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Abstract 
The increasing prevalence of relational data describing 
interactions among a target population has motivated a wide 
literature on statistical network analysis. In many applications, 
interactions may involve more than two members of the 
population and this data is more appropriately represented by 
a hypergraph. In this paper, we present a model for 
hypergraph data that extends the well-established latent space 
approach for graphs and, by drawing a connection to 
constructs from computational topology, we develop a model 
whose likelihood is inexpensive to compute. A delayed 
acceptance MCMC scheme is proposed to obtain posterior 
samples and we rely on Bookstein coordinates to remove the 
identifiability issues associated with the latent representation. 
We theoretically examine the degree distribution of 
hypergraphs generated under our framework and, through 
simulation, we investigate the flexibility of our model and 
consider estimation of predictive distributions. Finally, we 
explore the application of our model to two real-world 
datasets. 

Keywords: Hypergraphs, Latent Space Networks, Simplicial complex, Bayesian 

Inference, Statistical Network Analysis. 

Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2270750&domain=pdf


 

1 Introduction 

A hypergraph describes interactions which occur among arbitrary subsets of a 

population of interest. This data structure is comprised of a node set, which indexes 

the population, and a hyperedge set, which indicates which members of the 

population interact. Examples of hypergraphs occur in image co-tagging (see Figure 

1(a)), where hyperedges indicate users who appear in the same photograph in an 

online platform, and coauthorship (see Figure 1(c)), where hyperedges represent the 

set of authors who collaborated on an academic article. A key feature of a 

hypergraph representation is that can express higher-order interactions and, whilst 

these data could be analysed according to an extensive graph modelling literature 

(see Kolaczyk (2009)), this results in a loss of structural information which cannot be 

recovered (see Figures 1(c) and 1(d)). This represents the main motivation of this 

article where we develop a novel model for hypergraph data, detail a procedure for 

inference and present theoretical results on the degree distribution. 

More formally, a hypergraph ( , )G V E  consists of a set of N node labels V and M 

hyperedges E, where e E  contains no repeated elements and e V  (see Figure 

1(c)). This data type can also be equivalently represented as a bipartite graph with 

an ( )N M  adjacency tensor in which each hyperedge is indexed by a node and an 

edge from a population node to a hyperedge node indicates presence in a 

hyperedge (see Figure 1(e)). Whilst a significant portion of the existing literature 

relies on the bipartite representation, we focus on the former representation since it 

allows us to develop a model which allows for an arbitrary number of hyperedges by 

avoiding conditioning on M. 

We consider extending the latent distance model of Hoff et al. (2002) to the 

hypergraph setting using the representation in Figure 1(c). In this approach, a low-

dimensional coordinate is associated with each node and nodes whose latent 

coordinates are close in terms of Euclidean distance are assumed more likely to 

share a tie. This modelling choice is appealing since the latent space offers an 

intuitive visualisation of the data, encourages transitive relationships due to the 
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metric property of Euclidean distance and allows control over the joint distribution of 

subgraph counts. Models of this type also allow quantification of uncertainty in 

interaction probabilities and prediction of future interactions. In our model, we wish to 

harness hypergraph analogues of these properties and we focus on the following 

inferential questions. 

(Q1) “How can we determine an intuitive visualisation of an observed 

hypergraph?” 

(Q2) “How do we expect new nodes to interact with the observed 

hypergraph relationships?” 

There is a growing literature concerned with hypergraph modelling ( Battiston 

et al., 2020), and several graph models have been extended to the bipartite setting. 

Examples include exponential random graphs ( Wang et al., 2013), blockmodels ( 

Doreian et al., 2004) and latent space network models ( Friel et al., 2016). However, 

in contrast to our work, models for bipartite representations assume the number of 

hyperedges is known and fixed. 

Examples of models for general hypergraphs include the β model of Stasi 

et al. (2014), preferential attachment models ( Wang et al., 2010) and the clustering-

based model of Ng and Murphy (2021). In a m-uniform hypergraph all hyperedges 

contain exactly m elements, and extensions of stochastic blockmodels (see 

Ghoshdastidar and Dukkipati (2017), Chien et al. (2018)) and graphons ( 

Balasubramanian, 2021) have been studied for this hypergraph type. Simplicial 

hypergraphs, or rather simplicial complexes (see Edelsbrunner and Harer (2010)), 

are a significant class of hypergraphs in which the presence of a hyperedge implies 

the presence of all subsets of that hyperedge. Proposed models for simplicial 

complexes include an analogue of exponential random graphs ( Zuev et al., 2015), 

preferential attachment based models ( Bianconi and Rahmede, 2017), simplicial 

configuration models ( Young et al., 2017) and the recursive models of Kahle 

et al. (2014). A discussion of random simplicial complexes is presented in Kahle 

et al. (2014) and work on geometric simplicial complexes ( Bobrowski and 

Kahle, 2018) is most related to our proposed procedure. Simplicial complexes also 
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appear more broadly in the statistics literature ( Chazal and 

Michel, 2017; Lunagómez et al., 2017) and our terminology ‘simplicial hypergraph’ is 

non-standard. 

Our focus on inference for the full generality of hypergraphs marks a distinction 

between our work and much of the existing literature. By considering general 

hypergraphs, we avoid restrictions inherent to simplicial and uniform representations 

and this allows us to consider how hyperedges of different orders interact in the data. 

Non-simplicial hypergraph arise in many settings and particular instances of non-

simplicial coauthorship networks are presented in Figure 1(d) and Section 7.2. 

The main contributions of this article are as follows. First, using the representation 

shown in Figure 1(c), we develop a computationally tractable latent space model for 

non-simplicial hypergraph data. Second, we explore the novel application of 

Bookstein coordinates to address non-identifiability in the latent representation. 

Third, we perform inference on hypergraph data that is outside the reach of 

competing methods and consider a novel application of delayed acceptance MCMC 

methodology. Finally, we study properties of the degree distribution for our model 

and present approximate theoretical results. 

The rest of this paper is organised as follows. Section 2 provides the background for 

the hypergraph model presented in Section 3. Section 4 considers the degree 

distribution of our model and Section 5 describes a procedure for obtaining posterior 

samples. The simulation studies and real data examples are presented in Sections 6 

and 7, respectively, and we conclude with a discussion in Section 8. 

