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Matos, Maria M. G. Medina, Leandro S. Marcolino, Jó Ueyama

• This work presents an experimental scenario to evaluate water level
measurement using an experimental device integrating a Light De-
tection and Ranging (LiDAR) sensor, an Inertial Measurement Unit
(IMU) and a fusion method based on machine learning.

• We collected data in a controlled environment considering a discrete
set of water turbidity levels, sensors’ tilt angles and distances between
the sensor and the water surface.

• LiDAR predictions were compared to those from an ultrasonic sensor
employed as a reference for performance, with and without the machine
learning-based approach for error minimisation.

• This methodology has significantly improved results in challenging con-
ditions, including situations with lower water turbidity or increased tilt
angle, so that the enhanced results for the LiDAR sensor were close to
those of the ultrasonic sensor.

• Nonetheless, the LiDAR sensor is more robust against flood-related
weather conditions such as heavy rainfall, fog, dust, and variations in
temperature and humidity, which highlights its relevance for flood risk
management.
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Abstract

Flood risk management usually hinges on accurate water level identification
in urban streams such as rivers or creeks. Although research has emphasised
the applicability of ultrasonic sensors as a contactless technology for sensor-
based water level monitoring, Light Detection and Ranging (LiDAR) sensors
are less sensitive to weather conditions that typically happen during flood
events, such as dust, fog and rainfall. However, there has been little research
on the applicability of LiDAR sensors in this field. No previous literature
has analysed the impact of complicating variables on the quality of predic-
tions or evaluated the possible benefits of using a combined approach with
Inertial Measurement Units (IMU) and machine learning to produce superior
predictions. In this work, we collected a dataset in a laboratory condition
synchronising data from a LiDAR, an ultrasonic sensor and an IMU in an
experimental device. We controlled the incidence angle, the distance, and
the water turbidity to analyse their effect on the predictions. Traditional
machine-learning techniques were evaluated as models to combine data from
distance and inertial sensors, reducing the error rates compared to individ-
ual sensors’ predictions. Results indicated a sharp drop in the mean absolute
error, root mean squared error and coefficient of determination for all water
turbidity and incidence angles considered, especially when tree-based ensem-
bles were used. The ultrasonic sensor led to improved results for low water
turbidity and increased incidence angle, but statistically significant differ-
ences were not found in the other cases.
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1. Introduction

Proactive monitoring of water levels in urban waterways enables the early
detection of potential flood-related hazards, allowing for the timely activation
of damage control strategies [1, 2, 3]. Systems dedicated to this endeavour
typically employ Internet of Things (IoT) devices, including interconnected
sensors and cameras, which are integrated with a central server. This in-
tegration enables continuous monitoring of water levels in water streams,
providing data for real-time analysis and decision-making [4, 5].

Pressure transducers positioned at the base of a water body can be an
effective tool for estimating water levels [4, 6, 7], relying on Stevin’s law for
hydrostatics pressure [8]. However, as pressure sensors need to be immersed
in the water stream, the installation conditions could influence the measures
by creating local pressure modifications. Moreover, they are vulnerable to
damage or burial due to events such as floods, the presence of debris, or
sedimentation. To account for these issues, a deployed system based on
pressure sensors is subject to frequent operational interruptions and incurs
additional maintenance costs.

Ultrasonic sensors present a potential solution to these challenges [9, 10,
11, 12]. They are the most used non-contact technology for measuring water
levels, which does not require them to be submerged in water, thus causing
fewer maintenance issues. Nonetheless, their performance can be impacted
by factors such as rain, snow, fog, dust, and changes in temperature or
humidity. This makes them less reliable for flood warning systems, where
these conditions can change rapidly and dramatically [13, 14].

In this paper, we are concerned with an alternative non-contact tech-
nology that is more robust to adverse weather conditions: Light Detection
and Ranging (LiDAR). Even though LiDAR sensors can be less accurate
than ultrasonic sensors if the water turbidity is low or the incidence angle
is high [15, 16], they are more robust to environmental adversities. For this
reason, they might be a promising technology for flood risk management.

While research has been performed to improve the performance of Li-
DAR sensors in water level identification [17, 18, 19], these works have been
constrained to reducing predictive error based only on the own sensor’s prop-
erties. To the best of our knowledge, existing literature has not yet assessed
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advanced methodologies to unveil intricate patterns among variables derived
from LiDAR sensors and other complementary sensor technologies.

We addressed this research gap by presenting an innovative experimental
device that integrates a LiDAR sensor with an Inertial Measurement Unit
(IMU). We thoroughly assessed the impact on the predictive performance
of three complicating factors: the incidence angle, the water turbidity, and
the distance between the sensor and the water surface. To facilitate compre-
hensive evaluations, we also incorporated an ultrasonic sensor alongside the
LiDAR.

We developed a laboratory data collection procedure to control the above-
mentioned complicating factors. We analysed the performance of ultrasonic
and LiDAR sensors from different perspectives, including results stratified
per water turbidity. Then, we used these performances as baseline results
for our proposed approach of using traditional machine-learning models to
combine data from distance sensors to IMU to reduce predictive error.

Compared to the baselines, these models led to superior performance
in all conditions considered. The overall mean average error (MAE) was
reduced from 56.31 cm to 13.94 cm for the LiDAR and from 3.28 cm to
0.51 cm for the ultrasonic (distances in the dataset ranged in the [50, 300]
cm interval). The performance gap between the ultrasonic sensor and the
LiDAR was significantly reduced through the proposed approach, with non-
statistically significant differences for medium or high water turbidity, and
tilt angles up to 7.5◦.

This work provided four distinct contributions: (i) detailing the design of
an experimental device that integrates either a LiDAR or an ultrasonic sensor
with an IMU to enhance water level detection; (ii) evaluating the independent
performance of LiDAR and ultrasonic sensors for water level measurement
within a controlled environment while regulating the tilt angle, the water
turbidity, and the distance between sensor and water surface; (iii) investigat-
ing the use of machine learning models to fuse the IMU variables with the
data from the LiDAR or ultrasonic sensors; and (iv) conducting a compre-
hensive assessment of each model, gauging their performance enhancement
over individual sensors.

This paper unfolds as follows. Section 2 discusses the technical aspects
of the sensors examined in this study. Section 3 reviews existing studies on
water level detection using pressure, ultrasonic, and LiDAR sensors, empha-
sising the research gap we addressed. Section 4 outlines the data collection
procedure, detailing the experimental apparatus and the tests performed
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in a controlled laboratory setting. Section 5 introduces the techniques for
analysing sensor data, the machine learning methods used, and the additional
analyses performed. Section 6 reports our results, presenting evaluation met-
rics, error distributions, and statistical significance tests. Section 7 offers an
in-depth discussion of these findings, including implications and comparisons
across different conditions. Finally, Section 8 offers closing thoughts and fu-
ture research directions.

2. Background

This section elucidates the fundamental principles underlying the tech-
nologies employed in measuring water levels. These measurement techniques
can be bifurcated into two distinct categories: contact and non-contact.

Contact measurement is typified by the presence of sensor interaction with
the subject material, which could encompass both liquid and solid states.
Pressure transducers constitute prime examples of contact measurement tech-
nologies [20]. They use the Stevin principle to calculate water column height
via hydrostatic pressure [21]. To do this accurately, atmospheric pressure ef-
fects must be removed from the sensor readings. This is where vented cable
technology can be used, as it can measure and adjust for atmospheric pres-
sure [22, 14]. However, changes related to installation conditions like stilling
or vortex emergence can change the pressure measurements independently of
the water level. Besides, the sensor is in direct contact with water, making
it vulnerable to being dislodged or moved by debris in floodwaters [14, 23].

In this paper, we are concerned with non-contact level measurement de-
vices, which encompass ultrasonic acoustic wave transmission, radio wave
(i.e., radar) transmission, laser transmission technologies, and video cam-
eras [22, 24, 10, 25, 26]. The subsequent subsections delineate the two ap-
proaches we assessed in this work: ultrasonic and laser-based level measure-
ment.

2.1. Ultrasonic-based measurement

Ultrasonic technology represents a non-contact approach to water level
measurement, utilising a high-frequency acoustic transducer to propagate
sound waves through the air towards the water surface [22]. It may be ap-
plied in various fields, such as thickness measurement, mechanical properties,
robotics, remote sensing and surface imaging [27]. Additionally, it is capable
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of being utilised in the design of both Structural Health Monitoring (SHM)
systems and self-aware smart structures [28].

The ultrasonic ranging principle is based on converting electrical signals
into sound energy using a piezoelectric crystal inside the transducer. The
signal is emitted into the air, reflected off the target, and received back
by the transducer [29]. In pulse-echo mode, distance (s) is calculated by
measuring time t between transmitted and received signals using Equation 1
[30].

s =
ct

2
(1)

where c is the sound velocity in the medium. The distance is divided by two
because we want to calculate the one-way distance, not the round trip.

Hence, the water level is determined by calculating the wave’s travelled
distance. Ultrasonic water level meters showcase commendable performance
in terms of measurement accuracy, and their installation proves compara-
tively straightforward in intricate environments. However, they are suscep-
tible to environmental perturbations [31]. As already stated, factors such as
temperature, humidity, snow, rain, fog and dust can interfere with the trans-
mitted and reflected signals [32, 14, 13]. Moreover, it has been empirically
substantiated that temperature and humidity can influence the measure-
ments obtained from ultrasonic sensors [14].

