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Half-integer quantized flux vortices appear in honeycomb lattices when the signs of an odd number
of couplings around a plaquette are inverted. We show that states trapped at these vortices can
be isolated by applying inhomogeneous strain to the system. A vortex then results in localized
mid-gap states lying between the strain-induced pseudo-Landau levels, with 2n + 1 midgap states
appearing between the nth and the n + 1st level. These states are well-defined spectrally isolated
and spatially localized excitations that could be realized in electronic and photonic systems based on
graphene-like honeycomb lattices. In the context of Kitaev’s honeycomb model of interacting spins,
the mechanism improves the localization of non-Abelian anyons in the spin-liquid phase, and reduces
their mutual interactions. The described states also serve as a testbed for fundamental physics in
the emerging low-energy theory, as the correct energies and degeneracies of the excitations are only
replicated if one accounts for the effective hyperbolic geometric induced by the strain. We further
illuminate this by considering the effects of an additional external magnetic field, resulting in a
characteristic spatial dependence that directly maps out the inhomogeneous metric of the emerging
hyperbolic space.

I. INTRODUCTION

Topological defects attract attention as they can give
rise to robust states that are both spatially and ener-
getically well localized [1–3]. The spatial localization
arises from the pinning of the states to surfaces, edges,
or points, while the energetic localization often takes the
form of exact zero-mode quantization in the middle of a
gap, as enforced, e.g., by a particle-hole or chiral symme-
try. In many contexts, the topologically induced states
carry unconventional spin, charge, and exchange statis-
tics [4–12].

A prominent example with possible applications in
topological quantum computations are the anyons in Ki-
taev’s honeycomb model, an interacting spin system that
is exactly integrable when the spin operators are ex-
pressed in terms of Majorana fermions [13–15]. In this
effective description, the system is equivalent to a homo-
geneously strained version of graphene that is functional-
ized by half-integer flux vortices, corresponding to a sign
change of an odd number of coupling constants around
a plaquette. The homogenous strain opens a gap with
anyonic low-energy excitations that can be used to real-
ize the toric code, a paradigmatic platform for topolog-
ically protected quantum computation [16]. The anyons
are bound to the flux plaquettes, and the configurations
are topologically protected by time-reversal symmetry,
which enforces the coupling constants to remain real.
Furthermore, when the gap is closed the system realizes a
spin liquid with non-Abelian low-energy excitations that
again depend on the flux-vortex configuration [17].

Here, we combine the topological features of such vor-
tex states with a well-known time-reversal-invariant ana-
logue of a magnetic field, which appears when the effec-
tive strain in the system becomes inhomogeneous [18–
22]. This pseudomagnetic field leads to the formation of

pseudo-Landau levels (pLLs), which have been realized
in experiments on various honeycomb systems [23–32].
Notably, the microscopic model dictates an optimal ge-
ometry and maximal strain value at which the system be-
comes exactly solvable in absence of a vortex [30, 33, 34].
The pLLs then become exactly degenerate, implying hid-
den topological and geometric features in a finite, spa-
tially inhomogeneous system. Identifying the nature and
consequences of these features is a central goal of this
work. In particular, we demonstrate that in the inter-
play with such inhomogeneous strain, a vortex induces
an additional sequence of isolated states that appear in
the gaps between the pLLs — one state between the 0th
and first pLL, three states between the first and the sec-
ond pLL, and in general 2n + 1 states between the nth
and the n + 1st pLL (n ≥ 0; the sequence is repeated
symmetrically for negative energies).

We develop these insights by placing the problem into
the broader context of the interplay of strain and mag-
netic fields. This leads us to obtain three key results,
which are illustrated in Fig. 1. Firstly, we will estab-
lish the consistency of the microscopic model with the
appropriate continuum theory, which takes the form of
a Dirac equation in a curved hyperbolic space [35–38],
even though the system is physically flat. The emerging
curvature explains the exact position of the pLLs in the
optimal strain configuration (see panel(a)), which differs
from the conventional estimate obtained by simply rein-
terpreting the pseudomagnetic field as a valley-dependent
magnetic field (marked in red). Furthermore, we show
that the exact expression for the degeneracy of these lev-
els is consistent with the relativistic Wen-Zee shift [36–
38], which is a topological characteristic of relativistic
Landau levels. Secondly, we show that the emerging ge-
ometry induces a spatial dependence on the effects of an
additional external magnetic field, resulting in a broad-
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Figure 1. Strain-dependence of the energy levels of a triangular honeycomb flake (a), in the presence of an additional
background magnetic field B = 0.05βmax (b), and with a half-integer flux vortex instead placed into the center of the flake
(c). The flake measures 90 hexagons across and is terminated by zigzag edges, conforming to the geometry in Fig. 2. The
strain is given in terms of the strength β of the dimensionless pseudomagnetic field (see Eq. (2)), while the eigenvalues are
given in units of the coupling strength t of the pristine system. As we show in Sec. III, the precise energies and degeneracies
of the levels in (a), marked by the horizontal and vertical lines, reveal the effects of an emergent curvature in the continuum
description of the model, including the Wen-Zee shift (vertical tick marks show the results without these shifts). The underlying
hyperbolic geometry leads to the broadening of levels in (b), which is in striking contrast to the splitting of the levels expected
in conventional low-energy theory, as we describe in Sec. IV. Flux vortices induce a characteristic sequence of midgap states
(c), which we describe in Sec. V, while Sec. VI contains the application to the Kitaev honeycomb model of interacting spins.

ening of the levels as observed in panel (b). As we will
see, this effect directly reflects the inhomogeneous metric
of the emerging geometry, which naturally becomes sin-
gular at the boundaries of the system. Thirdly, we show
that a flux vortex induces the characteristic sequence of
mid-gap states already indicated above, which in panel
(c) is illustrated for the case of a half-integer flux vor-
tex placed into the center of the system. For this, we
generalize the insights of Refs. [30, 33, 34] to obtain an
exact construction of pseudo-Landau levels in the micro-
scopic model including a flux vortex, and present detailed
derivations of the midgap states in the continuum theory,
where both aspects again complement each other consis-
tently. As mentioned, such half-integer flux vortices are
of particular interest because they naturally appear in
the Kitaev honeycomb model of interacting spins. Sup-
plementing our findings for such vortices by numerical
results for the many-body case, we further establish that
the strain also improves the spatial localization of the
corresponding many-body excitations, and reduces the
range of their mutual interactions.

The paper is organized according to the underlying

physical field configurations, which are introduced into
the model as described in Sec. II. In Sec. III, we estab-
lish the consistency between exact results in the opti-
mally strained tight-binding model and the continuum
theory with an emergent hyperbolic geometry. In Sec. IV
we describe how this geometry modifies the interplay
with an additional external magnetic field. In Sec. V
we describe the formation mechanism of the flux-pinned
midgap states in the single-particle picture, while Sec. VI
considers the effective interactions of the states and con-
tains the application to the Kitaev honeycomb model of
interacting spins. In the concluding Sec. VII, we discuss
the general implications of these findings for the inter-
play of topology and geometry in finite inhomogeneous
systems, and identify further applications.

Appendix A provides background on the continuum
theory, Apps. B, and C apply this to derive results for sys-
tems with uniform pseudomagnetic and magnetic fields,
and App. D contains additional numerical results.
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Figure 2. (a) Zig-zag terminated triangle of a honeycomb lattice in the coupling configuration (2), which is indicated
by the thickness of the lines. This system supports precisely flat pseudo-Landau levels, which serve as the reference for the
additional effects from magnetic fields. We include these magnetic fields via a Peirls substitution either as a uniform background
contribution (b), corresponding to fixed plaquette factors πp, or as localized vortices (c), including half-integer vortices that
naturally appear in the theory of the Kitaev honeycomb model of interacting spins.

