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Abstract 35 

Carbon capture and storage (CCS) technologies are the “knight in shining armor” that can save 36 

humanity from burnout in the longer term, minimizing damage from CO2 emissions by keeping 37 

them out of the atmosphere. Metal-organic frameworks (MOFs) have received a promising career 38 

for CO2 capture due to their high porosity, surface area, excellent metal-to-legends interaction, 39 

and good affinity to capture CO2 molecules. On the other hand, Ionic liquids (ILs) as emerging 40 

solvents have reported a significant influence on CO2 solubility due to their wide range of 41 

tunability in the selection of a variety of cations and anions along with the advantage of non-42 

volatility, high thermal stability, nonflammability. The current review highlights the recent 43 

progress and ongoing careers of employing MOFs and ILs in carbon capture technologies before 44 

their commercialization on a large scale. A brief overview of CO2 capturing using MOFs and ILs 45 

is given under the influence of their possible functionalization to enhance their CO2 separation. 46 

Information on the possible integration of MOFs-ILs as a composite system or membrane-based 47 

gas separation is also presented in detail. The integration has a high potential to capture CO2 while 48 

minimizing the unit operation costs for a stable, efficient, and smooth industrial gas separation 49 

operation. Present work attempts to link the chemistry of MOF and IL and their successful 50 

hybridization (MOF-IL composite) to process the economics for CO2 capture.   51 

Keywords: MOFs, ILs, CO2 capture, MOFs-IL composite systems, membranes 52 
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1. Introduction 63 

The high consumption of fossil fuels with the rapid growth in industrialization and urbanization 64 

produces a significant amount of carbon dioxide (CO2) in the surroundings.2 The “CO2 emissions” 65 

word has become a buzzword in recent years due to its anthropogenic role in increasing the global 66 

earth’s temperature. Moreover, CO2 has made the natural disaster worse.3 According to the recent 67 

global monitoring report, the average CO2 atmospheric concentration of 417.06 parts per million 68 

(ppm) was recorded in the year 2022, with a high global growth rate of 2.13 ppm reported 69 

between the years 2021-2022.4 The excessive release of CO2 produces several environmental 70 

problems such as rising sea levels, global warming, ecosystem disorder, relocation of wildlife 71 

inhabitants, and adverse effects on human lives.5 This has raised the alarm for all the countries to 72 

devise a methodology for CO2 capture. Most of the efforts on CO2 capturing are focused on 73 

sequestering CO2 from large-point sources like power plants and the process industries. The 74 

technologies used to produce heat and electricity from fossil fuels determine the requirements for 75 

CO2 capture.6,7  76 

To capture CO2, numerous technologies are widely used in this field, including post-combustion, 77 

pre-combustion, and oxyfuel combustion, as shown in Fig. S1. The post-combustion conditions 78 

require complete fuel burning in a single step. This results in the release of excessive heat to 79 

generate steam at high pressure, which can then be used  to drive a steam turbine for electricity 80 

generation.8 The flue gas exposed to about 10-16% CO2 after processing is released into the 81 

environment without involving a proper carbon-capturing system.9 The pre-combustion 82 

mechanism involves gasifying fuel (coal, oil, etc.), including pure oxygen, and steam to form 83 

syngas.10 During the water-gas shift (WGS) reaction process, the syngas, which are made up of 84 

hydrogen (H2) and carbon monoxide (CO), go through purification before it goes into the 85 

reactor.11 The WGS reactor converts CO into H2 and CO2 by reacting with steam, producing both 86 

the steam and CO, which go under desulfurization before going to the WGS reactor as per their 87 

requirements.12 This stage of the process involves the gas mainly composed of H2 and CO2 which 88 

results in the capture of CO2 and combustion of H2 in a gas turbine utilized to generate heat and 89 

electricity.13 The oxyfuel-combustion involves pure oxygen for combustion instead of using air. 90 

The heat released from this process is required to generate steam at high-pressure to run a steam 91 

turbine for electricity generation. For easier separation of CO2 and water vapors, this type of 92 
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nitrogen (N2) free combustion system uses a flue gas predominantly composed of concentrated 93 

CO2 and water vapors. Oxy-combustion does not require the capture of CO2 from the process of 94 

combustion process because the hydrocarbon fumes can easily be purified by their condensation.14 95 

Table 1. summarizes the typical conditions for each process.  96 

Table 1. Typical conditions for pre-combustion, post-combustion, and natural gas sweetening. Reproduced with 97 
copyright permission from Ref.9 Copyright 2012, American Chemical Society 98 

 Pre-Combustion a Post-Combustion  Natural Gas Sweetening 

                                               Gas Composition (mole)  

N2 3.90% 70-75% 0-0.2% 

H2 55.50% 
  

H2O 0.14% 5-10% 
 

CO 1.70% 20 ppm 
 

O2 
 

3-4% 
 

CO2 10-15% 37.70% 0.1-8% 

SOx 
 

<500 ppm 
 

NOx 
 

<800 ppm 
 

H2S 0.40% 
 

0-15% 

C2+ 
  

0-15% 

CH4 
  

70-95% 

                         Condition 

Pressure (bar) 30 1 5-120 

Temperature (°C) 40 40-75 30-40 
                                          a After the water-gas shift reaction 

Post-combustion CO2 capture is a broadly used technique that can easily be adapted to existing 99 

power plants, rather than relying on pre-combustion or oxyfuel combustion systems. Fig. S2 100 

describes some of the current post-combustion means used to capture CO2. Cryogenics, 101 

absorption, adsorption with physiochemical means, and membrane-based methods are all part of 102 

this category.15 Post-combustion techniques utilizing amines-based solvents have become a 103 

widely accepted remedy to overcome CO2 emissions because amines are highly thermally stable 104 

and reactive, which makes them able to assist CO2 absorption effectively.16 The adsorption based 105 

on amines is done with a tall absorption column, which requires high capital expenditures.17 106 

Moreover, amines are degraded in flue gases because of oxygen (O2), sulfur dioxide (SiO2), and 107 

nitrogen dioxide (NO2) impurities, which can result in corroding the absorption column.18 Based 108 

on the discussion above, it can be said that amines-based absorption is an efficient method to 109 

capture CO2 from the environment. It can seem that the major downside of the amine process is 110 
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that the organic solvent is amine-based which can create a problem with the process of 111 

regeneration due to the chemical reaction in the amine.  112 

 113 

Fig 1. No’s of publications featuring the keywords “metal-organic framework and ionic liquid” as a function of the 114 

year. Source: Web of Science. With permission from Ref.19 Copyright 2023, American Chemical Society 115 

An immense amount of highly critical and technical literature is available in support of CO2 116 

capture through different ways including MOFs and ILs. Fig 1. shows the data of the number of 117 

publications reported featuring the keywords “metal-organic framework and ionic liquid” by Web 118 

of Science. Liu et al.20 presented a state-of-the-art review on improvement in rational design and 119 

functionalization of MOFs to enhance the CO2 capture and conversion through MOFs based 120 

composites. Younas et al.21 and Ding et al.22 reviewed MOF’s thermal, chemical, and mechanical 121 

stability improvements via novo synthesis and post-synthesis structural processing. Christopher et 122 

al.23 presented the structural and chemical properties of MOFs which could lead to the high 123 

capture and catalytic conversion of CO2. In one of our recent reviews, the enhancement in CO2 124 

capture through employing ILs and DES, their possible functionalization along with their role in 125 

the conversion of CO2 into different valuable products is presented following the highly economic 126 

prospect of employing both solvents for CO2 capture.24 Lian et al.25 reviewed the cost-127 

effectiveness of utilizing ILs based solvents for CO2 capture through membranes, catalysts, and 128 

their hybridization with advanced nanomaterials (MOFs, COFs, graphene, Zeolites, etc.). Other 129 

recent notable studies by Guo et al.26, Ullah et al.27, Olabi et al.28, and Ferreira et al.29 that cover 130 
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the synthesis of MOFs, ILs, and their hybridized composite systems (MOF-IL) mechanism for 131 

CO2 capture, along with their effective utilization in membranes-based gas separation 132 

technologies are worthwhile references to develop a basic understanding of the individual topics.  133 

The current review highlights the significance, advancement, and ongoing careers of employing 134 

MOFs, ILs, and their hybrid systems (MOF-IL composites) in carbon-capturing technologies. A 135 

comprehensive overview of CO2 capture technologies is provided starting from the post-136 

combustion, pre-combustion, and oxy-fuel combustion. The successful utilization of MOFs and 137 

ILs through composite membrane systems greatly enhances CO2-capturing performance. In 138 

addition, the successful functionalization of MOFs with (amino/fluorine/adenine groups and 139 

pillared layer, etc.) and ILs with (amine, carbonate, ether, and carboxyl groups) has a great 140 

affinity towards improving the CO2 separation. The synthesis of low-cost, sustainable, and 141 

environment-friendly mass production MOF-IL integration could be significant for their large-142 

scale production and commercialization. The successful integration of MOFs-ILs has a high 143 

potential for CO2 capturing systems with the advantage to minimize the unit operations operating 144 

costs for a stable, efficient, and smooth operation for industrial gas separation.  An evaluation of 145 

MOFs and ILs properties compared to other absorbents is summarized in Table 2.  146 

Table 2. Advantages and Disadvantages of utilizing MOFs30 and ILs31 with Biphasic solvents32, MEA33, and DESs34 147 

Biphasic 

solvents 

MEA              DESs MOFs ILs 

Advantages 

Low viscosity 

and low energy 

consumption 

Low price, 

High thermal 

stable, and 

reactive 

solvents 

Low corrosion, Nonvolatility, 

Nontoxic, High solubility, 

Inexpensive, Inflammable, and 

biodegradable nature, Eco-

friendly 

Low heat capacity, 

Regeneration requires 

Low energy 

consumption 

low corrosion, 

high solubility, 

and Nonvolatile 

Disadvantages 

Complex 

equipment 

High volatility, 

corrosion, and 

high energy 

consumption 

High viscosity, the synthesis 

cost for some deep eutectic 

solvents is highly expensive. 

Requires high cost for 

synthesis and 

regeneration, 

unavailability, and 

costliness of raw 

materials 

Biotoxicity, 

high price, and 

high viscosity 

MEA: Monoethanol amine; DES: Deep eutectic solvents; MOFs: Metal-organic frameworks; ILs: Ionic Liquids  

 148 

2. MOFs 149 

MOFs are the advanced class of coordinate polymers/networks whose framework is composed of 150 

metal ion clusters carrying nodal framework positions associated with bi, tri, and multi-podal 151 
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organic ligands. The transition metal elements that can be utilized are di-valent (Mg, Zn, Cu, etc), 152 

tri-valent (Al, Fe, Cr, etc), and tetravalent (V, Ti, Hf, Zr, etc). In contrast, legends moieties can be 153 

taken from imidazolate, pyrazolate, carboxylate, and phosphonate families that can be attached 154 

with different lengths and functional groups to give better and more selective absorption towards 155 

the targeted gas molecule. Fig 2.35 shows examples of various MOFs and their corresponding 156 

metal nodes and linkers. 157 

MOFs are porous crystalline nano-structures with the advanced feature of high surface area and 158 

strong metal-to-legend interaction 36. MOFs show an outstanding degree of tunability with the 159 

wide variety of organic and inorganic components that can be involved via post-synthetic 160 

modification of their structures.37 The MOF’s high tunability makes it possible to design and 161 

control its structural aspects such as pore size, geometry, surface area, and surface chemistry more 162 

preciously than other materials.38 Due to these properties, it displays unsurpassed adsorptive and 163 

catalytic abilities, including carbon-capturing, energy storage, decomposing volatile chemicals, 164 

and environmental applications.39 There is a wide range of literature available on the use of MOFs 165 

as selective adsorbents of different gases using molecular.40 Therefore, it implies that to pass 166 

through the pores of MOF, molecules must have an appropriate pore kinetic diameter as listed in 167 

Table 3.  168 
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 169 

Fig 2. Examples of different MOFs with their corresponding metal nodes and linkers. Reproduced with permission 170 

from Ref.41 Copyright 2017, American Chemical Society  171 

Table 3. Kinetic diameter of different gas molecules. With permission from Ref.42 Copyright 2001, Elsevier 172 

Molecule Kinetic Diameter (Å) 

N2 3.64 

H2 2.89 

H2O 2.65 

CH4 3.8 

O2 3.46 

CO2 3.3 

 173 

2.1. CO2 Adsorption Mechanism in MOFs 174 

The capacity of CO2 adsorption in porous materials mainly depends upon the surface area of 175 

adsorbents.43 Numerous adsorbents with higher surface areas like zeolites, carbons, and MXanes 176 

were reported in the literature to adsorb gases at various concentrations from different sources.44 177 

MOFs have gotten great attention for CO2 uptake due to their good chemistry, structural 178 

tunability, and better adsorbate-adsorbent interactions with CO2 through the open metal site.45 179 

Additionally, the properties of MOFs like inner surface polarity, the topology of the framework, 180 

pore size, and surface area could be tuned for the adsorption of CO2 through the careful selection 181 
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of metal centers and organic linkers.46 The process of CO2 adsorption-desorption in MOFs is 182 

shown in Fig 3. 183 

 184 

Fig 3. Illustration of CO2 adsorption-desorption in MOFs. With permission from Ref.47 Copyright 2017, Royal 185 

Society of Chemistry 186 

The hierarchical nanostructures have recently received great attention to enhance the dynamic 187 

capacity and selectivity of MOFs by creating larger pore sizes or hollow structures. The 188 

hierarchical porosity from the micro- to mesoscale uses intrinsic pores of MOFs to provide higher 189 

exposure to the gas molecule, which can also effectively accelerate the mass diffusion/permeation 190 

and avoid blocking the micropores. Larger-sized meso and macro-porous channels also provide 191 

enough space to load functional groups to further enhance the separation efficiency.48 Qiu et al.49 192 

used, a one-pot synthesis strategy to fabricate a hierarchically porous Cu-BTC MOFs for the 193 

selective separation of CO2 which showed abundant mesopores and outstanding dynamic CO2/N2 194 

separation (56.547) along with the good CO2 uptake of (8.054 mmol.g−1) and (4.200 mmol.g−1) at 195 