2.2. Laser-based measurement

LiDAR constitutes an active remote sensing technology that utilises elec-
tromagnetic (EM) waves within the optical and infrared wavelength spectrum
[33]. The system operates by transmitting a series of laser beams and subse-
quently gathering the received signals. Analogous to the ultrasonic method,
the laser pulse’s travel distance (i.e., range) is computed via the wave’s time-
of-flight. This methodology exhibits significant potential in the domain of
water level measurement [22].

The range measurement is influenced by the amount of received light,
known as intensity. According to Kashani et al. [24], several factors affect
the measurement intensity, including the characteristics of the target surface,
such as reflectance ρ. The reflectance of the target surface in water level
measurement is directly influenced by the fluid’s turbidity [17, 24].

Another factor is the data acquisition geometry, which includes the range
r and incidence angle β. The incidence angle is the angle between the trans-
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mitted laser beam and the target surface [34, 35]. Higher incidence angles
generally lead to reduced backscattering of the incident laser energy towards
the receiver, resulting in lower received optical power [24].

These effects are modelled in Equation 2, the LiDAR range Equation,
adapted from technical and academic literature [24, 36, 17], in which t is
the timestamp, Pa(t) is the power of the transmitted laser pulse, Pb(t) is
the laser power received from the water surface, T 2

atm is the transmission
coefficient of the atmosphere, ηa and ηb are the optical transmission and
reception efficiencies, and Ar is the area of the receptor.

Pb(t) =
ρPa(t)T

2
atmηaηbArcos

2(β)

πr2
, (2)

This equation relates the received optical power to the transmitted power
and other parameters related to the system, acquisition geometry, environ-
ment, and target characteristics. It can be applied to water surfaces, allowing
for the identification of water level [37, 17].

3. Related Work

This section reviews water level measurement methodologies closely aligned
with our study. Our focus was centred on design and systematic analysis em-
ploying ultrasonic and LiDAR sensors. Additionally, we examined research
concentrated on minimising measurement inaccuracies, aligning with the pri-
mary objective of our proposed experimental device and machine learning
models.

Water level measurement through ultrasonic sensors has been employed in
different applications. Some works addressed level measurement and control
in water tanks, such as Gondkar et al. [38], Choubey et al. [39], Jan et
al. [40] and Djalilov et al. [41]. A more critical environment was addressed
by Sasikala et al. [42], which proposed safeguard methodologies for dams and
reservoirs based on water level measurement through ultrasonic sensors, with
results showing a low error rate and short data transmission latency.

Integrated systems for flood monitoring have been proposed using ul-
trasonic sensors, many of which focused on the IoT environment to ensure
a reliable platform for water level monitoring. For example, Hanan and
Sumadiyasa [43] proposed a water surface-level detection system using the
HC-SR04 ultrasonic sensors and the ESP8266-12E module. The system
detects water height and sends the information to the module. Similarly,
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Prafanto and Budiman [44] presented a wireless sensor network-based sys-
tem for automatic, real-time detection of river water levels using ultrasonic
sensors. The system transmits the water level data to a web server, allowing
the public to monitor the river’s height in real time.

A comparative analysis between ultrasonic sensors and pressure differen-
tial transducers for monitoring a river level was presented by Panagopoulos
et al. [14]. The statistical and graph analysis proved that the evaluation met-
rics of the two sensors did not significantly differ. They observed that the
stream river turbulence and the ambient temperature influenced the ultra-
sonic measurements, while the level measurement using pressure transducers
did not fluctuate significantly. However, ultrasonic sensors were considered
a complementary approach because they are not subject to damage risks in-
herent to the pressure sensors, which might be immersed in the water stream
to generate predictions.

A related analysis was made by Wannoi and Wannoi [45], who presented a
prototype for early flood warning in a wide area. Two management interfaces
were proposed to allow real-time monitoring and implement real-time alerts.
A pressure transducer was compared to an ultrasonic sensor for assessing
the water level of a two-metres depth river, with lower error values for the
ultrasonic sensor in the conditions analysed.

Fewer studies have addressed laser-based methods for this task. Paul
et al. [17] investigated time-of-flight LiDAR for measuring water levels un-
der various environmental conditions. The authors utilised a near-infrared
(905nm) LiDAR sensor, testing its performance under different conditions,
such as measurement distance, surface roughness, air temperature, water
turbidity, and measurement angle.

Tamari and Guerrero-Meza [18] demonstrated the potential of inclined
LiDAR to measure river levels, particularly in high turbidity conditions.
Their methodology incorporated an industrial range-only LiDAR. The re-
sults provided evidence that an inclined LiDAR can be effectively used to
monitor flash floods in the presence of turbid river water. Expanding this
line of inquiry, Tamari et al. [19] appraised the ability of LiDAR to measure
river levels. These experiments, conducted under turbid water conditions,
demonstrated that their method could measure the level with a reasonable
uncertainty margin.

Marins et al. [46] innovated a method to monitor the undular tidal bore
of the Garonne River utilising a commercially available 2D LiDAR. This
particular river is marked by non-hydrostatic wave behaviour and high wa-
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ter turbidity. A comprehensive wave-by-wave analysis was performed, with
cross-comparisons between LiDAR, acoustic, and pressure-derived measure-
ments to quantify the non-hydrostatic characteristics of the observed phe-
nomenon. Although it is not a level measurement paper, it is a work that
uses LiDAR to scan water surfaces.

Most of the aforementioned studies have implemented ultrasonic or Li-
DAR sensors for water level monitoring. Nonetheless, these works primarily
relied on direct sensor readings without additional implementation of er-
ror minimisation methodologies. Their focus was predominantly centred on
presenting application-specific Internet of Things architectures [43, 44] or di-
rectly evaluating sensor performance under varying conditions [14, 45, 17,
18, 19, 46]. Notwithstanding, other studies concentrated on refining the pre-
dictive capabilities of these sensors through diverse techniques.

Buhion et al. [47] proposed an IoT system endowed with an SMS-based
notification setup for flood monitoring. Two ultrasonic sensors were deployed
(i.e., the URM07 and the HC-SR04 sensors), and the errors due to water
turbulence were minimised by providing several iterations and discarding
outliers.

Bae and Ji [48] proposed a data processing algorithm focusing on outlier
removal and smoothing for water level data collected by HC-SR04 ultra-
sonic sensors in stream-scale channels. The authors used modified Z-scores
based on the median absolute deviation (MAD). The processed data are
then smoothed using an exponentially weighted moving average (EWMA)
method.

Rocchi et al. [49] presented a sensing system for sea surface level measure-
ment based on an ultrasonic sensor (SRF05) and the ATmega328p micropro-
cessor. They proposed a low-cost ultrasonic sensor integrated into a floating
device. The effects of climatic conditions were examined to determine the
optimal operating range for the sensor and buoy architecture. The sensor
exhibited signal anomalies at regular distance intervals. Hence, the authors
combined multiple SRF05 sensors to optimise measurement accuracy. An
analytical method based on ultrasonic signal reconstruction was presented
to improve the measurement accuracy.

Sahoo and Udgata [11] proposed a system to increase the accuracy of wa-
ter level measurements in storage tanks of varying depths using HC-SR04 ul-
trasonic sensors. To reduce measurement errors, the system applied a Leven-
berg–Marquardt Backpropagation Artificial Neural Network (LMBP-ANN).

Furthermore, flood warning systems can synthesise data from multiple
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river-level sensors to predict and manage flooding risks accurately. Alterna-
tive approaches can explore the Multiple Graph Learning Neural Networks
(MGLNN) framework to integrate information from multiple graphs to op-
timise graph neural networks’ learning and performance in semi-supervised
classification tasks [50]. Another possibility is to apply object detection mod-
els to identify and calculate water level measurements based on images of
fixed cameras, deployed alongside the experimental device described in this
paper, and computer vision [51, 52].

Table 1 provides an overview of various relevant studies presented in this
section. Most of the studies used ultrasonic sensors, some of which employed
self-adjustment techniques. Others considered LiDAR sensors our focus area
due to their reduced sensitivity to weather conditions. However, no previous
work has utilised a multivariate approach with IMU sensors and a machine
learning model to address the predictive inaccuracies inherent in LiDAR
sensors. To our understanding, our research paper is pioneering in offering
such an approach. For a more comprehensive evaluation, we carried out a
systematic analysis, managing key factors that influence the performance of
LiDAR sensors in water level measurement.

4. Dataset

We conducted thorough evaluations using collected data in a controlled
environment to evaluate the methodology presented in this work, as described
in Section 5. This approach allowed us to assess the methodology’s perfor-
mance under ideal conditions, minimising the impact of external factors such
as weather conditions. By isolating variables such as sensor height relative
to the water surface, tilt angle, and water turbidity, we could precisely de-
termine their influence on the sensors and develop appropriate adjustments
to account for them. The following subsections detail the data collection
procedures and provide an exploratory inspection of the collected data.

4.1. Data Collection

The data collection procedure was performed in the Hydraulics Labora-
tory of the São Carlos School of Engineering (EESC), University of São Paulo
(USP). The experimental device, depicted in Figure 1a, comprised of a fixing
plate equipped with two distance sensors (i.e., a LiDAR and an ultrasonic
sensor) positioned symmetrically to enable direct comparisons. The LiDAR
sensor utilised was the Tfmini LiDAR SRD8100, while the ultrasonic sensor
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Table 1: Summary of features on related works on liquid level measurement systems. We
assessed the use of LiDAR, ultrasonic sensors, error minimisation strategies, and auto-
calibration methods.

