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Gauss-Bonnet Dark Energy has been a popular model to explain the accelerated expansion of
the Universe. Quite generically it also predicts the speed of gravitational waves cGW to be different
from the speed of light. This fact alone led some authors to exclude such models in view of the new
tight observational constraints on cGW. However, the behaviour of cGW depends on the choice of
the Gauss-Bonnet (GB) coupling function. It is possible to construct models where cGW is always
equal to the speed of light. More generally, cGW is a time dependent function with instances where
both speeds coincide. Nevertheless, we observe that the bound on cGW excludes scenarios where
the GB term directly affects the expansion of the Universe, even if the constraint on the variation
of the coupling function does not appear to be strong. We perform the dynamical systems analysis
to see if the expansion of the Universe could be affected indirectly by modulating the behaviour of
the scalar field, which modulates the GB coupling. It is shown that either the bounds on cGW are
violated by many orders of magnitude, or it might be very difficult to find models that are consistent
with other cosmological observations.

I. INTRODUCTION

The detection of gravitational waves (GW) [1–3] opens a new window to observe and measure the Universe. Most
directly, it enables testing General Relativity (GR) in regimes that were not accessible before and constrain possible
modifications of the laws of gravity. They also provide new ways to test Dark Energy (DE) models. Many of such
models rely on gravity modifications and therefore are subject to such constraints.

A very clear demonstration is provided in Ref. [4]. A lucky coincidence of being able to detect GW emitted by
the merger of two neutron stars as well as the electromagnetic counterpart of this event made it possible to put very
stringent constraints on the speed of GW, cGW. The delay between arrival times of GW and γ-rays led to the bound

|αT| < 10−15 , (1)

where αT parametrises the deviation of cGW from the speed of light

αT ≡ c2GW − 1 , (2)

in natural units, where c = ℏ = 1.
Many classes of modified gravity theories predict αT ̸= 0. The constraints on αT in Ref. [4] excluded a lot of well

motivated and otherwise attractive models and considerably narrowed down the space of available modifications [5, 6].
Among the excluded models – it is claimed in Ref. [5] – is the Gauss-Bonnet Dark Energy (GBDE) one. This model

has many attractive features. The Gauss-Bonnet term itself is a unique combination of curvature terms squared

G ≡ R2 − 4RµνR
µν +RµνρσR

µνρσ , (3)

where R, Rµν and Rρ
σµν are the Ricci scalar, tensor and Riemann tensor respectively. Nevertheless, this combination

leads to metric tensor equations of motion that are second order. The Gauss-Bonnet (GB) term is quite ubiquitous
in actions of low-energy effective string theory, be it at tree or one loop level [7–13]. The corresponding modification
can be written as ξG term in the Lagrangian, where ξ is the GB coupling. If the latter is a constant, the GB term is
a surface term and can be integrated out (although it can still be important for other aspects of the theory, such as
regularization [14, 15]). However, on quite generic grounds, one might expect that the GB term also couples to scalar
fields of the theory, such as moduli or dilaton fields, making ξ field dependent.

The possibility of explaining DE with the GB term was first investigated in Refs. [16–20]. One of the attractive
features of such models is that they provide the means to safely cross the phantom divide, that is, enter the regime
where the DE equation of state is w < −1, without instabilities. The best fit value of w is smaller than −1 [21]. If such
w is associated with a scalar field, it leads to many instabilities and such a model is likely excluded by observations
[22]. On the other hand, modifications of gravity in GBDE in some parameter range allow for w < −1. In this model
w is time dependent; it briefly dips below −1 before settling on w = −1 [18]. Hence, it can accommodate this low
value without leading to contradictions.
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Quite generically GBDE predicts αT ̸= 0. This fact alone led the authors of Ref. [5] to claim that GBDE is ruled
out. Here we would like to point out that cGW, predicted by GBDE, is not a constant. Moreover, the constraint in
eq. (1) is an upper bound which is applicable only at the very latest stages of the evolution of the Universe.1 Hence,
to assess the implications of these constraints for GBDE we need to study it more carefully.

In this work we use the dynamical systems analysis to look for viable models of GBDE and compute the evolution
of αT parameter. The crucial quantity in such models is the GB coupling ξ (ϕ). It determines the dynamics of the
universe as well as the evolution of the αT parameter. Applying the bound in eq. (1) to the variation of ξ (ϕ) and
the rate of its variation, we find that the constraints appear weak. Nevertheless, the bound in eq. (1) prevents the
GB term from affecting the expansion of the Universe directly. The remaining possibility is for this term to affect the
expansion indirectly, by modifying the behaviour of the scalar field. To investigate this issue we apply the dynamical
systems analysis. We also apply this analysis to the case where αT = 0 by construction, which is allowed by the
model.

In Section II we introduce the model, derive dynamical equations and show the bounds on ξ (ϕ) that follow from
eq. (1). In Section III we assume an exponential potential V (ϕ) and write the dynamical equations in terms of
dimensionless variables, which are used in the following sections. The dynamical systems analysis is applied to models
with the exponential GB coupling ξ (ϕ) in Section IV and it is applied to the linear function ξ (ϕ) in Section V. The
case of αT = 0 is studied in Section VI.

II. SCALAR-GAUSS-BONNET DARK ENERGY AND CONSTRAINTS ON cGW

We start with the scalar-Gauss-Bonnet action

S =

ˆ
d4x

√
−g

[
1

2
m2

PlR+ ξ (ϕ)G − 1

2
∂µϕ∂

µϕ− V (ϕ) + Lm

]
, (4)

where G is defined in eq. (3). For brevity we address to the above action as the Gauss-Bonnet (GB) action in this
work. Lm is the Lagrangian of the matter sector. If ξ is constant, the GB term is a total derivative and does not affect
the dynamics of the system. We assume the background spacetime to be homogeneous, isotropic and flat, described
by the FRW metric gµν = diag

[
−1, a2 (t) , a2 (t) , a2 (t)

]
, where t is the cosmic time and a is the scale factor.

