. The 

UKPDS-OM risk equations were developed using data from the UKPDS study population [62, 63]. Three decision 

models used the UKPDS-OM risk equations in combination with other sources [35, 37, 38, 44]. For instance, the latest 

version of the ECHO-T2DM model enables the user to choose between the UKPDS-OM, or the ADVANCE [64], or 

the Swedish NDR [65] risk equations for calculating the hazard of macrovascular complications, and for the 

microvascular complications other sources from the literature were used [66, 67]. Also, the Michigan model[35] used 

the UKPDS-OM risk equations to model[30] all its events apart from congestive heart failure (CHF) for which the 

authors created a new prediction equation based on the CHS data [68]. In one model-based economic evaluation the 

data from a clinical trial (EMPA-REG OUTCOME) were used to develop the risk equations[46]. Lastly, the 

PREDICT-DM model[47] and the COMIT model[43] used the RECODe risk equations[69]; and the BRAVO decision 

model developed its own risk equations[42]. Both the RECODe and BRAVO risk equations were developed based on 

data from the ACCORD trial[70]. 
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Risk equations for complications and mortality calculate the event probability in a particular period for 

microsimulation models or the time-to-event for DES models. The UKPDS-OM risk equations [30] and the BRAVO 

risk equations[42] estimate/predict the hazard of each of the diabetes-related complications and all-cause mortality by 

using multivariate parametric proportional hazards (PH) models (Weibull PHs models for the complications and 

Gompertz PHs models for all-cause mortality); and diabetes-related mortality (whether mortality is a CVD death or 

not, for example) by using logistic regression models. Similarly, the CHF risk equation in the Michigan model [35] 

and the risk equations of the study by Kansal and colleagues [46] were developed by using parametric proportional 

hazards models. More specifically, this modelling approach assumes multivariate semi-parametric (Cox) proportional 

hazards models, for selecting and estimating the risk factors, but with specifying a parametric baseline hazard for 

enabling lifetime prediction of event times. This approach is explained in more detail in the literature[71]. On the other 

hand, the RECODe risk equations were developed by using Cox proportional hazards models, and therefore, without 

further assumptions the hazard and event times can only be predicted to a maximum of 10 years, that is the duration 

of the ACCORD data used to devise the equations, rather than to a longer term[72, 73].  

Two out of the three T1DM patient-level decision models used risk equations to model the hazard of complications 

and mortality[34, 50]. In the other T1DM model (PRIME [36]) the event probabilities were derived using multiple 

sources from the literature.  

Risk equations varied inclusion of time-varying risk factors and use of intermediate or final endpoints.    

Structural uncertainty in survival modelling defined as the choice between multiple plausible statistical models[74, 

75] and data-driven model selection was the predominant method used for their choice when estimating survival 

probabilities. Model selection was performed by comparing model fits from multiple parametric forms, such as 

exponential, Weibull, Gompertz log normal, and then picking the model to be implemented based on a measure of 

model performance (such as AIC, BIC, and log-cumulative hazards plot). Similarly, model selection in the 

development of the BRAVO risk equations[42] also involved testing multiple parametric functional forms for the 

baseline hazard, however, the statistical model was selected based on the c-statistic – a measure of discrimination 

power – and the Brier score – a measure of prediction accuracy. The RECODe risk equations in the PREDICT-DM 

model[47] also used measures that assess both model discrimination and model calibration. Finally, it is important to 

note that the PRIME model[36] for T1DM was the only model that used a model averaging approach to combine 
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multiple data sources from the literature to calculate the risk of cardiovascular disease. There was no evidence of the 

use of any of the other methods, introduced in the methodological literature, for accounting structural uncertainty, 

with regards to extrapolation models, such as scenario analysis, parameterisation or the discrepancy approach. 

In contrast with the uncertainty analysis reviewed in the previous section, structural uncertainty was not precisely  

addressed in the papers included and no methods were mentioned to specifically account for structural uncertainty. 