Year Work LiDAR Ultrasonic
Self

adjustment
Multivariate
approach

2022 Gondkar et al. [38] ✗ ✓ ✗ ✗

2022 Choubey et al. [39] ✗ ✓ ✗ ✗

2022 Jan et al. [40] ✗ ✓ ✗ ✗

2023 Djalilov et al. [41] ✗ ✓ ✗ ✗

2022 Sasikala et al. [42] ✗ ✓ ✗ ✗

2019 Hanan and Sumadiyasa [43] ✗ ✓ ✗ ✗

2018 Prafanto and Budiman [44] ✗ ✓ ✗ ✗

2021 Panagopoulos et al. [14] ✗ ✓ ✗ ✗

2022 Wannoi and Wannoi [45] ✗ ✓ ✗ ✗

2020 Paul et al. [17] ✓ ✗ ✗ ✗

2016 Tamari and Guerrero-Meza [18] ✓ ✗ ✗ ✗

2016 Tamari et al. [19] ✓ ✗ ✗ ✗

2017 Martins et al. [46] ✓ ✗ ✗ ✗

2022 Buhion et al. [47] ✗ ✓ ✓ ✗

2019 Bae and Ji [48] ✗ ✓ ✓ ✗

2019 Rocchi et al. [49] ✗ ✓ ✓ ✗

2020 Sahoo and Udgata [11] ✗ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓

was the HC-SR04. An Inertial Measurement Unit (IMU), in the form of an
MPU6050 sensor, was incorporated to account for angle tilt. The plate was
affixed to a ball head for precise control over the tilt angle.

According to its specifications, the SRD8100 sensor can detect ranges
up to 12 metres in ideal conditions. Such a short-range LiDAR sensor was
employed to evaluate edge case scenarios since the laboratory was only four
meters high. The distance between the sensors and the water bodies in the
field might potentially reach significantly larger scales.

The device was affixed to a straight bar positioned orthogonal to the wa-
ter surface within a laboratory tank, as illustrated in Figure 1b. To simulate
varying water levels, the height of the bar was meticulously adjusted, main-
taining its orthogonal orientation throughout the data collection process.

This setup provided us with control over three factors during data col-
lection: the ground truth distance between the sensor and the water surface,
the tilt angle, and the water turbidity. The distance between the sensor and
the water surface, proportional to the water level, was represented by h ∈ H.
This distance was measured along a line normal to the water surface plane
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Ultrasonic sensor

IMU

LiDAR

Ball head

(a) Experimental device. (b) Device placement.

Figure 1: Setup for the data collection procedure. In (a), we show the experimental device
consisting of one LiDAR sensor, one ultrasonic sensor, two IMUs, and a ball head, which
controlled the sensors’ tilt toward the water surface. In (b), we show the placement of the
device in the water tank used for data collection.

and could be controlled by adjusting the height of a horizontal bar placed
orthogonally to this plane. The tilt angle, denoted as θ ∈ Θ, refers to the
rotation of the sensor in relation to the normal line. It was regulated using
the ball head (see Figure 1a). The turbidity, represented by τ ∈ T , was
regulated by introducing authentic soil samples to the tank and mixing them
using a pump. The amount of soil added had a negligible volume compared
to the volume of water in the tank. Hence, the distance h was not affected
by this procedure. Figure 2 illustrates this configuration.

We explored all possible combinations of these variables within the spec-
ified domain outlined in Equation 3. The measurements in H were taken in
centimetres, while the angles in Θ were measured in degrees. Although we
measured the water turbidity in Nephelometric Turbidity Unit (NTU), we
assigned categorical names to each of the three conditions considered, which
composed the set T : low, medium, and high. These categories corresponded
to specific turbidity measurements outlined in Table 2.

H = {50, 100, 150, 200, 250, 300}
Θ = {0, 2.5, 5, 7.5, 10}

T = {low,medium, high}
(3)
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Figure 2: Schematic representation of the controlled variables. The experimental device
is positioned at a ground truth distance h from the water surface. The tilt angle θ was
regulated using a ball head, while the water turbidity τ was manipulated by introducing
soil into the water.

Table 2: Different categorical levels of water turbidity in T . Specifically, it provides the
turbidity values in Nephelometric Turbidity Units for low, medium, and high categories

Category Value

Low 2.7 NTU
Medium 35.3 NTU
High 133.0 NTU

Let D be the set of all possible combinations of the controlled distances,
tilt angles, and turbidity, as defined in Equation 4.

D = {(h, θ, τ) : h ∈ H, θ ∈ Θ, τ ∈ T} (4)

A recording session k was performed for each dk ∈ D. The total number
of combinations in D is denoted by n so that k ∈ {1, . . . , n}. Each recording
session consisted of 300 data points, collected in a 1.5Hz sampling rate and
synchronised across all sensors. The set of data points corresponding to a
tuple dk is denoted by X(dk) in Equation 5, where each point xk

i ∈ X(dk) is
a multivariate structure with the different variables coming from each sensor.

X(dk) = {xk
1, . . . ,x

k
m}, dk ∈ D (5)

The data points comprised the variables outlined in Table 3. The LiDAR
sensor provided IRh and IRs, representing the estimated distance and inten-
sity of the returned light, respectively. The ultrasonic sensor yielded USh,
its estimate of distance. The IMU delivered 3D accelerometer readings as ax,
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ay, and az, along with 3D gyroscope readings as gx, gy, and gz.

Table 3: Detailed descriptions of the variables captured by the experimental device, in-
cluding measurements from LiDAR, ultrasonic sensors, and 3D motion sensors

Variable Description

IRh Distance estimated by the LiDAR sensor
IRs Intensity returned from the LiDAR sensor
USh Distance estimated by the ultrasonic sensor
{ax, ay, az} 3D accelerometer measurements in x, y and z
{gx, gy, gz} 3D gyroscope measurements in x, y and z

The 300 data points in X(dk) for each condition dk were gathered in
a dataset with N = 31, 500 samples used in the analyses presented in the
upcoming sections.

4.2. Exploratory Inspection

To identify potential data loss resulting from noise, we initiated our anal-
ysis with an exploratory examination of the data. While the ultrasonic sensor
remains unaffected by the optical characteristics of the water body, the same
is not true for the LiDAR sensor, which returns IRh = 0 when it fails to
return an accurate reading. Hence, by considering the number of samples
in which IRh = 0, we could partially assess the presence of invalid read-
ings from the LiDAR sensor. Figure 3 presents the numbers of samples with
zero-valued IRh across all combinations of variables h, θ and τ . Since this
phenomenon happened only with the LiDAR sensor (i.e., there were no zero-
valued USh for any of the circumstances analysed), we did not show a similar
graph for the ultrasonic sensor.

As shown in Figure 4a, there is a complex correlation between the ab-
solute error measurement produced by IRh and the tilt angle, which differs
according to the water turbidity. The graph illustrates the tilt angle θ plot-
ted against the corresponding average absolute error between the predicted
value IRh and the actual distance h, measured in centimetres.

We provided two panels illustrating this relationship: one containing all
samples and the other one only with samples in which IRh ̸= 0. These two
views are complementary, as each of them has its own limitations. The top
panel showed higher errors when the angle increased due to many samples
where IRh = 0. We added a bottom panel excluding these samples. This
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Figure 3: Number of samples in which IRh = 0 from the LiDAR sensor, for each distance
h, turbidity τ , and angle θ. Lower values of τ and greater values of h make the LiDAR
sensor more sensitive to θ.

panel reveals that average error at higher θ values is skewed because of more
samples with lower h values. This skewness results from discarding many
higher h value samples due to sensor failures causing IRh = 0 readings.
Moreover, in both cases, the intricate relationship between the tilt angle and
the absolute error is clearly visible.

Regarding the ultrasonic sensor, Figure 4b shows the average absolute
errors across all water turbidity conditions since this sensor is unaffected by
this factor. As shown in the figure, the scale of the errors is one order of
magnitude lower compared to the LiDAR. Interestingly, the error is lower
when there is some inclination in the sensor, remaining as little as 2.5cm for
θ = 10◦.

The complex relationship between the variables and the need for a more
sophisticated model to effectively perform error minimisation can also be ver-
ified by computing the Pearson correlation between each pair of variables in
the dataset. We computed such a correlation matrix, illustrated as a heatmap
in Figure 5. Only correlation coefficients with absolute values exceeding a
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Figure 4: Errors of the raw LiDAR and ultrasonar predictions per angle θ. The confidence
interval is shown as shaded areas.

threshold of 0.25 are explicitly displayed.
Upon examination, it is evident that the variables USh and h exhibit a ro-

bust positive correlation, approaching the coefficient of 1.0. Conversely, a rel-
atively weaker correlation, with a coefficient around 0.5, is observed between
IRh and h, underscoring the importance of addressing the error introduced
by the LiDAR sensor. As expected, a significant correlation emerges between
the actual tilt angle θ and the accelerometer measurements ax (close to −1)
and ay (approximately −0.7). Additionally, θ demonstrates a noticeable cor-
relation with IRs, with a coefficient around −0.6. This result suggests the
potential of leveraging this variable, in conjunction with other factors like
IMU readings, as a valuable input in a prediction model. The IMU vari-
ables ax and ay also have a non-trivial correlation with IRs (0.6 and 0.4,
respectively), while these two variables correlate among themselves with a
0.7 coefficient.
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Figure 5: Correlation matrix illustrating the pairwise Pearson correlation coefficients cal-
culated among variables in the dataset.