273K and 295K respectively with the feed pressure of 1 bar. Yurdusen et al.50 investigated the 196 

role of introducing narrow micropores on the CO2 adsorption capacity of MOF-MIL-88B by the 197 

control of hierarchical pores via Fe-BDC ratio into MOF. They reported that the ultra-micropore, 198 

macropore, and mesopore volumes were successfully improved through the formation of 199 

hierarchical pores and controlling the textural mesoporosity via the Fe/BDC ratio into MOF-MIL-200 

88B which improved the CO2 adsorption capacity of MIL-88B by a factor of 2.1 with the CO2 201 

uptake of (1.27 mmol.g-1), (2.27 mmol.g-1), and (2.77 mmol.g-1) at 298K with the feed pressure of 202 

1bar, 3bar, and 5bar respectively higher than CO2 adsorption of commercially available MOFs.51 203 
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52 The most important property of MOF material is pore size which ultimately effects the catalytic 204 

conversion of CO2, its separation, and adsorption.53 MOFs form a porous structure after the 205 

evacuation of solvent molecules. To increase the selective adsorption of CO2 from the mixed gas 206 

composition of CO2/CH4 and CO2/N2 under humid conditions, it is possible to make a compound 207 

that can trap guest molecules in its channel during sample preparation which gives the creation of 208 

narrow pores (np), and then ultimately reduces the pore size of the MOFs.54 Furukawa et al.55 209 

formed MOFs with extremely high porosity, comprised of Zn4O(CO2)6 units with modification of 210 

organic ligands as shown in Fig 4a. Among all the series, MOF-210 displayed the largest 211 

“Langmuir and BET surface areas” of about (10,400 m2g-1 and 6240 m2g-1) with pore volumes of 212 

(0.89 cm3g-1 and 3.60 cm3 g-1) of MOF crystal.55 Senkovska et al.56 reacted Al(NO3)3.9H2O with 213 

legends 4,4′-biphenyl dicarboxylate (bpdc) and 2,6-naphthalene dicarboxylate (ndc) with N, N-214 

dimethylformamide (DMF) under the hydro-solvothermal reaction to produce porous frameworks 215 

with the formulas [Al (OH)(bpdc)(DMF)1.8(H2O)3.5] (DUT-5) and [Al(OH)(ndc)(DMF)1.5(H2O)1.5] 216 

(DUT-4) with the structures shown in Fig 4b. According to reports, DUT-4 and DUT-5 attained 217 

the BET pore volumes and surface areas of about 0.68 cm3.g-1,1308 m2.g-1, and 0.81 cm3.g-1,1613 218 

m2.g-1 respectively. DUT-4 has achieved the CO2 uptake capacity of 8.17 mmol.g-1 at 10 bars, 219 

which is more analogous with the CO2 uptake capacity of MIL-53 (Al).56 220 

The specific surface area is another significant factor that helps in assessing the catalytic 221 

performance and adsorption capacity of MOF.57 Fig 4c. shows the crystal structure of various 222 

MOFs with different pore volumes and surface areas reported by Chen et al.58 The high pore size 223 

and surface area of MOF structure favors the high adsorption to facilitate the high capture of CO2 224 

through the porous cage of MOF.  The first comprehensive study to find the relation between CO2 225 

capacity and the surface area was performed by Yaghi’s group.59 This collection includes MOFs 226 

with a variety of properties, comprising pores with open metal sites (Cu3(BTC)2 and MOF-505), 227 

square channels (MOF-2), alkyl-functionalized pores (IR-MOF-6 and IR-MOF-3), interpenetrated 228 

(IRMOF-11), cylindrical channels packed hexagonally (MOF-74), and the frameworks of higher 229 

porosity (MOF-177) and (IRMOF-1). They reported that the MOF-177 exhibited the largest 230 

surface area among all materials with a CO2 uptake of (33.5 mmol.g-1) with 60 wt.% loading at a 231 

feed pressure of 35 bar.59 Table 4-5. shows the capacity of various MOFs for CO2 uptake at 232 

different high and low-pressure conditions respectively. 233 
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The breakthrough experiment is also considered one of the most precise strategies to determine 234 

the separation capacity of CO2, in which adsorbent with the bed packed is subjected to a two 235 

components-divided mixture composition gas stream, and CO2 release from the substance is 236 

monitored.60 The breakthrough experiment for Mg-MOF-74 was conducted by Britt et al.61 with 237 

the exposure of MOF to a mixture of 20% CO2 in CH4 shown in Fig 4d. With an 8.9% dynamic 238 

capacity for CO2 adsorption, the outcomes revealed that the CO2 adsorption in Mg-MOF-74 is 239 

greatly favored over CH4. The CO2 breakthrough experiments were conducted on isostructural Zn-240 

MOF-74 to explore the significance of metal ions in CO2 adsorption. Zn-MOF-74 only absorbs 241 

0.35wt.% of CO2, which is 96% less than Mg-MOF-74, and highlights the advantage of selecting 242 

the right metal ions in CO2 binding. The higher capacity of CO2 in Mg-MOF-74 is reflected as a 243 

good interaction between Mg2+ and CO2.61 Fig 4e. displays different curves for CO2 breakthrough 244 

Xintao samples under the influence of varying the concentration of CO2 in the feed gas mixture. 245 

They found a sigmoidal shape connected with dynamic adsorption processes in fixed beds. 246 

Moreover, the rise in the inlet concentration of CO2 reduces the breakpoint time along with a 247 

significant rise in the slope of the curves.62 248 
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 249 

Fig 4. (a) Zn4O (CO2)6 attached with organic legends to produce MOFs. With permission from Ref.55 Copyright 2010, 250 
Science Report (b) Synthesis of DUT-4 and DUT-5 through metal Al (NO3)3.9H2O and legend ndc and bpdc. With 251 
permission from Ref.36 Copyright 2018, Elsevier (c) Crystal structures of various MOFs with mentioning their pore 252 
volumes and surface areas. With permission from Ref.58 Copyright 2016, American Science Publishers  (d) Schematic 253 
of the breakthrough experiment for Mg-MOF-74 under the exposure of a mixture of 20% CO2 with CH4. With 254 
permission from Ref.61 Copyright 2009, The proceeding of National Academy of Science (e) CO2 breakthrough 255 
curves found for Xintao sample by changing the concentration of CO2 in the feed gas mixture of CH4/CO2 under (T = 256 
303 K, P = 1 atm). With permission from Ref.62 Copyright 2021, Elsevier. 257 

Table 4. CO2 uptake capacity of various MOFs at high-pressure conditions. 258 

MOF Type Pressure (bar) Temperature (K) CO2 Adsorption capacity 

(mmol.g-1)  

Ref 

Cu-BTC 40 303 14.00  63 

10 303 8.07  64 

15 297 11.70  65 

MOF-177 14 298 9.02  66 

(a)

(b)

(d)

(c)

(e)
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Mg-MOF-74 35 313 15.00  67 

30 303 14.80  68 

ZIF-8 40 303 8.60  69 

45 305 9.10  70 

UiO-66 60 303 7.65  71 

30 298 7.29  72 

IRMOF-11 30 298 14.7  59 

HKUST-1 35 298 10.7  73 

IR-MOF-1 35 298 21.7  73 

MOF-177 35 298 33.5  73 

MIL-100(Cr) 50 303 18  73 

MIL-101(Cr) 50 303 28  73 

MOF-200 50 298 64.3  55 

MOF-205 50 298 38.1  55 

MOF-210 50 298 65.2  55 

Cu3(BTC)2 32 298 10.7  55 

MOF-177 32 298 33.5  55 

 259 

Table 5. CO2 uptake capacity of various MOFs at low pressure. 260 

MOF Type Pressure (bar) Temperature (K) CO2 Adsorption capacity 

(mmol.g-1) 

Ref 

HKUST-1 1 295 5.1  74 

Cu-BTC 1 298 5.33  75 

UMCM-150 1 298 2.6  74 

Zeolite 13-X 1 293 1.77  76 

MIL-47 1 298 2  74 

UTSA-16 1.1 293 3.5  77 

MOF-177 1 298 1.6  74 

HKUST-1 1 293 3.55  78 

Cu-BTC 1 283  7.00  79 

Mg-MOF-74 1 298 8.61  80 

1 293 9.02  51 

 

Cu-BTC 

1 298 4.26  81 

1 298 5.33  75 

1.2 295 2.46  82 

1 298 3.06  83 

Zeolite-13X 1 298 8.07  84 

UTSA-16 1.1 298 3.5  77 

 

HKUST-1 

1 298 1.59  85 

1 196 7.92  85 

1 298 3.55  85 

 261 

Different gas molecules have different strengths of interaction with the adsorbent, hence the 262 

mechanism for the selective absorption of CO2 depends on the interaction between CO2 and the 263 

adsorbent in comparison with the other probe molecules.86 The more molecules of CO2 would be 264 

absorbed when the interaction of CO2 molecules will become stronger in comparison with the 265 

other molecules like O2, N2, and CH4.87 Mostly the equilibrium-based mechanism depends upon 266 

strength regardless of the molecule’s uniformity.88, 89 The mechanism comprises the capacity of 267 
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the physical adsorbent to capture CO2 molecules and drives the selective adsorption of CO2 268 

molecules from the other gases. Fcu-MOFs, rht-MOF-7, and Mg-MOF-74 are a few examples of 269 

MOFs that undergo an equilibrium-based adsorption mechanism for the selective separation of 270 

CO2.88, 90 Contrary to this, the mechanism of kinetic sieving is used where the molecular size of 271 

gas becomes closer or quite similar to the size of the CO2 molecule.62, 91  272 

Another famous technique for separating CO2 is “kinetics-driven sieving” used where the 273 

molecular size of CO2 resembles the size of O2, CH4, and N2.92 However, finding a MOF that 274 

selectively absorbs CO2 from the exhaust stream is quite challenging. So, the proper selection of 275 

MOFs counts a lot for the efficient and selective separation of a targeted gas molecule. However, 276 

combining two adsorption sites has proven to be quite an efficient approach in favor of getting 277 

MOFs for high CO2 capturing. An experimental study conducted by Li et al.93 showed an easy 278 

condensation reflux method to examine the mechanism of CO2 adsorption on the surface of MOF-279 

74 (Ni). After varying the temperature and synthesis time, they discovered that the structure of 280 

MOF-74(Ni) and the isosteric heat for the adsorption of CO2 can be tuned consequently. The 281 

modified MOF-74(Ni)-24-140 prepared under the temperature of 140 °C for 24 h exhibited an 282 

optimized CO2 adsorption capacity of about 8.29/6.61 mmol.g-1 at the temperature of 273/298 K 283 

under 1 bar feed pressure, which was (1.5/1.6 times) higher than previously reported UTSA-16, 284 

(2.0/2.1 times) than MOF-74-Ni and (3.6/4.9 times) DA-CMP-1 under similar conditions.93 285 

The quantitative structures–property relationship (QSPR) is the strategy recently reported to 286 

develop a strong relationship between MOF-CO2 for the prediction of their CO2 capture 287 

performance. In one of the recent studies Ahmadi et al.94 based on applying the quasi-SMILES 288 

parameters such as specific surface area, temperature, BET, pore volume, and pressure to predict 289 

the CO2 uptake of MOFs. The data set includes 260 quasi-SMILES individualities of MOFs that 290 

were experienced in training, validation, and testing three times. As a result of the QSPR model 291 

interpretation, the outcomes of the impact of temperature and pressure for CO2 adsorption using 292 

the relationship approach are quite closer to the experimental observation of CO2 capture. 293 

Furthermore, the model gives the strong response of adding functional  groups containing N, O, 294 

and double bonds to the organic linkers of MOFs to improve the MOF-CO2 interaction along with 295 

the high uptake in CO2 adsorption characteristics.94 296 

 297 
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2.2. Functionalization of MOFs to CO2 capture 298 

Typically, organic molecules that possess N-donor or O-donor atoms are commonly employed as 299 

ligands to connect the metal ions in MOFs. These ligands encompass carboxylates (aliphatic or 300 

aromatic), pyridyl groups (such as pyrazine and derivatives of 4,4'-bipyridyl), cyano compounds, 301 

polyamines formed from imidazole, oxalic acid, and benzene, as well as phosphonates, sulfonates, 302 

and crown ethers.95 The perception of functionalizing of MOFs is associated with two approaches 303 

including pre-synthesis functionalization (use of linkers containing functional groups before the 304 

MOF synthesis) and post-synthesis functionalization (use of functional groups after the MOF 305 

synthesis). The schematic for the synthesis of MOFs by conventional and  through involving 306 

pre/post-synthesis modification is shown in Fig 5a-c respectively.96 307 

The pre-synthesis ligand functionalization has a significant effect on improving the affinity of 308 

MOFs towards CO2 adsorption and separation.97 This method is advantageous for achieving high 309 

CO2 storage properties due to its easy modification procedure along with the advantage of 310 

combining a variety of functional groups.98 To develop the IRMOF series, Yaghi's group 311 

integrated R-BDC with N, N-diethyl formamide (DEF), and zinc nitrate tetrahydrate under 312 

solvothermal conditions.99 According to the report, the IRMOFs pore diameter changes from 12.8 313 

mm to 28.8 mm with the introduction of functional groups (R-) such as -C2H4, -OC3H7, -NH2, and 314 

-Br.100 Similarly, Cu-PCN-68 is another Cu-based MOF with the formula of [(Cu3(H2O)3-315 