II. MODEL AND CONFIGURATIONS

The general theme of this paper is the interplay of
magnetic fields and emergent geometry in lattice systems
with inhomogeneous coupling configurations. The micro-
scopic description is provided by a tight-binding Hamil-
tonian

H =
∑
⟨ij⟩

tijψ
†
iψj , (1)

where indices i and j enumerate points on a honeycomb
lattice, which we define with bond length a ≡ 1 (see
Fig. 2). As indicated there, the lattice is bipartite, allow-
ing to assign sites to two sublattices A and B. The field
operators ψi obey an algebra that depends on whether
the underlying system is fermionic, bosonic, or anyonic.
As the system is quadratic, the corresponding single-
particle picture only depends on the nearest-neighbour
couplings tij = t∗ji, which we specify to combine the
contributions of effective pseudomagnetic and magnetic
fields, including flux vortices at designated positions.

In the pristine system all couplings are equal, tij = t
with real t, resulting in the conventional dispersion re-
lation E(k) = ±t|1 + 2ei3ky/2 cos(

√
3kx/2)| of graphene

[39]. In the low-energy theory, this dispersion can then
be approximated by Dirac cones |E| = vF |k∓K0| around
theK andK ′ points in the Brillouin zone, with vF = 3t/2

and K0 = (±4π/3
√
3, 0). A precisely uniform pseudo-

magnetic field of dimensionless strength β is obtained by
modifying these couplings to [18–20, 40–43]

tij = t

[
1− β

2
ρρρij · rij

]
≡ t0ij , (2)

where ρρρij is the bond vector from the site i to site j and
rij is the bond center, both taken in the pristine (un-
strained) system. Notably, in this coupling configuration,
commensurate values β = 4/N with integer N enforce a
system of finite size, as the couplings drop to zero around
the edges of a triangle with zigzag edges [33], leading to
the geometry illustrated in Fig. 2(a). The microscopic
model is then exactly solvable [34], displaying a sequence

of precisely flat pLLs that serves as the reference point
for all results in this paper. We discuss this reference
configuration in detail in Sec. III, where we establish its
connection to an emerging hyperbolic geometry.
Our subsequent focus is on the interplay of these strain-

induced features with additional magnetic fields, which
either act uniformly across the system, as illustrated
in Fig. 2(b) and discussed in Sec. IV, or are localized
into flux vortices, as illustrated in Fig. 2(c) and dis-
cussed in Sec. V. In the microscopic model, these ef-
fects are included by a standard Peierls substitution tij =
t0ij exp(iϕij) with ϕij = −ϕji [44]. The physical effects
are then captured by the flux factors πp =

∏
p exp(iϕij),

defined by transversing the bonds around the plaque-
tte in a loop with mathematically positive direction as
shown in the inset of Fig. 2(b). From all configurations of
phases ϕij , only these plaquette fluxes are physically sig-
nificant when the local U(1) gauge freedom of the fields
ψi is taken into account. A uniform background mag-
netic field is obtained by setting the fluxes to a common
value throughout the system (see Fig. 2(b)), while local-
ized vortices of arbitrary flux are obtained by modifying
the couplings along a line from a plaquette to the edge
(see Fig. 2(c)). In particular, half-integer vortices are
modeled by inverting the sign of some of the couplings,
tij = σijt

0
ij , σij = σji = ±1. The plaquette operators

πp =
∏

p σij then take the values +1 in the absence of a
vortex, and −1 in the presence of a vortex. By adding the
phases ϕij of such configurations, they can be combined
to obtain general vortex patterns above a background
magnetic field, while the pseudomagnetic field continues
to determine the coupling strengths |tij | = t0ij according
to Eq. (2).

III. PSEUDO-LANDAU LEVELS AND
HYPERBOLIC GEOMETRY

We first describe the correspondence of the description
of pseudo-Landau levels in the microscopic model and in
the appropriate continuum theory. This theory takes the
form of a Dirac equation in a curved hyperbolic space
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[35–38], which we review in Appendix A. The emerg-
ing curvature characteristically affects the energies and
degeneracies of the levels, allowing us to recover results
from the microscopic model exactly, as we discuss now.

We establish the consistency of both descriptions in
the optimally strained reference configuration, forming
a triangular flake terminated by zigzag edges as illus-
trated in Fig. 2(a). As mentioned in the definition of the
model, this geometry maximizes the range of the pseu-
domagnetic field β so that the couplings t0ij/t > 0 re-
main positive throughout the sample. Figure 1(a) shows
how pLLs form as a function of the pseudomagnetic field
strength in a triangle with N = 90 sites along each edge.
Within conventional low-energy theory that ignores the
curvature effects, the pseudomagnetic length is given by
ℓ = 1/

√
|β|, and the energies are predicted to cluster into

pLLs at

Ẽn = vF sgn (n)
√
2β|n|, (3)

enumerated by an integer index n with |n| < N . How-
ever, we can improve beyond this simple estimate. At
the maximal value β = βmax ≡ 4/N , the microscopic
model can be solved exactly, and the pseudo-Landau lev-
els become precisely flat [30, 33, 34] (we recapitulate the
construction in App. VA1). The energies then take the
exact values

E(max)
n = (2vF /N) sgn (n)

√
|n|(2N − |n|), (4)

which systematically deviate from Ẽn as the level index
increases. Furthermore, the nth pLL contains exactly

Dn = N − |n| (5)

degenerate levels, displaying a systematic depletion that
is absent from conventional Landau levels.

These exact energies and degeneracies match perfectly
with the continuum theory. Applied to the coupling con-
figuration (2), this not only induces a uniform pseudo-
magnetic field of strength B = β, but also a constant
negative curvature K = −β2/4 (see App. B). The exact
energy levels (4) then correspond precisely to the Landau
levels [35, 43, 45]

En = vF sgn(n)
√

2|nB|+ n2K (6)

of Dirac fermions on a hyperbolic surface with a constant
negative curvature

K = −β
2
max

4
= − 4

N2
(7)

and a pseudomagnetic field

B = βmax =
4

N
, (8)

which are both induced by the space-dependent coupling
profile (2). The difference between the exact levels in-
cluding the curvature and the approximation ignoring the
curvature is illustrated in Fig. 3.
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Figure 3. System-size dependence of the pLL energies (6) at
maximal strain βmax in the continuum theory with curvature
(thick blue curves), which exactly recovers the result (4) of the
microscopic model in the optimally strained geometry. The
red lines show the conventional estimate (3) of these levels
when the curvature is ignored. For clarity, we only show the
levels with index n = 1 to 5.