1.4. Model Validation 

In fourteen CE models internal validation was performed [30, 31, 34-38, 40, 42, 47-50]. It was found that, overall, the 

predicted model values were in close agreement with the observed/published values. More specifically, five CE 

models stated that the predicted values were generally within the 95% confidence intervals of the observed cumulative 

curves for diabetes-related events and mortality [30, 40, 42, 49, 50]. In other CE models the authors calculated 

coefficients of determination and slopes close to 1, indicating a good match between predicted and observed values 

[31, 35, 37, 38]; and / or calculated measures of error, which were less than 2%-3% again indicating a close match 

between the predicted and observed values [36, 47, 48]. Lastly, Wolowacz et al. model[34] compared the predicted 

values with the expected values; and Kansal et al.[46] and Abramson et al. [44]verified that the model estimates 

matched the data. 

Eleven studies conducted external validation of the CE model (Table 4)[31, 33-38, 42, 43, 47, 49]. External validation 

is carried out to assess the performance of the CE model with independent/external data, i.e., data that were not used 

to develop the model. All the models’ predictive performance was satisfactory and obtained good agreement in the 

comparisons between the predicted outcomes and the actual observed outcomes.  From the models that used the 

scatterplot and linear regression line method for evaluating concordance between observed and predicted values, the 

ones that had slopes and coefficients of determination close to perfect concordance are ECHO-T2DM 2013[37], 

ECHO-T2DM 2017[38], and IHE[31]. It is also worth noting that the ECHO-T2DM (2017) model[38] and the IHE 

Cohort model[31] performed external validations for multiple sets of risk equations (UKPDS-OM1, UKPDS-OM2, 

and the Swedish NDR) where it was found that the results were slightly different for each set of risk equations. The 

other models that used alternative methods of evaluating the accuracy of predicted results, such as the MICADO[33], 

PRIME[36], PREDICT-DM[47] and the model by Wolowacz et al.[34], all could simulate model outcomes well.  
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1.5. Quality Assessment 

Results of quality assessment are summarized on Figures 2 and 3. Overall, 90% of the models had a medium score 

[30-45, 47, 49-55, 57, 59]and 10% had a high score[46, 48, 56, 58]. All 29 models scored high in the structure section 

of the Philips checklist. In the data section of the checklist 17% of the models scored low[35, 44, 45, 47, 49], 70% of 

the models scored medium[30-34, 36-43, 50-55, 57, 59] and 13% of the models scored high [46, 48, 56, 58]. Four 

models had the highest scores in the data section ([48], [46],[56] [58]) and highest scores overall. Three of these 

models performed scenario analyses to investigate the impact of structural uncertainties on model results ([48], [46], 

[58]). In the consistency section of the checklist 63% of the models scored low[30, 32, 33, 39-41, 45, 46, 48, 50-59], 

23% of the models scored medium [31, 34-36, 42, 43, 47] and 13% of the models scored high[37, 38, 44, 49]. Low 

scores in the consistency section report to models where authors did not conduct internal and/or external validation. 

Two models performed and reported the results of internal validation, external validation, and cross-validation 

(Cornerstone[49], ECHO-T2DM[37, 38]); and therefore, these models satisfied all the points in the consistency 

section.  

 

2. Discussion 

2.1. Findings 

Diabetes models with a time horizon above 5 years developed since 2011 used advanced statistical methods regarding 

their structure. Patient-level simulation is more computationally demanding and more complex than cohort models, 

however, they are commonly used in diabetes modelling [30], [13, 14]. Therefore, in a complex disease such as 

diabetes the additional modelling flexibilities of a microsimulation model and discrete-event simulation may be useful 

for representing the disease more precisely. Furthermore, many decision models include both microvascular and 

macrovascular diabetes-related events, and allow for the computation of varied model outcomes. From the Philips 

checklist scores it can be concluded that most of the publications are transparent in their description of the model 

development process with respect to its structure.  
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Uncertainty analysis methods, such as PSA, were used in most of the models reviewed to address parameter 

uncertainty in a similar manner. Stochastic uncertainty was addressed in seven out of 14 patient-level models ([30, 37, 

38, 42, 46-48, 50]). Structural uncertainty was addressed with sensitivity analyses/scenario analyses in only five 

models ([48], [46], [39], [41], [58]), indicating the need for guidelines on the methods for addressing structural 

uncertainty so they can be more broadly and consistently applied.  