(ptei).13H2O.33dmf)] was identified with the capacity of 30.4 mmol.g-1 to uptake CO2 at 35 bar 316 

and 298 K with a pore volume and BET surface area of "2.13 cm3.g-1" and "5109 m2.g-1" 317 

respectively.101  318 

In contrast to other methods of modification "amine-functionalized legends" are more attractive 319 

because of their higher affinity for CO2 selectivity and adsorption.102 According to this approach, 320 

CO2 molecules behave as "Lewis acid" and amine molecules as "Lewis base”.103 The amine-321 

functionalized MIL101 (Cr) formed by Lin et al.104 had an average particle size of 50 nm with an 322 

area of 1675 m2.g-1. The synthesized MOFs exhibited a CO2-capturing capacity of 15 mmolg−1 at 323 

a pressure of 25 bar at 289 K.104 In another study conducted by Ko et al.105, SBA-15 silica was 324 

synthesized and grafted with amines (tertiary, secondary, and primary,) which exhibited CO2 325 

capacities of about 0.17, 0.75, and 0.95  mmol/g, respectively.105 The mechanism of functional 326 

group grafting through bi-functional MOF with the legend is shown in Fig 5d. Using an amine-327 
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functionalized Ti-based MOF, Wan et al.106 synthesized stable and highly stable molecules (MIP-328 

207-NH2-n). They found that the addition of amino groups (n=25wt.%) in MOF (MIP-207-NH2-329 

25%) successfully enhanced the CO2 separation to (3.96 and 2.91 mmol.g−1) which is (20.7% and 330 

43.3%) better as compared with the un-modified MOF at the temperature of about 00C and 250C 331 

respectively. In addition to this, the breakthrough experiments also resulted in the separation 332 

factor (CO2/N2) and adsorption capacity for CO2 increased by 15% and 25% respectively.106 333 

Through the use of linker 2-amino terephthalic acid, Abid et al.107 prepared Zr-MOF nanoparticles 334 

functionalized with amino acid and found that the Amino-Zr-MOF showed BET and Langmuir 335 

surface area of about 1220 m2g-1 and 1395 m2g-1 when activated at 200 degrees Celsius. 336 

According to the results, the total pore volume, and the average pore radius were "0.611cm3.g-1" 337 

“nd "0.9” nm" respectively. It was observed that amino-Zr-MOF showed higher CO2 adsorbtion 338 

(4.46 mmol.g-1) as compared with the CO2 adsorbtion achieved through Zr-MOF (3.52 mmol.g-1) 339 

at feed pressure of 1bar and temperature 273K. Moreover, a higher CO2/CH4 selectivity and 340 

greater thermal stability were reported for the amino-Zr-MOF with high heat of CO2 adsorbtion 341 

(29.4 kJ.mol-1).107 342 
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 343 

Fig 5. Schematic representation for the synthesis of MOF through (a) Conventional method (b) Pre-synthesis 344 
modification (c) post-synthesis modification. Reprinted from Ref.108 Permission not required. (d) The mechanism 345 
of functional group grafting through bi-functional MOF with the legend, the orange pillar donates the organic 346 
ligand, the grey ball represents metal and lavender, and the green bar donates the functional groups With 347 
permission from Ref.109 Copyright 2012, Royal Society of Chemistry (e) CO2 and CH4 desorption/adsorption 348 
capacities and selectivity from their equimolar mixture for complex-1 at 273K (f) CO2 and CH4 349 
desorption/adsorption capacities and selectivity from their equimolar mixture complex -2 at 298K (g) CO2 350 
adsorption enthalpies for both complexes 1 and 2. With permission from Ref.110 Copyright 2014, American 351 
Chemical Society 352 

The synthesis of MOFs by pillared layer functionalization is an effective pre-synthesis strategy to 353 

enhance CO2 capture.111 The pillared layer in MOF gives an enhanced surface area to MOF, and 354 

the presence of an amino-functional group in the pillar can also increase CO2 affinity. In recent 355 

years, there have been promising results achieved regarding utilizing pillared-layer MOFs for the 356 

storage and adsorption of different gases like O2, CH4, and CO2 from the aqueous solutions.112 357 

According to Amer's research, an attempt was made to examine the effectiveness of two MOFs 358 

with different pillared layers namely (Co)2(BDC)2(DABCO) and Zn2(BDC)2(DABCO) for CO2 359 
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separation. Both the MOFs Co-BDC-DABCO and Zn-BDC-DABCO exhibited a high capacity for 360 

CO2 uptake to about  (4.4 mmol.g−1 and 6.3 mmol.g−1)  respectively which confirmed a significant 361 

improvement in CO2 uptake when compared with  (0.67 mmol.g−1 and 0.95 mmol.g−1) CO2 for 362 

Co-BDC and Zn-BDC respectively.113 Similarly in another study, DABCO-based MOFs such as 363 

(Ni-DABCO and Cu-DABCO) exhibited CO2 uptake capacities of (2.2 mmol.g−1 and 1.4 364 

mmol.g−1) respectively.114 In one of the studies conducted by Xuan et al.110 two “pillar-layered” 365 

MOFs were synthesized namely {[Zn2(bpta)(bpy-ea)-(H2O)].2DMF·H2O}n and {[Zn4(bpta)2(4-366 

pna)2(H2O)2].4DMF.3H2O}n. using the pillar legends N-(4-pyridyl) isonicotinamide (4-pna) and 367 

1,2-bis(4-pyridyl)ethane (bpy-ea). The isotherms of CO2 adsorption/desorption and selectivity for 368 

these complexes (1 and 2) were measured at the temperature of 273 K and 298 K as shown in Fig 369 

5e and Fig 5f respectively. The enthalpies of CO2 adsorption (Qst) for both complexes are shown 370 

in Fig 5g. The complex-1 showed the maximum adsorption for CO2 nearly 2.69 mmol.g−1 at 371 

1.2bar/273 K and 1.87 mmol.g−1 at 298 K. Complex 2 showed CO2 uptake of 0.91 mmol.g−1 at 372 

273 K and 0.66 mmol. g−1 at 298 K. In these experiments, it was shown that MOFs with pillar 373 

layers adsorb CO2 more efficiently.110 In addition, adenine groups are strong candidates for ligand 374 

functionalization due to their structural un-coordination.115 Adenine can be utilized to generate the 375 

MOFs for several reasons described here: (1) the structure of adenine allows MOF diversity due to 376 

the different positions of nitrogen. (2) Adenine has a stiff structure so a strong framework could 377 

be attained. (3) The atoms of adenine are co-planar means that the interaction inter-ligand (π–π) 378 

could be possible during MOF formation.116, 117 These remarkable characteristics make adenine an 379 

efficient building block that could be utilized for the construction of various MOFs for the 380 

adsorption of CO2.118 An et al.116 investigated the effect of adenine groups on the bio-MOF-11 381 

(CO2(ad).2(CO2CH3)2.2DMF.0.5H2O). The experimental results showed that at the feed pressure 382 

of 1bar, the CO2 adsorption capacity of MOF was reported to be high as (4.1 mmol.g-1) at 298 K, 383 

with isosteric heat (45 kJ.mol-1) along with the high CO2/N2 selectivity of 75 at 298K and 81 at 384 

273K. Along with the amino group and Lewis base pyrimidine of adenine in the structure, these 385 

favorable properties of CO2 uptake contributed to the dimension of the pores.116  386 

Comparing organic fluorinated compounds to their non-fluorinated counterparts, organic 387 

fluorinated compounds demonstrate unusual properties and behaviors due to their C-F bond 388 

strength being relatively higher than their C–H counterparts, and their large number of non-389 
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bonding p electrons which behave as a shield for carbon backbone. A high electronegativity of 390 

fluorine may account for C-F stronger bond.119 The effect of the functionalization of fluorine on 391 

the properties of MOF was studied by Galli et al.120 They made fluorinated-MOF-1 using the 392 

metal precursor, silver (I), and 3,5-bis-(trifluoromethyl)-1,2,4-triazole (Tz). A comparison has 393 

been made between the properties of the fluoro-coated MOFs with cavities and the non-fluoro 394 

counterparts. The fluoro-coated MOFs exhibit high CO2 affinity, catalytic activity, thermal 395 

stability, and gas selectivity.121 Belmabkhout et al.122 investigated the phenomena of simultaneous 396 

removal of CO2 and H2S from natural gas. During the experiments, the SIFSIX-3-Ni and 397 

NbOFFIVE-1-Ni MOFs were found to be highly CO2 selective, with a selectivity greater than one 398 

for CO2/H2S. Additionally, AIFFIVE-1-Ni showed a good affinity for separating both H2S and 399 

CO2 from different gas stream compositions under different temperature ranges. Fig 6a-b. shows 400 

the crystal structure and column breakthrough tests using CO2/H2S/CH4 of NbOFFIVE-1-Ni 401 

whereas Fig 6c-d shows, the crystal structure of dehydrated AlFFIVE-1-Ni respectively. As a 402 

result of the simultaneous adsorption of H2S and CO2, AIFFIVE-1-Ni exhibited H2S/CO2 403 

selectivity of (1/1).122 Through ligand-functionalization, Zhang et al.123 prepared MOFs, in which 404 

different functional groups were introduced to the ligand of ophthalic acid (-NH2, -NO2, and F). 405 

They resulted that, the introduction of pore wall fluorination in the framework successfully 406 

improved the material stability of the MOFs. There was a great enhancement in the results 407 

observed with the fluorinated MOFs along with different substituted fluorine atom numbers and 408 

positions namely TKL-(104-107), which were found to have good uptake capacity for CO2 based 409 

on their degree of fluoridation.123 Fig 6e. shows the general routes for the preparation of TKL-410 

MOFs. The isotherms for CO2 adsorption were determined to study the ability to capture CO2 of 411 

these fluorine-functionalized MOFs. TKL-107 can capture 150 cm3g-1 (6.69 mmol.g-1) of CO2 at 412 

1.2 bar and 273 K. TKL-105 and TKL-106 showed a large amount of CO2 adsorption of about 413 

(105 cm3g-1 (4.64 mmol.g-1) and 126 cm3g-1 (5.62 mmol.g-1) at 273 K and 1.2 bar, respectively) as 414 

shown in Fig 6f. The order for CO2 uptake showed that TKL-107 achieved a higher CO2 uptake 415 

than TKL-106 and TKL-105 which shows that these materials can adjust their CO2 adsorption 416 

system depending on the degree of fluoride modification they possess: the more the fluoride 417 

atoms of framework owns the greater capacity for CO2 uptake.123, 124 418 



20 
 

 419 

Fig 6. (a) NbOFFIVE-1-Ni crystalline structure in which blue poly-hedra represents NbOF5
2− pillar whereas other 420 

atoms were shown in CPK coloring scheme. (b) Column breakthrough tests through gas mixture with composition 421 
(5/5/90) for CO2/H2S/CH4 with the flowrate of 10 cm3  min−1 on NbOFFIVE-1-Ni at 25 °C and 50 °C (1 bar), referring 422 
to the influence of different adsorption temperature against response time of various gases  (c) AlFFIVE-1-Ni 423 
crystalline structure in which yellow polyhedra donates AlF5

2− pillar, whereas other atoms were shown in CPK 424 
coloring scheme (d), Column breakthrough tests through gas mixture with composition (5/5/90) for CO2/H2S/CH4 425 
with the flowrate of 10 cm3.min−1 with the flowrate of 10 cm3.min−1 on NbOFFIVE-1-Ni at 25 °C and 50 °C (1 bar), 426 
referring to the influence of different adsorption temperature against response time of various gases . Reprinted from 427 
Ref.122 Copyright 2018, Nature Energy (e) Synthesis route of various TKL MOFs (f) The isotherms of CO2 adsorption 428 
for various TKL MOFs at low pressure and 273 K. Reprinted from Ref.124 Copyright 2013, Nature Scientific Reports. 429 

It is particularly important to note that MOFs adsorb CO2 very efficiently because of the small 430 

amount of water vapor in the flue gases.125 According to Taddei et al.126 gas adsorption 431 

technology plays a crucial role in improving MOF’s stability under humid conditions. The relative 432 

humidity behavior of MOF namely MIL-100(Fe) was first investigated by Llewellyn et al.73 433 

which exhibited a CO2 capacity rise from 0.59-2.38 mmol.g−1 with a relative humidity rise from 434 

(3%-40%) at a partial pressure of 0.2 bar of CO2.127 Fracaroli et al.128 utilized IRMOF-74-III-435 
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CH2NH2 for the selective absorption of CO2 at a relative humidity of 65%. The experimental 436 

results revealed that this MOF showed effective performance for CO2 absorption to about  3.2 437 

mmol.g-1 at 1 bar).128 438 

During post-synthesis functionalization, the pre-synthesized framework is chemically modified 439 

with the functional groups.129 As a result of the reaction between pendant aldehydes, azidoes, and 440 

pendant amines, new chemical functionalities are synthesized that cannot be produced directly 441 

under the process of solvothermal or hydrothermal reactions, as well as the activation of pre-442 

existing catalytic sites. Several goals could be achieved through the use of PSM.36 (A) Functional 443 

groups could be introduced into MOFs with PSM. (B) Coordination polymer networks can be 444 

modified and exchanged by modifying organic linkers. (C) Cation exchange between MOFs. The 445 

techniques help to make MOF networks more desirable.130 446 

Through the impregnation of polyethyleneimine (PEI) into MIL-101, Bhattacharjee et al.131 447 

synthesized an amine-functionalized MOF. During the final application of the compound at 0.15 448 

bar and 298 K with loadings of 100 wt% PEI, the results exhibited that the material showed a 449 

significant increase in the amount of CO2 that could be adsorbed at low pressures (4.20 mmol.g-1 450 

at 298 K, 0.15 bar), and showed high selectivity for CO2 over N2 in the flue gas (1200 at 323 K 451 

and 770 at 298 K). In addition, dual amine functionalized MIL-101 is synthesized by adding PEI 452 

directly into the "amine-functionalized MIL-101" to produce a product with increased CO2 453 

adsorption capacities, and CO2/CH4 selectivity at low pressures.131 One example of en-grafted 454 