In this model the speed of tensor mode propagation is determined by the rate of change of the coupling function
ξ (ϕ) [24–27] (see also Refs. [28, 29])

αT =
8
(
ξ̈ − ξ̇H

)
m2

Pl + 8ξ̇H
, (5)

where we use a dot to denote the derivative with respect to t and H ≡ ȧ/a is the Hubble parameter. It is clear from
this expression that the constraint in eq. (1) can be satisfied if one of the following two conditions is fulfilled. The
first option is to choose the coupling function ξ (ϕ) such that

ξ̈ = Hξ̇ . (6)

This choice is discussed in refs. [27, 30] (other related references can be found in these articles) in the context of
inflation. However, there is another, more generic possibility. We notice in eq. (5) that αT is suppressed by the
Planck mass. Therefore, as long as the conditions

∣∣∣ξ̈∣∣∣ /m2
Pl, H

∣∣∣ξ̇∣∣∣ /m2
Pl < 10−15 are satisfied, the GB action in eq. (4)

is compatible with the constraints on the speed of gravitational waves. We can write these conditions in a more useful
way ∣∣∣ξ̈∣∣∣

H2
,

∣∣∣ξ̇∣∣∣
H

< 10−15
(mPl

H

)2
, (7)

which emphasises the change of the coupling function and the rate of change of this coupling over one Hubble time.
If this condition is to be imposed on large field inflation models, where H ≲ 10−5mPl [31], this bound can be tight.
In that case, to limit αT within the allowed range, it is better to look for models that satisfy the condition in eq. (6).

1 It is also worth noting that the bound on αT applies only to the limited range of GW frequencies. This fact alone could save many
Horndeski type Dark Energy models [23].



3

However, the constraints from the observations of GRB170817A do not apply to the early Universe. Therefore it is
not very useful to use them in that context. Instead, this constraint is applicable to the present Universe, within a
very narrow range of e-folds (see Fig. 3), where the Hubble parameter is more than fifty orders of magnitude smaller
than the value of H cited above. Indeed, plugging H2

0/m
2
Pl ∼ 10−120 [21] into eq. (7) we find2∣∣∣ξ̈∣∣∣

H2
0

,

∣∣∣ξ̇∣∣∣
H0

< 10105 . (8)

That is, ξ and ξ̇ need to vary by more than 100 orders of magnitude, ∆ξ ,∆ξ̇ < 10105, over the age of the Universe
to violate the bound. This appears to demonstrate that the constraint on cGW is exceptionally weak and might give
hope that GBDE models remain viable. Unfortunately, as we show in this work, at least for simple functions ξ (ϕ),
this turns out not to be the case.

To understand the implications of eq. (1) for Gauss-Bonnet Dark Energy (GBDE) models better, let us first write
the homogeneous dynamical equations in the FRW background as [16, 32]

H2 =
ρϕ + ρm

3
(
m2

Pl + 8Hξ̇
) , (9)

Ḣ = −
ρϕ + Pϕ + ρm + Pm + 8H2

(
ξ̈ − ξ̇H

)
2
(
m2

Pl + 8Hξ̇
) , (10)

where ρϕ and Pϕ are the energy and pressure densities of the homogeneous scalar field ϕ respectively. They are defined
to be

ρϕ ≡ 1

2
ϕ̇2 + V (ϕ) , (11)

Pϕ ≡ 1

2
ϕ̇2 − V (ϕ) . (12)

Similarly ρm and Pm are the energy and pressure densities of the matter field.
The acceleration of spatial slices can be parametrised using the Hubble flow parameter

ϵH ≡ − Ḣ

H2
. (13)

Alternatively, it is common to use the deceleration parameter q ≡ ϵH − 1 for this purpose. The spatial slices expand
in an accelerating fashion if ϵH < 1 (q < 0).

Plugging eqs. (9) and (10) into eq. (13) we can write

ϵH =
3

2

(
1 +

Pϕ + Pm

ρϕ + ρm

)
+

1

2
αT , (14)

where we also made use of eq. (5). At the present epoch ϵH ≃ 0.5. Thus, in view of eq. (1) we see that the last
term must be negligible. This rules out any direct effect of the Gauss-Bonnet term to the expansion of the Universe.
Neglecting that last term, we arrive at the expression which can also be obtained in a typical, General Relativistic
quintessence models [33, 34].

But even if observations exclude the scenario where the GB term affects the expansion of the Universe directly,
there remains a possibility that it does so indirectly, by modifying the behaviour of the scalar field ϕ. As we will see
next, such a possibility is also excluded, at least for an exponential potential V (ϕ).

III. THE DYNAMICAL SYSTEM

Equations (9) and (10) can be supplemented with dynamical equations governing the evolution of the ϕ field and
ρm

ϕ̈+ 3Hϕ̇+ V,ϕ = 24ξ,ϕ

(
Ḣ +H2

)
H2 , (15)

ρ̇m + 3Hρm (1 + wm) = 0 , (16)

2 This is only an order of magnitude estimate. Factors of order 1 do not change the conclusions in any substantial way.
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where wm ≡ Pm/ρm is the barotropic parameter of the matter component. And we assume a matter fluid with
0 ≤ wm < 1.

To analyse the generic behaviour of this dynamical system, it is convenient to normalise the dynamical degrees of
freedom and write them in a dimensionless form, such as

x ≡ ϕ′
√
6mPl

, y ≡
√
V√

3mPlH
, u ≡ 4

√
6
H2ξ,ϕ
mPl

, and z ≡
√
ρm√

3mPlH
. (17)

The prime in the definition of x and the equations below denotes the derivatives with respect to the e-fold number

N ≡ ln a , (18)

where we normalised a such that a = 1 today. The above defined dimensionless parameters are related to the more
familiar density parameters by

Ωm ≡ ρm
3m2

PlH
2
= z2 , (19)

Ωϕ ≡ ρϕ
3m2

PlH
2
= x2 + y2 , (20)

ΩGB ≡ −8Hξ̇

m2
Pl

= −2ux . (21)

The first two definitions are exactly the same as in models of GR with a scalar field. The physical origin of the last
parameter is due to the modifications of gravity, but it is interpreted as an effective matter fluid. Following this
interpretation we can write the constraint equation (9) (the Friedmann equation) as