Furthermore, the degeneracy depletion of the Landau
levels exactly matches the relativistic Wen-Zee shift [35–
38]

Dn = D0

(
1 + |n|K

B

)
= N

(
1− |n|

N

)
. (9)

Here, the degeneracy D0 = N of the 0th pLL can be
inferred from the sum rule

∑
nDn = N2, accounting for

all states in Hilbert space [46].
We note that in the tight-binding model, this degen-

eracy arises because the specified geometry contains ex-
actly N more sites on the A sublattice than on the B
sublattice. Based on the chiral symmetry of the model,
this difference fixes the number of zero modes indepen-
dent of the coupling configuration. Indeed, the curvature
does not break the chiral symmetry of the continuum the-
ory, and therefore also preserves the consistency of other
symmetry-enforced features, such as the symmetry of the
level spectrum itself. Furthermore, the theory recovers
that the 0th pLL is sublattice-polarized on the A sub-
lattice while all other pLLs have equal weight on both
sublattices [30, 33, 42], which again conforms to the sum
rules for these subspaces.
These observations are remarkable because we derived

the continuum theory by expanding around the center
of the system, where we can treat both low-energy val-
leys separately. The theory then approximates the sys-
tem as a hyperbolic disk of radius r = 4/|β|, defined by
the distance where the metric becomes singular, which
happens to coincide with the finite system size of the op-
timally strained microscopic system. Choosing a differ-
ent expansion point, we can extend these considerations
qualitatively to capture additional features, such as the
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Figure 4. Effect on the pLLs from an additional external magnetic field, demonstrating the curvature-enforced broadening
described in the text. (a) The upper half of the numerical level sequence in an optimally strained triangle of size N = 90,
subject to an additional magnetic field of strength B = 0.01βmax. (b) Comparison of the numerically obtained energies (data
points) to the predicted broadening intervals (shaded regions) for pLLs 1 to 5, at B/βmax = 0.01, 0.05, 0.1 (subpanels, left to
right). (c) Detailed broadening of the 3rd pLL, for B/βmax = 0.05, 0.01, 0.05 (gray, orange, and blue). The solid black line
shows the exact position (6) of the pLL at B = 0, while the dashed line is the conventional approximation (3) ignoring the
curvature.

opening of a local gap in the regions around the corner
of the triangle. This then explains the spatial support
of the low-lying pLLs, which fill out an approximately
triangular region in the center of the system [30, 33] (see
Fig. 11 in the numerical Appendix D).

Overall, the continuum theory therefore captures
global and local features of the pLL spectrum and states,
and reveals their connection to geometric curvature ef-
fects. In turn, the underlying microscopic model realizes
these often elusive effects precisely. This provides the
platform on which we can now include the effects of ad-
ditional magnetic fields, extended across the system or
localized in vortices.

IV. INTERPLAY WITH A UNIFORM
EXTERNAL MAGNETIC FIELD

As we establish next, the strain-induced hyperbolic ge-
ometric affects the interplay of the pseudomagnetic field
with an additional external magnetic field B, even when
the latter is physically uniform across the system. In
general, both types of fields can be distinguished by their
symmetry properties. A real magnetic field breaks time-
reversal and parity symmetry, and enters with the same
sign in the two sectors of the continuum theory, which are
associated with the low-energy valleys near the K and K′

points. Furthermore, as in these sectors the role of the
sublattices is interchanged, the 0th Landau level from a
magnetic field is not sublattice polarized. In contrast,
the pseudomagnetic field preserves both symmetries, but
switches its sign between both valleys, and therefore
supports the sublattice-polarized 0th level, as discussed
above. The conventional low-energy theory would there-
fore predict that an additional magnetic field splits each
pLL into two distinct levels. However, as we will discuss
now, the geometric curvature changes this picture drasti-
cally, so that one instead obtains continuously broadened

pLLs that remain centered at the value without a mag-
netic field, as already illustrated in Fig. 1(b).
As derived in Appendix C, this additional feature be-

comes visible when one combines the two fields in the
continuum theory. We find that the curvature remains
intact at K = −β2/4. However, the combined effective
field

BK = β + B̃, BK′
= −β + B̃ (10)

seen by Dirac fermions near K and K ′ points features an
effectively space-dependent magnetic field

B̃ =
B
√
g
= B|1− β2(x2 + y2)/16|. (11)

As indicated, this spatial dependence directly tracks
back to the inhomogeneous metric of the system, which
is encoded in the quantity g. We note that this expres-
sion directly encodes the distance r = 4/|β| at which the
metric in the continuum theory becomes singular. The
effective magnetic field B̃ then varies from B near the
center to 0 near the boundary of the system.
At the center of the sample, the combined effective field

therefore takes the valley-dependent magnitude |B| =
|±β+B|, but at the boundaries it reduces to the valley-
independent magnitude |B| = |β| from the pseudomag-
netic field. As the effective magnetic field varies slowly
over the sample and the underlying flat-band states can
be defined with a local support, we obtain the predic-
tion that instead of becoming split, the energies become
spread out between two values

EK
n = vF sgn (n)

√
2|n(β +B)| − n2

β2

4
, (12)

EK′

n = vF sgn (n)

√
2|n(−β +B)| − n2

β2

4
, (13)

where we again included the contributions from the cur-
vature. This prediction is expected to be valid as long
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as the perturbed Landau levels remain well separated,
which implies that |n| ≲ |β/B|, and hence also that the
magnetic field is not too strong. Higher up in the spec-
trum, we encounter a continuous spectrum, which can
be physically attributed to magnetic edge states filling
out all gaps (see Fig. 10 in the numerical Appendix for
further illustration).

This picture is confirmed in Fig. 4, where we com-
pare the predicted broadening to numerical results for
optimally strained triangles with an additional magnetic
field of various strengths. This broadens the levels as
expected, with an inflection point at the energy (6) of
the system without the additional field. As already men-
tioned, this behavior is in striking contrast to the con-
ventional low-energy prediction without curvature, which
would result in the splitting of each pLL into two distinct
levels. A well-defined splitting can only be observed when
the system is studied locally, as done experimentally, e.g.,
in Ref. [26], and this observation also prepares our study
of flux vortices in Secs. V and VI.

V. FLUX VORTICES

As already mentioned in the introduction, the interplay
of strain and magnetic fields takes a particularly striking
form when the latter are localized in flux vortices. As il-
lustrated in Fig. 1(c) for a half-integer flux vortex placed
into the center of the system, this induces a characteristic
sequence of midgap states, where we find 1 state between
the 0th and first pLL, 3 states between the first and the
second pLL, and in general 2n+1 states between the nth
and the n + 1st pLL. This goes along with a reduction
of the degeneracy in the pLLs by 2|n| (therefore, the nth
pLL contains N − 3|n| states). This indicates that from
each pLL, |n| states each are donated to the gap above
and below. For example, the seven midgap states be-
tween pLLs 3 and 4 then correspond to the combination
of 3 states missing from the 3rd pLL and 4 states missing
from the 4th pLL. In the following, we will confirm this
picture in detail. For this, we first explain the modified
degeneracy pattern of the pLLs microscopically in the
optimal strain configuration. Then, we utilize the con-
tinuum theory to describe the formation of the midgap
states themselves.

A. Flux-modified pLL degeneracy

To explain the modified degeneracy pattern of the
pLLs in the presence of a flux vortex, we adapt the con-
struction principle of these states in the case without a
flux [34]. As further shown in [30], the original construc-
tion can be used first to determine a zero mode localized
on the A sites along one of the edges of the triangle,
and then construct the remaining zero modes recursively
by including A sites on successive parallel lines. With
Ref. [34], the states in the finite-energy pLLs are then

l = 1

2

3 9–9 –3
4 –40–8 8

1 3–3 –1
0 00

3

4

5

Figure 5. Division of an optimally strained triangle into zigzag
chains labelled by l, as used for the construction of exact pLL
states in Sec. VA. The amplitudes specify a state in the first
pLL for system sizeN = 5. This state is supported by the blue
trapezoidal region, and hence is unaffected by the indicated
flux vortex, which is generated by a phase shift of the deep
red coupling.

obtained by combining such solutions recursively from
triangles of different sizes, where one level is lost in the
passage from one pLL to the next.