MOF is en-MOF-74, which has been specifically designed with an amine loading of 16.7 wt.%. 455 

When this modified MOF is exposed to a pressure value of 0.15 bar and a temperature value of 456 

298 K, it exhibits a remarkable uptake of CO2 (13.7 wt. %).132 There is another study conducted 457 

by Gaikwad et al.133 in which the effects of amine functionalization on MOF-177 CO2 adsorption 458 

capacity have been studied at different temperatures, such as 298 to 328 K. In comparison with 459 

the parent MOF-177, the amine-functionalized MOF-177 was shown to have CO2 adsorption 460 

capacity of 4.6 mmol.g-1 at 328 K.133  461 

By reacting 2,4-dinitrophenylhydrazine with pendant aldehyde, Burrows et al.134 synthesized the 462 

hydrazone from a functionalized MOF with the formula [Zn4O(bpdc)3]n (IRMOF-9) as shown in 463 

Fig 7a. They reported that their results have strong implications for MOF as catalyst supports 464 

since molecular doping allows for control of catalyst loading. Thompson et al.135 synthesized a 465 
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new mixed-linker ZIF involving a functional group aldehyde and then modified it by adding 466 

ethylenediamine as a linker into the framework. The results of gas permeation showed that tuning 467 

the surface properties of ZIF-8 via post-synthesis modification or through mixed linker 468 

modifications the successful improvement in selectivity for CO2/CH4 observed as compared with 469 

ordinary ZIF-8 to make them commercially available adsorbents which increases their heat of 470 

adsorption for CO2 without any deformation in structural properties.135 471 

In functionalized MOFs, strong bonds are formed between gas molecules and MOFs, which 472 

makes it difficult to regenerate the MOFs. “Solvent-aided ligand inclusion” (SALI) is a new 473 

functionalization technique to resolve this problem. Fluorinated chains were fixed to zirconium 474 

secondary basic units in NU-1000. Higher absorption values of CO2 than parent NU-1000 were 475 

possibly created by the development of attractive interactions between the linkers group COOH 476 

and OH this is due to the attraction of the C and CO2 molecule quadrupole moment. Additionally, 477 

“solvothermal methods” are used to synthesize hafnium-based MOFs, such as UiO-66(Hf) MOFs, 478 

to perform better gas adsorption.136 Fig 7b. shows the PXRD of UiO-66(Hf)-type MOFs. They 479 

reported that among all the produced MOFs, UiO-66(Hf)-(OH)2 demonstrates the greatest CO2 480 

adsorption gravimetrically, measuring 1.81 mmol.g-1 at temperature 298 K and pressure 0.15 bar. 481 

This is 400% greater than UiO-66(Hf), which only reaches 0.36 mmol.g-1 and presents 4.06 482 

mmol.g-1 at pressure 1 bar and temperature 298 K. Additionally, UiO66(Hf)-NH2 has 0.93 483 

mmol.g-1 of the second-largest capacity of CO2 absorption; as a result, UiO-66(Hf)-(COOH)2 484 

presented 0.40 mmol.g-1 of the capacity to absorb CO2 followed by UiO-66(Hf)- (OH)2 displays 485 

0.28 mmol.g-1 of CO2 adsorption as shown in Fig 7c.137 486 
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 487 

Fig 7. a) Pendant aldehyde groups in reaction with hydrazine through Post-synthesis modification. Reprinted from 488 
Ref.134 Copyright 2008, John Wiley & Sons, Inc b) comparison of crystallinity for various UiO-66(Hf)-type MOFs c) 489 
The isotherms of gas adsorption for UiO-66(Hf)-(OH)2. Reprinted from Ref.137 Copyright 2016, American Chemical 490 
Society 491 

MOFs containing dual alkyl ether side chains as linkers are recognized for their structural 492 

flexibility owing to the solvent-like characteristics of ether functional moieties. Schmid et al.138 493 

reported an unusual structural flexibility and gas uptake by IRMOF-1, MOF-5, and 494 

[Zn2(BDC)2(dabco)]n, having additional alkyl ether groups. The addition of a functional group 495 

capable of forming hydrogen bonds, such as alcohol, to the organic ligands in MIL-53(Al)-type 496 

materials can lead to the generation of flexible frameworks. For example, Sah et al.139 synthesized 497 

robust and flexible MIL-53(Al)-type MOFs showing a breathing mechanism that can be 498 

manipulated by systematically adding hydrogen bonding sites within their framework. 499 

Incorporating 2-hydroxy terephthalate and 2,5-dihydroxy terephthalate organic ligands led to the 500 
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production of MIL-53(Al)–OH and MIL-53(Al)-(OH)2 respectively. The optimized crystal 501 

structures of alcohol-functionalized MIL-53(Al) MOFs were calculated using a density functional 502 

tight binding approach. Hong et al.140 reported the synthesis of a thiol-functionalized framework, 503 

termed UiO-66-(SH)2. In this study, the thiol groups within the MOF structure were oxidized 504 

using H2O2 and followed by treatment with an H2SO4 solution. This process resulted in the 505 

formation of a modified product called UiO-66-(SO3H)2, containing sulfonic acid (SO3H) groups. 506 

It is noteworthy that the presence of sulfonate groups could hinder MOF formation due to their 507 

ability to coordinate with metals. As a result, this PSM approach, involving the introduction of 508 

thiol groups followed by oxidation, was identified as the most effective method for introducing 509 

sulfonates into MOFs. The incorporation of carboxylic acids and their derivatives into MOF 510 

ligands poses challenges due to metal–carboxylate interactions being the main interactions in 511 

MOF formation. Table 6. shows the CO2 adsorption performance of different MOFs modified 512 

with different functional groups at different pressures and temperatures. Therefore, the literature 513 

contains only a limited number of examples showcasing MOFs featuring carboxylic acid 514 

functionality. In 2019, Liu’s research group post-synthetically modified a Zr-based MOF known 515 

as PCN-700 by introducing a ligand with carboxylic acid functionality. Specifically, they 516 

introduced both a basic functional group (BDC-NH2) and an acidic functional group (TPDC-517 

(COOH)2) into PCN-700. The PCN-700 MOFs possess two distinct types of pockets in their 518 

structure with different ligand lengths, allowing the NH2-functionalized BDC and COOH-519 

functionalized TPDC ligands to fit snugly into each pore type.141 Subsequently, a two-step process 520 

involving deacetalization followed by Knoevenagel condensation was carried out using this dually 521 

functionalized PCN-700 MOF. The deacetalization step was facilitated by the acidic component 522 

(COOH) of the MOF, while the basic site (NH2) efficiently catalyzed the Knoevenagel 523 

condensation reaction.142 Deng et al.1 in their study showed that MOFs can be incorporated with a 524 

large number of different functionalities on linking groups. They made complex MOFs from 1,4-525 

benzenedicarboxylate (denoted by A) and its derivatives -*NH2, -Br, -(Cl)2, -NO2, -(CH3)2, -C4H4, 526 

-(OC3H5)2, and -(OC7H7)2 (denoted by B to I, respectively) to synthesize 18 multivariate (MTV) 527 

MOF-5 type structures that contain up to eight distinct functionalities in one phase. They observed 528 

that the complex arrangements of several functional groups within the pores can lead to properties 529 

that are not simply linear sums of those of the pure components. For example, a member of this 530 

series, MTV-MOF-5-EHI, demonstrated up to 400% better selectivity for CO2 over CO compared 531 



25 
 

with its best same counterparts. The following Fig 8. shows the different functional groups 532 

attached to the structure of MTV-MOF-5. 533 

 534 

Fig 8. Representation of MTV-MOF-5 structures with up to eight different functionalities distributed in 535 

one crystalline material. Reproduced from Ref.1 Copyright 2010, American Association for the 536 

Advancement of Science. 537 

Table 6. CO2 adsorption performance of different functionalized MOFs at different pressure and temperatures. 538 

MOF Functional     

group 

Pressure 

(bar) 

Temperature 

(K) 

CO2 adsorption 

(mmol g−1) 

Ref. 

MFM-188 Amide 1 298 5.35 143 

HHU-2 Amide 1 298 4.80 144 

TEPA-MOF-177 Amine 1 328 4.6 133 

Fe-ZIF-8-NH2 Amine 1 273 2.81 145 

LMOF-202 Carbonyl 1 195 6.24 146 

Cu-MOF 1 Carbonyl 1 298 4.96 147 

Zn-MOF-Crown Ether 1 298 2.62 148 

[Zn(odip)0.5(bpe)0.5(CH3OH)·0.5N

MF.H2O  

Ether 1 313 5.29 149 

[Zn9(OH)2L6](H3O)2(H2O)6  Hydroxy 1 273 2.27 150 

HHU-4 Hydroxy 1 273 7.35 151 

IISERP-MOF-20 Imidazole 1 298 3.5 152 

{[CO2L2(TPA)2]·12H2O}n Imidazole 1 273 3.12 153 

IPM-MOF-110 Imide 0.2 298 2.39 154 

Zn(NDC)(DPMBI) Imide 1 298 2.74 155 

ZU-301 oxalate 1 323 2.27 156 

ZnAtzOx oxalate 1 293 3.8 157 

MIL-91(Al) Phosphonate 1 303 2.6 158 

[Ni1.5(4,4-

bipy)1.5(H3L)(H2O)3][H2O]7  

Phosphonate 1 303 0.4 159 

[Zn2(btec) (btzmb)]n·8nH2O  Pyridinium 1 298 4.37 160 

UiO-67-bpy-Me Pyridinium 0.85 273 3.39 161 

USTC-253-TFA Sulfonate 1 298 2.13 162 



26 
 

PPN-6-SO3H Sulfonate 1 295 3.60 163 

 539 

3. Ionic Liquids 540 

ILs are magical solvents with the unique features of non-volatility, recyclability, and excellent 541 

thermal stability along with a wide range of tunability in the selection of various cations and 542 

anions.24 ILs are composed of the bulky organic cation having low molecular symmetry and the 543 

small organic/inorganic anion moieties which are in the molten form in their pure state.164,165 The 544 

nature of high absorption capacity, biodegradability, and less corrosivity associated with ILs 545 

makes them enables to be applied as a replacement solvent in place of existing volatile, corrosive 546 

and degradation-originated amine-based solvents.166,167 The unique chemical and physical 547 

characteristics of ILs provided them more opportunities to be utilized in numerous applications 548 

like catalysis, energy storage, electrochemistry, separation, and other applications. Moreover, the 549 

nature of high inflammability and high affinity towards CO2 makes them enables to be utilized for 550 

gas separation applications for carbon capture.168     551 

3.1. CO2 absorption in ILs 552 

CO2 is absorbed by the ILs under the influence of physical interactions between the anions and 553 

cations of the ILs with CO2 molecules. Therefore, it can be said that the degree of CO2 solubility 554 

in ILs is determined by the types of anions and cations present.164 In contrast to the cations present 555 

in ILs, anions are considered to have a greater impact on the absorption of CO2.169 Fig 9a lists 556 

some cations and anions commonly used to capture CO2. Cadena et al.170 did experimentation to 557 

investigate the solubility behavior of CO2 in ILs and found that anions contribute more 558 

significantly to CO2 solubility than their anions counterparts. Liu et al.171 performed a simulation-559 

based study to examine the diffusivity, solubility, and permeability of CO2 using three different 560 

ILs having the same cation and different anions. The selected three ILs were [Emim][NTf2], 561 

[Emim][B(CN)4], and [Emim][BF4]). Simulation results agree satisfactorily results with the 562 

experiment in terms of [Emim][B(CN)4] > [Emim][NTf2] > [Emim][BF4]. The high CO2 563 

solubility in [Emim][B(CN)4] is attributable to a weaker interaction between anion and cation, a 564 

higher fraction of larger cavities, a greater free volume, and good interaction with CO2.171 Fig 9b 565 

shows the CO2 absorption mechanism in ILs. The chemical structures of various ILs used for CO2 566 

capture are shown in Fig 9c. 567 
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 568 

Fig 9. a) Structure of various cations and anions constituting ILs. b) Structure of different ILs used in CO2 capture c) 569 
Schematic illustration of CO2 absorption mechanism in ILs. Reprinted from Ref.172 Copyright 2015, American 570 
Chemical Society. 571 

In one of the studies by Hou et al.173 the effects of having the same anion under different cations 572 

were investigated using [NTf2]- and [BF4]- as anions with several different cations of [Pmmim]+, 573 

[Bmim]+, [Bmpy]+ and [perfluoro-Hmim] under the temperatures range from 10-50°C. As a result 574 

of the experiments, they found that the contribution of different cations slightly affected the 575 

solubility of CO2. However [NTf2]- anion shows higher solubility for CO2 as compared with 576 

adding [BF4]-.173 In an experimental study by Anthony et al.169 the effects of adding different 577 

cations (ammonium, imidazolium, phosphonium, and pyrrolidinium), in combination with anions 578 

[NTf2]-, [PF6]- and  [BF4]-) was investigated. It was found that [NTf2]- anion in ILs showed a 579 

higher gas solubility as compared with the [PF6]- anions, which implies that the anion species 580 

have a central role in the ILs to enhance the CO2 solubility.169 Table 7. shows the CO2 solubility 581 

of phosphonium-, imidazolium-, pyridinium-, and pyrrolidinium- based IL.174 In one of the 582 

investigations by Noorani et al.175 the CO2 solubility was tested in the series of 1-alkyl-3-methyl 583 
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imidazolium and 1-alkyl-4-methyl pyridinium-based ILs under the influence of increasing the 584 

cationic alkyl chain length with various anions of thiocyanate ([SCN]-, chloride [Cl]- and bromide 585 