1 = Ωϕ +Ωm +ΩGB . (22)

In GR the analogous equation confines the range of variation of each parameter to |Ω| ≤ 1. This is due to the density
parameters being non-negative. In GB gravity ΩGB can be positive as well as negative. This makes it possible for Ωϕ

and Ωm to exceed unity.
The definitions in eq. (17) are particularly useful if the scalar field potential is an exponential function

V = V0e
−λϕ/mPl , (23)

where we take λ > 0 to be a constant. We will always use the above ansatz in this work. In that case the dynamical
equations are self-similar and the explicit dependence on the Hubble parameter drops out of those equations. In
particular, eqs. (15) and (16) can be written as

x′ = (ϵH − 3)x+

√
3

2
λy2 + u (1− ϵH) , (24)

y′ =

(
ϵH −

√
3

2
λx

)
y , (25)

z′ =

[
ϵH − 3

2
(1 + wm)

]
z , (26)

where

ϵH =

[
3x2 +

3

2
(1 + wm) z

2 + (ux)
′ − ux

]
1

1 + ux
(27)

The constraint equation (22), in terms of the dimensionless variables, can be written as

1 = x2 + y2 + z2 − 2ux . (28)

When doing dynamical analysis of this system, it is convenient to use the equation for u too. Taking the derivative
of the expression in eq. (17) we find

u′ = −2ϵHu+ 24H2ξ,ϕϕ x . (29)



5

xc yc uc zc Expansion rate ϵHc If κ is ϵHcuc

M 0 0 0 1 3
2
(1 + wm)

any κ 0

K± ±1 0 0 0 3

I λ√
6

√
1− λ2

6
0 0 1

2
λ2

Sc
√

3
2

1+wm
λ

√
3
2 (1−w2

m)
λ

0
√

1− 3(1+wm)

λ2
3
2
(1 + wm)

dS 0 1 −
√

3
2
λ 0 0

S2
√

3
2

1+wm
κ

0
√

3
2

3(w2
m−1)

κ(3wm+1)

√
1 + 3(3wm−7)(1+wm)2

2κ2(3wm+1)
3
2
(1 + wm)

κ ̸= λ

̸= 0G β 0 β2−1
2β

0 5β2+1
β2+1

=
√

3
2
κβ

S3
√

3
2

1+wm
λ

√
3
2 (1−w2

m)+ λ√
6
(1+3wm)uc

λ
uc

√
1−

3(1+wm)− λ√
6
(5+3wm)uc

λ2
3
2
(1 + wm)

κ = λ

IV xc

√
1− x2

c + 2xc ·
3xc−

√
3
2
λ

1+
√

3
2
λxc

3xc−
√

3
2
λ

1+
√

3
2
λxc

0
√

3
2
λxc

Table I. The values of x, y, u and z parameters at the fixed points and curves. The conditions for the existence of these fixed
points and curves can be derived from the fact that all xc, yc, uc and zc values must be real. Parameters λ, κ and β are defined
in eqs. (23), (30) and (A10) respectively. Both λ and κ are strictly positive.

A few comments about these equations are in order. First, notice that taking u = 0 (ξ = const) we recover the
same equations as used for models in General Relativity (e.g. ref. [35]). In those models, the dimensionless variables
y and z are constrained within the range [0; 1] and x ∈ [−1; 1]. This can be seen from eq. (28) or equivalently from
eq. (22). In the case of the GB models such restrictions do not apply. As mentioned above, a priori the sign of u (or
ΩGB) is not determined. Hence, the maximum values of |x|, y and z are not limited to 1. Second, eq. (27) diverges
as ux → −1. However, this value is never reached because it falls within the phase space region that is forbidden by
the constraint equation (28).

IV. THE EXPONENTIAL GAUSS-BONNET COUPLING

A. Dynamics

To understand the qualitative behaviour of this dynamical system, we find its fixed points and investigate their
stability. The fixed points are defined as points, or regions, in the phase space where x′ = y′ = z′ = 0 is satisfied.
First, we study the case of the exponential GB function, given by

ξ = ξ0e
κϕ/mPl , (30)

which allows us to write eq. (29) as

u′ =
(√

6κx− 2ϵH

)
u . (31)

The computation details for finding fixed points are provided in the Appendix and the results are summarised in
Table I.

Looking at this table, notice that all the fixed points with uc = 0 coincide with the ones analysed in ref. [35], as
expected. In this reference the authors analyse a quintessence model within the theory of GR and the exponential
scalar field potential. In other words, all the fixed points that are present in a similar setup in GR, they are also
present in GB models. However, even if the fixed points coincide, the presence of the GB term might change their
stability, as we will show below.

The fixed point M in Table I corresponds to the case where the scalar field is diluted and only the matter field
remains. The K± fixed points correspond to kination, where the universe is dominated by the kinetic energy of the
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scalar field. In the case of I and λ <
√
2 this fixed point represents the power law inflation [36]. In the scaling

fixed point (Sc) the evolution of the scalar field adjusts to mimic the behaviour of the matter field. Therefore, the
expansion rate of the Universe is given by ϵH = 3

2 (1 + wm).
The GB term introduces two more scaling solutions: the fixed point S2, which exists for κ ̸= λ, and the fixed curve

S3, which exists if ξ (ϕ)V (ϕ) = constant. For our purpose, the most interesting new fixed point is the de Sitter one
(dS), where Ḣ = 0. This fixed point is very robust, and exists for large variety of ξ (ϕ) functions.

Some discussion of DE models with κ = λ and various solutions were provided in Ref. [16]. Some dynamical analysis
with κ ̸= λ was performed in Ref. [18] (see also [37]). Here we modify and extend the analysis to make it more generic.
In this section, we take κ ̸= λ.