To adapt this formalism to the system with a vortex,
we proceed in two steps, each presented in a separate
subsection. We first generalize this procedure to gener-
ate exact pLL states with compact trapezoidal support.
Then, we apply these insights to combine states from
several trapezoidal regions that suitably cover the sys-
tem while avoiding the position of the flux vortex, and
obtain from this the degeneracy of the exact pLL states.

1. Exact pseudo-Landau level states with trapezoidal
support

To obtain exact pLL states with a trapezoidal support,
we bring the results from Ref. [34] into an explicit form,
where we are guided by Refs. [30, 33]. This is achieved
by dividing the triangular system into N zigzag chains of
alternating A and B sites, running parallel to one of the
edges, as illustrated in Fig. 5. Along the lth chain, we de-
note the amplitudes on the A sites as Al,m (m = 1 . . . l)
and on the B sites as Bl,m (m = 1 . . . l − 1). As indi-
cated, each chain contains one more A site than B sites.
Furthermore, along this chain the couplings alternate as

3t

N
(l − 1, 1, l − 2, 2, . . . , 2, l − 2, 1, l − 1), (14)

while the coupling between chains l and l+1 is given by
3t(N − l)/N . This suggests to set t = N/3 so that all
couplings are integers, which we adopt from here on. The
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eigenvalue equation can then explicitly be written as

EAl,m = (l −m)Bl,m + (m− 1)Bl,m−1 + (N − l)Bl+1,m,
(15)

EBl,m = (l −m)Al,m +mAl,m+1 + (N − l + 1)Al−1,m.
(16)

We next construct the exact zero-energy states of the
system. Because of the chiral symmetry and the imbal-
ance of sites on both sublattices, these are all localized
on the A sites. Throughout the system, we then have to
fulfill the condition

0 = (l −m)Al,m +mAl,m+1 + (N − l + 1)Al−1,m, (17)

which provides a solution of Eqs. (15), (16) with vanish-
ing amplitude Bl,m. We find the explicit solutions

AN,0,k
l,m = (−1)l+m

(
N − k

m− 1

)(
k − 1

N − l

)
, (18)

where
(
r
s

)
denotes binomial coefficients, N denotes the

system size, and k = 1, . . . , N labels the different states.
Importantly, each of these states has finite amplitudes

on only k chains adjacent to the edge, covering a trape-
zoidal region with N − k + 1 ≤ l ≤ N . Such a state
remains an exact solution even when we remove or mod-
ify parts of the system away from its support.

Starting from these states, the finite-energy pLLs can
be constructed recursively by setting [34]

AN,n+1,k
l,m = (l −m)AN−1,n,k

l−1,m + (m− 1)AN−1,n,k
l−1,m−1

+ (N − l)AN−1,n,k
l,m , (19)

BN,n+1,k
l,m = EN,n+1A

N−1,n,k
l−1,m . (20)

This automatically fulfills Eq. (15), while consistency
with Eq. (16) enforces the quantization condition EN,n =

sgn (n)
√

|n|(2N − |n|). Furthermore, each level contains
one fewer state, giving the degeneracyDn = N−|n|, with
−N < n < N . As

∑
nDn = N2 equals the number of

sites on the triangle, this exhausts all states in the Hilbert
space of the system.

Starting the recursion with states from Eq. (18), we see
that each index k delivers a sequence of pLL states with
|n| < k. Just as the initializing zero-energy state, these
states furthermore have a finite support in a trapezoidal
region of width k, as we illustrate by an example in Fig. 5.
These states, therefore, remain exact solutions when the
system is truncated to these regions, and can be directly
transferred to a triangular system with an additional flux
vortex placed outside the trapezoid, as again illustrated
in the Figure. This is our main technical result from this
construction.

2. Combined degeneracy from a trapezoidal covering

The trapezoidal support of the states constructed
above implies that their construction carries over to a

N=16

N3=3
N1=4

N2=9

Figure 6. Construction principle of exact pLL states in an
optimally strained triangle with a flux vortex, marked in red,
which is obtained by a Peirls substitution along the line of the
shaded plaquettes. The desired states are obtained by adopt-
ing their construction principle in absence of the vortex, which
can be used to produce a basis of zero modes with trape-
zoidal support. We use this to construct three trapezoidal
systems whose pLLs are exact solutions of the triangle with
the vortex, but are not affected by its existence (the remain-
ing shaded plackets do not carry any flux, so this also holds
true for subsystem 1). The combined Wen-Zee shift from the
three systems exactly accounts for the observed number of
midgap states produced by the vortex.

system with a flux vortex, as long as one avoids cross-
ing the corresponding plaquette. We therefore proceed
as illustrated in Fig. 6, and approach the vortex from
three sides. This produces three separate sets of Ni zero
modes that sum to

∑
iNi = N . As indicated in the fig-

ure, each set corresponds to the 0th pLL of a system of
reduced size, with the shape modified into a trapezoid.
The string of modified couplings connecting the flux pla-
quette to the boundary only affects one subsystem, and
crosses it completely, so that it can be gauged away, sub-
ject to a gauge transformation ψl → exp−iφ ψl for all
sites below the string.

For each of these subsystems, we can then construct
Ni − |n| states in the higher pLLs recursively as in the
original approach, where again one level is lost in the pas-
sage from one pLL to the next. These particular states
then provide solutions of the triangular system including
the vortex, for arbitrary flux (the subsystems also con-
tain additional states, as their combined Hilbert space
dimension is larger than in the original system). The
three sets of states all feature sites in their support not
covered by other states, so that they are linearly inde-
pendent. Therefore, the degeneracy of each pLL in the
triangular system with the vortex obtained in this way
is

∑
iNi − |n| = N − 3|n|. This recovers the observed

reduced degeneracy, with the deficit of states given by
the midgap states.

As we will show next, these midgap states can be ex-
actly accounted for in the continuum theory. Specifically,
from each pLL in the vortex-free system, |n| such states
are donated to the upper gap, while an equal number of
|n| states are donated to the lower gap. Therefore, in the
continuum theory, the same modified degeneracy of pLLs
is obtained by a remarkable combination of the Wen-Zee
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Figure 7. Formation of flux-induced midgap states in an op-
timally strained triangle (N = 90), as a function of the flux
φ in a vortex placed at its center. Panel (a) shows the an-
alytically predicted midgap energies from Eqs. (47) (orange)
and (48) (green) along with the pLL energies Eq. (6) (blue),
while panel (b) shows the numerical result from the micro-
scopic model.

shift with the number of vortex-induced midgap states.

B. Vortex states

We now turn our attention to the midgap states in
the strained system. For this, derive analytical exact so-
lutions in the continuum theory, for a flux of arbitrary
value φ that is placed into the center of the system. Over
the first subsections, we obtain the energy spectrum and
wavefunctions of the vortex states in a system with a
uniform effective magnetic field and uniform curvature.
In the last subsection we combine these insights to ob-
tain the energies of the states in the optimally strained
system, and compare this with numerical results.