[Br]-. Although cations only contribute to a small proportion of CO2 solubility, their effects are 586 

still significant enough to make them worth considering. However, the presence of long alkyl 587 

chains, fluorination, and modification with ester groups on cations along with the same anions 588 

shows significant effects on improving CO2 solubility. They experienced that cationic alkyl chain 589 

length and type of anions are the major key contributors to enhancing the CO2 solubility of ILs. 590 

They concluded that CO2 solubility increased in both 1-alkyl-3-methylimidazolium and 1-alkyl-4-591 

methyl pyridinium-based ILs increase with increase the cationic alkyl chain length and  following 592 

the anionic order: [SCN]- > [Cl]- > [Br]-
.
175

 593 

Table 7. CO2 solubility in different classes of ILs 594 

Type Ionic liquid Pressure (bar) Temperature 

(K) 

Solubility 

(CO2/mol-IL) 

Ref 

Imidazolium [Emim][NTf2] 10 303 0.225 176 

333 0.144 

[Emim][Ac] 19.9 298 0.428 177 

[Emim][tfa] 19.9 0.282 

[Emim][EtSO4] 94.6 333 0.457 178 

[Bmim][NO3] 92.6 323 0.530 

[Bmim][PF6] 96.6 313 0.729 

[Emim][NTf2] 9.03 298 0.209 179 

[Emim][BF4] 8.7 0.106 

[Emim][TfO] 149 303 0.626 180 

  15 0.261 

Pyridinium [N-BuPy][BF4] 92.3 323 0.581 178 

[HmPy][NTf2] 1-10 283 0.200 181 

[thtdp][NTf2] 721 296 0.879 182 

6.12 293 0.308 

1.06 0.879 

[MeBuPy][BF4] 10 303 0.144 176 

[MeBuPy][N(CN)2] 0.096 

[MeBuPy][SCN] 0.061 

Pyrrolidinium [MeBuPyrr][SCN] 10 303 0.097 176 

[MeBuPyrr][N(CN)2] 0.120 

[MeBuPyrr][tfa] 0.167 

[BmPyrr][fep] 18 283 0.498 183 

Phosphonium [thtdp][Cl] 149 302 0.800 176, 182 

 5.1 313 0.200 

[thtdp][NTf2] 721.8 296 0.879 176, 182 

 6.1 293 0.308 

 1.06 363 0.879 

[tbp][for] 19.9 298 0.348 177 

 595 

3.2. Functionalization of ILs to Capture CO2 596 
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When compared to traditional solvents, the physisorption of ILs results in minimum CO2 597 

absorption at low-pressure post-combustion conditions.184 CO2 absorption of ILs can be improved 598 

by chemisorption through introducing CO2-phillic functional groups (amine, carbonyl, and Fluro) 599 

with the cation/anions.185 Functionalized ILs appear to have stronger absorption ability under low-600 

pressure conditions than traditional ILs, which has the benefit of improving their performance 601 

under harsh conditions.186 Fig 10a shows the structures of different imidazolium-based 602 

functionalized ILs. 603 

The amine groups functionalized ILs have revealed significant concern in enhancing absorbent 604 

reactivity and affinity towards CO2 molecule solubility.187 Generally, for CO2 capture, there are 605 

two types of amine-functionalized ILs: one is cation-functionalized ILs and the other is anion-606 

functionalized ILs.188 Bates et al.189 discovered an increasing trend for CO2 solubility by attaching 607 

an amine-functional group with imidazolium cation. Fig 10b shows the synthesis route of amine-608 

based ILs and Fig 10c) i, ii, iii, and iv, show piperidinium and pyrrolidinium-based ILs with the 609 

fluorinated chain attached to the cation. The high solubility for CO2 is referred to as the high 610 

basicity associated with the amine group. Due to the acidic nature of CO2, the interaction between 611 

amine groups and CO2 is stronger which promotes its high solubility with the basicity of ILs.189 612 

Fig 10d. shows the phenomena of CO2 chemisorption associated with amino-functionalized IL. 613 

Saravana et al.190 investigated the influence of adding cations on CO2 absorption by replacing 614 

[P66614] cation with [N66614]. They observed CO2 absorption for [N66614] cation with different 615 

anions such as histidine [His], lysine [Lys], and glutamine [Gln]. They reported the high 616 

absorption capacity of 2.1 mol CO2 per mol of IL for lysine[Lys] based IL which emphasizes the 617 

importance of adding anion to enhance the CO2 absorption. Both the [N66614][Lys]-CO2 and 618 

[P66614] [Lys]-CO2 were constituted of two separate anion structures shown in Fig 10e.190   619 

Kanakubo et al.191 performed X-ray diffraction studies and found that anions appear to play the 620 

most essential role in CO2 solubilization. Noorani et al.192 investigated the phenomena of CO2 621 

absorption using AAILs having imidazolium cation and various aminate (alanine, glycine, and 622 

valine) and found that glycinate anion exhibited the maximum CO2 absorption capacity of about 623 

(mCO2/mol.kg-1=10.42) than alanine (4.45) and valine (3.901) at 4 bar and 288K, respectively.192 624 

In another study by Noorani et al.193 the effect of adding anion on CO2 absorption was examined 625 

using cation [B4MePyr] with various anions (glycinate [Gly], alaninate [Ala], valinate [Val], 626 
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prolinate [L-Pro], tyrosinate [Tyr], hisdinate [His], Lysinate [Lys], and arginate [Arg]) upto feed 627 

pressure of 6 bar and 298.15 K. Because of their fundamental nature and polar side chains, [Arg], 628 

[Lys], and [His] have maximum CO2 absorption than [B4MePyr][AA]s. This aspect could be 629 

attributed to stronger interactions among acid and base in these ILs compared to others 630 

[B4MePyr] [AA]s. [Lys] and [Arg] absorb more CO2 than [His], [Ala], [Pro], [Val], and [Gly], 631 

with 0.612 and 0.551 mol/mol, respectively.193 Table 8. shows the CO2 solubility of various 632 

functionalized ILs at various pressures and temperatures.  633 

The carbonate and carbamate production pathways for CO2 absorption are used by primary, 634 

secondary, and tertiary amine groups. Primary amine functionalized ILs absorb CO2 by creating a 635 

particular set of carbamate salts, whereas adding an amine functional group to IL's cation 636 

increases carbamate formation. Sanchez et al.194 studied the impact of amine-functionalization 637 

on imidazolium cation and discovered that primary amine-functionalized ILs have maximum CO2 638 

solubility than tertiary amine-functionalized and non-functionalized ILs.194  639 
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 640 

Fig 10 a) The structures of [E3mim][Tetz] , [C10mim][Tetz], [Bmim][HB(pz)3], [Bmim][HB(im)3], [Et2NEmim][ 641 
NTf2], [Et2NEmim][Tetz], [Et2NEmim][PF6] , [Et2NEmpyr][PF6] and [Et2NEmim][HB(pz)3]. Reprinted from Ref.9 642 
Copyright 2015, Elsevier. and from Ref.195 Copyright 2018, Elsevier. b) Synthetic route of 1-(2-aminoethyl)-1-643 
methylpiperazin-1-ium amino acid ILs ([AEMP][A]-). [A]- =[Gly]-, [Ala]-, [Pro]-, [Leu]-. Reprinted from Ref.196 644 
Copyright 2013, Royal Society of Chemistry c) I and ii, Piperidinium-based ionic liquids with the fluorinated chain 645 
attached to the cation. iii and iv, Pyrrolidinium-based ionic liquids with the fluorinated chain attached to the cation . 646 
Reprinted from Ref.197 Copyright 2018, Royal Society of Chemistry. d) Chemisorption mechanism by IL amino group 647 
functionalized ILs. Reprinted from Ref.198 Copyright 2004, American Chemical Society. e) The structures suggested 648 

the inclusion of anions in the [P66614][Lys] and [N66614][Lys]. Reprinted from Ref.190 Copyright 2014, John Willey & 649 

i
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iii

iv
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Sons Inc f) Influence of various anions on  CO2 solubility with [bmim] cation at 25 °C g) Influence of various anions 650 
on  CO2 solubility with [bmim] cation at 40°C. Reprinted from Ref.199 Copyright 2020, Elsevier. 651 

Table 8. CO2 solubility of various functionalized ILs at different pressure and temperature.  652 

Functionalized ILs Mw (g mol−1) Pressure (bar) Temperature (K) CO2 solubility (mol kg−1) Ref 

[Bmim][ NTf2] 404.33 9.5 313.2–353.2 0.27-3.88 200 

[Emim][ATZ] 194.24 1 298.15 0.67 201 

[Emim][N(CN)2] 177.21 0.5–3 298.2–373.2 0.0096–0.17 202 

[Emim][TCM]  201.23 0.5–3 298.2–373.2 5–16.1 202 

[Bmim][OTf] 288.29 32.367 303.15–353.15 0–2.48 203 

[Hmim][NTf2] 447.42 35.555 303.15–353.15 0–2.65 203 

[Bmim][BF4] 226.02 0.28–34.38 273.15–353.15 2.49–4.2 204 

[DEA][Bu] 161.29 7.25–200 303–333 0.63–3.71 205 

[N1114][ NTf2] 396.37 0.6–9.95 298 0.004–0.61 206 

[Emim][AC] 170.20 0.6–9.94 298 0.0043–0.78 206 

[PMPy][N(CN)2] 194.23 0.6–9.94 298 0.0044–0.71 206 

[DMAPAH][EOAc] --- 1 303.2 2.44 207 

[DEEDAH][EOAc] --- 1 303.2 1.28 207 

[DMEDAH][EOAc] --- 1 303.2 2.32 207 

[Emim][AC]  170.2 1 313.2 1.65 208 

[Emim][Ala]  200.26 1 313.2 1.89 208 

[Emim][Gly]  186.3 1 313.2 2.32 208 

[TETAH][Lys]  266.43 1 313.15 9.72 209 

[DETAH][Lys]  277.39 1 313.15 7.68 209 

[DETAH][Gly] 178.24 1 313.15 10.15 210 

[DETAH][Tz]  172.23 1 313.15 10.1 210 

[DETAH][Py]   171.25 1 313.15 11.91 210 

[DETAH][Im] 171.25 1 313.15 11.39 210 

[N1114][Lys] 219 1 303 1.84 211 

[Cho][Ser] --- 1.5 303.15 0.89 212 

[Cho][Pro] --- 1.5 303.15 0.94 212 

[Cho][Gly] --- 1 303.15 0.96 212 

[Cho][Lys] --- 1.7 303.15 1.29 212 

[Hmim][B(CN)4] 282.2 1 298.15 0.52 213 

[Bmim][N(CN)2] 205.3 1 298.15 0.38 213 

[Bmim][TCM] 229.3 1 298.15 0.42 213 

[Emim][N(CN)2] 177.2 1 298.15 0.375 213 

[Bmim][SCN] 197.3 1 298.15 0.269 213 

[Bmim][NTf2] 419.4 1 298.15 0.087 213 

[Emim][NTf2] 391.3 1 298.15 0.083 213 

[NEMH][Ac] 175.23 5 298.15 0.74 214 

[NEMH][Pro] 189.26 5 298.15 0.69 214 

[TEAH][Pro] 175.27 5 298.15 0.67 214 

Ether functionalities also improve oxygen interaction with the carbon of CO2 and free volume 653 

which results in high CO2 solubility.215 According to Lin et al.216 and Shannon et al.217 the 654 

inclusion of polar groups such as ether has a great influence on CO2/CH4 separation. Zhang et 655 

al.218 observed that repulsion between polar groups such as ether and nonpolar gases like CH4 was 656 

remarkably useful for efficient CO2 separation in ether-functionalized pyridinium ILs. These 657 

findings are significant for ILs that could be employed as selective CO2 absorbents.218 Zhou et 658 
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al.219 characterized two types of ether-functionalized imidazolium ILs, [EOMmim][PF6] 659 

and [EOMmim][NTf2]. They found that the inclusion of ether groups on cation significantly 660 

improved the CO2 solubility and CO2/N2, and CO2/O2 selectivity.219 661 

High electronegativity of fluorine atom than hydrogen atom results in weak Lewis’s base 662 

formation which can make a polar bond with the carbon atom of the CO2 molecule. Anions with 663 

fluor groups have higher CO2 affinity and the maximum number of fluoro groups on an anion 664 

enhances its CO2 solubility.220 As a result, fluorine-substituted IL and side chain length provide 665 

large free space for absorbing more CO2 molecules and making stronger connections between 666 

fluorinated alkyl chains and CO2.221 Aki et al.198 studied the effect of fluorination on CO2 667 

solubility using 1-butyl-3-methylimidazolium ([bmim]) as a cation with various anions such as 668 

[PF6],[NO3],[N(CN)2],[BF4],[TfO],[NTf2], and [methide]. Fig 10f shows the influence of various 669 

anions on CO2 solubility at 25°C which revealed that anion fluorination has a considerable impact 670 

on CO2 solubility. CO2 has a lower solubility with non-fluorinated anions [NO3] and [N(CN)2], 671 

whereas IL with fluoroalkyl group anion [TfO], [NTf2], and methide has a high CO2 solubility 672 

which may be due to a stable interaction between CO2 and fluoroalkyl substitution on the 673 

anion.  The CO2 solubility increases with the rise in the CF3 group in the anion. At 250C the  CO2 674 

solubility in [Bmim] cation-based ILs follows the increasing order of [NO3]<[N(CN)2]< 675 

[BF4]<[PF6]<[TfO]<[NTf2]<[methide].198 Anderson and co-workers were the first to explore this 676 

approach of increasing CO2 solubility in ILs. The authors give an in-detail review of gas solubility 677 

in ILs to present that the fluorination of the cation enhances CO2 solubility on a pTx diagram, 678 

although this impact appears to decrease as the fluorinated chain length increases.181 Aki et al.198 679 

also explored how cation affects CO2 solubility. Three ILs were selected, under the influence of 680 

the same anion [NTf2] and different imidazolium-based cations exposed with different alkyl chain 681 

lengths namely [Omim], [Hmim], and 2,3-dimethyl-1haxylimidazolium [Omim] [Hmmim]. The 682 

absorption of CO2 in these ILs was measured at 25, 40, and 60°C as illustrated in Fig 10g for 683 