2 Background 

2.1 Latent Space Network Modelling 

Latent space models were introduced for network data in Hoff et al. (2002). This 

modelling framework associates the nodes of a network with low-dimensional latent 

coordinates and expresses the probability of edges forming as a function of the 

latent representation. 
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To describe this model for a N node network, we let , 1 , 2 , ,
{ }

i j i j N
y

 
Y

 denote the 

observed ( )N N  adjacency matrix, where yij represents the connection between 

nodes i and j. For binary interactions, we take yij = 1 if i and j share an edge and yij = 

0 otherwise. We also let 
d

i
u 

 denote the d-dimensional latent coordinate 

associated with the ith node, for {1, 2 , , } [ ]i N N   . The presence of an edge is then 

given by 

 ~ B ern o u lli ( ) , ( 1 | , , ) 1 / 1 ex p { ( , , )} ,
ij ij ij ij i j i j

Y p p P y u u f u u       (1) 

for , [ ]i j N , where θ represents additional model parameters and f controls how ui 

and uj affect the propensity for ties to form. Typically, f is specified as monotonically 

decreasing in a measure of similarity between ui and uj. For example, Hoff 

et al. (2002) take 

( , , ) || | |,
i j i j

f u u u u     (2) 

where | |· | |  is the Euclidean distance, and ( )   represents the base-rate tendency 

for edges to form. The function f may also be adapted to incorporate covariate 

information so that nodes which share certain characteristics are more likely to be 

connected. The likelihood, conditional on 1
{ }

N

i i
u


U

 and θ, is given by 

1

( , ; ) ( 1 | , , ) 1 ( 1 | , , ) ,
i j

i j
yy

ij i j ij i j

i j

P y u u P y u u  




    
 U Y  (3) 

Properties of this model are well-understood and we refer to Rastelli et al. (2016) for 

details. 

2.2 Random Geometric Graphs 

Random geometric graphs (RGGs) ( Penrose, 2003) can be viewed as a special 

case of the latent space network model outlined in Section 2.1. To express the 

connection probabilities we let 
( ) { | || | | }

d

r i i
B u u u u r   

, where | |· | |  is Euclidean 

distance, denote a ball of radius r with center ui. The presence of an edge is then 

expressed deterministically as 
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   ( 1 | , , ) ( ) ( ) || || 2 ,
ij ij i j r i r j i j

p P y u u r B u B u u u r        1 1  (4) 

so that nodes i and j share a tie only if their corresponding sets have a nonempty 

intersection (see Figure 2) or, equivalently, when 
| | | | 2

i j
u u r 

. 

We can now express the likelihood of observing Y  conditional on U  and r as 

1

( , ; ) ( || || 2 ) 1 ( || || 2 ) .
i j

i j
yy

i j i j

i j

r u u r u u r




      
 U Y 1 1  (5) 

Since a RGG is deterministic conditional on U  and r, (5) is equal to 1 only when 

there is a perfect correspondence between the observed connections Y  and the 

connections induced by the latent positions and radius, and is otherwise equal to 0. 

2.3 Random Geometric Hypergraphs 

We can extend the RGG from Section 2.2 to hypergraphs by considering the full 

intersection pattern of convex sets. To begin, we introduce the concept of a nerve 

(Edelsbrunner and Harer, 2010, Section 3.2) in the following definition. 

Definition 2.1. (Nerve) Let 1
{ }

N

i i
A




 represent a collection of non-empty sets. The 

nerve of  is given by 
 ( ) {1, 2 , , } |

j
j

N rv N A





     

. 

The nerve represents the sets of indices whose corresponding regions have a non-

empty intersection. The sets {1} ,{2} , , { }N  are included in ( )N rv  and | | N   for 

( )N rv  , where | |  is the order of the set. The nerve defines a hypergraph where 

( )N rv   represents a hyperedge, and for sets 1
( )N rv 

 and 2 1
 

, it follows 

immediately that 2
( )N rv 

 implying that the hypergraph is simplicial ( 

Kahle, 2017). 

Taking 
( )

i r i
A B u

, as for the RGG in Section 2.2, gives rise to the well-studied Čech 

complex (Edelsbrunner and Harer, 2010, Section 3.2). This is defined below. 

Definition 2.2. (Čech Complex) For a set of coordinates 1
{ }

N

i i
u


U

 and a radius r, the 

Čech complex ( )
r

U  is given by 
 1

( ) { ( )} .
N

r r i i
N rv B u


U
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We now introduce a subset of the Čech complex known as the k-skeleton. 

Definition 2.3. (k-skeleton of the Čech complex) Let ( )
r

U  denote the Čech complex, 

as given in Definition 2.2. The k-skeleton of ( )
r

U  is given by 
( )

( ) { ( ) || | }
k

r r
k   U U

. 

Example 2.1. For the Čech complex in Figure 2, ( ) {{1} ,{2} ,{3} ,{4} ,{5} ,{6} ,{7} ,
r

U  
(1 ) ( 2 ) (1 )

{2 , 4} ,{2 , 7} ,{3, 5} ,{3, 6} ,{5 , 6} ,{3, 5 , 6} } , ( ) { {1} ,{2} ,{3} ,{4} ,{5} ,{6} ,{7} } , ( ) { {2 , 4} , {2 , 7} ,
r r r

  U U

 {3, 5} ,{3, 6} ,{5 , 6} }  and 
( 3 ) ( 2 )

( ) ( ) {3, 5 , 6}
r r

 U U
. 

3 Latent space hypergraphs 

3.1 Motivation and Notation 

In the motivating examples from Section 1, we observed arbitrary hypergraph 

interactions. Since the models discussed in Section 2 express either pairwise or 

simplicial interactions, they are not appropriate for this data. This motivates the 

development of a non-simplicial latent space hypergraph model. We aim to propose 

a model which has (i) a convenient and computationally-tractable likelihood with (ii) a 

support that is simple to describe. 

We consider general hypergraphs on N nodes and let K denote the maximum 

hyperedge order, where 2 K N  . Let , ,
( , )

N K N N K


 denote the space of 

hypergraphs on N and K, where 
{1, 2 , , }

N
N 

 and ,N K  represent the node labels 

and hyperedges up to order K on N nodes, respectively. Additionally, let 
k

N  

represent hyperedges of exactly order k on N nodes, so that , 2

K k

N K k N
 

, and let 
k

k N
e 

 denote an order k interaction, where 
| |

k
e k

 and ek contains no repeated 

elements. 

3.2 Combining k-skeletons 

To extend the model in Section 2.3 to express non-simplicial hypergraphs we allow 

the radii to differ for each hyperedge order. We generate a hypergraph by isolating 

the order k hyperedges from the complex 
( )

k
r

U
 and combining these for 
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2 , 3 , ,k K  , where k k
r r




 for k k  . For example, when K = 3, we take radii r2 and 

r3 along with their Čech complexes 2

( )
r

U
 and 3

( )
r

U
. Then, we consider the order 2 

hyperedges in 2

( )
r

U
 and the order 3 hyperedges in 3

( )
r

U
, as shown in Figure 3. 