Often, the stability of fixed points can be determined by taking a linear perturbation of equations (24)–(29) around
those points. In the case of an exponential GB function in eq. (30) those linear equations can be written as

δx′ = (ϵHc − 3) δx+
√
6λycδy + (1− ϵHc) δu+ (xc − uc) δϵH , (32)

δy′ = −
√

3

2
λycδx+

(
ϵHc −

√
3

2
λxc

)
δy + ycδϵH , (33)

δu′ =
√
6κucδx+

(√
6κxc − 2ϵHc

)
δu− 2ucδϵH , (34)

δz′ =

[
ϵHc −

3

2
(1 + wm)

]
δz + zcδϵH , (35)

where

δϵH =
ucδx

′ + xcδu
′ + [6xc − (ϵHc + 1)uc] δx− xc (1 + ϵHc) δu+ 2ϵHczcδz

1 + ucxc
(36)

is the linearised eq. (27). The constraint equation fixes the dynamics onto the three-dimensional hypersurface in the
four-dimensional phase space. The linearised version of that equation is given by

0 = (xc − uc) δx+ ycδy + zcδz − xcδu . (37)

We next compute the eigenvalues of the system of equations (32)-(35) and determine their stability. The eigenvalues
at the fixed point M are

m1 = ϵHc − 3 , (38)
m2 = ϵHc , (39)
m3 = −2ϵHc , (40)

where ϵHc =
3
2 (1 + wm) is the value of the Hubble flow parameter at M. We can see that this fixed point is always a

saddle point for the range of wm values that we consider.
The eigenvalues at the kination fixed points (K±) are

m1 =
3

2
(1− wm) , (41)

m2 = −6±
√
6κ , (42)

m3 = 3∓
√

3

2
λ , (43)

where the upper sign corresponds to the point K+. We can see that the eigenvalue m1, which corresponds to the
eigenvector v = (0, 0, 0, 1)3, is always positive. Hence, these two fixed points are never stable.

The eigenvalues at the scaling fixed point Sc are

m1 = 2
(κ
λ
− 1
)
ϵHc , (44)

m± = −1

2
(3− ϵHc)

[
1±

√
1− 8ϵHc

3− ϵHc
·
(
1− 2

ϵHc

λ2

)]
. (45)

3 We order eigenvector components as v = (vx, vy , vu, vz).
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As can be seen from Table I, this fixed point exists (z2c ≥ 0) only if λ2 > 2ϵHc. Such a condition makes the real part
of m± always negative. Therefore the stability of this fixed point is determined solely by the sign of m1. That is, the
scaling fixed point Sc is a saddle point for κ > λ.

The eigenvalues at the de Sitter fixed point dS are

m1 = −3

2
(1 + wm) , (46)

m± = −3

2

[
1±

√
1 +

8λ2

3 (2 + 3λ2)

(
1− κ

λ

)]
. (47)

Notice that the condition for the stability of this fixed point is exactly opposite from the one required by the scaling
fixed point Sc: for κ > λ the scaling fixed point is a saddle and the de Sitter one is the attractor. That is, only one
point is attractive, either dS or Sc, depending on the magnitude of κ/λ ratio. None of the interesting solutions pass
through the fixed points G or S2 so we don’t analyse their stability here.

To visualise the behaviour of the system we integrate numerically a set of trajectories and show the phase portraits
in Figure 1. All the trajectories in the plots start from y0 = 10−3 and move towards the dS attractor at y = 1.
We start our simulations with a negligible GB contribution, u0 = −10−25 to be precise. A few examples of phase
portraits with other values of u0 are shown in Appendix B. Positive u0 values are not viable for our purpose to explain
DE. All such trajectories move towards large values of u > 0, away from the de Sitter fixed point dS (see Figure 5).
Another option is to take negative values of u0 and |u0| ∼ O (1). As we can see in Figure 5, this option could provide
promising candidate trajectories to explain Dark Energy. This is due to the fact that a large portion of phase space
initially evolves towards u → 0, reaches the scaling fixed point Sc and then follows the same evolution pattern as the
trajectories with |u0| ≪ 1. Nevertheless for our analysis we choose |u0| ≪ 1, as this increases the parameter space for
viable candidate trajectories. Such small values are also consistent with the scenario proposed in ref. [20], where the
GB contribution is negligible initially.

The physically interesting trajectories are those that start close to the K± or M fixed points. The former set
corresponds to the kination initial conditions and the latter ones corresponds to a universe where matter dominates
initially. In both cases most trajectories are first attracted to the scaling fixed point Sc. But because this fixed point
is a saddle point for κ/λ > 1, eventually all the trajectories are repelled and move to the de Sitter attractor dS.

This represents the desirable sequence of events: initially the universe is dominated by the kinetic energy of the
scalar field, which is the case for quintessential inflation models, or the matter component, which is often encountered
in the quintessence models. Next, the system moves into the scaling fixed point, and for a long time the Universe
evolves with an effective equation of state that of the matter component.

In the case of GR models and the exponential potential V (ϕ), the scaling fixed point Sc is an attractor [35]. That
is, all the trajectories converge onto this point and remain there. This is problematic, because the universe is not
accelerating at Sc in contrast to observations. The GB term, on the other hand, converts this point into a saddle one
and provides an escape route. The scalar field eventually can come to dominate and cause the universe to expand in
an accelerated fashion in a new de Sitter attractor point dS.

In Figure 2 we show the time evolution of the density parameters and the effective equation of state of the “dark
fluid”. The density parameters are defined in eqs. (19)-(21). As discussed below eq. (22), these parameters are not
bounded to lie at or bellow 1, which can be also seen in the bottom right plot.

In order to apply the observational bounds on the equation of state of Dark Energy we define a new parameter wf .
It can be interpreted as the equation of state of an effective “dark fluid” that causes the accelerated expansion. To do
that eq. (14) can be written as

ϵH =
3

2

ρϕ (1 + wf) + ρm (1 + wm)

ρϕ + ρm
, (48)

where

wf ≡
Pϕ + 8H2

(
ξ̈ − ξ̇H

)
ρϕ

(49)

and ρϕ and Pϕ are the energy and pressure densities of the scalar field defined in eqs. (11) and (12). In terms of
dimensionless variables in eq. (17) the last expression can be also written as

wf = −1 +
2
3ϵH (1 + 2ux)− z2 (1 + wm)

x2 + y2
, (50)
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Figure 1. The phase portrait of the dynamical system given by eqs. (24), (25) and (31), with the matter component represented
by a pressureless fluid, wm = 0. All trajectories start with very small values of y and u. The first two columns show a projection
of the 3 dimensional phase space. The full 3D portrait is displayed in the last column. Red regions in the second column mark
forbidden regions of the phase space, where the constraint equation (28) cannot be satisfied for all values of y and z. For those
values the constraint in eq. (28) cannot be satisfied. The upper plot corresponds to λ = 1.3×

√
3 and the lower one to λ = 5

√
3.