One important source of structural uncertainty is generated by choices made for survival extrapolation. Apart from 

the PRIME model[36] where a model averaging method was used for calculating the risk of MI, angina and stroke, 

no other methods were used in any of the other models for addressing structural uncertainty from survival modelling.  

In studies undertaking CEAs - model-based economic evaluations – the authors did not perform any external 

validation, and in only four of them performed internal validation ([48], [46], [40], [44]). Internal and external 

validation tests were mainly carried out in the other modelling studies. Most of the papers that conducted internal 

and/or external validation, did so in a similar manner, and provided a description of the methods used coupled with a 

thorough interpretation of their results. The methods or measures used for comparing the predicted values, simulated 

by the models, with the observed values, from the external data, varied. Different studies arrived at often quite different 

model structures for the same, or similar patients. This is despite all the models performing well in their internal and 

external validations, implying the models generate accurate results and are of high quality. Potentially, this highlights 

the importance of addressing structural uncertainty as it indicates that there may have been competing model structures 

which gave similar, or better, fits to the data. 

“Structural uncertainty” was not widely used in the publications reviewed, which makes it harder to understand if it 

was assessed and by which methods. Also to be noted is the inexistence of a single measure of prediction accuracy 

throughout the publications to compare the internal and external validation results of all the models that conducted 

validation. 

Quality assessment of the 29 models was carried out by using the Philips checklist. In line with the findings in model 

validation, all the models scored reasonably well in the methodological quality assessment. Overall, the majority of 

the models (90% of the models) satisfied between 51%-74% of the points in the Philips checklist. However, after 

distinguishing the section about the “structure” and the section about the “data”, it was apparent that all the models 

achieved significantly higher scores in the structure section than in the data section. Most of the models did not address 
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structural uncertainty and did not document or performed sensitivity analysis regarding the continuing effect of 

treatment or regarding the methods used for extrapolating data. 

 

2.2. Limitations 

This systematic review has some limitations. Firstly, only journal articles written in English were included, and 

therefore, models presented in conference abstracts or models published in languages other than English were not 

included. Secondly, the Philips checklist for assessing the methodological quality of the models has some limitations. 

The responses to many criteria were subjective and may also be characterised as overly general to assess models in 

Diabetes Mellitus which is a complex disease[28]. Furthermore, this systematic review discussed structural 

uncertainty mainly with regards to survival extrapolation. However, it is important to recognise that structural 

uncertainty in a cost-effectiveness model is generated from various sources, such as the set of adverse events included 

within the overall model or the cycle length used for certain events for instance, and needs to be addressed[7]. 

 

2.3. Recommendations for Further Research 

This systematic review found that guidance on methods to assess uncertainty related to statistical modelling could 

improve the quality of the models being developed and contribute to an improved decision making process. Structural 

uncertainty seems to have received little attention from researchers and it would benefit from further methodological 

and empirical research. Some authors have argued that model selection does not address structural uncertainty 

regarding the statistical model for extrapolation and hence is seen as an unsuitable method[7, 76]. However, the use 

and applicability of other more recent methods, such as model averaging, has not been explored or widely applied in 

diabetes health economic evaluations yet. There are other authors suggesting the use of the Bayesian framework [74, 

77, 78] to improve current methods but too little has been done specifically in diabetes.  

3. Conclusions 

Accuracy and reliability are key goals in modelling in health economic evaluations and are highly dependent on the 

methodologies used for developing a model. Diabetes is a complex and chronic disease which mostly requires the use 

of a model to capture the various disease paths, calculate long-term outcomes from clinical trials data or final outcomes 
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from intermediate endpoints, and so on. The accuracy of the results of the models and the confidence in reimbursement 

decisions for efficient allocation of scarce resources depend on the structure of the model, the methods used for 

estimating and extrapolating the model parameters, and the uncertainty analysis methods used.  
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Table 2a. Uncertainty section of Philips checklist. 