We refer to a hypergraph constructed in this way as a non-simplicial random 

geometric hypergraph (nsRGH). 

Definition 3.1. (nsRGH) Take 2 3
( , , , )

K
r r r r  such that 1

0
k k

r r


   for 3, 4 , ,k K  . 

We define a nsRGH on N nodes as the hypergraph ,
( , )

N K
g U r

 with hyperedges 

given by 
( )

2
( )

k

K k

k r
 U

, where 
( ) ( ) ( 1 )

( ) ( ) ( )
k k k

k k k

r r r


U U U

 denotes the hyperedges of 

exactly order k in the Čech complex with radius rk and 
( )

( )
k

k

r
U

 is as in Definition 2.3. 

Example 3.1. For the nsRGH shown in the right panel of Figure 3 we have 

2 3

( 2 ) ( 3 )

7 ,3
( , ) ( ) ( )

r r
g  U r U U

, where 2

( 2 )
( ) { {2 , 4} ,{2 , 7} ,{3, 5} ,{5, 6} }

r
U

 and 

3

( 3 )
( ) {3, 5, 6}

r
U

. 

In Definition 3.1 constraints are imposed on the radii 2 3
( , , , )

K
r r r r

 to ensure that 

the hypergraphs are non-simplicial since for example, if 3 2
r r

 and the hyperedge {i, 

j, k} is present in the hypergraph, it follows that { , } ,{ , }i j i k  and {j, k} must also be 

present. 

3.3 Generative Model and Likelihood 

Our procedure for generating a nsRGH ,
( , )

N K
g U r

 (see Definition 3.1) is 

deterministic conditional on U  and r . Practical application of this model is therefore 

challenging since (i) the probability observing a hypergraph , ,N K N K
h 

 is binary 

(similarly to the RGG in Section 2.2) and (ii) it is difficult to characterise the space of 

hypergraphs which can be expressed as a nsRGH. These issues hinder estimation 

via likelihood methods and make it difficult to say whether a latent representation can 

be found a priori. 

To address these issues we consider a modification of the nsRGH ,
( , )

N K
g U r

, 

denoted 
*

,
( , , )

N K
g φU r

, obtained by independently modifying the state of each order k 
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hyperedge in ,
( , )

N K
g U r

 with probability 
[0 ,1]

k
 

. More precisely, if 
( )

{0 ,1}
k

g

e
y 

 is the 

state of ek in 
*

,
( , , )

N K
g φU r

 where 
( )

1
k

g

e
y 

 indicates presence, we take 
*

( ) ( )
( ) m o d 2

k k

g g

e e k
y y s 

, where 

*
( )

{0 ,1}
k

g

e
y 

 is the state of hyperedge ek in 
*

,
( , , )

N K
g φU r

 and 
~ B ernou lli( )

k k
S 

. This means that 
( )

k

g

e
y

 is modified from either 

present to absent or absent to present with probability k


 to obtain 

*
( )

k

g

e
y

. The noise 

terms 2
{ }

K

k k 


 control the amount of modification of ,
( , )

N K
g U r

, and so setting k


 

close to 0 obtains a hypergraph that is similar to a nsRGH. 

To fully specify a generative model, we assign a probability distribution on the latent 

coordinates U . We let 
~ ( , )

i id

i
u  

, for [ ]i N  to reflect the intuition that nodes 

placed more centrally in the latent representation are likely to have high degrees and 

neighbours with high degrees. A hypergraph can now be generated by the procedure 

given in Algorithm 1, and details of efficient implementation of this are given in 

Supplements C and E.3. 

Algorithm 1 Sample a hypergraph 
*

,N K
g

 given , , , ,N K φr  and Σ. 

Sample 1
{ }

N

i i
u


U

 such that 
~ ( , )

i id

i
u  

, for 1, 2 , ,i N  . 

For 2 , 3 , ,k K  , 

a) Given U  and rk, check which 1 2
{ , , , }

k

k k N
e i i i  

 satisfy 
( )

1
k

g

e
y 

. 

To determine if 
( )

1
k

g

e
y 

, check that 1
( )

k l

k

l r i
B u


  

. 

b) For all 
k

k N
e 

, sample 
~ B ernou lli( )

k k
S 

. 

Let 
 

*
( ) ( )

m o d 2
k k

g g

e e k
y y s 

 

 

To express the likelihood of observing the hypergraph , ,N K N K
h 

, we let 

( ) ( )

, ,
( ( , ) , ) | |

k k

k

k N

g h

k N K N K e e

e

d g h y y



 U r  (6) 

Acc
ep

te
d 

M
an

us
cr

ipt



denote the discrepancy between the order k hyperedges in ,
( , )

N K
g U r

 and ,N K
h

, 

where 2 , 3 , ,k K   and 
( )

{0 ,1}
k

h

e
y 

 indicates the state of ek in ,N K
h

. Intuitively, the 

distance (6) corresponds to the number of hyperedges whose state differs between 

,N K
h

 and ,
( , )

N K
g U r

. We note that evaluating this distance does not require the 

2

K

k

N

k


 

 
 


 computations suggested by (6), and refer to the supplement for details. 

Given this notion of hypergraph distance the likelihood of observing ,N K
h

, conditional 

on ,U r  and φ , can be written as 

  , ,
, ,

( ( , ) , )
( ( , ) , )

,

2

( , , ; ) (1 ) .
k N K N K

k N K N K

NK
d g h

d g h k

N K k k

k

h




   φ
U r

U r

U r  (7) 

This follows by considering which hyperedges in ,
( , )

N K
g U r

 must have their state 

modified to match the hyperedges in ,N K
h

, and which hyperedges are the same as in 

,N K
h

. Since our likelihood is of the same form as Lunagómez et al. (2020, proof of 

Proposition 3.1), it follows that hypergraphs with a greater number of hyperedge 

modification are less likely for 
0 1 / 2

k
  

 and so (7) behaves in an intuitive way. 

The model specification is complete with the following priors for 2 , 3 , ,k K   

1
~ ( , ) ~ ( , ), ~ exp ( ), and ~ B ( , ),

k k k k k
m r a b

  
  


     (8) 

where 
1
(·,·)



 and ( · , · )B  denote an Inverse-Wishart and Beta, respectively. 