1. Vortex states near the K point

We initially ignore curvature effects, and derive solu-
tions for vortex states in the pseudomagnetic field only
(B = 0), where we assume β > 0. We define the com-

plex coordinates z = 1√
2ℓB

(x + iy), with ℓB = 1/
√
B,

while B is the strained induced magnetic field near K
point given by Eq. (10). The effective Hamiltonian for
a fermion near the K point can then be written as

Hv = −vF
√
2

ℓB

(
0 â†

â 0

)
, (21)

where we define the creation and annihilation operators

â = iDz̄, â† = iDz, (22)

and the covariant derivatives

Dz =
ℓB√
2
(D1 − iD2), Dz̄ =

ℓB√
2
(D1 + iD2), (23)

with Di = ∂i − iAi. If we insert a vortex with arbitrary
flux φ = δ × ϕ0 (|δ| ≤ 1/2) at the center of the system,
where ϕ0 = 2π is the quantum flux, then the modified
gauge field has the form

Ax = −B
2
y − δ

y

r2
, Ay =

B
2
x+ δ

x

r2
, (24)

with r =
√
x2 + y2 the distance from the center. We

have the commutation relation

[Dz, Dz̄] = [â, â†] = 1. (25)

Using the identity

â†â(zα1 z̄α2e−zz̄/2) =

(−δ + 2α1 − 2zz̄)(−δ − 2α2)

4zz̄
zα1 z̄α2e−zz̄/2 (26)

where we defined z̄ as the complex conjugated of z, we
find that the Hamiltonian (21) admits vortex states with
energy

Eλ
n+δ = λvF

√
(2n+ 2δ)B, λ = ±1. (27)

The corresponding states are of the form

ψm
n+δ =

(
|n+ δ⟩m

−λ|n− 1 + δ⟩m

)
(n ≥ 1), (28)

where the states in the components satisfy

â†â|n+ δ⟩m = (n+ δ)|n+ δ⟩m (n ≥ 0). (29)

The explicit coordinate form of the normalizable wave-
function is given by

|n+ δ⟩m =

m∑
j=0

cjz
δ
2+j z̄

δ
2+n−m+je−zz̄/2 (0 ≤ m ≤ n),

(30)
where the coefficients ci satisfy the recursion relation

j [−δ − (n−m+ j)] cj = (m+ 1− j)cj−1. (31)

There are n + 1 normalizable states that satisfy (29),
which translate into n eigenstates with wavefunction
(28). Each of these has the same energy, given by
Eq. (27).
In addition to these states, we still have the usual Lan-

dau levels at energy Eλ
n = λvF

√
2Bn. These are de-

scribed by the family of wavefunctions

ψf
n =

(
|n⟩f

−λ|n− 1⟩f

)
, λ = ±1, (32)

where the wavefunction

|0⟩f = f(z)(zz̄)−δ/2e−zz̄/2 (33)

of the zeroth Landau level satisfies a|0⟩f = 0 and f(z)
is a holomorphic function of z, while the higher Landau
levels are obtained from the definition

|n⟩f =
1√
n!

(
â†
)n |0⟩f . (34)
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2. Vortex state near the K′ point

Near the K ′ point, the pseudomagnetic field switches
sign in the Dirac Hamiltonian, but the external magnetic
field is preserved [41]. While the gauge potential

Ax = −B
2
y − δ

y

r2
, Ay =

B
2
x+ δ

x

r2
(35)

reads the same as Eq. (24), and B is the strained induced
magnetic field near K ′ point given by Eq. (10). As β > 0
now implies B < 0, the roles of creation and annihila-
tion operators become interchanged. We can repeat the
calculation to obtain the eigenenergies

E′λ
n−δ = λvF

√
(2n− 2δ)|B|, λ = ±1, (36)

and states

ψ′m
n−δ =

1√
2

(
|n− 1− δ⟩′m
−λ|n− δ⟩′m

)
(n ≥ 1), (37)

with the explicit form of the normalizable wavefunctions
now given by

|n+δ⟩′m =

m∑
j=0

cj z̄
− δ

2+jz−
δ
2+n−m+je−zz̄/2 (0 ≤ m ≤ n),

(38)
where the coefficients c′i now satisfy the recursion relation

−j(−δ + (n−m+ j))c′j = (m+ 1− j)c′j−1. (39)

There are again n eigenstates with wavefunction (37),
each having the energy given in Eq. (36).

Again, we still have the usual Landau levels at energies
E′λ

n = λvF
√

2n|B|, whose wavefunctions

ψ′f
n =

1√
2

(
|n− 1⟩′f
−λ|n⟩′f

)
, λ = ±1 (40)

now follow from the definitions

|n⟩′f =
1√
n!

(â)
n |0⟩′f (41)

and

|0⟩′f = f(z̄)(zz̄)δ/2e−zz̄/2, (42)

while f(z̄) now is an anti-holomorphic function of z̄.
In the case δ = ± 1

2 of a half-integer vortex, the spectra
of the vortex states near the K and K ′ points are iden-
tical. However, for general values of δ this degeneracy
is lifted. Therefore, between Landau levels n and n + 1
there are n + 1 vortex states with energy En+1−δ that
come from the K ′ valley, and n such states with energy
E′

n+δ that come from the K valley. From the explicit
forms of their wavefunction (30) and (38), we also see
that with increasing n they contain higher powers of z
and z̄, so that the expectation value ⟨r⟩ = ℓB⟨

√
zz̄⟩ of

their radius increases. At small n, the vortex states are
tightly bound to the vortex.

3. Curvature effects

Next, we consider the additional effects of a constant
curvature K and an additional uniform magnetic field in
B. Following [35], one can show that

(Hv(B,K))
2

=

(
Hs(A−,K)− B + K

2 0
0 Hs(A+,K) + B + K

2

)
(43)

where Hs(A,K) is the Schrödinger Hamiltonian of a non-
relativistic particle on a Riemann surface with a constant
curvature, which couples to a background vector poten-
tial A as defined in Ref. [35]. The gauge potential A+

gives a vortex flux δϕ0 at the origin and a constant mag-
netic field B + K

2 . Similarly A− gives a vortex flux δϕ0
at the origin and a constant magnetic field B − K

2 . The
eigenvalue of (43) that is consistent with the energy of
vortex states (27) at K = 0 is given by

(Eλ
n+δ(K))2 = 2v2F (|n|+ δ)|B|+ v2F (|n|+ δ)2K, (44)

which implies

Eλ
n+δ(K) = λvF

√
2(|n|+ δ)|B|+ (|n|+ δ)2K, λ = ±1.

(45)
These expressions are consistent with Eqs. (27) and (36)
in the limit K = 0, and with Eq. (6) in the limit δ = 0.
Similarly, the energy of vortex states near the K ′ point

including the constant curvature is

E′λ
n−δ(K) = λvF

√
2(|n| − δ)|B|+ (|n| − δ)2K, λ = ±1.

(46)
These are our main general results for the vortex states
in the continuum theory. We next apply these to the
system in the optimal strain configuration.

4. Application to the optimal strain configuration

Finally, we apply the obtained analytical results for
the vortex states to the optimally strained system, for
a flux of arbitrary value φ = δ × ϕ0. Given the strain-

induced magnetic field B = β and curvature K = −β2

4 ,
for each valley, we obtain a sequence of midgap states
with energies following from Eqs. (45), (46), giving

EK
gap,n = vF sgn (n)

√
2|(|n|+ φ

2π
)β| − (|n|+ φ

2π
)2
β2

4
,

(47)

EK′

gap,n = vF sgn (n)

√
2|(|n| − φ

2π
)β| − (|n| − φ

2π
)2
β2

4
.

(48)

These expressions reflect that the flux seen in the two val-
leys is the same, while the pseudomagnetic field strength
takes opposite values. For φ → 0, the energies reduce
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to the positions of the pLLs (6), so that the index n
traces the origin of these states. The flux then shifts the
quantization condition for the midgap states, consistent
with the extra phase picked up on a cyclotron-like orbit
around the vortex, which is fully born out by the ana-
lytical form of the derived wavefunctions. Furthermore,
each of these energies describes |n| midgap states, which
in the continuum theory are exactly degenerate. Within
each gap, we therefore find |n| midgap states arising from
one valley, and |n|+1 states arising from the other valley,
which accounts for all the expected states.