In both cases κ/λ = 3/2.

where ϵH is meant to be substituted with eq. (27).
We next run a large number of numerical simulations of eqs. (24), (25) and (31) varying λ, κ parameters as well

as the initial conditions x0 (but always with u0 = −10−25 and wm = 0) and select those models which have regions
where Ωm = 0.3147 ± 0.0074 and wf = −0.957 ± 0.08 [21] are satisfied for the same value of N . The scale factor is
normalised such that a = 1 (N = 0) at that moment.

In Figure 2 we show two of such models. On the L.H.S. column we can see the phase portraits, where these models
(red curves) are drawn from and on the R.H.S. column we find the time evolution of the density parameters and wf .
Both models have an initial period of kination, which quickly gives way to the matter domination . The model in the
upper plot, has a long period of the scaling behaviour before GB energy takes over. Eventually, all the models settle
down at the de Sitter attractor point, where Ωϕ = 1 and all other Ω’s vanish.

In the lower panel of Figure 2 we can also notice a quite generic feature of GB Dark Energy models, namely, that
for a brief period of time the effective equation of state of the dark fluid can drop below −1.

B. The Speed of Gravitational Waves

Obviously, to select a realistic model of DE the consistency with observational constraints on Ωm and wf parameters
is a necessary but not sufficient condition. There are some other requirements that a viable model of cosmology must
satisfy. Among those requirements, especially in the case of GB model, is a negligibly small deviation of the speed of
gravitational waves cGW from the speed of light.

As it was pointed out in [5], generically in scalar-GB models cGW ̸= 1. Due to the tight observational constraints on
cGW (see eq. (1)) it was deemed that GBDE models are excluded. However, such constraints do not fix cGW = 1, they
only place upper bounds on the deviation from 1, albeit very strong ones. And, as one could naively conclude from
eq. (8), that bound is not very constraining for GB models of DE. Moreover, in GB models, cGW is not a constant,
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Figure 2. The time evolution of the density and the effective equation of state for two selected trajectories (denoted by red
curves on the left column). They are selected such that Ωm and wf are consistent with present day observations.

but varies with time. But the constraint in eq. (1) applies only for a short period over the history of the Universe.
To investigate this issue let us first write eq. (5) in terms of dimensionless variables, defined in eq. (17)

αT =
(ux)

′
+ (ϵH − 1)ux

ux+ 1/2
=

Ω′
GB + (ϵH − 1)ΩGB

ΩGB − 1
, (51)

where ΩGB is defined in eq. (21). It might appear that αT diverges at ux = −1/2, or equivalently at ΩGB = 1. But,
as can be seen from the constraint equation (28), such a value is not allowed.

We can immediately notice from eq. (51) that αT vanishes at the two fixed points, Sc and dS. These fixed points
are the most interesting ones. Unfortunately, if the GB model is to be a good model of our Universe, the current stage
of the evolution cannot be represented by any of these two fixed points. Instead, we should find ourselves somewhere
on the trajectory between Sc and dS, as it is also demonstrated in Figure 2.

To see how αT evolves with time we ran a large number of simulations with λ and κ values in the range 1/
√
3 ≤ λ ≤

20
√
3 and 1.1 ≤ κ/λ ≤ 20. In all of these simulations we took wm = 0 and the initial values y0 = 10−3, u0 = −10−25

and a range of x0 values. Among all the trajectories we selected the ones that satisfy the above discussed bounds on
Ωm and wf . Some of those solutions are shown in Figure 3. For clarity we depict only a few of them. However, the
ones displayed in Figure 3 are representative of the whole set. In particular, we always observe that the maximum
value of αT is very close to N = 0, exactly where the observational bounds in eq. (1) apply. In the figure this bound
is denoted by the red rectangle, which resembles a vertical line due to its narrowness. The width of this rectangle
corresponds to ∆N ≃ 0.0098 [38]. As can be seen in the inset of this figure, the maximum value of |αT | today is
always O (0.1) − O (1), which clearly falls outside the allowed range. Hence, with high confidence we can conclude
that GBDE models with an exponential coupling constant ξ (ϕ) are excluded by the observational constraint on the
speed of gravitational waves.

To get some insight why αT is so large at this particular moment, we can write eq. (51) in an alternative form

αT = 2 (ϵH − 3) + 3 (1− wm)
Ωm

1− ΩGB
+ 6

y2

1− ΩGB
. (52)

This equality can be obtained either by using the dynamical equations (24)–(29) to eliminate the time derivative from
eq. (51), or directly from eq. (14). In any case, it is important to notice that this expression is very generic: it is
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Figure 3. The deviation of the speed of gravitational waves from the speed of light (see eq. (2)) as a function of time. N = 0
represents the moment where the model predicts Ωm and wf values consistent with present day observations. This is also the
moment where the bound in eq. (1) applies (denoted by the very narrow vertical red rectangle). Obviously all models violate
this bound by many orders of magnitude.The inset zooms in the region where the curves cross the forbidden values.

valid for any potential V (ϕ) and any GB coupling ξ (ϕ), not necessarily exponential. At N = 0 observations require
ϵH ∼ 0.5. Hence, the absolute value of the first term is of order ∼ 1. Observations also require wm = 0 and Ωm ∼ 0.3.
We can use the latter in the constraint in eq. (22) to write Ωϕ+ΩGB ∼ 0.7. Moreover, between the scaling fixed point
Sc and the de Sitter one dS, the GB density parameter ΩGB > 0. Therefore, 0 < ΩGB < 0.7 and the second term in
eq. (52) must be of order O (0.1) to O (1). Finally y2 ≤ Ωϕ < 0.7 and the last term of order O (1) at the maximum.
Barring precise cancellations, this leads to the conclusion that generically |αT | ∼ O (0.1)−O (1).4