5. Water Level Identification

This section outlines the methods employed to evaluate and enhance the
precision of the LiDAR and ultrasonic sensors in identifying water levels,
which can be directly derived from the estimated distance between the sensor
and the water surface produced by our approach. We introduce the analyses
undertaken on the predictions from the individual sensors and the machine
learning-based approach designed and employed to generate more accurate
predictions using the LiDAR sensor and the IMU.

As already presented in Table 3, our dataset consisted of nine variables.
Among them, two were associated with the LiDAR sensor (i.e., IRh and
IRs), one with the ultrasonic sensor (i.e., USh), and six with the IMU (i.e.,
ax, ay, az, gx, gy, and gz). The inclusion of the ultrasonic sensor in our com-
parisons was motivated by its widespread usage as a non-immersive sensor
for water level identification [53, 54, 41], with accurate results on controlled
environments. For this reason, we employed it as a reference to evaluate the
results of our models.

The problem was formulated as the regression task of estimating the
ground truth distance h between the sensor and the water surface. Let
h′(X(dk)) be a prediction of the ground truth value h, obtained from the set
of data points X(dk) corresponding to recording session k. To mitigate the
influence of outliers present in the recording session, we opted to utilise the

16



median value as the predicted value, as outlined in Equation 6.

h′(X(dk)) = median(X(dk)[sh]), sh ∈ {IRh, USh} (6)

We calculated three regression metrics to assess the accuracy of the pre-
dictions [55]: the Mean Absolute Error (MAE), the Root Mean Squared
Error (RMSE), and the R2 score (i.e., coefficient of determination). Addi-
tional analyses were performed in terms of the absolute error L computed
for each prediction as in Equation 7.

L(h′(X(dk))) =
∣∣X(dk)[h]− h′(X(dk))

∣∣ (7)

We began by performing a comparative analysis of measurements ob-
tained from both the LiDAR and ultrasonic sensors. Our primary focus was
on evaluating the performance of the individual sensors. Hence, we assessed
the predictions provided directly from variables IRh and USh to assess the
performance of each sensor in its original configuration.

Afterwards, we constructed machine-learning models combining the vari-
ables from the LiDAR or ultrasonic sensors with those from the IMU. In the
LiDAR sensor experiments, we excluded the USh variable from the dataset
and utilised the remaining variables. Conversely, in the ultrasonic sensor
experiments, we excluded the IRh and IRs variables. We chose not to anal-
yse models that combine LiDAR and ultrasonar because, in our controlled
experimental scenario, models based only on the ultrasonic sensor and the
IMU consistently yielded minimal errors (refer to Section 6), leaving little
room for further improvement. The input variables utilised for the LiDAR
and ultrasonic models are outlined in Table 4.

Table 4: List of input variables utilised by the models, categorised by the type of distance
sensor—LiDAR and Ultrasonic

Distance sensor Input variables

LiDAR {IRh, IRs, ax, ay, az, gx, gy, gz}
Ultrasonar {USh, ax, ay, az, gx, gy, gz}

We conducted a thorough assessment of four machine-learning techniques:
Linear Regression (LR), k-Nearest Neighbours (KNN), Random Forest (RF),
and AdaBoost (Ada) [56]. The LR technique was used as our baseline re-
gressor to establish a foundation for comparison. The KNN regressor was
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assessed as a simple yet effective instances-based approach. The RF and Ad-
aBoost regressors, both based on decision tree ensembles, were evaluated as
more sophisticated machine-learning models. Let A be the set of machine-
learning techniques employed, given in Equation 8.

A = {LR, KNN, RF, Ada} (8)

Since the samples consisted of tabular data with independent samples,
it would make little sense to employ deep learning algorithms that benefit
from temporal or spatial dependencies [57], such as Convolutional Neural
Networks (CNN) or Long Short-Term Memory (LSTM). For this reason, we
did not consider these approaches in our experiments.

The LR model was optimised using the least squares method with no spe-
cial parametrisation. Regarding the hyper-parameters of the other machine-
learning methods, Table 5 shows the values used in our experiments. We
configured the KNN regressor to make predictions based on 5 nearest neigh-
bours, employing the Euclidean distance metric. The RF regressor was set
up with 100 estimators and the squared error function to measure the qual-
ity of a split. The AdaBoost regressor was endowed with 150 decision tree
estimators with a maximum depth equal to 10 and a learning rate of 0.5.

Table 5: Hyper-parameters used for the machine-learning algorithms, cautiously tuned in
exploratory tests.

Method Parameter Value

KNN
Number of neighbours 5
Distance metric Euclidean

Random Forest
Number of estimators 100
Criterion Squared error

AdaBoost

Number of estimators 150
Learning rate 0.5
Loss function Linear
Maximum depth 10

For splitting the data, we implemented measures to prevent any data
leakage between the train and test sets. Since the controlled variables h, θ
and τ remained consistent throughout each recording session, we assigned
all data from each session exclusively to either the train or test set. This
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protocol was crucial to avoid inflated performance metrics when evaluating
the test set.

We adopted a leave-one-out approach using each subset X(dk), corre-
sponding to an individual recording session k, as a test set, while the data
points from the remaining recording sessions were used as the train set. Thus,
the number of splits was equal to the total number of recording sessions, de-
noted by n. Since length(H) = 6, length(Θ) = 5 and length(T ) = 3, we
ended up with n = 6×5×3 = 90 splits. The formal definition of the train and
test sets, denoted as traink and testk for each k, is presented in Equation 9.{

traink = X−X(dk)

testk = X(dk)
k ∈ {1, . . . , n} (9)

For each machine-learning architecture a ∈ A, we trained the models Ma
k

using the train set of each split k. We generated the predictions Ma
k (testk)

based on the corresponding test set. Afterwards, we aggregated the median
predictions from all splits in a data frame H ′

a, as defined in Equation 10.

H ′
a = median(Ma

1 (test1)) ∪ · · · ∪median(Ma
n(testn)) (10)

We calculated multiple evaluation metrics using H ′
a. Additionally, we

analysed the distributions under various conditions to evaluate the perfor-
mance of different machine learning models and their behaviour across differ-
ent values for water turbidity. The subsequent section presents these findings.

6. Results

In this section, we provide the outcomes of the methodologies detailed
previously. The results include evaluation metrics, boxplots, significance
tests, and relevant supplementary information required for their interpreta-
tion. Further analysis and discussions on these findings are also presented.

We conducted a two-stage assessment of the results. In the first stage,
we evaluated the performance of individual sensors using only the variables
IRh and USh, without employing any error minimisation techniques. In
the second stage, we applied machine learning models and examined the
enhancements observed under diverse conditions. To ensure consistent sta-
tistical significance across our analyses, we set α = 0.05 for all conducted
tests.
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6.1. Individual Sensors Performance

The absolute errors h′ from the LiDAR and ultrasonic sensors, measured
in centimetres and categorised according to water turbidity, are represented
by the boxplots in Figure 6. It is worth mentioning that, in this particular
figure, we are showing the distributions across all data points, not only the
median values.

An independent t-test was applied for each water turbidity to assess the
statistical significance of the results. The error was the dependent variable,
while the type of sensor was the independent variable. The null hypothesis
was that both the LiDAR and ultrasonic sensors led to similar absolute errors.
The results are presented along with Figure 6 using a star notation12.
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Figure 6: Boxplots of the absolute errors from the LiDAR and ultrasonic sensors for each
water turbidity considered. An independent t-test was applied for each water turbidity
to evaluate the null hypothesis that both sensors lead to the same error. All data points
were considered, not only the median values h′.

The ultrasonar provided lower errors, with statistical significance, for
all turbidity levels. This result was expected due to the robustness of the
ultrasonic sensor to incidence angles, leading to better performance than the
LiDAR regardless of the water turbidity.

Reminding the number of zero-valued readings of IRh, shown in Figure 3,
we could verify that the LiDAR sensor encounters a higher failure rate under

1p-value annotation legend:
(ns → p > 0.05); (∗ → p ∈ [0.01, 0.05]); (∗∗ → p ∈ [0.001, 0.01]);
(∗ ∗ ∗ → p ∈ [0.0001, 0.001]); (∗ ∗ ∗∗ → p < 10−4).

2In this paper, we maintained a consistent statistical significance level by setting α =
0.05 for all conducted tests.
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conditions of low water turbidity, especially when h and θ increase. This
scenario influenced the individual sensors predictions shown in Figure 6, in
which a large number of invalid readings of the LiDAR sensor when τ = low
resulted in many samples with IRh = 0, increasing the overall error rates.

The evaluation metrics (i.e., MAE, RMSE, and R2 score), computed
based on the median values h′(X(dk)) and presented in Table 6, corrobo-
rate this analysis.