400C.198 According to Almantariotis et al.222 the CO2 solubility in fluorine-substituted IL 684 

[C8H4F13mim] [NTf2] was observed to be greater than [Omim][NTf2]. The primary reason for 685 

this is increasing side chain length and fluorination on IL subjected to a larger free area to absorb 686 

CO2. Moreover, the stronger interaction b/w fluorinated alkyl chains and CO2, are promising 687 

factors for the physical dissolution of CO2 in ILs.222 688 
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Carbonyl groups are commonly used in ILs to increase CO2 solubility. Carbonyl functional groups 689 

can operate as Lewis acid by interacting with electron-deficient carbon of CO2 molecule, 690 

however, oxygen atoms can serve as Lewis base and form a C-H...O hydrogen bond. According to 691 

different studies, adding carbonyl groups to the anion, such as acetate and aldehyde, is the most 692 

effective method for enhancing CO2 phillicity in ILs.179 Shiflett et al.223 and Gomez-Coma et al.224 693 

examined that ILs having acetate anion, [CH3-COO]-, show a reactive absorption for CO2 capture. 694 

Functional groups like CH2CH2C=OCH3, C(CH3)3, CH3CH2, and CH3 form effective 695 

combinations with CO2 molecules, resulting in strong chemisorption. Carbonyl functional groups 696 

can also be fluorinated to increase CO2-phillicity. Substituting carbon atoms adjacent to functional 697 

groups with electronegative fluorine atoms reduces electron density, making carbonyl groups 698 

weaker Lewis bases.225 699 

4. MOFs-ILs systems: Synthesis strategies 700 

Integrating MOFs and ILs into composites is one of the most encouraging strategies for increasing 701 

the selectivity of material towards targeted gas molecules by providing strong adsorption sites. 702 

The tunable nature of ILs, along with the advantage of good porosity and higher specific surface 703 

area of MOFs make them a favorable candidate for efficient gas separation.226 The integration of 704 

ILs into MOFs can be classified into two types of approaches used for the synthesis of MOF-IL 705 

composites: one is iono-thermal synthesis and the other one is a post-synthesis modification.227 706 

4.1. Iono-thermal synthesis 707 

The iono-thermal synthesis of MOF-IL composites involves ILs as a solvent or structure-directing 708 

agent in the synthesis of composite materials.227 The first step in the process is to dissolve 709 

precursors of MOF and IL into each other, and then the solution was placed in a stainless-steel 710 

autoclave. Afterward, the solution is placed in a furnace for a couple of days for its treatment at a 711 

specified temperature to obtain the desired results. Lastly, the solution is allowed to cool down to 712 

ambient temperature, which allows crystals to form. A major characteristic of iono-thermal MOFs 713 

is that the frameworks are mostly made up of cation parts of ILs.228 The MOFs synthesized via 714 

iono-thermal synthesis are usually negatively charged structures, So, the cations of the ILs persist 715 

inside the structure as counterions to allow the structure to have electrical neutrality. The first 716 

report on the synthesis of MOF-IL composites was published in 2004 where [Bmim][BF4] IL was 717 

used as a solvent for the successful synthesis of MOF-IL composite. After that many researchers 718 
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have reported the synthesis of MOF-IL composite by iono-thermal technique.229 Huang et al.230 719 

effectively synthesized IL-MOF composite by incorporating [Cnmim][BF4] (n=4, 6, 8, 10) IL into 720 

the nanostructure of ZIF-8 MOF. Ban et al.231 combined MOF-IL composite via iono-thermal 721 

route of ZIF-8 with [Bmim][NTf2] and later dispersed them in a PSf membrane to form the 722 

composite membrane. The composite membranes based on ZIF-8-[BMIM][NTf2] were compared 723 

with the other membranes with polymer-IL blending and pure IL-ZIF-8-based membranes. The 724 

results of gas permeation showed negative effects on the permeabilities of all the gases which 725 

ultimately results in their high selectivity compared with the other membranes.231 The iono-726 

thermal strategy for MOF-IL synthesis is quite an easy, and environmentally friendly way. The 727 

strong interaction between the MOFs and cations of ILs exhibited some different properties of 728 

MOF-ILs composite than the original IL. However, there are still some categories of ILs exist that 729 

can replace the organic solvents/water as a reaction agent and there are some MOFs available that 730 

cannot be charged. That is why the kinds of MOFs and ILs that can be utilized for the iono-731 

thermal synthesis are very limited, which can restrict the wider utilization of this strategy for 732 

MOF-IL composite.46 The other major drawback of this method is that the cations of ILs were not 733 

able to perform the same as they were likely to perform in their bulk form. However, the 734 

previously reported studies of combining MOFs and ILs through iono-thermal synthesis are not 735 

popular. From the above discussion, we can conclude that the synthesis of MOF-IL composites 736 

through iono-thermal process is a very difficult way because organic MOF legends comprise 737 

functional groups whose reactivity with w.r.t IL increases at higher temperatures.232 738 

4.2. Post-synthesis modifications 739 

The synthesis of MOF-IL composite via post-synthesis modification involves the introduction of 740 

an IL inside the porous structure of MOFs after its successful synthesis. This method for the 741 

synthesis of MOF-IL composite is considered one of the most effective ones to enhance the 742 

functional properties of materials with the advantage of economic feasibility.233 According to the 743 

strategy for post-synthetic modification of MOF-IL, the ILs can be introduced inside the pores of 744 

MOFs via the following ways such as by wet-impregnation, capillary action, and the ship-in-a-745 

bottle method.234, 235 as shown in Fig 11. 746 

 747 
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 748 

Fig 11. Ways for the synthesis of MOF-IL composite through a) wet impregnation. Reprinted from Ref.236 Copyright 749 

2020, Elsevier. (b) capillary action. Reprinted from Ref.174 Copyright 2022, Elsevier (c) the ship-in-a-bottle. 750 

Reprinted from Ref.236 Copyright 2020, Elsevier. 751 

4.2.1. Wet impregnation 752 

In the wet impregnation method, an inert solvent is used to dissolve the ILs and then the 753 

synthesized MOFs are added to the solution of ILs with stirring for some time at room 754 

temperature. The solvent is then removed and the desired MOFs-ILs are obtained. Imidazolium-755 

based ILs are usually used in this method to impregnate the MOFs, such as NH2- MIL-101(Cr), 756 

MIL-101(Cr), CUBTC, MIL-101(Fe), ZIF-8. The MIL-101- IL composite material was prepared 757 

by Jhung et al.237 in which the IL [Bmim][Cl] was dipped into the highly porous MIL-101 (Cr) in 758 

the presence of dichloromethane as an inert solvent. Zeeshan et al.238 use wet impregnation to 759 

incorporate the MOF-ZIF-8 with the IL [Bmim][SCN] and investigate their performance for the 760 

separation and adsorption of different gases. The materials incorporated with ILs showed 761 

CO2/CH4 and CO2/N2 selectivity 2.6 and 4 times higher compared with the pure ZIF-8 762 

membranes. Similarly, Mohammed et al.239 combine the IL [Emim][Ac] into MOF-177 and MIL-763 

101 via both impregnations (dry and wet). The result that [Emim][Ac]@MOF-177 synthesized via 764 

(a)

(b)

(c)

Wet impregnation method

Capillary action method

Ship in a bottle method
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wet impregnation showed good enhancement for CO2 uptake up to 0.3 mmol/g at 0.15 bar and 765 

303 K.239 The wet impregnation strategy for MOF-IL synthesis is the mostly used and easiest way 766 

to operate and the composite can be synthesized at RT under mild conditions. However, the poor 767 

stability of MOF-IL composite material due to physical interaction between the MOF and IL is the 768 

big question mark on the wide utilization of this strategy for a wide range of MOF-IL 769 

composites.236  770 

4.2.2. Capillary method 771 

In addition to the wet-impregnation method, there is also the capillary method, which eliminates 772 

the need to use solvents for the synthesis of MOF-IL composite. This method for composite 773 

synthesis involves the pre-heating of MOFs in vacuum conditions for the removal of impurities 774 

prior to the synthesis of composites. Then the MOFs with IL are ground and mixed well to form 775 

a fine powder. The composite was then heated for several hours to increase the diffusion of IL 776 

into MOF.240, 241 Fujie et al.242 synthesized MOF-IL composite incorporating IL 1-ethyl-3-777 

methylimidazolium bis (trifluoromethyl sulfonyl) amide ([Emim][NTf2]) within the micropores of 778 

ZIF-8 MOFs. The mixture of IL ([Emim][NTf2] and ZIF-8 was then heated and stored to enhance 779 

the diffusion of [Emim][NTf2] into micropores of ZIF-8 through capillary action.242 A major 780 

advantage of the capillary action strategy is that it can be used for a wide variety of ILs and MOFs 781 

through direct mixing without involving any solvent. The disadvantages of this technique are 782 

improper outcomes due to degradation and contamination of MOFs and ILs. One of the other 783 

disadvantages is that it takes a longer time involving high temperatures to attain the uniform 784 

dispersion of ILs into MOF pores.46  785 

4.2.3. Ship-in-a-bottle method 786 

Ship-in-a-bottle is another strategy used for the synthesis of MOF-IL composite consists of the 787 

direct synthesis of IL molecules into the pores of MOF.234 This synthesis technique for MOF-IL 788 

composites involves the diffusion of small precursors of ILs (ship) into the pores of MOFs (bottle) 789 

after dissolving into the solvents. There is a reaction between them within the MOF cages, which 790 

leads to the formation of bulk ILs within the pores inside the MOF cages. At the end of the 791 

process, the unreacted precursors of IL are removed by using a solvent from the surface of MOF, 792 

and then IL-MOF composite is obtained once the drying process has been completed. Using this 793 

method, ILs can be trapped in the cavities of the MOFs due to the large size of the synthesized ILs 794 
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compared to the pores within the MOFs.243 Using the ship-in-a-bottle technique MOFs-IL system 795 

was made consisting of [APMIM]Br-NaYhost guest system in which an amine-functionalized IL, 796 

[APMIM]Br, was in-situ encapsulated in the super cages of NaY. They concluded that these host-797 

guest systems showed good capture for CO2 with an uptake capacity of up to 4.94 mmol.g−1.244 798 

The key advantage of this technique is that it blocks the effects of leaching and instability of ILs 799 

produced during simple impregnation of MOF-IL composite which could give instability and 800 

degradation of the composite membrane to give the better thermophysical stability and gas 801 

separation of a well-developed and effective hybrid composite system.25   802 

From the above discussion, it can be referred that the synthesis of MOF-IL composites through 803 

ion iono-thermal way is difficult due to the thermal liability of functionalized groups containing 804 

organic legends which could result in problematic solubility of targeted molecules from the 805 

mixture components. However, instead of having the limitation of using some specific ILs and 806 

MOFs, the effective functional group attachment with host MOF molecule and synthesis method 807 

could be beneficial to get some good quality products. On the other hand, post-synthesis 808 

modification offers successful integration of IL with the MOF structures after the successful 809 

synthesis of MOFs. This strategy is most simple, straightforward, and effective due to the large 810 

variety in selection between the MOFs and ILs to provide a large combination of MOF-IL 811 

composite within less time. Table 9. shows the various methods used for the synthesis of MOFs-812 

IL composite.  813 

Table 9. Various methods used for the synthesis of MOFs-IL composite.  814 

Sr No’s MOF IL Synthesis method Ref 

1 ZIF-8 [Bmim][NTf2] Iono-thermal  

2 ZIF-8 [Emim][Br] Iono-thermal 245 

3 CuBTC [Bmim][PF6] Impregnation 246 

4 CuBTC [Bmim][BF4] Impregnation 247 

5 ZIF-8 [Bmim][SCN] Impregnation 238 

6 MOF-177 [Emim][Ac] Impregnation 239 

7 MIL-101 [Emim][Ac] Impregnation 239 

8 rGA [Bmim][PF6] Impregnation 248 

9 MIL-101 [Bmim][Cl] Impregnation 249 

10 UiO-66 (PSMIMHSO4) Impregnation 250 

11 MIL-101(Cr) EIMS-HTFSA Capillary action 251 

12 ZIF-8 EMI-TFSA Capillary action 252 

13 CuBTC [Emim][EtSO4] Capillary action 253 

14 MIL-101(Cr) (IMIZ-BAIL and TEDA-BAIL) Ship-in-a-bottle 234 
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15 NaY [APMIM]Br Ship-in-a-bottle 244 

16 MIL-101(Cr) [Bmim][Br] Ship-in-a-bottle 243 

 815 

5. Mixed Matrix Membranes/ (MOF-IL) Composite Membranes for CO2 capture  816 

In recent studies, Membranes based technology has received great attention towards carbon 817 

capture and separation due to their advantage of high separation efficiency, low energy 818 

requirement, cost-effectiveness,  continuous operation, and process flexibility along with the 819 

advantage of minimum carbon footprint.254 In particular, Mixed Matrix Membranes (MMMs) 820 

have shown high capability towards gas separation by combining the properties of two different 821 

materials in a single way.255 One of the components of MMMs is a polymeric material that forms 822 

a continuous phase known as a matrix and the other one is the filler that forms a dispersed phase, 823 

it may be organic or inorganic. Both the filler and matrix are immiscible with each other and 824 

exhibit different transport properties.256 MMMs showed great potential to combine synergistically 825 

the gas separation performance of porous nanostructures with polymers which can cross the 826 