These predictions are confirmed in Fig. 7, where we
compare Eqs. (47) and (48) with numerical results for an
optimally strained triangle for size N = 90, as a func-
tion of the flux φ in a vortex placed at the center of the
system. We note that each valley produces a symmet-
ric spectrum, in keeping with the chiral symmetry of the
system.

We also see that the midgap states from different val-
leys become degenerate at half-integer flux, φ = π. Ac-
cording to Eqs. (47) and (48), within each gap the en-
ergies of states donated from both valleys then indeed
coincide, EK

gap,n = EK′

gap,n+1, giving

E(max)
gap,n = (2vF /N) sgn (n)

√
(|n|+ 1/2)(2N − |n| − 1/2)

(49)
at maximal strain. These levels are indicated by the lines
in the bottom panel of Fig. 1(c).

As we mentioned in the introduction, such vortices ap-
pear naturally in the Kitaev honeycomb model of inter-
action spins, leading to localized excitations with uncon-
ventional particle statistics. We therefore now turn our
attention to the effects of the strain on these interactions.

VI. VORTEX SPECTROSCOPY AND THE
KITAEV HONEYCOMB MODEL

We now combine the insights from the previous sec-
tions and investigate the position-dependent interplay of
flux vortices, first in the single-particle picture, and then
in the application to the Kitaev honeycomb of interacting
spin [47]. Guided by our discussions in Secs. III, IV, V, we
expect that the flux vortices allow us to probe the local
physical features of the system, such as the opening of a
local gap in the triangle corners, and the inhomogeneous
emerging metric that reduces the effects of a magnetic
field near the boundaries. Our particular attention is on
the localization of the vortex states themselves, as this
is directly influenced by the inhomogeneous strain, and
induces the most characteristic energetic signatures.

A. Single-particle picture

We first establish these effects in the single-particle
picture. The explicit form of the wavefunctions in the
continuum theory demonstrates that the pseudomagnetic
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Figure 8. Single-particle energy levels in an optimally
strained triangle of size N = 90, as a function of vortex posi-
tions. In (a), a single half-integer vortex is placed at a position
along a line from the edge to the center. In (b), the system
contains an additional half-integer vortex fixed at the center.

field localizes the midgap states at the flux vortex, where
the localization length is given by the pseudomagnetic
length ℓ = 1/

√
|β|. Each cluster contains a maximally

localized state, while additional states are reminiscent of
excited states within an effective potential well. This gen-
eral picture is confirmed by our supplementary numerical
results, depicted in Fig. 12.
This observation suggests to probe the spatial local-

ization of these states spectroscopically by placing the
vortices at different positions. Figure 8(a) depicts the en-
ergetics when a vortex is placed along a line from the edge
to the origin. The midgap states appear in well-defined
transitions, denoting the positions where they move fully
into the system. In turn, we can interpret this effect as
a lifting of their degeneracy as the states are moved to-
ward the edge of the system. This degeneracy lifting,
therefore, reveals the differing finite extent of the states,
which is consistent with the described sequence of states
within each cluster.
In panel (b) we show the energetics for two vortices,

one placed into the center and another moved in from
the side. This reveals that each of them pins states sepa-
rately as long as their extent does not significantly over-
lap. Such multi-vortex configurations appear naturally in
the Kitaev honeycomb model [48–50], to which we turn
next.

B. Kitaev honeycomb

In the Kitaev honeycomb model, the tight-binding
Hamiltonian (1) arises after a transformation to Ma-
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Figure 9. Vortex energetics in the Kitaev honeycomb model.
(a) Strain dependence of the ground-state energies in the flux-
free sector and in the sector with a flux vortex at the center
of the system. (b) Excess energy from the centered vortex.
(c) Position dependence of excess energies due to a single
vortex or a vortex pair in the optimally strained system (full
symbols) and in the unstrained system (faint symbols). The
results for the vortex pair represent an effective interaction
energy, as defined in Eq. (51).

jorana fermions [13, 51]. For each fixed configuration
of vortices (sector), the single-particle energies occur
in pairs ±εn, and the many-body energies E{σn} =∑

n σnεn of the original spin states are obtained by sum-
ming up these energies for all combinations of signs
σn = ±1. The overall ground state is obtained from the
vortex-free sector. For homogenous uniaxial strain with
a coupling strength t3 > t1+ t2 along one bond direction
that exceeds the combined couplings along the other two
directions, a gap opens in the vortex-free sector, which
can be populated by zero modes in the sectors with vor-
tices; these excitations are then found to obey anyonic
statistics. In the inhomogeneously strained setting con-
sidered here, the vortex-free sector is not gapped, since
the 0th pLL contributes a highly degenerate set of states
around εn = 0, corresponding to a spin liquid [17]. Thus,
the system possesses a large number of low-energy excita-
tions, which are part of a quantized excitation spectrum.
This quantized excitation spectrum is then modified by
the vortex-induced states residing between the pLLs.

These energetic features are illustrated in Fig. 9. As
shown in panel (a) the overall ground state energy

E
(0)
gs (β) from the vortex-free sector systematically de-

pends on the pseudomagnetic field strength β, displaying
a maximum at β = 0. Furthermore, a very similar depen-

dence is shown by the lowest-energy state E
(c)
gs (β) in the

sector with a single vortex, placed into the center (‘c’) of
the system. The energy difference

∆E(c)(β) = E(c)
gs (β)− E(0)

gs (β), (50)

shown in panel (b), is much smaller than the overall scales
for these energies and their strain dependence. Further-
more, as required, it is always positive.
In Fig. 9 (c) we further analyze the excess energies

∆E(n)(βmax) at maximal strain for a single vortex that
is placed at different positions n, along the line indicated
in the illustration. We observe that the excess energy
becomes small when the vortex is moved from the center
to the edge. The vortex then resides in a region where the
system is locally gapped. This behaviour is in contrast
with the unstrained system, for which the excess energy
drops off only very close to the edge (faint open symbols).
Figure 9(c) also examines the energetics for a system

with two vortices, where one is placed into the center
and the other moved along the specified line. When the
two vortices are well separated, we find that the excess
energy is well approximated by the sum of the individual
excess energies (see the supplementary numerical results
in Fig. 13). We therefore define the residual energy

∆E(c,n) = E(c,n)
gs − E(c)

gs − E(n)
gs + E(0)

gs , (51)

which can be interpreted as an effective interaction en-
ergy. As shown in the figure, this residual energy is very
small, and short-ranged, in particular when compared
to the unstrained system (again indicated by faint open
symbols).

VII. CONCLUSIONS AND OUTLOOK

In summary, we have studied the interplay of inhomo-
geneous strain and magnetic fields in honeycomb models.
This reveals a number of striking effects. In the appro-
priate continuum theory, the strain not only induces a
valley-dependent pseudomagnetic field, but also an effec-
tive negative curvature. As we established in Sec. III, this
curvature directly affects the energies and degeneracies of
the strain-induced pseudo-Landau levels. The emerging
hyperbolic geometry also renormalizes the effects from
an additional magnetic field, which becomes weakened
at the natural boundaries of the system, as we demon-
strated in Sec. IV. The interplay of effects takes a partic-
ularly striking form when the magnetic field is localized
into flux vortices. As shown in Sec. V, this generates a
characteristic sequence of midgap states, which reflects
further topological and geometric features of the system.
As an application, we investigated in Sec. VI how these
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states can be used spectroscopically to probe the local
features of the system. In the Kitaev honeycomb system
of interacting spins, the energetics of the vortex states
map out the phase diagram in space, and the pseudo-
magnetic field leads them to exhibit an enhanced spatial
localization and short-ranged pairwise interactions in the
spin-liquid phase.