Table 6: Performance evaluation of LiDAR and Ultrasonic sensors across different turbidity
levels, with metrics presented in centimetres (cm)

Modality Turbidity MAE RMSE R2

LiDAR
Low 115.83 170.35 -1.90
Medium 48.41 82.99 0.31
High 21.13 27.23 0.93

Ultrasonar
Low 10.15 44.61 0.80
Medium 12.57 45.50 0.79
High 8.58 44.78 0.80

We analysed the influence of the turbidity level τ on the absolute error
L for each sensor. To determine if there were any statistically significant
differences among the three possible values in T , we performed a one-way
ANOVA test. The results of this test are presented in Table 7. The indepen-
dent variable was τ , the dependent variable was the absolute error L yielded
by each sensor, and the null hypothesis was that the water turbidity did not
affect the absolute error for a given sensor.

Table 7: One-way ANOVA test results comparing prediction errors of LiDAR and Ultra-
sonic sensors.

Sensor F-value p-value

LiDAR 11.86 < 10−4

Ultrasonar 0.07 0.93

Figure 7 presents the boxplots illustrating the absolute errors of both
the LiDAR and ultrasonic sensors for each turbidity level τ . The figure
also includes the outcomes of the post hoc independent t-tests conducted
to determine pairwise statistically significant differences across the water
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turbidity values. We show these results only for the LiDAR sensor because
the ANOVA test for the ultrasonic sensor yielded p = 0.93 > 0.05 (see
Table 7), failing to reject the null hypothesis.

The null hypothesis of the ANOVA test was rejected for the LiDAR but
not for the ultrasonic sensor. This outcome aligns with expectations since
the ultrasonic sensor operates using sound waves, which remain unaffected
by the water turbidity. The results from the post hoc t-tests applied to the
LiDAR sensor, shown in Figure 7, confirm the expected trend: the absolute
error was significantly higher for τ = low than for the other conditions.
No statistical significance was observed when comparing τ = medium to
τ = high. Moreover, by observing the scale of each plot, it becomes evident
that, overall, the ultrasonic sensor led to better performance.
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Figure 7: Boxplots and results for the pairwise independent t-tests applied to the raw
sensors’ data. The independent variable was the absolute error, while the dependent
variable was the water turbidity τ . Notice the different scales of each plot.

So far, we have presented an analysis of the predictions provided by the
individual sensors without any error minimisation technique. As expected,
the outcomes were unfavourable for the LiDAR sensor, as the ultrasonic
sensor displayed reduced errors and greater stability across various turbidity
levels and incidence angles.

In the subsequent subsection, we present the outcomes of our machine-
learning approach, which integrated variables from both the LiDAR and
the IMU. This approach aimed to bridge the disparity between the results
obtained from these sensors, ultimately achieving comparable performance
while leveraging the advantageous features of the LiDAR, such as its re-
silience to adverse weather conditions. As a reference for comparison, we
also considered combining the ultrasonar with the IMU in the same condi-
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tions experimented for the LiDAR.

6.2. Machine-Learning Approach

In this subsection, we present the results of the machine learning-based
approach proposed in this paper. We present a comparison between these re-
sults to those of the individual sensors, besides an assessment of the different
machine-learning techniques considered.

6.2.1. Overall Results

Since the RF models were the most accurate for both the LiDAR and ul-
trasonic sensors (see Section 6.2.2 for details), we compared their predictions
with those of the individual sensors. The analyses were segmented for all
turbidity levels and tilt angles. Henceforth, we refer to the RF model based
on the LiDAR sensor as IR-RF and the RF model based on the ultrasonic
sensor as US-RF. The individual predictions from the LiDAR and ultrasonic
sensors (i.e., the median values of IRh and USh across each recording session)
are denoted as IR and US, respectively.

Table 8 shows the overall evaluation metrics for the IR, US, IR-RF, and
US-RF models. Besides, it depicts the metrics separated by water turbidity
τ . Table 9 provides a similar comparative presentation for the tilt angle θ.
In both cases, the measurements are shown in centimetres.

We computed one-way ANOVA tests to identify statistically significant
differences between the absolute errors (dependent variable) yielded by each
of the above-mentioned models (i.e., IR, US, IR-RF and US-RF). In Table 10,
we show the results for the overall results and the results separated by water
turbidity. In Table 11, we show the results separated by tilt angle.

Thereafter, we conducted post hoc tests using pairwise independent t-
tests to further analyse the results. We did not perform post hoc t-tests for
θ = 0, for which the ANOVA test failed to reject the null hypothesis (see
Table 11). The results, presented in centimetres, are displayed alongside the
boxplots in Figure 8.

Through an examination of the performance metrics for the IR, US, IR-
RF, and US-RF models categorised by water turbidity (Table 8) and tilt
angle (Table 9), several observations emerge. The IR model yielded un-
favourable outcomes for τ ∈ {low,medium} and θ ≥ 5◦, as evidenced by R2

scores falling below zero. However, applying the proposed machine-learning
approach in the IR-RF model significantly mitigated these errors.
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Table 8: Evaluation metrics for each model for measuring h across different turbidity
levels, with results in centimetres

Turbidity Model MAE RMSE R2

Overall

IR 56.31 99.96 -0.37
US 3.28 7.31 0.99
IR-RF 13.94 32.47 0.86
US-RF 0.51 3.43 1.00

Low

IR 99.27 146.93 -1.96
US 3.09 7.65 0.99
IR-RF 31.26 50.01 0.66
US-RF 0.95 5.20 1.00

Medium

IR 50.38 88.01 -0.06
US 5.69 10.02 0.99
IR-RF 8.65 24.08 0.92
US-RF 0.52 2.83 1.00

High

IR 19.28 25.31 0.91
US 1.07 1.20 1.00
IR-RF 1.90 9.06 0.99
US-RF 0.07 0.37 1.00

On the other hand, although the US-RF model exhibited some improve-
ment towards the original US model, such an improvement was comparatively
modest and, as shown in the analyses, not statistically significant. This re-
sult is related to the robustness of the ultrasonar to varying incidence angles.
The ultrasonic sensor leads to low error rates even without any minimisation
techniques (see Section 6.1), indicating that the potential for improvement
is comparatively lower than that of the LiDAR sensor.

The boxplots presented in Figure 8a, and the corresponding pairwise
t-tests provide further evidence supporting the patterns observed for the
absolute errors. In the overall scenario, all models exhibited statistically
significant differences from each other. The US-RF model emerged as the
top-performing model, closely followed by UR and IR-RF, which exhibited
more outliers. The original IR model performed worse than all other models.

When considering the models’ performance based on different turbidity
levels, the overall trends resembled those observed for τ = low. However, for
τ ∈ medium, high, the t-tests did not reject the null hypothesis when com-
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Table 9: Evaluation metrics for each model measuring h, separated by angle, in centime-
tres.

Angle Model MAE RMSE R2

0◦

IR 2.33 2.65 1.00
US 4.65 9.34 0.99
IR-RF 1.83 7.32 0.99
US-RF 2.56 7.66 0.99

2.5◦

IR 11.39 14.41 0.97
US 4.92 9.35 0.99
IR-RF 0.25 1.06 1.00
US-RF 0.00 0.00 1.00

5◦

IR 67.22 108.89 -0.63
US 1.98 4.90 1.00
IR-RF 12.28 25.31 0.91
US-RF 0.00 0.00 1.00

7.5◦

IR 80.22 115.89 -0.84
US 1.96 4.78 1.00
IR-RF 15.74 30.97 0.87
US-RF 0.00 0.00 1.00

10◦

IR 120.39 156.38 -2.35
US 2.91 6.76 0.99
IR-RF 39.58 60.15 0.50
US-RF 0.00 0.00 1.00

Table 10: Results for the one-way ANOVA test applied to the water-level estimation
models, separated by water turbidity.

Turbidity F-value p-value

Overall 30.77 < 10−4

Low 18.32 < 10−4

Medium 10.57 < 10−4

High 28.02 < 10−4

paring IR-RF to US or US-RF. These findings highlight the significant error
reduction achieved by the proposed approach for the LiDAR sensor, partic-
ularly in the case of τ = medium. This improvement resulted in outcomes
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Table 11: One-way ANOVA test results for evaluating differences in water-level estimation
models at distinct angles

Angle F-value p-value
0◦ 0.62 0.61
2.5◦ 13.60 < 10−4

5◦ 8.70 < 10−4

7.5◦ 12.59 < 10−4

10◦ 17.75 < 10−4

that closely aligned with those of the ultrasonic sensor, except for τ = low.
By examining the outcomes categorised by tilt angle in Figure 8b, a dis-

cernible trend becomes apparent: the IR-RF model displayed no statistically
significant differences when compared to the US and US-RF models for all
conditions but the most extreme scenario with θ = 10◦. Under this particular
condition, the US and US-RF models yielded lower absolute errors than the
IR-RF model. It is worth recalling that the null hypothesis was not rejected
during the ANOVA test conducted for θ = 0◦, indicating that the models did
not exhibit statistically significant differences under this specific tilt angle.

The statistical analysis reveals that, for θ = 2.5◦, the IR model did not
exhibit any significant differences compared to the US model. However, for
θ ≥ 5◦, the US model consistently yielded lower absolute errors. Addition-
ally, the results indicated that while the US and US-RF models did not differ
significantly in statistical terms, the evaluation metrics hinted at an improved
performance for US-RF. Conversely, the IR-RF model consistently outper-
formed the IR model for θ ≥ 2.5◦, except for θ = 5◦. This finding underscores
the effectiveness of the proposed approach in reducing errors associated with
the LiDAR sensor.