3.4 Can we improve model flexibility? 

In a nsRGH, the constraint 1k k
r r




, for 3, ,k K  , ensures that the interactions are 

non-simplicial. However, this implies rk will impact the higher-order hyperedges and, 

to improve model flexibility, we introduce additional modification parameters. In 

Algorithm 1 the noise k


 is applied independently across all hyperedges of order k 

and, alternatively, we can modify each hyperedge depending on its state in 

,
( , )

N K
g U r

. For 2 , 3 , ,k K  , let 
0 0 0 0

2 3
( , , , ) [0 ,1]

K
    ψ

 denote the probability of 

modifying the state of a hyperedge in ,
( , )

N K
g U r

 from absent to present, and let 
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1 1 1 1

2 3
( , , , ) [0 ,1]

K
    ψ

 denote the probability of modifying the state of a 

hyperedge in ,
( , )

N K
g U r

 from present to absent. Crucially, for large k, the term 
1

k


 

may increase to account for the discrepancy between the density of order k 

hyperedges in ,N K
h

 and ,
( , )

N K
g U r

. This generative model is summarised in 

Algorithm A.1 in the supplement and, as commented in Section 3.3, we can 

implement this without the suggested 2

K

k

N

k


 

 
 


 likelihood computations. Further 

details of this are given in the supplement, as highlighted in Section 3.3. 

As in Section 3.3, the likelihood of observing ,N K
h

 is based on a distance metric, 

( ) ( ) ( )

, ,
( ( , ), ) # { | } ,

k k

ab k g h

k N K N K k N e e
d g h e y a y b    U r  (9) 

which records the number of hyperedges that have state {0 ,1}a   in ,
( , )

N K
g U r

 and 

state {0 ,1}b   in ,N K
h

. For example, 
( 0 1 )

, ,
( ( , ) , )

k N K N K
d g hU r

 represents the number of 

hyperedges absent in ,
( , )

N K
g U r

 and present in ,N K
h

. Efficient evaluation of (9) is 

discussed in Supplement E.3.2 and the likelihood conditional on 
1

, ,U r ψ  and 
0

ψ  is 

given by 

     

   

( 1 0 ) ( 1 1 )

, , , ,

( 0 1 ) ( 0 0 )

, , , ,

( ( , ) , ) ( ( , ) , )
1 0 1 1

,

2

( ( , ) , ) ( ( , ) , )
0 0

, , , ; 1

1 .

N K N K N K N Kk k

N K N K N K N Kk k

K
d g h d g h

N K k k

k

d g h d g h

k k

h  

 




 




 




U r U r

U r U r

U r ψ ψ

 (10) 

We obtain (10) in a similar way to (7), and note that (10) is equivalent to (7) when 
1 0

k k k
   

, for 2 , 3 , ,k K  . 

The model specification is complete with the following priors for 2 , 3 , ,k K   

   
1 0 0 0 1 1 1

~ ( , ), ~ ( , ) , ~ ex p ( ), ~ B , , ~ B , ,
k k k k k k k k

m r a b a b
  

    


    (11) 

where 
1
(·,·)



 and ( · , · )B  denote an Inverse-Wishart and Beta, respectively. 
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3.5 Identifiability 

For the model presented in Section 3.3, the joint distribution of the hypergraph 
*

,
( , , )

N K
g φU r

 and its associated nsRGH (see Definition 3.1) ,
( , )

N K
g U r

 can be 

decomposed as follows. 

   

*

, ,

*

, , ,

( ( , , ) , ( , ) | , , , )

( , , ) | ( , ) , ( , ) | , ,

N K N K

N K N K N K

p g g

p g g p g





 



φ φ

φ φ

U r U r r

U r U r U r r

 (12) 

Note that a similar decomposition exists for the model given in Section 3.4. 

The hyperedges expressed by the conditional distribution ,
( ( , ) | , , )

N K
p g  U r r

 are 

determined through the positions of their relative latent coordinates and are therefore 

unchanged given distance-preserving transformations of U  and scaling of U  and r . 

We address this non-identifiability by defining U  on the Bookstein space of 

coordinates (see Bookstein (1986), (Dryden and Mardia, 1998, Section 2.3.3) and 

details in Supplement B) which determine a translation, rotation and re-scaling of U  

with respect to a set of anchor points. These anchor points are fixed throughout the 

posterior sampling procedure (see Section 5) and also address the non-identifiability 

associated with rescaling r . 

Removing non-identifiability in U  is typically achieved via Procrustes analysis ( 

Dryden and Mardia, 1998) in which a post-processing step is included to remove the 

effect of distance-preserving transformations of U  ( Hoff et al., 2002). This approach 

can be used for our model, providing that scaling between U  and r  is accounted for. 

By using Bookstein coordinates, we instead work directly with our posterior samples 

on a quotient space ( Dryden and Mardia, 1998) which accounts for distance-

preserving transformations. This approach avoids the additional computation 

associated with the Procrustes transformation. 

Finally, a hyperedge in our model can be expressed by either the geometric or noise 

component. To maintain the properties imposed by ,
( , )

N K
g U r

, we wish to keep the 

noise φ  small. When there are few observed hyperedges, it will become increasingly 

difficult to distinguish between these competing sources. This implies an additional 
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source of non-identifiability which we address by ensuring the noise terms φ  are 

sufficiently small via prior distributions. 

4 Theoretical Results 

We now study the behaviour of the node degree in the hypergraph model detailed in 

Algorithm 1. Since the nodes in our hypergraph model are exchangeable, it is 

sufficient to study the degree properties of the ith node, and it is straightforward to 

extend the results in this section to the model detailed in Algorithm A.1. 

To begin, we make explicit the following properties of our hypergraph model: (P1) A 

hypergraph generated from our model is a modification of a nsRGH (see Definition 

3.1), and (P2) Conditional on U  and r , hyperedges of each order occur 

independently in our model. We also make the following assumptions: (A1) The 

number of nodes N and maximum hyperedge order K are fixed, and (A2) The 

covariance of the latent coordinates Σ is diagonal, where 
2

l l l l
 

 for 1, 2 ,l   , d . 

Note that (A2) is not restrictive since we can obtain this by applying a distance-

preserving transformation to our point cloud in 
d

. 

Following Section 3, we denote a hypergraph obtained by modifying the nsRGH 

,
( , )

N K
g U r

 as 
*

,
( , , )

N K
g φU r

, and we let 
( )

k

g

e
y

 and 

*
( )

k

g

e
y

 indicate the presence or 

absence of the hyperedge ek in ,
( , )

N K
g U r

 and 
*

,
( , , )

N K
g φU r

, respectively. The 

degree of node i in a hypergraph is given by the number of hyperedges which 

contain i and, for node i in ,
( , )

N K
g U r

, we denote the order k degree as 

( ) ( )

( , )

{ | }

D eg
k

k

k N k

g g

i k e

e i e

y

 

 
 and the full degree as 

( )

( ) ( , )

2

D eg D eg

K

g

i i k

k 

 
. Analogous 

expressions for 
*

,
( , , )

N K
g φU r

 are obtained by replacing g with 
*

g . To organise our 

results, we separate the discussion into hyperedges with order k = 2 and 3k  . 