 

Author/Year 

Methodological 

Uncertainty 

Structural 

Uncertainty 
Heterogeneity Parameter Uncertainty 

Have the methodological 

uncertainties been 

addressed by running 

alternative versions of the 

model with different 

methodological 

assumptions? 

Is there evidence that 

structural uncertainties 

have been addressed via 

sensitivity analysis? 

Has heterogeneity been 

dealt with by running the 

model separately for 

different subgroups? 

Are the methods of 

assessment of parameter 

uncertainty appropriate? 

Has probabilistic 

sensitivity analysis been 

done, if not has this been 

justified? 

If data are incorporated as 

point estimates, are the 

ranges used for 

sensitivity analysis stated 

clearly and justified? 

Hayes et al. 2013 

(UKPDS-OM2) [30]  
No No No Yes Yes* No 

Lundqvist et al. 2014 

(IHE) [31] 
No No No Yes Yes NA 

Viriato et al. 2014 

[32] 
Yes No No Yes Yes No 

Van der Heijden et 

al. 2015 (MICADO) 

[33] 

No No No Yes Yes Yes 

Wolowacz et al. 2015 

[34] 
No No No Yes Yes No 

Ye et al. 2015 

(Michigan) [35] 
No No No Yes Yes NA 

Valentine et al. 2016 

(PRIME) [36] 
No Partial No Yes Yes NA 

Willis et al. 2013 & 

2017 (ECHO-

T2DM) [37, 38]  

No No No Yes Yes NA 

Kwon et al. 2018 

[39] 
Yes Yes No Yes Yes Yes 

Laiteerapong et al. 

2018 [40]  
Yes No No No No No 
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Author/Year 

Methodological 

Uncertainty 

Structural 

Uncertainty 
Heterogeneity Parameter Uncertainty 

Have the methodological 

uncertainties been 

addressed by running 

alternative versions of the 

model with different 

methodological 

assumptions? 

Is there evidence that 

structural uncertainties 

have been addressed via 

sensitivity analysis? 

Has heterogeneity been 

dealt with by running the 

model separately for 

different subgroups? 

Are the methods of 

assessment of parameter 

uncertainty appropriate? 

Has probabilistic 

sensitivity analysis been 

done, if not has this been 

justified? 

If data are incorporated as 

point estimates, are the 

ranges used for 

sensitivity analysis stated 

clearly and justified? 

Nguyen et al. 2018 

[41] 
Yes Yes No Yes Yes Yes 

Shao et al. 2018 

(BRAVO) [42] 
No No No Yes Yes* NA 

Wu et al. 2018 

(COMIT) [43] 
No No No No No NA 

Abramson et al. 

2019 [44] 
No No No Yes Yes No 

Chin et al. 2019 [45] No No No Yes Yes Yes 

Kansal et al. 2019 

[46] 
Yes Yes No Yes Yes Yes 

Kazemian et al. 2019 

(PREDICT-DM) 

[47] 

No No No Yes Yes NA 

Pollock et al. 2019 

[48] 
Yes Yes No Yes Yes No 

Su et al. 2020 

(Cornerstone) [49] 
No No No No No NA 

Tran-Duy et al. 2020 

[50] 
No No No Yes Yes* Yes 

Wu et al. 2020 [51] No No Yes Yes Yes Yes 

Bagepally et al. 2021 

[52] 
No No No Yes Yes Yes 

Bekele et al. 2021 

[53] 
Yes No No Yes Yes Yes 

Deerochanawong et 

al. 2021 [54] 
No No No Yes Yes Yes 

Tanaka et al. 2021 

(JJCEM) [55] 
No No No Yes Yes NA 
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Author/Year 

Methodological 

Uncertainty 

Structural 

Uncertainty 
Heterogeneity Parameter Uncertainty 

Have the methodological 

uncertainties been 

addressed by running 

alternative versions of the 

model with different 

methodological 

assumptions? 