6.2.2. Models Assessment

As already stated, we evaluated the four machine-learning models in A.
We analysed the distribution of the prediction values besides computing the
MAE, RMSE, and R2 metrics. Since the data frame H ′

a for each a ∈ A
contained predictions for each data point in the dataset, we could perform
direct comparisons with the predictions from the individual sensors.

The evaluation metrics in centimetres for each model are shown in Ta-
bles 12 for the LiDAR sensor and 13 for the ultrasonic sensor. We provide
both overall metrics and metrics categorised by water turbidity to analyse
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Figure 8: Boxplots and results for the pairwise independent t-tests applied to the different
models for measuring the distance h, including the medians of the raw sensor data (i.e., IR
and US) and the medians of the corresponding predictions of the Random Forest models
(i.e., IR-RF and US-RF). The independent variable was the absolute error, and the null
hypothesis was that each pair of models led to the same absolute error. Separate plots are
shown for each water turbidity τ ; and tilt angle θ.

how each machine-learning model impacted the absolute error. We consid-
ered the different conditions of water turbidity for the LiDAR-based models.
Since the ultrasonic sensor remains unaffected by water turbidity, we present
only the overall results for the models based on it.

The evaluation metrics presented in Tables 12 and 13 reveal that the RF
models consistently delivered the best overall performance for both sensors,
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Table 12: Evaluation metrics across different turbidity levels for each machine learning
algorithm applied to data from the LiDAR sensor and IMU.

Turbidity Model MAE RMSE R2

Overall

Linear Regression 59.68 72.90 0.27
KNN 27.99 42.31 0.75
Random Forest 15.04 34.92 0.83
AdaBoost 15.70 35.81 0.82

Low

Linear Regression 74.86 88.87 -0.08
KNN 34.67 49.80 0.66
Random Forest 31.26 50.01 0.66
AdaBoost 30.37 49.18 0.67

Medium

Linear Regression 56.06 68.51 0.36
KNN 19.67 28.93 0.89
Random Forest 8.65 24.08 0.92
AdaBoost 10.58 26.76 0.90

High

Linear Regression 42.76 50.29 0.65
KNN 16.17 22.97 0.93
Random Forest 1.90 9.06 0.99
AdaBoost 1.67 9.13 0.99

closely followed by the AdaBoost models. These models led to R2 scores
higher than 90% and MAE values no higher than 10.58cm for all conditions
except for the LiDAR sensor with low water turbidity. For the ultrasonic
sensor, the RF and AdaBoost models led to an overall error very close to
zero.

While the KNN regressor exhibited inferior evaluation metrics compared
to the ensemble-based models (RF and Ada) for all conditions except the
LiDAR sensor with low water turbidity, it still effectively reduced errors
compared to the LiDAR sensor’s LR baseline. However, for the ultrasonic
sensor, KNN did not outperform LR regarding error reduction.

In Table 14, we performed a repeated-measures ANOVA test to determine
whether there were any statistically significant differences in the outcomes of
each model. The independent variable was the machine learning model, the
dependent variable was the absolute error, and the null hypothesis was that
all trained models led to similar absolute errors.

Since the null hypothesis was rejected for all cases, we conducted pairwise
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Table 13: Evaluation of machine learning algorithms based on data from the ultrasonic
sensor and IMU.

Model MAE RMSE R2

Linear Regression 6.21 13.00 0.98
KNN 10.36 19.64 0.95
Random Forest 0.92 8.00 0.99
AdaBoost 1.17 12.85 0.98

Table 14: Repeated measures ANOVA test results for machine learning models by sensor
type and turbidity level

Sensor Turbidity F-value p-value

LiDAR

Overall 63.63 < 10−4

Low 16.07 < 10−4

Medium 43.91 < 10−4

High 39.43 < 10−4

Ultrasonar Overall 26.92 < 10−4

post hoc paired t-tests to identify which pairs of models differed from each
other with statistical significance. The results from these tests are shown,
along with the corresponding boxplots, in Figure 9.

For both sensors, no statistically significant differences were observed in
the absolute errors between the RF and AdaBoost models. However, the
LR regressor exhibited larger errors than all other models when applied to
the LiDAR sensor. Conversely, in the case of the ultrasonic sensor, the LR
regressor only displayed a non-significant difference when compared to the
KNN regressor. Thus, the apparent numerical advantage of LR over KNN
could not be confirmed by significance tests.

When considering the LiDAR sensor under conditions of low water tur-
bidity, both the RF and AdaBoost models showed no statistically significant
differences when compared to KNN. However, while AdaBoost still lacked
statistical significance compared to KNN in the medium turbidity scenario,
RF demonstrated a significant difference. In all other conditions, both the
RF and AdaBoost models exhibited statistically significant improvements
over KNN.
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Figure 9: Boxplots and results for the pairwise paired t-tests applied to the machine
learning models (dependent variable). The independent variable was the absolute error,
and the null hypothesis was that each pair of models led to the same absolute error. For
the LiDAR sensor, separate plots are shown for each sensor and water turbidity.

6.2.3. Feature Importance

Besides being the most accurate, the tree-based models analysed (i.e., RF
and Ada) allowed for computing importance values for each input variable
based on the Mean Decrease in Impurity (MDI) [58]. The resulting values
are shown in Figure 10. To aid in visualising the contributions of the other
variables, we presented the graphics on a logarithmic scale. Besides, for
clarity purposes, we omitted negligible contributions with importance values
below 10−3.

Despite their close performance, the feature importance values revealed
distinct behaviours between RF and AdaBoost. RF showed a significant
contribution from the variables IRh and USh. Specifically, the LiDAR sensor
placed 89% importance on IRh, with some consideration given to IRs (5%)
and ax (4%). The remaining variables contributed less than 1% each. On
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Figure 10: Feature importance analysis for Random Forest and AdaBoost models using
LiDAR and ultrasonic sensors. The figure showcases the logarithmic scale plots to highlight
the significance of variables beyond IRh, IRs, and USh. The values of contributions
exceeding 10−2 are displayed, while contributions below 10−3 are omitted for clarity.

the other hand, the ultrasonic sensor was largely influenced by the variable
USh, which accounted for 100% of the importance.

AdaBoost provided a more balanced distribution of importance among
the variables, with ax (22%) being more influential than IRh (11%) and IRs

(19%). All accelerometer variables contributed more than 10%, as did gx.
For the ultrasonic sensor, although the most important variable was USh

(71%), all the remaining variables contributed more than 1%, and ax had an
importance of 9%.

The divergent behaviours observed between these two ensemble algo-
rithms can be attributed to their underlying characteristics [59]. RF operates
on the principle of bootstrap aggregation (i.e., bagging), in which multiple
weak learners are trained on different bootstrapped datasets to minimise vari-
ance and enhance generalisation. Given that IRh and USh directly estimate
the target variable h, it is reasonable to expect that these variables offer the
highest reduction in entropy during the training process.

In contrast, AdaBoost utilises a boosting technique that aims to minimise
bias and optimise predictions by training subsequent learners to rectify the
mistakes of their predecessors. As a result, this approach incorporates a
wider range of features to capture and understand the relationships between
them.
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7. Discussion

In the preceding sections, we presented the evaluation metrics, boxplots,
and significance tests corresponding to our analyses, shedding light on the
individual performance of each model. In this section, we provide some
insights into the implications of these results.

Our study consisted of a data-driven approach to assess the influence of
controlled factors in a water measurement system composed of a set of sensors
and a machine-learning model. We collected the first dataset synchronised
data from LiDAR and IMU devices that controlled angle, distance and water
turbidity in the domain of water level measurement. The proposed approach
consisted of fusing both sensors using traditional machine-learning techniques
to provide better predictions when compared to the individual sensors.

For the LiDAR and ultrasonic experiments, the baseline models were the
predictions provided by the individual sensors. We also provided a straight-
forward logistic regression model and a KNN approach as machine-learning
baselines to compare to the tree-based models, which we expected to generate
accurate predictions due to their known ability to model tabular data [60].

There were no other models deployed in similar datasets in the literature.
Our dataset can be a starting point to evaluate different types of models
that deal with water level measurement with combinations of laser and ul-
trasonic sensors with inertial units. Although more sophisticated patterns,
such as long-term temporal dependencies, can only be achieved in real-world
environments, our dataset has stationary data that can be used to improve
models for deployed systems.

Using contactless sensors can prevent interference in measurements and
physical damage caused by debris during flood events. LiDAR equipment is
highly resistant to environmental factors and requires minimal maintenance.
Additionally, LiDAR sensors are less sensitive than ultrasonic sensors to in-
terference from fog and rainfall. However, the extent of this interference for
the specific application has not been quantified, making it an interesting area
for future research.

As mentioned earlier, the angle at which the LiDAR sensors are positioned
is crucial for accurate readings. Therefore, we were concerned about wind
and soil vibrations caused, for instance, by vehicles passing by. To address
this, we propose integrating the IMU to manage angle variations and predict
and overcome potential wind and vibration-related issues. It is important to
note that solid and stable support for the sensor equipment is essential for
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the successful implementation of this plan.
As depicted in Figure 3, three factors may cause the LiDAR sensor to fail,

yielding only zero-valued readings: increased tilt angle, increased distance
and low water turbidity. Apart from using higher-end sensors or implement-
ing redundancy with other sensors, there are a few alternative ways to handle
each of these complicating factors.