Honeycomb lattice models can also be physically re-
alized for fermions in graphene, where large pseudo-
magnetic fields can be achieved by in-plane strain [23–
26], and a range of analogous bosonic systems includ-
ing photons in optical waveguide lattices and resonator
arrays, where strain-induced pLLs where realized in
Ref. [28, 30, 31], while half-integer flux vortices where
engineered in Ref. [52]. Our results therefore directly
apply to the strain engineering in these settings. For
instance, we predict that the splitting of Landau levels
from strain and magnetic fields varies spatially, which
explains why this effect remained elusive until systems
were probed locally as in Ref. [26]. To create effective
half-integer flux vortices in graphene, we propose to con-
sider chemical functionalization via adatoms that bridge
over bonds, which replicates the photonic mechanism in
Ref. [52]. For further investigations, we therefore sug-
gest seeking the physical signatures of the strain-localized
flux-induced midgap states in these three settings. In
photonic systems, these states could be used for waveg-
uiding. In electronic systems, they can trap charges and
serve as scattering centers, which can be investigated
in transport. In the context of the Kitaev honeycomb
model, it would furthermore be particularly interesting
to establish their implications for the dynamics in time-
dependent systems, including for braiding.

On the methodological side, we established quanti-
tative and qualitative consistency between the discrete
microscopic description and the effective continuum de-
scription of the system. Remarkably, this consistency
extends to discrete features that are intimately tied to
its manifestly inhomogeneous and finite geometry, such
as the exact degeneracy of the pseudo-Landau levels, in-
cluding in the presence of a flux vortex. Further method-
ological progress could target the modification of the con-
tinuum theory to include the interplay of the valleys, and
ultimately also the collision of the Dirac points and the
opening of a gap. Our microscopic considerations fur-
thermore suggest significant scope to generalize exactly
solvable microscopic models, both in terms of their geo-
metric shape as well as in terms of their physical proper-
ties.
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Appendix A: Emergence of curved geometry in the
continuum theory

In this Appendix we provide background information
on the continuum theory employed throughout this work,
detailing in particular how the strain does not only in-
duce a pseudomagnetic field, but also leads to an effec-
tively curved geometry. For this background material,
we follow Refs. [20, 43].

1. Notation

We first fix the notation. We define the spatial metric
as

ds2 = gijdx
idxj (A1)

and fix the flat-space metric as

ηij = δij . (A2)

We will use a, b, c, · · · for local frame indices and
i, j, k, · · · for space coordinate indices. The vielbein is
given by the definition

gij = eai e
b
jηab, (A3)

which corresponds to a transformation to a locally flat
frame. We lower and raise the local frame indices by ηab
and ηab, and lower and raise the space coordinate indices
by gij and gij . Furthermore, we introduce the inverse

vielbein via the definition eaj e
j
b = δab .

With this data, the spin connection is defined as

ωi =
1

2
ϵabe

aj∇ie
b
j , (A4)

where the action

∇ie
a
j = ∂ie

a
j − Γk

ije
a
k (A5)

of the covariant derivative on a 1-form vielbein involves
the Christoffel symbol

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)
=
∂eak
∂xj

eia. (A6)

We also use the explicit notation

γ0 = σ3, γi = σ3σi (i = 1, 2) (A7)

of gamma matrices in 2+1 dimension, where σi denotes
the standard Pauli matrices.

2. Strain-induced pseudomagnetic field and
curvature

We now bring the tight-binding model (1) into a form
where it can be interpreted as a Dirac equation with an
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induced pseudomagnetic field in curved space. As a first
step, we write the general coupling profile in the form

tij ≈ teiAij

[
1− β̃(uj − ui) · ρρρij

]
, (A8)

which allows us to interpret its spatial modulation phys-
ically in terms of a displacement field ui with effective
coupling strength β̃, and connects the phases Aij = AAA·ρρρij
to an external vector potential with components Ai. In
these expressions, ρρρij continues to refer to the pristine
configuration. To first order in the strain, the effective
low-energy Hamiltonian near the K point is then given
by [43]

HTB = vF [ivij(r)σi(∂j − iAj) + iσiΓi + σiA
s
i ] , (A9)

where vij is the space-dependent modulation of the Fermi
velocity vF = 3t

2 ,

Γi =
1

2
∂kvik, (A10)

and As
i is the pseudo gauge field. The explicit forms of

As
i and vij for general displacement fields u can be found

in [43], and the specific expressions for the strain pro-
file (2) are given below. The spectrum of this system
is obtained from HTBψ = Eψ, where the scalar prod-

uct ⟨ψ1|ψ2⟩ =
∫
d2xψ†

1ψ2 is inherited from the original
microscopic model.

The appearance of the spatial dependence in vij , and
the associated term Γi, invalidate the common assump-
tion that the effects of the strain can all be captured by
an additional contribution to the vector potential. On
the other hand, such terms appear naturally for a Dirac
fermion in a curved space of metric gij , coupled to a
background U(1) vector potential Ai. This situation is
described by the Hamiltonian density [43]

H = ivF e
i
aγ

a(∂i −Ωi − iAi), Ωi = −1

2
eai ∂je

j
a −

1

2
∂i
√
g,

(A11)
which defines the total Hamiltonian

H =

∫
d2x

√
gψ†Hψ, (A12)

where g = det (gij). The important point is to realize is
that H is Hermitian with respect to the scalar product∫
d2x

√
gψ†

1ψ2, so that H cannot be directly compared to
HTB . The simplest way to allow the comparison is to
redefine the curved space field as ψ = ψ̃g−1/4, so that we
have a regular eigenvalue problem

H̃ψ̃ = ivF e
i
aγ

a(∂i − Ωi − iAi −
1

2
∂i
√
g)ψ̃ = Eψ̃ (A13)

with the standard scalar product. This matches with the
Hamiltonian (A9) when we set

eia = via, Ai = Ai +As
j v̂ji, (A14)

where we define the inverse velocity matrix v̂ijvjk = δik.
The corresponding induced magnetic field and Gaussian
curvature are

B =
ϵij∂iAj√

g
, K =

ϵij∂iωj√
g

. (A15)

Appendix B: Application to optimal strain

In this Appendix, we present the derivation of the ana-
lytical results for a uniform pseudomagnetic field, which
forms the basis of the discussion in Sec. III. For this, we
utilize the general results from the continuum theory of
the preceding App. A,
In the continuum theory, the coupling configuration

(2) used in the main text corresponds to the standard
triaxial strain field [18, 43]

u = uB

(
2xy

x2 − y2

)
, (B1)

coupled with a strength β̃ = β/(4uB). Using the general
expressions of Ref. [43], the vielbein eia and pseudovector
potential As

i are then given by [53]

eia =

(
1− β

4 y −β
4x

−β
4x 1 + β

4 y

)
, As =

β

2

(
−y
x

)
. (B2)

Notably, this corresponds to constant values of the in-
duced pseudomagnetic field and curvature,

B = β, K = −β
2

4
. (B3)

In general, a Dirac fermion in a constant magnetic field
B and a constant Gaussian curvature K has the spectrum
[35, 43, 45]

En = vF sgn(n)
√

2|nB|+ n2K. (B4)

For K > 0 this is the spectrum of the sphere [45]. For
K < 0, which we encounter here, this expression gives the
discrete part of the spectrum only, which is constrained
by |n| < |B|/|K| [54]. For larger energies, there is a con-
tinuum of states. Furthermore, the degeneracy of these
Landau levels is given by [35]

Ne,n =
1

2π

∫
d2x(|B|+ Sn

2
K) ∼

(
1 + Sn

K
2|B|

)
, (B5)

where Sn = 2|n| is the relativistic Wen-Zee shift. As
we explain in the main text, these expressions coincide
precisely with the exact results of the microscopic model
in the optimally strained triangle configuration.