Robeson upper bound by limiting the trade-off in selectivity and permeability.251 MMMs are 827 

generally categorized based on geometry and nature. Due to their large range of applications, they 828 

are further sub-categorized based on material type, support, configuration, structure, composition, 829 

driving process, and reactions in the industry. Fig 12. shows the classification of membranes 830 

based on different parameters and applications. 831 

 832 
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Fig 12. Classification of membranes based on different parameters and applications. Reprinted from Ref.257 Copyright 833 
2017, Elsevier 834 

The right choice of filler is highly inevitable in the fabrication of MMMs.256, otherwise, in some 835 

cases, poor morphology of fillers and their interactions with the polymer matrix damages the 836 

performance of MMMs.258 The filler should have high selectivity as a dispersed phase must 837 

correspond to their size, shape, and other efficient properties that facilitate CO2 transport. 838 

Furthermore, the size of the selected filler particle should be small, and the thickness layer should 839 

be several micrometers to be employed in the industrial application of membrane gas 840 

separation.259 Different porous fillers such as silica.260, zeolite.261, carbon nanotubes (CNTs).262, 841 

graphene.263, 264, and have been investigated for the fabrication of high-performance MMM. But 842 

MOFs have especially received a great deal for various applications. because of their unique 843 

structure design and tunability in comparison to other porous materials. MOFs are effective 844 

adsorbents for CO2 capture because of their large surface areas, wide range of structures, 845 

composition, and porosity.265 Moreover, MOFs can be hybridized with metal oxides, carbon-based 846 

materials, metal nanoparticles, and conducting polymers to obtain more advanced materials with 847 

higher performance. Chronopoulos et al.266 presented a comprehensive review of hybridized 848 

MOFs with CNTs to get high conductivity and stable advanced materials that can be applied in 849 

numerous fields such as gas separation, storage, water purification, and energy to get some better 850 

performance than unhybridized MOFs. Sosa et al.267 presented a review of different modification 851 

strategies applied for the successful synthesis of MOF hybrids such as (covalent/non-covalent 852 

modification) which have a great performance towards gas storage and separation, drug delivery, 853 

and energy storage. Kalaj et al.268 reviewed the recent advances in the synthesis of MOF/polymer 854 

composites for desalination, heavy metal, and textile dye removal applications. Alfe et al.269 855 

reported the CO2 storage capacities of three BTC-based MOFs with different metallic centers (Cu, 856 

Al, and Fe) and graphene hybridizations and found enhanced CO2 adsorption over CH4 at low 857 

pressure (<0.2 MPa). A review reported by Gargiulo et al.270 presented the successful 858 

hybridization of MOFs with ILs for enhanced chemical sensing application. The hybridization of 859 

high surface area and porous MOFs with tunable nature IL with possible functionalization has a 860 

great future towards improving their thermochemical properties.     861 

In recent years, the fabrication of composite membranes through the integration of MOFs with ILs 862 

has received great attention in enhancing the gas separation performance of membranes. The 863 
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tunable nature of ILs, along with the advantage of high thermal stability, nonvolatility, 864 

recyclability, and inflammable nature271 made them an efficient candidate to be used as a 865 

promotor with MOFs to enhance the gas separation of composite membranes.272 MOFs-IL 866 

composite membranes can be synthesized based on a similar procedure discussed above for the 867 

synthesis of MOFs-IL composites. Chen et al.273 synthesized MOF-IL composite membranes via 868 

wet impregnation integration IL [Bmim][NTf2] with MOF-801 and PIM-1 and resulted that the 869 

addition of MOF-IL with PIM-1 successfully enhances the CO2 permeability and CO2/N2 870 

selectivity of about 5880 ± 272 and 23.9 ± 1.2 compared with PIM-1 membranes with 871 

permeability and selectivity of about 4110 ± 143 and 20 ± 0.8 respectively. Moreover, the addition 872 

of MOF-IL also enhances the anti-aging, anti-plasticization, and long-term stability of composite 873 

membranes.273 Li et al.274 also used wet impregnation to synthesize composite membranes 874 

combining the IL [Bmim] [NTf2] with ZIF-8 and then integrating them with Pebax. The results of 875 

gas permeation revealed that the addition of MOF-IL with the Pebax enhances the CO2 876 

permeability and CO2/N2 selectivity by 45% and 92% respectively compared with Pebax 877 

membranes. Moreover, the tensile strength and break elongation also improved by 20% and 280% 878 

respectively.274 Table 10. compares the advantages and disadvantages of MOF-IL composite 879 

membranes over MOF-based composite membranes and SILMs. In one of our studies, we 880 

synthesized CuxMgx MOF via hydrosolvo-thermal reaction, integrated them with humidified IL 881 

[P66614] [Cl], and then deposited them of PTFE support to fabricate a composite membrane. Single 882 

gas permeation tests were performed for the CO2/N2 mixture. The results of gas permeation state 883 

that the addition of MOF-IL solution successfully enhances the CO2 permeability and CO2/N2 884 

selectivity by 2937 barrer and 33.2 respectively. Moreover, the composite membrane also showed 885 

good stability under the water loadings of 30 wt.% and 50 wt.%.272  886 

Table 10. Comparison of advantages and disadvantages of MOF-IL composite membranes over pure MOF and 887 
SILMs. Reprinted from Ref.174 Copyright 2022, Elsevier 888 

MOF based membranes  SILMs MOF-IL composite membranes 

Advantages Advantages Advantages 

Great pore structure to distribute 

gas through itself 

Enhance membrane selectivity compared to 

IL itself 

Overcome permeability-selectivity 

trade-off limit 

high surface area for CO2 

adsorption 

Poor solvent retention Improve MOF structure on the 

membrane by adding IL as a supporter 

Provide better adsorption 

performance with higher 

valences metal 

RTIL with polymerizable groups may be 

converted into solid, resulting in dense 

composite membranes and a friendly 

procedure 

Improve the separation performance 

because the CO2 adsorption capacity 

increase 

 Simultaneous extraction and stripping on  
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both sides of the ILM lower the recycling 

energy needs and synthesis cost 

Disadvantages Disadvantages Disadvantages 

High operation temperature can 

add disturbances to the MOF 

crystal structure stability 

High viscosity The need to find suitable IL and MOF 

pairs to obtain good structural stability 

Highly hydrophilic and easily 

binds the surrounding moisture 

into its pores 

Transmembrane pressure owing to the IL 

leaching process 

Does not always provide the highest 

permeability compared to IL or MOF 

alone 

Difficult to regenerate the MOF The mechanical strength of the composite 

degrades as the IL concentration increases 

 

 889 

Nasir et al.275 investigated the CO2/CH4 performance of composite membranes integrated with 890 

EDA and HA-modified SAPO-34 and PES matrix and incorporated them with IL [Emim][NTF2]. 891 

They resulted that the incorporation of a modified PES matrix successfully enhances the CO2/CH4 892 

separation performance of composite membrane ~37 folds higher compared with pure PES 893 

membrane. Rajati et al.276 synthesized NH2-MIL-101(Cr) MOF and then impregnated them with 894 

IL [Bmim][NTf2] to fabricate a composite membrane. They resulted that 7 wt.% of MOF-IL 895 

loadings successfully improved the CO2 permeability and CO2/CH4 selectivity to 162% and 224% 896 

respectively compared with pure Matrimid membranes. Moreover, synthesized composited 897 

membranes also enhance the tensile strength and young’s modulus of Matrimid membranes by 898 

25% and 37% respectively. Based on the several studies reported above, here is some data 899 

available in Table 11 and Table 12 that combines and compares the CO2/N2 and CO2/CH4 900 

separation performance of MOF-IL composite membranes with the Robeson’s 2008 and 2019 901 

upper bound correlation of CO2/N2 and CO2/CH4 mixture with both MOFs and SILMs as shown 902 

in Fig 13a-b. From the figure it can be stated that MOF-IL composite performs well in CO2 903 

permeability and selectivity for both post-combustion (CO2/N2) and pre-combustion (CO2/CH4) 904 

than MOF and SILMs to cross the crosses the Robeson’s upper bound curver 2008 and 2019 to 905 

give ever better CO2 separation from the both (CO2/CH4) and (CO2/CH4) gas mixtures.      906 
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 907 

Fig 13. Robeson’s upper bound comparison of permeability and selectivity of MOF-IL membranes in Table 10-11 908 
with MOF-based membranes and SILMs a) CO2/N2 277,278 b) CO2/CH4  279,257, 280  909 

Table 11. CO2 Permeability and (CO2/N2) selectivity of different MOFs-IL composite membranes at different 910 
pressure and temperature.   911 

MOF/IL Composite 

membrane 

Driving 

Conditions 

(Pressure, 

Temperature) 

Permeability 

(PCO2) 

(Barrer) 

Selectivity (CO2/N2) 

(α) 

 

Ref 

MOF-801@([Bmim][NTf2]-

PIM (1%) 

4 bar, 35oC 5580 23.9 273 

ZIF-8@[Bmim][NTF2]-PSF 6 bar, 30oC 463 

473 

377 

119 

88.9 

66.8 

281 
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GO@IL-NH2-Pebax 4 bar, 25oC 114.4±5.3 76.3±3.9 263 

UIO-66-(OH)2@PIL-Pebax -- 132 71 282 

[Bmim][NTf2] @ZIF-8/Pebax 

1657 

1 bar, 25oC 104.9 83.9 274 

[Emim][B(CN)4]/ZIF-

8/P[vbim][NTf2] 

3.5 bar, 35oC 906.4 21 283 

[Emim][NTf2]/SAPO-

34/P(vinyl-IL) 

1-1.5 bar, 

23oC 

527.2 26 284 

CuxMgx MOF@[P66614] [Cl]-

PTFE 

2 bar, 25oC 2937 33.26 272 

ZIF-8@IL-CS membrane 

HKUST-1 /IL-CS membranes 

2 bar, 50oC 5413 ± 191 

4754 ± 1388 

11.5 

19.3 

285 

SBS-g-POEM@IL membrane --- 407 21.6 286 

ZIF-67@[NH2-Pmim] [NTf2] --- 9536 31 287 

NH2-MIL-101(Cr)@ 

[C3NH2bim] [NTf2]-PIM 

3 bar, 25oC 2979 37.24 288 

HKUST-1@[emim][NTf2]- 

6FDA-durene 

2.02 bar 1100 27.50 289 

[EMIM][OTf]@Cu3-

(BTC)2@Matrimid membrane 

 

0.7 bar, 30oC 

68 130  
290 

[EMIM][BF4]@Cu3-

(BTC)2@Matrimid membrane 

55 125 

[APTMS][Ac] & PZI20; PSF  

10 bar, 25oC 

15 ± 0.75 54.00 ± 0.95  
291 [APTMS][Ac] & PZ30; PSF 23 ± 0.94 68.49 ± 0.68 

[APTMS][Ac] & PZI30; PSF 20 ± 0.91 68.50 ± 1.20 

[Bmim][BF4]/MIL-53(Al)  

(1-5 bar), 

25oC 

4-35 9-24.2  
292 [Bmim][PF6]/MIL-53(Al) 5-33 14-39.5 

[Bmim][CF3SO3]/MIL-53(Al) 2-30 14.5-36.1 

[Bmim][BF4]/CuBTC (5wt%)  

(0.1 & 50 bar), 

25oC 

200 18  
247 [Bmim][BF4]/CuBTC (20 wt%) 140 19 

[Bmim][BF4]/CuBTC (30 wt%) 80 20 

[Bmim][BF4] ZIF-8 0.5 bar, 25oC 100 13.3 241 

[Bmim][PF6] ZIF-8 0.5 bar, 25oC 10 28 293 

 

 

Table 12.  CO2 Permeability and (CO2/CH4) selectivity of different MOFs-IL composite membranes at different 

pressure and temperature. 

 

Composite membrane Driving 

Conditions 

(Pressure, 

Temperature) 

Permeability 

(PCO2) 

(Barrer) 

Selectivity (CO2/CH4) 

(α) 

 

Ref 

[EMIM][OTf]@Cu3-

(BTC)2@Matrimid membrane 

 

0.7 bar, 30oC 

68 100  
290 

 [EMIM][BF4]@Cu3-

(BTC)2@Matrimid membrane 

55 70 

[APTMS][Ac] & PZI20; PSF  

10 bar, 25oC 

15 ± 0.75 53.57 ± 1.07  
291 [APTMS][Ac] & PZ30; PSF 23 ± 0.94 63.51 ± 0.95 

[APTMS][Ac] & PZI30; PSF 20.12 ± 0.91 67.07 ± 1.17 

SAPO-34[Emim][NTf2]; PES 10 bar, 29oC 600 43 294 

Copper zinc bimetallic 

imidazolate (CuZnIF); PEBA 

10 bar, 27oC 190 62 295 

[Bmim][BF4]/MIL-53(Al)  

(1-5 bar), 

25oC 

4-35 3.3-8.6  
292 [Bmim][PF6]/MIL-53(Al) 5-33 4.7-17.2 

[Bmim][CF3SO3]/MIL-53(Al) 2-30 4.7-15.5 
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[Bmim][BF4 ]/CuBTC (5 wt%)  

(0.1 & 50 bar), 

25oC 

200 5.1  
247 [Bmim][BF4]/CuBTC (20 wt%) 140 4.3 

[Bmim][BF4]/CuBTC (30 wt%) 80 3.8 

VZIF-67/6FDA-Durene 2 bar, 35oC 1210 32.5 296 

[HEMIM][N(CN)2] ZIF-8 1 bar, 25oC 20 111 297 

[Bmim][NTF2] ZIF-8 1 bar, 25oC 621 41 281 

[Bmim][BF4] ZIF-8 1 bar, 25oC 90 194 298 

[Bmim][BF4] ZIF-8 0.5 bar, 25oC 100 4 241 

[Bmim][NTf2] NH2-MIL-101 

(Cr) 