Proofs can be found in Supplement F. 
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4.1 Degree properties for k = 2 

We begin by restating a result from Rastelli et al. (2016) which allows us to express 

the degree distribution and average degree for order k = 2 hyperedges in our model. 

Throughout, we write hyperedges of order 2 that contain node i as {i, j}. 

Theorem 4.1 (Reproduced from (Rastelli et al., 2016, Theorem 1)). Let { , }
( | )

i j i
p u 

 

denote the probability of node i with latent coordinate ui belonging to an order 2 

hyperedge in the model detailed in Section 3.3, conditional on 2 2
( , , , )r    . The 

degree distribution of order 2 hyperedges for the ith node for our hypergraph model, 

conditional on θ, is given by 

 
*

( ) 1

, 2 { , } { , }

1
D eg | ( | , ) ( | ) (1 ( | )) ,

g l N l

i i i j i i j i i

N
p l p u p u p u d u

l
   

 
 

   
 
 

  (13) 

where 
2

2 ,2 2

( ) ( )

( , 2 )

{ | }

D eg

N

g g

i e

e i e

y

 

 
, and the average degree is given by 

*
( )

2 { , }
( ) ( 1) ( | , ) ( | ) .

g

i i j i i
d N p u p u d u      (14) 

Proof. See Supplement F. □ 

In order to apply this result, we must derive an expression for { , }
( | )

i j i
p u 

. This is 

given in the following proposition. 

Proposition 4.1 (Probability of an order k = 2 hyperedge). Let 2
{ , }e i j  denote an 

order k = 2 hyperedge. The probability of e2 occurring in 
*

g , given that node i has 

latent position ui, can be expressed as 

      
*

( ) ( ) ( )

{ , } 1 { , } 2 2 { , } 2 2
1 | 1 | (1 ) 1 1 | ,

g g g

i j ij i j i j
p y p y p y            (15) 

where 1 2 2 2 2
( , , , , ), ( , , , )

i i
u r u r         and 

 
( )

{ , } 2
1 |

g

i j
p y 

 denotes the probability 

of 2
{ , }e i j  being present in ,

( , )
N K

g U r
 when node i is positioned at ui. It follows that 

 
( ) * * 2

{ , } 2 2
1 | (( ) 4 )

g T

i j j j
p y p U U r  

, where 
*

~ ( , )
j j i i

U U u u   
. Then 
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2

* * 2 2

1, (( ) / )

1

( ) ~ .
i l l

d

T

j j l u

l

U U
 

 




  (16) 

where ( )
i l

u   is the lth component of ( )
i

u  , for 1, 2 , ,l d   and 
2 2 2

1 2
d iag ( , , , )

d
    

. 

Proof. See Supplement F. □ 

Theorem 4.1 and Proposition 4.1 allow us to evaluate properties of the node degree 

of order k = 2 hyperedges, where the intractable integrals (13) and (14) are 

evaluated using numerical methods. It is straightforward to calculate (16) when the 

variances are constant, but for general diagonal Σ, we require numerical evaluation 

as implemented in the R package CompQuadForm ( Duchesne and de 

Micheaux, 2010). The expression for the connection probabilities in Proposition 4.1 

is validated for an example in Figure 4. 

4.2 Degree properties for 3k   

We now present some results for the order k degree distribution. First, note that the 

expression for the degree distribution of order k = 2 hyperedges, given in Theorem 

4.1, arises since hyperedges {i, j} occur independently given ui. This is no longer true 

for higher-order hyperedges since, for example, if k = 3 it is clear that hyperedges {i, 

j, l} and {i, j, m} are not independent given i. Deriving an exact expression for the 

order k degree distribution is therefore challenging, and we consider an 

approximation of this in the following proposition where we denote an order k 

hyperedge containing node i as ,k i
e

. 

Proposition 4.2 (Approximate order k degree distribution). Let 
 

*

, ,

( )
1 |

k i k i

g

e e k
p y 

 

denote the probability of node i with latent position ui belonging to an order k 

hyperedge, denoted as ,k i
e

, in the model detailed in Section 3.3, conditional on 

( , , , , )
k i k k

u r    . Conditional on , ,
k k

r   and Σ, the degree distribution of order 

3k   hyperedges for the ith node for our hypergraph model is approximately 

 
   *

( )

,

( , , ) e x p ( , , )
D eg | ( | , )

!

l

k kg

i k i i

N k N k
p l p u d u

l

   
 


    (17) 
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where 

*

,

( )
1

( , , ) ( 1 | )
1

k i

g

k e k

N
N k p y

k
  

 
 
 

   and 

* *
( ) ( )

( , )

{ | }

D eg
k

k

k N k

g g

i k e

e i e

y

 

 
. 

Proof. See Supplement F. □ 

This proposition relies on a Poisson approximation to the sum of dependent Bernoulli 

trials. Bounds for the quality of this approximation have been studied (for example, 

see Teerapabolarn (2014)), and it is well-understood that this approximation will 

degrade as either the number of possible hyperedges, as controlled by N and k, or 

the connection probability ,

( | , , , )
k i

e i k k
p u r  

 grows, or both. 

As in the previous section, we require an expression for ,

( | , , , )
k i

e i k k
p u r  

 to explore 

this distribution. As in Proposition 4.1, an order k hyperedge can be expressed either 

by the geometric or noise component of our model, where the probability of 

occurrence in ,
( , )

N K
g U r

 is the more challenging to determine. Recall that this 

quantity is given by the probability that the balls of radius rk corresponding to the 

nodes in ,k i
e

 have a non-empty intersection, so that the hyperedge , 2 3
{ , , , , }

k i k
e i i i i 

 

is present in ,
( , )

N K
g U r

 if ,

( )
k i k

j e r j
B u


  

. This condition is equivalent to the 

coordinates ,

{ }
k i

j j e
u

  lying within a ball of radius rk (see Supplement E.3.1). Since the 

latent coordinates are assumed to follow a Normal distribution, evaluating this 

probability requires the evaluation of an intractable integral (see Gilliland (1962)). To 

address this we consider an approximation of this quantity in which the region of 

integration is approximated by a square of side length sk, denoted as k
s

S
. We 

choose k k
s r

 so that it has an equal area to a disk of radius rk. This choice 

simplifies the region of integration by allowing each dimension to be considered 

independently. Alternative choices for the distribution on the latent coordinates, such 

as the uniform, may be more amenable to analytic expressions for the degree 

distribution and we leave exploration of this to future work. 