The angle of a deployed sensor can be remotely monitored using the
IMU data. Suppose such an angle increases systematically and prominently
enough to harm the quality of the readings. In that case, the operating
staff needs to perform maintenance on the physical installation of the device.
Punctual fluctuations in the angle might be controlled by using more rigid
structures to hold the system. Since this condition can be directly monitored
through the IMU, it would be trivial to diagnose an increased tilt angle in
case of a sensor failure.

Sensor failures due to an increased distance between the sensor and the
water are not a critical concern because they happen when the water level
is low. However, with the sensing apparatus proposed, there is not a trivial
way to discern a failure due to increased distance than a failure due to low
water turbidity. Even though the water turbidity usually increases in flooding
scenarios, a deployed system must be able to work even if this is not the case.

Thus, another way to account for sensor failures in a changing environ-
ment, such as during heavy rainfall, is to use historical data and a forecasting
model to identify missing values. This approach is not applicable in our con-
trolled experiment, but it can provide robustness in a deployed system that
records the sensor readings over time.

We generated a dataset on a controlled scenario with a discrete set of
distances, angles and water turbidity levels. This configuration differs from
a real-world scenario in which these values are unconstrained. The splits for
training and testing were designed to evaluate the generalisation capacity
by testing the recording session of one combination (h, θ, τ) while training
with all others. Since we assigned a prediction per recording session, this
procedure corresponds to a leave-one-out protocol. This approach was espe-
cially suitable because we had a relatively small number of recording sessions
n = 90.

Overall, the results showed that the machine learning-based approach
could effectively reduce the error from the LiDAR sensor whenever it did
not completely fail (see Figure 3). The ensemble-based models applied to
the LiDAR sensor achieved comparable absolute errors to those obtained
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by the ultrasonic sensor. The overall results for IR-RF were accurate even
for θ ∈ {5◦, 7.5◦}, since it could work under these conditions provided τ ∈
{medium, high}.

These results are highly promising in terms of practical applications.
Rainfall is recognised for its tendency to elevate water turbidity, particu-
larly during flash flood events [61]. Consequently, given a certain increment
in turbidity has happened, the IR-RF model can provide accurate predic-
tions even with increased tilt angles (see Figure 8b). Therefore, with careful
consideration for tilt angles, a LiDAR can yield accuracy comparable to that
of an ultrasonic sensor if implemented along with an IMU and using our
machine learning-based approach.

It is important to note that, for τ = medium, the LiDAR sensors encoun-
tered difficulties at θ = 10◦ (refer to Figure 3), but only when the distance
values exceeded h ≥ 200. Interestingly, even for low water levels, the sensor’s
sensitivity to increased tilt angles was significantly influenced by the distance
h. These findings emphasise the critical role of the sensor’s range in ensuring
its robustness when confronted with variations in the tilt angle, making it a
crucial consideration for future experiments or practical applications.

The LiDAR-based level measurement has proven to be effective in mea-
suring turbid fluids, but its performance is significantly affected when the tur-
bidity level is reduced. This limitation arises from the impact of reflectance
on the accuracy of LiDAR measurements [62]. It is worth noting that, in
urban environments, water turbidity tends to increase during storm runoff
events due to the introduction of dirt into the stream. The distance between
the sensor and the water surface, another factor that affects LiDAR per-
formance, decreases as the water level rises. The tilt angle of the sensor is
relatively stable since it is fixed to a solid structure such as a pole. There-
fore, the factors that hinder the performance of the LiDAR sensor are less
prevalent in actual flooding scenarios.

Also, as previously mentioned, LiDAR sensors demonstrate robustness
in various challenging conditions that commonly occur during flash floods,
where ultrasonic sensors tend to fail. These conditions include heavy rain-
fall, dust, and fog, besides varying temperature and humidity [32, 14, 13].
Through our approach, we have managed to mitigate the drawbacks of Li-
DAR sensors associated with water turbidity and tilt angle, making this
technology highly valuable in real flooding scenarios.

Since we have collected data in a controlled environment, we trained the
machine-learning models using data from an ideal condition in which the only
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failures come from the sensors’ limitations. Hence, apart from the zero-valued
readings of the IRh variable that happened in the most challenging scenarios
for the LiDAR sensor, there were no unexpected behaviours in the variables
measured. However, in a real-world implementation, environmental condi-
tions may damage the sensors, making it crucial to implement monitoring
methods for detecting failed sensors.

Our machine-learning approach requires that both LiDAR and IMU are
functional so that their data needs to be introduced to the model. If the
LiDAR data is missing, such as what happens with the zero-valued readings
discussed in Section 4.1, then no LiDAR-based predictions can be provided,
with or without the machine-learning model. If the IMU fails, on the other
hand, we can still use the individual readings from the LiDAR sensor to
provide a less accurate prediction.

In any case, we recommend employing redundancy to the system, with at
least one additional distance sensor. This additional sensor can be, for exam-
ple, an ultrasonic sensor, a pressure transducer, or a computer vision-based
technique. The most cost-effective approach for including such redundan-
cies is implementing a collection of sensors in each measuring station since
implementing more stations incurs additional financial, operational and en-
vironmental costs.

As presented in Section 5, our results are the median values of the pre-
dictions over 300 data points, corresponding to a recording session. Each
recording session lasted 200 seconds (i.e., 3 minutes and 20 seconds) as data
was collected at a rate of 1.5 Hz. Therefore, each prediction was generated
based on data from the past 200 seconds.

In real-world conditions, the water level changes in a matter of minutes,
even in the most rapidly changing environments. Therefore, it is feasible
to use a set of data points taken from the past few minutes to account for
measurement errors due to the dynamic nature of a water stream.

Nevertheless, these environments provide time-related patterns that can
be used to generate predictions with more information. More sophisticated
models could also be deployed to make predictions that take into account
the variations that happened during a previous period of time. Provided
sufficient historical data is available, the sensor data could be used even to
anticipate the water level in the upcoming moments, as done in other works
in the literature [63, 64].

Regarding the computational cost, because of the low dimensionality of
the input data, the models built in this work run inferences in less than
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a second, even for low-end devices such as embedded computers. Our ap-
proach’s most relevant performance concern is the communication infras-
tructure, which can vary according to the technologies employed. Wireless
communication systems can face challenges such as latency, bandwidth limi-
tations, connectivity issues, packet loss, and throughput restrictions, impact-
ing wireless networks’ overall performance and reliability [65].

For real-world deployment, an alternative machine learning approach
would be considering the temporal relationships between the data points,
which could be treated as time series and processed through deep learning
models. However, since we had only data collected from a controlled en-
vironment, the environment as a whole was stationary, with few temporal
patterns to be uncovered. Besides, if we turned each recording session into
a time series, we would end up with only 90 samples to train the regres-
sion model since our experimental design consisted of 90 angle, distance,
and turbidity permutations. Such a dataset would be prohibitively small to
train a deep architecture such as a convolutional or recurrent neural net-
work, especially considering we had no related data for transfer learning or
semi/self-supervised representation learning.

A possible solution to address this problem would be to segment the time
series into smaller segments through a sliding window approach. However, to
effectively increase the number of data samples, we would need to either select
tiny segments, incurring in low-dimensional samples, or provide segments
with high overlap, resulting in low variability between segments.

For these reasons, we employed traditional machine-learning techniques
to point-wise samples and used the resulting predictions over the recording
session to infer the water level based on a central tendency measure such
as the median. Ensemble tree models have been extensively used in tabu-
lar datasets, with even superior results compared to deep learning [60] and
improved explainability of the results [66]. Therefore, we emphasised two
of these models in our experiments: AdaBoost and Random Forest. We in-
cluded linear regression and a KNN regressor as baseline models to highlight
the suitability of the proposed approach.

A natural direction for future work is replicating this experiment using
data from an urban creek. In this condition, rapidly changing environmental
factors generate rich temporal features; hence, deep learning models might
lead to improved results. Nonetheless, the scope of this work was analysing
the impact of a specific set of factors (i.e., angle, distance and turbidity) in the
sensors’ predictions and the suitability of merging IMU data to the variables
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returned from these sensors using machine learning techniques. Such an
analysis could only be performed in a controlled setting.

To assess the feasibility of employing the proposed approach in a de-
ployed system, we consider the time complexities of the machine-learning
algorithms [67, 68]. For providing inference over a single input sample, the
LR model consists of a linear combination between the m input variables
and a weight vector; hence, its computational complexity is O(m). The
KNN model requires computing the distance between the input sample and
each of the N samples in the training set, running in O(m ·n) complexity (in
our case, N = 31, 200). Regarding the tree-based models [69], the RF model
provides a worst-case time complexity of O(k ·m), where k is the number of
trees (in our case, 100). The AdaBoost model also runs in O(k ·m), although
we used 150 weak learners in this case.

Since the feature space consists of m scalar variables (i.e., m = 8 for
the LiDAR and m = 7 for the ultrasonar), the input space has low dimen-
sionality. Therefore, considering their time complexities at inference time,
all machine-learning models built in this study can be performed even in
embedded computers.

The memory footprint of the trained models might also not be a concern.
Linear regression is defined by its coefficients, a weight vector the same size
as the input samples. KNN has no weights to be stored since it consists of
an instances-based technique. The tree-based ensembles could potentially
grow larger if the input space had higher dimensionality since more variables
mean that the decision trees can achieve increased depth. However, this was
not the case for our application, in which we had no more than eight input
variables.