V. THE LINEAR GAUSS-BONNET COUPLING

As we have seen above, models with an exponential GB coupling could potentially provide a reasonable history
of the Universe and explain DE. Unfortunately, such models predict the speed of GW in the current Universe that
violates the allowed values by many orders of magnitude. In this section we investigate another option: the linear GB
coupling

ξ ∝ ϕ . (53)

As it is shown in the Appendix, such a dynamical system has the same fixed points as the ϵHcuc = 0 subset in Table I.
To study the stability of those fixed points, we can linearise eqs. (24)–(29) and use ξ,ϕϕ = 0. Equivalently, we can

use the results in section IV by setting κ = 0. This gives the eigenvalues at the Sc point

m1 = −3 (1 + wm) , (54)

m± = −1

2
(3− ϵHc)

[
1±

√
1− 8ϵHc

3− ϵHc
·
(
1− 2

ϵHc

λ2

)]
. (55)

As discussed in section IV the real part of m± eigenvalues are always negative. We can also see from the first equation
above that m1 is negative too. Hence, this fixed point is always an attractor.

On the other hand, the eigenvalues at the de Sitter fixed point dS are

m1 = −3

2
(1 + wm) , (56)

4 The observation that Ωm ∼ 0.1 quite generically leads to |αT | ≳ 0.1 raises another question. As it follows from eq. (8), such a large
value of |αT | implies a very large change in the GB coupling. But one has to remember that the GB term is only the lowest order term
in the series of low-energy effective string theory corrections [9, 12, 13]. Since ξ varies so much, one must wonder if it is consistent to
neglect the higher order corrections over the whole range of the evolution.
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m± = −3

2

[
1±

√
1 +

8λ2

3 (2 + 3λ2)

]
. (57)

It is clear that m1, m+ < 0 and m− > 0. Hence, this fixed point is a saddle.
What the above result shows is that a realistic cosmological scenario is impossible with the linear GB coupling. The

scaling fixed point is an attractor and there are no solutions which display a long matter dominated period followed
by an accelerated expansion. This is also demonstrated in Figure 4.

One might wish to generalise the analysis presented here to higher order polynomial or other functions ξ (ϕ) as, for
example, considered in refs. [39, 40] in the context of astrophysical compact objects. Unfortunately, other functional
forms of ξ (ϕ) are not amenable to the presented methods of analysis, as the equations become non-self-similar.
Therefore, the relevance of other ξ (ϕ) functions in explaining Dark Energy is left for future investigations.

VI. THE CASE OF αT = 0

As can be seen from the expression of αT in eq. (5) this parameter can be made to vanish if one arranges for the
GB coupling in such a way that its time evolution obeys the condition in eq. (6). Unfortunately, this condition does
not provide us with a functional form of ξ (ϕ). Nevertheless, it provides with enough information to investigate the
relevant aspects of such a dynamical system.

First, notice that eq. (6), written in terms the dimensionless variables in eq. (17), becomes

24H2ξ,ϕϕx
2 = u [(ϵH + 1)x− x′] . (58)

It provides an additional constraint that can be used to eliminate the ξ,ϕϕ term in eq. (A7), at least for fixed points
with xc ̸= 0. Otherwise the LHS of the above equation vanishes in any case. The fixed points are computed in the
Appendix and summarised in Table II. As one would expect, all the fixed points with ucϵHc = 0 are the same as in
Table I.

To determine the stability of fixed points we again linearise eqs. (24)–(29) and also eq. (58). At the de Sitter fixed
point dS this linear system reduces to

δx′ = δx , (59)
δu′ =

(
4 + 3λ2

)
δx , (60)

δz′ = −3

2
(1 + wm) δz , (61)

where we used that the linearised eq. (58) at dS implies the constraint δx′ = δx. Combined with the linearised
eqs. (24) and (28) we find δu =

(
4 + 3λ2

)
δx. It is easy to compute the eigenvalues, which are

m1 = 0 , (62)
m2 = 1 , (63)

m3 = −3

2
(1 + wm) . (64)

We can see that the last two eigenvalues have opposite signs. Hence, in this case dS is a saddle fixed point, no longer
an attractor.

In the neighbourhood of the scaling fixed point Sc, the linear equation for δu takes the form

δu′ = (1− ϵHc) δu , (65)

where 1− ϵHc = − 1
2 (1 + 3wm) is always negative within the range 0 ≤ wm < 1. Therefore, in the u direction of the

phase space this fixed point is attractive and there are no trajectories that flow from Sc to dS.
In summary, the condition cGW = 1 implies the scaling fixed point Sc to be an attractor, just as in models of GR

[35] and dS becomes a saddle point. This leads to the conclusion that there are no solutions which reproduce a long,
matter-like domination period and asymptotically approach the de Sitter solution, which is required to reproduce the
evolution of the Universe.
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Figure 4. The phase space of the linear model, with ξ (ϕ) defined in eq. (53). The notation and the red shaded regions are the
same as in Figure 1. All three rows correspond to the same model with λ = 5

√
3 and wm = 0, but different initial conditions

of u. In the first row u0 = −10−25. As we can see the evolution remains within the u = 0 plane. To demonstrate that the
scaling fixed point Sc is an absolute attractor we also run simulations with large initial values |u0|. In the second row we can
see that some trajectories are initially attracted towards the de Sitter fixed point dS, but since for a linear ξ (ϕ) this point is a
saddle, eventually all trajectories converge onto Sc. Notice that in the last column we plot −u on the vertical axis of the first
two plots and +u of the third plot.