Appendix C: Additional external magnetic field

In this Appendix, we provide the derivations for the
analytical results in Sec. IV, where we consider the sig-
natures of the hyperbolic geometry for an additionally
applied external magnetic field.
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In the continuum theory, this magnetic field is obtained
from a vector potential with ϵij∂iAj = B. Mapped to the
Dirac equation in curved space, the combined effective
field takes the form

B = β + B̃, (C1)

where

B̃ =
B
√
g
= B|1− β2(x2 + y2)/16| (C2)

acquires an induced spatial dependence. At the center of
the sample, this effective magnetic field takes the com-
bined value B = β+B, but at larger distances it reduces
to the contribution from the pseudomagnetic field only,
approaching B = β at a distance r = 4/β, which happens
to coincide with the finite system size obtained from the
exact solution of the microscopic model.

When one considers the effective theory for the fermion
near the K ′ point, the pseudomagnetic field induced by
the strain switches sign [18, 41, 43],

B = −β + B̃, (C3)

while the curvature remains the same. Consequently,
when one applies both strain and an external magnetic
field, the local Landau levels near the center of the sam-
ple take the valley-dependent energies

E±
n = vF sgn(n)

√
2|n(±β +B)| − n2

β2

4
, (C4)

while far from the center they take the valley-
independent form

E±
n = vF sgn(n)

√
2|nβ| − n2

β2

4
. (C5)

Taken altogether, these levels should therefore cover the
interval between the two values in Eq. (C4), which indeed
agrees well with the numerical observations as discussed
in the main text.

Appendix D: Supplementary numerical results

Here we provide additional numerical results that il-
lustrate further points in the main text.

Throughout, we focussed on the system with pseudo-
Landau levels generated by strain. As shown in the top
panels of Fig. 10, a noticeably different picture emerges
when we completely replace the pseudomagnetic field by
a real magnetic field. For the resulting magnetic LLs, the
degeneracy does not saturate but increases as the mag-
netic field increases, until the familiar Hofstadter but-
terfly picture emerges. The gaps are then always filled
by (edge) states that are in the process of crossing over
from one LL to another LL. A half-flux vortex gives rise
to a weak modulation of this pattern within the gaps, but
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Figure 10. Magnetic-field dependence of the energies in a
triangular system of size N = 30, without any vortices (left),
and with a half-integer vortex placed into the center (right).
In the top panels, the system is pristine, in the bottom panels
it is optimally strained.

n=0 n=1 n=2

Figure 11. Support of the lowest pLLs in the optimally
strained triangle without a flux vortex (N = 90). The bottom
panels zoom into the central region.

not to the extent that individual midgap states could be
identified. The bottom panels depict the magnetic-field
dependence in the optimally strained system. The pLLs
then quickly broaden, as described in detail in Sec. IV.
Noticeably, a large gap remains around the zeroth pLL.

In Sec. III we remarked that the lowest pLLs in the
optimally strained system fill out the central triangle in
which the system is locally not gapped. This feature is
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Figure 12. Support of the lowest pLLs and midgap states
in the optimally strained configuration with a central half-
integer flux vortex (N = 90).

-8091.4

-8091.3

-8091.2

(a) (b)

 edge  10  20  center
position

E gs
/t

-8091.4

-8091.3

-8091.2

 edge  10  20  center
position

E gs
/t

single vortex

single vortex

vortex pair
(center+
offcenter)

vortex pair
(symmetric
offcenter)

×2

add

Figure 13. (a) Determination of the effective vortex inter-
action energy in Fig. 9(c) from the ground states of sectors
in different vortex configurations, amounting to the differ-
ence between the shaded and green curves in accordance with
Eq. (51). This interaction energy is consistent with that ob-
tained by displacing both vortices symmetrically from the cen-
ter, giving the ground state energies of panel (b). This data
is for optimally strained triangles of size N = 90.

illustrated in Fig. 11. As shown in Fig. 12, the pLLs
in the system with a central half-integer flux vortex are
depleted around this vortex. This weight is taken up the
midgap states.

In Sec. VI we considered ground state energies in dif-
ferent vortex configurations of half-integer fluxes, as rele-
vant for the application to the Kitaev honeycomb system.
As shown in Fig. 13, spatially well-separated vortices pro-
vide independent excess energies. The figure then further
illustrates how these can be combined to define the effec-
tive interaction energy (51).

Finally, in Fig. 14 we show the ground state if the sys-
tem supported a central vortex of general flux φ, mak-
ing use that this preserves the chiral symmetry so that
many-body energies can still be formally obtained from
the single-particle energy pairs. Alternatively, this result
could be interpreted as a ground-state energy of nonin-
teracting electrons in an analogous graphene-like system,
evaluated per spin at half-filling.

 0

 0.1

 0  0.5  1
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φ/�

ΔE
gs

/t

Figure 14. Excess energy in the many-body ground state of
as in triangular Kitaev honeycomb system, but generalized to
a central vortex of arbitrary flux. The system size is N = 90,
and the result in the pristine (unstrained) configuration is
compared to that in the optimally strained configuration.
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[34] S. Rachel, I. Göthel, D. P. Arovas, and M. Vojta, Strain-
induced Landau levels in arbitrary dimensions with an
exact spectrum, Phys. Rev. Lett. 117, 266801 (2016).

[35] A. Pnueli, Spinors and scalars on Riemann surfaces, J.
Phys. A 27, 1345 (1994).

[36] X. G. Wen and A. Zee, Shift and spin vector: New topo-
logical quantum numbers for the Hall fluids, Phys. Rev.
Lett. 69, 953 (1992).

[37] D. X. Nguyen, S. Golkar, M. M. Roberts, and D. T.
Son, Particle-hole symmetry and composite fermions in
fractional quantum Hall states, Phys. Rev. B 97, 195314
(2018).

[38] S. Golkar, M. M. Roberts, and D. T. Son, Effective field
theory of relativistic quantum hall systems, J. High En-
ergy Phys. 2014 (12), 138.

[39] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The electronic properties of
graphene, Rev. Mod. Phys. 81, 109 (2009).

[40] A. Iorio and P. Pais, Revisiting the gauge fields of
strained graphene, Phys. Rev. D 92, 125005 (2015).

[41] M. A. Zubkov and G. E. Volovik, Emergent gravity in
graphene, J. Phys. Conf. Ser 607, 012020 (2015).

[42] H. Schomerus and N. Y. Halpern, Parity anomaly and
Landau-level lasing in strained photonic honeycomb lat-
tices, Phys. Rev. Lett. 110, 013903 (2013).

[43] G. Wagner, F. de Juan, and D. X. Nguyen, Landau levels
in curved space realized in strained graphene, SciPost
Phys. Core 5, 029 (2022).

[44] D. R. Hofstadter, Energy levels and wave functions of
Bloch electrons in rational and irrational magnetic fields,
Phys. Rev. B 14, 2239 (1976).
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