Is there evidence that 

structural uncertainties 

have been addressed via 

sensitivity analysis? 

Has heterogeneity been 

dealt with by running the 

model separately for 

different subgroups? 

Are the methods of 

assessment of parameter 

uncertainty appropriate? 

Has probabilistic 

sensitivity analysis been 

done, if not has this been 

justified? 

If data are incorporated as 

point estimates, are the 

ranges used for 

sensitivity analysis stated 

clearly and justified? 

Abushanab et al. 

2022 [56] 
Yes No Yes Yes Yes  Yes 

Huang et al. 2022 

[57] 
No No No Yes Yes Yes 

Peng et al. 2022 [58] Yes Yes No Yes Yes Yes 

Steg et al. 2022 [59] No No Yes Yes Yes No 

*Bootstrapping approach 
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Table 2b. Method of parameter uncertainty analysis used in each model. 

Author/Year Deterministic Sensitivity Analysis Probabilistic Sensitivity Analysis Non-parametric Bootstrapping 

Hayes et al. 2013 (UKPDS-OM2) [30]  Yes  No Yes  

Lundqvist et al. 2014 (IHE) [31] No  Yes  No   

Viriato et al. 2014 [32] Yes  Yes  No  

Van der Heijden et al. 2015 (MICADO) [33] Yes  Yes  No  

Wolowacz et al. 2015 [34] Yes  Yes  No  

Ye et al. 2015 (Michigan) [35] No  Yes  No  

Valentine et al. 2016 (PRIME) [36] No  Yes  Yes  

Willis et al. 2013 & 2017 (ECHO-T2DM) [37, 38]  No  Yes  No  

Kwon et al. 2018 [39] Yes  Yes  No  

Laiteerapong et al. 2018 [40]  Yes  No  No 

Nguyen et al. 2018 [41] Yes  Yes  No 

Shao et al. 2018 (BRAVO) [42] No  No  Yes 

Wu et al. 2018 (COMIT) [43] NA NA NA 

Abramson et al. 2019 [44] Yes  Yes  No 

Chin et al. 2019 [45] Yes Yes  No 

Kansal et al. 2019 [46] No  Yes  No 

Kazemian et al. 2019 (PREDICT-DM) [47] No  Yes  No 

Pollock et al. 2019 [48] No  Yes  Yes 

Su et al. 2020 (Cornerstone) [49] NA NA NA 

Tran-Duy et al. 2020 [50] Yes  No  Yes 

Wu et al. 2020 [51] Yes  Yes  No 

Bagepally et al. 2021 [52] Yes Yes  No 

Bekele et al. 2021 [53] Yes  Yes  No 

Deerochanawong et al. 2021 [54] Yes  Yes  No 

Tanaka et al. 2021 (JJCEM) [55] No  Yes  No 
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Author/Year Deterministic Sensitivity Analysis Probabilistic Sensitivity Analysis Non-parametric Bootstrapping 

Abushanab et al. 2022 [56] Yes  Yes  No 

Huang et al. 2022 [57] Yes  Yes  No 

Peng et al. 2022 [58] Yes  Yes  No 

Steg et al. 2022 [59] Yes  Yes  No 
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Table 3. Type of risk equations used in the patient-level models.   

Method Number of models 

T2DM 12 

UKPDS-OM1 / UKPDS-OM2 risk equations 5 

UKPDS-OM1 / UKPDS-OM2 risk equations & other sources 3 

RECODe risk equations 2 

BRAVO risk equations 1 

Other (study-specific) risk equations 1 

T1DM 3 

Risk equations / Risk functions 2 

Sources from the literature 1 

 

BRAVO indicates Building, Relating, Assessing, and Validating Outcomes; RECODe, Risk Equations for Complications Of type 2 Diabetes; UKPDS-OM1, 

United Kingdom Prospective Diabetes Study – Outcomes Model 1; UKPDS-OM2, United Kingdom Prospective Diabetes Study – Outcomes Model 2. 
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Table 4. Internal and External Validation results. 