Lemma 4.1 (Probability of an order 3k   hyperedges). We can express the 

probability of an order k hyperedge containing node i, denoted as ,k i
e

, being present 

in 
*

g  conditional on the latent coordinate ui as 
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      
*

, , ,

( ) ( ) ( )

1 , 2 , 2 ,
1 | 1 | (1 ) 1 1 | ,

k i k i k i

g g g

e k e k k e k k
p y p y p y            (18) 

where 1, 2 ,
( , , , , ) , ( , , , )

k i k k k i k
u r u r       

 and 
 

,

( )

2 ,
1 |

k i

g

e k
p y 

 is the probability of 

the order k hyperedge , 2 3
{ , , ,

k i
e i i i

 , }
k

i  being present in ,
( , )

N K
g U r

 given ui. 

The probability of ,k i
e

 occurring in ,
( , )

N K
g U r

 with 
~ ( , )

j
U  

, conditional on ui, 

can then be approximated as follows. 

 
,

2
( )

2 ,

1

1

1 | ( 1) ( | , ) ( | , ) ( | , )

( ( , ) ) ( | , ) ( | , ) ,

k i

d
k

g

e k l l k l l l l

l

k

i k i k l l i l l

p y k f u F u r F u

u u u r d u F u r F u

       

     







      
 

      
  

 

1

 (19) 

where (·| , )
l l

f    and (· | , )
l l

F    denote the pdf and cdf of the random variable with 

distribution 
2

( , )
l l

 
, μl denotes the lth element of μ and 

2 2 2

1 2
d iag ( , , , )

d
    

. 

Proof. See Supplement F. □ 

These results allow us to examine the behaviour of the degree distribution. We 

consider the quality of the ,

( )
( 1 | , , , )

k i

g

e i k
p y u r  

 approximation and the Poisson 

approximation in Figures 4 and 5, respectively. Since hyperedges in our model may 

come from the latent coordinates and or the random noise, similar connection 

probabilities can occur through different parameter combinations. However, we 

should find such combinations have notable differences in the degree distribution 

and other properties such as, for instance, motif counts and measures of transitivity. 

The above calculations suggest that examining such properties theoretically is likely 

to be challenging. Techniques such as those used in ( Kahle, 2017) may be applied 

here, however our choice of underlying distribution on the latent coordinates is likely 

to limit their applicability. 

5 Posterior Sampling 

Here we outline our posterior sampling scheme for the model detailed in Section 3.3 

and note that this can be modified to sample from the model in Section 3.4. Posterior 

samples are obtained via a Metropolis-Hastings-within-Gibbs MCMC scheme 
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(Gamerman and Lopes, 2006, Section 6.4.2) with a delayed acceptance (DA) update 

( Banterle et al., 2019) for the latent positions and algorithmic details of our MCMC 

scheme are given in Supplement E. 

Firstly, recall that we define U  on the Bookstein space of coordinates (Section 3.5) 

so that a set of anchor points remain fixed throughout estimation. For 
d

i
u 

, let the 

d anchor points be denoted by 1 2

{ , , , }
d

B B B
u u u

. Then, for 1 2
{1, 2 , , } \ { , , , }

d
i N B B B  

 

we propose 
*

U  with ith entry 
*

i i u
u u 

 where 
~ (0 , )

u u d
I

 and 
*

j j
u u

 for j i . 

This proposal is then accepted as a sample from 
0 1

,
( | , , , , , )

N K
p h U r ψ ψ

 with 

probability 

* 1 0 *

,

1 0

,

( , , , ; ) ( | , )
m in 1,

( , , , ; ) ( | , )
i

N K i

u

N K i

h p u
A R

h p u





  
  

  

U r ψ ψ

U r ψ ψ
 (20) 

Calculating the hypergraph ,
( , )

N K
g U r

 presents a computational bottleneck in 

evaluating the likelihood (20). We utilise the GUDHI library ( The GUDHI 

Project, 2021) to perform this calculation and find that the cost of calculating the 

order k hyperedges in ,
( , )

N K
g U r

 grows with both N and k. This suggests our target 

is a natural candidate for delayed acceptance in which terms of the likelihood are 

sequentially included in order of increasing computational cost, allowing for a faster 

and computationally cheaper rejection of poor proposals. Let 
k

N
h

 denote the 

observed hyperedges of order k and write 

**

2

* 1 0 * * 1 0

, 2 2 2 2

1 0 1 0

3, 2 2 2 2

( , )( , )

( | , , , ) ( | , ) ( | , , , )
m in 1, ,

( | , , , ) ( | , ) ( | , , , )
{ }

i

k

kK

N i N k k k

u k

kN i N k k k

p h r p u p h r
A R

p h r p u p h r



    

    


 




U UU U

U U

U U
 (21) 

where 
1 0

( | , , , )
k

N k k k
p h r  U

 denotes the contribution of the order k hyperedge terms in 

(10), for 2 , 3 , ,k K  . Following Banterle et al. (2019), we take 
*

( , )
k

 U U
 as 

specified in (21) and accept 
*

U  if each intermediary rate 
*

m in {1, ( , )}
k

 U U
 indicates 

acceptance as outlined in Algorithm E.1 in the supplement. 
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The kth radii is updated according to a standard random-walk MH step, where the 

proposal 
*

k k r
r r 

 with 
~ (0 , )

r r


, is accepted with probability 

* *
( | , , ) ( | )

m in 1, .
( | , , ) ( | )

k

N k k k k

k

N k k k k

p h r p r

p h r p r





 
 

 

U

U
 (22) 

The remaining parameters can be sampled directly from their full conditionals and 

updated via a Gibbs step. Full details are presented in the supplement and we note 

here that our implementation also incorporates adaptive updates for U  and r  as 

detailed in Vihola (2012) and implemented in the R library ramcmc3. 

6 Simulations 

Sections 6.1 evaluate the efficacy of our approach by investigating predictive 

distributions, and Section 6.2 explores the scalability of our sampling procedure. 

Additional simulation studies on model-depth and misspecification are presented in 

Supplements H and K. 