VII. SUMMARY AND CONCLUSIONS

In this work we investigate Gauss-Bonnet Dark Energy (GBDE) models. Generically such models predict the
speed of gravitational waves different from the speed of light. In view of the tight observational constraints on such
deviations, denoted by αT (see eq. (1)), such models are considered to be disfavoured. However, the deviation is time
dependent and the bound, although tight, is an upper bound, which is only applicable for very late Universe. Hence,
before excluding GBDE models we need to perform a more detailed analysis. Moreover, if the bound in eq. (1) is
expressed in terms of the variation of the GB coupling function ξ (ϕ), it might appear to be a weak bound, as shown
in eq. (8).

To see if GBDE models can indeed survive the observational constraints on αT we perform the dynamical systems
analysis. We assume that the scalar field has an exponential potential and find that such a dynamical system quite
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xc yc uc zc Expansion rate ϵHc

M 0 0 0 1 3
2
(1 + wm)

K± ±1 0 0 0 3

I λ√
6

√
1− λ2

6
0 0 1

2
λ2

Sc
√

3
2

1+wm
λ

√
3
2 (1−w2

m)
λ

0
√

1− 3(1+wm)

λ2
3
2
(1 + wm)

dS 0 1 −
√

3
2
λ 0 0

IV
√

2
3

1
λ

2√
3λ

√
3
2

1
λ

(
1− λ2

2

)
0 1

Table II. Fixed points of the dynamical system that satisfies αT = 0.

generically has the scaling and de Sitter fixed points (among others), denoted by Sc and dS respectively in this work.
At Sc the scalar field adjusts in such a way that it mimics the behaviour of the background matter component. In

particular, the equation of state of the scalar field is the same as that of the matter component. In the case of the
exponential GB coupling, depending on the magnitude of the exponent, Sc is not stable: it is a saddle point. This is
in contrast to the General Relativistic quintessence models with an exponential potential [35]. In the latter setup the
scaling fixed point is an attractor, which makes it impossible to use as an explanation for the accelerated expansion
of the Universe. In GBDE Sc can have an unstable direction which links to dS, the latter being an attractor. Using
numerical solutions we show that if the universe starts with a very small GB term and it is either kination or matter
dominated, initially all solutions evolve towards the Sc fixed point. They linger in the neighbourhood of Sc for a long
period of time and eventually change its course towards dS. This behaviour is beneficial to modelling quintessential
inflation, because it allows, without extreme fine-tuning, to bridge the enormous energy density gap (110 orders of
magnitude) between inflation and dark energy. We find numerous models that follow this scenario and can predict
observationally allowed values for the matter energy density and DE equation of state.

Moreover, at Sc and dS fixed points the speed of gravitational waves is exactly the same as that of the speed of
light, i.e. αT = 0. Unfortunately, if this model is to represent the evolution of the actual Universe, we cannot be
living either on the scaling or de Sitter fixed points, but somewhere in between. However, as we show in Figure 3,
|αT| changes from 0 to ∼ 1 in between these fixed points. Moreover, as we argue below eq. (52), if Ωm ∼ 0.1, which
corresponds to the current value, quite generically one expects |αT| ∼ O (0.1) − O (1), which is ruled out by many
orders of magnitude. We conclude that the bound in eq. (1) makes GBDE with an exponential ξ (ϕ) function unviable.

In view of the above conclusion, we investigated other choices of ξ (ϕ). First, we demonstrate that for a linear
function ξ (ϕ) the de Sitter fixed point is a saddle point, and the Scaling fixed point becomes an attractor. This makes
it impossible to find any viable solution that would be consistent with the evolution of the Universe. We cannot apply
our method to study more generic functions ξ (ϕ), such as monomials or steeper than exponential potentials studied,
for example, in Refs. [39, 40]. This is because dynamical equations lose their self-similar character.

The advantage of the above described analysis is that we have an explicit ξ (ϕ) function. But as we showed, this does
not provide a viable cosmological solution. Another hope to make GBDE models conform to observational constraints
is to impose the condition αT = 0, as can be seen in eq. (5). In this case we lose the benefit of having an explicit
functional form of ξ (ϕ), but we gain an additional constraint equation (58). As it is demonstrated in Section VI, the
stability of fixed points in this case is very similar to the linear model. That is, there are no solutions which provide
a long period of matter domination followed by an accelerated expansion.

In summary, we find that a GBDE model with an exponential scalar field potential and an exponential GB coupling
function could provide a realistic model of DE. However, the recent bounds on the speed of GW rules out this
possibility by many orders of magnitude. If, on the other hand, we look for models that do satisfy αT = 0, then it is
impossible to find a scenario consistent with other cosmological observations.

The negative conclusions reached in this work apply to the metric formulation of the Gauss-Bonnet model. But we
know that some modified gravity models that violates the αT bound in eq. (1) become viable again in the Palatini
formalism [41]. One can hope that a similar modification could save the GBDE model too.5 We intend to study this

5 Analogously, if the GB term is coming from the breaking of the Weyl symmetry, also a Weyl term should be added to the action (see
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possibility in future publications.
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Appendix A: The Fixed Points

In this section we derive fixed points of the dynamical system in eqs. (24)–(28) that are summarised in Table I.
Such points, or higher dimension structures, are regions of the phase space where x′ = y′ = z′ = 0. We denote the
constant values of x, y, z at these regions by xc, yc, zc. A priori we do not impose the condition u′ = 0 at fixed
points, but it follows from the equations. In order to see that we can take the derivative of the constraint equation
with respect to N . At a fixed point this gives

u′|x=xc
xc = 0 . (A1)

This equation allows for u′ ̸= 0 if xc = 0. However, if we plug x′ = xc = 0 into eq. (24) and (27) we find

0 =

√
3

2
λy2c + u (1− ϵHc) , (A2)

where, in this case, ϵHc is the value of ϵH in eq. (27) at x′ = y′ = z′ = xc = 0. As it is clear from the above equation,
all quantities on the RHS are constant but u. Hence, u = uc must be also a constant even for xc = 0. In summary,
the algebraic equations to find fixed point values are given by

0 = (ϵHc − 3)xc +

√
3

2
λy2c + uc (1− ϵHc) , (A3)

0 =

(
ϵHc −

√
3

2
λxc

)
yc , (A4)

0 =

[
ϵHc −

3

2
(1 + wm)

]
zc , (A5)

where

ϵHc =

[
3x2

c +
3

2
(1 + wm) z

2
c − ucxc

]
1

1 + ucxc
(A6)

and all the values have to satisfy the constraint in eq. (28). There are four possible solutions of this system:

A: (x, y, u) =
(
xc, 0,

3(wm−1)
3wm+1 xc

)
, which is valid for any value of xc. The expansion rate in this case is given by

ϵHc =
3
2 (1 + wm). We can see that this is the scaling solution, where the scalar field adjusts to the equation of

state of the matter component.