Related work that relies on LiDAR readings for water level measurement
either addresses the individual sensor performance under certain environ-
mental conditions [17] or evaluates inclined sensor readings with previously
known angles and adjusted with standard trigonometric relationships [19].

Our experiments contributed to the state-of-the-art by providing a sys-
tematic analysis of the influence of three factors on the performance of a
water level measurement system based on a LiDAR sensor. The machine-
learning techniques combined the sensor’s readings and the IMU data to as-
sess whether combining these modalities could lead to results comparable to
an ultrasound sensor, a technology more commonly employed for measuring
the height of water bodies [14].

Although distance sensors and inertial units have been combined in other
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works in the literature [70], these works were from different domains, and
their results are not comparable to ours. Since this was the first attempt to
combine LiDAR sensors and IMU data through machine learning for water
level measurement and evaluate the corresponding results in a controlled
dataset, no results in the literature compare directly to ours.

Moreover, our contribution resides in the systematic evaluations and
data analyses performed. Although the machine-learning models effectively
improved the errors in the measurements, they were based on traditional
machine-learning algorithms. They were employed as a means to evaluate
our hypotheses, not as an innovation by themselves.

A system that aims at monitoring a large area requires deploying a set of
sensors that adequately covers the area of interest. Thus, physical or data-
driven flood models [64] can be developed to predict flooding events before
they occur. In any case, each sensor’s location is paramount and might be
cautiously designed.

A communication protocol is essential for transmitting sensor data for
applications in large areas that employ multiple sensors across systems. The
experimental device presented in this work is a fixed multi-sensor system
without network communication. However, it can be integrated with proto-
cols such as Long Range (LoRa) or Message Queuing Telemetry Transport
(MQTT) for lightweight messaging, enabling data relay through a centralised
and shared server. Mobile network services such as 4G/5G can also be used.
These technologies enable the monitoring of flood detection across diverse
locations [71, 72].

It is worth noticing that, as a requirement, the proposed solution might
be deployed at fixed locations at poles next to the water stream. Therefore,
their locations are usually known during deployment and may change only
through extensive maintenance. Nonetheless, the positions can be reassessed
depending on the communication technology employed. Mobile networks
such as 4G/5G can provide a reasonable estimate of the device’s position,
while LoRa-based localisation has also been well documented [4].

Considering the possibilities of sensor failure and the limitations of each
approach in a deployed system, using a variety of sensors to analyse different
level measurement methods may be beneficial. Contact methods, such as
using a pressure transducer and thermal differential, and non-contact meth-
ods, such as a level measure based on machine vision and radar, may be
integrated into a Wireless Sensor Network (WSN) to assess advantages and
disadvantages. Additionally, the level measurements obtained by these sen-
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sors can be used as input parameters of a machine learning algorithm and
improve its performance.

Water level identification, as part of flood risk management systems, is
intended to work continuously, simultaneously on several points, and inte-
grated with analytical tools to improve the decision process. We created and
tested a system designed to accurately and reliably detect water levels in ur-
ban streams. We assessed LiDAR, IMU, and machine learning technologies
in a controlled environment. This system shows potential to be implemented
in real-world applications, but further development is required to address any
challenges that may arise.

To integrate the proposed system into an existing flood monitoring sys-
tem, it needs to include a communication protocol to send information to a
remote control system. This could involve using existing Internet of Things
(IoT) communication protocols such as MQTT and LoRaWAN via a client-
server architecture [73]. From a scalability perspective, multiple water level
devices can be integrated into the system, improving reliability by adding
redundant sensors and expanding monitoring coverage with new measuring
stations. Updated and accurate water level information allows the imple-
mentation of decision support tools such as risk prediction models and alarm
systems [63, 64].

Some of the advantages of LiDAR sensors and their association with IMU
are their low financial and operational costs. When setting up a station, the
primary expense is the necessary supportive structures to place the devices
above the stream. The other costs are relative to powering the system, which
can be done using urban infrastructure or solar power panels and ensuring
stable communication between the system and the monitoring devices. All
these structures can be shared with other purposes, such as meteorology or
environmental monitoring, to dilute costs. To integrate the system, low-cost
platforms such as ESP32 [74] can be used.

Environmental impacts of the stations in urban areas are expected to
be very low. The sensors are not immersed in the water, and the energy
consumption is derisory. On the other hand, the proposed system supporting
or improving flood management strategies aimed to reduce the substantial
financial, environmental and social cost of floods: there are estimations of
600 billion USD lost, 2.8 billion people suffering health impacts and 300,000
people suffering physical injuries worldwide from 2001 to 2018 from water-
related disasters, which floods are the more common events [75].
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8. Conclusion

Considering the necessity to accurately estimate the level of water streams
to tackle flood risk in urban environments, this research paper assessed the
feasibility of identifying the height of a water body using a LiDAR sensor
combined with an IMU through traditional machine-learning techniques. We
thoroughly evaluated the advantages and limitations of using a LiDAR sensor
for water level measurements in a controlled environment, juxtaposing it with
an ultrasonic sensor. We engineered an experimental device, incorporating
these sensors with an IMU, and gathered a dataset where we regulated factors
such as the device’s tilt angle, water turbidity, and the distance between
the device and the water surface. Each sensor’s performance was analysed
individually, followed by an assessment of machine-learning models designed
to integrate the data from these sensors with the IMU variables.

The variables registered by the LiDAR or ultrasonic sensors were con-
catenated to the variables of the IMU, preprocessed and fed to the machine-
learning model. We evaluated four types of regressors: linear regression,
K Nearest Neighbours, Random Forest and AdaBoost. The tree ensembles
(i.e., Random Forest and AdaBoost) led to the lowest error rates, effectively
mitigating errors originating from individual sensors. The performance gap
between the ultrasonic sensor and LiDAR has narrowed, with statistically
significant differences observed only for low water turbidity and increased
tilt angle.

The results in these conditions were also the most affected by the only
situation in which insufficient information was available for our approach to
be helpful: when the LiDAR sensor failed outright, yielding only zero-valued
readings. The most straightforward procedure to circumvent this issue is
applying higher-end LiDAR sensors with increased range. Other solutions
address the factors that cause the zero-valued readings: increased tilt angle,
increased distance and low water turbidity. Utilising more rigid structures
can control angle fluctuations. Regarding failures due to an increased dis-
tance between the sensor and water and low water turbidity, historical data
and forecasting models can aid in identifying missing values during chang-
ing environments such as heavy rainfall. These factors are not present in
controlled experiments such as ours but are relevant in real-world scenarios.

Moreover, these unfavourable circumstances are not likely in real-world
flood scenarios, in which water turbidity typically rises, and while the tilt
angle may vary over time, it can be effectively regulated through ongoing
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maintenance. Although the ultrasonic sensor is naturally robust to these
factors, it is still vulnerable to weather conditions that are likely to happen
in actual flooding scenarios (i.e., varying temperature and humidity, fog, rain
or dust). For this reason, provided the LiDAR sensor has sufficient capacity
and is self-calibrated using our approach, it may be an important additional
modality for building a resilient system.

The experiments performed in this study were restricted to the data col-
lected in a laboratory environment. Although such an assessment helps eval-
uate the influence of controlled variables in the measurements and the effec-
tiveness of the proposed solution in mitigating the error rates, deploying a
similar approach in a real-world environment would not necessarily yield the
same results. Environmental variables can only be assessed in field experi-
ments, which cannot be performed in a laboratory. Besides, the dynamics of
actual water streams can provide additional information that can be used to
improve the prediction models, especially considering historical data.

In other words, the models presented in this work are optimised to con-
trolled conditions that do not always resemble those found in nature. They
are unable to identify the dynamics of actual water streams, which could
be helpful inclusively to improve the error rates and make the system less
vulnerable to factors such as the zero-valued reading that occurs in extreme
situations for the LiDAR range. Also, the combined approach with distance
sensor and IMU through machine learning can only work if both the distance
sensor and the IMU are working properly, which suggests that redundancies
with different types of sensors are desirable for critical situations such as
flood-prone regions being monitored.

Future endeavours may involve deploying a refined version of the exper-
imental device to actual urban water streams supplemented with cameras
and gauges to evaluate the predictions’ precision. Gathering such data from
multiple locations during a rainy season could yield a valuable dataset that
enables the replication of the experiments conducted in this study but in a
more complex setting. This approach will permit us to scrutinise the impact
of adverse weather conditions on the performance of each sensor and explore
how machine learning models can adeptly tackle these challenges.
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doi:10.1214/21-AIHP1240.

[59] V. Lakshmanan, S. Robinson, M. Munn, Machine learning design pat-
terns, O’Reilly Media, 2020.

[60] R. Shwartz-Ziv, A. Armon, Tabular data: Deep learning is not all you
need, Information Fusion 81 (2022) 84–90.

[61] Y. Lu, J. Chen, Q. Xu, Z. Han, M. Peart, C.-N. Ng, F. Y. Lee,
B. C. Hau, W. W. Law, Spatiotemporal variations of river wa-
ter turbidity in responding to rainstorm-streamflow processes and
farming activities in a mountainous catchment, Lai Chi Wo, Hong
Kong, China, Science of The Total Environment 863 (2023) 160759.
doi:10.1016/j.scitotenv.2022.160759.

48
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