6.1 Assessing Model Fit 

For this study, we simulate a hypergraph from the model outlined in Algorithm 1 with 

0 1
50, 2 , 3, (0 .35, 0 .45), (0 .001, 0 .001), (0 , 0 )N d K       φ φr

 and 
 1 0

0 1
 

 and 

examine the performance of our MCMC scheme through inspection of the predictive 

degree distribution. After 5000 post burn-in iterations we obtain posterior mean 

estimates to (2 significant figures) U , 

0 1

ˆ(0 .1 1, 0 .1 5 ), (0 .0 0 1 0 8, 0 .0 0 0 1 1), (0 .0 8 1, 0 .1 2 )   r ψ ψ  and 
 0 .0 8 2 0 .0 1 5

0 .0 1 5 0 .0 9 1
̂ 

. Since 

the anchor coordinates specify a scaling on the estimated latent positions, we cannot 

make a direct comparison between the true and estimated model parameters (see 

supplementary Figures I.8 and I.9). 

We can instead examine the posterior predictive distribution and compare this to the 

simulated hypergraph. If the sampling procedure has produced meaningful 

estimates, we expect a reasonable correspondence between these two quantities. 

Since a hypergraph is a complex object, we make a comparison by summarising 
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each hypergraph by its degree distribution. Figure 6 shows this separately for the 

degree distributions of order k = 2 and k = 3 hyperedges. Overall we see that there is 

reasonable overlap between these distributions. For completeness, we also 

summarise the output of the MCMC scheme in Supplement I where we see that the 

sampling procedure appears to have converged and the estimated latent coordinates 

correspond reasonably to the truth. 

6.2 Scalability study 

Our MCMC scheme (see Section 5) updates the latent coordinates via a delayed 

acceptance (DA) step that allows poor proposals to be quickly rejected on a subset 

of the likelihood. Here we substantiate our claim that this offers computational 

advantages over a standard Metropolis-Hastings update on data simulated 

according to Algorithm 1 by comparing average per-iteration cost times for an MCMC 

scheme implemented with and without DA. Since the computational cost is closely 

connected to the number of nodes N and the density of the hypergraphs, we 

consider timings for hypergraphs with increasing N under two different density 

regimes, referred to as (R1) and (R2). We specify the parameters for each regime so 

that (R1) generates sparser hypergraphs than (R2). Details of the specific 

parameters are given in Supplement J alongside plots of the density of the simulated 

data. 

This study allows us to examine the scalability of our approach as N grows and to 

demonstrate the reduction in computational cost offered by DA. Figure 7 reports 

average per-iteration times for the DA MCMC scheme for both regimes in addition to 

the ratio of average per-iteration times for a DA and non-DA MCMC scheme. This 

figure confirms our intuitions that hypergraphs with a larger N are more 

computationally challenging, and this cost increases as the density of the 

hypergraphs grows. By inspecting the right-hand plot of Figure 7, we observe that 

incorporating DA into our MCMC offers a significant improvement in average per-

iteration cost. We note that this relative improvement increases with N and is largely 

unaffected by the density of the hypergraphs. Whilst K remains fixed throughout this 

section, we do expect the improvements offered by DA to increase with K. 
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7 Real data examples 

In this section we analyse two hypergraph datasets using the model from Algorithm 

A.1 of the supplement. These examples describe grocery co-purchases and 

academic coauthorship. 

7.1 Grocery Items 

Here we consider a subset of the grocery transaction data available as part of the R 

package arules 4. Here, each node corresponds to a category of items and each 

hyperedge indicates whether a set of items were bought together. To analyse this 

data we take a random subset of size N = 41 with K = 6 and hold back 
*

4N   nodes 

for validation of the predictive distribution for additional nodes. Since the hyperedges 

can be expressed through the geometric or noise component of our model, we 

impose constraints on the noise terms to ensure that the set of hyperedges 

explained by the latent positions is non-empty. More specifically, we limit the order k 

noise terms so that they cannot exceed 90% of the density of the order k hyperedges 

in the observed hypergraph. With these constraints, we implemented our MCMC 

scheme for 100, 000 iterations and discarded the first three quarters as burn-in. 

Figure L.14 in the supplement depicts the observed hypergraph with the nodes 

positioned at posterior mean of the latent coordinates U  and we obtain the posterior 

mean estimate of the radii (1 .0 9 6 ,1 .0 9 7 ,1 .1 0 1,1 .1 0 7 ,1 .1 1)r . Traceplots for each 

parameter are shown in Supplement L and the average per-iteration cost was 0.012 

minutes. 

To select the 
*

N  nodes for which we evaluate the predictive distribution, we take the 

nodes with the smallest eigen-centralities in the graph obtained by connecting all 

node pairs who share a hyperedge. To reflect how these nodes were selected, we 

then sample additional latent coordinates from the posterior predictive by first 

obtaining 
*

N N  samples from 
 

( ) ( )
,

i i
 

 and then selecting the 
*

N  coordinates 

that are furthest from the mode 
( )i

  in terms of Euclidean distance. Similarly to 

Section 6.1, we summarise the predictive hypergraphs by considering node degree 

and motif counts and Figure 9 reports the results of this. In particular, for each 

measure, we report the proportion of predictive samples which have discrepancy D 
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from the true observed value where D denotes the absolute difference between the 

prediction and the truth. Overall, we see that the majority of samples have either 

zero or close to zero discrepancy from the observed values, suggesting that we 

reasonably capture the unobserved interaction patterns. We believe that the uptick in 

the upper tail for some of the motif counts does not have a structural explanation and 

is simply an artefact of this particular data example. Note that we do not observe this 

behaviour for the coauthorship dataset presented in Section 7.2. 

7.2 Coauthorship for Statisticians 

We now repeat the analysis from the previous section for a hypergraph with larger N. 

In this section we consider a coauthorship hypergraph constructed from the DBLP 

dataset5, presented in Mao et al. (2020) and available online6. From this dataset we 

construct a subset of size N = 99 with K = 4 via a random walk and, similarly to 

Section 7.1, we hold out 
*

1 0N   of these nodes according to the graph eigen-

centrality and use these to validate predictive inference. We fit the model outlined in 

Section 3.4 by implementing our MCMC for 400, 000 iterations and taking the initial 

3 / 4
th

 of these as burn-in. Given equivalent restrictions on the noise parameters as 

described for the previous example, we obtain the posterior mean of the radii 

(0 .2 3, 0 .2 5, 0 .3 1)r  and the posterior means of the latent position as shown in Figure 

L.14 in the Supplement. The average per-iteration cost for our scheme was 0.012 

minutes and traceplots showing convergence for the model parameters are given in 

Supplement L. A summary of the predictive distribution of the 
*

N  additional nodes is 

given in Figure 10 and, for all summaries of the predicted interactions, we find that 

the majority of the discrepancies between the predicted and true values are zero or 

close to zero. This suggests the predicted interaction patterns are close to the truth. 