 

Author/Year Internal Validation External Validation 

Hayes et al. 2013 (UKPDS-OM2) [30]  Predicted curves were within the 95% CIs of the actual 

cumulative failure curves for all events and death 
NA 

Lundqvist et al. 2014 (IHE) [31] NDR risk equations 

Intercept = 0.849 

Slope = 0.918 

Coef. Determination = 0.971 

 

UKPD-OM1 risk equations 

Intercept = -0.644 

Slope = 0.944 

Coef. Determination = 0.980 

 

UKPDS-OM2 risk equations 

Intercept = 0.0828 

Slope = 0.896 

Coef. Determination = 0.967 

 

NDR risk equations 

Intercept = 0.286 

Slope = 0.985 

Coef. Determination = 0.960 

 

UKPDS-OM1 risk equations 

Intercept = -0.754 

Slope = 1.049 

Coef. Determination = 0.963 

 

UKPDS-OM2 risk equations 

Intercept = -0.300 

Slope = 0.899 

Coef. Determination = 0.968 

 

Viriato et al. 2014 [32] NA NA 

Van der Heijden et al. 2015 (MICADO) 

[33] 

NA 

Incidence of amputation estimated by MICADO 

= 592 compared to the observed incidence 728. 

Incidence of ESRD estimated by MICADO = 

247 compared to the observed incidence 277. 

 

For macrovascular outcomes the MICADO 

model appeared visually to overestimate the 

incidence in the Kaiser Permanente dataset and 

match the Swedish dataset. 

Wolowacz et al. 2015 [34] 
Model predictions were within 2% of expected values  

Model predictions were within 8% of expected 

values 

Ye et al. 2015 (Michigan) [35] Slope = 0.98 

Coef. Determination = 0.99 

Slope = 0.84 

Coef. Determination = 0.81 

Valentine et al. 2016 (PRIME) [36] 

RMSD < 3% 

Cardiovascular events validation 

Four RMSD values < 1% and two RMSD values 

< 3%. All six standardized AUC < 1%. 

 



37 
 

Author/Year Internal Validation External Validation 

Microalbuminuria validation 

RMSD = 8.5% and AUC = 0.1% 

Overt nephropathy validation 

RMSD = 11.5% and AUC = 0.6% 

 

Retinopathy events validation 

RMSD = 2.8% and AUC = 0.7% 

 

Lower extremity amputation validation 

RMSD (males/females) = 0.8% / 0.6% 

AUC = 0.03% 

 

Willis et al. 2013 (ECHO-T2DM) [37]  Intercept = -0.002 

Slope = 1.024 

Coef. determination = 0.95 

Intercept = 0.015 

Slope = 1.072 

Coefficient of determination = 0.97 

Willis et al. 2017 (ECHO-T2DM) [38]  UKPDS 82 

Intercept = 0.023 

Slope = 0.974 

Coef. Determination = 0.86 

MAE = 0.051 

RMSE = 0.073 

MSLAR = 0.266 

MSLE = 0.354 

 

UKPDS 68 

Intercept = 0.006 

Slope = 0.957 

Coef. Determination = 0.86 

MAE = 0.046 

RMSE = 0.071 

MSLAR = 0.242 

MSLE = 0.322 

 

ADVANCE 

Intercept =-0.001 

Slope = 1.007 

Coef. Determination = 0.89 

MAE = 0.039 

RMSE = 0.064 

MSLAR = 0.238 

MSLE = 0.307 

UKPDS 82 

Intercept = 0.028 

Slope = 1.029 

Coef. Determination = 0.91  

MAE = 0.043 

RMSE = 0.062 

MSLAR = 0.346 

MSLE = 0.421 

 

UKPDS 68 

Intercept = 0.001 

Slope = 1.038 

Coef. Determination = 0.90 

MAE = 0.038 

RMSE = 0.056 

MSLAR = 0.342 

MSLE = 0.425 

 