10 bar, 35oC 19.2 113.1 276 

[Bmim][PF6] ZIF-8 0.5 bar, 25oC 10 24.2 293 

[Bmim][MeSO4] MIL-53(Al) (0.01-5 bar), 

25oC 

5-40 13-4 299 

[TSIL (TMGHIM)] ZIF-67 1 bar, 25oC 15.4 2.6 300 

 912 

6. Techno-Economic analysis of MOFs and ILs to Capture CO2 913 

The economic cost of applying MOFs for CO2 capture is associated with the material and 914 

production cost of MOFs, its process cost, recycling/regeneration, and adsorption/desorption cost 915 

of MOFs. Besides that, the cost of producing MOFs is still very high due to the costliness and 916 

inaccessibility of raw materials. However, producing MOFs for industrial purposes is still 917 

challenging, hindering their high-scale commercialization for industrial gas separation. Table 13. 918 

compares the strengths and weaknesses of different materials and solvents. Normally, it is stated 919 

that MOFs possess a high working capacity to capture CO2 than their comparative carbon capture 920 

materials. But their high recycling cost, upside potential, humidity effect, selectivity, and low 921 

stability at high temperatures are such characteristics that need to be optimized for their higher 922 

commercialization. Alkanolamines are the mostly reported solvents for post-combustion industrial 923 

gas separation, producing degradation of the adsorption column. But the high heat capacity of 924 

alkanol amines brings about a high regeneration cost. Thus, replacing alkanol-amines with MOFs 925 

is the most feasible approach which does not consume too much energy during regeneration but  926 

also reduces the process cost. DeSentis et al.301 did a techno-economic analysis to get into 927 

reducing the production cost of different MOFs-based adsorbents (HKUST, Ni-MOF, MOF-5, 928 

and Mg-MOF-74). They found that the cost of solvent synthesis is a key factor to add s to the 929 

higher the cost of overall synthesis cost. However, by shifting the process from solvothermal to 930 

liquid-assisted grinding and aqueous synthesis the synthesis cost reduces to 13-$36/kg from the 931 

35–75$/kg of the base cost. On the other side, ILs offer magical properties to capture CO2. 932 

However the commercialization of ILs for CO2 capture requires further investigation into the 933 

transport properties and process design parameters. However, it should be realized that the 934 
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research on ILs-based CO2 separation is a relatively new and emerging area, that faces the issues 935 

of the higher cost of ILs synthesis to fulfill the higher demand on an industrial scale. Therefore, 936 

the researchers in this area are trying hard to make the ILs low-cost to make their 937 

commercialization for the industrial revolution. One of the recent modeling and simulation studies 938 

by Chen et al.302 refers to the production of ILs at a low cost ($1.24 kg-1), which is quite comparable 939 

in comparison with the cost of organic solvents such as ethyl acetate or acetone cost ($1.30–$1.40 940 

kg-1). A study by Rive et al.303 proposed an operating cost of 83 USD/t CO2 using [Emim] [NTf2]-941 

IL for post-combustion CO2 capture. Similarly, another simulation study using ASPEN referred to the 942 

extraction of aromatic hydrocarbons from an aliphatic hydrocarbon with a possible profit margin of 943 

€20 million per year.304 These outcomes referred that ILs are not inevitably expensive and can be 944 

fit into industrial reality if some industries become ready to take projects to invest. No doubt MOF 945 

synthesis is more expensive, time-tracking, and complicated than ILs, but their integration could 946 

be a great benefit to reducing production costs. MOFs provide extra support to ILs which can 947 

prevent the leakage of ILs. Moreover, ILs provides some extra ionic transport pathway inside the 948 

pores of MOFs to improve the conductivity or separation. Finally, the integration of MOFs with 949 

ILs reduces the addition of ILs to get the optimized performance which could lower the 950 

production cost.  951 

Table 13. Comparison of the strengths and weaknesses of different materials and solvents. Reprinted from Ref.305 952 

Copyright 2019, Elsevier 953 

Material/Solvent Selectivity Stability Humidity 

effect 

Material 

Cost 

Process 

Cost 

Recycling 

Cost 

Working 

capacity 

Upside 

potential 

MOF Low Low High Medium/High Medium High High High 

Liquids amines High Low Low  Low Low High Medium Low 

Zeolites Low High High Low Low High Medium Low 

Soda-lime High High Low Low Medium Very High Medium Low 

Ionic Liquid High High Low Low Low Medium/High Low Medium 

 954 

Conclusion and future direction 955 

• Climate change is making life on Earth more difficult with problems, majorly as rising 956 

temperatures, and sea levels. CO2 emission from fossil fuel power plants is one of the main 957 

contributors to climate change. The current review focuses on the application of MOFs and 958 

ILs and their hybridization for CO2 capture. MOFs have porous coordinate nanostructures 959 

with tunable properties through functionalization strategies, making them a promising 960 
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candidate in carbon capture and storage (CCS). The researchers are focusing on the thermal 961 

stability and capturing performance of MOFs for industrial gas separation applications. One of 962 

the major bottlenecks is a need for more knowledge regarding the stability and performance of 963 

MOFs under single and mixture of gases, so it is tough to get know into the actual CO2 964 

separation efficiency with possible process limitations. Moreover, the investigation of MOF 965 

behavior in actual industrial conditions such as high temperatures, humid environments, and 966 

high mechanical stress conditions still needs to be investigated to make their 967 

commercialization feasible for industrial gas situations. Although several computational 968 

approaches to gas mixtures are made, the experimental investigation is more reliable. 969 

• ILs, the future solvents, are now leaving the laboratories and entering the commercial 970 

industry. The tunable properties of ILs by careful selection of cation and anion make them an 971 

ideal choice for CO2 capture. Although researchers have developed ILs that are highly 972 

selective to CO2, the major issues preventing the commercialization of ILs are the high 973 

viscosity, toxicity, cost, thermal stability, and purity of these solvents.  974 

• To overcome the shortcomings of ILs and MOFs, researchers are focused on combining 975 

MOFs and ILs to combine the exceptional properties of ILs along with the high specific area 976 

of MOFs. Moreover, researchers have moved one step ahead and combined MOF-IL 977 

composite with membranes to overcome the problems of ILs and MOFs when utilized 978 

individually on the membrane surface. The proper amalgamation of MOFs-IL composite with 979 

the membrane is required to get better dispersion to give better adhesion between the solution 980 

and composite membranes to remove the unnecessary voids to provide better performance for 981 

CO2 separation. Moreover, the high viscosity of IL is also a big problem during amalgamation, 982 

and low-purity and high-viscosity ILs are not selected for such applications.  983 

Based on the current review, the following recommendations are suggested: 984 

i. The stability and performance of MOFs under actual conditions need to be 985 

investigated.  986 

ii. The cost of the ILs needs to be reduced by synthesizing ILs from biobased 987 

components, which would reduce the price as well as it would reduce the toxicity.  988 

iii. The viscosity of ILs needs to be reduced by synthesizing protic ILs, which would 989 

reduce the viscosity and reduce the steps required in the purification of ILs. Moreover, 990 
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ILs viscosity can be reduced by synthesizing ILs from ether functionalized group on 991 

the cation. 992 

Based on the above recommendations, it is suggested that further investigation on MOF-IL 993 

composite is required to make their commercialization straightforward for industrial-based gas 994 

separation applications. 995 
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Nomenclature 1104 

Abbreviation  Full Name 

Al Aluminum 

[Ala]- Alaninate 

[APMIM] [Br] 1-aminopropyl-3-methylimidazolium bromide 

[APTMS] [Ac] 3- (trimethoxysilyl) propan-1-aminium acetate 

[Arg]- Arginate 

BDC 1,4-benzendicarboxylic acid 

[B4MePyr] 1- butyl-4-methylpyridinium bromide 

[BF4]- Tetrafluoroborate 

[Bmim]+ 1-butyl-3-methylimidazolium 

[Bmim] [BF4]  1-butyl-3-methylimidazolium tetrafluoroborate 

[BMIM] [Br] 1-butyl-3-methylimidazolium bromide 

[Bmim] [Cl] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[Bmim] [N(CN)2]/[DCA] 1-butyl-3-methylimidazolium dicyanamide 

[Bmim] [OTf] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[Bmim] [PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[Bmim] [SCN] 1-butyl-3-methylimidazolium thiocyanate 

[Bmim] [TCM] 1-butyl-3-methyl imidazolium tricyanomethanide 

[Bmim] [NTf2]/ [Tf2N] 1-butyl-3-methylimidazolium 

bis[trifluoromethyl)sulfonyl] imide 

[Bmpy]+ 1-butyl-3- methylpyridinium 

Bpdc 4,4′-biphenyl dicarboxylate 

[Br]- Bromide 

CCS Carbon capture and utilization 

CH4 Methane 

[Cho] [Gly] Choline glycinate 

[Cho] [Lys] Choline lysinate 

[Cho] [Pro] Choline prolinate 

[Cho] [Ser] Choline serinate  

[Cho] [Val] Choline valinate 

[Cl]- Chloride 

CNTs Carbon nanotubes 

[Hmim] [NTf2] 1-Hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide 

[C8H4F13mim] [NTf2]/[Tf2N] 1-(3,3,4,4,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide 
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CO Carbon monoxide 

CO2 Carbon dioxide 

COF Covalent organic framework 

CU Copper 

[Cu3(btc)2] 1,3,5-benzenetricarboxylate 

DABCO 1,4-diazabicyclo[2.2.2]octane) 

[N(CN)2] / [DCA] Dicyanamide 

DEF N, N-diethyl formamide 

DESs Deep eutectic solvents 

[DETAH] [Gly] Diethylenetriamine glycinate 

[DETAH] [Lys] Diethylenetriamine lysine 

[DMAPAH] [EOAc] Dimethylpropylenediamine ethoxyacetate 

[DMEDAH] [EOAc] N,N-dimethylethylenediammonium ethoxyacetate 

DMF N, N-dimethylformamide 

DUT-4 [Al(OH)(ndc)(DMF)1.5(H2O)1.5] 

DUT-5 [Al (OH)(bpdc)(DMF)1.8(H2O)3.5] 

EDA Ethylenediamine 

[Emim] [AC] 1-ethyl-3-methylimidazolium acetate 

[Emim] [Ala] 1-ethyl-3-methylimidazolium alaninate 

[Emim] [Br] 1-ethyl-3-methylimidazolium bromide 

[Emim] [B(CN)4] 1-ethyl-3-methyl imidazolium tetracyanoborate 

[Emim] [BF4] 1-ethyl-3-methylimidazolium tetrafluoroborate 

[Emim] [N(CN)2] / [DCA] 1-ethyl-3-methylimidazolium dicyanamide 

[Emim] [N(CN)2] / [DCA] 1-ethyl-3-methylimidazolium dicyanamide 

[Emim] [EtSO4] 1-ethyl-3-methylimidazolium ethyl sulphate 

[Emim] [Gly] 1-ethyl-3-methylimidazolium glycinate 

[Emim] [OTf] 1-ethyl-3-methylimidazolium trifluoro methanesulfonate 

[Emim] [TCM] 1-ethyl-3-methylimidazolium tricyanomethanide 

[Emim] [NTf2] / [Tf2N] 1-ethyl-3-methylimidazolium bis- (trifluoromethyl 

sulfonyl) imide 

[EOMmim] [PF6] 1-methoxyethyl-3-methylimidazoliumhexafluoroborate 

[EOMmim] [NTf2] / [Tf2N] 1-methoxyethyl-3-methylimidazolium bis(trifluoro-

methylsulfony) imide 

EIMS-HTFSA (EIMS=1-(1-ethyl-3-imidazolium)propane-3-sulfonate; 

HTFSA=N,N-bis(trifluoromethanesulfonyl)amide) 

EMI-TFSA (1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide) 

Fe Iron 

[Gln] Glutamine 

[Gly]- Glycinate 

HA Hexylamine 

H2 Hydrogen 

H2O Water 

H2S Hydrogen sulfide 

[His]- Hisdinate 

[Hmim]+ 1-hexyl-3 methylimidazolium 

ILs Ionic liquids 

Lys Lysine 

MEA Methyl ethyl amine 

Mg2+ Magnesium ion 

MMMs Mixed matrix membranes 

MOFs Metal organic frameworks 

MTV Multivariate 

Ndc 2,6-naphthalene dicarboxylate 
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N2 Nitrogen 

[N1114] [NTf2] / [Tf2N] Butyltrimethylammonium 

bis(trifluoromethylsulfonyl)imide 

[N66614]+ Trihexyltetradecylammonium 

[N66614] [Lys] Trihexyltetradecylammonium lysine 

Ni3O Nickel (III) oxide 

Ni-MOF Nickel based metal organic framework 

NOx Nitrogen oxides 

NO2 Nitrogen dioxide 

O2 Oxygen 

[Omim]+ 1-octyl-3 methylimidazolium 

[Omim] [NTf2] / [Tf2N] 1-octyl-3-methylimidazolium   

bis(trifluoromethyl)sulfonylamide 

PES Polyethylsulfone 

PEI Polyethyleneimine 

[PF6]- Hexafluorophosphate 

[Pmmim]+ 1,2-dimethyl-3- propylimidazolium 

Ppm Parts per million 

[Pro]- Prolinate 

[P66614]+ Trihexyltetradecylphosphonium 

[P66614] [Lys] Trihexyltetradecylphosphonium lysine 

[PSmim][HSO4] 1-methylimidazolium-3-propylsulfonate hydrosulfate 

QSPR Quantitative structures property relationship 

SALI Solvent-aided ligand inclusion 

[SCN]− Thiocyanate 

Sox Sulfur oxides 

SO2 Sulfur dioxide 

SO3H Sulfonic acid 

  

[TfO]- Trifuoromethanesulfonate 

[Tyr]- Tryosinate 

[Val]- Valinate 

WGS Water gas shift 

ZIF Zinc imidazole framework 

Zn4O 1,4-benzodicarboxylic acid 
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