B: (x, y, u) =
(
xc, 0,

x2
c−1
2xc

)
with ϵHc =

5x2
c+1

x2
c+1

C: (x, y, u) =
(
xc,

√
1− x2

c + 2xc
3xc−

√
3
2λ

1+
√

3
2λxc

,
3xc−

√
3
2λ

1+
√

3
2λxc

)
with ϵHc =

√
3
2λxc

for instance Refs. [42, 43]).
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D: (x, y, u) =

(√
3
2
1+wm

λ ,

√
3
2 (1−w2

m)+ λ√
6
(1+3wm)uc

λ , uc

)
with ϵHc = 3

2 (1 + wm). This is a second scaling solution,

which is valid for any (allowed by the constraint) value of uc.

As we can see, these “fixed points” are actually curves in the three dimensional phase space. In the case of A to C,
the curves are parametrised by the xc value, which can vary within the range where y, u and z remain real. In the
case of D, the value of x is fixed to xc =

√
3
2
1+wm

λ , but u is free to vary within the similarly defined range.
We can infer more about the structure of fixed points if we use the definition u in eq. (17). Taking the derivative

of that expression we get eq. (29), which we rewrite it here for convenience:

u′ = −2ϵHu+ 24H2ξ,ϕϕx . (A7)

Hence, at fixed points we get the relation

12H2ξ,ϕϕxc = ϵHcuc . (A8)

If we take an exponential GB function, given in eq. (30), the above equation becomes√
3

2
κxcuc = ϵHcuc . (A9)

Note, that we did not cancel uc factors, because uc = 0 is an allowed solution. Plugging various values, that are
consistent with this equation, into the system A–D, we obtain fixed points that are summarised in Table I. In that
table xc = β at the fixed point G. This is a solution of the cubic equation, which is given by

β ≡ 1

3
√
3κ

(
5
√
2 +

9κ2 − 50

α1/3
− α1/3

)
, (A10)

where

α ≡
√
2
(
27κ2 − 250

)
+

√
2 (27κ2 − 250)

2
+ (9κ2 − 50)

3 (A11)

and κ is an exponent of ξ (ϕ).
It is interesting to note that all fixed points with ucϵHc ̸= 0 (S2, G, S3 and IV) exist only if the GB function ξ (ϕ)

is of the form

ξ (ϕ) = c1
ϕ

mPl
+ c2e

κ ϕ
mPl , (A12)

where c2 ̸= 0 and κ =
√
2/3·ϵHc/xc. Or, more precisely, it is sufficient that the GB function asymptotically approaches

this solution, as the trajectory in the phase space gets closer to those fixed points. This result can be obtained by
integrating eq. (A8) and using the fact that for xcϵHc ̸= 0 we have

H = H0e
− ϵHc√

6xc

ϕ
mPl . (A13)

For the linear ξ (ϕ), i.e. for ξ,ϕϕ = 0, it follows from eq. (A8) that only fixed points with ϵHcuc = 0 are present.
Their values are summarised in Table I.

In the case of αT = 0 constraint, eq. (58) at a fixed point can be written as

24 H2ξ,ϕϕ
∣∣
c
x2
c = (ϵHc + 1)xcuc . (A14)

For fixed points with xc = 0 this equation vanishes identically. Looking at the system A–D, we see that only two
such fixed points exist: (x, y, u) = (0, 0, 0) and (x, y, u) =

(
0, 1,−

√
3
2λ
)
. These correspond to points M and dS in

Table I. For xc ̸= 0 we can equate eq. (A8) with (A14) and get

2ϵHcuc = (ϵHc + 1)uc . (A15)

For uc = 0 the equation vanishes identically and we obtain the same fixed points as uc = 0 points in Table I.
On the other hand, there is only one fixed point that satisfies uc ̸= 0. That fixed point must have ϵHc = 1.
Looking at the system A–D, we can see that only one such point is allowed, which is the relation C with (x, y, u) =(√

2
3
1
λ ,

2√
3λ
,
√

3
2
1
λ

(
1− λ2

2

))
. All these fixed points are summarised in Table II.
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Figure 5. A few examples of phase portraits with different initial values u0. The notation, including the red shaded regions, is
the same as in Figure 1. All models correspond to the same value λ = 1.3×

√
3, κ/λ = 3/2 and wm = 0. These values are also

used in the upper row of Fig. 1. Notice that the vertical axis of the upper right column is −u.

Appendix B: Phase Portraits with More Generic Initial Values

In Fig. 1 we show the phase portrait for the exponential GB coupling with two sets of values of λ and κ. All
displayed trajectories start with the initial value u0 = −10−25 in that figure. The absolute value of u0 is chosen to
make the GB term completely negligible initially. This choice is partly motivated by simplicity, because, as can be
seen in Fig. 5, the dynamics between the scaling fixed point Sc and the de Sitter one dS is not affected much, at least
for some part of the trajectories. Small initial u0 values are also motivated by the model in ref. [20], where the GB
term does not affect the early dynamics of the universe. The sign of u0, on the other hand, is crucially important:
only those trajectories that satisfy u0 < 0 can eventually be attracted towards dS fixed point. We find that the sign
of u is preserved by the evolution equations.

To demonstrate all these points, we provide several plots in Fig. 5 with numerically integrated trajectories for
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several u0 values. For clarity we display plots with negative and positive initial u values separately. Also note that
we choose the value of κ that is close to λ. If the ratio κ/λ is too large, the attraction towards the Sc fixed point
becomes weak, and most of the trajectories do not pass close to this point. This observation is valid for positive as
well as negative u0 initial conditions.
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