To provide further justification for our assumption of increasing radii we compare our 

model to a restricted version with a simplicial geometric component in which rk = r for 

2 , 3 , ,k K  . Since this data example is non-simplicial, we expect that the latent 

representation in the restricted model will be less informative for the hyperedges 

than the latent representation for our model. To verify this, we present the latent 

coordinate traceplots for a subset of the data in Figure 11 for both models. By 

comparing the middle and right panels of this figure, we see that the latent 
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coordinates are more constrained for our model with a non-simplicial geometric 

component. This behaviour occurs because the restricted model expresses the 

observed interactions by deleting hyperedges from a simplicial motif whilst our model 

aims to express the non-simplicial motif directly through the geometric component. 

Since a simplicial motif occurs when all latent positions are sufficiently close, this 

means that the traceplot does not allow us to distinguish between the latent positions 

in the restricted model. Contrast this with our model in which the node labelled ‘22’ is 

distinctly separated from the nodes labelled ‘27’ and ‘31’. 

8 Discussion 

Our proposed model allows hyperedges to be expressed by a geometric or noise 

component, and we keep the noise term small to impose desirable properties on the 

hypergraphs. The geometric component of our model may be unable to express 

certain hypergraph relationships and this is made clear by considering, for example, 

that the maximum number of leaves in a star is limited by the latent space 

dimension. This may be mediated by choosing an alternative geometric simplicial 

complex to generate the nerve, increasing the probability of hyperedge modification, 

or taking a different specification for the latent positions. 

There exist several modelling extensions which could be considered for our 

framework, such as modelling non-binary hyperedges, the addition of community 

structure analogously to Handcock et al. (2007), or the introduction of covariate 

information. Additional avenues for future work follow from considering other choices 

for the nerve construction, latent geometry and restrictions on the radii. For example, 

we could instead utilise the more scalable Vietoris-Rips complex ( Edelsbrunner and 

Harer, 2010), consider non-Euclidean embeddings (Krioukov et al., 2010) or explore 

models with node-specific radii. However, it is important to stress that estimation for 

a given modification of our model may be challenging. Even for our proposed model, 

scalability remains a key limitation and this may be exacerbated by certain 

extensions. Whilst we found that delayed acceptance offered computational 

improvements, it remains an open line of enquiry to consider how methodology to 

improve scalability for latent space networks ( Raftery et al., 2012; Salter-Townshend 

and Murphy, 2013) may be adapted to this setting. 
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Notes 

1 Marchette (2021) HyperG: Hypergraphs in R, R package version 1.0.0. 

2 Csardi and Nepusz (2006) The igraph software package for complex network 

research, InterJournal. 

3 Helske (2021) ramcmc: Robust Adaptive Metropolis Algorithm. R package version 

0.1.1. 

4 Hahsler et al (2021) arules: Mining Association Rules and Frequent Itemsets. R 

package version 1.6-8. 

5 https://dblp.uni-trier.de/xml/ 

6 https://xueyumao.github.io/coauthorship 
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Fig. 1 Examples of hypergraph datasets. Figure 1(b) shows co-tagging data and 

Figure 1(c) shows a subsample of the coauthorship network of Ji and Jin (2016). The 

figures were made with R packages HyperG1 and igraph2. 

 

Fig. 2 Example of a Čech complex. Left: 
( )

r i
B u

 for 
7

1 2 1
{ ( , )}

i i i i
u u u




 in 
2

. Middle: 

the graph obtained by taking pairwise intersections. Right: the hypergraph obtained 

by taking intersections of arbitrary order. The shaded region indicates an order 3 

hyperedge. 

  Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 3 Example of a nsRGH (see Definition 3.1) with 
7 7

1 1 2 1
{ } { ( , )}

i i i i i
u u u

 
 U

. Left: 

2

( )
r

U
. Middle: 3

( )
r

U
. Right: 

3 ( )

2
( )

k

k

k r
 U

. 

 

Fig. 4 Comparison of theoretical (solid) and Monte Carlo (dashed) estimates of 

,

( )
( 1 | , , , )

k i

g

e i k
p y u r  

 for varying rk. We take d iag (1,1) , (0 , 0 )    and consider 

connection probabilities for k = 2, 3, 4. In the left plot i
u 

 and in the right plot 

(1, 2 )
i

u 
. The same study with d ia g (1, 2 )   is provided in Supplement F.3. 
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Fig. 5 Comparison between empirical (dashed line) and Poisson approximation 

(points) of the order k = 3 degree distribution conditional on the latent coordinate ui. 

We take 1 0 , (0 , 0 ) , d iag (1,1)N      and evaluate the distribution for 

3
(0 .1, 0 .4 ,1 .0 )r 

. The left plot shows i
u 

 and the right plot shows 
(1, 2 )

i
u 

. The 

equivalent Figures with d ia g (1, 2 )   and N = 20 are given in Supplement F.3. 

 

Fig. 6 Comparison of true and posterior predictive degree distributions for 

hyperedges of order k = 2 (left) and k = 3 (right). Vertical lines and black dots 

correspond to the range and median of the probabilities of observing each degree as 

calculated via the posterior predictive. The observed degree is shown as green 

triangles. 
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Fig. 7 Summary of average per-iteration costs after 200 iterations for an MCMC 

implemented with and without delayed acceptance (DA) for 10 datasets sampled 

from data regimes (R1) (black, circle) and (R2) (red, triangle). Left: average per-

iteration cost in seconds for a DA scheme. Right: ratio of average per-iteration cost 

for a DA scheme and a scheme without DA. Numbers less than 1 imply DA offers a 

computational speed-up. 

 

Fig. 8 Visualisation of the datasets considered in Section 7. The hyperedges 

correspond to the observations for each dataset. Each figure shows the full 

hypergraph (left) and a subset sampled according to a random walk (right). 
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Fig. 9 Summary of predictive distributions for 
*

N  additional nodes for the Grocery 

dataset. For each measure we report the proportion of predictions which are 

distance D from the truth, where D is the absolute difference between the predictive 

and the truth.  

 

Fig. 10 Summary of predictive distributions for 
*

N  additional nodes for the 

coauthorship dataset. For each measure we report the proportion of predictions 

which are distance D from the truth, where D is the absolute difference between the 

predictive and the truth. 
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Fig. 11 Comparison between latent positions for subset of the coauthorship 

network on nodes {22, 27, 31}. Left: observed interactions. Middle: traceplot of latent 

positions for model with rk = r. Right: traceplot of latent positions for our model with 

1k k
r r




. 
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