ADVANCE 

Intercept = 0.020 

Slope = 0.983 

Coef. Determination = 0.90 

MAE = 0.054 

RMSE = 0.071 

MSLAR = 0.505 

MSLE = 0.602 
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Author/Year Internal Validation External Validation 

 

NDR 

Intercept = 0.002 

Slope = 1.002 

Coef. Determination = 0.89 

MAE = 0.034 

RMSE = 0.056 

MSLAR = 0.274 

MSLE = 0.328 

 

NDR 

Intercept = 0.024 

Slope = 1.028 

Coef. Determination = 0.91 

MAE = 0.048 

RMSE = 0.070 

MSLAR = 0.420 

MSLE = 0.513 

 

Kwon et al. 2018 [39] NA NA 

Laiteerapong et al. 2018 [40]  Predicted values in all cases were generally within the 95% CIs of 

the observed cumulative incidence 
NA 

Nguyen et al. 2018 [41] NA NA 

Shao et al. 2018 (BRAVO) [42] 
All the predicted incidence curves fit close to the observed curves 

and all predicted curves were within the 95% CI. 

Intercept = 0.001 

Slope = 1.071 

Coef. Determination = 0.86 

Wu et al. 2018 (COMIT) [43] Overall coefficient of determination = 0.8701 

Slope = 0.9631 

MAPE = 32.93% 

Abramson et al. 2019 [44] Verified that the adherence, HbA1c levels, and disutility of 

patient cohorts passing through the model matched the data used 

to estimate the model parameters. 

NA 

Chin et al. 2019 [45] NA NA 

Kansal et al. 2019 [46] Reproduced the overall event rates in EMPA-REG OUTCOME 

when treated as competing events 
NA 

Kazemian et al. 2019 (PREDICT-DM) 

[47] 

MAPE (intensive/standard)= 19% / 25% 

MEDAPE (intensive/standard) = 20% / 16% 

RMSPE (intensive/standard) = 23% / 35% 

95% limit of agreement = 0.020 

Mean difference = 0.0025 

ICC (intensive/standard) = 0.94 / 0.90 

 

VADT 

MAPE (intensive/standard) = 29% / 20% 

MEDAPE (intensive/standard) = 29% / 21% 

RMSPE (intensive/standard) = 32% / 24% 

95% limit of agreement = 0.032 

Mean difference = -0.0067 

ICC (intensive/standard) = 0.89 / 0.96 

 

 

Look AHEAD 

MAPE (lifestyle/support&education) = 42% / 

10% 

MEDAPE (lifestyle/support&education) = 21% / 

5% 
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Author/Year Internal Validation External Validation 

RMSPE (lifestyle/support&education) = 70% / 

14% 

95% limit of agreement = 0.011  

Mean difference = -0.0033 

 ICC (lifestyle/support&education) = 0.95 / 0.99 

Pollock et al. 2019 [48] MAPE = 0.159% NA 

Su et al. 2020 (Cornerstone) [49] Predicted incidence curves closely matched the reported curves 

for all first-time events including mortality in the source 

publication 

Coefficient of determination = 0.637 

Tran-Duy et al. 2020 [50] The predicted values in all cases were generally within the 95% 

CIs of the observed cumulative incidence 
NA 

Wu et al. 2020 [51] NA NA 

Bagepally et al. 2021 [52] NA NA 

Bekele et al. 2021 [53] NA NA 

Deerochanawong et al. 2021 [54] NA NA 

Tanaka et al. 2021 (JJCEM) [55] NA NA 

Abushanab et al. 2022 [56] NA NA 

Huang et al. 2022 [57] NA NA 

Peng et al. 2022 [58] NA NA 

Steg et al. 2022 [59] NA NA 
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Figure 1. Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) diagram 
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Figure 2. Illustrates the percentage of models that were classified as low, medium or high quality in each section of 

the Philips quality assessment checklist as well as based on the overall score throughout all the sections. 
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Figure 3. Spider chart that depicts the quality assessment score of each of the 20 models separately in each of the 

four dimensions (overall, structure, data, consistency). 
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